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1 Introduction

In a series of papers [24, 25], Kostant and Wallach study the action of an abelian

Lie group A Š C
n.n�1/

2 on g D gl.n;C/. The Lie algebra a of A is the abelian Lie
algebra of Hamiltonian vector fields of the Gelfand–Zeitlin1 collection of functions
JGZ WD ffi;j W i D 1; : : : ; n; j D 1; : : : ; ig (see Section 2 for precise notation).
The set of functions JGZ is Poisson commutative, and its restriction to each regular
adjoint orbit in g forms an integrable system. For each function in the collection, the
corresponding Hamiltonian vector field on g is complete, and the action of A on g
is given by integrating the action of a.

Kostant and Wallach consider a Zariski open subset gsreg of g, which consists
of all elements x 2 g such that the differentials of the functions JGZ are linearly
independent at x. Elements of gsreg are called strongly regular, and Kostant and
Wallach show that gsreg is exactly the set of regular elements x of g such that the orbit
A � x is Lagrangian in the adjoint orbit of x. In [7,9], the first author determined the

A-orbits in gsreg through explicit computations. We denote by ˚ W g ! C
n.nC1/

2

the map given by ˚.x/ D .fi;j .x//, and note that in [7, 9], the most subtle and
interesting case is the nilfiber ˚�1.0/.

The Gelfand–Zeitlin functions are defined using a sequence of projections �i W
gl.i;C/ ! gl.i � 1;C/ given by mapping an i � i matrix y to its .i � 1/ � .i � 1/

submatrix in the upper left hand corner. Our paper [11] exploits the fact that each
projection �i is equivariant with respect to the action of GL.i � 1;C/ on gl.i;C/

by conjugation, where GL.i � 1;C/ is embedded in the top left hand corner of
GL.i;C/ in the natural way. In particular, we use the theory of GL.i � 1;C/-orbits
on the flag variety Bi of gl.i;C/ for i D 1; : : : ; n, to provide a more conceptual
understanding of the A-orbits in the nilfiber. In addition, we prove that every Borel
subalgebra contains strongly regular elements, and hope to develop these methods
in order to better understand the topology of gsreg.

In this paper, we review results of Kostant, Wallach, and the first author, and then
explain how to use the theory of GL.i � 1;C/-orbits on Bi in order to derive the
results from [11]. In Section 2, we recall the basic symplectic and Poisson geometry
needed to construct the Gelfand–Zeitlin integrable system. We then discuss the
work of Kostant and Wallach in constructing the system and the action of the
group A, and the work of the first author in describing the A-orbit structure of gsreg.
In Section 3, we give an overview of our results from [11] and sketch some of the
proofs. In Section 4, we review the rich theory of orbits of a symmetric subgroup K

on the flag variety B of a reductive group G, as developed by Richardson, Springer,
and others. In particular, we show explicitly how the theory applies if K D GL

.n � 1;C/ � GL.1;C/ and G D GL.n;C/, and we hope this section will make the
general theory of K-orbits more accessible to researchers interested in applying this
theory.

1Alternate spellings of Zeitlin include Cetlin, Tsetlin, Tzetlin, and Zetlin. In this paper, we follow
the convention from our earlier work.
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It would be difficult to overstate the influence of Nolan Wallach on the work
discussed in this paper. We look forward to further stimulating interactions with
Nolan in the future, and note that our plans for developing this work may well
depend on utilizing completely different work of Nolan than that discussed here.

2 The Gelfand–Zeitlin integrable system on gl.n;C/

2.1 Integrable systems

In this section, we give a brief discussion of integrable systems. For further details,
we refer the reader to [1, 2]. We denote by M an analytic (respectively smooth)
manifold with holomorphic (resp. smooth) functions H.M/.

Let .M; !/ be a 2n-dimensional symplectic manifold with symplectic form
! 2 ^2T �M . For f 2 H.M/, we let �f be the unique vector field such that

df .Y / D !.Y; �f /; (1)

for all vector fields Y on M . The vector field �f is called the Hamiltonian vector
field of f . We can use these vector fields to give H.M/ the structure of a Poisson
algebra with Poisson bracket:

ff; gg WD !.�f ; �g/; (2)

for f; g 2 H.M/. That is f�; �g makes H.M/ into a Lie algebra and f�; �g satisfies a
Leibniz rule with respect to the associative multiplication of H.M/.

To define an integrable system on .M; !/, we need the following notion.

Definition 2.1. We say the functions fF1; : : : ; Frg � H.M/ are independent if the
open set U D fm 2 M W .dF1/m ^ � � � ^ .dFr/m ¤ 0g is dense in M .

Definition 2.2. Let .M; !/ be a 2n-dimensional symplectic manifold. An inte-
grable system on M is a collection of n independent functions fF1; : : : ; Fng �
H.M/ such that fFi ; Fj g D 0 for all i; j .

Remark 2.3. This terminology originates in Hamiltonian mechanics. In that
context, .M; !; H/ is a phase space of a classical Hamiltonian system with n

degrees of freedom and Hamiltonian function H 2 H.M/ (the total energy of
the system). The trajectory of the Hamiltonian vector field �H describes the time
evolution of the system. If we are given an integrable system fF1 D H; : : : ; Fng,
then this trajectory can be found using only the operations of function integration
and function inversion ([1], Section 4.2). Such a Hamiltonian system is said to be
integrable by quadratures.

Integrable systems are important in Lie theory, because they are useful in
geometric constructions of representations through the theory of quantization
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[14, 19] (see Remark 2.12 below). For example, integrable systems provide a way
to construct polarizations of symplectic manifolds .M; !/. By a polarization, we
mean an integrable subbundle of the tangent bundle P � TM such that each of the
fibers Pm � Tm.M/ is Lagrangian, i.e., Pm D P ?

m , where P ?
m is the annihilator of

Pm with respect to the symplectic form !m on Tm.M/. A submanifold S � .M; !/

is said to be Lagrangian if Tm.S/ is Lagrangian for each m 2 S , so that the leaves
of a polarization are Lagrangian submanifolds of M . The existence of a polarization
is a crucial ingredient in constructing a geometric quantization of M (for M a real
manifold) (see for example [39]), and Lagrangian submanifolds are also important
in the study of deformation quantization (see for example [28]).

To see how an integrable system on .M; !/ gives rise to a polarization, we
consider the moment map of the system fF1; : : : ; Fng:

F W M ! Kn; F.m/ D .F1.m/; : : : ; Fn.m// for m 2 M; (3)

where K D R or C. Let U D fm 2 M W .dF1/m ^ � � � ^ .dFn/m ¤ 0g and let
P � T U be P D spanf�Fi W i D 1; : : : ; ng. Then P is a polarization of the
symplectic manifold .U; !jU / whose leaves are the connected components of the
level sets of FjU , i.e., the regular level sets of F. Indeed, if S � U is a regular
level set of F, then dim S D dim M � n D n. It then follows that for m 2 S ,
Tm.S/ D spanf.�Fi /m W i D 1; : : : ; ng; since the vector fields �F1 ; : : : ; �Fn are
tangent to S and independent on U . Thus, Tm.S/ is isotropic by Equation (2) and
of dimension dim S D n D 1

2
dim U , so that Tm.S/ is Lagrangian.

2.2 Poisson manifolds and the Lie–Poisson structure

To study integrable systems in Lie theory, we need to consider not only symplectic
manifolds, but Poisson manifolds. We briefly review some of the basic elements of
Poisson geometry here. For more detail, we refer the reader to [37] and [1].

A Poisson manifold .M; f�; �g/ is an analytic (resp. smooth) manifold where the
functions H.M/ have the structure of a Poisson algebra with Poisson bracket f�; �g.
For example, any symplectic manifold is a Poisson manifold where the Poisson
bracket of functions is given by Equation (2). For a Poisson manifold .M; f�; �g/, the
Hamiltonian vector field for f 2 H.M/ is given by

�f .g/ WD ff; gg; (4)

where g 2 H.M/. In the case where .M; !/ is symplectic, it is easy to see that this
definition of the Hamiltonian vector field of f agrees with the definition given in
Equation (1).

If we have two Poisson manifolds .M1; f�; �g1/ and .M2; f�; �g2/, an analytic (resp.
smooth) map ˚ W M1 ! M2 is said to be Poisson if

ff ı ˚; g ı ˚g1 D ff; gg2 ı ˚; (5)
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for f; g 2 H.M2/. That is, ˚� W H.M2/ ! H.M1/ is a homomorphism of Poisson
algebras. Equivalently, for f 2 H.M2/,

˚��˚�f D �f : (6)

In particular, a submanifold .S; f�; �gS / � .M; f�; �gM / with Poisson structure f�; �gS

is said to be a Poisson submanifold of .M; f�; �gM / if the inclusion i W S ,! M is
Poisson.

In general, Poisson manifolds .M; f�; �g/ are not symplectic, but they are foliated
by symplectic submanifolds called symplectic leaves. Consider the (singular)
distribution on M given by

�.M/ WD spanf�f W f 2 H.M/g: (7)

The distribution �.M/ is called the characteristic distribution of .M; f�; �g/. Using
the Jacobi identity for the Poisson bracket f�; �g, one computes that

Œ�f ; �g� D �ff;gg; (8)

so that the distribution �.M/ is involutive. Using a general version of the Frobenius
theorem, one can then show that �.M/ is integrable and the leaves .S; f�; �gS / are
Poisson submanifolds of .M; f�; �g/, where the Poisson bracket f�; �gS is induced by a
symplectic form !S on S as in Equation (2). For further details, see [37], Chapter 2.

Let g be a reductive Lie algebra over R or C and let G be any connected
Lie group with Lie algebra g. Let ˇ.�; �/ be a nondegenerate, G-invariant bilinear
form on g. Then g has the structure of a Poisson manifold, which we call the
Lie–Poisson structure. If f 2 H.g/, we can use the form ˇ to identify the
differential dfx 2 T �

x .g/ D g� at x 2 g with an element rf .x/ 2 g. The element
rf .x/ is determined by its pairing against z 2 g Š Tx.g/ by the formula,

ˇ.rf .x/; z/ D d

dt

ˇ
ˇ
ˇ
ˇ
tD0

f .x C tz/ D dfx.z/: (9)

We then define a Poisson bracket on H.g/ by

ff; gg.x/ D ˇ.x; Œrf .x/; rg.x/�/: (10)

It can be shown that this definition of the Poisson structure on g is independent of
the choice of form ˇ in the sense that a different form gives rise to an isomorphic
Poisson manifold structure on g.

From (10) it follows that

.�f /x D Œx; rf .x/� 2 Tx.g/ D g: (11)
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For x 2 g, let G � x denote its adjoint orbit. From Equation (11), it follows that the
fiber of the characteristic distribution of .g; f�; �g/ at x is

�.g/x D fŒx; y� W y 2 gg D Tx.G � x/:

One can then show that the symplectic leaves of .g; f�; �g/ are the adjoint orbits of G

on g with the canonical Kostant–Kirillov–Souriau (KKS) symplectic structure (see
for example [6], Proposition 1.3.21). Since G � x � g is a Poisson submanifold, it
follows from Equations (5) and (6) that

ff; ggLPjG�x D ff jG�x; gjG�xgKKS and �LP
f jG�x D �KKS

f jG�x
(12)

for f; g 2 H.g/, where the Poisson bracket and Hamiltonian field on the left side
of the equations are defined using the Lie–Poisson structure, and on the right side
they are defined using the KKS symplectic structure as in Section 2.1.

This description of the symplectic leaves allows us to easily identify the Poisson
central functions of .g; f�; �g/. We call a function f 2 H.g/ a Casimir function if
ff; gg D 0 for all g 2 H.g/. Clearly, f is a Casimir function if and only if �f D 0.
Equation (12) implies this occurs if and only if df jG�x D 0 for every x 2 g, since
each G � x is symplectic. Thus, the Casimir functions for the Lie–Poisson structure
on g are precisely the Ad.G/-invariant functions, H.g/G .

The symplectic leaves of .g; f�; �g/ of maximal dimension play an important role
in our discussion. For x 2 g, let zg.x/ denote the centralizer of x. We call an
element x 2 g regular if dim zg.x/ D rank.g/ is minimal [23]. The orbit G � x then
has maximum possible dimension, i.e., dim.G � x/ D dim g � rank.g/.

2.3 Construction of the Gelfand–Zeitlin integrable
system on gl.n;C/

Let g D gl.n;C/ and let G D GL.n;C/. Then g is reductive with nondegenerate,
invariant form ˇ.x; y/ D tr.xy/, where tr.xy/ denotes the trace of the matrix xy

for x; y 2 g. Thus, g is a Poisson manifold with the Lie–Poisson structure. In this
section, we construct an independent, Poisson commuting family of functions on g,
whose restriction to each regular adjoint orbit G �x forms an integrable system in the
sense of Definition 2.2. We refer to this family of functions as the Gelfand–Zeitlin
integrable system on g. The family is constructed using Casimir functions for certain
Lie subalgebras of g and extending these functions to Poisson commuting functions
on all of g.

We consider the following Lie subalgebras of g. For i D 1; : : : ; n � 1, we embed
gl.i;C/ into g in the upper left corner and denote its image by gi . That is to say, gi D
fx 2 g W xk;j D 0; if k > i or j > ig. Let Gi � GL.n;C/ be the corresponding
closed subgroup. If g?

i denotes the orthogonal complement of gi with respect to the
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form ˇ, then g D gi ˚g?
i . Thus, the restriction of the form ˇ to gi is nondegenerate,

so we can use it to define the Lie–Poisson structure of gi via Equation (10). We have
a natural projection �i W g ! gi given by �i .x/ D xi , where xi is the upper left
i � i corner of x, that is, .xi /k;j D xk;j for 1 � k; j � i and is zero otherwise. The
following lemma is the key ingredient in the construction of the Gelfand–Zeitlin
integrable system on g.

Lemma 2.4. The projection �i W g ! gi is Poisson with respect to the Lie–Poisson
structures on g and gi .

Proof. Since the Poisson brackets on H.g/ and H.gi / satisfy the Leibniz rule, it
suffices to show Equation (5) for linear functions �x , �y 2 H.gi /, where �x.z/ D
ˇ.x; z/ and �y.z/ D ˇ.y; z/ for x; y; z 2 gi . This is an easy computation using
the definition of the Lie–Poisson structure in Equation (10) and the decomposition
g D gi ˚ g?

i . ut
Let CŒg� denote the algebra of polynomial functions on g. Let

J.n/ WD h��
1 .CŒg�G1/; : : : ; ��

n�1.CŒgn�1�Gn�1 /;CŒg�Gi (13)

be the associative subalgebra of CŒg� generated by ��
i .CŒgi �

Gi / for i � n � 1

and CŒg�G .

Proposition 2.5. The algebra J.n/ is a Poisson commutative subalgebra of CŒg�.

Proof. The proof proceeds by induction on n, the case n D 1 being trivial. Suppose
that J.n � 1/ is Poisson commutative. Then

J.n/ D h��
n�1.J.n � 1//;CŒg�Gi

is the associative algebra generated by ��
n�1.J.n � 1// and CŒg�G . By Lemma 2.4,

��
n�1.J.n � 1// is Poisson commutative, and the elements of CŒg�G are Casimir

functions, so that J.n/ is Poisson commutative. ut
Remark 2.6. It can be shown that the algebra J.n/ is a maximal Poisson commu-
tative subalgebra of CŒg� ([24], Theorem 3.25).

The Gelfand–Zeitlin integrable system is obtained by choosing a set of generators
for the algebra J.n/. We note that the map �i W g ! gi is surjective, so that we can
identify CŒgi �

Gi with its image ��
i .CŒgi �

Gi /. Let CŒgi �
Gi D CŒfi;1; : : : ; fi;i �, where

fi;j .x/ D tr.xj
i / for j D 1; : : : ; i . Then the functions

JGZ WD ffi;j W i D 1; : : : ; n; j D 1; : : : ; ig (14)

generate the algebra J.n/ as an associative algebra. We claim that JGZ is an
algebraically independent, Poisson commuting set of functions whose restriction
to each regular G � x forms an integrable system.



92 Mark Colarusso and Sam Evens

By Proposition 2.5, the functions JGZ Poisson commute. To see that the functions
JGZ are algebraically independent, we study the following morphisms:

˚i W gi ! C
i ; ˚i .y/ D .fi;1.y/; : : : ; fi;i .y//;

for i D 1; : : : ; n. We define the Kostant–Wallach map to be the morphism

˚ W g ! C
.nC1

2 / given by ˚.x/ D .˚1.x1/; : : : ; ˚i .xi /; : : : ; ˚n.xn//: (15)

For z 2 gi , let �i .z/ equal the collection of i eigenvalues of z counted with
repetitions, where here we regard z as an i � i matrix.

Remark 2.7. If x; y 2 g, then ˚.x/ D ˚.y/ if and only if �i .xi / D �i .yi /

for i D 1; : : : ; n. This follows from the fact that CŒgi �
Gi D CŒfi;1; : : : ; fi;i � D

CŒpi;1; : : : ; pi;i �, where pi;j is the coefficient of t j �1 in the characteristic polyno-
mial of xi thought of as an i � i matrix. In particular, ˚.x/ D .0; : : : ; 0/ if and only
if xi is nilpotent for i D 1; : : : ; n.

Kostant and Wallach produce a cross-section to the map ˚ using the (upper)
Hessenberg matrices. For 1 � i; j � n, let Ei;j 2 g denote the elementary matrix
with 1 in the .i; j /-th entry and zero elsewhere. Let bC � g be the standard Borel
subalgebra of upper triangular matrices and let e D Pn

iD2 Ei;i�1 be the sum of the
negative simple root vectors. We call elements of the affine variety e C b (upper)
Hessenberg matrices:

e C b D

2

6
6
6
6
6
4

a11 a12 � � � a1n�1 a1n

1 a22 � � � a2n�1 a2n

0 1 � � � a3n�1 a3n

:::
:::

: : :
:::

:::

0 0 � � � 1 ann

3

7
7
7
7
7
5

.

Kostant and Wallach prove the following remarkable fact ([24], Theorem 2.3).

Theorem 2.8. The restriction of the Kostant–Wallach map ˚ j
eCb W eCb ! C

.nC1
2 /

to the Hessenberg matrices e C b is an isomorphism of algebraic varieties.

Remark 2.9. For x 2 g, let R.x/ D f�1.x1/; : : : ; �i .xi /; : : : ; �n.x/g be the collec-
tion of

�
nC1

2

�

-eigenvalues of x1; : : : ; xi ; : : : ; x counted with repetitions. The num-
bers R.x/ are called the Ritz values of x and play an important role in numerical
linear algebra (see for example [29, 30]). In this language, Theorem 2.8 says that
any

�
nC1

2

�

-tuple of complex numbers can be the Ritz values of an x 2 g and that
there is a unique Hessenberg matrix having those numbers as Ritz values. Contrast
this with the Hermitian case in which the necessarily real eigenvalues of xi must
interlace those of xi�1 (see for example [21]). This discovery has led to some new
work on Ritz values by linear algebraists [29, 34].

Theorem 2.8 suggests the following definition from [24].



The Gelfand–Zeitlin integrable system and K-orbits on the flag variety 93

Definition 2.10. We say that x 2 g is strongly regular if the differentials
f.dfi;j /x W i D 1; : : : ; n; j D 1; : : : ; ig are linearly independent. We denote
the set of strongly regular elements of g by gsreg.

By Theorem 2.8, e Cb � gsreg, and since gsreg is Zariski open, it is dense in both the
Zariski topology and the Hausdorff topology on g [27]. Hence, the polynomials JGZ

in (14) are independent. For c 2 C
.nC1

2 /, let ˚�1.c/sreg WD ˚�1.c/ \ gsreg denote
the strongly regular elements of the fiber ˚�1.c/. It follows from Theorem 2.8 that

˚�1.c/sreg is nonempty for any c 2 C
.nC1

2 /.
By a well-known result of Kostant [23], if x is strongly regular, then xi 2 gi is

regular for all i . We state several equivalent characterizations of strong regularity.

Proposition 2.11 ([24], Proposition 2.7 and Theorem 2.14). The following state-
ments are equivalent.

(i) x is strongly regular.
(ii) The tangent vectors f.�fi;j /x I i D 1; : : : ; n � 1; j D 1; : : : ; ig are linearly

independent.
(iii) The elements xi 2 gi are regular for all i D 1; : : : ; n and zgi

.xi / \
zgiC1

.xiC1/ D 0 for i D 1; : : : ; n � 1, where zgi
.xi / denotes the centralizer of

xi in gi .

To see that the restriction of the functions JGZ to a regular adjoint orbit G � x

forms an integrable system, we first observe that G � x \ gsreg ¤ ; for any
regular x. This follows from the fact that any regular matrix is conjugate to a
companion matrix, which is Hessenberg and therefore strongly regular. Note that the
functions fn;1; : : : ; fn;n restrict to constant functions on G � x, so we only consider
the restrictions of ffi;j W i D 1; : : : ; n � 1; j D 1; : : : ; ig. Let qi;j D fi;j jG�x for
i D 1; : : : ; n � 1 , j D 1; : : : ; i and let U D G � x \ gsreg. Then U is open and
dense in G � x. By Equation (12), part (ii) of Proposition 2.11 and Proposition 2.5
imply respectively that the functions fqi;j W i D 1; : : : ; n � 1; j D 1; : : : ig are
independent and Poisson commute on U . Observe that there are

n�1X

iD1

i D n.n � 1/

2
D dim.G � x/

2

such functions. Hence, they form an integrable system on regular G � x.
It follows from our work in Section 2.1 that the connected components of the

regular level sets of the moment map

y ! .q1;1.y/; : : : ; qi;j .y/; : : : ; qn�1;n�1.y//

are the leaves of a polarization of G � x \ gsreg. It is easy to see that such regular
level sets coincide with certain strongly regular fibers of the Kostant–Wallach map,
namely the fibers ˚�1.c/sreg where c D .c1; : : : ; cn/, ci 2 C

i with cn D ˚n.x/ (see
Equation (15)). This follows from Proposition 2.11 and the fact that regular matrices
which have the same characteristic polynomial are conjugate (see Remark 2.7).
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We therefore turn our attention to studying the geometry of the strongly regular
set gsreg and Lagrangian submanifolds ˚�1.c/sreg of regular G � x.

Remark 2.12. The Gelfand–Zeitlin system described here can be viewed as a
complexification of the one introduced by Guillemin and Sternberg [19] on the
dual to the Lie algebra of the unitary group. They show that the Gelfand–Zeitlin
integrable system on u.n/� is a geometric version of the classical Gelfand–Zeitlin
basis for irreducible representations of U.n/ [18]. More precisely, they construct
a geometric quantization of a regular, integral coadjoint orbit of U.n/ on u.n/�
using the polarization from the Gelfand–Zeitlin integrable system and show that the
resulting quantization is isomorphic to the corresponding highest weight module for
U.n/ using the Gelfand–Zeitlin basis for the module.

There is strong empirical evidence (see [17]) that the quantum version of the
complexified Gelfand–Zeitlin system is the category of Gelfand–Zeitlin modules
studied by Drozd, Futorny, and Ovsienko [13]. These are Harish-Chandra modules
for the pair .U.g/; 	 /, where 	 � U.g/ is the Gelfand–Zeitlin subalgebra of the
universal enveloping algebra U.g/ [16]. It would be interesting to produce such
modules geometrically using the geometry of the complex Gelfand–Zeitlin system
developed below and deformation quantization.

2.4 Integration of the Gelfand–Zeitlin system and the group A

We can study the Gelfand–Zeitlin integrable system on gl.n;C/ and the structure of
the fibers ˚�1.c/sreg by integrating the corresponding Hamiltonian vector fields to

a holomorphic action of C.n
2/ on g. The first step is the following observation.

Theorem 2.13. Let fi;j .x/ D tr.xj
i / for i D 1; : : : ; n � 1, j D 1; : : : ; i . Then

the Hamiltonian vector field �fi;j is complete on g and integrates to a holomorphic
action of C on g whose orbits are given by

ti;j � x WD Ad.exp.ti;j jx
j �1
i // � x; (16)

for x 2 g, ti;j 2 C.

Proof. Denote the right side of Equation (16) by 
.ti;j ; x/. We show that

 0.ti;j ; x/ D .��fi;j /
.ti;j ;x/ for any ti;j 2 C, so that 
.�ti;j ; x/ is an integral
curve of the vector field �fi;j . For the purposes of this computation, replace the
variable ti;j by the variable t . Then

d

dt

ˇ
ˇ
ˇ
ˇ
tDt0

Ad.exp.t jx
j �1
i // � x D ad.jx

j �1
i / � Ad.exp.t0 jx

j �1
i // � x

D ad.jx
j �1
i / � 
.t0; x/:
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Clearly, exp.t0jx
j �1
i / centralizes xi , so that 
.t0; x/i D xi . This implies

ad.jx
j �1
i / � 
.t0; x/ D ad.j.
.t0; x/i /

j �1/ � 
.t0; x/:

Now it is easily computed that rfi;j .y/ D jy
j �1
i for any y 2 g. Thus,

Equation (11) implies that

ad.j.
.t0; x/i /
j �1/ � 
.t0; x/ D �.�fi;j /
.t0;x/: ut

We now consider the Lie algebra of Gelfand–Zeitlin vector fields

a WD spanf�fi;j W i D 1; : : : ; n � 1; j D 1; : : : ; ig: (17)

By Equation (8), a is an abelian Lie algebra, and since gsreg is nonempty, dim a D
�

n
2

�

, by (ii) of Proposition 2.11. Let A be the corresponding simply connected Lie

group, so that A Š C
.n

2/. We take as coordinates on A,

t D .t1; : : : ; t i ; : : : ; tn�1/ 2 C � � � � � C
i � � � � � C

n�1 D C
.n

2/;

where t i 2 C
i with t i D .ti;1; : : : ; ti;i /, with ti;j 2 C for i D 1; : : : ; n � 1, j D

1; : : : ; i . Since a is abelian the actions of the various ti;j given in Equation (16)
commute. Thus, we can define an action of A on g by composing the actions of the
various ti;j in any order. For a D .t1; : : : ; tn�1/ 2 A, a � x is given by the formula

a � x D Ad.exp.t1;1// � : : : � Ad.exp.jti;j x
j �1
i // � : : :

� Ad.exp..n � 1/tn�1;n�1xn�2
n�1// � x:

(18)

Theorem 2.13 shows that this action integrates the action of a on g, so that

Tx.A � x/ D spanf.�fi;j /x W i D 1; : : : ; n � 1; j D 1; : : : ; ig: (19)

Since the functions JGZ Poisson commute, it follows from Equation (12) that
A � x � G � x is isotropic with respect to the KKS symplectic structure on G �x. Note
also that Equation (4) implies that �fi;j fk;l D 0 for any i; j and k; l . It follows that
fk;l is invariant under the flow of �fi;j for any i; j and therefore is invariant under
the action of A given in Equation (18). Thus, the action of A preserves the fibers of
the Kostant–Wallach map ˚ defined in Equation (15).

It follows from Equation (19) and Part (ii) of Proposition 2.11 that x 2 gsreg

if and only if dim.A � x/ D �
n
2

�

, which holds if and only if A � x � G � x

is Lagrangian in regular G � x. Thus, the group A acts on the strongly regular
fibers ˚�1.c/sreg and its orbits form the connected components of the Lagrangian
submanifold ˚�1.c/sreg � G � x. Hence, the leaves of the polarization of a regular
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adjoint orbit G �x constructed from the Gelfand–Zeitlin integrable system are exactly
the A-orbits on G � x \ gsreg. Moreover, there are only finitely many A-orbits in
˚�1.c/sreg.

Theorem 2.14 ([24], Theorem 3.12). Let c 2 C
.nC1

2 / and let ˚�1.c/sreg be a
strongly regular fiber of the Kostant–Wallach map. Then ˚�1.c/sreg is a smooth
algebraic variety of dimension

�
n
2

�

whose irreducible components in the Zariski
topology coincide with the orbits of A on ˚�1.c/sreg:

Remark 2.15. Our definition of the Gelfand–Zeitlin integrable system involved
choosing the specific set of algebraically independent generators JGZ for the algebra
J.n/ in Equation (13). However, it can be shown that if we choose another
algebraically independent set of generators, J 0

GZ, then their restriction to each
regular adjoint orbit G � x forms an integrable system, and the corresponding
Hamiltonian vector fields are complete and integrate to an action of a holomorphic
Lie group A0 whose orbits coincide with those of A, [24], Theorem 3.5. Our
particular choice of generators JGZ is to facilitate the easy integration of the
Hamiltonian vector fields �f , f 2 JGZ in Theorem 2.13.

2.5 Analysis of the A-action on ˚�1.c/sreg

Kostant and Wallach [24] studied the action of A on a special set of regular
semisimple elements in g defined by:

g˝ D fx 2 g W xi is regular semisimple and �i .xi / \ �iC1.xiC1/ D ; for all ig:
(20)

Let ˝ D ˚.g˝/ � C
.nC1

2 /. By Remark 2.7, we have g˝ D ˚�1.˝/. In [24], the
authors show that the action of A is transitive on the fibers ˚�1.c/ for c 2 ˝ and
that these fibers are

�
n
2

�

-dimensional tori.

Theorem 2.16 ([24], Theorems 3.23 and 3.28). The elements of g˝ are strongly
regular, so that ˚�1.c/ D ˚�1.c/sreg for c 2 ˝. Moreover, ˚�1.c/ is a

homogeneous space for a free algebraic action of the torus .C�/.
n
2/ and therefore is

precisely one A-orbit.

Remark 2.17. An analogous Gelfand–Zeitlin integrable system exists for complex
orthogonal Lie algebras so.n;C/. One can also show that this system integrates to
a holomorphic action of Cd on so.n;C/, where d is half the dimension of a regular
adjoint orbit in so.n;C/. One can then prove the analogue of Theorem 2.16 for
so.n;C/. We refer the reader to [8] for details.

The thesis of the first author generalizes Theorem 2.16 to an arbitrary fiber

˚�1.c/sreg for c 2 C
.nC1

2 / (see [7]). The methods used differ from those used to
prove Theorem 2.16, but the idea originates in some unpublished work of Wallach,



The Gelfand–Zeitlin integrable system and K-orbits on the flag variety 97

who used a similar strategy to describe the A-orbit structure of the set g˝ . We
briefly outline this strategy, which can be found in detail in [9], Section 4. The
key observation is that the vector field �fi;j acts via Equation (16) by the centralizer
ZGi .xi / of xi in Gi . The problem is that the group ZGi .xi / is difficult to describe
for arbitrary xi , so that the formula for the A-action in Equation (18) is too difficult
to use directly. However, if x 2 gsreg and Ji is the Jordan canonical form of xi ,
then the group Zi WD ZGi .Ji / is easy to describe, since xi 2 gi is regular for
i D 1; : : : ; n by (iii) of Proposition 2.11. Further, for x 2 ˚�1.c/sreg, xi is in a fixed
regular conjugacy class for i D 1; : : : ; n. This allows us to construct morphisms
˚�1.c/sreg ! Gi ; given by x ! gi .x/, where Ad.gi .x/�1/ �x D Ji , with Ji a fixed
Jordan matrix (depending only on ˚�1.c/sreg). We can then use these morphisms to
define a free algebraic action of the group Z WD Z1 � � � � � Zn�1 on ˚�1.c/sreg such
that the Z-orbits coincide with the A-orbits. The action of Z is given by

.z1; : : : ; zn�1/ � x D Ad.g1.x/z1g1.x/�1/ � : : : � Ad.gi .x/zi gi .x/�1/ � : : :

� Ad.gn�1.x/zn�1gn�1.x/�1/ � x;
(21)

where zi 2 Zi for i D 1; : : : ; n � 1 and x 2 ˚�1.c/sreg, (cf. Equation (18)).
The action of the group Z in Equation (21) is much easier to work with than the

action of A in Equation (18) and allows us to understand the structure of an arbitrary
fiber ˚�1.c/sreg. The first observation is that we can enlarge the set of elements on
which the action of A is transitive on the fibers of the Kostant–Wallach map from
the set g˝ to the set g� defined by

g� D fx 2 g W �i .xi / \ �iC1.xiC1/ D ;g:
Let � D ˚.g�/. Note that by Remark 2.7, ˚�1.�/ D g� .

Theorem 2.18 ([9], Theorem 5.15). The elements of g� are strongly regular.
If c 2 �, then ˚�1.c/ D ˚�1.c/sreg is a homogeneous space for a free algebraic
action of the group Z D Z1 � � � � � Zn�1 given in Equation (21), and thus is exactly
one A-orbit. Moreover, g� is the maximal subset of g for which the action of A is
transitive on the fibers of ˚ .

For general fibers the situation becomes more complicated.

Theorem 2.19 ([9], Theorem 5.11). Let x 2 gsreg be such that there are ji distinct
eigenvalues in common between xi and xiC1 for 1 � i � n � 1, and let c D ˚.x/.
Then there are exactly 2j A-orbits in ˚�1.c/sreg, where j D Pn�1

iD1 ji . The orbits
of A on ˚�1.c/sreg coincide with the orbits of a free algebraic action of the group
Z D Z1 � � � � � Zn�1 defined on ˚�1.c/sreg in Equation (21).

Remark 2.20. After the proof of Theorem 2.19 was established in [7], a similar
result appeared in an interesting paper of Bielwaski and Pidstrygach [3]. Their argu-
ments are independent and completely different from ours. It would be interesting
to study the relation between the two different approaches to establishing the result
of Theorem 2.19.
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We highlight a special case of Theorem 2.19, which we will investigate in much
greater detail below in Section 3.

Corollary 2.21. Consider the strongly regular nilfiber

˚�1.0/sreg WD ˚�1.0; : : : ; 0/sreg:

Then there are exactly 2n�1 A-orbits in ˚�1.0/sreg. These orbits coincide with the

orbits of a free algebraic action of .C�/n�1 � C
.n

2/�nC1 on ˚�1.0/sreg.

Proof. The first statement follows immediately from Remark 2.7 and Theorem 2.19.
For the second statement, we observe that in this case the group

Z D ZG1.e1/ � � � � � ZGn�1 .en�1/;

where ei 2 gi is the principal nilpotent Jordan matrix. It follows that Z D .C�/n�1�
C

.n
2/�nC1. ut
Theorem 2.19 gives a complete description of the local structure of the

Lagrangian foliation of regular adjoint orbits of g by the Gelfand–Zeitlin
integrable system and shows the system is locally algebraically integrable,
giving natural algebraic “angle coordinates” coming from the action of the group
Z D Z1 � � � � � Zn�1. However, Theorem 2.19 does not say anything about the
global nature of the foliation. Motivated by Theorem 2.19, we would like to extend
the local Z-action on ˚�1.c/sreg given in (21) to larger subvarieties of g. However,
this is not possible, except in certain special cases. The definition of the Z-action
uses the fact that the Jordan form of each xi for i D 1; : : : ; n�1 is fixed on the fiber
˚�1.c/sreg. The problem with trying to extend this action is that there is in general
no morphism on a larger variety which assigns to xi its Jordan form. The issue is
that the ordered eigenvalues of a matrix are not in general algebraic functions of the
matrix entries.

For the set g˝ , Kostant and Wallach resolve this issue by producing an étale
covering g˝.e/ of g˝ on which the eigenvalues are algebraic functions [25]. They
then lift the Lie algebra a of Gelfand–Zeitlin vector fields in Equation (17) to
the covering where they integrate to an algebraic action of the torus .C�/.

n
2/. In

our paper [10], we extend this to the full strongly regular set using the theory of
decomposition classes [4] and Poisson reduction [15].

3 The geometry of the strongly regular nilfiber

In recent work [11], we take a very different approach to describing the geometry of
gsreg by studying the Borel subalgebras that contain elements of gsreg. We develop a
new connection between the orbits of certain symmetric subgroups Ki on the flag
varieties of gi for i D 2; : : : ; n and the Gelfand–Zeitlin integrable system on g.
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We use this connection to prove that every Borel subalgebra of g contains strongly
regular elements, and we determine explicitly the Borel subalgebras which contain
elements of the strongly regular nilfiber ˚�1.0/sreg D ˚�1.0; : : : ; 0/sreg. We show
that there are 2n�1 such Borel subalgebras, and that the subvarieties of regular
nilpotent elements of these Borel subalgebras are the 2n�1 irreducible components
of ˚�1.0/sreg given in Corollary 2.21. This description of the nilfiber is much more

explicit than the one given in Corollary 2.21, since the Z D .C�/n�1 � C
.n

2/�nC1-
action of Equation (21) is not easy to compute explicitly. We refer the reader to our
paper [11] for proofs of the results of this section.

3.1 K -orbits and ˚�1.0/sreg

We begin by considering the strongly regular nilfiber ˚�1.0/sreg of the Kostant–
Wallach map. By Remark 2.7 and (iii) of Proposition 2.11, we note that x 2
˚�1.0/sreg if and only if the following two conditions are satisfied for every
i D 2; : : : ; n:

(a) xi�1; xi are regular nilpotent.

(b) zgi�1
.xi�1/ \ zgi

.xi / D 0:
(22)

We proceed by finding the Borel subalgebras in gi which contain elements satisfying
(a) and (b), and we then use these Borel subalgebras to construct the Borel
subalgebras of g which contain elements of ˚�1.0/sreg.

Let Ki WD GL.i �1;C/�GL.1;C/ � GL.i;C/ be the group of invertible block
diagonal matrices with an .i � 1/ � .i � 1/ block in the upper left corner and a 1 � 1

block in the lower right corner. Let Bi be the flag variety of gi . Then Ki acts on Bi

by conjugation with finitely many orbits (see for example [35]). We observe that the
conditions (a) and (b) in (22) are Ad.Ki /-equivariant. Thus, the problem of finding
the Borel subalgebras of gi containing elements satisfying these conditions reduces
to the problem of studying the conditions for a representative in each Ki -orbit.
In this section, we find all Ki -orbits Qi through Borel subalgebras containing such
elements, and in the process reveal some new facts about the geometry of Ki -orbits
on Bi . In the following sections, we explain how to link the orbits Qi together
for i D 2; : : : ; n to produce the Borel subalgebras of g that contain elements
of ˚�1.0/sreg and use these Borel subalgebras to study the geometry of the fiber
˚�1.0/sreg.

For concreteness, let us fix i D n, so that Kn D GL.n�1;C/�GL.1;C/ and Bn

is the flag variety of gl.n;C/. For b 2 Bn, let Kn � b denote the Kn-orbit through b.
We analyze each of the conditions in (22) in turn.
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Theorem 3.1 ([11], Proposition 3.6). Suppose x 2 g satisfies condition (a) in (22)
and that x 2 b, with b � g a Borel subalgebra of g. Then b 2 Q, where Q is a
closed Kn-orbit.

Theorem 3.1 follows from a stronger result. The group Kn is the group of fixed
points of the involution 
 on G, where 
.g/ D cgc�1 with c D diagŒ1; : : : ; 1; �1�.
Let kn D Lie.Kn/, so that kn is the Lie algebra of block diagonal matrices kn D
gl.n � 1;C/ ˚ gl.1;C/. Then g D kn ˚ pn, where pn is the �1-eigenspace for the
involution 
 on g. Let �kn

W g ! kn be the projection of g onto kn along pn, and let
Nkn

be the nilpotent cone in kn.

Theorem 3.2 ([11], Theorem 3.7). Let b � g be a Borel subalgebra and let
n D Œb; b�, with nreg the regular nilpotent elements in b. Suppose that b 2 Q with Q

a Kn-orbit in Bn which is not closed. Then �kn
.nreg/ \ Nkn

D ;:

Remark 3.3. By the Kn-equivariance of the projection �kn
W g ! kn, it suffices to

prove Theorem 3.2 for a representative of the Kn-orbit Q. Standard representatives
are given by the Borel subalgebras bi;j discussed later in Notation 4.23 and
Example 4.30. Let b D bi;j be such a representative. To compute �kn

.nreg/, one
needs to understand the action of 
 on the roots of b with respect to a 
 -stable
Cartan subalgebra h0 � b. In general, this action is difficult to compute. It is easier
to replace the pair .b; 
/ with an equivalent pair .bC; 
 0/ where bC � g is the
standard Borel subalgebra of upper triangular matrices and 
 0 is an involution of
g which stabilizes the standard Cartan subalgebra of diagonal matrices h � bC.
We then prove the statement of the theorem for the pair .bC; 
 0/. The construction
and computation of the involution 
 0 is explained in detail in Equation (31) and
Example 4.30, where it is denoted by 
 Ov and 


cvi;j
respectively.

Theorem 3.1 permits us to focus only on closed Kn-orbits. There are n such orbits
in Bn, two of which are QC;n D Kn � bC, the orbit of the n � n upper triangular
matrices, and Q�;n D Kn � b�, the orbit of the n � n lower triangular matrices (see
Example 4.16). We now study the second condition in (22).

Proposition 3.4. Let Q D Kn �b be a closed Kn-orbit and let x 2 n D Œb; b� satisfy
condition (b) in (22). Then Q D QC;n or Q D Q�;n.

This is an immediate consequence of the following result. Recall the projection
�n�1 W g ! gn�1 defined by �n�1.x/ D xn�1:

Proposition 3.5 ([11], Proposition 3.8). Let b � g be a Borel subalgebra that
generates a closed Kn-orbit Q, which is neither the orbit of the upper nor the lower
triangular matrices. Let n D Œb; b� and let nn�1 WD �n�1.n/. Let zg.n/ denote the
centralizer of n in g and let zgn�1

.nn�1/ denote the centralizer of nn�1 in gn�1. Then

zgn�1
.nn�1/ \ zg.n/ ¤ 0: (23)
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Remark 3.6. We note that the projection �n�1 W g ! gn�1 is Kn-equivariant, so
that it suffices to prove Equation (23) for a representative b of the closed Kn-orbit
Q. We can take b to be one of the representatives given below in Example 4.16.

For any i D 2; : : : ; n, let QC;i denote the Ki -orbit of the i � i upper triangular
matrices in Bi and let Q�;i denote the Ki -orbit of the i � i lower triangular matrices
in Bi . Combining the results of Theorem 3.1 and Proposition 3.4, we obtain:

Theorem 3.7. Let x 2 gi satisfy the two conditions in (22) and suppose that x 2 b,
with b � gi a Borel subalgebra. Then Ki � b D QC;i or Ki � b D Q�;i .

3.2 Constructing Borel subalgebras out of Ki -orbits

In this section we explain how to link together the Ki -orbits QC;i and Q�;i for
i D 2; : : : ; n to construct all the Borel subalgebras containing elements of
˚�1.0/sreg. The key to the construction is the following lemma.

Lemma 3.8 ([11], Proposition 4.1). Let Q be a closed Kn-orbit in Bn and let
b 2 Q. Then �n�1.b/ � gn�1 is a Borel subalgebra.

We can use Lemma 3.8 to give an inductive construction of special subvarieties of
Bn by linking together closed Ki -orbits Qi for i D 2; : : : ; n. For this construction,
we view Ki � KiC1 by embedding Ki in the upper left corner of KiC1. We also
make use of the following notation. If m � g is a subalgebra, we denote by mi the
image of m under the projection �i W g ! gi .

Suppose we are given a sequence Q D .Q2; : : : ; Qn/ with Qi a closed Ki -orbit
in Bi . We call Q a sequence of closed Ki -orbits. For b 2 Qn, bn�1 is a Borel
subalgebra by Lemma 3.8. Since Kn acts transitively on Bn�1, there is k 2 Kn such
that Ad.k/bn�1 2 Qn�1 and the variety

XQn�1;Qn WD fb 2 Bn W b 2 Qn; bn�1 2 Qn�1g
is nonempty. Lemma 3.8 again implies that .Ad.k/bn�1/n�2 D .Ad.k/b/n�2

is a Borel subalgebra in gn�2, so that there exists an l 2 Kn�1 such that
Ad.l/.Ad.k/b/n�2 2 Qn�2. Since Kn�1 � Kn, the variety

XQn�2;Qn�1;Qn WD fb 2 Bn W b 2 Qn; bn�1 2 Qn�1; bn�2 2 Qn�2g
is nonempty. Proceeding in this fashion, we can define a nonempty closed subvariety
of Bn by

XQ WD fb 2 Bn W bi 2 Qi ; 2 � i � ng: (24)

Theorem 3.9 ([11], Theorem 4.2). Let Q D .Q2; : : : ; Qn/ be a sequence of closed
Ki -orbits. Then the variety XQ is a single Borel subalgebra of g that contains the
standard Cartan subalgebra of diagonal matrices. Moreover, if b � g is a Borel
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subalgebra which contains the diagonal matrices, then b D XQ for some sequence
of closed Ki -orbits Q.

Notation 3.10. In light of Theorem 3.9, we refer to the Borel subalgebras XQ as
bQ for the remainder of the discussion.

3.3 Borel subalgebras containing elements of ˚�1.0/sreg

Now we can at last describe the Borel subalgebras of g that contain elements of
˚�1.0/sreg and use these to determine the irreducible component decomposition of
˚�1.0/sreg explicitly. Since x 2 ˚�1.0/sreg if and only if xi 2 gi satisfies the two
conditions in (22) for all i D 2; : : : ; n, Theorem 3.7 implies:

Proposition 3.11 ([11], Theorem 4.5). Let x 2 ˚�1.0/sreg. Then x 2 bQ, where
the sequence of closed Ki -orbits Q D .Q2; : : : ; Qn/ has Qi D QC;i or Qi D Q�;i

for each i D 2; : : : ; n.

Example 3.12. It is easy to describe explicitly these Borel subalgebras. For
example, for g D gl.3;C/ there are four such Borel subalgebras:

bQ
�

;Q
�

D
2

4

h1 0 0

a1 h2 0

a2 a3 h3

3

5 bQ
C

;Q
C

D
2

4

h1 a1 a2

0 h2 a3

0 0 h3

3

5

bQ
C

;Q
�

D
2

4

h1 a1 0

0 h2 0

a2 a3 h3

3

5 bQ
�

;Q
C

D
2

4

h1 0 a1

a2 h2 a3

0 0 h3

3

5

,

where ai ; hi 2 C.

We can use these Borel subalgebras to describe the fiber ˚�1.0/sreg. Let nreg
Q be

the subvariety of regular nilpotent elements of bQ. Proposition 3.11 implies that

˚�1.0/sreg �
G

Q
n

reg
Q ; (25)

where Q D .Q2; : : : ; Qn/ ranges over all 2n�1 sequences where Qi D QC;i or
Q�;i . We note that the union on the right side of (25) is disjoint, since a regular
nilpotent element is contained in a unique Borel subalgebra (see for example [6],
Proposition 3.2.14). We claim that the inclusion in (25) is an equality and that
the right side of (25) is an irreducible component decomposition of the variety
˚�1.0/sreg. The key observation is the converse to Proposition 3.11.

Proposition 3.13 ([11], Prop. 3.11, Thm. 4.5). Let Q D .Q2; : : : ; Qn/ be a
sequence of closed Ki -orbits with Qi D QC;i or Q�;i . Then n

reg
Q � ˚�1.0/sreg.
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Thus, the variety n
reg
Q is an irreducible subvariety of ˚�1.0/sreg of dimension

dim nQ D �
n
2

�

. It follows from Theorem 2.14 that nreg
Q is an open subvariety of a

unique irreducible component Y of ˚�1.0/sreg. But then by (25), we have

Y D
G

Q0

n
reg
Q0

;

where the disjoint union is taken over a subset of the set of all sequences
.Q0

2; : : : ; Q0
n/ with Q0

i D QC;i or Q�;i . Since Y is irreducible, we must have
n

reg
Q D Y . This yields the main theorem of [11].

Theorem 3.14 ([11], Theorem 4.5). The irreducible component decomposition of
the variety ˚�1.0/sreg is

˚�1.0/sreg D
G

Q
n

reg
Q ; (26)

where Q D .Q2; : : : ; Qn/ ranges over all 2n�1 sequences where Qi D QC;i or
Q�;i . The A-orbits in ˚�1.0/sreg are exactly the varieties nreg

Q , for Q as above.

The description of ˚�1.0/sreg in Equation (26) is much more explicit than the
one given in Corollary 2.21, where the components are described as orbits of the

group Z D .C�/n�1 � C
.n

2/�nC1 where Z acts via the formula in Equation (21). In

fact, we can describe easily the varieties nreg
Q Š .C�/n�1 � C

.n
2/�nC1.

Example 3.15. For g D gl.3;C/, Theorem 3.14 implies that the four A-orbits in
˚�1.0/sreg are the regular nilpotent elements of the four Borel subalgebras given in
Example 3.12.

n
reg
Q

�

;Q
�

D
2

4

0 0 0

a1 0 0

a3 a2 0

3

5 n
reg
Q

C

;Q
C

D
2

4

0 a1 a3

0 0 a2

0 0 0

3

5

n
reg
Q

C

;Q
�

D
2

4

0 a1 0

0 0 0

a2 a3 0

3

5 n
reg
Q

�

;Q
C

D
2

4

0 0 a1

a2 0 a3

0 0 0

3

5

,

where a1; a2 2 C
� and a3 2 C.

Remark 3.16. We note that the 2n�1 Borel subalgebras appearing in Theorem 3.14
are exactly the Borel subalgebras b with the property that each projection of b to
gi for i D 2; : : : ; n is a Borel subalgebra of gi whose Ki -orbit in Bi is related via
the Beilinson–Bernstein correspondence to Harish-Chandra modules for the pair
.gi ; Ki / coming from holomorphic and anti-holomorphic discrete series. It would
be interesting to relate our results to representation theory, especially to work of
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Kobayashi [22]. For more on the relation between geometry of orbits of a symmetric
subgroup and Harish-Chandra modules, see [12, 20, 38].

3.4 Strongly regular elements and Borel subalgebras

It would be interesting to study strongly regular fibers ˚�1.c/sreg for arbitrary

c 2 C
.nC1

2 / using the geometry of Ki -orbits on Bi . The following result is a step
in this direction.

Theorem 3.17 ([11], Theorem 5.3). Every Borel subalgebra b � g contains
strongly regular elements.

We briefly outline the proof of Theorem 3.17. For complete details see [11],
Section 5. For ease of notation, we denote the flag variety Bn of gl.n;C/ by B.
Let h � g denote the standard Cartan subalgebra of diagonal matrices and let H be
the corresponding Cartan subgroup. Define

Bsreg D fb 2 B W b \ gsreg ¤ ;g:

We want to show that Bsreg D B. Consider the variety Y D B n Bsreg. We show
that Y is closed and H -invariant. Let b 2 Y and consider its H -orbit, H � b.
Since Y is closed, H � b � Y . We know that H � b contains a closed H -orbit.
But the closed H -orbits on B are precisely the Borel subalgebras b which contain
the Cartan subalgebra h ([6], Lemma 3.1.10). Thus, it suffices to show that no
Borel subalgebra b with h � b can be contained in Y . This can be shown using
the characterization of such Borel subalgebras as bQ, with Q D .Q2; : : : ; Qn/ a
sequence of closed Ki -orbits (see Theorem 3.9) and properties of closed Ki -orbits
(see [11], Proposition 5.2).

4 The geometry of K -orbits on the flag variety

Proofs of the results discussed in Section 3 require an understanding of aspects of
the geometry and parametrization of Kn-orbits on the flag variety Bn of gl.n;C/.
In this section, we develop the theory of orbits of a symmetric subgroup K of an
algebraic group G acting on the flag variety B of G, as developed by Richardson,
Springer, and others. Our aim is to apply this theory in the specific example of
G D GL.n;C/ and K D GL.n � 1;C/ � GL.1;C/, which provides the details
behind the computations of [11], Section 3.1. We hope our exposition will make
this important theory more accessible. See the papers [32, 33], and [38] for results
concerning orbits of a general symmetric subgroup on the flag variety.
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4.1 Parameterization of K -orbits on G=B

Let G be a reductive group over C such that ŒG; G� is simply connected. Let

 W G ! G be a holomorphic involution, and we also refer to the differential of

 as 
 W g ! g. Since 
 W g ! g is a Lie algebra homomorphism, it preserves
Œg; g� and the Killing form < �; � > of g. Let K D G
 and assume that the fixed set
.Z.G/0/
 is connected, where Z.G/0 is the identity component of the center of G.
Then by a theorem of Steinberg ([36], Corollary 9.7), K is connected.

Let B be the flag variety of g, and recall that if B is a Borel subgroup
of G, the morphism G=B ! B, gB 7! Ad.g/b, where b D Lie.B/, is a
G-equivariant isomorphism G=B Š B. The involution 
 acts on the variety T of
Cartan subalgebras of g by t 7! 
.t/ for t 2 T , and the fixed set T 
 is the variety of

 -stable Cartan subalgebras. We consider the variety

C D f.b; t/ 2 B � T W t � bg:
Then G acts on C through the adjoint action, and the subvariety C
 D C \ .B � T 
 /

is K-stable. Consider the G-equivariant map � W C ! B given by projection onto
the first coordinate, �.b; t/ D b. It induces a map

� W KnC
 ! KnB; �.K � .b; t// D K � b (27)

from the set of K-orbits on C
 to the set of K-orbits on B.

Proposition 4.1. The map � is a bijection.

For a proof of this proposition, we refer the reader to [33], Proposition 1.2.1.
We summarize the main ideas. To show the map � is surjective, it suffices to show
that every Borel subalgebra contains a 
 -stable Cartan subalgebra. This follows
from [36], Theorem 7.5. To show that the map is injective, it suffices to show that
if t; t0 are 
 -stable Cartan subalgebras of a Borel subalgebra b, then t and t0 are
K \ B-conjugate, which is verified in [33].

Throughout the discussion, we will fix a 
 -stable Borel subalgebra b0 and

 -stable Cartan subalgebra t0 � b0. Such a pair exists by [36], Theorem 7.5, and
is called a standard pair. Let N D NG.T0/ be the normalizer of T0, where T0 is
the Cartan subgroup with Lie algebra t0. We consider the map 0 W G ! C given
by 0.g/ D .Ad.g/b0; Ad.g/t0/, which is clearly G-equivariant with respect to the
left translation action on G and the adjoint action on C. It is easy to see that 0 is
constant on left T0-cosets, and induces an isomorphism of varieties

 W G=T0 ! C: (28)

To parameterize the K-orbits on B using Proposition 4.1, we introduce the variety
V D �1

0 .C
 /. It is easy to show that V is the set

V D fg 2 G W g�1
.g/ 2 N g: (29)
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By Equation (28) and the G-equivariance of the map 0, it follows that the morphism
 induces a bijection,

 W KnV=T0 ! KnC
 ; (30)

which we also denote by . Combining Equation (30) with Proposition 4.1,
we obtain the following useful parametrization of K-orbits on B (cf. [33],
Proposition 1.2.2).

Proposition 4.2. There are natural bijections

KnV=T0 $ KnC
 $ KnB $ KnG=B0:

Let V denote the set of .K; T0/-double cosets in V . By [35], Corollary 4.3, V is
a finite set and hence

The number of K-orbits on B is finite.

Notation 4.3. For v 2 V , let Ov 2 V denote a representative, so that v D K OvT .
Denote the corresponding K-orbit in B by K � b Ov , where b Ov D Ad. Ov/b0.

We end this section with a discussion of how 
 acts on the root decomposition of
g with respect to a 
 -stable Cartan subalgebra t.

Definition 4.4. For .b; t/ 2 C
 and ˛ 2 ˚ D ˚.g; t/, let e˛ 2 g˛ be a root vector in
the corresponding root space. We say that ˛ is positive for .b; t/ if g˛ � b. We define
the type of ˛ for the pair .b; t/ with respect to 
 as follows.

(1) If 
.˛/ D �˛, then ˛ is said to be real.
(2) If 
.˛/ D ˛, then ˛ is said to be imaginary. In this case, there are two

subcases:

(a) If 
.e˛/ D e˛ , then ˛ is said to be compact imaginary.
(b) If 
.e˛/ D �e˛ , then ˛ is said to be noncompact imaginary.

(3) If 
.˛/ ¤ ˙˛, then ˛ is said to complex. If also ˛ and 
.˛/ are both positive,
we say ˛ is complex 
 -stable.

Remark 4.5. Let ˛ be a positive root. Then 
.˛/ is positive if and only if ˛ is
imaginary or complex 
 -stable.

For v 2 V with representative Ov 2 V , we define a new involution by the formula,


 Ov D Ad. Ov�1/ ı 
 ı Ad. Ov/ D Ad. Ov�1
. Ov// ı 
: (31)

Note that 
 Ov.t0/ D t0, and consider the induced action of 
 Ov on ˚.g; t0/.

Definition 4.6. Let ˛ 2 ˚.g; t0/; v 2 V , and Ov 2 V be a representative for v.
We define the type of the root ˛ for v to be the type of the root ˛ for the pair .b0; t0/

with respect to the involution 
 Ov .
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For example, a root ˛ is imaginary for v if and only if 
 Ov.˛/ D ˛. Note that if
k Ovt is a different representative for v, then 
k Ovt D Ad.t�1/ ı 
 Ov ı Ad.t/. It follows
easily that the type of ˛ for v does not depend on the choice of a representative Ov.
Further, the involution 
 Ov of ˚.g; t0/ does not depend on the choice of Ov, and we
refer to 
 Ov as the involution associated to the orbit v.

For v 2 V and b Ov D Ad. Ov/b0, consider the 
 -stable Cartan subalgebra t0 D
Ad. Ov/t0 � b Ov . For ˛ 2 ˚.g; t0/, we define Ad. Ov/˛ WD ˛ ı Ad. Ov�1/ 2 ˚.g; t0/:

Proposition 4.7. For ˛ 2 ˚.g; t0/, the type of ˛ for v is the same as the type of
Ad. Ov/˛ for the pair .b Ov; t0/ with respect to 
 .

Proof. This follows easily from the identity 
 ı Ad. Ov/ D Ad. Ov/ ı 
 Ov: ut
By Proposition 4.7, we may compute the action of 
 on the positive roots in

˚.g; t0/ for the pair .b Ov; t0/ using the involution 
 Ov on our standard positive system
˚C.g; t0/ in ˚.g; t0/.

Remark 4.8. We also denote the corresponding involution on G by 
 Ov . By abuse of
notation, we denote conjugation on G by Ad, i.e., for g; h 2 GI Ad.g/h D ghg�1.
Thus 
 Ov W G ! G is also given by the formula in Equation (31). Its differential at
the identity is 
 Ov W g ! g.

4.2 The W -action on V

The fact that K-orbits on the flag variety have representatives coming from V was
used by Springer [35] to associate a Weyl group element �.v/ to the K-orbit indexed
by v 2 V . The element �.v/ plays a crucial role in understanding the action of the
involution 
 Ov associated to v on the roots for the standard pair ˚.g; t0/.

We first consider the map � W G ! G given by �.g/ D g�1
.g/: Note that
��1.N / D V . Then following [35], Section 4.5, we define for v D K OvT0

�.v/ D �. Ov/T0 2 N=T0 D W: (32)

We refer to the map � as the Springer map and �.v/ as the Springer invariant of
v 2 V . It is easy to check that �.v/ is independent of the choice of representative Ov.

The Springer map is not injective, but we can study its fibers using an action of
W on V , which we now describe. The group N acts on V on the left by n � Ov D Ovn�1

for Ov 2 V and n 2 N . This action induces a W -action on V given by

w � v WD K Ov Pw�1T0; (33)

where Ov 2 V is a representative of v 2 V and Pw 2 N is a representative of w 2 W .
It is easy to check that the formula in Equation (33) does not depend on the choice
of representatives Pw or Ov. We refer to this action as the cross action of W on V . The
Springer map intertwines the cross action of W on V with a certain twisted action
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of W on itself. We note that since T0 is 
 -stable, 
 acts on N and hence on W . We
define the twisted conjugation action of W on itself by:

w0 � w D w0w
..w0/�1/; for w; w0 2 W: (34)

Proposition 4.9. (1) The Springer map � W V ! W is W -equivariant with respect
the cross action on V and the twisted W -action on W .

(2) ([32], Proposition 2.5) Suppose for v; v0 2 V , we have �.v/ D �.v0/. Then
v0 D w � v for some w 2 W .

Part (1) is an easy calculation using the definition of �. Part (2) is nontrivial and
relies on many of the results of [32], Section 2.

4.3 Closed K -orbits on B

In this section we use the properties of the Springer map developed in the previous
section to find representatives for the closed K-orbits on B and describe the
involution 
 Ov associated to such orbits.

Since 
 acts on W , we can consider the W -fixed point subgroup, W 
 . By
[31], Lemma 5.1, T0 \ K is a maximal torus of K, and by [31], Lemma 5.3, the
subgroup NK.T0 \ K/ � NG.T0/. It follows that the group homomorphism
NK.T0 \ K/=.T0 \ K/ ! NG.T0/=T0 is injective. Hence, we may regard WK

as a subgroup of W , and it is easy to see that it has image in W 
 .

Theorem 4.10. There is a one-to-one correspondence between the set of closed
K-orbits on B and the coset space W 
 =WK . The correspondence is given by

w WK ! K Pw�1T0; (35)

for Pw 2 N a representative of w 2 W 
 .

To prove Theorem 4.10, we describe equivalent conditions for a K-orbit on B to
be closed. We begin with the following lemma (see [5], Lemma 3).

Lemma 4.11. Let B � G be a Borel subgroup. Then the following statements are
equivalent.

(i) The Borel subgroup B is 
 -stable.
(ii) The subgroup .B \ K/0 is a Borel subgroup of K, where .B \ K/0 denotes the

identity component of B \ K.

Let v0 2 V correspond to the K-orbit K � b0 so that v0 D KT0, and we choose
the representative bv0 D 1. Define V0 WD fv 2 V W K � b Ov is closedg.

Proposition 4.12. The following statements are equivalent.

(i) v 2 V0.
(ii) For any representative Ov 2 V of v 2 V , the Borel subalgebra b Ov D Ad. Ov/b0 is


 -stable.
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(iii) �.v/ D 1.
(iv) v 2 W 
 � v0.

Proof. We first show that (i) implies (ii). Let v 2 V0, and let B Ov � G be the
Borel subgroup of G corresponding to the Borel subalgebra b Ov . Then K � b Ov � B is
projective, so that the homogeneous space K=.K \ B Ov/ Š K � b Ov is projective, and
hence K \ B Ov is parabolic. Since K \ B Ov is solvable, it follows that K \ B Ov is a
Borel subgroup of K. Part (ii) now follows from Lemma 4.11.

We now prove that (ii) implies (iii). Suppose that v 2 V and that b Ov D Ad. Ov/b0

is 
 -stable. Thus, Ad.
. Ov//
.b0/ D Ad. Ov/b0. But b0 is itself 
 -stable, implying that
Ov�1
. Ov/ 2 B0. But then Ov�1
. Ov/ D �. Ov/ 2 B0 \ N D T0 by definition of V . Thus,
�.v/ D �. Ov/T0 D 1.

We next show that (iii) implies (iv). Suppose that �.v/ D 1. Clearly, �.v0/ D 1.
It then follows from part (2) of Proposition 4.9 that v D w � v0 for some w 2 W .
But then part (1) of Proposition 4.9 implies

1 D �.v/ D �.w � v0/ D w�.v0/
.w�1/ D w
.w�1/;

whence w 2 W 
 and v 2 W 
 � v0.
Lastly, we show that (iv) implies (i). If v 2 W 
 � v0, then v D K PwT0, where

Pw 2 N is a representative of w 2 W 
 . We note that since w 2 W 
 , 
. Pw/ D Pwt

for some t 2 T0. It follows that b Ov D Ad. Pw/b0 is 
 -stable, since t0 � b0. Let
B Ov be the Borel subgroup corresponding to b Ov , so that B Ov is 
 -stable. It follows
from [31], Lemma 5.1 that B Ov \ K is connected and therefore is a Borel subgroup
by Lemma 4.11. Since .B Ov \ K/ is a Borel subgroup, the variety K=.B Ov \ K/ is
complete, and the orbit K � b Ov Š K=.B Ov \ K/ is a complete subvariety of B and is
therefore closed. ut

We now prove Theorem 4.10.

Proof (of Theorem 4.10). It follows from Proposition 4.12 that

V0 D W 
 � v0: (36)

By [32], Proposition 2.8, the stabilizer of v0 in W is precisely WK � W 
 . Thus,
the elements of the orbit W 
 � v0 are in bijection with the coset space W 
 =WK .
Equation (35) then follows from the definition of the cross action of V on W . ut

Recall the notion of the type of a root ˛ 2 ˚.g; t0/ for v from Definition 4.6, and
note that by Equation (31),


 Ov D Ad. Ov�1
. Ov// ı 
 D Ad.�. Ov// ı 
: (37)

Proposition 4.13. For v 2 V0, every positive root ˛ 2 ˚C.g; t0/ is imaginary or
complex 
 -stable for v. Moreover, a positive root ˛ 2 ˚C.g; t0/ is imaginary (resp.
complex) for v if and only if it is imaginary (resp. complex) for v0.
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Proof. By Equation (37), for v 2 V , 
 Ov.˛/ D �.v/.
.˛// for ˛ 2 ˚.g; t0/. Since
v 2 V0, then �.v/ D 1 by Proposition 4.12, so


 Ov.˛/ D 
.˛/ (38)

for any ˛ 2 ˚.g; t0/. Since b0 � g is 
 -stable, Remark 4.5 implies that any
˛ 2 ˚C.g; t0/ is complex 
 -stable or imaginary for v0. Both statements of the
proposition now follow immediately from Equation (38). ut
Remark 4.14. Let v 2 V0 and let 
 Ov be the involution associated to the orbit v.
To determine the action of 
 Ov on ˚.g; t0/, Proposition 4.13 implies that it suffices to
find which roots are compact (resp. noncompact) imaginary for v. By Theorem 4.10,
we may take Ov D Pw�1, where Pw is a representative for w 2 W 
 . By Proposition 4.7,
it follows that a root ˛ 2 ˚.g; t0/ is compact (resp. noncompact) imaginary for v if
and only if w�1.˛/ is compact (resp. noncompact) for the pair .Ad.w�1/b0; t0/ with
respect to 
 .

Notation 4.15. We will make use of the following notation for flags in C
n. Let

F D .V0 D f0g � V1 � � � � � Vi � � � � � Vn D C
n/

be a flag in C
n, with dim Vi D i and Vi D spanfv1; : : : ; vi g, with each vj 2 C

n. We
will denote this flag F by

F D .v1 � v2 � � � � � vi � viC1 � � � � � vn/:

We denote the standard ordered basis of Cn by fe1; : : : ; eng. For 1 � i; j � n, let
Ei;j be the matrix with 1 in the .i; j /-entry and 0 elsewhere.

Example 4.16. Let G D GL.n;C/ and let 
 be conjugation by the diagonal
matrix c D diagŒ1; 1; : : : ; 1; �1�. Then K D GL.n � 1;C/ � G.1;C/ and k D
gl.n�1;C/˚gl.1;C/. Since this involution is inner, W 
 D W D Sn, the symmetric
group on n letters and WK D Sn�1. We can take b0 to be the standard Borel subal-
gebra of n � n upper triangular matrices and t0 � b0 to be the diagonal matrices. By
Theorem 4.10, the n closed orbits are then parameterized by the identity permutation
and the n � 1 cycles f.n � 1 n/; .n � 2 n � 1 n/; : : : ; .i : : : n/; : : : ; .1 : : : n/g. We
consider the closed K-orbit v 2 V0 corresponding to the cycle w D .i : : : n/. By
Equation (35), it is generated by the Borel subalgebra bi WD Ad.w�1/b0, which is
the stabilizer of the flag:

Fi WD .e1 � � � � � ei�1 � en
„ƒ‚…

i

� ei � � � � � en�1/: (39)

Notice that Fn is the standard flag in C
n and F1 is K-conjugate to the opposite flag.

We denote Qi WD K � bi , so Q1; : : : ; Qn are the n closed orbits.
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Let �i 2 t�0 be the linear functional �i .t/ D ti for t 2 t0, where t D
diagŒt1; : : : ; ti ; : : : ; tn� with each ti 2 C. According to [26], any root of the form
�i � �k or �k � �i is noncompact imaginary for v while all other roots are compact
imaginary, and the involution 
 Ov associated to v acts on the functionals by 
 Ov.�i / D
�i for all i . The second assertion follows easily from Equation (38). By Remark 4.14,
˛ D �k � �j is compact (resp. noncompact) imaginary for v if and only if w�1.˛/

is compact (resp. noncompact) imaginary with respect to 
 . The first assertion
then follows from the observation that roots of the form �n � �k and �k � �n are
noncompact imaginary with respect to 
 and all other roots are compact imaginary.

4.4 The case of general K -orbits in B

In this section we compute �. Ov/ and �.v/ inductively based on the closed orbit case
in Section 4.3. We thus obtain a formula for 
 Ov for any K-orbit in B.

For the first step, we take a K-orbit Q and a simple root ˛ and construct a
K-orbit denoted m.s˛/ � Q which either coincides with Q or contains Q in its
closure as a divisor. Let Q D K � b Ov � B for v 2 V , let ˛ 2 ˚.g; t0/ be a
simple root, and let p˛ be the minimal parabolic subalgebra generated by ˛. Let P˛

denote the corresponding parabolic subgroup, and let �˛ W G=B0 ! G=P˛ denote
the canonical projection, which is a P˛=B0 D P

1-bundle.

Lemma-Definition 4.17. The variety ��1
˛ �˛.Q/ is irreducible and K acts on

��1
˛ �˛.Q/ with finitely many orbits. The unique open K-orbit in ��1

˛ �˛.Q/ is
denoted by m.s˛/ � Q.

Proof. Note that ��1
˛ �˛.Q/ D K OvP˛=B0, and it follows easily that ��1

˛ �˛.Q/ is
irreducible, since it is the image of the double coset KvP˛ under the projection
p W G ! G=B0. The variety K OvP˛=B0 is clearly K-stable. It follows that it has
a unique open orbit, since the set of K-orbits in K OvP˛=B0 is a subset of the set of
K-orbits on B, and hence is finite. ut

The orbit m.s˛/ � Q may be equal to Q itself. However, in the case where
m.s˛/�Q ¤ Q, then dim m.s˛/�Q D dim QC1, since the map �˛ W G=B0 ! G=P˛

is a P
1-bundle. To compute m.s˛/ � Q explicitly (following [38], Lemma 5.1), we

recall first some facts about involutions for SL.2;C/.
Let ˘ � ˚C.g; t0/ denote the set of simple roots and let ˛ 2 ˘ . Let h˛ D 2H˛

<˛;˛>

with H˛ 2 t0 such that hH˛; xi D ˛.x/ for x 2 t0, and let e˛ 2 g˛ , f˛ 2 g�˛ be
chosen so that Œe˛; f˛� D h˛ . Hence, the subalgebra s.˛/ D spanfe˛; f˛; h˛g forms
a Lie algebra isomorphic to sl.2;C/. Let �˛ W sl.2;C/ ! s.˛/ be the map

�˛ W
�

0 1

0 0

�

! e˛; �˛ W
�

0 0

1 0

�

! f˛; �˛ W
�

1 0

0 �1

�

! h˛: (40)
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Then �˛ W sl.2;C/ ! s.˛/ is a Lie algebra isomorphism, which integrates to an
injective homomorphism of Lie groups �˛ W SL.2;C/ ! G, which we will also
denote by �˛ . We let S.˛/ be its image.

To perform computations, it is convenient for us to choose specific representa-
tives for the Cayley transform u˛ with respect to ˛ and the simple reflection s˛ .
Let

u˛ D �˛

�
1p
2

�
1 {

{ 1

��

: (41)

Note that g D 1p
2

�
1 {

{ 1

�

2 SL.2;C/ is the Cayley transform which conjugates

the torus in SL.2;C/ containing the diagonal split maximal torus of SL.2;R/ to a
torus of SL.2;C/ containing a compact maximal torus of SL.2;R/. Let

Ps˛ D �˛

��
0 {

{ 0

��

: (42)

Then Ps˛ is a representative for s˛ 2 W . Note that u2
˛ D Ps˛ .

Let 
1;1 W SL.2;C/ ! SL.2;C/ be the involution on SL.2;C/ given by


1;1.g/ D
�

1 0

0 �1

�

g

�
1 0

0 �1

�

for g 2 SL.2;C/.

Lemma 4.18. Suppose ˛ 2 ˘ is compact (resp. noncompact) imaginary for v.
Then �˛ is compact (resp. noncompact) imaginary for v.

Proof. Since 
 Ov.g˛/ D g˛ , it follows easily that 
 Ov.g�˛/ D g�˛: The rest of the
proof follows since 
 Ov preserves the Killing form. ut
Lemma 4.19. If ˛ is noncompact imaginary for v, then


 Ov ı �˛ D �˛ ı 
1;1: (43)

Proof. It suffices to verify Equation (43) on the Lie algebra sl.2;C/. On sl.2;C/

the maps in Equation (43) are linear, and we need only check the equation on a
basis for sl.2;C/. Since ˛ is noncompact imaginary for v, we have 
 Ov.e˛/ D �e˛ ,

 Ov.f˛/ D �f˛ , and 
 Ov.h˛/ D h˛ by Lemma 4.18, and the result follows. ut
Remark 4.20. It follows from the proof of Lemma 4.19 that s.˛/


Ov D Ch˛ .

Proposition 4.21. Let Q D K � b Ov with v 2 V and let ˛ 2 ˚C.g; t0/ be a simple
root. Then m.s˛/ � Q ¤ Q if and only if ˛ is noncompact imaginary for v or ˛ is
complex 
 -stable for v. If ˛ is noncompact imaginary, then m.s˛/ � Q D K �b0, with
b0 D Ad. Ovu˛/b0, where u˛ is the Cayley transform with respect to ˛. If ˛ is complex

 -stable, then m.s˛/ � Q D K � b0, with b0 D Ad. Ovs˛/b0.
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Proof. Let K Ov D K \ Ad. Ov/P˛ be the stabilizer in K of �˛. OvB0=B0/. Let
L Ov D ��1

˛ �˛. OvB0=B0/, which is identified with Ad. Ov/P˛=Ad. Ov/B0 Š P
1. We

claim that the map � from the set of K Ov-orbits in L Ov to the set of K-orbits in
K OvP˛=B0 given by �. OQ/ D K � OQ is bijective. Indeed, if Q1 � K OvP˛=B0 is a
K-orbit, then for z1; z2 2 Q1 \ L Ov , we have z2 D k � z1 for some k 2 K, and
�˛.z1/ D �˛.z2/. It follows that k stabilizes �˛. OvB0=B0/, so k 2 K Ov . Hence,
Q1 \ L Ov is a K Ov-orbit, and it is routine to check that Q1 7! Q1 \ L Ov is inverse
to �, giving the claim. Let U ˛ be the unipotent radical of P˛ , and let Z.M˛/0 be
the identity component of the center of a Levi subgroup of P˛ . Then Ad. Ov/P˛ acts
on the fiber L Ov through its quotient eS Ov WD Ad. Ov/P˛=Ad. Ov/.Z.M˛/0U ˛/, which is
locally isomorphic to Ad. Ov/S.˛/. Hence K Ov acts on L Ov through its image eK Ov in eS Ov .
For ˛ noncompact imaginary for v, it follows from Remark 4.20 that eK Ov has Lie
algebra Ad. Ov/.Ch˛/, and hence eK Ov is either a torus of eS Ov normalizing OvB0=B0 or
the normalizer of such a torus. Hence, the points OvB0=B0 and Ovs˛B0=B0 are in zero-
dimensional eK Ov-orbits, and the complement L Ov � . OvB0=B0 [ Ovs˛B0=B0/ is a single
eK Ov-orbit containing Ovu˛B0=B0. From the definition of the bijection �, it follows
that K OvB0=B0 is a proper subset of K Ovu˛B0=B0, where the closure is taken in the
variety K OvP˛=B0. Since dim.K OvP˛=B0/ D dim.K OvB0=B0/ C 1, we conclude that
m.s˛/ � Q D K Ovu˛B0=B0. This verifies the proposition in the case of noncompact
imaginary roots, and the other cases are similar, and discussed in detail in Section 2
of [33]. ut
Remark 4.22. In [38], the author discriminates between two types of noncompact
roots. For G D GL.n;C/ and K D GL.p;C/ � GL.n � p;C/, all noncompact
roots for all orbits are type I.

Notation 4.23. We let G D GL.n;C/ and K D GL.n � 1;C/ � G.1;C/ as in
Example 4.16. We let bi;j be the Borel subalgebra stabilizing the flag

Fi;j D .e1 � � � � � ei C en
„ ƒ‚ …

i

� eiC1 � � � � � ej �1 � ei
„ƒ‚…

j

� ej � � � � � en�1/;

and we let Qi;j D K � bi;j .

Example 4.24. We let G and K be as in Example 4.16 and compute m.s˛/ � Qc

for each closed K-orbit Qc . By Example 4.16, Qc D Qi D K � bi , where bi is the
stabilizer of the flag Fi from Equation (39). Let vi be the corresponding element of
V . By Example 4.16, the simple roots ˛i�1 D �i�1 � �i and ˛i D �i � �iC1 are
the only noncompact imaginary simple roots for vi , and all other simple roots are
compact (for i D 1 and i D n, one of these two roots does not exist). Since Qi D
K � Ad. Pw/b0, where Pw is a representative for the element .n : : : i/ of W , it follows
from Proposition 4.21 that m.s˛i�1 /�Qi D K �Ad. Pwu˛i�1 /b0. A routine computation
shows that the K-orbit K � Ad. Pwu˛i�1 /b0 contains the stabilizer of the flag

Fi�1;i D .e1 � � � � � ei�1 C en
„ ƒ‚ …

i�1

� ei�1 � � � � � en�1/:
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Hence,

m.s˛i�1 / � Qi D Qi�1;i : (44)

A similar calculation shows that

m.s˛i / � Qi D Qi;iC1: (45)

Let Qc D K � b Ov be a closed K-orbit and let B Ov � G be the Borel subgroup with
Lie.B Ov/ D b Ov . We observed in the proof of Proposition 4.12 that K \ B Ov is a Borel
subgroup of K so that Qc Š K=.K \B Ov/ is isomorphic to the flag variety BK of K.

Definition-Notation 4.25. For a K-orbit Q on B, we let l.Q/ WD dim.Q/ �
dim.BK/. The number l.Q/ is called the length of the K-orbit Q.

Proposition 4.26. Let Q be any K-orbit in B. Then there exists a sequence of
simple roots ˛i1 ; : : : ; ˛ik 2 ˚C.g; t0/ and a closed orbit Qc such that Q D
m.s˛ik

/ � : : : �m.s˛i1
/ �Qc . We let Qj D m.s˛ij

/ � : : : �m.s˛i1
/ �Qc . If for j D 1; : : : ; k,

the root ˛ij is complex 
 -stable or noncompact imaginary for Qj �1, then l.Q/ D k.

Proof. This follows easily from [32], Theorem 4.6 . ut
Let Qv be the K-orbit corresponding to v 2 V . We now compute the involution

associated to the orbit m.s˛/ � Qv when ˛ is complex 
 -stable or noncompact
imaginary for v from the involution for the orbit Qv . We denote the parameter
v0 2 V for m.s˛/ � Qv by v0 D m.s˛/ � v. By results from Section 4.3 and
Proposition 4.26, we can then determine 


bv0

for any v0 in V .
There are two different cases we need to consider.

Case 1: ˛ is noncompact imaginary for v. Let v0 D m.s˛/ � v. Then by
Proposition 4.21, K � b

bv0

D K � Ad. Ovu˛/b0, where u˛ is the representative for the
Cayley transform with respect to ˛ given in Equation (41).

We can now compute 

bv0

in terms of 
 Ov .

Proposition 4.27. Let v0 D m.s˛/ � v, where ˛ is noncompact imaginary for v.

(1) Then Ovu˛ 2 V is a representative of v0, and

�.bv0/ D �. Ovu˛/ D Ps˛
�1�. Ov/;

and

�.v0/ D s˛�.v/:

(2) The involution for v0 is given by



bv0

D Ad.�.bv0// ı 
 D Ad. Ps˛
�1/Ad.�. Ov// ı 
 D Ad. Ps˛

�1/ ı 
 Ov;
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and 

bv0

acts on the roots ˚.g; t0/ by:



bv0

D s˛
 Ov:

Proof. It is easy to verify that if g D 1p
2

�
1 {

{ 1

�

, then 
1;1.g/ D g�1. Hence,

by Lemma 4.19, it follows that 
 Ov.u˛/ D u�1
˛ . Thus, by Equation (37), 
.u˛/ D

Ad.�. Ov/�1/.u�1
˛ /: It follows that

�. Ovu˛/ D u�1
˛ �. Ov/
.u˛/ D u�1

˛ �. Ov/�. Ov/�1u�1
˛ �. Ov/ D u�2

˛ �. Ov/:

Since u�2
˛ D Ps˛

�1, it follows that �. Ovu˛/ D Ps˛
�1�. Ov/. By Equation (29) and

Proposition 4.21, it follows that Ovu˛ 2 V is a representative of m.s˛/ � v. By
Equation (32), we have �.m.s˛/ � v/ D s˛�.v/. Part (2) of the proposition now
follows from part (1) and Equation (37). ut
Case 2: ˛ is complex 
 -stable for v.

Proposition 4.28. Let ˛ be complex 
 -stable for v.

(1) Let v0 D m.s˛/ �v. Then v0 has representative bv0 D Ov Ps˛ , so that v0 D s˛ �v 2 V

and

�. Ov Ps˛/ D Ps˛
�1�. Ov/
. Ps˛/;

whence

�.v0/ D s˛�.v/
.s˛/:

(2) The involution 

bv0

on g associated to v0 is given by



bv0

D Ad. Ps˛
�1�. Ov/
. Ps˛// ı 
 D Ad. Ps˛

�1/ ı 
 Ov ı Ad. Ps˛/;

so that the action of 

bv0

on the roots ˚.g; t0/ is given by



bv0

D s˛�.v/
.s˛/
 D s˛
 Ovs˛:

Proof. By Proposition 4.21, we have b
bv0

D Ad. Ov Ps˛/b0 so that v0 D s˛ � v by
Equation (33). The rest of the proof follows by definitions. ut
Lemma 4.29. Let Qv be the K-orbit corresponding to v 2 V , and let ˛ be
a complex 
 -stable simple root for v. Let ˇ be a root of ˚C.g; t0/. Then ˇ is
noncompact imaginary for v if and only if s˛.ˇ/ is noncompact imaginary for
m.s˛/ � v.
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Proof. Let v0 D m.s˛/ � v. Then by Proposition 4.28 (2), 

bv0

.s˛.ˇ// D s˛.
 Ov.ˇ//.
Hence, ˇ is imaginary for v if and only if s˛.ˇ/ is imaginary for v0. To prove the
noncompactness assertion, it suffices to apply Proposition 4.28 (2) to a root vector
Ad. Ps˛

�1/.xˇ/, where xˇ is a nonzero root vector in gˇ . ut
Example 4.30. We show how this theory helps describe the K-orbits Qi;j in the
case when G D GL.n;C/ and K D GL.n � 1;C/ � G.1;C/. We let vi;iC1 2 V

parametrize the orbit Qi;iC1. By Equation (45) and Propositions 4.12 and 4.27 (1),
the Springer invariant �.vi;iC1/ D .i i C 1/ D s˛i , and using also Example 4.16,
vi;iC1 has representative 1vi;iC1 D .n n � 1 : : : i/u˛i , where u˛i is the Cayley
transform from Equation (41). Hence, ˛i is real for vi;iC1, while ˛i�1 and ˛iC1 are
the only 
 -stable complex simple roots (as before, in the case i D 1 or n�1, only one
of these complex roots exists). Further, the imaginary roots for vi;iC1 are the roots
�j � �k with j; k 62 fi; i C 1g and have root vectors Ej;k . Then by Proposition 4.27
(2), 


bvi;iC1
.Ej;k/ D Ad. Ps˛i

�1/

bvi

.Ej;k/, where Ps˛i is the representative for s˛i 2 W

given in Equation (42). But by Example 4.16, 

bvi

.Ej;k/ D Ej;k , so the roots �j � �k

are compact. Hence, there are no noncompact imaginary roots for Qi;iC1.
We now consider all orbits Qi;j with i < j . We let vi;j 2 V denote the

corresponding parameter, and we let si D .i i C 1/ with representative Psi given
by the corresponding permutation matrix.

Claim. (1) Qi;j D m.sj �1/ � : : : � m.si / � Qi and l.Qi;j / D j � i .
(2) �.vi;j / is the transposition .i j /, 


cvi;j
D .i j / on roots, and Qi;j has

representative given by the elementbvi;j D .n n � 1 : : : i/u˛i PsiC1 : : : Psj �1.
(3) The simple roots ˛i�1 D �i�1 � �i and ˛j D �j � �j C1 are the only complex


 -stable simple roots for vi;j , and there are no noncompact imaginary roots for
vi;j .

We prove these claims by induction on j �i . Example 4.24 and our discussion in the
first paragraph proves the claim when j �i D 1. It suffices to show that (1)–(3) of the
claim for Qi;j imply the claim for Qi;j C1. By Proposition 4.21 and Claims (2) and
(3) for Qi;j , it follows that m.sj / � Qi;j ¤ Qi;j and m.sj / � Qi;j has representative
1vi;j C1. A routine computation with flags then shows that K �Ad.1vi;j C1/b0 D Qi;j C1.
Hence,

m.sj / � Qi;j D Qi;j C1: (46)

Claim (1) for Qi;j C1 then follows by induction. Claim (2) for Qi;j and Proposi-
tion 4.28 (1) imply that �.vi;j C1/ is the transposition .i j C 1/. The formula for


bvi;j C1

in Claim (2) follows from Proposition 4.28 part (2). Claim (3) now follows

by Lemma 4.29 and an easy computation. This verifies Claims (1)–(3) for the orbit
Qi;j C1.

We remark that a computation similar to the one above verifies that

m.si�1/ � Qi;j D Qi�1;j : (47)
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Example 4.31. We retain the notation from the last example. We assert that every
K-orbit Q in B is either of the form Qi or Qi;j with i < j and that these orbits
are all distinct. We prove the first assertion by induction on l.Q/. If l.Q/ D 0, then
Q is closed, so Q D Qi by Example 4.16. If l.Q/ D 1, then by Proposition 4.26,
Q D m.si / � Qc for some closed orbit Qc , so by Example 4.24 and Equations (44)
and (45), it follows that Q D Qi;iC1 for some i . If l.Q/ D k > 1, then
Proposition 4.26 implies Q D m.si / � eQ, where l.eQ/ D k � 1, so by induction
eQ D Qj;j Ck�1 for some j , and by Claim (3) of Example 4.30, the simple root ˛i is
either ˛j �1 or ˛j Ck�1. The first assertion now follows by Equations (46) and (47).
By Example 4.16, the orbits Qi are distinct. By Claim (2) of Example 4.30, the
Springer invariant for Qi;j is .i j /, so that Qi;j D Qi 0;j 0 if and only if i D i 0 and
j D j 0. We now have a complete classification of the K-orbits on B.

Example 4.32. We claim that Q1;n is the unique open orbit of K on B, where
we retain notation from the previous two examples. Indeed, by Claim (1) from
Example 4.30, l.Q1;n/ D n � 1 D dim Q1;n � dim.BK/, so that dim Q1;n D
n � 1 C dim.BK/ D dim.B/. It follows that Q1;n is open in B.

Remark 4.33. The last three examples verify the assertions of [40], Section 2, and
[26] for the case G D GL.n;C/ and K D GL.n � 1;C/ � GL.1;C/. In particular,
they justify the statements made in [11], Section 3.1. Example 4.30 explains the
definition of the element v in Equation (3.3) of [11] and the construction of the
involution 
 0 in [11], Section 3.1, which is the critical ingredient in the proof of
Theorem 3.2 above (see Remark 3.3).
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