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Abstract We consider the example from invariant theory concerning the
conjugation action of the general linear group on several copies of the n�n matrices,
and examine a symmetric function which stably describes the Hilbert series for the
invariant ring with respect to the multigradation by degree. The terms of this Hilbert
series may be described as a sum of squares of Littlewood–Richardson coefficients.
A “principal specialization” of the gradation is then related to the Hilbert series
of the K-invariant subspace in the GLn-harmonic polynomials (in the sense of
Kostant), where K denotes a block diagonal embedding of a product of general
linear groups. We also consider other specializations of this Hilbert series.
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1 Introduction

We let F�
n denote the finite-dimensional irreducible representation of the general

linear group, GLn, (over C) whose highest weight is indexed by the integer partition
� D .�1 � �2 � � � � � �n/ (in standard coordinates). Given a finite sequence of
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integer partitions � D .�.1/; : : : ; �.m//, we will let c�
� be the multiplicity of F�

n in

the m-fold tensor product F�.1/

n ˝ � � � ˝ F�.m/

n under the diagonal action of GLn. That
is, c�

� denotes a (generalized) Littlewood–Richardson coefficient.
We remark that the usual exposition of Littlewood–Richardson coefficients

(see [4, 5, 9–11, 13]) concerns the case where m D 2. However, by iterating
the Littlewood–Richardson rule (or its equivalents) one obtains several effective
combinatorial interpretations of our c�

�.
The subject of this exposition concerns some interpretations of the positive

integer
P�

c�
�

�2

where the sum is over certain finite subsets of nonnegative

integer partitions. We believe that such sums have under-appreciated combinatorial
significance. For example, one immediately observes the very simple specialization
to the case where �.j / D .1/ for all j D 1; : : : ; m, in which case the sum of
squares is mŠ, which may be viewed as a consequence of Schur–Weyl duality. More
generally, if � D .�1 � � � � � �m � 0/ is a partition and �.j / D .�j /, then c�

� is
equal to the Kostka number K�� (i.e., the multiplicity of the weight indexed by �

in F�
n).

Our motivation for considering these numbers comes from invariant theory.
On the one hand, we consider the conjugation action of the general linear group
on several copies of the n � n matrices. On the other hand, we consider the
K-conjugation action on one copy of the n � n matrices, where K denotes a
block diagonal embedding of a product of general linear groups. These problems
are related, and have been studied extensively. We make no attempt to survey the
literature, but recommend [3].

Central to this work is the notion of a Hilbert series. Let V be a graded
vector space. That is, V D L1

dD0 Vd where Vd is a finite-dimensional subspace.
The Hilbert series,

P1
dD0.dim Vd /qd , formally records the dimensions of the

graded components. Here q is an indeterminate. We also consider multivariate
generalizations corresponding to situations where V is graded by a cone in a lattice.

In our setting, V will be a space of invariant polynomial functions on m copies
of the n � n matrices. For fixed values of the parameters, the Hilbert series is the
Taylor expansion of a rational function around zero. When these parameters are
small, one can expect to write down the numerator and denominator explicitly.
These polynomials encode structural information about the invariants. However, as
the size of the matrix becomes large, these rational functions are difficult to compute
explicitly. This motivates reorganizing the data by studying the coefficients of the
Hilbert series of a fixed degree as the size of the matrix goes to infinity. The limit
exists. The formal series recording this information will be referred to as the stable
Hilbert series.

Certain sums of squares of Littlewood–Richardson coefficients describe the
coefficients of the (stable) Hilbert series for the invariant algebra in each case. These
Hilbert series, stably, may be expressed as a product. Furthermore, a “principal
specialization” of this product is then related to the Hilbert series of the K-invariant
subspace in the GLn-harmonic polynomials. [Harmonic in the sense of Kostant (see
[12]), which generalizes the usual notion of a harmonic polynomial.]
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Unless otherwise stated, we will only need notation for representations with
polynomial matrix coefficients, which are indexed by partitions with nonnegative
integer components. The sum of the parts of a partition � will be called the size
(denoted j�j), while the number of parts will be called the length denoted `.�/. As
usual, we will also write � ` d to mean j�j D d . Furthermore, we also adapt
the (non-standard) notation that if � D .�.1/; : : : ; �.m// is a finite sequence of
partitions, we set j�j D Pm

jD1 j�.j /j, and write � ` d to mean j�j D d . From
a combinatorial point of view, the results involve a specialization of the following

Theorem 1.1 (Main Formula). Let t1; t2; t3; : : : denote a countably infinite set of
indeterminates. We have

1Y

kD1

1

1 � �
t k
1 C t k

2 C t k
3 C � � � � D

X

�

X

�

�
c�

�

�2

t�;

where the outer sum is over all partitions � and the inner sum is over all finite

sequences of partitions � D .�.1/; �.2/; �.3/; : : :/ with t� D t
j�.1/j
1 t

j�.2/j
2 t

j�.3/j
3 : : : :

Proof. See Section 7. ut
As an application of the main formula, we turn to the space, H.gln/, of

GLn-harmonic polynomial functions on the adjoint representation (with its natural
gradation) by polynomial degree, H.gln/ D L1

dD0 Hd .gln/. The group GLn acts
on H.gln/. Note that the constant functions are the only GLn-invariant harmonic
functions. However, if K is a reductive subgroup of GLn, the space of K-invariant
functions is much larger. Consider the example when the group K is the block
diagonally embedded copy of GLn1 � � � � � GLnm in GLn, with n1 C � � � C nm D n.
We will denote this group by K.n/ where n D .n1; : : : ; nm/. The purpose of this
paper is to relate the dimension of the K.n/-invariant polynomials in Hd .gln/ to
a sum of squares of Littlewood–Richardson coefficients. See Theorem 5.1 for the
precise statement.

We consider this question because the related algebraic combinatorics are par-
ticularly elegant, and hence have expository value in connecting harmonic analysis
with algebraic combinatorics. However, this example is the tip of an iceberg. Indeed,
one can replace GLn with any algebraic group G (with g DLie.G/) and K.n/ with
any subgroup of G. This area of investigation is wide open and well motivated as an
examination of the special symmetries of harmonic polynomials.

In Section 2, we describe a general “answer” to this question when K is a
symmetric subgroup of a reductive group G. This answer is not as explicit as would
be desired, but applies to any symmetric pair .G; K/. The remainder of the paper
is related to the G D GLn example with K D K.n/. Note that when m D 2 (i.e.,
n D .n1; n2/) the pair .G; K/ is symmetric, but for m > 2 is not. We remark that in
the m D 2 case, the results presented here were first described in [18]. Our present
discussion amounts to a generalization to m > 2.

After setting up appropriate notation in Section 3 we provide an interpretation for
a description of the Hilbert series of the K.n/-invariants in the GLn-harmonic poly-
nomials on gln in Sections 4 and 5. Chief among these involves sums of squares of
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Littlewood–Richardson coefficients. We recall other combinatorial interpretations
in Section 6. These interpretations involve counting the conjugacy classes in the
general linear group over a finite field.

Acknowledgements. The first author wishes to thank Marquette University for
support during the preparation of this article. The second author wishes to thank
the National Security Agency for support. We also would like to thank both Lindsey
Mathewson and the referee for pointing out several references that improved the
exposition.

2 The case of a symmetric pair

Let G denote a connected reductive linear algebraic group over the complex
numbers and let g be its complex Lie algebra. We have g D z.g/ ˚ gss , where
z.g/ denotes the center of g, while gss D Œg; g� denotes the semisimple part
of g. A celebrated result of Kostant (see [12]) is that the polynomial functions
on g, denoted CŒg�, are a free module over the invariant subalgebra, CŒg�G , under
the adjoint action. Choose a Cartan subalgebra h of g, and let ˚ and W denote the
corresponding set of roots and Weyl group, respectively. Choose a set of positive
roots ˚C, and let ˚� D �˚C denote the negative roots. Set � D 1

2

P
˛2˚C ˛.

For w 2 W , let l.w/ denote the number of positive roots sent to negative roots
by w. Fix an indeterminate t . There exist positive integers e1 � e2 � � � � � er

such that
P

w2W t l.w/ D Qr
jD1

1�t
ej

1�t
where r is the rank of gss . A consequence

of the Chevalley restriction theorem ([2]) is that CŒg�G is freely generated, as a
commutative ring, by dim z.g/ polynomials of degree 1, and r polynomials of degree
e1; : : : ; er . These polynomials are the basic invariants, while e1; : : : ; er are called
the exponents of G.

2.1 Harmonic polynomials

We define the harmonic polynomials on g by

Hg D ˚
f 2 CŒg� j �.f / D 0 for all � 2 DŒg�G

�
;

where DŒg�G is the space of constant coefficient G-invariant differential operators
on g. In [12], it is shown that as a G-representation Hg is equivalent to the
G-representation algebraically induced from the trivial representation of a maximal
algebraic torus T in G. Thus, by Frobenius reciprocity, the irreducible rational
representations of G occur with multiplicity equal to the dimension of their zero
weight space. Moreover, as a representation of G, the harmonic polynomials are
equivalent to the regular functions on the nilpotent cone in g.
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The harmonic polynomials inherit a gradation by degree from CŒg�. Set Hd
g D

Hg \ CŒg�d . Thus, Hg D L1
dD0 Hd

g . We next consider the distribution of the
multiplicity of an irreducible G-representation among the graded components of
Hg. A solution to this problem was originally due to Hesselink [8], which we recall
next.

Let }t W h� ! N denote Lusztig’s q-analog of Kostant’s partition function and as
always N D f0; 1; 2; 3; : : :} is the set of nonnegative integers. That is }t is defined
by the equation

Y

˛2˚C

1

1 � te˛
D

X

�2Q.g;h/

}t .�/e�

where Q.g; h/ � h� denotes the lattice defined by the integer span of the roots.
As usual, e� denotes the corresponding character of T , with Lie.T / D h. As usual,
we set }.�/ D 0 for � … Q.g; h/.

Let P.g/ denote the integral weights corresponding to the pair (g; h). The
dominant integral weights corresponding to ˚C will be denoted by PC.g/. Let
L.�/ denote the (finite-dimensional) irreducible highest weight representation with
highest weight � 2 PC.g/. The multiplicity of L.�/ in the degree d harmonic
polynomials Hd .g/ will be denoted by md .�/. Set m�.t/ D P1

dD0 md .�/td .
Hesselink’s theorem asserts that

m�.t/ D
X

w2W

.�1/l.w/}t .w.� C �/ � �/:

See [17] for a generalization of this result.
We remark that the above formula is very difficult to implement in practice. This

is in part due to the fact that the order of W grows exponentially with the Lie
algebra rank. Thankfully, only a small number of terms actually contribute to the
overall multiplicity. See [7] for a very interesting special case where the number of
contributed terms is shown to be a Fibonacci number.

2.2 The K -spherical representations of G

Let .G; K/ be a symmetric pair. That is, G is a connected reductive linear algebraic
group over C and K D fg 2 G j 	.g/ D Gg, where 	 is a regular automorphism
of G of order two. Since K will necessarily be reductive the quotient, G=K is
an affine variety and the C-algebra of regular function CŒG=K� is multiplicity-
free as a representation of G. This fact follows from the (complexified) Iwasawa
decomposition of G. Put another way, there exists S � PC.g/ such that for all
� 2 PC.g/ we have

dim L.�/K D
�

1; � 2 S ,
0; � 62 S .
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Note that the subset S may be read off of the data encoded in the Satake diagram
associated to the pair .G; K/. The above fact implies that the Hilbert series
Ht .G; K/ D P1

dD0 hd td with hd D dimHd .g/K has the following formal
expression:

Ht .G; K/ D
X

w2W

.�1/l.w/

 
X

�2S

}t .w.� C �/ � �/

!

:

This formula seems rather encouraging. Unfortunately, the inner sum is very
difficult to put into a closed form for general w 2 W . This is, in part, a reflection of
the fact that the values of }t cannot be determined from a “closed form” expression.
However, note that w.�C�/�� often falls outside of the support of }t , and therefore
it may be possible to obtain explicit results along these lines. Moreover, the point
of this exposition is to advertise that combinatorially elegant expressions may exist.
At least this is the case for the pair (GLn1Cn2 ; GLn1 � GLn2), as we shall see.

3 Preliminaries

We let gln denote the complex Lie algebra of n � n matrices with the usual
bracket, ŒX; Y � D XY � YX , for X; Y 2 gln. Let Eij denote the n � n matrix
with a 1 in row i and column j , and 0 everywhere else. The Cartan subalgebra
will be chosen to be the span of fEii j 1 � i � ng. The dual basis in h� to
.E11; E22; : : : ; Enn/ will be denoted .
1; : : : ; 
n/. Choose the simple roots as usual,
˘ D f
i � 
iC1 j 1 � i < ng. Let ˚ (resp. ˚C) denote the roots (resp. positive
roots). We will identify h with h� using the trace form .H1; H2/ D Tr.H1H2/

(for H1; H2 2 h/. The fundamental weights are !i D Pi
jD1 
j 2 h� for

1 � i � n � 1. We also set !n D Pn
jD1 
j 2 h�. Let P.GLn/ D Pn

jD1 Z!j ,

and PC.GLn/ D Z!n CPn�1
jD1 N!j .

From this point on, we will write .a1; : : : ; an/ for
P

ai 
i . Thus, we have � D
.�1; : : : ; �n/ 2 PC.GLn/ iff each �i in an integer and �1 � � � � � �n. The finite-
dimensional irreducible representation of GLn with highest weight � will be denoted
.��; F�

n/ where

�� W GLn ! GL.F�
n/:

To simply notation will write F�
n for .��; F�

n/.
Throughout this article, the representations of GLn which we will consider have

polynomial matrix coefficients. Thus the components of the highest weight � will be
nonnegative integers. Therefore, if � is a (nonnegative integer) partition with at most
` parts (` � n), then the n-tuple, .�1; : : : ; �`; 0; : : : ; 0/, corresponds to the highest
weight of a finite-dimensional irreducible representation of GLn (with polynomial
matrix coefficients).
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Under the diagonal action, GLn acts on the d -fold tensor product ˝d
C

n.
Schur–Weyl duality (see [5] Chapter 9) asserts that the full commutant to the
GLn-action is generated by the symmetric group action defined by permutation of
factors. Consequently, one has a multiplicity-free decomposition with respect to the
joint action of GLn �Sd . Moreover, if n � d , then every irreducible representation
of Sd occurs. The irreducible representation of Sd paired with F�

n will be denoted
by V �

d . The full decomposition into the irreducible GLn � Sd -representation is

Od
C

n Š
M

�

F�
n ˝ V �

d ;

where the sum is over all nonnegative integer partitions � of size d and length at
most n. Note that when n D d , then the condition on `.�/ is automatic. Thus,
all irreducible representations of V �

d occur. In this manner, the highest weights of
GLn-representations provide a parametrization of the Sd -representations.

3.1 Littlewood–Richardson coefficients

Let d D .d1; : : : ; dm/ denote a tuple of positive integers with d D d1 C � � � C dm.
Let Sd denote the subgroup of Sd consisting of permutations that stabilize the sets
permuting the first m1 indices, then the second m2 indices, etc. Clearly, we have

Sd Š Sd1 � � � � � Sdm:

The irreducible representations of Sd are of the form

V.�/ D V
�.1/

d1
˝ � � � ˝ V

�.m/

dm
;

where �.j / is a partition of size dj . It is well known that if an irreducible
representation V �

d of Sd is restricted to Sd , then the multiplicity of V.�/ in V �
d

is given by the Littlewood–Richardson coefficient c�
�. This fact is a consequence of

Schur–Weyl duality.

4 Invariant polynomials on matrices

A permutation of f1; 2; : : : ; mg may be written as a product of disjoint cycles.
This result is fundamental to combinatorial properties of the symmetric group Sm.
Keeping this elementary fact in mind, let X D .X1; X2; : : : ; Xm/ be a list of
complex n � n matrices. Let Tr denote the trace of a matrix and define
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Tr� .X/ D Tr.X
�

.1/
1

X
�

.1/
2

� � � X
�

.1/
m1

/ Tr.X
�

.2/
1

X
�

.2/
2

� � � X
�

.2/
m2

/ � � �
� � � Tr.X

�
.k/
1

X
�

.k/
2

� � � X
�

.k/
mk

/

where � D .�
.1/
1 �

.1/
2 � � � �.1/

m1 /.�
.2/
1 �

.2/
2 � � � �.2/

m2 / � � � .�.k/
1 �

.k/
2 � � � �.k/

mk
/ is a permutation

of m D P
mi written as a product of k disjoint cycles. Observe that the cycles

of � may be permuted and rotated without changing the permutation. In turn, the
function Tr� displays these same symmetries.

Chief among the significance of Tr� is the fact that they are invariant under the
conjugation action g � .X1; : : : ; Xm/ D .gX1g�1; : : : ; gXmg�1/; where g 2 GLn.
By setting some of the components of .X1; : : : ; Xm/ equal, one defines a polynomial
of equal degree but on fewer than m copies of Mn. Intuitively, this fact may be
described by allowing equalities in the components of the cycles of � . That is
(formally), we consider � up to conjugation by Levi subgroup of Sm.

In [14,15], C. Procesi described these generators for the algebra of GLn-invariant
polynomials, denoted CŒV �GLn , on V D M m

n , and provided a proof that these
polynomials span the invariants. [Here we let Mn denote the complex vector
spaces of n � n matrices (with entries from C).] Hilbert tells us that the ring of
invariants must be finitely generated. Thus, there must necessarily be algebraic
relations among this (infinite) set of generators. In light of Procesi’s work, these
generators and relations are understood. However, recovering the Hilbert series from
these data is not automatic.

In order to precisely quantify the failure of the Tr� being indepen-
dent, we introduce the formal power series An.t/ D An.t1; t2; : : : ; tm/ DP

an.d/td , where we will use the notation d D .d1; : : : ; dm/, td D t
d1

1 � � � tdm
m

and the coefficient are defined as an.d/ D dimCŒM m
n �

GLn

d , where CŒM m
n �d D

CŒMn ˚ � � � ˚ Mn�.d1;��� ;dm/ denotes the homogeneous polynomials of degree di

on the i th copy of Mn. The multivariate series, An.t/, is called the Hilbert Series
of the invariant ring. Except in some simple cases, a closed form for An.t/ is not
known. Part of this exposition is to point out the rather simple fact that an.d/

may be expressed in terms of the squares of Littlewood–Richardson coefficients.
Furthermore, we prove

Proposition 4.1. For any natural numbers m and d D .d1; : : : ; dm/ the limit
limn!1 an.d/ exists. If we call the limiting value a.d/ and set eA.t/ D P

a.d/td ,
then

eA.t/ D
1Y

kD1

1

1 � .tk
1 C t k

2 C � � � C t k
m/

:

Proof. The polynomial functions on Mn are multiplicity-free under the action of
GLn � GLn given by .g1; g2/f .X/ D f .g�1

1 Xg2/ for g1; g2 2 GLn, X 2 Mn and
f 2 CŒMn�. The decomposition is a “Peter–Weyl” type, CŒMn� Š L�

F�
n

�� ˝ F�
n,

where the sum is over all nonnegative integer partitions � with `.�/ � n. We have
CŒ˚m

iD1Mn� Š ˝m
iD1CŒMn�. Thus
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CŒM m
n � Š

0

@
M

�.1/

�
F�.1/

n

�� ˝ F�.1/

n

1

A˝ � � � ˝
0

@
M

�.m/

�
F�.m/

n

�� ˝ F�.m/

n

1

A

Š
M

˛;ˇ

0

@
X

�D.�.1/;��� ;�.m//

c˛
�cˇ

�

1

A
�
F˛

n

�� ˝ Fˇ
n ;

with respect to the GLn � GLn action on the diagonal of M m
n . Note that in

multidegree .d1; : : : ; dm/ the sum is over all � with j�.j /j D dj . If we restrict
to the subgroup f.g; g/ j g 2 GLng of GLn � GLn, we obtain an invariant
exactly when ˛ D ˇ. The dimension of the GLn-invariants in the degree d

homogeneous polynomials on M m
n is therefore

P�
c�

�

�2

where the sum is over all

� D .�.1/; : : : ; �.m// and � ` m with length at most n. The degree d component
decomposes into multi-degree components .d1; : : : ; dm/ with d D P

dj .
If d � n, then the condition that `.�/ � n is automatic, and this fact implies

that if c�
� ¤ 0, then `.�.j // � n for all j . Thus, the dimension of the degree d

invariants in CŒM m
n � is

P�
c�

�

�2

where the sum is over all partitions of size d . If we

specialize the main formula so that tj D 0 for j > m, then the sums of squares of
Littlewood–Richardson coefficients agree with eA.t/. ut

For our purposes, we will specialize the multigradation on the invariants in
CŒM m

n � to one that is more coarse. From this process, we can relate the stabilized
Hilbert series of the invariants in HŒMn�. This specialization will be the subject of
the next section.

We now turn to another problem that we shall see is surprisingly related. Consider
the n � n complex matrix

X D

2

6
6
6
4

X.1; 1/ X.1; 2/ � � � X.1; m/

X.2; 1/ X.2; 2/ � � � X.2; m/
:::

:::
: : :

:::

X.m; 1/ X.m; 2/ � � � X.m; m/

3

7
7
7
5

where X.i; j / is an ni � nj complex matrix with n D P
nj . Define

Tr� .X/ D
kY

jD1

Tr
�
X.�

.j /
1 ; �

.j /
2 /X.�

.j /
2 ; �

.j /
3 /X.�

.j /
3 ; �

.j /
4 / � � � X.�.j /

mj
; �

.j /
1 /

�
:

Let K.n/ denote the block diagonal subgroup of GLn of the form

K.n/ D

2

6
4

GLn1

: : :

GLnm

3

7
5 :
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The group K.n/ acts on Mn by restricting the adjoint action of GLn. The
K.n/-invariant subring of CŒMn� (denoted CŒMn�K.n/) is spanned by Tr� .X/.
For small values of the parameter space, these expressions are far from linearly
independent (as in the last example). Formally, one cannot help but notice the
symbolic map Tr� 7! Tr� . We will try next to make a precise statement along these
lines.

Define CŒMn�d to be the homogeneous degree d polynomials on Mn, and let
CŒMn�

K.n/

d denote the K.n/-invariant subspace. Set a.n/.d/ D dimCŒMn�
K.n/

d , and
A.n/.t/ D P1

dD0 a.n/.d/ td . Analogous to Proposition 4.1, we have

Proposition 4.2. For any nonnegative integer d , the limit

lim
n1!1

lim
n2!1

� � � lim
nm!1

a.n1;��� ;nm/.d/

exists. Denote the limiting value a.d/ and set A.t/ D P1
dD0 a.d/td . We have

A.t/ D
1Y

kD1

1

1 � m tk
:

Proof. We begin with the GLn � GLn-decomposition CŒMn� D L�
F�

n

�� ˝ F�
n

with respect to the action in the proof of Proposition 4.1. The irreducible
GLn-representation F�

n is reducible upon restriction to K.n/. The decomposition is
given in terms of Littlewood–Richardson coefficients

F�
n Š

M

�D.�.1/;��� ;�.m//

c�
� F�.1/

n ˝ � � � ˝ F�.m/

n :

Therefore, as a K.n/ � K.n/-representation we have

CŒMn�d D
X

�;�

 
X

�

c�
�c�

�

!
�
˝m

jD1F�.j /

nj

�� ˝
�
˝m

jD1F�.j /

nj

�
;

where the sum is over all � with j�j D d , `.�/ � n and `.�.j //; `.�.j // � nj . If we
restrict to the diagonally embedded K.n/-subgroup, we obtain an invariant exactly

when � D �. Thus, a.n/.d/ D P�
c�

�

�2

, with the appropriate restrictions on �

and �.
If all nj � d , then the condition on the lengths of partitions disappears, and we

may sum over all � ` d . The result follows by specializing the main formula by
setting tj D t for 1 � j � m and tj D 0 for j > m. ut

Although we will not need it for our present purposes, it is worth pointing out that
the algebra CŒMn� has a natural Nm gradation defined by the action of the center of
K.n/. This multigradation refines the gradation by degree. The limiting multigraded
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Hilbert series is the same as that of Proposition 4.1. Upon specialization to
t1 D t2 D � � � D tm D t we obtain the usual gradation by degree (in both situations).
The advantage of considering the more refined gradation is that one can consider
the direct limit as m and n go to infinity. This will be relevant in the next section.

5 Harmonic polynomials on matrices

A specific goal of this article is to understand the dimension of the space of degree d

homogeneous K.n/-invariant harmonic polynomials on Mn. With this fact in mind,
we observe the following specialization of the product in the main formula. Let tj D
t j . Then we obtain

1Y

kD1

1

1 � .tk C t 2k C t 3k C � � � / D
1Y

kD1

1

1 � tk

1�tk

D
1Y

kD1

1 � t k

1 � 2tk
:

For a sequence � D .�.1/; �.2/; : : :/ set gr.�/ D P1
jD1 j j�.j /j. The equation in the

main formula becomes

1Y

kD1

1 � t k

1 � 2tk
D
X

�

X

�

�
c�

�

�2

tgr.�/:

The notation gr is used for the word grade. We explain this choice next. Let
CŒMnI d� denote the polynomials functions on the n � n complex matrices together
with the gradation defined by d times the usual degree. That is, CŒMnI d1�.d2/

denotes the degree d2 homogeneous polynomials, but regarded as the d1d2 graded
component in CŒMnI d1�. We consider the N-graded complex algebra An defined as

An D CŒMnI 1� ˝ CŒMnI 2� ˝ CŒMnI 3� ˝ � � �

D
1X

ıD0

AnŒı�;

where AnŒı� is the graded ı 2 N component (with the usual grade defined on
a tensor product of algebras). The group GLn acts on each CŒMnI d� by the
adjoint action, and respects the grade. Under the diagonal action on the tensors,
the GLn-invariants, AGLn

n , have An.t/ as the Hilbert series when t is specialized
to .t1; t2; t3; : : :/ D .t; t 2; t 3; : : :/. This GLn-action respects the ı component in the
gradation. That is, that the Hilbert series is

An.t; t 2; t 3; : : :/ D
1X

ıD0

dim .AnŒı�/GLn t ı:
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For d D 0; : : : ; n the coefficient of td in An.t; t 2; : : :/ is the same as the coefficient
of td in eA.t; t2; : : :/. Summarizing, we can say that stably, as n ! 1, the Hilbert
series of AGLn

n is
Q1

kD1
1�tk

1�2tk .

We turn now to the GLn-harmonic polynomials on Mn together with its usual
gradation by degree. Kostant’s theorem [12] tells us that

CŒMn� Š CŒMn�GLn ˝ H.Mn/:

As before let K D K.n1; n2/ denote the copy of GLn1 � GLn2 (symmetrically)
embedded in GLn1Cn2 . Passing to the K.n1; n2/-invariant subspaces we obtain

CŒMn�K D CŒMn�GLn ˝ H.Mn/K:

The Hilbert series of CŒMn�GLn is well known to be
Qn

kD1
1

1�tk , while the Hilbert
series CŒMn�K is An.t; t/. These facts imply that the dimension of the degree
d homogenous K-invariant harmonic polynomials is the coefficient of td in
Fn.t/ D An.t; t/

Qn
jD1.1 � t j /. We have that the coefficient of td in Fn.t/ for

d D 0; : : : ; min.n1; n2/ agrees with the coefficient of td in

eA.t; t2; t 3; � � � /
1Y

kD1

.1 � t k/ D
1Y

kD1

1 � t k

1 � 2tk
:

Again summarizing, we say that stably, as n1; n2 ! 1, the Hilbert series of
H.Mn1Cn2/

K.n1;n2/ is the same as AGLn
n as n; n1; n2 ! 1. That is, for fixed ı we

have

lim
n1;n2!1

dimH.Mn1Cn2/
K.n1;n2/

ı D lim
n!1 dimAnŒı�GLn :

Observe that this procedure generalizes. Let m � 2. Analogous to before, let
CŒM m

n I d� denote the polynomial function on M m
n D Mn ˚ � � � ˚ Mn (m-copies)

together with the N-gradation defined such that CŒM m
n I d1�d2 consists of the degree

d2 homogeneous polynomials but regarded as being the d1d2-th graded component.
Note that the ı-th component in the grade is (0) if ı is not a multiple of d1.

Let Am
n be the N-graded algebra defined as

Am
n D CŒM m�1

n I 1� ˝ CŒM m�1
n I 2� ˝ CŒM m�1

n I 3� ˝ � � � :

Since Am
n is a tensor product of N-graded algebras, it has the structure of an

N-graded algebra. As before let Am
n Œı� be the ı-th graded component. The group

GLn acts on each CŒM m
n I d� by the adjoint action, and respects the grade.

Next, set t1 D t2 D � � � D tm�1 D t , then tm D tmC1 D � � � D t2m�2 D t 2, then
t2m�1 D � � � D t3m�3 D t 3, and so on. The result of this procedure is
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Theorem 5.1. For all n D .n1; : : : ; nm/ 2 Z
mC and d 2 N, let

hd .n/ D dim
�Hd .Mn/

�K.n/
:

Then for fixed d , the limit

lim
n1!1

� � � lim
nm!1

hd .n1; : : : ; nm/

exists. Let the limiting value be hd . Then

hd D lim
n!1 dim .Am

n Œd �/GLn :

Proof. After the specialization we obtain

1Y

kD1

1

1�.tkC � � � Ct k

„ ƒ‚ …
m�1 copies

C t 2k C � � � C t 2k

„ ƒ‚ …
m�1 copies

C � � � / D
1Y

kD1

1

1 � .m � 1/.tk C t 2k C � � � /

D
1Y

kD1

1

1 � .m � 1/ tk

1�tk

D
1Y

kD1

1

1�tk�.m�1/tk

1�tk

D
1Y

kD1

1 � t k

1 � m tk
:

The significance of this calculation is that it allows for another interpretation of
sums of Littlewood–Richardson coefficients. The rest of the proof is identical to the
m D 2 case in the preceding discussion. ut

5.1 A bigraded algebra and a specialization
of the main formula

As before, the group GLn acts on Mn by conjugation, and then in turn acts
diagonally on Mn ˚ Mn. That is, given .X; Y / 2 Mn ˚ Mn, and g 2 GLn, we
have g � .X; Y / D .gXg�1; gYg�1/. We then obtain an action on CŒMn ˚ Mn�.

We have already observed that the algebra CŒMn ˚ Mn� is bigraded. That is, let
CŒMn ˚ Mn�.i; j / denote the homogenous polynomial functions on Mn ˚ Mn of
degree i in the first copy of Mn and degree j in the second copy of Mn. Let a and b

be positive integers. We set
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CŒMn ˚ MnI .a; b/�.ai; bj / D CŒMn ˚ Mn�.i; j /

with the other components zero. Put another way, CŒMn ˚MnI .a; b/� is the algebra
of polynomial function on Mn ˚Mn together with the bi-gradation defined by .a; b/

times the usual degree. As before we consider the infinite tensor product

Bn D
1O

aD1

1O

bD1

CŒMn ˚ MnI .a; b/�:

Next, note the following, obvious, identity:

1Y

kD1

1

1 � xkyk

.1�xk/.1�yk/

D
1Y

kD1

.1 � xk/.1 � yk/

1 � .xk C yk/
:

We observe that this is a specialization of the product in the main formula.
Specifically, let qi t j D zs where zs is given as the .i; j / entry in the following
table.

qi t j q q2 q3 q5 q6 � � �
t z1 z2 z4 z7 z11 � � �
t 2 z3 z5 z8 z12 z17 � � �
t 3 z6 z9 z13 z18 z24 � � �
t 4 z10 z14 z19 z25 z32 � � �
t 5 z15 z20 z26 z33 z41 � � �
:::

:::
:::

:::
:::

:::
: : :

Then,

1Y

kD1

1

1 � .zk
1 C zk

2 C zk
3 C � � � / D

1Y

kD1

1

1 �
X

i;j�1

.qi t j /k

D
1Y

kD1

1

1 � qktk

.1�qk/.1�tk /

D
1Y

kD1

.1 � qk/.1 � t k/

1 � .qk C t k/
:

In this way, the GLn-invariants in the harmonic polynomials on Mn ˚ Mn may
be related to the multigraded algebra structure B, as in the singly graded case.

This identity becomes significantly more complicated when generalized to
harmonic polynomials on more than two copies of the matrices. This fact will be
the subject of future work.
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6 Some combinatorics related to finite fields

In this section, we collect remarks of a combinatorial nature that provide a more
concrete understanding of the sum of squares that we consider in this paper.

From elementary combinatorics one knows that the infinite product

1Y

kD1

1

1 � q tk
D
1X

nD0

1X

`D0

pn;`q
`tn;

where pn;` is the number of partitions of n with exactly ` parts. When q is
specialized to a positive integer the coefficients of this series in t has many
interpretations.

6.1 The symmetric group

Fix a positive integer d , and a tuple of positive integers d D .d1; d2; : : : ; dm/

with d1 C � � � C dm D d . As before, let Sd denote the subgroup of Sd isomor-
phic to Sd1 � � � � � Sdm embedded by letting the i th factor permute the set Ji where
fJ1; : : : ; Jmg is the partition of f1; : : : ; dg into the m contiguous intervals with
jJi j D di . That is, J1 D f1; 2; : : : ; d1g, J2 D fd1 C 1; : : : ; d1 C d2g, etc.

The group Sd acts on Sd by conjugation. Let the set of orbits be denoted by
O.d/. We have

Proposition 6.1. For any d D .d1; : : : ; dm/,

jO.d/j D
X

�`m

X

�D.�.1/;��� ;�.m//

�
c�

�

�2

where the inner sum is over all tuples of partitions with �.j / ` dj .

Proof. We begin with the Peter–Weyl type decomposition of CŒSd �

CŒSd � Š
M

�`d

�
V �

d

�� ˝ V �
d :

We then recall that Littlewood–Richardson coefficients describe the branching rule
from Sd to Sd :

V � D
M

�

c�
�V �.1/ ˝ � � � ˝ V �.m/

:

Combining the above decompositions, we obtain the result from Schur’s Lemma.
ut
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Figure 1 2-colored necklaces

It is an elementary fact that the Sd -conjugacy class of a permutation � in Sd

is determined by the lengths of the disjoint cycles of � . A slightly more general
statement is that the Sd -conjugacy class of � 2 Sd is determined by a union of
cycles in which each element of a cycle is “colored” by colors corresponding to
J1; : : : ; Jm. It is not difficult to write down a proof of this fact, but we omit it here
for space considerations.

If one fixes d , then the sum over all d -compositions,
P

d jO.d/j, may be
interpreted as the number of d -bead unions of necklaces with each bead colored
by m colors. For example if m D 2, and d D 4, the resulting set may be depicted as
noted in Figure 1.

A single k-bead necklace has Z=kZ-symmetry. If the beads of this necklace are
colored with m colors, then the resulting colored necklace may have smaller group
of symmetries. Using Polya enumeration (i.e., “Burnside’s Lemma”), one can count
such necklaces by the formula
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Nk.m/ D 1

k

X

r jk
.r/m

k
r ;

where  denotes the Euler totient function. That is, .r/ is the number of positive
integers relatively prime to r . The theory forming the underpinnings of the above
formula may be put in a larger context of cycle index polynomials. We refer
the reader to Doron Zeilberger’s survey article (IV.18 of [6]).

The generating function for disjoint unions of such necklaces can be given by the
product

�m.t/ D
1Y

kD1

�
1

1 � t k

	Nk.m/

That is, the number of d -bead necklaces, counted up to cyclic symmetry, is equal to
the coefficient of td in �.t/. The main formula specializes to

�m.t/ D
X

�;�`d

�
c�

�

�2

t j�j; (1)

where the sum is over all partitions � and over all m-tuples of partitions � D
.�.1/; : : : ; �.m// such that

Pm
iD1 j�.i/j D d .

Equation 1 begs for an (explicit) bijective proof which is no doubt obtained by
merging both the Littlewood–Richardson rule and the Robinson–Schensted–Knuth
bijection. It is likely that more than one “natural” bijection exists.

6.2 The general linear group over a finite field

Let p denote a prime number, and v 2 Z
C. Set q D pv . Let GLm.q/ denote the

general linear group of invertible m � m matrices over the field with q elements.
The set, Cm.q/, of conjugacy classes of GLm.q/ has a cardinality of note in that the
infinite products has the following expansion:

1Y

kD1

1 � t k

1 � q tk
D
X

mD0

jCm.q/jtm;

see [1, 16], and the references within.
Note that from Equation 1 we obtain a new formula for the number of conjugacy

classes of GLm.q/, namely,

 1Y

kD1

.1 � t k/

!

�q.t/ D
1Y

kD1

�
1

1 � t k

	Nk.q/�1

:
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7 Proof of the main formula

Before proceeding, we require some more notation. Given a partition � D .�1 �
�2 � � � � / with v1 ones, and v2 twos, etc., we will call the sequence .v1; v2; : : :/ the
type vector of �. Note that `.�/ D P

vi , while the size of � is m D j�j D P
�i DP

ivi . As is standard, we set

z� D .v1Š1v1/.v2Š2v2/.v3Š3v3/ � � � :

It is elementary that the cardinality of a conjugacy class of a permutation with cycle
type � is mŠ

z�
. (Equivalently, the centralizer subgroup has order z�.)

We now prove the main formula. The product on the left side (LS) may be
expanded using the sum of a geometric series, the multinomial theorem, and then
the sum-product formula, as follows

LS D
1Y

kD1

1

1 � .tk
1 C t k

2 C t k
3 C � � � /

D
1Y

kD1

1X

uD0

.tk
1 C t k

2 C � � � /u

D
1Y

kD1

1X

uD0

X

u1Cu2C���Du

uŠ

u1Šu2Š � � � t
ku1

1 t
ku2

2 � � �

D
1Y

kD1

X

u1;u2;���

.u1 C u2 C � � � /Š
u1Šu2Š � � � t

ku1

1 t
ku2

2 � � �

D
X

u
.i/
j ;���

1Y

iD1

.u.i/
1 C u.i/

2 C � � � /Š
u.i/

1 Šu.i/
2 Š � � �

t
iu

.i/
1

1 t
iu

.i/
2

2 � � �

(with all sequences having finite support.) We will introduce another sequence, a D
.a1; a2; : : :/ and extract the coefficient of ta D Q

t
ai

i in the above formal expression
to obtain

LS D
X

a

0

B
@

X

u
.i/
j W8j;

P
i iu

.i/
j Daj

1Y

iD1

.u.i/
1 C u.i/

2 C � � � /Š
u.i/

1 Šu.i/
2 Š � � �

1

C
A ta

The above is not such a complicated expression, although these formal manipu-
lations may, at first, seem daunting. Observe that the sequence u.1/

j ; u.2/
j ; : : : with

P
i iu.i/

j D aj encodes a partition of aj with the number i occurring exactly u.i/
j
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times, while
P

i�1 u.i/
j is the length of the partition. We will call this partition �.j /.

That is, �.j / has type vector .u.1/
j ; u.2/

j ; : : :/. The coefficient of ta may be rewritten

as a sum over all double sequences u.i/
j such that for all j ,

P
i iu.i/

j D aj of

1Y

iD1

.u.i/
1 C u.i/

2 C � � � /Š
u.i/

1 Šu.i/
2 Š � � �

D
1Y

iD1

.u.i/
1 C u.i/

2 C � � � /Ši
P

u
.i/
j

.u.i/
1 Šiu

.i/
1 /.u.i/

2 Šiu
.i/
2 / � � �

: (2)

Given a (finitely supported) sequence of partitions � D .�.1/; �.2/; : : :/, we denote
the partition obtained from the (sorted) concatenation of all �.j / by [�.j /. Thus, if
�.j / has type vector .u.i/

1 ; u.i/
2 ; : : :/, then the number of i ’s in [�.j / is u.i/

1 C u.i/
2 C

� � � . It therefore follows that the numerator of the right-hand side of Equation 2 is
z� when � D [�.j /. The denominator can easily be seen to be z�.j / . From this
observation we obtain

LS D
X

�

z[1
jD1�.j /

Q1
jD1 z�.j /

zj�
.1/j

1 zj�
.2/j

2 zj�
.3/j

3 � � � :

7.1 An application of the Hall scalar product

Let �n denote the Sn-invariant polynomials (over C as usual) in the indeterminates
x1; : : : ; xn, let �Œx� D lim �n denote the inverse limit. Thus, �Œx� is the
algebra of symmetric functions. For a nonnegative integer partition �, we let s�.x/

denote the Schur function. That is, for each n, s�.x/ projects to the polynomial
s�.x1; : : : ; xn/ which, as a function on the diagonal matrices, coincides with the
character of the GLn-irrep F�

n. The set fs�.x/ W � ` dg is a C-vector space basis
of the homogeneous degree d symmetric functions. We will define a nondegenerate
symmetric bilinear form h�; �i by declaring

˝
s˛.x/; sˇ.x/

˛ D ı˛ˇ for all nonnegative
integer partitions ˛, ˇ. This form is the Hall scalar product.

Given an integer m, define pm.x/ D xm
1 C xm

2 C � � � to denote the power sum
symmetric function. Given � ` N , set p�.x/ D Q

p�j .x/. We remark that the left
side of the main formula is easily seen to be

P
� p�.t/.

It is a consequence of Schur–Weyl duality that the coefficients of the Schur
function expansion

p�.x/ D
X

�

��.�/s�.x/

are the characters of the SN -irrep indexed by � evaluated at any permutation with
cycle type �. It is a standard exercise to see, from the orthogonality of the character
table, that p�.x/ are an orthogonal basis of �Œx�, and hp�.x/; p�.x/i D z� .
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We next consider another set of indeterminates, y D y1; y2; : : :. Set �Œx; y� D
�Œx� ˝ �Œy�. The Hall scalar product extends to �Œx; y� in the standard way as

˝
f .x/ ˝ g.y/; f 0.x/g0.y/

˛ D ˝
f .x/; f 0.x/

˛ ˝
g.y/; g0.y/

˛
;

where f .x/; f 0.x/ 2 �Œx� and g.y/; g0.y/ 2 �Œy�. (We then extend by linearity
to all of �Œx; y�.)

The character-theoretic consequence of (GLn; GLk)-Howe duality is the Cauchy
identity:

1Y

i;jD1

1

1 � xi yj

D
X

�

s�.x/s�.y/ (3)

(in the infinite sets of variables). In fact, for any pair of dual bases, a�; b�, with
respect to the Hall scalar product, one has

Q1
i;jD1

1
1�xi yj

D P
� a�.x/b�.y/. From

this fact one obtains
1Y

i;jD1

1

1 � xi yj

D
X

�

p�.x/p�.y/=z�: (4)

From our point of view, we will expand the following scalar product
* 1Y

kD1

1Y

i;jD1

1

1 � xi yj tk
;

1Y

i;jD1

1

1 � xi yj

+

(5)

in two different ways, corresponding to Equations 3 and 4.
First, by homogeneity of the Schur function and Cauchy’s identity

1Y

kD1

X

�

s�.x/s�.y/t
j�j
k D

X

�D.�.1/;�.2/;:::/

Y

j

s�.j / .x/
Y

j

s�.j / .y/t
j�.1/j
1 t

j�.2/j
2 � � � :

Since the multiplication of characters is the character of the tensor product of the
corresponding representations, we have s˛sˇ D P

c
�

˛ˇs� in the x (resp. y) variables.
Expanding the above product gives

* 1Y

kD1

1Y

i;jD1

1

1 � xi yj tk
;

1Y

i;jD1

1

1 � xi yj

+

D
X

�

�
c�

�

�2

t
j�.1/j
1 t

j�.2/j
2 � � � :

Secondly, the scalar product in (5) may be expressed as
* 1Y

kD1

X

�.k/

p�.k/ .x/p�.k/ .y/=z�.k/ t j�.k/j;
X

�

p�.x/p�.y/=z�

+

:

We observe that
Q1

kD1 p�.k/ D p� where � D [1kD1�.k/.
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7.2 A remark from “Macdonald’s book”

The results presented in this paper emphasize describing the cardinality of an orbit
space by a sum of Littlewood–Richardson coefficients. It is important to note,
however, that the main formula can be written simply as

X

�

p�.x/ D
X

�

 
X

�

�
c�

�

�2

!

x
�.1/

1 x
�.2/

2 x
�.3/

1 � � �

So from the point of view of [13], one realizes that the main formula is simply a
way of expanding

P
p�.x/. With this remark in mind, we recall the “standard”

viewpoint.
For a nonnegative integer partition ı D .ı1 � ı2 � � � � / let xı D x

ı1

1 x
ı2

2 x
ı3

3 � � � .
The monomial symmetric function, mı.x/, is the sum over the orbit obtained by all
permutations of the variables. The monomial symmetric functions are a basis for the
algebra �.

The question becomes obtaining an expansion of
P

� p� .x/ into monomial
symmetric functions. This question is answered immediately by observing the
expansion of p� into monomial symmetric functions, which can be found in [13]
on page 102 of Chapter I, Section 6. For partitions � and ı define L.�; ı/ by the
expansion

p� .x/ D
X

ı

L�ımı.x/:

We next provide a combinatorial description of L�ı . Let � denote a partition of
length `. Given an integer valued function, f , defined on f1; 2; 3; : : : ; `g, set

f .�/i D
X

j Wf .j /Di

�j

for each i � 1.
The sequence .f .�/1; f .�/2; f .�/3; : : :/ does not have to be weakly decreasing.

For example, if � D .1; 1; 1/ and f .1/ D 1, f .2/ D 4 and f .3/ D 4 then
f .�/1 D 1, f .�/4 D 2 and f .�/k D 0 for all k ¤ 1; 4. However, often this
sequences does define a partition. We have

Proposition 7.1. L�;ı is equal to the number of functions f such that f .�/ D ı.

Proof. See [13] Proposition I (6.9) ut
From Proposition 7.1 and the main formula, we obtain

Corollary 1. Given a partition ı, the cardinality of

ff j for some partition � , f .�/ D ı g
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is equal to

X

�

X

�

�
c�

�

�2

where the sum is over all � such that j�.j /j D ıj for all j and j�j D j�j.
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