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Preface

Nolan Wallach’s contributions to mathematics, made over a period now stretching
to nearly five decades, exhibit a breadth of knowledge, research and scholarship
matched by few contemporary mathematicians. Although all his research is rooted
in his love of geometry and symmetry, one can perhaps usefully distinguish four
periods during which this underlying theme was expressed in distinctive ways.

In the first period, roughly 1965–1972, the main motivation was Riemannian
geometry (spaces of positive curvature and minimal submanifolds) leading to
Do Carmo–Wallach theory, Aloff–Wallach spaces, and Wallach manifolds.

In the second period (1972–1980) the focus of his research moved into the theory
of infinite-dimensional representations of semisimple Lie groups and also certain
infinite-dimensional groups, with emphasis on unitary representations. He discov-
ered what is now called the Wallach set of unitary positive energy representations.
He also began his research into homological methods in representation theory with
an eye on applications to the theory of automorphic forms, including collaboration
with Armand Borel to produce Continuous Cohomology, Discrete Subgroups, and
Representations of Reductive Groups.

In the third period (1980–1992), Nolan’s attention moved to the analytic aspects
of representation theory. A notable result was the Casselman–Wallach theorem,
which affirms the unity of the algebraic and analytic viewpoints toward irreducible
admissible representations of semisimple Lie groups. In harmonic analysis, he gave
a proof of the Whittaker Plancherel theorem. He also began his long and fruitful
collaboration with Roe Goodman. This period culminated with the publication of
Real Reductive Groups II, the second volume of his masterful synthesis of the many
remarkable developments in representation theory during the 1980s.

In the fourth period, since 1992, Nolan’s research shows a renewed interest
in algebraic geometry and physics. Here his main emphasis involves applying
mathematics related to geometric invariant theory over the real and complex
numbers to representation theory, combinatorics and to physics, in particular to
quantum information theory. His continuing collaboration with Roe Goodman
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resulted in publication of the widely influential Representations and Invariants of
the Classical Groups (which might be thought of as a Jugendtraum from his early
days as a differential geometer).

Nolan’s early training was in differential geometry, and included the study of Lie
theory. His thesis advisor was Jun-Ichi Hano, whose mathematical genealogy goes
back to Takagi and Hilbert, and whose research interests included homogeneous
bounded complex domains, and studies in infinite-dimensional representation the-
ory. Nolan’s thesis under Hano dealt with root systems and included a new approach
to the classification of real simple Lie algebras.

While Nolan’s early papers dealt primarily with differential geometry, Lie theory,
and representation theory in particular, is used generously. With M. Do Carmo, he
studied minimal immersions of spheres into spheres by making use of spherical
harmonics. He studied homogeneous manifolds of positive curvature, including a
classification of the even-dimensional ones. Perhaps the most striking contribution
from this phase of his work is his construction with S. Aloff of an infinite family of
7-dimensional homogeneous spaces for SU3 with strictly positive curvature.

His training in Lie theory made the transition from geometry to representation
theory easy, and in fact, representation theory is already the focus of some of his
earliest papers. When he moved to Rutgers after a postdoctoral job at Berkeley,
the Institute for Advanced Study was within easy reach, and Nolan visited there
frequently. He became one of the most faithful attendees at Harish-Chandra’s annual
lecture series on representation theory. Nolan also engaged with other faculty at
IAS, notably Armand Borel. As mentioned above, they produced a major book
on .g; K/-cohomology of representations and its application to the cohomology
of locally symmetric spaces. The first edition of their book appeared as an Annals
of Mathematics Study in 1980. A second edition was published as Mathematical
Survey and Monograph of the American Mathematical Society.

Nolan worked at Rutgers for twenty years. While there he collaborated with a
large number of colleagues both at Rutgers and elsewhere, on a great variety of
topics: with many people, including J. Lepowsky, K. Johnson, T.J. Enright, and
A. Knapp on representation theory; with S. Greenfield on partial differential
equations; with D. DeGeorge and R. Hotta on automorphic forms; with Armand
Borel, as described above. He also found time to make discoveries on his own,
including his analysis of the “analytic continuation” of the holomorphic discrete
series, in which he identified what is now known as the Wallach set—the set of
parameters when the analytic continuation of the scalar holomorphic discrete series
has a unitary irreducible quotient. This work was in some sense completed in a
1983 paper with T.J. Enright and R. Howe, classifying all holomorphic unitary
representations of Hermitian symmetric groups.

When completely integrable systems became the rage in the early 1980s, Nolan
quickly assimilated the ideas involved, and wrote a number of papers, with his
student A. Rocha-Caridi, on his own, and with his colleague Roe Goodman. This
was the beginning of a long and fruitful collaboration with Goodman, resulting in
over 10 joint works, including their widely used book on invariant theory of the
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classical groups. The second edition of this book has been published as a Springer
Graduate Text, under the title Symmetry, Representations, and Invariants.

The late 1970s and 1980s saw rapid progress in the representation theory of
reductive groups, with the ideas of cohomological induction, D-modules, and the
Kazhdan–Lusztig conjectures, as well as the classifications of irreducible admissible
representations by Langlands, by Vogan, and by Beilinson–Bernstein. Nolan made
key contributions, including a unification of the analytic and algebraic approaches
to representation theory by proving, partly in collaboration with B. Casselman,
that all Harish-Chandra modules, representations of a reductive Lie algebra which
served as algebraic proxies for infinite-dimensional group representations, could
in fact be globalized, in a more or less unique way, to a representation of the
associated group. He also contributed a very simple argument that cohomologically
induced representations could be unitarized under suitable restrictions on the
parameters involved. As noted above, many of these developments are described in
his remarkable two-part synthesis of the main foundational results in representation
theory, Real Reductive Groups, I and II, published by Academic Press, which remain
the most complete and coherent account of the striking progress due to many people
throughout the 1980s; the developments in these volumes also reflect a broad picture
of general ideas of representation theory.

In 1989, Nolan, who had been at Rutgers for two decades and had seemed
immovable in the face of many attempts to lure him elsewhere, finally succumbed
to the attractions of San Diego, and joined the Mathematics Department at UCSD.
During his first years at UCSD, he completed Representations of Reductive Groups,
II, the second volume of his account of the representation theory of reductive
Lie groups. In the first volume, he had established the Langlands classification of
irreducible admissible representations, the construction of the discrete series, and
Harish-Chandra’s character theory, including the fundamental regularity theorem,
that the characters of irreducible representations, which are distributions, are in fact
given by integration against locally L1 functions (for which explicit formulas are in
principle available). In the second volume, he builds on these results, plus his joint
results with David A. Vogan on intertwining operators, to give a complete account
of Harish-Chandra’s Plancherel Theorem for reductive Lie groups.

One of the first papers Nolan wrote after completion of that massive project
was Invariant differential operators on a reductive Lie algebra and Weyl group
representations (Journal of the American Mathematical Society, 1993). This paper
makes a lovely connection between Harish-Chandra’s theory of invariant differential
operators on a reductive Lie algebra and the theory of “Springer representations”,
which associates representations of the Weyl group to nilpotent orbits. It also
contains a beautiful new and drastically simpler proof of Harish-Chandra’s famous
local L1 theorem for invariant eigendistributions on a semisimple Lie algebra. It is
a pity that these insights were not available during the writing of Real Reductive
Groups.

Despite the distance of San Diego from other centers of mathematical research,
Nolan has never lacked for visitors. Among the “regulars” have been Benedict
Gross, Bertram Kostant, and Hanspeter Kraft. Nolan has coauthored several papers
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with each of them. With Gross, Nolan constructed a distinguished family of unitary
representations for the exceptional groups of real rank D 4 by a continuation of
“quaternionic discrete series.” With Kostant, he developed Gel’fand–Zeitlin theory
from the perspective of classical mechanics, and with Kraft, he studied the geometry
of finite-dimensional representations.

At UCSD, Nolan also enjoyed the presence of A.M. Garsia with whom he
regularly shared ideas and found mutual inspiration. Starting in the 2000s, they
began writing papers together, and established several difficult results on quasi-
symmetric polynomials and invariant theory.

In the late 1990s, Nolan became interested in quantum information theory,
and especially, quantum entanglement. Using his extensive knowledge of invariant
theory he was able to make significant contributions to the field. In a 2002 paper with
D. Meyer, he defined a simple polynomial measure of multiparticle entanglement
which is scalable, i.e., which applies to any number of spin 1/2 particles. A recurring
theme in his work on quantum entanglement and invariant theory has been the
calculation of explicit Hilbert series. In these computations, he was also able to
exercise his considerable expertise in conventional computation to solve problems
that not long ago seemed out of reach.

Nolan continues to mentor students, so that now approximately half of his
students have degrees from Rutgers, and half from UCSD. We are delighted to
recognize and celebrate Nolan’s inspiring mathematical journey, which is still very
much in progress.

Acknowledgments. We have very much appreciated the support of our Birkhäuser
Science editors, Allen Mann and Kristin Purdy. The conference Lie Theory and Its
Applications (supported in part by NSA grant H98230-10-1-0239 and NSF grant
1105825) provided a venue for discussions planning this volume. Without question,
these discussions were led by Ann Kostant. Now, over three years later, we have the
pleasure of acknowledging her continued support and guidance, which profoundly
influenced this work. We thank you, Ann, for helping us honor our friend and
teacher, Nolan Wallach.

New Haven, CT, USA Roger Howe
Waco, TX, USA Markus Hunziker
Milwaukee, WI, USA Jeb F. Willenbring
April 2014
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Unitary Hecke algebra modules with nonzero
Dirac cohomology

Dan Barbasch and Dan Ciubotaru

To Nolan Wallach with admiration

Abstract In this paper, we review the construction of the Dirac operator for graded
affine Hecke algebras and calculate the Dirac cohomology of irreducible unitary
modules for the graded Hecke algebra of gl.n/.

Keywords: Dirac cohomology • Unitary representations • Hecke algebra

Mathematics Subject Classification: 22, 16, 20

1 Introduction

The Dirac operator plays an important role in the representation theory of real
reductive Lie groups. An account of the definition, properties and some applications
can be found in [BW]. It is well known, starting with the work of [AS] and [P],
that discrete series occur in the kernel of the Dirac operator. Work of Enright and
Wallach [EW] generalizes these results to other types of representations. Other uses
are to provide, via the Dirac inequality, introduced by Parthasarathy, necessary
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2 Dan Barbasch and Dan Ciubotaru

conditions for unitarity. One of the most striking applications is that for a regular
integral infinitesimal character, the Dirac inequality gives precisely the unitary dual,
and determines the unitary representations with nontrivial .g; K/-cohomology.

Given these properties, Vogan has introduced the notion of Dirac cohomology;
this was studied extensively in [HP] and subsequent work. One can argue that Dirac
cohomology is a generalization of .g; K/-cohomology. While a representation has
nontrivial .g; K/-cohomology only if its infinitesimal character is regular integral,
the corresponding condition necessary for Dirac cohomology to be nonzero is more
general; certain representations with singular and nonintegral infinitesimal character
will also have nontrivial Dirac cohomology.

In this paper, we prove new results about an analogue of the Dirac operator in
the case of the graded affine Hecke algebra, introduced in [BCT]. This operator can
be thought of as the analogue of the Dirac operator in the case of a p-adic group.
One of our results is to determine the behaviour of the Dirac cohomology with
respect to Harish-Chandra type induction. In the real case, a unitary representation
has nontrivial .g; K/-cohomology if and only if it is (essentially) obtained from
the trivial representation on a Levi component via the derived functor construction.
For unitary representations with nontrivial Dirac cohomology the infinitesimal
character can be nonintegral and singular. So we conjecture instead that unitary
representations with nontrivial Dirac cohomology are all cohomologically induced
from unipotent (in the sense of [A]) representations. To investigate this conjecture
we explore the Dirac cohomology of unipotent representations for graded affine
Hecke algebras. In particular, we compute part of the cohomology of spherical
unipotent representations for affine Hecke algebras of all types. In the case of type
A we go further; we compute the cohomology of all unitary modules.

This paper was written while we were guests of the Max Planck Institute in Bonn
as part of the program Analysis on Lie groups. We would like to thank the institute
for its hospitality, and the organizers for making the program possible, and providing
the environment to do this research.

2 Dirac cohomology for graded Hecke algebras

In this section we review the construction and properties of the Dirac operator
from [BCT] and the classification of spin projective Weyl group representations
from [Ci].

2.1 Root systems

We fix an R-root system ˚ D .V;R; V _; R_/. Here V; V _ are finite-dimensional
R-vector spaces, with a perfect bilinear pairing . ; / W V � V _ ! R, so that
R � V n f0g; R_ � V _ n f0g are finite subsets in bijection
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R ! R_; ˛  ! ˛_; such that .˛; ˛_/ D 2: (2.1.1)

The reflections

s˛ W V ! V; s˛.v/ D v � .v; ˛_/˛; (2.1.2)

s˛ W V _ ! V _; s˛.v0/ D v0 � .˛; v0/˛_; ˛ 2 R;
leave R and R_ invariant, respectively. Let W be the subgroup of GL.V /
(respectivelyGL.V _/) generated by fs˛ W ˛ 2 Rg.

We will assume that the root system ˚ is reduced and crystallographic. We will
fix a choice of simple roots ˘ � R, and consequently, positive roots RC and
positive coroots R_;C: Often, we will write ˛ > 0 or ˛ < 0 in place of ˛ 2 RC or
˛ 2 .�RC/, respectively.

We fix aW -invariant inner product h ; i on V . Denote also by h ; i the dual inner
product on V _: If v is a vector in V or V _, we denote jvj WD hv; vi1=2:

2.2 The Clifford algebra

A classical reference for the Clifford algebra is [Ch] (see also Section II.6 in [BW]).
Denote by C.V / the Clifford algebra defined by V and the inner product h ; i. More
precisely, C.V / is the quotient of the tensor algebra of V by the ideal generated by

! ˝ !0 C !0 ˝ ! C 2h!;!0i; !; !0 2 V:

Equivalently, C.V / is the associative algebra with unit generated by V with
relations:

!!0 C !0! D �2h!;!0i: (2.2.1)

Let O.V / denote the group of orthogonal transformation of V with respect to h ; i.
This acts by algebra automorphisms on C.V /, and the action of�1 2 O.V / induces
a grading

C.V / D C.V /even C C.V /odd: (2.2.2)

Let � be the automorphism of C.V / which isC1 on C.V /even and �1 on C.V /odd.
Let t be the transpose antiautomorphism of C.V / characterized by

!t D �!; ! 2 V; .ab/t D btat ; a; b 2 C.V /: (2.2.3)

The Pin group is

Pin.V / D fa 2 C.V / W �.a/Va�1 � V; at D a�1g: (2.2.4)
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It sits in a short exact sequence

1 �! Z=2Z �! Pin.V /
p���! O.V / �! 1; (2.2.5)

where the projection p is given by p.a/.!/ D �.a/!a�1.
If dimV is even, the Clifford algebra C.V / has a unique (up to equivalence)

complex simple module .�; S/ of dimension 2dimV=2, endowed with a positive
definite Hermitian form h ; iS such that

h�.a/s; s0iS D hs; �.at /s0iS ; for all a 2 C.V / and s; s0 2 S: (2.2.6)

When dimV is odd, there are two simple inequivalent complex modules
.�C; SC/; .��; S�/ of dimension 2Œdim V=2�. Analogous to (2.2.6), these modules
admit an invariant positive definite Hermitian form. In order to simplify the
formulation of the results, we will often refer to any one of S , SC; S�, as a
spin module.

Via (2.2.4), a spin module S is an irreducible unitary Pin.V / representation.

2.3 The pin cover fW of the Weyl group

The Weyl groupW acts by orthogonal transformations on V , so one can embed W
as a subgroup of O.V /. We define the group eW in Pin.V /:

eW WD p�1.W / � Pin.V /; where p is as in (2.2.5): (2.3.1)

The group eW has a Coxeter presentation similar to that of W . Recall that as a
Coxeter group,W has a presentation:

W D hs˛; ˛ 2 ˘ j .s˛sˇ/m.˛;ˇ/ D 1; ˛; ˇ 2 ˘i; (2.3.2)

for certain positive integersm.˛; ˇ/: Theorem 3.2 in [Mo] exhibits eW as

eW D hz; Qs˛; ˛ 2 ˘ j z2 D 1; .Qs˛ Qsˇ/m.˛;ˇ/ D z; ˛; ˇ 2 ˘i: (2.3.3)

We call a representation Q� of eW genuine (resp. non-genuine) if Q�.z/ D �1 (resp.
Q�.z/ D 1). The non-genuine eW -representations are the ones that factor throughW .
We say that two genuine eW -types �1; �2 are associate if �1 Š �2 ˝ sign.

Since eW � Pin.V /, we can regard S if dimV is even (resp. S˙ if dimV is
odd) as unitary (genuine) eW -representations. If R spans V , they are irreducible
representations ([Mo, Theorem 3.3]). When dimV is odd, SC and S� are associate,
while if dimV is even, S is self-associate.
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Definition 2.3.1 ([BCT, §3.4]). Define the Casimir element of eW :

˝
eW D z

X

˛>0;ˇ>0
s˛.ˇ/<0

j˛_jjˇ_j Qs˛ Qsˇ 2 CŒeW �eW : (2.3.4)

Every Q� 2 beW acts on ˝
eW by a scalar, which we denote by Q�.˝

eW /:

Before stating Theorem 2.3.1, we need to introduce more notation. Assume that
R spans V and let g be the complex semisimple Lie algebra with root system ˚ and
Cartan subalgebra h D V _˝RC, and letG be the simply connected Lie group with
Lie algebra g. Extend the inner product from V _ to h: Let us denote by T .G/ the
set of G-conjugacy classes of Jacobson–Morozov triples .e; h; f / in g. We set

T0.G/ D
˚

Œ.e; h; f /� 2 T .G/ W the centralizer of .e; h; f / (2.3.5)

in g is a toral subalgebra
�

:

For every class in T .G/, we may (and will) choose a representative .e; h; f / such
that h 2 h: For every nilpotent element e, let A.e/ denote the A-group in G, and
let bA.e/0 denote the set of representations of A.e/ of Springer type. For every
� 2 bA.e/0, let �.e;�/ be the associated Springer representation. Normalize the
Springer correspondence so that �0;triv D sign.

Theorem 2.3.1 ([Ci]). There is a surjective map

� W beW gen �! T0.G/; (2.3.6)

with the following properties:

(1) If �. Q�/ D Œ.e; h; f /�, then we have

Q�.˝
eW / D hh; hi; (2.3.7)

where ˝
eW is as in (2.3.4).

(2) Let .e; h; f / 2 T0.G/ be given. For every Springer representation �.e;�/,

� 2 bA.e/0, and every spin eW -module S , there exists Q� 2 ��1Œ.e; h; f /�
such that Q� appears with nonzero multiplicity in the tensor product �.e;�/ ˝ S .
Conversely, for every Q� 2 ��1Œ.e; h; f /�, there exists a spin eW -module S and
a Springer representation �.e;�/, such that Q� is contained in �.e;�/ ˝ S:

Since triv.˝
eW / D sign.˝

eW /, Theorem 2.3.1(1) says in particular that any two
associate genuine eW -types Q�1; Q�2 lie in the same fiber of � .
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2.4 The graded Hecke algebra

Recall the real root system ˚ D .V;R; V _; R_/. The complexifications of V; V _
are denoted by VC; V _C . We denote by S.VC/ the symmetric algebra in VC:

Definition 2.4.1 ([Lu]). The graded affine Hecke algebra H (with equal parame-
ters) is defined as follows:

(i) as a C-vector space, it is S.VC/˝ CŒW �;
(ii) S.VC/ and CŒW � have the usual algebra structures as subalgebras;

(iii) the cross relations are

s˛ � 	 � s˛.	/ � s˛ D .	; ˛_/;

for every ˛ 2 ˘ and 	 2 VC:
Definition 2.4.2. Let f!i W i D 1; ng and f!i W i D 1; ng be dual bases of V with
respect to h ; i. Define the Casimir element of H: ˝ DPn

iD1 !i!i 2 H.

It is easy to see that the element˝ is independent of the choice of bases and central
in H. Moreover, if .
;X/ is an irreducible H-module with central character �� for
� 2 V _

C
, then 
 acts on ˝ by the scalar h�; �i:

The algebraH has a natural conjugate linear anti-involution defined on generators
as follows:

w� D w�1; w 2 W;
!� D �! C

X

ˇ>0

.!; ˇ_/sˇ; ! 2 V : (2.4.1)

An H-module .
;X/ is said to be Hermitian if there exists a Hermitian form
. ; /X on X which is invariant in the sense that .
.h/x; y/X D .x; 
.h�/y/X; for
all h 2 H; x; y 2 X . If such a form exists which is also positive definite, then X is
said to be unitary.

For every ! 2 V , define

Q! D ! � 1
2

X

ˇ>0

.!; ˇ_/sˇ 2 H: (2.4.2)

It is immediate that e!� D �e!.

Definition 2.4.3 ([BCT]). Let f!i g, f!ig be dual bases of V . The Dirac element is
defined as

D D
X

i

e!i ˝ !i 2 H˝ C.V /:
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It is elementary to verify that D does not depend on the choice of dual bases.
We will usually work with a fixed spin module .�; S/ for C.V / and a fixed

H-module .
;X/. Define the Dirac operator for X (and S ) as D D .
 ˝ �/.D/.
SupposeX is a HermitianH-module with invariant form . ; /X . Endow the tensor

product X ˝ S with the Hermitian form .x ˝ s; x0 ˝ s0/X˝S D .x; x0/X hs; s0iS .
Analogous to results of Parthasarathy in the real case, the operatorD is self-adjoint
with respect to . ; /X˝S ,

.D.x ˝ s/; x0 ˝ s0/X˝S D .x ˝ s;D.x0 ˝ s0//X˝S (2.4.3)

Thus a Hermitian H-module is unitary only if

.D2.x ˝ s/; x ˝ s/X˝S � 0; for all x ˝ s 2 X ˝ S: (2.4.4)

We write 
eW for the diagonal embedding of CŒeW � into H ˝ C.V / defined by

extending
eW .ew/ D p.ew/˝ew linearly.

Forew 2 eW , one can easily see that


eW .ew/D D sign.ew/D

eW .ew/ (2.4.5)

as elements of H˝ C.V /. In particular, the kernel of the Dirac operator on X ˝ S
is invariant under eW .

Theorem 2.4.1 ([BCT]). The square of the Dirac element equals

D2 D �˝ ˝ 1C 1

4

eW .˝eW /; (2.4.6)

in H˝ C.V /.

2.5 Dirac cohomology

To have a uniform notation, we will denote a spin module by S�. If dimV is even,
then S� is S , the unique spin module, and if dimV is odd, then � could beC or �.

Definition 2.5.1. In the setting of Definition 2.4.3, define

HD
� .X/ WD kerD

ı

.kerD \ ImD/ (2.5.1)

and call it the Dirac cohomology of X . (The symbol � denotes the dependence
on the spin module S� .) If X is unitary, the self-adjointness of D implies that
ker.D/ \ Im.D/ D 0, and so HD

� .X/ D ker.D/.

Vogan’s conjecture takes the following form.
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Theorem 2.5.1 ([BCT, Theorem 4.8]). Suppose .
;X/ is an H-module with
central character �� with � 2 V _

C
. Suppose that HD

� .X/ ¤ 0 and let . Q�;eU /
be an irreducible representation of eW such that Hom

eW .
eU ;HD

� .X// ¤ 0. If
�. Q�/ D Œ.e; h; f /� 2 T0.G/, then � D 1

2
h:

Theorem 2.5.1 has an easy weak converse, which will be useful in applications.

Proposition 2.5.1. Assume that .
;X/ is a unitary H-module with central char-
acter �� , � 2 V _

C
and that there exists an irreducible eW -type . Q�;eU/ such that

Hom
eW .
eU ;X ˝ S�/ ¤ 0 and h�; �i D Q�.˝

eW /: Then Hom
eW .
eU ;HD

� .X// ¤ 0; and
in particularHD

� .X/ ¤ 0:
Proof. Let x ˝ s be an element of X ˝ S� in the isotypic component of Q� . Then
D2.x ˝ s/ D �h�; �i C Q�.˝

eW / D 0. Since X is assumed unitary, the operator D
is self-adjoint on X ˝ S and thus kerD2 D kerD: This implies

x ˝ s 2 kerD.D HD
� .X/:

ut
As a corollary, we find the following formula forHD

� .X/:

Corollary 2.5.1. Assume X is a unitary H-module with central character �1
2 h

, for

some Œ.e; h; f /� 2 T0.G/ (otherwise HD
� .X/ D 0). Then, as a eW -module

HD
� .X/ D

X

Q�2��1.e;h;f /

X

�2bW
Œ Q� W �˝ S��ŒX jW W �� Q�: (2.5.2)

2.6 An induction lemma

Let .VM ;RM ; V _M ;R_M / be a root subsystem of .V;R; V _; R_/: Let ˘M � ˘ be
the corresponding simple roots and WM � W the reflection subgroup. Let HM

denote the Hecke subalgebra of H given by this root subsystem. Denote by VN the
orthogonal complement of VM in V with respect to the fixed product h ; i:

Recall that the graded tensor productA Ő B of two Z=2Z-graded algebrasA and
B is A˝ B as a vector space, but with multiplication defined by

.a1 ˝ b1/.a2 ˝ b2/ D .�1/deg.b1/deg.a2/a1a2 ˝ b1b2:

Lemma 2.6.1. There is an isomorphism of algebras C.V / Š C.VM/ Ő C.VN /:
Proof. If an orthonormal basis of VM is f!1; : : : ; !kg and an orthonormal basis of
Vn is f!kC1; : : : ; !ng, then the isomorphism is given by

!i1 : : : !il ˝ !j1 : : : !jr 7! !i1 : : : !il !j1 : : : !jr ;

where i1; : : : ; il 2 f1; : : : ; kg and j1; : : : ; jr 2 fk C 1; : : : ; ng: ut
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Since WM acts trivially on VN , and therefore eWM acts trivially on every
C.VN /-module, we see that as eWM -representations:

S Š ˚2dimVN =2SM ; if dimV; dimVM are both evenI
S˙ Š ˚2dimVN =2SṀ ; if dimV; dimVM are both oddI (2.6.1)

S˙ Š ˚2.dimVN�1/=2SM ; if dimV is odd and dimVM is evenI
S Š ˚2.dimVN�1/=2 .SCM C S�M/; if dimV is even and dimVM is odd:

The following lemma will be our main criterion for proving that certain induced
modules have nonzero Dirac cohomology. In order to reduce the number of cases,
denote S D S if dimV is even, and S D SC C S� if dimV is odd, and similarly
define SM : In particular, S is self-contragredient.

Lemma 2.6.2. Let 
M be an HM -module, and 
 D H˝HM 
M :

(a) Hom
eW Œ Q�; 
 ˝ S� D dimS

dimSM Hom
eWM

Œ Q� j
eWM

; 
M ˝ SM �.
(b) Assume that 
M is unitary, and the eWM -type Q�M occurs in HD.
M /. Assume

further that there exists a eW -type Q� such that

(i) Hom
eWM

Œ Q�M ; Q�� ¤ 0,
(ii) the central character of 
 is �
 D �h=2, where �. Q�/ D Œ.e; h; f /�.
Then Q� occurs in HD.
/.

Proof. Part (b) is an immediate consequence of (a) using Proposition 2.5.1. To prove
(a), we use Frobenius reciprocity and the restriction of S to eW M :

Hom
eW Œ Q�; 
 ˝ S� D HomW Œ Q� ˝ S; IndWWM 
M � D HomWM Œ. Q� ˝ S/jWM ; 
M �

D Hom
eWM

Œ Q� j
eWM

; 
M ˝ Sj
eWM

� D dimS
dimSM

Hom
eWM

Œ Q� j
eWM

; 
M ˝ SM �:

ut

2.7 Spherical modules

An H-moduleX is called spherical if HomW Œtriv; X� ¤ 0: The (spherical) principal
series modules of H are defined as the induced modules

X.�/ D H˝S.VC/ C�;

for � 2 V _
C
: Since X.�/ Š CŒW � as W - modules, there is a unique irreducible

spherical H-subquotientL.�/ of X.�/. It is well known that
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(1) L.�/ Š L.w�/; for every w 2 W ;
(2) if � is RC-dominant, then L.�/ is the unique irreducible quotient of X.�/;
(3) every irreducible spherical H-module is isomorphic to a quotient L.�/, � is

RC-dominant.

Recall the Lie algebra g attached to the root system˚: The identification h D V _
C

allows us to view � as an element of h: Now consider g1 D fx 2 g W Œ�; x� D xg, the
ad 1-eigenspace of � on g: The stabilizer G0 D fg 2 G W Ad.g/� D �g acts on g1
with finitely many orbits, and let e be an element of the unique open denseG0-orbit.
Lusztig’s geometric realization of H and classification of irreducible H-modules
implies in particular the following statement.

Proposition 2.7.1. Let � 2 V _
C

be given and let e be a nilpotent element of g
attached to � by the procedure above. Then the spherical module L.�/ contains
the Springer representation �.e;1/ with multiplicity one.

The second result that we need is the unitarizability of the spherical unipotent
H-modules.

Proposition 2.7.2 ([BM]). For every Lie triple .e; h; f /, the spherical module
L.1

2
h/ is unitary.

Now we can state the classification of spherical modules with nonzero Dirac
cohomology.

Definition 2.7.1. We say that an H-moduleX has nonzero Dirac cohomology if for
a choice of spin module S� , HD

� .X/ ¤ 0.

Let Œ.e; h; f /� 2 T0.G/ be given and assume G is simple. The results of [Ci]
give a concrete description in every Lie type of the map � from Theorem 2.3.1. In
particular, there is either only one self-associate eW -type which we denote by Q�.e;1/,
or two eW -types denoted Q�.̇e;1/, which appear in the fiber ��1.e; h; f / and can occur
in the decomposition of the tensor product �.e;1/ ˝ S�:
Corollary 2.7.1. An irreducible spherical module L.�/ has nonzero Dirac coho-
mology if and only if � D w � 1

2
h for some Œ.e; h; f /� 2 T0.G/:

Proof. Assume that HD
� .L.�// ¤ 0: Then there exists a genuine eW -type Q�

occurring in HD
� .L.�//, such that �. Q�/ D Œ.e; h; f /� 2 T0.G/. By Theorem 2.5.1,

� D w � 1
2
h.

Conversely, fix Œ.e; h; f /� 2 T0.G/: The spherical module L.1
2
h/ contains �.e;1/

with multiplicity one by Proposition 2.7.1, and it is unitary by Proposition 2.7.2.
From this, Proposition 2.5.1 implies immediately that one of the eW -types in
��1.e; h; f / occurs in HD

� .L.
1
2
h//; for some �, and therefore L.1

2
h/ has nonzero

Dirac cohomology. ut
In order to investigate the precise formula forHD

� .L.h=2//, one uses (2.5.2) and
the results of Borho–MacPherson [BMcP] about the W -structure of the Springer
representations in A.e/-isotypic components of the full cohomology of a Springer
fiber. In our setting, this says that as a W - module,
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L.h=2/ D �.e;1/ C
X

e0>e

X

�02bA.e/0
me0 ;�0�.e0 ;�0/; (2.7.1)

for some integers me0 ;�0 � 0. Here e0 > e means the closure ordering of nilpotent
orbits, i.e., e 2 G � e0 nG � e0. We make the following conjecture.

Conjecture 2.7.1. Let Q� be a eW -type such that �. Q�/ D Œ.e0; h0; f 0/�: Then

Hom
eW Œ Q�; �.e;�/ ˝ S�� ¤ 0

only if e0 � e:
If this conjecture is true, then if we tensor by S� in (2.7.1), every eW -type

coming from a �.e0 ;�0/ ˝ S� , e0 > e, would correspond under the map � to a triple
.e00; h00; f 00/ with e00 � e0 > e: In particular, jh00j > jhj; so the formula for D2

�

(Theorem 2.4.1) implies that none of these eW - types can contribute toHD
� .L.h=2//:

Thus the only nontrivial contribution to HD
� .L.h=2// comes from �.e;1/ ˝ S� , and

we would have

HD
� .L.h=2// (2.7.2)

D
8

<

:

Œ Q�.e;1/ W �.e;1/ ˝ S�� Q�.e;1/; if Q�.e;1/ Š Q�.e;1/ ˝ signI
Œ Q�C.e;1/ W �.e;1/ ˝ S�� Q�C.e;1/ C Œ Q��.e;1/ W �.e;1/ ˝ S�� Q��.e;1/; otherwise:

In Section 3, we will show that Conjecture 2.7.1 holds when H is a Hecke algebra of
typeA, and therefore in that case (2.7.2) is true (see Lemma 3.6.2). Further evidence
for this conjecture is provided by the computation of the Dirac index for tempered
H-modules in [CT, Theorem 1].

3 Nonzero Dirac cohomology for type A

In this section, we specialize to the case of the graded Hecke algebra attached to
the root system ˚ D .V;R; V _; R_/ of gl.n/: Explicitly, V D R

n with a basis
f�1; : : : ; �ng, R D f�i � �j W 1 � i ¤ j � ng: To simplify notation, we will
also use the coordinates f�i g to describe V _ Š R

n and R_: We choose positive
roots RC D f�i � �j W 1 � i < j � ng. The simple roots are therefore
˘ D f�i � �iC1 W 1 � i < ng: The Weyl group is the symmetric group Sn and we
write si;j for the reflection in the root �i � �j :

The graded Hecke algebra Hn for gl.n/ is therefore generated by Sn and the set
f�i W 1 � i � ng subject to the commutation relations:
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si;iC1�k D �ksi;iC1; k ¤ i; i C 1I
si;iC1�i � �iC1si;iC1 D 1:

We review the classification of the unitary dual of Hn and then determine which
unitary Hn-modules have nonzero Dirac cohomology.

3.1 Langlands classification

We begin by recalling the Langlands classification for Hn.

Definition 3.1.1. The Steinberg module St is the Hn-module whose restriction
to CŒSn� is the sign-representation, and whose only S.VC/ weight is ��_ D
� 1
2

P

˛2RC

˛_:

Let � D .n1; n2; : : : ; nr / be a composition of n, i.e., n1C n2C � � �Cnr D n, but
there is no order assumed between the ni ’s. (E.g., .2; 1/ and .1; 2/ are different com-
positions of 3.) For every 1 � i � r; regard the Hecke algebra Hni as the subalgebra
of H generated by f�j ; �jC1; : : : ; �jCni�1g and fsj;jC1; sjC1;jC2; : : : ; sjCni�1;jCni g,
where j D n1 C n2 C � � � C ni�1 C 1: Then

H� D Hn1 �Hn2 � � � � �Hnr

is a (parabolic) subalgebra of Hn: For every r-tuple � D .�1; �2; : : : ; �r / of complex
numbers, we may consider the induced module

I�.�/ D Hn ˝H�
.St˝C�1/� � � �� .St˝ C�r /: (3.1.1)

If � satisfies the dominance condition

Re.�1/ � Re.�2/ � � � � � Re.�r/; (3.1.2)

we call I�.�/ a standard module.

Theorem 3.1.1 ([BZ]).

(a) Let � be a composition of n and I�.�/ a standard module as in (3.1.1) and
(3.1.2). Then I�.�/ has a unique irreducible quotient L�.�/.

(b) Every irreducible Hn-module is isomorphic to an L�.�/ as in (a).

Recall that by Young’s construction, the Sn-types are in one-to-one correspon-
dence with partitions of n. We write �� for the Sn-type parameterized by the
partition � of n. For example, �.n/ D triv and �.1n/ D sign: If �t denotes the
transpose partition of �, then �� ˝ sign D ��t : Finally, every composition � of n
gives rise to a partition of n by reordering, and we denote the correspondingSn-type
by �� again.
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Theorem 3.1.2 ([Ro]). In the notation of Theorem 3.1.1, the irreducible module
L�.�/ contains the Sn-type ��t with multiplicity one.

3.2 Speh modules

The building blocks of the unitary dual are the Speh modules whose construction
we review now.

The following lemma is well known and elementary.

Lemma 3.2.1. For every c 2 C, there exists a surjective algebra homomorphism
�c W H! CŒSn� given by

w 7! w; w 2 SnI
�k 7! sk;kC1 C sk;kC2 C � � � C sk;n C c; 1 � k < nI
�n 7! c:

Proof. We check the commutation relations. It is clear that if k ¤ i; i C 1, si;iC1
commutes with �k , since si;iC1 commutes with every sj;n, k � j < n, when
i C 1 < k, and it commutes with sk;i C sk;iC1 and sk;j ; j ¤ i; i C 1, when i > k:

Next, note that si;iC1�i D 1 C P

j>iC1 w.i;j;iC1/ C csi;iC1 and �iC1si;iC1 D
P

j>iC1 w.i;j;iC1/ C csi;iC1, where w.i;j;iC1/ denotes the element of Sn with cycle
structure .i; j; i C 1/: The claim follows. ut

For every partition � of n and c 2 C, define the H-module ��c .�/ obtained by
pulling back �� to H via �c:

Viewing � as a left justified Young diagram, define the c-content of the .i; j / box
of � to be c C .j � i/, and the c-content of � to be the set of c-contents of boxes.
This is best explained by an example. If � is the partition of .3; 3; 1/ of n D 7, the
0-content is the Young tableau

0 1 2

−1 0 1

−2

For the c-content, add c to the entry in every box.

Lemma 3.2.2. The central character of ��c .�/ is the (Sn-orbit of the) c-content of
the partition �.

Proof. This follows from the known values of the simultaneous eigenvalues of the
Jucys–Murphy elements sk;kC1 C sk;kC2 C � � � C sk;n used to defined �c: See for
example [OV, Theorem 5.8]. ut
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Definition 3.2.1. If � is a box partition, i.e., � D .m;m; : : : ; m
„ ƒ‚ …

d

/, for some m; d

such that n D md , and c D 0 when mC d is even or c D 1
2

when mC d is odd,
call the module ��c .�/ a Speh module, and denote it by a.m; d/:

Lemma 3.2.3. In the notation of Theorem 3.1.1, the Speh module a.m; d/ is
isomorphic to L�t .m�12 ; m�3

2
; : : : ;�m�1

2
/; where �t D .d; d; : : : ; d

„ ƒ‚ …

m

/.

Proof. This is immediate from Theorem 3.1.1, Theorem 3.1.2 and Lemma 3.2.2.
ut

3.3 The unitary dual

The classification of irreducible Hn-modules which admit a nondegenerate invariant
Hermitian form is a particular case of the classical result of [KZ], as formulated in
the Hecke algebra setting by [BM].

If � D .n1; : : : ; nr / is a composition of n, let R� � R denote the root subsystem
of the Levi subalgebra gl.n1/˚ � � � ˚ gl.nr / � gl.n/: If w 2 Sn has the property
that wRC� D RC� ; then w gives rise to an algebra automorphism of H�, and therefore
w acts on the set of irreducible H�-modules.

Theorem 3.3.1. Let � D .n1; : : : ; nr / be a composition of n and let
� D .�1; : : : ; �r / be a dominant r-tuple of complex numbers in the sense of (3.1.2).
In the notation of Theorem 3.1.1, L�.�/ is Hermitian if and only if there exists
w 2 Sn such that wRC� D RC� and

w..St˝C�1/� � � �� .St˝C�r // D .St˝C��1 /� � � �� .St˝C��r /; (3.3.1)

as H�-modules.

Corollary 3.3.1. Every Speh module a.m; d/ is a unitary Hn-module.

Proof. Let w0 denote the longest Weyl group element in Sn and w0.�/ the longest
Weyl group element in Sn1 � � � � � Snr : Using Lemma 3.2.3, we see now that every
Speh module a.m; d/ is Hermitian since the Weyl group element w0w0.�t / satisfies
condition (3.3.1) in this case.

Since in addition a.m; d/ is irreducible as an Sn-module, it is in fact unitary. ut
The classification of the unitary dual of Hn is also well known (see [Ta] for the

classification of the unitary dual for GL.n;Qp/).
The building blocks are the Speh modules defined before. First, every Speh

module a.m; d/ can be tensored with a unitary character Cy , y 2 p�1R by which
the central element �1 C � � � C �n of Hn acts. We denote the resulting (unitary)
irreducible module by ay.m; d/:
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Next, we consider induced complementary series representations of the form


.ay.m; d/; �/ D (3.3.2)

D H2k ˝Hk�Hk .ay.m; d/˝ C�/� .ay.m; d/˝ C��/; 0 < � <
1

2
I

in this notation, it is implicit that k D md . An easy deformation argument shows
that all 
.ay.m; d// are irreducible unitary H2k-modules.

Theorem 3.3.2 ([Ta]).

(a) Let � D .n1; : : : ; nr / be a composition of n. If every 
1; : : : ; 
r is either a Speh
module of the form ay.m; d/ or an induced complementary series module of the
form 
.ay.m; d/; �/ as in (3.3.2), then the induced module

H˝H�
.
1 � � � �� 
r/ (3.3.3)

is irreducible and unitary. Moreover, two such modules are isomorphic if and
only if one is obtained from the other one by permuting the factors.

(b) Every unitary Hn-module is of the form (3.3.3).

3.4 Nilpotent orbits in sl.n/

The classification of nilpotent orbits for sl.n/ is well known. LetP.n/ denote the set
of all (decreasing) partitions of n and letDP.n/ be the set of partitions with distinct
sizes. The Jordan canonical form gives a bijection between the set of nilpotent orbits
of sl.n/ andP.n/. If .e�; h�; f�/ is a Lie triple, where the nilpotent element e� is the
Jordan form given by the partition � D .n1; n2; : : : ; nr /; n1 � n2 � � � � � nr > 0,
then, using the identification h D C

n, the middle element h� can be chosen to have
coordinates

h� D
�

n1 � 1
2

; : : : ;�n1 � 1
2
I : : : I nr � 1

2
; : : : ;�nr � 1

2

�

: (3.4.1)

If we write � as � D .n01; : : : ; n01
„ ƒ‚ …

k1

; n02; : : : ; n02
„ ƒ‚ …

k2

; : : : ; n0l ; : : : ; n0l
„ ƒ‚ …

kl

/; with

n01 > n02 > � � � > n0l > 0;

then the centralizer in gl.n/ of the triple .e�; h�; f�/ is gl.k1/˚gl.k2/˚� � �˚gl.kl /:
In particular, the centralizer in sl.n/ is a toral subalgebra if and only if � 2 DP.n/.
Thus, we have a natural bijection T0.SL.n//$ DP.n/: For � 2 P.n/, (T0 defined
in (2.3.5)) viewed as a left justified Young tableau, define

hook.�/ (3.4.2)
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to be the partition obtained by taking the hooks of �: For example, if � D .3; 3; 1/;
then hook.�/ D .5; 2/: It is clear that hook.�/ 2 DP.n/:

We will need the following reformulation for the central character of a Speh
module.

Lemma 3.4.1. The central character of a Speh module a.m; d/ is the (Sn-orbit of)
h�0 (see (3.4.1)), where �0 is the partition

�0 D hook.m;m; : : : ; m
„ ƒ‚ …

d

/ D .mC d � 1;mC d � 3; : : : ; jm � d j C 1/:

Proof. This is immediate from Lemma 3.2.2 and (3.4.1). ut

3.5 Irreducible eS n-representations

Denote the length of a partition � by j�j. We say that � is even (resp. odd) if n� j�j
is even (resp. odd). The first part of Theorem 2.3.1 for eSn is a classical result of
Schur.

Theorem 3.5.1 (Schur, [St]). The irreducible eSn-representations are parameter-
ized by partitions in DP.n/ as follows:

(i) for every even � 2 DP.n/, there exists a unique Q�� 2ceSn;

(ii) for every odd � 2 DP.n/, there exist two associate Q�C� ; Q��� 2ceSn.

The dimension of Q�� or Q��̇ , where � D .�1; : : : ; �m/ 2 DP.n/, is

2Œ
n�m
2 � nŠ

�1Š : : : �mŠ

Y

1�i<j�m

�i � �j
�i C �j : (3.5.1)

In order to simplify the formulas below, we let Q��� denote any one of Q��, if � is
an even partition in DP.n/, or Q��̇ , if � is an odd partition in DP.n/.

The decomposition of the tensor product of an Sn-type �� with a spin represen-
tation Q�.n/ is known.

Theorem 3.5.2 ([St, Theorem 9.3], [Ma, Chapter 3, (8.17)]). If � ¤ .n/, we have

dim Hom
eSn
Œ Q��; �� ˝ Q�.n/� D 1

���.n/
2

j�j�1
2 g�;�; (3.5.2)

where �� D 1 (resp. �� D
p
2) if � is even (resp. odd), and the integer g�;� is the

.�; �/ entry in the inverse matrix K.�1/�1, where K.t/ is the matrix of Kostka–
Foulkes polynomials. In particular:
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(i) g�;� D 1;
(ii) g�;� D 0, unless � � � in the ordering of partitions.

Example 3.5.1. The integers g�;� have also an explicit combinatorial description
in terms of “shifted tableaux” of unshifted shape � and content � satisfying certain
admissibility conditions (see [St, Theorem 9.3]). From this description, one may see
for example that if � D hook.�/, then g�;� D 1 in (3.5.2).

3.6 Nonzero cohomology

We are now in position to determine the unitary modules of Hn with nonzero Dirac
cohomology.

We remark that since gl.n/ is not semisimple, the spin modules S� of C.V /
(V Š C

n) are not necessarily irreducibleeSn-representations. More precisely, using
(2.6.1), we see that S˙j

eSn
D Q�.n/; when n is odd, and S j

eSn
D Q�C.n/ C Q��.n/, when n

is even.

Lemma 3.6.1. Assume X is an irreducible Hn-module such that HD.X/ ¤ 0:

Then the central character of X is in the set fh�=2 W � 2 DP.n/g; where h� is as in
(3.4.1).

Proof. This is just a reformulation of Theorem 2.5.1 in this particular case. ut
As a consequence of (3.5.2), we obtain the following precise results for Dirac

cohomology.

Lemma 3.6.2. (a) A spherical moduleL.�/ has nonzero Dirac cohomology if and
only if � 2 fh�=2 W � 2 DP.n/g; where h� is as in (3.4.1), and in this case
HD
� .L.h.n/=2// D S� , and if � ¤ .n/:

HD
� .L.h�=2//

D

8

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

:

2Œ.j�j�1/=2� Q��; if n is odd and � is evenI
2Œ.j�j�1/=2�. Q�C� C Q��� /; if n is odd and � is oddI
2Œ.j�j/=2�1�. Q��� C Q��� ˝ sign/ if n is even:

(b) Every Speh module a.m; d/ has nonzero Dirac cohomology. More precisely,

HD
� .a.m; d// D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

2.d�1/=2 . Q�C
.mCd�1;mCd�3;:::;jm�d jC1/ C Q��.mCd�1;mCd�3;:::;jm�d jC1//

if d is odd and m is even;

2Œ.d�1/=2� Q��
.mCd�1;mCd�3;:::;jm�d jC1/ if d is odd and m is odd;

2Œ.dC1/=2� Q��
.mCd�1;mCd�3;:::;jm�d jC1/ otherwise:
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(c) Every complementary series induced module 
.ay.m; d/; �/ as in (3.3.2) has
zero Dirac cohomology.

Proof.

(a) This is immediate by (2.7.1) and the upper unitriangular property of the numbers
g�;� in Theorem 3.5.2.

(b) By Lemma 3.4.1, the central character of a.m; d/ is h�0 where �0 D hook.�/ 2
DP.n/: By Example 3.5.1, the genuine eSn-type Q��0 occurs with nonzero
multiplicity in �.m;m;:::;m/ ˝ S: By construction, a.m; d/ is isomorphic with
�.m;m;:::;m/ as Sn-representations. This means that the hypothesis of Proposition
2.5.1 are satisfied, hence Q��0 occurs in HD.a.m; d//.

(c) This is immediate from Lemma 3.6.1, since ay.m; d/, y ¤ 0 and

.ay.m; d/; �/, 0 < � < 1

2
do not have the allowable central characters. ut

Theorem 3.6.1. An irreducible unitary Hn-module has nonzero Dirac cohomology
if and only if it is isomorphic with an induced module

X D Hn ˝Hev�Hodd .
ev � 
odd/; (3.6.1)

where

Hev D Hk1 �Hk2 � � � � �Hk` ; Hodd D Hk0

1
�Hk0

2
� � � � �Hk0

t
;


ev D a.m1; d1/� a.m2; d2/� � � �� a.m`; d`/;


odd D a.m01; d 01/� a.m02; d 02/� � � �� a.m0t ; d 0t /;
mi C di � 0 .mod 2/; m0j C d 0j � 1 .mod 2/;

k1 C k2 C � � � C k` C k01 C k02 C � � � C k0t D n

and a.mi ; di /, a.m0j ; d 0j / are Speh modules for Hki , Hk0

j
such that the following

conditions are satisfied:

m1 C d1 � 1 � jm1�d1j C 1 > m2 C d2 � 1
� jm2 � d2j C 1 > � � � > m` C d` � 1I

m01 C d 01 � 1 � jm01�d 01j C 1 > m02 C d 02 � 1
� jm02 � d 02j C 1 > � � � > m0t C d 0t � 1:

(3.6.2)

Proof. From Theorem 3.3.2, a unitary irreducible module X is induced from a
combination of Speh modules and complementary series modules. It is immediate
that in order for X to have one of the central characters from Lemma 3.6.1, a first
restriction is that only Speh modules can appear in the induction, soX is of the form
(3.6.1). Notice then that the central character of X is obtained by concatenating the
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central characters of a.mi ; di /: Therefore the central character ofX is Sn-conjugate
to h�, where � is the composition

� D �1 t � � � t �` t �1 t � � � t �t ;

where �i D .mi C di � 1;mi C di � 3; : : : ; jmi � di j C 1/, 1 � i � ` and
�j D .m0j C d 0j � 1;m0j C d 0j � 3; : : : ; jm0j � d 0j j C 1/, 1 � j � t . The entries in
the first type of strings are all even, while the entries in the second type of strings
are all odd. Since we need � to have no repetitions, condition (3.6.2) follows.

For the converse, assume X is as in (3.6.1) and (3.6.2). Then the central
character of X is h�, where � is as above. By Proposition 2.5.1, it remains
to check that X ˝ S contains the eSn-type Q��. From Lemma 2.6.2, we see
that Hom

eSn
Œ Q��;X ˝ S� D dimS

dimSM Hom
eWM

Œ Q� j
eWM

; .
ev � 
odd/jWM ˝ SM �;
where eWM D eSk1 � : : : � eSk` � eSk0

1
� : : : � eSk0

t
, and SM is the corresponding

spin module. (Here � denotes the graded version of the direct product coming
from the graded tensor product of Clifford algebras as in Section 2.6.) From
Lemma 3.6.2, we know that the eSki -representation Q��i occurs in a.mi ; di /jSki
tensored with the spin eSki -module and similarly the eSk0

j
-representation Q��j

occurs in a.m0j ; d 0j /jSk0

j

tensored with the spin eSk0

j
-module. Therefore the tensor

product representation Q��;M WD Q��1 � � � � � Q��` � Q��1 � � � � � Q��t occurs in
.
ev � 
odd/jWM ˝ SM . Finally, since the composition � is just the concatenation
of the .�i /’s and the .�j /’s, one sees that Q��;M occurs with nonzero multiplicity in
Q��j
eWM

. ut
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[Ta] M. Tadić, Classification of unitary representations in irreducible representations of
general linear group (non-Archimedean case), Ann. Sci. École Norm. Sup. (4) 19 (1986),
no. 3, 335–382.



On the nilradical of a parabolic subgroup

Karin Baur

Dedicated to Nolan Wallach

Abstract We present various approaches to understanding the structure of the
nilradical of parabolic subgroups in type A. In particular, we consider the com-
plement of the open dense orbit and describe its irreducible components.

Keywords: Nilradical • Parabolic subgroups
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1 Introduction

This paper is an extended version of a talk at the conference “Lie Theory and Its
Applications” held at UCSD in March 2011.

Nolan Wallach had ignited my interest in parabolic subalgebras (cf. Subsec-
tion 1.4). During the time I was a post-doc at UCSD and also during later visits,
I have enjoyed numerous lectures by and discussions with Nolan Wallach. I am very
grateful for them. This paper allows me to display joint work with N. Wallach and
to give a view on related recent progress. I will present several approaches towards
understanding the nilradical of a parabolic subgroup of a reductive algebraic group.

1.1 Classical situation

Let g DEnd.Cn/ be the Lie algebra of endomorphisms of C
n. The nilpotent

endomorphisms among them are well known. Up to conjugacy by G DGLn.C/,
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they are given by partitions, i.e., by the Jordan canonical form. In particular, these
orbits are well understood. There are finitely many and we have an order on them,
namely by inclusion of orbit closures.

If we put this in a more formal language, we are in the following situation: LetG
be a classical algebraic group over C and let g be its Lie algebra.1 The groupG acts
on the cone N � g of nilpotent elements by conjugation. This action breaks up N
into finitely many orbits. The nilpotent orbits are parametrized by certain partitions.
The exact description can be found in [9], cf. also [15]. More generally, Jacobson–
Morozov theory tells us that every nilpotent element e of g can be embedded in an
sl2-triple .e; f; h/. The action of the semisimple element h of this triple gives rise to
a labeled Dynkin diagram associated to the nilpotent orbit, with labels from f0; 1; 2g.
This is the so-called Dynkin–Kostant classification of nilpotent orbits, cf. [9, 15].

Since N is irreducible, there exists an open dense orbit, called the regular
nilpotent orbit. We can give a representative of this orbits in a very nice way: If we
take a generator X˛ for each simple root space (with respect to a given Cartan
subalgebra of g), we obtain a regular nilpotent element,

X D
X

˛ simple

X˛:

The labeled Dynkin diagram of this orbit has a 2 at every node.

Example 1. LetG be SLnC1.C/. We choose the diagonal matrices in its Lie algebra
as the Cartan subalgebra. The root spaces are then spanned by the elementary
matrices Ei;j , i ¤ j , where the only nonzero entry is a 1 at position .i; j /. With
this choice, the above representative takes the form

X D
n
X

iD1
Ei;iC1 D

0

B

B

B

B

B

@

0 1 0

0 1
: : :

: : :

0 1

0

1

C

C

C

C

C

A

:

1.2 Flags in n-space

We now consider nilpotent endomorphisms of Cn which preserve flags of vector
spaces. For this and the following section letG DGLn.C/ and let F be a partial flag
in C

n:

F W 0 D V0 ¨ V1 ¨ � � � ¨ Vr�1 ¨ Vr D C
n

1Often it would be enough to assume that G is defined over an algebraically closed field.
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for some r � 1. Then we define G 	 P to be the parabolic subgroup which is the
stabilizer of the flag F ,

P WD fg 2 G j gVi D Vi 8 ig:
We will sometimes write P D P.F/ for the parabolic subgroup corresponding
to F . We will write p to denote the Lie algebra of P .

What can we say about the nilpotent endomorphisms of Cn, which preserve the
flag F? In other words, how can we describe the X 2 N with

XVi � Vi�1 8 i ‹

Example 2. Consider

F W V0 D 0 � V1 � V2 � V3 D C
4;

with V1 WD he1i and V2 WD he1; e2i. Then p consists of the 4�4matrices of the form
0

B

B

@


 � � �
0 
 � �
0 0 
 

0 0 
 


1

C

C

A

:

(with arbitrary entries at the positions of the 
’s and �’s). IfX is a nilpotent element
satisfying XVi � Vi�1 for all i , X has to have the form

0

B

B

@

0 � � �
0 0 � �
0 0 0 0

0 0 0 0

1

C

C

A

:

1.3 The Richardson orbit

The above example is an instance of the following situation. Let G 	 P be a
parabolic subgroup, P D L � U with L reductive (called the Levi factor) and U
the unipotent radical of P . The Lie algebra n of U is called the nilradical of P . It is
convenient to assume that P contains the Borel subgroup of the upper triangular
matrices and that L contains the diagonal matrices. Such P and its Lie algebra p
are called standard. The direct sum decomposition p D l ˚ n is called the Levi
decomposition of p. In the example above, the nilradical n consists of the matrices
with nonzero entries only at the positions of the �’s, and X belongs to n.

The Levi part l of p consists of the matrices with nonzero entries only at the 
’s.
It is a general feature that l consists of matrices with nonzero entries only in square
blocks on the diagonal. The sizes of these square blocks are the differences dimVi �
dimVi�1. We willlater denote them by d1, : : : ; dr .
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The parabolic subgroup P acts on its nilradical n by conjugation. It is known
that the nilradical can be written as the union of the intersections of n with the
nilpotent G-orbits in g, cf. [11] (Satz 4.2.8). Recall that the nilpotent G-orbits are
parametrized by partitions of n. If � is a partition of n, we will write C.�/ to
denote the corresponding nilpotentG-orbit.

Since there are only finitely many nilpotentG-orbits in g, one of the intersections
of n with the nilpotent G-orbits, say C.�/ \ n, is open and dense in n. If � is any
partition of n, we get

• C.�/ \ n � n n .C.�/ \ n/ with C.�/ \ n ¤ 0 if and only if � � �;

• dim.C.�/\ n/ < dim n whenever � ¤ �.

Note that we write � � � if and only if the closure of the orbit C.�/ is contained
in C.�/. In particular, we see that C.�/ is the unique nilpotent G-orbit of g
intersecting n in an open dense set.

In fact, Richardson shows2 that C.�/ \ n is a single P -orbit, [16]. We call this
P -orbit the Richardson orbit of P and denote it by OR. Its elements are called the
Richardson elements (of p). The G-saturation G � OR is also called a Richardson
orbit.

Even though n contains an open dense P -orbit, we cannot expect that n consists
of finitely manyP -orbits. The Borel subgroupB of GL6 already has infinitely many
B-orbits in its nilradical.

Example 3. Let F W Vi WD C
i , 0 � i � n, be the complete flag in C

n. The
corresponding parabolic subgroup is a Borel subgroup B � G. The nilradical
consists of the strictly upper triangular matrices. One can show that if n D 6, there
is a 1-parameter family of B-orbits in n.

A consequence of the above example is that whenever a flag F consists of at least
6 nonzero vector spaces, there are infinitely many P.F/-orbits in the corresponding
nilradical. For classical G, the parabolic subgroups with finitely many P -orbits are
classified, cf. [12]. Roughly speaking, they are the ones with at most 5 blocks in the
Levi factor.

1.4 (Very) nice parabolic subalgebras

For the moment, let G be a reductive algebraic group over C. Let B � G be
a Borel subgroup, T a fixed maximal torus in B and b the corresponding Borel
subalgebra, h DLie(T ) the corresponding Cartan subalgebra. This determines a
basis f˛1; : : : ; ˛ng of simple roots of g (with n the rank of g).

2His result holds in much greater generality for reductive algebraic groups.
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We assume that p is a standard parabolic subalgebra, i.e., that it contains b.
It gives rise to a Z-grading of g as follows: The parabolic subalgebra p is determined
by the simple roots ˛i such that p does not contain the root subspace g�˛i ,
equivalently by the simple roots whose root space does not lie in the Levi factor.
Hence p gives rise to a tuple .u1; : : : ; un/ 2 f0; 1gn with ui D 1 whenever g�˛i is
not in p. Then we set H 2 h to be the element defined by ˛i .H/ D ui . The adjoint
action of H on g then defines the Z-grading:

gi WD fx 2 g j ŒH; x� D ixg:

The grading g DPi2Z gi is such that the parabolic subalgebra is the sum of the
nonnegatively graded parts and that the nilradical the sum of the positively graded
part. (cf. e.g., Section 2 of [6]). In case g D End.Cn/ we can read off the graded
parts from the block structure of the matrices. In particular, g0 D l is the Levi part,
g1 consists of the sequence of the rectangular regions to the right of the squares
on the diagonal. Any element X 2 g1 gives rise to a character �X on g�1. In case
X 2 g1 is a Richardson element, the character �X is admissible in the sense of
Lynch, [14]. Hence the existence of a Richardson element in g1 ensures the existence
of an admissible character. This is exactly Lynch’s vanishing condition of certain
Lie algebra cohomology spaces for a generalized Whittaker module (associated
with the parabolic subalgebra). If p has a Richardson element in g1, we say that
the parabolic subalgebra is nice. In joint work with N. Wallach, [6], we classified
the nice parabolic subalgebras of simple Lie algebras over C.

It is known that for X in OR, the identity component G 0
X of the stabilizer

subgroup in G is contained in PX � GX , in particular, jGX=PX j is finite. The
numbers jGX=PX j can be found in the article [10] by Hesselink.3 Assume that p
is nice. The condition GX D PX corresponds to the birationality of the moment
map from the dual of the cotangent bundle of G=P onto its image. Nice parabolic
subalgebras with GX D PX are called very nice. In [7] we continued our joint
work with N. Wallach and described the very nice parabolic subalgebras. The main
application of this is that under these conditions, one can prove a holomorphic
continuation of Jacquet integrals for a real form of g, cf. [18, 19].

1.5 P-orbit structure in n

What can we say about the P -orbit structure in the nilradical n? This is a
very difficult question. In general, it is a “wild” problem (in the language of
representations of algebras).

A first approach towards understanding the nilradical is the description of the
elements of the open dense orbit. One can give representatives for Richardson

3He attributes them to Spaltenstein, cf. [17].
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elements explicitly, as has been done for the classical and exceptional groups, cf.
[1, 2, 6] and [4]. We now go back to G DGLn.C/. Let F W 0 D V0 � V1 � � � � �
Vr D C

n be a flag and let P � G be the corresponding parabolic subgroup. For
i D 1; : : : ; r , we set di WD dimVi=Vi�1. The di are the block lengths of the Levi
factor in the nilradical of P . One can show that they determine p and n. The r-tuple
d D .d1; : : : ; dr / forms a composition of n. Let � D .�1 � �2 � � � � � �s � 0/ be
the dual of the partition obtained by ordering the di by size. Then � is the partition
of the Richardson orbit.

We finish this section by illustrating how one can construct a representative of
the Richardson orbit.

Example 4. If we assume d1 � d2 � � � � � dr we obtain a representative4 of the
Richardson orbit by choosing small identity blocks of the size diC1 � diC1 next to
the i th block in the Levi factor: For d D .3; 2; 2/ we get

0

B

B

B

B

B

B

B

B

B

@

0 0 0 1

0 0 0 1

0 0 0

0 0 1

0 0 1

0 0

0 0

1

C

C

C

C

C

C

C

C

C

A

:

Clearly, if F is the complete flag, i.e. if di D 1 for all i , then the resulting element
of the nilradical is the regular nilpotent with 1’s next to the diagonal.

1.6 Two approaches to n

As OR is open dense in n, the knowledge about the Richardson orbit already gives
a lot of information about the nilradical. However, it is very difficult to get a grasp
on the remaining P -orbits, in particular if there are infinitely many of them.

So far, there exist two approaches towards understanding the structure of the
nilradical. One approach is to study the complement of the open dense orbit. The
other approach is an example of the process of categorification: We search for
a category of representations for an algebra with the hope of finding a bijection
between the P -orbits in n and a class of isomorphism classes of modules in this
category. Such a correspondence has been established for the general linear groups
in [8]. For the orthogonal groups, we have a good candidate for the corresponding
algebra, but it is not yet clear what is the class of representations corresponding to
the P -orbits, [3].

4It is enough to assume that the sequence of the di is unimodal, i.e., that it is first increasing and
then decreasing.
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In this article, we explain the first approach: Consider the complement of the
open dense orbit in the nilradical, i.e. the varietyZ WD n nOR. We will describe the
irreducible components ofZ. In particular, we will see that if the flag F is composed
of r nonzero vector spaces, then Z has at most r � 1 components.

2 Complement of the Richardson orbit

2.1 Notation

In what follows we derive the description of the components of Z using rank
conditions on matrices. Let d D .d1; : : : ; dr / be the sizes of the blocks in the Levi
factor of the parabolic subgroup. If A is a n�n-matrix, we divideA into rectangular
blocks whose sizes are given by the di . We let Aij be the di � dj -rectangle formed
by the intersection of the di rows .d1C� � �Cdi�1C1/; : : : ; .d1C� � �Cdi / with the
dj columns .d1C� � �Cdj�1C 1/; : : : ; .d1C� � �Cdj /: A11 is the region formed by
the intersection of the first d1 rows and the first d1 columns, etc. With this notation,
the nilradical n consists of the matrices A with Aij D 0 whenever i � j .

Let X D X.d/ be a Richardson element and let � be the partition of X . If A is
any element in n n OR, the nilpotency class � of A is strictly smaller than �. We
can translate this as follows: X is characterized by the fact that the sequence rkX ,
rkX2, rkX3, : : : of the ranks of its powers decreases as slowly as possible. We will
use this observation to characterize the elements of the complementZ.

For A 2 gln we write AŒij � for the square formed by the .j � iC1/2 blocksAlm,
i � l � j , i � m � j ,

AŒij � WD

0

B

B

@

Aii � � � Aij

:::
: : :

:::

Aj i � � � Ajj

1

C

C

A

With this, we are almost ready to state our result. We first need two more
definitions:

�.i; j / WD 1C jfl j i < l < j; dl � min.di ; dj /gj

Zk
ij WD fA 2 n j rk.AŒij �k/ < rk.XŒij �k/g:

When k D �.i; j /, we write Zij instead of Z�.i;j /
ij .
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2.2 Decomposition of Z

In this subsection, we explain how to get Z as a disjoint union of irreducible
components. We claim that

Z D
[

.i;j /2�.d/
Zij

is the decomposition of Z into irreducible components, cf. [5].
It is rather unpleasant to describe the parameter set �.d/. We will first define a

larger set � .d/ and then restrict to �.d/. Let � .d/ be

� .d/ WD f.i; j / j dl < min.di ; dj / or dl > max.di ; dj / 8 i < l < j g:
Inside � .d/ we define�.d/. In case di ¤ dj , we put further constraints on the first
i � 1 entries d1; : : : ; di�1 of d and on djC1; : : : ; dr of d :

�.d/ WD f.i; j / 2 � .i; j / j di D dj g
[ f.i; j / 2 � .i; j / j di ¤ dj and


 8 k � r W dk � min.di ; dj / or dk � max.di ; dj /

 for k < i W dk ¤ dj

 for k > j W dk ¤ di

9

=

;

Figure 1 illustrates this: the vertical lines indicate the entries di and dj of d , the

 stand for di resp. dj , the ı for di � 1, di � 2, etc. and dj � 1, dj � 2, etc. Assume
that .i; j / belongs to �.d/. Figure (a): if di D dj , the conditions on the elements
of �.d/ tell us that there is no l between i and j such that dl equals di D dj . That
means that the dashed line is ruled out for the dl (with i < l < j ). Figure (b): if
di ¤ dj , the shaded area shows that among the i < l < j , no dl is allowed with
min.di ; dj / < dl < max.di ; dj /. The two dashed lines to the left resp. to the right
correspond to the two last conditions on elements of �.d/.

i

di

di −1

j

d j

d j −1

(a) di = d j

i

di

di −1

j

d j

d j −1

(b) di = d j

Figure 1 Dashed lines and shaded areas are not allowed in�.d/
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Example 1. We compare � .d/ and �.d/ for several different choices of d .

(a) If d is increasing or decreasing, then

� .d/ D �.d/ D f.1; 2/; .2; 3/; : : : ; .r � 1; r/g:

(b) If d D .1; 1; 2; 1/, then

� .d/ D f.1; 2/; .2; 3/; .2; 4/; .3; 4/g

and�.d/ D f.1; 2/; .2; 4/g.
(c) If d D .7; 5; 2; 3; 5; 1; 2; 6; 5/, then

� .d/ D f.i; i C 1/ j i D 1; : : : ; 8g [
f.1; 8/; .2; 4/; .2; 5/; .3; 6/; .3; 7/; .4; 6/; .4; 7/; .5; 7/; .5; 8/; .5; 9/; .7; 9/g

and�.d/ D f.1; 8/; .2; 5/; .3; 7/; .5; 9/g.
A consequence of the result above is that Z has at most r � 1 irreducible

components: when d is increasing or decreasing, it is clear that�.d/ has size r �1.
If all di are different, the same is true. In all other cases, there is at least one pair
i; j with di D dj , ji � j j > 1. Then one can find an index l between i and j such
that .i; l/ and .l; j / do not belong to�.d/. Example (c) above shows that the actual
number of irreducible components can be much smaller than r � 1.

We first illustrate the decomposition of Z on an example before explaining the
main ideas behind the proof.

Example 2. Let d D .1; 2; 3; 2/. Then

n D fA 2 gl8 j A D

0

B

B

B

B

B

B

B

B

B

B

B

@

0 � � � � � � �
0 0 � � � � �
0 0 � � � � �

0 0 0 � �
0 0 0 � �
0 0 0 � �

0 0

0 0

1

C

C

C

C

C

C

C

C

C

C

C

A

g :

Then �.d/ D f.1; 2/; .2; 4/g, with �.1; 2/ D 1 and �.2; 4/ D 2. The matrix X D
E1;2 C E2;4 C E3;5 C E4;7 C E5;8 is a Richardson element for the corresponding
parabolic subgroup and X2 D E1;4 C E2;7 C E3;8. We have to compute the ranks
of XŒ12� (the matrix formed by the first 3 rows and columns) and of the second
power of XŒ24� (the matrix formed by rows and columns 2 to 8): rkXŒ12� D 1 and
rkXŒ24�2 D 2.
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The component Z12 thus consists of all elements of the nilradical whose
1 � 2-rectangle A12 is zero. The component Z24 of the matrices A 2 n with
rkAŒ24�2 � 1. Observe that the only nonzero entries ofAŒ24�2 are in the intersection
of its first two rows with its last two columns. This square is just A23A34.

2.3 Ideas of the proof

The main steps in proving that Z is the union of the Zij D Z
�.i;j /
ij with .i; j / 2

�.d/ are the following:

• Show that Zk
ij D ;” k > j � i , that Zl

ij ¨ Z
�.i;j /
ij for 1 � l � �.i; j /

and that for l with �.i; j / < l � j � i there are i < i0 � j0 < j such that
Zl
ij � Z�.i;j0/

ij0
[Z�.i0;j /

i0j
.

• Argue that Z D [1�i<j�rZ�.i;j /
ij D [i<j [k�1 Zk

ij .

• Prove that for any two .i; j / ¤ .k; l/ in �.d/ we have Zij 6� Zkl and that the
elements .i; j / in �.d/ are enough to get all components: For .i; j / … � .d/,
we can find pairs .km; lm/ in � .d/ such that Zij lies in the union of the
correspondingZ.km;lm/. If .i; j / is in � .d/ n�.d/, then there exists k; l 2 �.d/
such that Zij � Zkl .
It then remains to see that the Zij are irreducible. This can be done using Young

tableaux. We first recall a result of Hille, cf. [11]: If C.�/ is a nilpotent G-orbit,
then the irreducible components of n \ C.�/ are in bijection with a set T .�; d/ of
Young tableaux of shape �.

The Young tableaux of T .�; d/ are all possible fillings of the Young diagram of
shape � with d1 ones, with d2 twos, d3 threes, etc. If � D � is the partition of the
Richardson orbit, there is exactly one way to fill the Young diagram of � with d1
ones, etc., i.e., jT .�; d/j D 1. We write T .d/ for this tableau.

Since we want to describe irreducible components of the complement, we aim for
degenerations of the Young tableau T .d/. These degenerations should be minimal:
If not, we might end up taking subsets of irreducible components. The minimal
degenerations arise from T .d/ by moving a single box down a number of rows as
follows.

Let T .i; j / be the tableau obtained from T .d/ by removing the box containing
the number j from the last row containing i and j and inserting it in the closest row
in order to obtain another tableau. We call its partition �.i; j /. By construction,
�.i; j / � �. Then we set n.T .i; j // � n to be the irreducible component of
n \ C.�.i; j // whose tableau is T .i; j / under Hille’s bijection.

We proceed by showing that the componentsZij (with .i; j / 2 �.d/) are equal
to n.T .i; j //.

We observe that for every row a box from a Young diagram is moved down, the
dimension of the GLn-orbits of the new nilpotent orbit is decreased by two. This can
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be derived from the formula for the dimension of the stabilizer, [13]. The change in
dimension in the nilradical is half of this. This gives us the codimension of Zij in n
as the number of rows the box j has been moved down to get T .i; j /.

2.4 Examples and remarks

(1) If d D .1; 1; 1; 1; 1/, P D B is a Borel subgroup.

Since �.d/ D f.1; 2/; .2; 3/; .3; 4/; .4; 5/g, the complement is the union of four
irreducible components. The regular nilpotent elements are the nilpotent 5 � 5-
matrices whose 4th power is nonzero. Thus the Richardson orbit consists of strictly
upper triangular matrices A D .aij /ij with

AŒ1; 5�4 D

0

B

B

B

B

B

@

0 0 0 0 x

0 0 0 0

0 0 0

0 0

0

1

C

C

C

C

C

A

where x WD a12a23a34a45 ¤ 0. For A to belong to the complement Z of the
Richardson orbit, this product has to be zero. In other words, AŒ1; 5�4 is the zero
matrix. But this means that A belongs to Zi;iC1 for some i � 4 as the component
Zi;iC1 is the set of matrices with Ai;iC1 D ai;iC1 D 0. So A lies in one of the
components Zi;iC1. The components Zi;iC1 all have codimension one. The Young
tableaux in T .�; d/ for � D .4; 1/ are in Figure 2.

In the case of a Borel subalgebra, the irreducible components are all orbit
closures of B-orbits in n. So far, it is not known whether this is true in general,
though we suspect that it is the case. Another question to which we do not know the
answer yet is whether the Zij are reduced.

(2) The smallest interesting case is d D .1; 1; 2; 1/.
Here, � .d/ © �.d/ D f.1; 2/; .2; 4/g. From the description in Section 2.2 we

expect two irreducible components. Z12 is the set of the matrices A with a12 D 0

and Z24 the set of matrices A with AŒ24�2 D 0. We take A D .aij /ij 2 n and
compute A2, A3. Then A3 has a12.a23a35 C a24a45/ as only nontrivial entry, it is in
the upper right corner of A3. A belongs to the Richardson orbit if and only if this
product is nonzero. If it is zero, then a12 D 0 or a23a35 C a24a45 D 0. The case
a12 D 0 clearly corresponds to A 2 Z12.

5

1 2 3 4

4

1 2 3 5

3

1 2 4 5

2

1 3 4 5

Figure 2 The four Young tableaux of T ..5; 1/; d/
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By definition, Z24 consists of the A with AŒ24�2 D 0. We have

AŒ24�2 D

0

B

B

@

0 0 0 a23a35 C a24a45
0 0 0 0

0 0 0 0

0 0 0 0

1

C

C

A

So A 2 Z24 if and only if a23a35 C a24a45 D 0. Thus, A … OR is equivalent to
A 2 Z12 [Z24.
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1 Introduction

Let k be a field, let G be a reductive algebraic group over k, and let V be a linear
representation of G. Geometric invariant theory involves the study of the k-algebra
of G-invariant polynomials on V , and the relation between these invariants and the
G-orbits on V , usually under the hypothesis that the base field k is algebraically
closed. In favorable cases, one can determine the geometric quotient V==G D
Spec.Sym�.V _//G and can identify certain fibers of the morphism V ! V==G

with certain G-orbits on V .
As an example, consider the three-dimensional adjoint representation of

G D SL2 given by conjugation on the space V of 2 � 2 matrices v D �

a b
c �a

�

of trace zero. This is irreducible when the characteristic of k is not equal to 2,
which we assume here. It has the quadratic invariant q.v/ D � det.v/ D bc C a2,
which generates the full ring of polynomial invariants. Hence V==G is isomorphic
to the affine line and q W V ! V==G D Ga. If v and w are two vectors in V with
q.v/ D q.w/ ¤ 0, then they lie in the same G-orbit provided that the field k is
separably closed.

For general fields the situation is more complicated. In our example, let d be a
non-zero element of k and letK be the étale quadratic algebra kŒx�=.x2 � d/. Then
the G.k/-orbits on the set of vectors v 2 V with q.v/ D d ¤ 0 can be identified
with elements in the 2-group k�=NK�. (See §2.)

The additional complexity in the orbit picture, when k is not separably closed, is
what we refer to as arithmetic invariant theory. It can be reformulated using non-
abelian Galois cohomology, but that does not give a complete resolution of the
problem. Indeed, when the stabilizer Gv of v is smooth, we will see that there is
a bijection between the different orbits over k which lie in the orbit of v over the
separable closure and the elements in the kernel of the map in Galois cohomology
� W H1.k;Gv/! H1.k;G/. Since � is only a map of pointed sets, the computation
of this kernel can be non-trivial.

In this paper, we will illustrate some of the issues which remain by considering
the regular semi-simple orbits—i.e., the closed orbits whose stabilizers have
minimal dimension—in three representations of the split odd special orthogonal
group G D SO2nC1 D SO.W / over a field k whose characteristic is not equal to 2.
Namely, we will study:

• the standard representation V D W ;
• the adjoint representation V D so.W / D ^2.W /; and
• the symmetric square representation V D Sym2.W /.

In the first case, the map � is an injection and the arithmetic invariant theory is
completely determined by the geometric invariant theory. In the second case, the
stabilizer is a maximal torus and the arithmetic invariant theory is the Lie algebra
version of stable conjugacy classes of regular semi-simple elements. The theory of
stable conjugacy classes, introduced by Langlands [13, 14] and developed further
by Shelstad [23] and Kottwitz [10], forms one of the key tools in the study of
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endoscopy and the trace formula. Here there are the analogous problems, involving
the Galois cohomology of tori, for the adjoint representations of general reductive
groups. In the third case, there are stable orbits in the sense of Mumford’s
geometric invariant theory [17], i.e., closed orbits whose stabilizers are finite. Such
representations arise more generally in Vinberg’s invariant theory (cf. [18, 20]),
where the torsion automorphism corresponds to a regular elliptic class in the
extended Weyl group. In this case, we can use the geometry of pencils of quadrics
to describe an interesting subgroup of classes in the kernel of � .

Although we have focused here primarily on the case of orbits over a general
field, a complete arithmetic invariant theory would also consider the orbits of a
reductive group over more general rings such as the integers. We end with some
remarks on integral orbits for the three representations we have discussed.

We would like to thank Brian Conrad, for his help with étale and flat cohomology,
and Mark Reeder and Jiu-Kang Yu for introducing us to Vinberg’s theory. We
would also like to thank Bill Casselman, Wei Ho, Alison Miller, Jean-Pierre Serre,
and the anonymous referee for a number of very useful comments on an earlier draft
of this paper. It is a pleasure to dedicate this paper to Nolan Wallach, who introduced
one of us (BHG) to the beauties of invariant theory.

2 Galois cohomology

Let k be a field, let ks be a separable closure of k, and let ka denote an algebraic
closure containing ks . Let � be the (profinite) Galois group of ks over k. Let G
be a reductive group over k and V an algebraic representation of G on a finite-
dimensional k-vector space. The problem of classifying the G.k/-orbits on V.k/
which lie in a fixed G.ks/-orbit can be translated (following Serre [21, §I.5]) into
the language of Galois cohomology.

Let v 2 V.k/ be a fixed vector in this orbit, and let Gv be the stabilizer of v.
We assume thatGv is a smooth algebraic group over k. If w 2 V.k/ is another vector
in the same G.ks/-orbit as v, then we may write w D g.v/ with g 2 G.ks/ well-
defined up to right multiplication by Gv.ks/. For every � 2 � , we have g� D ga�
with a� 2 Gv.ks/. The map � ! a� is a continuous 1-cocycle on � with values
in Gv.ks/, whose class in the first cohomology set H1.�;Gv.k

s// is independent
of the choice of g. Since a� D g�1g� , this class is trivial when mapped to the
cohomology set H1.�;G.ks//. We will use the notation H1.k;Gv/ and H1.k;G/

to denote these Galois cohomology sets in this paper.
Reversing the argument, one can show similarly that an element in the kernel of

the map of pointed sets H1.k;Gv/! H1.k;G/ gives rise to a G.k/-orbit on V.k/
in the G.ks/-orbit of v. Hence we obtain the following.
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Proposition 1. There is a bijection between the set of G.k/-orbits on the vectors w
in V.k/ that lie in the same G.ks/-orbit as v and the kernel of the map

� W H1.k;Gv/! H1.k;G/ (1)

in Galois cohomology.

When the stabilizer Gv is smooth over k, the set of all vectors w 2 V.k/ lying
in the same G.ks/-orbit as v can be identified with the k-points of the quotient
variety G=Gv , and the central problem of arithmetic invariant theory in this case is
to understand the kernel of the map � in Galois cohomology. This is particularly
interesting when k is a finite, local, or global field, when the cohomology of the two
groupsGv and G can frequently be computed.

In the example of the introduction with G D SL2 and V the adjoint representa-
tion (again assuming char.k/ ¤ 2), let v be a vector in V.k/ with q.v/ D d ¤ 0.
Then the stabilizerGv is a maximal torus in SL2 which is split by the étale quadratic
algebra K . The pointed set H1.k;G/ D H1.k;SL2/ is trivial, so all classes in the
abelian group H1.k;Gv/ D k�=NK� lie in the kernel of � . These classes index
the orbits of SL2.k/ on the set S of non-zero vectors w with q.w/ D q.v/, since
this is precisely the set S of vectors w 2 V.k/ which lie in the same SL2.ks/-orbit
as v. (This illustrates the point that one first has to solve the orbit problem over the
separable closure ks , before using Proposition 1 to descend to orbits over k.)

The vanishing of H1.k;G/ occurs whenever G D GLn or G D SLn or G D
Sp2n, and gives an elegant solution to many orbit problems. For example, when the
characteristic of k is not equal to 2, the classification of the non-degenerate orbits
of SLn D SL.W / on the symmetric square representation V D Sym2.W _/ shows
that the isomorphism classes of non-degenerate orthogonal spaces W of dimension
n over k with a fixed determinant in k�=k�2 correspond bijectively to classes in
H1.k;Gv/ D H1.k;SO.W // (cf. [11, Ch VII, §29], [21, Ch III, Appendix 2, §4]).
In general, both H1.k;Gv/ and H1.k;G/ are non-trivial, and the determination of
the kernel of � remains a challenging problem.

Remark 2. In those cases where the stabilizer Gv is not smooth, it is at least flat of
finite type over k, so one can replace the map � in Galois (étale) cohomology with
one in flat (fppf) cohomology. Indeed, the k-valued points of G=Gv can always be
identified with the possibly larger set S 0 of vectors w0 in V.k/ which lie in the same
G.ka/-orbit as v, where ka is an algebraic closure of ks . As an example, the group
Gm acts on V D Ga by the formula �.v/ D �p � v. The stabilizer of v D 1 is
the subgroup �p , and G=Gv D Gm=�p D Gm. The stabilizer Gv is smooth if the
characteristic of k is not equal to p, in which case the set S consists of the non-zero
elements of the field k, and the G.k/-orbits on S form a principal homogeneous
space for the group H1.k; �p/ D k�=k�p . If the characteristic of k is equal to
p, the stabilizer �p is not smooth over k. In this case the set S consists of the pth

powers in k�. The set S 0 is equal to the full group of non-zero elements in k, which is
strictly larger than S when the field k is imperfect. In the general case one can show
that the G.k/ orbits on S 0 D .G=Gv/.k/ are in bijection with the kernel of the map
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�f W H1
f .k;Gv/ ! H1

f .k;G/ in flat (fppf) cohomology. In our example, we get a

bijection of these orbits with the flat cohomology group H1
f .k; �p/ D k�=k�p , as

H1
f .k;Gm/ D 1.
The semi-simple orbits in the three representations that we will study in this

paper all have smooth stabilizers Gv . Hence we only consider the map � in Galois
cohomology.

3 Some representations of the split odd special
orthogonal group

Let k be a field, with char.k/ ¤ 2. Let n � 1 and let W be a fixed non-
degenerate, split orthogonal space over k, of dimension 2n C 1 � 3 and
determinant .�1/n in k�=k�2. Such an orthogonal space is unique up to isomor-
phism. If hv;wi is the bilinear form on W , then we may choose an ordered basis
fe1; e2; : : : ; en; u; fn; : : : ; f2; f1g of W over k with inner products given by

hei ; ej i D hfi ; fj i D hei ; ui D hfi ; ui D 0;
hei ; fj i D ıij ;
hu; ui D 1:

(2)

The Gram matrix of the bilinear form with respect to this basis (which we will
call the standard basis) is an anti-diagonal matrix. (A good general reference on
orthogonal spaces, which gives proofs of these results, is [16].)

Let T W W ! W be a k-linear transformation. We define the adjoint
transformation T � by the formula

hT v;wi D hv; T �wi:

The matrix of T � in our standard basis is obtained from the matrix of T by reflection
around the anti-diagonal. In particular, we have the identity det.T / D det.T �/. We
say a linear transformation g W W ! W is orthogonal if hgv; gwi D hv;wi: Then
g is invertible, with g�1 D g�, and det.g/ D ˙1 in k�. We define the special
orthogonal group SO.W / of W by

SO.W / WD fg 2 GL.W / W gg� D g�g D 1; det.g/ D 1g: (3)

We are going to consider the arithmetic invariant theory for three representations V
of the reductive group G D SO.W / over k.

The first is the standard representation V D W , which is irreducible and
symmetrically self-dual (isomorphic to its dual by a symmetric bilinear pairing)
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of dimension 2nC1. Here we will see that the invariant polynomial q2.v/ WD hv; vi
generates the ring of polynomial invariants and separates the non-zero orbits over k.

The second is the adjoint representation V D so.W /, which is irreducible and
symmetrically self-dual of dimension 2n2 C n. This representation is isomorphic
to the exterior square ^2.W / of W , and can be realized as the space of skew self-
adjoint operators:

V D ^2.W / D fT W W ! W W T D �T �g; (4)

where g 2 G acts by conjugation: T 7! gTg�1 D gTg�. The Lie bracket on
V is given by the formula ŒT1; T2� D T1T2 � T2T1 and the duality by hT1; T2i D
Trace.T1T2/. Here the theory ofG.k/-orbits in a fixedG.ks/-orbit is the Lie algebra
version of stable conjugacy classes for the group G D SO.W /.

The third is a representation V which arises in Vinberg’s theory, from an
outer involution � of the group GL.W /. It is isomorphic to the symmetric square
Sym2.W / of W , and can be realized as the space of self-adjoint operators:

V D Sym2.W / D fT W W ! W W T D T �g; (5)

where again G D SO.W / acts by conjugation. This representation has dimension
2n2C3nC1 and is symmetrically self-dual by the pairing hT1; T2i D Trace.T1T2/:
We will see that there are stable orbits, and that the arithmetic invariant theory of
the stable orbits involves the arithmetic of hyperelliptic curves of genus n over k,
with a k-rational Weierstrass point.

We note that the third representation V is not irreducible, as it contains the trivial
subspace spanned by the identity matrix, and has a non-trivial invariant linear form
given by the trace. When the characteristic of k does not divide 2nC 1 D dim.W /,
the representation V is the direct sum of the trivial subspace and the kernel of the
trace map, and the latter is irreducible and symmetrically self-dual of dimension
2n2 C 3n. When the characteristic of k divides 2n C 1 the trivial subspace is
contained in the kernel of the trace. In this case V has two trivial factors and an
irreducible factor of dimension 2n2 C 3n � 1 in its composition series.

4 Invariant polynomials and the discriminant

In the standard representation V D W of G D SO.W /, the quadratic invariant
q2.v/ D hv; vi generates the ring of invariant polynomials. We define � D q2
in this case. When �.v/ ¤ 0, the stabilizer Gv is the reductive subgroup SO.U /,
where U is the hyperplane in W of vectors orthogonal to v.

In the second and third representations, the group SO.W / acts by conjugation on
the subspace V of End.W /. Hence the characteristic polynomial of an operator T
is an invariant of the G.k/-orbit.
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For the adjoint representation, the operator T is skew self-adjoint and its
characteristic polynomial has the form

f .x/ D det.xI � T / D x2nC1 C c2x2n�1 C c4x2n�3 C � � � C c2nx D xg.x2/

with coefficients c2m 2 k. The coefficients c2m are polynomial invariants of
the representation, with deg.c2m/ D 2m. These polynomials are algebraically
independent and generate the full ring of polynomial invariants on V D so.W /
over k [3, Ch 8, §8.3, §13.2, VI]. An important polynomial invariant, of degree
2n.2nC 1/, is the discriminant� of the characteristic polynomial of T :

� D �.c2; c4; : : : ; c2n/ D discf .x/:

This is non-zero in k precisely when the polynomial f .x/ is separable, so has 2nC1
distinct roots in the separable closure ks of k. The condition�.T / ¤ 0 defines the
regular semi-simple orbits in the Lie algebra. For such an orbit, we will see that the
stabilizer GT is a maximal torus in G, of dimension n over k.

For the third representation V on self-adjoint operators, the characteristic
polynomial f .x/ of T can be any monic polynomial of degree 2nC 1; we write

f .x/ D det.xI � T / D x2nC1 C c1x2n C c2x2n�1 C � � � C c2nx C c2nC1
with coefficients cm 2 k. Again the cm give algebraically independent polynomial
invariants, with deg.cm/ D m, which generate the full ring of polynomial invariants
on V over k. The discriminant

� D �.c1; c2; : : : ; c2nC1/ D disc f .x/

is defined as before, and is non-zero when f .x/ is separable. We will see that the
condition�.T / ¤ 0 defines the stable orbits of G on V . For such an orbit, we will
see that the stabilizer GT is a finite commutative group scheme of order 22n over k,
which embeds as a Jordan subgroup scheme of G (see [12, Ch 3]).

5 The orbits with non-zero discriminant

In this section, for each of the three representations V , we exhibit an orbit for
G where the invariant polynomials described above take arbitrary values in k,
subject to the single restriction that � ¤ 0. We calculate the stabilizer Gv and its
cohomology H1.k;Gv/ in terms of the values of the invariant polynomials on v.
We also give an explicit description of the map � W H1.k;Gv/ ! H1.k;G/.
We note that all three representations arise naturally in Vinberg’s invariant theory,
and the representative orbits that we will construct are in the Kostant section
(cf. [18]).
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When V D W is the standard representation, let d be an element of k�. The
vector v D e1Cdf1 has q2.v/ D �.v/ D d . The stabilizerGv acts on the orthogonal
complementU of the non-degenerate line kv inW , which is a quasi-split orthogonal
space of dimension 2n and discriminant d in k�=k�2. (The discriminant of an
orthogonal space of dimension 2n is defined as .�1/n times its determinant.)
This gives an identification Gv D SO.U /, where the special orthogonal group
SO.U / is quasi-split over k and split by k.

p
d/. Witt’s extension theorem [16, Ch 1]

shows that all vectors w with q2.w/ D d lie in the G.k/-orbit of v, so the invariant
polynomials separate the orbits over k with non-zero discriminant. One can also
show that there is a single non-zero orbit with q2.v/ D 0, represented by the vector
v D e1 D e1 C 0f1:

The cohomology set H1.k;SO.U // classifies non-degenerate orthogonal
spaces U 0 of dimension 2n and discriminant d over k, and the cohomology set
H1.k;SO.W // classifies non-degenerate orthogonal spaces W 0 of dimension
2n C 1 and determinant .�1/n over k, with the trivial class corresponding to
the split space W . The map

� W H1.k;Gv/ D H1.k;SO.U // �! H1.k;G/ D H1.k;SO.W //

is given explicitly by mapping the space U 0 to the space W 0 D U 0 C hd i. Witt’s
cancellation theorem [16] shows that the map � is an injection of sets in this case, so
the arithmetic invariant theory for the standard representation of any odd orthogonal
group is the same as its geometric invariant theory.

For the second representation V D so.W / D ^2.W /, let

f .x/ D x2nC1 C c2x2n�1 C c4x2n�3 C � � � C c2nx

be a polynomial in kŒx� with non-zero discriminant. We will construct a skew
self-adjoint operator T on W with characteristic polynomial f .x/. Since f .x/ D
xh.x/ D xg.x2/, we have

disc f .x/ D c22n disc h.x/ D .�4/nc32n disc g.x/2:

Let K D kŒx�=.g.x//, E D kŒx�=.h.x//, and L D kŒx�=.f .x//. By our
assumption that � ¤ 0, these are étale k-algebras of ranks n, 2n, and 2n C 1

respectively. We have L D E ˚ k. Furthermore the map x ! �x induces
an involution � of the algebras E and of L, with fixed algebras K and K ˚ k

respectively.
Let ˇ be the image of x in L D kŒx�=.f .x//, so f .ˇ/ D 0 in L and f 0.ˇ/

is a unit in L�. We define a symmetric bilinear form h ; i on the k-vector space
L D k C kˇ C kˇ2 C � � � C kˇ2n by taking

h�;�i WD the coefficient of ˇ2n in the product .�1/n��� . (6)
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This is non-degenerate, of determinant .�1/n, and the map t.�/ D ˇ� is skew
self-adjoint, with characteristic polynomial f .x/. Finally, the subspace M D k C
kˇ C � � � C kˇn�1 is isotropic of dimension n, so the orthogonal space L is split
and isomorphic to W over k. Choosing an isometry � W L ! W we obtain a skew
self-adjoint operator T D � t��1 on W with the desired separable characteristic
polynomial. Since the isometry � is unique up to composition with an orthogonal
transformation ofW , the orbit of T is well-defined. The stabilizer of T in O.W / has
k-points f� 2 L� W �1C� D 1g. The subgroupGT which fixes T is a maximal torus
in G D SO.W /, isomorphic to the torus ResK=k U1.E=K/ of dimension n over k.

Over the separable closure ks of k, any skew self-adjoint operator S with
(separable) characteristic polynomial f .x/ is in the same orbit of T . Indeed, since
f .x/ is separable, it is also the minimal polynomial of T and S , so we can find an
element g in GL.W / with S D gTg�1. Since both operators are skew self-adjoint,
the productg�g is in the centralizer of T in GL.W /. The centralizer of T in End.W /
is the algebra kŒT � D L. Since g�g is self-adjoint in L�, and its determinant is a
square in k�, we see that g�g is an element of the subgroup K� � k�2. Over the
separable closure, every element of K� � k�2 is a norm from L�: g�g D h1C� .
Then gh�1 is an orthogonal transformation ofW over ks mapping T to S . Hence S
is in the SO.W /.ks/-orbit of T .

To understand the orbits with a fixed separable characteristic polynomial over k,
we need an explicit form of the map � in Galois cohomology. Since the stabilizer of
T is abelian, the pointed set H1.k;GT / is an abelian group, which is isomorphic to
K�=NE� by Hilbert’s Theorem 90. The map

� W K�=NE� D H1.k;GT / �! H1.k;G/ D H1.k;SO.W //

is given explicitly as follows. We first associate to an element � 2 K� the element
˛ D .�; 1/ in .L�/� D K��k�, with square norm fromL� to k�. We then associate
to ˛ the vector space L with symmetric bilinear form

h�;�i˛ WD the coefficient of ˇ2n in the product .�1/n˛��� . (7)

This orthogonal space W� has dimension 2n C 1 and determinant .�1/n over k,
and its isomorphism class depends only on the class of � in the quotient group
K�=NE� D H1.k;GT /.

Lemma 3. The orthogonal space W� represents the class �.�/ in H1.k;SO.W //.

Proof. We first recall the recipe for associating to a cocycle g� on the Galois group
with values in SO.W /.ks/ a new orthogonal spaceW 0 over k. We use the inclusion
SO.W /! GL.W / and the triviality ofH1.k;GL.W // to write g� D h�1h� for an
element h 2 GL.W /.ks/. We then define a new non-degenerate symmetric bilinear
form on W by the formula

hv;wi� D hh�1v; h�1wi: (8)
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This takes values in k and defines the space W 0, which has dimension 2n C 1

and determinant .�1/n. The isomorphism class of W 0 over k depends only on the
cohomology class of the cocycle g� in H1.k;SO.W //.

In our case, the cocycle g� representing �.�/ comes from a cocycle with values
in the stabilizer Gv . This is a maximal torus in SO.W /, which is a subgroup of
the maximal torus ResL=k Gm of GL.W /. This torus already has trivial Galois
cohomology, so we can write g� D h�=h with h 2 .L˝ ks/� satisfying h1C� D ˛.
Substituting this particular h into formula (8) for the new inner product on W
completes the proof. �

We note that the class � above will be in the kernel of � precisely when the
quadratic space W 0 with bilinear form h ; i˛ is split. Such classes give additional
orbits of SO.W / on so.W / D ^2.W / over k with characteristic polynomial f .x/.

The analysis for the third representation V D Sym2.W / is similar. Here we start
with an arbitrary monic separable polynomial f .x/ D x2nC1C c1x2nC� � �C c2nC1
and wish to construct a self-adjoint operator T onW with characteristic polynomial
f .x/. We let L D kŒx�=.f .x//, which is an étale k-algebra of rank 2n C 1, and
let ˇ be the image of x in L. We define a symmetric bilinear form h�;�i on L D
k C kˇ C � � � C kˇ2n by taking the coefficient of ˇ2n in the product ��. This is
non-degenerate of determinant .�1/n, and the map t.�/ D ˇ� is self-adjoint, with
characteristic polynomial f .x/. Finally, the subspace M D k C kˇ C � � � C kˇn�1
is isotropic of dimension n, so the orthogonal space L is split and isomorphic to
W over k. Choosing an isometry � W L ! W , we obtain a self-adjoint operator
T D � t��1 on W with the desired separable characteristic polynomial. Since the
isometry � is unique up to composition with an orthogonal transformation of W ,
the orbit of T is well-defined. The stabilizer of T in O.W / has k-points f� 2 L� W
�2 D 1g. The subgroupGT in SO.W / which fixes T is the finite étale group scheme
A of order 22n, which is the kernel of the norm map ResL=k.�2/! �2.

Over the separable closure ks of k, any self-adjoint operator S with (separable)
characteristic polynomial f .x/ is in the same orbit as T . Indeed, since f .x/ is
separable, it is also the minimal polynomial of T and S , so we can find an element
g 2 GL.W / with S D gTg�1. Since both operators are self-adjoint, the product
g�g is in the centralizer of T in GL.W /. The centralizer of T in End.W / is the
algebra kŒT � D L, so g�g is an element of L�. Over the separable closure, every
element of L� is a square: g�g D h2. Then gh�1 is an orthogonal transformation
of W over ks mapping T to S . Hence S is in the SO.W /.ks/-orbit of T .

We now consider the orbits with a fixed separable characteristic polynomial
over k. Since the stabilizer of T is again abelian, the pointed set H1.k;GT / is an
abelian group which is isomorphic to .L�=L�2/ND1 by Kummer theory. The map

� W H1.k;GT / D .L�=L�2/ND1 �! H1.k;G/ D H1.k;SO.W //

is given explicitly as follows. We associate to an element ˛ in .L�/ND1 the
orthogonal space L with bilinear form h�;�i˛ given by the coefficient of ˇ2n in
the product ˛��. This orthogonal space has dimension 2n C 1 and determinant
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.�1/n over k. Its isomorphism class over k depends only on the image of ˛ in the
quotient group .L�=L�2/ND1 D H1.k;GT /. This orthogonal space represents the
class �.˛/ in H1.k;SO.W //. The proof is the same as that of Lemma 3. We first
observe that the map taking the cocycle g� from GT to SO.W / to GL.W / can also
be obtained by mappingGT to the maximal torus ResL=k Gm in GL.W /. This torus
has trivial cohomology, so ˛ D h2 with h 2 .L˝ ks/�, and this choice of h gives
the inner product h�;�i˛. The class ˛ will be in the kernel of � precisely when
the quadratic space L with bilinear form h ; i˛ is split; such classes give additional
orbits of SO.W / on Sym2.W / over k with characteristic polynomial f .x/.

We summarize what we have established for the representations V D so.W / and
V D Sym2.W /.

Proposition 4. For each monic separable polynomial f .x/ of degree 2nC 1 over
k of the form f .x/ D xg.x2/ there is a distinguished SO.W /.k/-orbit of skew self-
adjoint operators T on W with characteristic polynomial f .x/. All other orbits on
^2.W / with this characteristic polynomial lie in the SO.W /.ks/-orbit of T , and
correspond bijectively to the non-identity classes in the kernel of � W K�=NE� !
H1.k;SO.W //; where K D kŒx�=.g.x// and E D kŒx�=.g.x2//.

For each monic separable polynomial f .x/ of degree 2n C 1 over k there is a
distinguished SO.W /.k/-orbit of self-adjoint operators T onW with characteristic
polynomial f .x/. All other orbits on Sym2.W / with this characteristic polynomial
lie in the SO.W /.ks/-orbit of T , and correspond bijectively to the non-identity
classes in the kernel of � W .L�=L�2/ND1 ! H1.k;SO.W //; where L D
kŒx�=.f .x//.

6 Stable orbits and hyperelliptic curves

For both representations V D ^2.W / and V D Sym2.W / of G D SO.W / we
associated to the distinguished orbit T with separable characteristic polynomial
f .x/ and any class ˛ in the cohomology group H1.k;GT / a symmetric bilinear
form h�;�i˛ on the k-vector space L D kŒx�=.f .x//. The class ˛ is in the kernel
of the map � W H1.k;GT / ! H1.k;G/ precisely when this quadratic space is
split over k. However, exhibiting specific classes ˛ ¤ 1 where this space is split
is a difficult general problem, so it is difficult to exhibit other orbits with this
characteristic polynomial.

In the case of the third representation V D Sym2.W /, the orbits T with
�.T / ¤ 0 are stable; namely, they are closed (defined by the values of the invariant
polynomials over the separable closure) and have finite stabilizer (the commutative
group scheme A D ResL=k.�2/ND1 of order 22n). In this case, we will use some
results in algebraic geometry, on hyperelliptic curves with a Weierstrass point and
the Fano variety of the complete intersection of two quadrics in P.L˚k/, to produce
certain classes in the kernel of the map � W H1.k;A/! H1.k;SO.W //.
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Let C be the smooth projective hyperelliptic curve of genus n over k with
affine equation y2 D f .x/ and k-rational Weierstrass point P above x D 1.
The functions on C which are regular outside of P form an integral domain:

H0.C � P;OC�P / D kŒx; y�=.y2 D f .x// D kŒx;
p

f .x/�:

The complete curve C is covered by this affine open subset U1, together with the
affine open subset U2 associated to the equation w2 D v2nC2f .1=v/ and containing
the point P D .0; 0/. The gluing of U1 and U2 is by .v;w/ D .1=x; y=xnC1/ and
.x; y/ D .1=v;w=vnC1/wherever these maps are defined. Let J denote the Jacobian
of C over k and let J Œ2� the kernel of multiplication by 2 on J . This is a finite étale
group scheme of order 22n over k.

Lemma 5. The group scheme J Œ2� of 2-torsion on the Jacobian of C is canonically
isomorphic to the stabilizer A D ResL=k.�2/ND1 of the orbit T in SO.W /.

Proof. Write L D kŒx�=.f .x// D k C kˇ C � � � C kˇ2n, where f .ˇ/ D 0. The
other Weierstrass points P� D .�.ˇ/; 0/ of C.ks/ correspond bijectively to algebra
embeddings � W L ! ks . Associated to such a point we have the divisor d� D
.P�/ � .P / of degree zero. The divisor class of d� lies in the 2-torsion subgroup
J Œ2�.ks/ of the Jacobian, as

2d� D div.x � �.ˇ//:

The Riemann-Roch theorem shows that the classes d� generate the finite group
J Œ2�.ks/, and satisfy the single relation

X

.d�/ D div.y/:

Since the Galois group of ks acts on these classes by permutation of the embed-
dings �, we have an isomorphism of group schemes: J Œ2� Š ResL=k.�2/=�2. This
quotient of ResL=k.�2/ is isomorphic to the subgroup schemeA D ResL=k.�2/ND1,
as the degree of L over k is odd. This completes the proof. �

The exact sequence of Galois modules,

0! J Œ2�.ks/! J.ks/! J.ks/! 0;

gives an exact descent sequence

0! J.k/=2J.k/! H1.k; J Œ2�/! H1.k; J /Œ2�! 0

in Galois cohomology. By Lemma 5, the middle term in this sequence can be
identified with the groupH1.k;A/ D H1.k;GT /, and our main result in this section
is the following.



Arithmetic invariant theory 45

Proposition 6. The subgroup J.k/=2J.k/ of H1.k;A/ D H1.k;GT / lies in the
kernel of the map � W H1.k;GT /! H1.k;G/.

Proof. We first make the descent map fromH1.k;A/ toH1.k; J /Œ2� more explicit.
That is, we need to associate to a class ˛ in the group

H1.k;A/ D .L�=L�2/ND1
a principal homogeneous space F˛ of order 2 for the Jacobian J over k. The class
˛ will be in the subgroup J.k/=2J.k/ precisely when the homogeneous space F˛
has a k-rational point.

We have previously associated to the class ˛ the orthogonal space L with
symmetric bilinear form h�;�i˛ WD the coefficient of ˇ2n in the product ˛��. We
also defined a self-adjoint operator given by multiplication by ˇ onL, and that gives
a second symmetric bilinear form on L: hˇ�;�i˛ D h�; ˇ�i˛ .

Let M D L ˚ k, which has dimension 2n C 2 over k, and consider the two
quadrics on M given by

Q.�; a/ D h�; �i˛
Q0.�; a/ D hˇ�; �i˛ C a2:

The pencil uQ � vQ0 is non-degenerate and contains exactly 2n C 2 singular
elements over ks , namely, the quadric Q at v D 0 and the 2n C 1 quadrics
�.ˇ/Q�Q0 at the points where f .�.ˇ// D 0. Hence the base locus is non-singular
in P.M/ and the Fano variety F˛ of this complete intersection, consisting of the
n-dimensional subspaces Z of M which are isotropic for all of the quadrics in the
pencil, is a principal homogeneous space of order 2 for the Jacobian J (cf. [7]).
More precisely, there is a commutative algebraic group I˛ with 2 components over
k, having identity component J and non-identity component F˛ .

Since the discriminant of the quadric uQ � vQ0 in the pencil is equal to
v2nC2f .x/ with x D u=v, a point c D .x; y/ on the hyperelliptic curve y2 D f .x/
determines both a quadricQx D xQ�Q0 in the pencil together with a ruling ofQx ,
i.e., a component of the variety of .nC1/-dimensionalQx-isotropic subspaces inM .
Each point gives an involution of the corresponding Fano variety �.c/ W F˛ ! F˛
with 22n fixed points over a separable closure ks of k. The involution �.c/ is defined
as follows. A point of F˛ consist of a common isotropic subspace Z of dimension
n in M ˝ ks . The point c gives a maximal isotropic subspace Y for the quadricQx

which contains Z. If we restrict any non-singular quadric in the pencil (other than
Qx) to Y , we get a reducible quadric which is the sum of two hyperplanes: Z and
another common isotropic subspaceZ0. This defines the involution: �.c/.Z/ D Z0.
In the algebraic group I˛, we have that Z CZ0 is the class of the divisor .c/ � .P /
of degree zero in J .

Now assume that the class ˛ is in the subgroup J.k/=2J.k/. Then its image in
H1.k; J / is trivial, and the homogenous space F˛ has a k-rational point. Hence
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there is a k-subspace Z of M D L ˚ k which is isotropic for both Q and Q0.
Since it is isotropic for Q0, the subspace Z does not contain the line 0 ˚ k, so its
projection to the subspace L has dimension n and is isotropic for Q. This implies
that the orthogonal space L with bilinear form .�; �/˛ is split, so the class ˛ is in
the kernel of the map � W H1.k;A/! H1.k;SO.W //. �

Note that when c D P , the Weierstrass point over x D 1, the involution �.P /
is induced by the linear involution .�; a/ ! .�;�a/ of M D L ˚ k. The fixed
points are just the n-dimensional subspaces X over ks which are isotropic for both
quadrics

q.�/ D h�; �i˛ ;
q0.�/ D hˇ�; �i˛

on the space L of dimension 2nC 1 over k. There are 22n such isotropic subspaces
over ks , and they form a principal homogeneous space for J Œ2�. The variety F˛ has
a k-rational point when ˛ lies in the subgroup J.k/=2J.k/, but only has a k-rational
point fixed by the involution �.P / when ˛ is the trivial class in H1.k; J Œ2�/.

Remark 7. The finite group schemeA D J Œ2� does not determine the hyperelliptic
curve C over k. Indeed, for any class d 2 k�=k�2, the hyperelliptic curve Cd with
affine equation dy2 D f .x/ has the same 2-torsion subgroup of its Jacobian. This
Jacobian Jd of Cd acts on the Fano variety of the complete intersection of the two
quadrics given by

Q.�; a/ D h�; �i˛ ;
Q0.�; a/ D hˇ�; �i˛ C da2:

Indeed, the discriminant of the quadric uQ � vQ0 in the pencil is equal to
dv2nC2f .x/, where x D u=v. A similar argument then shows that the subgroup
Jd .k/=2Jd .k/ is also contained in the kernel of the map � on H1.k;A/.

7 Arithmetic fields

In this section, we describe the orbits in our three representations when k is a finite,
local, or global field.

7.1 Finite fields

First, we consider the case when k is finite, of odd order q. In this case,
H1.k;SO.W // D 1 by Lang’s theorem, as SO.W / is connected. As a consequence,
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every quadratic space of dimension 2nC 1 and determinant .�1/n is split, and all
elements of H1.k;GT / lie in the kernel of � .

In the standard representation V D W the stabilizer of a vector v with
q2.v/ ¤ 0 is the connected orthogonal subgroup SO.U /, which also has trivial
first cohomology. So for every non-zero element d in k�, there is a unique orbit of
vectors with q2.v/ D d . (We have already seen this for general fields via Witt’s
extension theorem.)

In the adjoint representation V D so.W /, the stabilizer of a vector T with
�.T / ¤ 0 is the connected torus ResK=k U1.E=K/, which also has trivial first
cohomology. So for each separable characteristic polynomial of the form f .x/ D
xg.x2/ there is a unique orbit of skew self-adjoint operators T with characteristic
polynomial f .x/.

In the representation V D Sym2.W / the stabilizer of T with characteristic
polynomial f .x/ satisfying disc.f / D �.T / ¤ 0 is the finite group scheme
A D .ResL=k �2/ND1. In this case H1.k;A/ D .L�=L�2/ND1 is an elementary
abelian 2-group of order 2m, where m C 1 is the number of irreducible factors of
f .x/ in kŒx�. So 2m is the number of distinct orbits with characteristic polynomial
f .x/. But this is also the order of the stabilizerH0.k;A/ D A.k/ D .L�Œ2�/ND1 of
any point in the orbit. Hence the number of self-adjoint operators T with any fixed
separable polynomial is equal to the order of the finite group SO.W /.q/. This is
given by the formula

# SO.W /.q/ D qn2.q2n � 1/.q2n�2 � 1/ � � � .q2 � 1/:

By Lang’s theorem, we also have H1.k; J / D 0, where J is the Jacobian of the
smooth hyperelliptic curve y2 D f .x/ of genus n over k. Hence the homomorphism
J.k/=2J.k/ ! H1.k;A/ is an isomorphism and every orbit with characteristic
polynomial f .x/ comes from a k-rational point on the Jacobian.

7.2 Non-Archimedean local fields

Next, we consider the case when k is a non-Archimedean local field, with ring
of integers O and finite residue field O=
O of odd order. In this case, Kneser’s
theorem on the vanishing of H1 for simply-connected groups (cf. [19, Th. 6.4],
[21]) gives an isomorphism

H1.k;SO.W // Š H2.k; �2/ Š .Z=2Z/:

For the standard representation V D W , we also have H1.k;Gv/ D
H1.k;SO.U // Š .Z=2Z/, except in the case when dim.V / D 3 and q2.v/ D 1,
when SO.U / is a split torus and H1.k;SO.U // D 1. The map � is a bijection
except in the special case.
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For the adjoint representation V D so.W /, Kottwitz has shown in the local case
that the map

� W H1.k;Gv/ D .K�=NE�/! H1.k;G/ D .Z=2Z/

is actually a homomorphism of groups [10]. Let f .x/ D xg.x2/, so K D
kŒx�=.g.x// and E D kŒx�=.g.x2//. It follows from local class field theory that
the group K�=NE� is elementary abelian of order 2m, where m is the number
of irreducible factors gi .x/ of g.x/ such that gi .x2/ remains irreducible over k.
Kottwitz also shows that that the map � is surjective whenm � 1. Hence the number
of orbits with separable characteristic polynomial f .x/ is 1 when m D 0, and is
2m�1 when m � 1.

For the third representation V D Sym2.W /, the map

� W H1.k;A/ D H1.k; J Œ2�/! H2.k; �2/ Š .Z=2Z/

is an even quadratic form. The associated bilinear form is the cup product on
H1.k; J Œ2�/ induced from the Weil pairing J Œ2� � J Œ2� ! �2, and J.k/=2J.k/ is
a maximal isotropic subspace on which � D 0. This allows us to count the number
of stable orbits with a fixed characteristic polynomial.

Let m C 1 be the number of irreducible factors of f .x/ in kŒx�, and let OL
be the integral closure of the ring O in L. Then H1.k;A/ D .L�=L�2/ND1 has
order 22m and the number of stable orbits with characteristic polynomial f .x/ is
equal 2m�1.2m C 1/ D 22m�1 C 2m�1. The subgroup J.k/=2J.k/ has order 2m,
which is also the order of the subgroup .O�L=O�2L /ND1 of units. These two subgroups
coincide when the polynomial f .x/ has coefficients in O and the quotient algebra
OŒx�=.f .x// is maximal in L.

7.3 The local field R

We next consider the orbits in our representations when k D R is the local field of
real numbers. Then the pointed setH1.k;G/ D H1.k;SO.W // has nC1 elements,
corresponding to the quadratic spaces W 0 of signature .p; q/ satisfying: p C q D
2n C 1 and q � n (mod 2). The pointed set H1.k;Gv/ D H1.k;SO.U // for the
standard representation has n C 1 elements when q2.v/ has sign .�1/n, and has n
elements when q2.v/ has sign �.�1/n. The map � is a bijection in the first case and
an injection in the second case, when the definite quadratic space W 0 does not have
an orbit with q2.w�/ D q2.v/.

In the second and third representations, H1.k;GT / is an elementary abelian
2-group, and we will consider the situations where it has maximal rank. For the
adjoint representation V D so.W /, this occurs when all of the nonzero roots of
the characteristic polynomial f .x/ of the skew self-adjoint transformation T are
purely imaginary. Thus f .x/ D xg.x2/ where g.x/ factors completely over the
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real numbers and all of its roots are strictly negative. In this case, the 2-group
H1.k;GT / D K�=NE� D .R�/n=N.C�/n has rank n. The real orthogonal space
W decomposes into n orthogonal T -stable planes and an orthogonal line on which
T D 0. The signatures of these planes determine the real orbit of T . Writing n D 2m
or n D 2mC 1, we see that there are

�

n
m

�

elements in the kernel of � . One can show
that � is surjective in this case, and calculate the order of each fiber as a binomial
coefficient

�

n
k

�

.
For the symmetric square representation V D Sym2.W /, the 2-groupH1.k;GT /

has maximal rank when the characteristic polynomial f .x/ of the self-adjoint trans-
formation T factors completely over the real numbers. In this case, H1.k;GT / D
..R�/2nC1=.R�2/2nC1/ND1 has rank 2n. The real orthogonal space W decomposes
into 2nC1 orthogonal eigenspaces for T , and the signatures of these lines determine
the real orbit. Hence there are

�

2nC1
n

�

elements in the kernel of � . One can also show
that � is surjective in this case, and calculate the order of each fiber as a binomial
coefficient

�

2nC1
k

�

with k � n (mod 2).

7.4 Global fields

Finally, we consider the representation Sym2.V / when k is a global field. In this
case, the group H1.k;A/ D H1.k; J Œ2�/ is infinite. We will now prove that there
are also infinitely many classes in the kernel of � , so infinitely many orbits with
characteristic polynomial f .x/.

Proposition 8. Every class ˛ in the 2-Selmer group Sel2.J=k/ of H1.k; J Œ2�/ lies
in the kernel of � , so corresponds to an orbit over k.

Proof. By definition, the elements of the 2-Selmer group Sel2.J=k/ correspond
to classes in H1.k; J Œ2�/ whose restriction to H1.kv; J Œ2�/ is in the image of
J.kv/=2J.kv/ for every completion kv . Hence the orthogonal space Uv associated
to the class �.˛v/ inH1.kv;SO.V // is split at every completion kv . By the theorem
of Hasse and Minkowski, a non-degenerate orthogonal spaceU of dimension 2nC1
is split over k if and only if Uv D U ˝ kv is split over every completion kv . Hence
the orthogonal space U associated to �.˛/ is split over k, and ˛ lies in the kernel
of � . �

The same argument applies to the Selmer group of the Jacobian Jd of the
hyperelliptic curve dy2 D f .x/, for any class d 2 k�=k�2. Since the 2-Selmer
groups of the twisted curves are known to become arbitrarily large (cf. [5] for the
case of genus n D 1), the number of k-rational orbits is infinite.
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8 More general representations

The three representations V of SO.W / that we have studied illustrate various
phenomena which occur in many other cases. For the standard representation, we
have seen that the invariant polynomial q2 distinguishes the orbits with � ¤ 0

over any field k. Here the arithmetic invariant theory is the same as the geometric
invariant theory.

This pleasant situation also occurs for orbits where the stabilizer Gv is trivial!
An interesting example for the odd orthogonal group SO.W / is the reducible
representation V D W ˚ ^2.W /. This occurs as the restriction of the adjoint
representation of the split even orthogonal group of the space W ˚ h�1i. In
this representation, the vector v D .w; T / is stable if and only if the 2nC 1 vectors
fw; T .w/; T 2.w/; : : : ; T 2n.w/g form a basis of W , or equivalently, if the invariant
polynomial�.v/ D det.hT i .w/; T j .w/i/ is non-zero. In this case Gv D 1.

One complication in this case is that the k-orbits do not cover the k-rational
points of the categorical quotient: the map on points

V.k/= SO.W /.k/! .V= SO.W //.k/

is not surjective. This situation is far more typical in invariant theory than the
surjectivity for the three representations we studied. Another atypical property of the
three (faithful) representations we studied was that a generic vector had a nontrivial
stabilizer. For a generic v in a typical faithful representation V of a reductive group
G, the stabilizer Gv is trivial. For G a torus and k complex, Gv is always the
kernel of the representation; meanwhile, for G simple, there are only finitely many
exceptions (see [20, pp. 229–235]).

The adjoint representations V D g of split reductive groups G generalize the
second representation V D ^2.W / D so.W /. Here the invariant polynomials
correspond to the invariants for the Weyl group on a Cartan subalgebra, and generate
a polynomial ring of dimension equal to the rank of G. The orbits where the
discriminant � is non-zero correspond to the regular semi-simple elements in g,
and the stabilizer Gv of such an orbit is a maximal torus in G. As an example,
one can take the adjoint representation V D Sym2.W / of the adjoint form
PGSp.W / D PGSp2n of the symplectic group, where the degrees of the invariants
are 2; 4; 6; : : : ; 2n ([cf. 3, Ch 8, §13.3, VI]). For some applications to knot theory,
see [15].

The representations which occur in Vinberg’s theory for torsion automorphisms �
generalize the third representation V D Sym2.W /. Here the invariants again form a
polynomial ring. As an example, one can take the reducible representation^2.W / of
the group PGSp.W / D PGSp2n, which corresponds to the pinned outer involution �
of PGL2n. When � lifts a regular elliptic class in the Weyl group, the orbits where the
discriminant � is non-zero are stable, and the stabilizer Gv is a finite commutative
group scheme over k. Several examples of this type were discussed in [8] and [1].
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9 Integral orbits

In order to develop a truly complete arithmetic invariant theory, we should consider
orbits in representations not just over a field, but over Z or a general ring. The
descent from an algebraically closed field to a general field that we have discussed
in Sections 2–8 gives an indication of some of the issues that arise over more
general rings, and it serves as a useful guide for the more general integral theory.
In particular, just as a single orbit over an algebraically closed field can split into
several orbits over a subfield, an orbit over say the field Q of rational numbers may
then split into several orbits over Z.

Often some of the most interesting arithmetic occurs in the passage from Q to Z.
For example, consider the classical representation given by the action of SL2 on
binary quadratic forms Sym2.2/. As we have already noted, an orbit over Q (as over
any field) is completely determined by the value of the discriminant d of the binary
quadratic forms in that orbit. However, the set of primitive integral orbits inside the
rational orbit of discriminant d 2 Z does not necessarily consist of one element, but
rather is in bijection with the set of (oriented) ideal classes of the quadratic order
ZŒ.d Cpd/=2� in the quadratic field Q.

p
d/ (see, e.g., [6]).

In general, to discuss integral orbits we must fix an integral model of the
representation being considered. We give some canonical integral models for the
three representations we have studied. For the first representation, we take W to
be the odd unimodular lattice of signature .n C 1; n/ defined by (2). Because this
lattice is self-dual, we can define the adjoint of an endomorphism ofW over Z. The
groupG is then the subgroup of GL.W / consisting of those transformations g such
that gg� D 1 and det.g/ D 1. This defines a group that is smooth over ZŒ1=2�
but is not smooth over Z2. For the other representations of G, we define ^2.W /
as the lattice of skew self-adjoint endomorphisms of W equipped with the action
of G by conjugation; we similarly define Sym2.W / to be the lattice of self-adjoint
endomorphisms of W . Our objective is to describe the orbits of G on each of these
threeG-modules, or at least those orbits where the discriminant invariant is nonzero.

For the standard representation W , we have already seen that there is a unique
orbit over Q for each value of the discriminant d 2 Q

�. An invariant of a Z-orbit
of a vector w in the lattice W with hw;wi D d is the isomorphism class of the
orthogonal complement U D .Zw/?, which is a lattice of rank 2n and discriminant
d over Z. Although W is an odd lattice, the lattice U can be either even or odd.
For example, when n D 3, the orthogonal complement U of a primitive vector w is
an even bilinear space of rank 2 and discriminant d (so corresponds to an integral
binary quadratic form of discriminantd ) if and only if the vector w has the form w D
aeC bvC cf with a and c even and b odd. In this case d D b2C 2ac � 1 modulo
8, and the orbits of G.Z/ on such vectors form a principal homogeneous space for
the ideal class group of the quadratic order ZŒ.d Cpd/=2� of discriminant d . We
note that these are precisely the quadratic orders where the prime 2 is split. In this
case the groupG.Z/ is isomorphic to the normalizerN.�0.2// of �0.2/ in PSL2.R/,
and the orbits described above correspond to the Heegner points of odd discriminant
on the modular curve X0.2/C [9, §1].
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We consider next the second representation V D ^2.W /. Here, we find that the
integral orbits of SO.M/ on the self-adjoint transformations T W M ! M with
(separable) characteristic polynomial f .x/ D xg.x2/ 2 ZŒx� correspond to data
which generalize the notion of a “minus ideal class” for the ring R D ZŒx�=.f .x//.
More precisely, the ring R in L D QŒx�=.f .x// has an involution � sending ˇ to
�ˇ, where ˇ denotes the image of x in R. Let us consider pairs .I; ˛/, where I is
a fractional ideal for R, the element ˛ is in the Q-subalgebra F of L fixed by � ,
the product II � is contained in the principal ideal .˛/, and N.I/N.I �/ D N.˛/.
Such a pair .I; ˛/ gives I the structure of an integral lattice having rank 2nC 1 and
determinant .�1/n, where the symmetric bilinear form on I is defined by

hx; yi WD coefficient of ˇ2n in .�1/n˛�1xy� : (9)

The pair .I 0; ˛0/ gives an isometric lattice if I 0 D cI and ˛0 D cc�˛ for some
element c 2 L�. The operator S W I ! I defined by S.x/ D ˇx is skew self-
adjoint, and has characteristic polynomial f .x/. If the integral lattice determined by
the pair .I; ˛/ has signature .nC 1; n/ over R, there is an isometry � W I !M (cf.
[22]), which is well-defined up to composition by an element in O.M/. We obtain
an SO.M/-orbit of skew self-adjoint operators with characteristic polynomial f .x/
by taking T D �S��1. Conversely, since a skew self-adjoint T W W ! W gives
W the structure of a torsion free ZŒT � D R-module of rank one, every integral
orbit arises in this manner. Thus the equivalence classes of pairs .I; ˛/ for the ring
R D ZŒx�=.f .x//, as defined above, index the finite number of integral orbits on
V D ^2.W / with characteristic polynomial f .x/.

Let us now consider the third representation V D Sym2.W /. When
dim.W / D 3, the kernel of the trace map gives a lattice of rank 5, closely related
to the space of binary quartic forms for PGL2. The integral orbits in this case were
studied in [2] and [25]. In general, the integral orbits of SO.M/ on the self-adjoint
transformations T W M ! M with (separable) characteristic polynomial f .x/
correspond to data which generalize the notion of an ideal class of order 2 for the
order R D ZŒx�=.f .x// in the Q-algebra L D QŒx�=.f .x//. More precisely, we
consider pairs .I; ˛/, where I is a fractional ideal for R, the element ˛ lies in L�,
the square I 2 of the ideal I is contained in the principal ideal .˛/, and the square of
the norm of I satisfiesN.I/2 D N.˛/. Then the lattice I has the integral symmetric
bilinear form

hx; yi WD coefficient of ˇ2n in ˛�1xy (10)

of determinant .�1/n, and self-adjoint operator given by multiplication by ˇ, where
ˇ again denotes the image of x in R. The pair .I 0; ˛0/ gives an isometric lattice
if I 0 D cI and ˛0 D c2˛ for some element c 2 L�. When this lattice has
signature .n C 1; n/ over R, it is isometric to M and we obtain an integral orbit
with characteristic polynomial f .x/. Conversely, since a self-adjoint T W W ! W

givesW the structure of a torsion free ZŒT � D R-module of rank one, every integral
orbit arises in this way. Thus pairs .I; ˛/ for the ring R D ZŒx�=.f .x//, up to the
equivalence relation defined by c in L�, index the finite number of integral orbits on
V D Sym2.W / with characteristic polynomial f .x/.
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We summarize what we have established for the representations V D ^2.W /
and V D Sym2.W /.

Proposition 9. Let V denote either the representation ^2.W / or Sym2.W / of G.
Let f .x/ be a polynomial of degree 2n C 1 with coefficients in Z and non-zero
discriminant in Q; if V D ^2.W / we further assume that f .x/ D xg.x2/ for an
integral polynomial g. Then the integral orbits ofG.Z/ on V.Z/ with characteristic
polynomial f .x/ are in bijection with the equivalence classes of pairs .I; ˛/ for the
orderR D ZŒx�=.f .x// defined above, with the property that the bilinear form h ; i
on I .given by (9) or (10), respectively) is split.

In terms of Proposition 4, the integral orbit corresponding to the pair .I; ˛/ maps
to the rational orbit of SO.W /.Q/ on V.Q/ corresponding to the class of ˛ � ˛�1.
Here we view ˛ as an element of .K�=NE�/when V D ^2.W /, soL D ECQ and
L� D K CQ. When V D Sym2.W /, we view ˛ as an element of .L�=L�2/N�1.

Finally, we remark that it would be interesting and useful to develop a theory of
cohomology that allows one to describe orbits over the integers as we have in the
cases above. For example, let us consider again the representation V of the group
G D PGL2 over Q given by conjugation on the 2� 2 matrices v of trace zero. Then
this is the adjoint representation, and is also the standard representation of SO3 Š
PGL2. The ring of invariant polynomials on V is generated by q.v/ WD � det.v/,
and the stabilizer Gv of a vector with q.v/ D d ¤ 0 is isomorphic to the one-
dimensional torus over Q which is split by K D Q.

p
d/, and all vectors w with

q.w/ D q.v/ ¤ 0 lie in the same G.Q/-orbit.
A natural integral model of this representation is given by the action of the

Z-group G D PGL2 on the finite free Z-module of binary quadratic forms
ax2 C bxy C cy2. This is equivalent to the representation by conjugation on the
matrices of trace zero in the subring ZC2R of the ring R of 2�2 integral matrices.
In this model, the invariant polynomial is just the discriminant d D b2 � 4ac of the
binary form. The content e D gcd.a; b; c/ is also an invariant of a non-zero integral
orbit.

We may calculate the G.Z/-orbits on the set S of forms with discriminant
d 2 Z � f0g and content e D 1 (so the binary quadratic form is primitive) via
cohomology. Let O D O.d/ be the quadratic order of discriminant d . Then the
stabilizer Gv of such an orbit in PGL2 is a smooth group scheme over Z which lies
in an exact sequence (in the étale topology)

1! Gm ! ResO=Z Gm ! Gv ! 1:

Furthermore, the Z-points of the quotient scheme G=Gv can be identified with the
set S . Hence the orbits in question are in bijection with the kernel of the map
� W H1.Z; Gv/ ! H1.Z;PGL2/ in étale cohomology. Since H1.Z;PGL2/ D 1,
the orbits are in bijection with the elements of H1.Z; Gv/. Since H1.Z;Gm/ D
H2.Z;Gm/ D 1 the long exact sequence in cohomology gives

H1.Z; Gv/ D H1.Z;ResO=ZGm/ D Pic.O/:
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Hence the orbits of PGL2.Z/ on the set S of binary quadratic forms of discriminant
d ¤ 0 and content 1 form a principal homogeneous space for the finite group
Pic.O.d// of isomorphism classes of projective O.d/-modules of rank one. Thus
the number of primitive integral orbits contained in the rational orbit of discriminant
d is given by the class number of O.d/.
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Structure constants of Kac–Moody Lie algebras

Bill Casselman

To Nolan Wallach, wishing him many more years of achievement

Abstract This paper outlines an algorithm for computing structure constants of
Kac–Moody Lie algebras. In contrast to the methods currently used for finite-
dimensional Lie algebras, which rely on the additive structure of the roots, it
reduces to computations in the extended Weyl group first defined by Jacques Tits
in about 1966. The new algorithm has some theoretical interest, and its basis is a
mathematical result generalizing a theorem of Tits about the finite-dimensional case.
The explicit algorithm seems to be new, however, even in the finite-dimensional
case. I include towards the end some remarks about repetitive patterns of structure
constants, which I expect to play an important role in understanding the associated
groups. That neither the idea of Tits nor the phenomenon of repetition has already
been exploited I take as an indication of how little we know about Kac–Moody
structures.
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1 Introduction

This paper is based on a lecture I gave at a conference in San Diego in honor of the
achievements of Nolan Wallach.

Suppose  to be a finite set. In this paper a Cartan matrix indexed by  will be
an arbitrary integral matrix C D .c˛;ˇ/ (˛, ˇ 2 ) satisfying these conditions:
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(C1) c˛;˛ D 2;
(C2) for ˛ ¤ ˇ, c˛;ˇ � 0;
(C3) c˛;ˇ D 0 if and only if cˇ;˛ D 0.

More commonly such a matrix is called a generalized Cartan matrix, whereas a
Cartan matrix is taken to be one with the additional requirement that

(CD) there exist a diagonal matrix D such that CD is positive definite.

But times change, and “generalized” is now closer to “usual”. In this paper, if
condition (CD) is satisfied I will call C positive definite. For purely technical
reasons I will assume further that

(C4) C is irreducible;
(C5) C is invertible.

The first condition means that  cannot be expressed as 1 [ 2 with c˛;ˇ D 0

for ˛ 2 1, ˇ 2 2. This condition is no significant restriction on results, since
one can work with the summands of the root systems corresponding to the i . The
second condition excludes the affine Cartan matrices. This will restrict results, but
the missing cases can be easily dealt with separately.

Let

L D Z
; L_ D Hom.L;Z/ :

Thus embeds into L as a basis. For every subset � of  let L� be the span of �
in L, so that in particular L D L. Since C is integral and invertible, there exists
a unique maximal linearly independent subset _ of L_ and a bijection ˛ 7! ˛_
with

h˛; ˇ_i D c˛;ˇ :
Let L__

be the submodule of L_ spanned by_. The linear transformation

s˛ W � 7! � � h�; ˛_i˛

is a (possibly skew) reflection, takingL to itself. Its contragredient s˛_ takesL_ and
L__

to themselves. These reflections generate the Weyl group W associated to the
Cartan matrix. The W -orbit of  is the set of real roots ˙R. It is the disjoint union
of two halves, positive and negative. The positive (resp. negative) roots ˙C

R
(resp.

˙�
R

) are integral linear combinations of elements in with non-negative (resp. non-
positive) coefficients.

Let D be the region of all v in L˝ R such that hv; ˛_i � 0 for all ˛ 2 , and
define the closed Tits cone C to be the closure ofW.D/. It is convex, and has a non-
empty interior, on which the group W acts discretely with fundamental domain D.
I define ˙I, the set of imaginary roots, to be the union of

˙C
I
D �L \ C

� � f0g
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real roots imaginary roots

++

Cartan matrix

2 −5
−1 2

Figure 1 Real and imaginary roots for a system of rank 2

and its opposite ˙�
I

. It, too, is W -stable, as is each half ˙
İ

and the set ˙ of all
roots, the union of real and imaginary ones. (For all this, refer to Proposition 5.2,
Theorem 5.4, Lemma 5.8, and Exercise 5.12 in Chapter 5 of [Kac85]. Figure 1
shows how things look in a simple case.) The terminology is perhaps motivated by
the fact that many root systems possess a natural quadratic form with respect to
which real roots have real lengths and imaginary ones have imaginary ones.

Let

h D L_ ˝ C ;

which may be identified with an Abelian Lie algebra, and let

h_ D L˝ C

be its complex linear dual. For each ˛ in  let h˛ be the image of ˛_ in h. In other
words, ˛_ may be identified with a linear injection of C into h taking x to xh˛ .
Let g be the Kac–Moody Lie algebra associated to these data. One is given in the
construction of g an embedding of h into it. The adjoint action of h on g is semi-
simple and locally finite, breaking it up into the sum of h and a number of root
spaces g�, with �W h ! C lying inside the image of L in h_. The fundamental fact
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about these data is that g� ¤ 0 if and only if � is a root in the sense spoken of earlier.
This is complemented by the assertion that for each ˛ in , g˛ has dimension one.
It is also true that g� has dimension one for every real root �.

The validity of these assertions depends on assumption (C5). Without it, there
still exists a Kac–Moody algebra defined by C , but its description is a bit more
subtle, as explained in the opening chapter of [Kac85], and elaborated on in
Chapter 6. The corresponding Lie algebras turn out to be extensions of g˝ CŒt˙1�,
with g finite-dimensional, and computations in it reduce easily to computations in g
itself. This is why (C5) is not very restrictive.

There are two basic problems this paper will deal with:

Problem 1. To specify a good choice of basis elements e� of g� for all real
roots �;

Problem 2. To find, for every pair of real roots �, � such that �C � is also a
real root, the structure constant N�;� such that Œe�; e�� D N�;�e�C�.

The method I will use to solve these problems originates in [Tits66a], which
sketches what happens when g has finite dimension. The extension to Kac–Moody
algebras is not quite trivial, but neither is it particularly tricky. I hope that it will
be useful in exploring what happens for bracket computations involving imaginary
roots, which is one of the great mysteries of Kac–Moody algebras, although I say
nothing about this problem here.

When g is finite-dimensional, there are already in the literature two practical
approaches to constructing the e� and computing the N�;�. One can be found
in [Car72] and is explained in more detail in [CMT04]. The construction uses
induction on roots, going from � to � C ˛ (˛ 2 ) according to a certain rule.
Calculation of the structure constants amounts to transliterations of the Jacobi
identity. The other method, introduced in [FK80], exhibits an interesting extension
of groups to interpret the constants as related to cohomology. This technique was
applied originally only to simply laced systems, but it has since been extended to
the rest of the finite-dimensional g in [Ryl00] by ‘folding’. As far as I can tell these
methods cease to be valid for arbitrary Kac–Moody algebras. In any event, in the
cases for which they do work they do not seem to be a great deal faster than a
program based on the method to be explained here. To the extent to which they are
faster, they are ‘hard-wired’, incorporating for each system special short-cuts that
do not apply in general.

Acknowledgments. I thank the organizers of the conference in honor of Nolan
Wallach for inviting me to contribute to it. I also wish to thank my colleague Julia
Gordon, who—rather casually—started me off on this project. I am extremely happy
to have had this opportunity to try to understand and elaborate on Jacques Tits’ work
on structure constants. I first saw that volume of the Publications de l’IHES for sale
in Schoenhof’s when I was a very ignorant graduate student, and the memory of my
puzzled thought, “What exactly is a structure constant?” has remained with me ever
since. And finally I wish to thank the referee, who complained much about lacunae
in an earlier draft but nonetheless continued to read and criticize carefully.
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2 Chevalley bases

In this section I will start looking at Problem 1, that of constructing a good basis
of g. The beginning is straightforward—for each ˛ in  choose an arbitrary e˛ ¤ 0
in g˛. It doesn’t make any difference what choice you make, because all choices will
be conjugate with respect to an automorphism of the Lie algebra g. For each ˛ in,
Œg˛; g�˛� will be the one-dimensional subspace spanned by h˛. Following [Tits66a],
then choose e�˛ so

Œe˛; e�˛� D �h˛ :

The usual convention imposes a plus sign on the right hand side of this equation,
but Tits’ change of sign is extraordinarily convenient, in fact obligatory if the
symmetries exploited later on in this paper are to remain comprehensible. In my
opinion, Tits’ choice should have become the conventional one long ago.

For example, if g D sl2, we get

eC D
�

0 1

0 0

�

; e� D
�

0 0

�1 0

�

; h D
�

1 0

0 �1
�

:

The data of h together with the e˛ make up what I will call a frame for g. (It is called
in French an épinglage, frequently translated awkwardly into English as pinning.
The reference in French is to the way butterflies are mounted. To those of us who
have been parents of young children, the proposed English term has other, less
fortunate, connotations.)

—————

From now on, assume a frame to have been fixed. With this assumption, we
are given also for each ˛ in  a well-defined embedding

'˛W sl2 �! g j eC 7�! e˛; h 7�! h˛; e� 7�! e�˛ :

Let sl Œ˛�2 be its image.

—————

The map taking each e˙˛ to e�˛, h 7! �h for h in h extends to an involutory
automorphism � of all of g called the canonical involution.

For x in g� and y in g�, the bracket Œx; y� lies in g�C� (which may be 0). If
� D ��, this means it will lie in h. For each real root � the subspace Œg�; g��� has
dimension one in h, and is not contained in the kernel of �. Hence there exists a
unique h� in it with h�; h�i D 2.

Lemma 2.1. For each real root � there exists up to sign a unique e� in g� such that

Œe�; �.e�/� D �h� :
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Proof. Given e ¤ 0 in g�, we know that �.e/ lies in g�� and hence

Œe; �.e/� D ah�
for some constant a ¤ 0. But then

Œce; �.ce/� D c2ah�
so we choose ce with c2a D �1. ut

We may thus assemble a basis of g by choosing for each root � one of the two
choices this gives us. This is called a Chevalley basis. Part of the solution to Problem
1 above is to choose a Chevalley basis. It is unique only up to signs, and there is
apparently no canonical choice.

Suppose we are given a Chevalley basis. Suppose further we are given real roots
�, � such that �C � is also a real root. We have

Œe�; e�� D N�;�e�C�
in which the absolute value jN�;�j is now uniquely determined. It is known never
to be 0. We should not be too surprised to learn that it has a relatively simple
expression. I will next explain the formula for it.

If � and � are roots with � real, the �-string through � is the intersection of
� C Z� with ˙ . It is always finite. Define p�;� to be the maximum p such that
� � p� is in the string, and q�;� to be the maximum q such that �C q� lies in it.
The string is the full segment Œ� � p�;�C q��. The following identities are easy
to verify:

p�;� D p��;��
p�C�;� D p�;� C 1
p�;�� D n � p�;� if n is the length of the string.

The following was first proved by Chevalley for finite-dimensional Lie algebras,
probably by Tits more generally. See also [Mor87]. Following [Tits66a], I shall in
effect reprove it later on.

Theorem 2.2 (Chevalley’s Theorem). If �, �, and �C � are all real roots, then

jN�;�j D p�;� C 1 :

The constants p�;� are simple to evaluate, so the whole problem of computing
structure constants comes down to computing a sign.

This result makes it possible to assign a Z-structure to g, and was classically
the basis for Chevalley’s construction of split group schemes defined over Z.
Incidentally, the usual proof of Chevalley’s theorem is a case-by-case examination.
This is somewhat unsatisfactory, and moreover it will not be possible when working
with arbitrary Kac–Moody algebras. One is forced to come up with a proof that is
illuminating even in the finite-dimensional cases.
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3 The root graph

The algorithm we shall eventually see will require that we be able to list as many
roots as we want. In fact, in principle we can construct even an infinite number all
at the same time, as I will explain later.

Every real root is w˛ for some w in W , ˛ in. The natural way to construct real
roots is therefore to start with all the ˛ in  and apply the elements of W to them.
How does this go? Keep in mind that the group W is generated by the elementary
reflections s˛ . We maintain two lists of positive roots, one the current list to be
processed—the waiting list—and the other that of roots that have been processed—
serviced customers. Processing a root means (a) removing it from the waiting list
and (b) applying all elementary reflections to it to see whether we get new roots or
roots we have already seen. When we see a new one, we put it on the waiting list,
if the new root has height below some bound we have initially set. (I recall that the
height of � D P

�˛˛ is
P j�˛j.) Of course one may as well restrict oneself to the

task of finding only positive roots.
It is not hard to use a look-up table to follow this method. It is guaranteed to give

us eventually as many roots as we need, but it is not at all clear how long it will
take. The problem that comes to mind is that when we apply elementary reflections
we might expect a priori to go down in height to get a new root, and then down in
height again, and so on. This is reminiscent of solving the word problem in group
theory. In this case it ought not to be necessary—we would like to know that we can
proceed by adding to the waiting list only reflections of greater height. This is easy
to carry out, since s˛� has height more than � if and only if h�; ˛_i < 0. But seeing
why this procedure will work is not quite trivial.

Define the depth of a positive root � to be `.w/ for the w of least length such
that w�1� < 0. Equivalently this is `.w/ C 1 where w is of least length such that
� D w˛ with ˛ 2 . For example, the depth of every ˛ in  is 1. The fundamental
fact about depth is Proposition 2.3 of [BH93], which is simple to state but not quite
so simple to prove:

Proposition 3.1 (Brink and Howlett). The depth of s˛� is greater than that of �
if and only if h�; ˛_i < 0.

This is also part of Lemma 3.3 in [Cas06].
One consequence is that the height of a root is greater than or equal to its depth,

so if we have found all roots of depth� nwe have also found all roots of height� n.
Another consequence is one we’ll need in a later section:

Corollary 3.2. If � is a positive real root not in , then there exists ˛ in  with
h�; ˛_i > 0.

Here is another natural consequence:

Corollary 3.3. If � � , then the real roots in L� are in the W�-orbit of �.

Here W� is the subgroup of W generated by the s˛ with ˛ in �.
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Proof. Arguing by induction on depth, it has to be shown that if � is a positive real
root in the linear span of �, there exists ˛ 2 � such that h�; ˛_i > 0. But since �
is positive and in L� , h�; ˇ_i � 0 for all ˇ not in �, so that the claim follows from
the previous Corollary. ut

In finding positive roots, we are in effect building what I call the root graph,
from the bottom up. It is an important structure. With one exception the nodes of
this graph are the positive roots. The exception is that for technical convenience I
add a ‘dummy’ node at the bottom (Figures 2 and 3).

What about edges? They are oriented. There is an edge labeled s˛ from the
dummy node to ˛, for each ˛ in . There is an edge from a root � to another �
if � D s˛� and the height of � is greater than the height of �. It is labeled by s˛ .
Since

s˛� D � � h�; ˛_i˛

this will happen if and only if h�; ˛_i < 0.

α

β

sα sβ

sβ sα

sα sβ

sαsβ

Figure 2 The roots and root graph of G2

∅

α β

α + β 3α + β

2α + β 3α +2 β

G2

Figure 3 A different version of the root graph of G2
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∅

ε1 − ε2 ε2 − ε3 ε3 − ε4

ε1 − ε3 ε2 − ε4

ε1 − ε4

A3 ∅

ε1 − ε2 ε2 − ε3 2ε3

ε1 − ε3 ε2 + ε3 2ε2

ε1 + ε3 2ε1

ε1 + ε2

C3

Figure 4 The root graphs for A3 and C3

sα

sβ

sγ

Cartan matrix

2 −1 −2
−1 2 −1
−1 −1 2

Figure 5 The bottom of an infinite root graph

In drawing the root graph, the loops are redundant, since the total number of
edges coming in or out is a constant. (This is the reason for adding the ‘dummy’.)
Furthermore, in the diagrams that follow the arrows can be replaced by simple lines,
because the orientation is always upward (Figs. 4 and 5).
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Figure 6 The ISL root graph for A3

Each root can be reached by one or more paths in the root graph, starting at
the dummy node. But if we are to construct roots by traversing paths, we want to
specify a unique path to every node. I choose the ISL (Inverse Short Lex) path,
which is defined recursively (Figure 6). Assign an order to . A path

� D �0 ˛1�! � � � ˛n�! �n

is ISL if ˛n is the least label on the edges leading up to �n, and similarly for all its
initial segments.

4 Rank two systems

Chevalley’s formula for jN�;�j indicates that the geometry of root configurations
will likely be important in this business. In this section and the next I prove a few
crucial properties.

I begin by recalling the original way of thinking about bases of roots. Suppose V
to any real vector space, given a coordinate system .xi /. Impose on V the associated
lexicographic order: x < y if xi D yi for i < m but xm < ym. This is a linear order,
invariant under translation, and [Sat51] points out that any translation-invariant
linear order that is continuous in some sense has to be one of these. In any free
Z-module contained in V there exists a least non-zero positive vector.

Suppose to be a basis of a set˙ of roots, and take V to beL˝R. If we assign
an order to , we get a corresponding lexicographic order on V . The positive roots
in˙ are those > 0 with respect to the lexicographic order. This should motivate the
following discussion.

Lemma 4.1. Suppose we are given an ordered set of real and linearly independent
roots �i , and let �k be the subset of the first k. There exists a subset of roots ˛i in
 and w in W such that w�1 D ˛1, and each w�k is contained in the non-negative
integral span of the ˛i for i � k.

Proof. Extending the set of �i if necessary, we may assume they form a basis of V .
Assign V the associated lexicographic order. Let Vk be the real span of �k .
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Define ˇ1 to be �1, and define ˇk to be the least positive root in Vk that is not in
Vk�1 (look at the linear order induced on the quotient to see that this exists). Let B
be the set of all ˇi , Bk the subset of the first k. The real span of Bk is Vk .

I claim that every real root � in the real span of Bk positive with respect to
this linear order (including the �i themselves) is in the non-negative integral span
of Bk . For k D 1, there is nothing to prove. Proceed by induction on the smallest
k such that � is in the real span of �k . Applying induction, we may assume � is in
Vk � Vk�1. If � D ˇk , no problem. Otherwise � > ˇk . According to Corollary 3.2
of § 3 there exists i � k such that h�; ˇ_i i > 0. Then �� ˇi will again be a root, of
smaller height. Repeat as required.

Now apply Theorem 2 of §5.9 in [MP95] to see that there exists w in W with
wB D . ut
Proposition 4.2. If �, � are real roots, there exists w inW , ˛ and ˇ in  such that
w� D ˛, w� is a non-negative integral combination of ˛ and ˇ. The real root w�
is in W˛;ˇf˛; ˇg.
Proof. The last assertion follows from Corollary 3.3 . ut

The map from  to _ has a natural extension to a map � 7! �_ from ˙R to
˙_

R
� L_. It is characterized by the formula .w�/_ D w�_ for all real roots �.

If � D w.˛/, then the reflection corresponding to � is s� D ws˛w�1:

s�u D u� hu; �_i� :

For any pair of distinct real roots �, � let L�;� be their integral span.

Proposition 4.3. If � and � are any two distinct real roots with h�;�_i ¤ 0, there
exists on L�;� an inner product with respect to which s� and s� are orthogonal
reflections, and � � � > 0. It is unique up to a positive scalar, and � � � > 0 for all
real roots � in L�;�.

Proof. The reflection s� is orthogonal if and only if

2
	u � �
� � �




D hu; �_i

for all u in L�;�. This requires that

h�;�_i D 2
�

� � �
� � �

�

h�; �_i D 2
�

� � �
� � �

�

:

These equations tell us that � �� and � �� are both determined by � ��, so certainly
there is a unique inner product defined uniquely onL�;� by � �� and the requirement
that reflections be orthogonal. Why are the norms of real roots then all positive?
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According to Proposition 4.2, we may assume that � D ˛, � D p˛Cqˇ with ˛,
ˇ in . In these circumstances h˛; ˇ_i ¤ 0, so there exists on L˛;ˇ an essentially
unique inner product with ˛ � ˛ > 0. By the definition of a Cartan matrix, we also
have ˇ � ˇ > 0. The given inner product on L�;� must be some scalar multiple of
this one. But both � and � are Weyl transforms of ˛ or ˇ, so both also have positive
norms. ut
Corollary 4.4. Given two real roots �, � we have

h�;�_ih�; �_i � 0

and one factor is 0 if and only if both are.

Proof. Since

h�;�_ih�; �_i D 4 .� � �/2
k�k2k�k2 : ut

Since the transpose of a Cartan matrix is also a Cartan matrix, the previous result
implies that there exists an essentially unique metric on ˙_ as well.

Corollary 4.5. In an irreducible root system of rank two, the product k�k k�_k is
constant.

Proof. It is immediate from the defining formulas that

k˛k k˛_k D kˇk kˇ_k : .�/

Any other real root � is of the form w˛ or wˇ, from which the claim follows. ut
Corollary 4.6. The map

� 7�! �_

k�_k2

is linear on ˙R \L�;�.

5 Tits triples

In this section, suppose �, �, and � to be what I call a Tits triple—a trio of real
roots with �C�C� D 0. In these circumstances, either h�; �_i or h�; �_i does not
vanish, so by Corollary 4.3 there exists a well-defined inner product onL�;� D L�;� ,
with respect to which all real roots have positive norm.
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In particular, the �-string through� contains at least the two real roots� and��.
It is stable under s�, which reflects in the point where h�;�_i D 0. By assumption,
both � and �� are in this string.

Lemma 5.1. Let n D h�; �_i.
(a) n < �1 if and only if k�k > k�k;
(b) n D �1 if and only if k�k D k�k;
(c) n > �1 if and only if k�k < k�k.
Proof. If n D �1, then s�� D ��. If n � 0, then evaluate .�C �/ � .�C �/ to see
that k�k2 > k�k2. In the remaining case, with n � �2, consider instead s�� D ��,
s��, s��. ut

There are a limited number of configurations of the �-string through �. If � is
a positive (resp. negative) imaginary root in the string, then s�� is also one, since
the positive (resp. negative) imaginary roots are stable under W . Since the positive
(resp. negative) imaginary roots are the intersection of a convex set with the roots,
all intervening roots must also be positive (resp. negative) and imaginary. Therefore
any real roots in the string must be at its ends. Since s� reflects in the hyperplane
h�; �_i D 0 and the real roots in the string can have at most two lengths, the
previous result implies:

Lemma 5.2. There do not exist three real roots � in a �-string with h�; �_i � 0.

In other words, the following figures, with real roots dark, show all possibilities
for strings containing a real root. The lengths in the string decrease until at most the
half-way point, then increase (Figure 7).

All these are in fact possible, as you can see by perusing classical root diagrams
or Figure 1.

Lemma 5.3. The following are equivalent:

(a) s�� D ��;
(b) h�; �_i D �1;
(c) k�k � k�k, k�k.

Figure 7 Possible root strings containing a real root
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Figure 8 An impossible real root configuration

The point of this result is that whenever �C �C � D 0 we can cycle to obtain
s�� D ��, since we can certainly cycle to get the third condition by taking � of
maximum length.

Proof. The equivalence of (a) and (b) is immediate.
Assume (b). Then s�� D ��, so k�k D k�k. But also h�;�_i � �1, so by

Lemma 5.1 we have k�k � k�k. Thus (b) implies (c).
Assume (c). First of all, Lemma 5.1 implies that h�;�_i < 0, for if not then

k�k2 D k�C �k2 > k�k2, a contradiction. This implies that n D h�; �_i < 0 as
well.

If n D �1 then s�� D �� and k�k D k�k. If n < �1. But then by Lemma 5.1
we have k�k � k�C �k D k�k. By symmetry, we also have k�k � k�k. But then
k�k D k�k and by Lemma 5.1 s�� D ��. ut

One consequence is that we cannot have a trio of real roots with �C�C � D 0,
k�k, k�k > k�k. The diagram of Figure 8 is impossible.

I shall now examine what happens when k�k � k�k D k�k. There are two
different cases.

—————

Suppose first that k�k D k�k D k�k. Then by Lemma 5.1

s�W � 7�! ��
� 7�! ��
� 7�! ��

s�W � 7�! ��
� 7�! ��
� 7�! ��

so s�s� rotates .�; �; �/ to .�; �; �/. Following this by s� maps

� 7�! ��
� 7�! ��
� 7�! �� :

Thus

p�;� D p�;� etc.; p�;� D p�;�� D p�;� :

—————
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Suppose next that k�k > k�k D k�k. We may set these last to 1, k�k2 D n > 1.
By Lemma 5.1 we must have h�; �_i D �1. Since

h�;�_ik�k2 D h�; �_ik�k2

we must also have h�;�_i D �n < �1.
But then � and �� D � C � must also lie in the initial half of the �-string

through �, and therefore by Lemma 5.2 � must be its beginning. Similarly, � is at
the beginning of its �-string. Therefore

p�;� D p�;� D 0 :

If � were not at the beginning of its �-string, there would exist a root � � � of
squared-length

k� � �k2 D k�k2 � 2� P�C k�k2

greater than that of �. Again by Lemma 5.2 , this cannot happen. So � is at the
beginning of its �-string. The same holds for �. So

p�;� D p�;� D 0 :

Since � is at the beginning of its �-string, s�� D � C n� is the end of that string,
which is of length n. But �C � D ��, so

p�;� D p��;�� D n � 1

and also

p�;� D p��;�� D n� 1 :

—————

These computations now imply:

Lemma 5.4 (Geometric Lemma). We have

p�;� C 1
k�k2 D p�;� C 1

k�k2 D p�;� C 1
k�k2 :

Lemma 5.5. We have p�;� D p�;�.

Proposition 5.6. We have

.p�;� C 1/�_ C .p�;� C 1/�_ C .p�;� C 1/�_ D 0 :
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Proof. Identify � with 2�_=k�_k2, etc. Since � C � C � D 0 we also have by
Corollary 4.6

�_

k�_k2 C
�_

k�_k2 C
�_

k�_k2 D 0

But the product k�k k�_k does not depend on �, so

k�k2�_ C k�k2�_ C k�k2�_ D 0 :

Lemma 5.4 now implies that

.p�;� C 1/�_ C .p�;� C 1/�_ C .p�;� C 1/�_ D 0 : ut

6 Representations of SL(2)

Representations of SL2 play an important role in both Carter’s and Tits’ approaches
to structure constants. In this section I recall briefly what is needed. Of course this
is well-known material, but perhaps not in quite the form I wish to refer to.

Let

u D
�

1

0

�

; v D
�

0

1

�

be the standard basis of C2, on which SL2.C/ and sl2 act. They also act on the
symmetric space Sn.C/, with basis ukvn�k for 0 � k � n. Let 
n be this
representation, which is of dimension nC 1.


n

��

ex 0

0 e�x
��

W ukvn�k 7�! e.2k�n/xukvn�k


n

��

1 x

0 1

��

W ukvn�k 7�! uk.v C xu/n�k


n

��

1 0

�x 1

��

W ukvn�k 7�! .u� xv/kvn�k :

Now to translate these formulas into those for the action of g. Let wk D ukvn�k .


n.h/ W wk 7�! .2k � n/wk

n.eC/ W wk 7�! .n � k/wkC1

n.e�/ W wk 7�! �kwk�1 :
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u[3]v[3] u[2]vuv[2]
e+e−

−3 −2 −1

321
31−1−3

Figure 9 The representation 
3

For many reasons, it is a good idea to use a different basis of the representation.
Define divided powers

uŒk� D uk

kŠ
;

and set wŒk� D uŒk�vŒn�k� (Figure 9). Then


n.h/ W wŒk� 7�! .2k � n/wŒk�

n.eC/ W wŒk� 7�! .k C 1/wŒkC1�

n.e�/ W wŒk� 7�! �.n � k C 1/wŒk�1� :

If

� D
�

0 1

�1 0

�

;

then we also have


n.�/W wŒk� 7�! .�1/kwŒn�k� :

The 
n exhaust the irreducible finite-dimensional representations of both SL2.C/
and sl2, and every finite-dimensional representation of either is a direct sum of them.

Let d D n C 1, the dimension of 
n, assumed even. The weights of this with
respect to h are

�d; : : : ;�1; 1; : : : ; d ;
The formulas above imply immediately:

Proposition 6.1. Suppose v to be a vector of weight�1 in this representation. Then

.eC/v and 
.�/v are both of weight 1, and


.eC/v D �.�1/d=2
�

d

2

�


.�/v :

The sum of weight spaces g� for � in a given �-string is a representation of sl2.
The formulas laid out in this section relate closely to the numbers p�;� and q�;�. For
one thing, as the picture above suggests and is easy to verify, they tell us that we can
choose basis elements e� for each � in the chain so that

Œe�; e�� D .p�;� C 1/e�C�
Œe��; e�� D .�1/p�;�.q�;� C 1/e���:
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The choice of basis for one chain unfortunately affects other chains as well, so this
observation doesn’t make the problem of structure constants trivial. But it is our first
hint of a connection between structure constants and chains.

7 The extended Weyl group . . .

Tits’ beautiful idea is to reduce the computation of structure constants to computa-
tion in a certain extension of the Weyl group, the extended Weyl group, fitting into
a short exact sequence

1! f˙1g! Wext ! W ! 1 :

If g has finite dimension, the group Wext can be described succinctly as the
normalizer of a maximal torus in the integral form of the simply connected split
group with Lie algebra g. For arbitrary g it is a subgroup of a group G constructed
in [KP85], a simply connected analogue for general Kac–Moody algebras.

I cannot resist remarking here about the literature in this field. That on
Kac–Moody algebras is adequate. The primary reference is still [Kac85], but it
needs updating and its exposition is dense. A useful supplement is [MP95]. For that
matter, it is puzzling that there are a number of extremely basic questions about the
algebras that have not yet been answered, such as whether or not they can be defined
by Serre relations. This makes it very difficult to do explicit calculations with them.
But the literature on the associated groups is far less satisfactory. The original paper
[MT72] is very readable, but doesn’t tell enough for practical purposes. There are a
number of valuable expositions by Jacques Tits, such as [Tits87] and [Tits88], but
many of these are difficult to obtain, and are in any event inconclusive. The paper
[KP85] is exceptionally clear, but for full proofs one must refer back to earlier
papers by the same authors that are not so clear. There is the book [Kum02], but it
doesn’t contain everything one wants. There are a number of expositions by Olivier
Mathieu, but I have the impression that he stopped writing on this subject before he
was through.

The good news is that we do not need to know a great deal about the
Kac–Peterson groupG.

(G1) There exists for each ˛ in  a unique embedding

'˛W SL2.C/ ,! G

compatible with the map '˛ of Lie algebras. The images SLŒ˛�2 .C/ generateG.
(G2) If 
 is any representation of g whose restriction to sl

Œ˛�
2 is a direct sum of

irreducible representations of finite dimension, it lifts to a representation I
will call 
˛ of SL2.C/. There exists a unique representation of G that I will
also call 
 such that 
 ı'˛ D 
˛ . This is true in particular if 
 D ad.
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(G3) Let � be the embedding of C� into SL2.C/:

�W x 7�!
�

x 0

0 1=x

�

:

Abusing terminology slightly, for every ˛ in  let ˛_ D '˛ı�. These give us
a homomorphism

' D
Y

˛_W .C�/ �! G :

It is an embedding, say with image H , which is its own centralizer in G. Let
HZ be the image of f˙1g. (The notation is suggested by what happens for
g finite-dimensional, in which case HZ is the group of integral points in a
maximal torus.)

(G4) Let

!.x/ D
�

0 x

�1=x 0

�

The normalizer NG.H/ is generated by H and the elements !˛.x/ D
'˛
�

!.x/
�

. The adjoint action of !˛.x/ on h is the same as that of the Weyl
reflection s˛ . Let

�˛ D !˛.1/ :

(G5) The groupWext is defined to be the subgroup of G generated by the �˛ . It fits
into a short exact sequence:

1! HZ ! Wext ! W ! 1 :

(G6) There exists a useful cross-section w 7! bw of the projection from Wext to W .
Define Os˛ to be �˛ . If w D s1 : : : sn is an expression for w as a product of
elementary reflections, the product

bw D Os1 : : : Osn
depends only on w. Multiplication in Wext is determined by the formulas

bs˛w D
�

bs˛bw if `.s˛w/ D 1C `.w/
˛_.�I / Os˛bw otherwise.

and

bwOs˛ D
�

bws˛ if ws˛ > w
Œw˛_�.�1/bws˛ otherwise.
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The properties of the cross section were first found by Tits and proved in
[Tits66b] in the case of finite-dimensional g. Curiously, the explicit cocycle of the
extension ofW by HZ was first exhibited in [LS87].

The generalization to arbitrary Kac–Moody algebras is by Kac and Peterson.
Why is Wext relevant to structure constants? The connection between NG.H/

and nilpotent elements of the Lie algebra can be seen already in SL2. In this group,
the normalizer breaks up into two parts, the diagonal matrices and the inverse image
M of the non-trivial element of the Weyl group, made up of the matrices !.x/ for
x ¤ 0. The matrix ! D !.x/ satisfies

!2 D
�

0 x

�1=x 0

�2

D
��1 0

0 �1
�

; hence ��1˛ D ˛_.�1/�˛ :

According to the Bruhat decomposition, every element of SL2 is either upper
triangular or can be factored as n1w.x/n2 with the ni unipotent and upper triangular.
Making this explicit:

�

1 0

x 1

�

D
�

1 1=x

0 1

� �

0 �1=x
x 0

� �

1 1=x

0 1

�

�

0 x

�1=x 0

�

D
�

1 x

0 1

� �

1 0

�1=x 1

� �

1 x

0 1

�

:

Some easy calculating will verify further the following observation of Tits:

Lemma 7.1. For any � in the non-trivial coset of H in NG.H/ in SL2 there exist
unique upper-triangular nilpotent eC and lower-triangular nilpotent e� such that

� D exp.eC/ exp.e�/ exp.eC/ :

In this equation, any one of the three determines the other two.

Applying the involution � we see that the roles of eC and e� may be reversed.
In other words, specifying an upper triangular nilpotent eC or a lower triangular
nilpotent e� is equivalent to specifying an element of M .

Suppose � D w˛ to be a root of g. If ! in Wext maps to w, define SLŒ��2 to be

! SLŒ˛�2 !�1. This group is independent of the choice of!, although its identification

with SL2 is not. Let HŒ��
Z

be the image of the diagonal matrices in SLŒ��2 .Z/, and let

M
Œ��

Z
be the image of the matrices

�

0 ˙1
1 0

�

in NG.H/. Each MŒ��

Z
has exactly two elements in it, corresponding to the possible

choices of e˙�. In other words, there is a well-defined map taking � 2 MŒ��

Z
to e�;�

such that

� D exp.e�;� / exp.e��;� / exp.e�;� / :



Structure constants of Kac–Moody Lie algebras 75

Here is the whole point:

—————

A choice of e� or e�� is equivalent to a choice of � in MŒ��

Z
.

—————

So now we can at last see the connection between structure constants and the
extended Weyl group.

Lemma 7.2. For ! in Wext with image w in W we have

!M
Œ��

Z
!�1 D MŒw��

Z
:

and furthermore for � in MŒ��

Z

Ad.!/e�;� D ew�;!�!�1 :

Let me now solve Problem 1. We must choose for each real root � > 0 an element
�� in MŒ��

Z
. We have already chosen �˛ for ˛ in . Now follow the ISL root graph

to set

�� D �˛����1˛

when �
˛�! � is an edge in it. This technique, of defining objects associated to

nodes of a graph by finding a spanning tree in it, is common in computer algorithms.

8 . . . and structure constants

How will this new scheme relate to structure constants? Suppose we are given
choices of the elements ��. These determine nilpotent elements e˙�;�� etc. in sl

Œ��
2 .

Suppose �C �C � D 0. According to our definitions,

Œe�;�� ; e�;�� � D ".�; �; �; ��; ��; ��/.p�;� C 1/e��;�� ;

for some " factor. According to the generalization of Chevalley’s theorem this factor
is˙1, but I won’t assume that.

The dependence on the roots �, �, � is manifest but weak, in that �� determines
both e� and e��. In fact we don’t need to take it into account at all. If �C�C� D 0
then the only other linear combination ˙� ˙ � ˙ � that vanishes is �� � � � �.
Since �.eC/ D e� we know that ".��;��;��; : : : / D ".�; �; �; : : : /, so we can
just write ".��; ��; ��/:
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Proposition 8.1. For real roots �, �, � with �C �C � D 0 we have

Œe�;�� ; e�;�� � D ".��; ��; ��/.p�;� C 1/e��;�� :

where " depends only on ��, ��, �� .

How do we compute ".��; ��; ��/? Following §2.9 of [Tits66a], we get four
basic rules.

Theorem 8.2. Suppose that �, �, � are real roots with �C �C � D 0. Then

(a) ".��; ��; ��/ D �".��; ��; ��/.
(b) ".��; ��; ��1� / D �".��; ��; ��/.
(c) Suppose k�k � k�k, k�k. In this case s�� D �� and s� D s�s�s�, so ������1�

lies in MŒ��
Z

and satisfies

".��; ��; �����
�1
� / D .�1/p�;� :

(d) The function " is invariant under cyclic permutations:

".��; ��; ��/ D ".��; ��; ��/ :

Proof. (a) follows from Lemma 5.5, since Œx; y� D �Œy; x�. (b) is elementary, since
e�;��1

�
D �e�;�� .

It is the last two results that are significant. The first tells us that there is one case
in which we can calculate the constant explicitly, and the second tells us that we can
manipulate any case so as to fall in this one.

For (c): Proposition 6.1 tells that in this case

Œe�;�� ; e�;�� � D .�1/p�;�.p�;� C 1/Ad.��/e�;��
D .�1/p�;�.p�;� C 1/es��;������1

�
:

For (d): This reduces to the fact that the Jacobi identity has cyclic symmetry. For
e�, e�, and e� it tells us that

0 D ŒŒe�; e��; e� �C ŒŒe�; e��; e��C ŒŒe� ; e��; e��
D ".��; ��; ��/.p�;� C 1/Œe��; e��
C ".��; ��; ��/.p�;� C 1/Œe��; e��
C ".��; ��; ��/.p�;� C 1/Œe��; e��

D ".��; ��; ��/.p�;� C 1/h�
C ".��; ��; ��/.p�;� C 1/h�
C ".��; ��; ��/.p�;� C 1/h� :

But according to Proposition 5.6,

.p�;� C 1/h� C .p�;� C 1/h� C .p�;� C 1/h� D 0 :
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The vectors h� and h� are linearly independent, so the conclusion may be deduced
from the following trivial observation: if u, v, w are vectors, two of them linearly
independent, and

auC bv C cw D 0
uC v C w D 0;

then a D b D c. ut
The relevance to computation should be evident. If �C �C � D 0, then one of

the three roots will at least weakly dominate in length, and by Theorem 8.2(d) we
can cycle to get the condition assumed in Lemma 5.3.

Incidentally, from these rules follows Chevalley’s theorem:

Proposition 8.3. The function " always takes values˙1.

At any rate, we are now faced with the algorithmic problem: Suppose
�C �C � D 0 with k�k � k�k D k�k. Then �� D s�� and ������1� lies

in MŒ��

Z
. Is it equal to �� or ��1� D �_.�1/��? If ������1� D �_.˙1/�� we can

deduce now:

Œe�;�� ; e�;��� D ˙.�1/p�;�.p�;� C 1/e�;�� :

9 The extended root graph

To each real root � are associated two elements �˙1� in MŒ��

Z
. These are the nodes

of the extended root graph, which is a two-fold covering of the root graph itself.
Make edges from each node � to �˛���1˛ , and from � to ��1˛ ��˛ (for ˛ 2 ).
Compute these as we assign the ��. This can all be calculated by using the formulas
for multiplication in Wext (Figure 10).

This is what we need in order to compute the edges in the extended root graph,
which we use to compute all ������1� =�� for Tits triples .�; �; �/.

Let’s look at an example, the Lie algebra sl3.

H

α

β γ = sβα= sαβ

Figure 10 The root system A2
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Set

�� D �˛�ˇ��1˛ D s˛sˇ˛_.�1/Os˛ Osˇ Os˛ D ˇ_.�1/Os� :
Thus by definition Œe˛; eˇ� D e� .

We can also use Tits’ trick to calculate Œeˇ; e˛�. We know

Œeˇ; e˛� D e�;�ˇ�˛��1
ˇ
:

But

�ˇ�˛�
�1
ˇ D sˇs˛ˇ_.�1/Osˇ Os˛ Osˇ D ˛_.�1/Os� D �_.�1/�� ;

so Œeˇ; e˛� D �e� . Of course this just confirms what we already knew.

10 Admissible triples

At this point I have explained how to construct the �� and computed as much as we
want of the extended root graph.

According to Proposition 8.2, we can reduce the computation of the factors " to
the case in which the arguments come from a Tits triple .�; �; �/, and in this case it
reduces more precisely to a calculation of a comparison of ������1� =�� .

We therefore start by making a list of Tits triples, and the ISL tree can be used
to do this. We start by dealing directly with all cases in which � D ˛ lies in  and
� > 0, following from � up the ISL tree. The cases where � < 0 can be dealt with
at the same time, since if ˛ C � D �, then �� C ˛ D ��. Then we add the ones
where � is not in . If .�; �; �/ is a Tits triple with s˛� > 0, then so is

s˛.�; �; �/ D .s˛�; s˛�; s˛�/ :
Thus we can compile a complete list of Tits triples by going up the ISL tree.

We must then compare �����
�1
� to �� for all Tits triples .�; �; �/. This

computation may also be done inductively in the ISL tree, since

�˛���
�1
˛ � �˛����1˛ � �˛��1� ��1˛ D �˛ � ������1� � ��1˛ :

To see exactly how this goes, fix for the moment assignments � 7! ��. For every
triple .�; �; �/ with s�� D � (not just Tits triples) define the factor �_�;�;� by the
formula

�����
�1
� D �_�;�;� � �� :

The factor �_�;�;� will lie in H�.Z/, hence will be either 1 or �_.�1/. I will show in
the next section how to compute these factors when � lies in . This will depend
on something we haven’t seen yet. But for the moment assume that the � _̨;�;� have
been calculated for all ˛ in  and � an arbitrary positive root. We can then proceed
to calculate the �-factors for all Tits triples by induction. Let

.�	; �	; �	/ D .s˛�; s˛�; s˛�/ :
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Then

�����
�1
� D �_�;�;� � ��

�˛���
�1
˛ � �˛����1˛ ��˛��1� ��1˛ D �˛ � ������1� ���1˛

.� _̨;�;�
�

� ��
�

/.� _̨;�;�
�

� ��
�

/.� _̨;�;�
�

� ��
�

/�1 D �˛ � �_�;�;��� ���1˛
.� _̨;�;�

�

Cs�
�

� _̨;�;�
�

Cs�
�

s�
�

s�
�

� _̨;�;�
�

/���
�

��
�

��1�
�

D s˛�_�;�;� � �˛����1˛
.� _̨;�;�

�

C s�
�

� _̨;�;�
�

Cs�
�

� _̨;�;�
�

/���
�

��
�

��1�
�

D .s˛�_�;�;�C� _̨;�;�
�

/���
�

leading to:

Lemma 10.1. If .�; �; �/ is a Tits triple and � ¤ ˛ 2 , then so is

.�	; �	; �	/ D .s˛�; s˛�; s˛�/ ;

and

�_�
�

;�
�

;�
�

D s˛�_�;�;� C � _̨;�;�
�

C s�
�

� _̨;�;�
�

C s�
�

� _̨;�;�
�

C � _̨;�;�
�

:

I wish this formula were more enlightening. One must conclude that the
relationship between the groups SLŒ��2 and Tits’ cross section is complicated.

The principal conclusion of these preliminary formulas is that for both the
specification of the �� and the calculation of the ������1� we are reduced to the
single calculation: for ˛ in  and � > 0, given �� how do we calculate �˛����1˛ ? I
must explain in detail not only how calculations are made, but also how elements of
NH.Z/ are interpreted in a computer program. I have already explained the basis of
calculation in the extended Weyl group.

In understanding how efficient the computation of structure constants will be, we
have to know roughly how many admissible triples there are. Following [Car72] and
[CMT04], I assume the positive roots to be ordered, and I define a trio of roots �,
�, � to be special if 0 < � < � and �C � D �� is again a root. If �, �, � is any
triple of roots with � C � C � D 0, then (as Carter points out) exactly one of the
following twelve triples is special:

.�; �; �/; .��;��;��/; .�; �; �/; .��;��;��/

.�; �; �/; .��;��;��/; .�; �; �/; .��;��;��/

.�; �; �/; .��;��;��/; .�; �; �/; .��;��;��/:
Hence there are at most 12 times as many Tits triples as special triples. How
many special triples are there? This is independent of the ordering of ˙C, since
it is one-half the number of pairs of positive roots �, � with � C � also a root.
In [CMT04] it is asserted that for all classical systems the number is O.n3/, where
n is the rank of the system. Don Taylor has given me the following more precise
table:
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System Number of special triples

An n.n2 � 1/=6
Bn n.n � 1/.2n� 1/=3
Cn n.n � 1/.2n� 1/=3
Dn 2n.n � 1/.n� 2/=3
E6 120

E7 336

E8 1120

F4 68

G2 5

11 Some details of computation

For this section I am going to simplify notation. Every element of the extended Weyl
group may be represented uniquely as t_.�1/ � bw, where t_ is in X�.H/ D L_

and w is in W . I will express it as just t_ � bw, and of course it is only t_ modulo
2X�.H/ that counts. Also, I will refer to the group operation in L_ additively.

Proposition 11.1. Suppose ˛ to be in , � ¤ ˛ > 0. Then

Os˛ Os� Os˛ D

8

ˆ

ˆ

<

ˆ

ˆ

:

bss˛� if h˛; �_i < 0
˛_ � Os� h˛; �_i D 0
.˛_ C s˛s�˛_/ �bss˛� h˛; �_i > 0:

Proof. A preliminary calculation:

s�˛ D ˛ � h˛; �_i�
s˛s�˛ D �˛ � h˛; �_is˛�

D �˛ � h˛; �_i.� � h�; ˛_i˛/
D �˛ � h˛; �_i�C h˛; �_ih�; ˛_i˛
D �h˛; �_i�C �h˛; �_ih�; ˛_i � 1�˛:

Recall that by Corollary 4.4 the product h˛; �_ih�; ˛_i � 0. Recall also that ws˛ >
w if and only if w˛ > 0.

(a) h˛; �_i < 0. Here s�˛ > 0 and s˛s�˛ > 0 so s� < s˛s� < s˛s�s˛ , and
`.s˛s�s˛/ D `.s�/C 2, and

Os˛ Os� Os˛ D 1s˛s�s˛ Dbss˛� :
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(b) h˛; �_i D 0. Here s˛� D �, and Os� Os˛ D bs�s˛ , but s˛.s�s˛/ D s� so

Os˛ Os� Os˛ D Os˛bs�s˛ D ˛_ � Os� :
(c) h˛; �_i > 0. Here one sees easily that s�˛ < 0. But since � ¤ ˛ we also have

s˛s�˛ < 0 also. So `.ss˛�/ D `.s�/ � 2.

Os˛ Os� D ˛_ �bs˛s�
Os˛ Os� Os˛ D ˛_ �bs˛s� Os˛

D ˛_ �bss˛� � ˛_ � 1
D .˛_ C s˛s�˛_/ �bss˛� : ut

Corollary 11.2. Suppose �� D t_� � Os�. Then for ˛ ¤ �

�˛���
�1
˛ D

8

ˆ

ˆ

<

ˆ

ˆ

:

.s˛t
_
� C s˛s�˛_/ �bss˛� h˛; �_i < 0

.s˛t
_
� / �bss˛� h˛; �_i D 0

.s˛t
_
� C ˛_/bss˛� h˛; �_i > 0:

Keep in mind that the reflection associated to s˛� is s˛s�s˛ .

Proof. We start with

�˛���
�1
˛ D Os˛t_� Os�˛_ Os˛ D .s˛t_� C s˛s�˛_/ � Os˛ Os� Os˛ :

Apply the Proposition. ut
There are three cases, according to whether h˛; �_i is <, D, or > 0. These

correspond to how the length `.s˛s�s˛/ relates to `.s�/. So now finally we can
compute the factors � _̨;�;s˛�, comparing �˛����1˛ to �s˛�.

Lemma 11.3. Suppose s˛� D �. If �˛����1˛ D t_ Os� and �� D t_� Os� , then

� _̨;�;� D t_ C t_� :

12 Patterns in the computation

As a consequence of the main theorem of [BH93], Bob Howlett proved that the
root graph of an arbitrary Coxeter group is described by a finite automaton. What
this means is that paths in the root graph are the same as paths in a certain finite
state machine. The machine, although finite, can be quite large. As Figure 11
indicates, there are 31 states in the machine producing paths in the root graph of
the root system we have seen earlier in Figure 1. (In this diagram, nodes give rise
to equivalent states if and only if the subsequent paths out of them are equivalent.
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0

1 17 2

3 18 19 4

5 20 21 6

7 22 23 8

9 24 25 26 10

11 27 28 12

13 29 30 14

15 16

18 18

22 18 17 19 23

19 18

18 23 24 26 22 19

4 26 24 3

Figure 11 The finite state machine for the root graph of an infinite root system

Each state is noted by a unique shaded box. An unshaded one with the same label
signifies another occurrence. The labeled boxes are all one needs to specify the finite
state machine.)

One thing evident in this picture is the repetition of the weak Bruhat order of the
finite groups W�. (Lemma 5.2 of [Cas06] explains this.) This as well as regularity
should have some significance for the extended root graph as well, but I don’t yet
completely understand what is going on, and I will not discuss this topic here.
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1 Introduction

In a series of papers [24, 25], Kostant and Wallach study the action of an abelian

Lie group A Š C
n.n�1/
2 on g D gl.n;C/. The Lie algebra a of A is the abelian Lie

algebra of Hamiltonian vector fields of the Gelfand–Zeitlin1 collection of functions
JGZ WD ffi;j W i D 1; : : : ; n; j D 1; : : : ; ig (see Section 2 for precise notation).
The set of functions JGZ is Poisson commutative, and its restriction to each regular
adjoint orbit in g forms an integrable system. For each function in the collection, the
corresponding Hamiltonian vector field on g is complete, and the action of A on g
is given by integrating the action of a.

Kostant and Wallach consider a Zariski open subset gsreg of g, which consists
of all elements x 2 g such that the differentials of the functions JGZ are linearly
independent at x. Elements of gsreg are called strongly regular, and Kostant and
Wallach show that gsreg is exactly the set of regular elements x of g such that the orbit
A � x is Lagrangian in the adjoint orbit of x. In [7,9], the first author determined the

A-orbits in gsreg through explicit computations. We denote by ˚ W g ! C
n.nC1/

2

the map given by ˚.x/ D .fi;j .x//, and note that in [7, 9], the most subtle and
interesting case is the nilfiber ˚�1.0/.

The Gelfand–Zeitlin functions are defined using a sequence of projections 
i W
gl.i;C/! gl.i � 1;C/ given by mapping an i � i matrix y to its .i � 1/ � .i � 1/
submatrix in the upper left hand corner. Our paper [11] exploits the fact that each
projection 
i is equivariant with respect to the action of GL.i � 1;C/ on gl.i;C/
by conjugation, where GL.i � 1;C/ is embedded in the top left hand corner of
GL.i;C/ in the natural way. In particular, we use the theory of GL.i � 1;C/-orbits
on the flag variety Bi of gl.i;C/ for i D 1; : : : ; n, to provide a more conceptual
understanding of the A-orbits in the nilfiber. In addition, we prove that every Borel
subalgebra contains strongly regular elements, and hope to develop these methods
in order to better understand the topology of gsreg.

In this paper, we review results of Kostant, Wallach, and the first author, and then
explain how to use the theory of GL.i � 1;C/-orbits on Bi in order to derive the
results from [11]. In Section 2, we recall the basic symplectic and Poisson geometry
needed to construct the Gelfand–Zeitlin integrable system. We then discuss the
work of Kostant and Wallach in constructing the system and the action of the
group A, and the work of the first author in describing the A-orbit structure of gsreg.
In Section 3, we give an overview of our results from [11] and sketch some of the
proofs. In Section 4, we review the rich theory of orbits of a symmetric subgroupK
on the flag variety B of a reductive groupG, as developed by Richardson, Springer,
and others. In particular, we show explicitly how the theory applies if K D GL

.n � 1;C/ �GL.1;C/ and G D GL.n;C/, and we hope this section will make the
general theory ofK-orbits more accessible to researchers interested in applying this
theory.

1Alternate spellings of Zeitlin include Cetlin, Tsetlin, Tzetlin, and Zetlin. In this paper, we follow
the convention from our earlier work.
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It would be difficult to overstate the influence of Nolan Wallach on the work
discussed in this paper. We look forward to further stimulating interactions with
Nolan in the future, and note that our plans for developing this work may well
depend on utilizing completely different work of Nolan than that discussed here.

2 The Gelfand–Zeitlin integrable system on gl.n;C/

2.1 Integrable systems

In this section, we give a brief discussion of integrable systems. For further details,
we refer the reader to [1, 2]. We denote by M an analytic (respectively smooth)
manifold with holomorphic (resp. smooth) functions H.M/.

Let .M;!/ be a 2n-dimensional symplectic manifold with symplectic form
! 2 ^2T �M . For f 2 H.M/, we let 	f be the unique vector field such that

df .Y / D !.Y; 	f /; (1)

for all vector fields Y on M . The vector field 	f is called the Hamiltonian vector
field of f . We can use these vector fields to give H.M/ the structure of a Poisson
algebra with Poisson bracket:

ff; gg WD !.	f ; 	g/; (2)

for f; g 2 H.M/. That is f�; �g makes H.M/ into a Lie algebra and f�; �g satisfies a
Leibniz rule with respect to the associative multiplication of H.M/.

To define an integrable system on .M;!/, we need the following notion.

Definition 2.1. We say the functions fF1; : : : ; Frg � H.M/ are independent if the
open set U D fm 2 M W .dF1/m ^ � � � ^ .dFr/m ¤ 0g is dense in M .

Definition 2.2. Let .M;!/ be a 2n-dimensional symplectic manifold. An inte-
grable system on M is a collection of n independent functions fF1; : : : ; Fng �
H.M/ such that fFi ; Fj g D 0 for all i; j .

Remark 2.3. This terminology originates in Hamiltonian mechanics. In that
context, .M;!;H/ is a phase space of a classical Hamiltonian system with n

degrees of freedom and Hamiltonian function H 2 H.M/ (the total energy of
the system). The trajectory of the Hamiltonian vector field 	H describes the time
evolution of the system. If we are given an integrable system fF1 D H; : : : ; Fng,
then this trajectory can be found using only the operations of function integration
and function inversion ([1], Section 4.2). Such a Hamiltonian system is said to be
integrable by quadratures.

Integrable systems are important in Lie theory, because they are useful in
geometric constructions of representations through the theory of quantization
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[14, 19] (see Remark 2.12 below). For example, integrable systems provide a way
to construct polarizations of symplectic manifolds .M;!/. By a polarization, we
mean an integrable subbundle of the tangent bundle P � TM such that each of the
fibers Pm � Tm.M/ is Lagrangian, i.e., Pm D P?m , where P?m is the annihilator of
Pm with respect to the symplectic form !m on Tm.M/. A submanifold S � .M;!/
is said to be Lagrangian if Tm.S/ is Lagrangian for each m 2 S , so that the leaves
of a polarization are Lagrangian submanifolds ofM . The existence of a polarization
is a crucial ingredient in constructing a geometric quantization of M (for M a real
manifold) (see for example [39]), and Lagrangian submanifolds are also important
in the study of deformation quantization (see for example [28]).

To see how an integrable system on .M;!/ gives rise to a polarization, we
consider the moment map of the system fF1; : : : ; Fng:

F WM ! Kn; F.m/ D .F1.m/; : : : ; Fn.m// form 2M; (3)

where K D R or C. Let U D fm 2 M W .dF1/m ^ � � � ^ .dFn/m ¤ 0g and let
P � T U be P D spanf	Fi W i D 1; : : : ; ng. Then P is a polarization of the
symplectic manifold .U; !jU / whose leaves are the connected components of the
level sets of FjU , i.e., the regular level sets of F. Indeed, if S � U is a regular
level set of F, then dimS D dimM � n D n. It then follows that for m 2 S ,
Tm.S/ D spanf.	Fi /m W i D 1; : : : ; ng; since the vector fields 	F1 ; : : : ; 	Fn are
tangent to S and independent on U . Thus, Tm.S/ is isotropic by Equation (2) and
of dimension dimS D n D 1

2
dimU , so that Tm.S/ is Lagrangian.

2.2 Poisson manifolds and the Lie–Poisson structure

To study integrable systems in Lie theory, we need to consider not only symplectic
manifolds, but Poisson manifolds. We briefly review some of the basic elements of
Poisson geometry here. For more detail, we refer the reader to [37] and [1].

A Poisson manifold .M; f�; �g/ is an analytic (resp. smooth) manifold where the
functions H.M/ have the structure of a Poisson algebra with Poisson bracket f�; �g.
For example, any symplectic manifold is a Poisson manifold where the Poisson
bracket of functions is given by Equation (2). For a Poisson manifold .M; f�; �g/, the
Hamiltonian vector field for f 2 H.M/ is given by

	f .g/ WD ff; gg; (4)

where g 2 H.M/. In the case where .M;!/ is symplectic, it is easy to see that this
definition of the Hamiltonian vector field of f agrees with the definition given in
Equation (1).

If we have two Poisson manifolds .M1; f�; �g1/ and .M2; f�; �g2/, an analytic (resp.
smooth) map ˚ WM1 !M2 is said to be Poisson if

ff ı ˚; g ı ˚g1 D ff; gg2 ı ˚; (5)
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for f; g 2 H.M2/. That is, ˚� W H.M2/! H.M1/ is a homomorphism of Poisson
algebras. Equivalently, for f 2 H.M2/,

˚�	˚�f D 	f : (6)

In particular, a submanifold .S; f�; �gS/ � .M; f�; �gM/ with Poisson structure f�; �gS
is said to be a Poisson submanifold of .M; f�; �gM/ if the inclusion i W S ,! M is
Poisson.

In general, Poisson manifolds .M; f�; �g/ are not symplectic, but they are foliated
by symplectic submanifolds called symplectic leaves. Consider the (singular)
distribution on M given by

�.M/ WD spanf	f W f 2 H.M/g: (7)

The distribution �.M/ is called the characteristic distribution of .M; f�; �g/. Using
the Jacobi identity for the Poisson bracket f�; �g, one computes that

Œ	f ; 	g� D 	ff;gg; (8)

so that the distribution �.M/ is involutive. Using a general version of the Frobenius
theorem, one can then show that �.M/ is integrable and the leaves .S; f�; �gS/ are
Poisson submanifolds of .M; f�; �g/, where the Poisson bracket f�; �gS is induced by a
symplectic form !S on S as in Equation (2). For further details, see [37], Chapter 2.

Let g be a reductive Lie algebra over R or C and let G be any connected
Lie group with Lie algebra g. Let ˇ.�; �/ be a nondegenerate, G-invariant bilinear
form on g. Then g has the structure of a Poisson manifold, which we call the
Lie–Poisson structure. If f 2 H.g/, we can use the form ˇ to identify the
differential dfx 2 T �x .g/ D g� at x 2 g with an element rf .x/ 2 g. The element
rf .x/ is determined by its pairing against z 2 g Š Tx.g/ by the formula,

ˇ.rf .x/; z/ D d

dt

ˇ

ˇ

ˇ

ˇ

tD0
f .x C tz/ D dfx.z/: (9)

We then define a Poisson bracket on H.g/ by

ff; gg.x/ D ˇ.x; Œrf .x/;rg.x/�/: (10)

It can be shown that this definition of the Poisson structure on g is independent of
the choice of form ˇ in the sense that a different form gives rise to an isomorphic
Poisson manifold structure on g.

From (10) it follows that

.	f /x D Œx;rf .x/� 2 Tx.g/ D g: (11)
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For x 2 g, let G � x denote its adjoint orbit. From Equation (11), it follows that the
fiber of the characteristic distribution of .g; f�; �g/ at x is

�.g/x D fŒx; y� W y 2 gg D Tx.G � x/:

One can then show that the symplectic leaves of .g; f�; �g/ are the adjoint orbits ofG
on g with the canonical Kostant–Kirillov–Souriau (KKS) symplectic structure (see
for example [6], Proposition 1.3.21). Since G � x � g is a Poisson submanifold, it
follows from Equations (5) and (6) that

ff; ggLPjG
x D ff jG
x; gjG
xgKKS and 	LP
f jG
x D 	KKS

f jG�x
(12)

for f; g 2 H.g/, where the Poisson bracket and Hamiltonian field on the left side
of the equations are defined using the Lie–Poisson structure, and on the right side
they are defined using the KKS symplectic structure as in Section 2.1.

This description of the symplectic leaves allows us to easily identify the Poisson
central functions of .g; f�; �g/. We call a function f 2 H.g/ a Casimir function if
ff; gg D 0 for all g 2 H.g/. Clearly, f is a Casimir function if and only if 	f D 0.
Equation (12) implies this occurs if and only if df jG
x D 0 for every x 2 g, since
each G � x is symplectic. Thus, the Casimir functions for the Lie–Poisson structure
on g are precisely the Ad.G/-invariant functions, H.g/G .

The symplectic leaves of .g; f�; �g/ of maximal dimension play an important role
in our discussion. For x 2 g, let zg.x/ denote the centralizer of x. We call an
element x 2 g regular if dim zg.x/ D rank.g/ is minimal [23]. The orbit G � x then
has maximum possible dimension, i.e., dim.G � x/ D dim g � rank.g/.

2.3 Construction of the Gelfand–Zeitlin integrable
system on gl.n;C/

Let g D gl.n;C/ and let G D GL.n;C/. Then g is reductive with nondegenerate,
invariant form ˇ.x; y/ D tr.xy/, where tr.xy/ denotes the trace of the matrix xy
for x; y 2 g. Thus, g is a Poisson manifold with the Lie–Poisson structure. In this
section, we construct an independent, Poisson commuting family of functions on g,
whose restriction to each regular adjoint orbitG �x forms an integrable system in the
sense of Definition 2.2. We refer to this family of functions as the Gelfand–Zeitlin
integrable system on g. The family is constructed using Casimir functions for certain
Lie subalgebras of g and extending these functions to Poisson commuting functions
on all of g.

We consider the following Lie subalgebras of g. For i D 1; : : : ; n� 1, we embed
gl.i;C/ into g in the upper left corner and denote its image by gi . That is to say, gi D
fx 2 g W xk;j D 0; if k > i or j > ig. Let Gi � GL.n;C/ be the corresponding
closed subgroup. If g?i denotes the orthogonal complement of gi with respect to the
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form ˇ, then g D gi˚g?i . Thus, the restriction of the form ˇ to gi is nondegenerate,
so we can use it to define the Lie–Poisson structure of gi via Equation (10). We have
a natural projection 
i W g ! gi given by 
i .x/ D xi , where xi is the upper left
i � i corner of x, that is, .xi /k;j D xk;j for 1 � k; j � i and is zero otherwise. The
following lemma is the key ingredient in the construction of the Gelfand–Zeitlin
integrable system on g.

Lemma 2.4. The projection 
i W g! gi is Poisson with respect to the Lie–Poisson
structures on g and gi .

Proof. Since the Poisson brackets on H.g/ and H.gi / satisfy the Leibniz rule, it
suffices to show Equation (5) for linear functions �x , �y 2 H.gi /, where �x.z/ D
ˇ.x; z/ and �y.z/ D ˇ.y; z/ for x; y; z 2 gi . This is an easy computation using
the definition of the Lie–Poisson structure in Equation (10) and the decomposition
g D gi ˚ g?i . ut

Let CŒg� denote the algebra of polynomial functions on g. Let

J.n/ WD h
�1 .CŒg�G1/; : : : ; 
�n�1.CŒgn�1�Gn�1 /;CŒg�Gi (13)

be the associative subalgebra of CŒg� generated by 
�i .CŒgi �Gi / for i � n � 1
and CŒg�G .

Proposition 2.5. The algebra J.n/ is a Poisson commutative subalgebra of CŒg�.

Proof. The proof proceeds by induction on n, the case n D 1 being trivial. Suppose
that J.n � 1/ is Poisson commutative. Then

J.n/ D h
�n�1.J.n � 1//;CŒg�Gi

is the associative algebra generated by 
�n�1.J.n � 1// and CŒg�G . By Lemma 2.4,

�n�1.J.n � 1// is Poisson commutative, and the elements of CŒg�G are Casimir
functions, so that J.n/ is Poisson commutative. ut
Remark 2.6. It can be shown that the algebra J.n/ is a maximal Poisson commu-
tative subalgebra of CŒg� ([24], Theorem 3.25).

The Gelfand–Zeitlin integrable system is obtained by choosing a set of generators
for the algebra J.n/. We note that the map 
i W g! gi is surjective, so that we can
identify CŒgi �

Gi with its image 
�i .CŒgi �Gi /. Let CŒgi �
Gi D CŒfi;1; : : : ; fi;i �, where

fi;j .x/ D tr.xji / for j D 1; : : : ; i . Then the functions

JGZ WD ffi;j W i D 1; : : : ; n; j D 1; : : : ; ig (14)

generate the algebra J.n/ as an associative algebra. We claim that JGZ is an
algebraically independent, Poisson commuting set of functions whose restriction
to each regular G � x forms an integrable system.
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By Proposition 2.5, the functions JGZ Poisson commute. To see that the functions
JGZ are algebraically independent, we study the following morphisms:

˚i W gi ! C
i ; ˚i .y/ D .fi;1.y/; : : : ; fi;i .y//;

for i D 1; : : : ; n. We define the Kostant–Wallach map to be the morphism

˚ W g! C
.nC1

2 / given by ˚.x/ D .˚1.x1/; : : : ; ˚i .xi /; : : : ; ˚n.xn//: (15)

For z 2 gi , let �i .z/ equal the collection of i eigenvalues of z counted with
repetitions, where here we regard z as an i � i matrix.

Remark 2.7. If x; y 2 g, then ˚.x/ D ˚.y/ if and only if �i .xi / D �i .yi /

for i D 1; : : : ; n. This follows from the fact that CŒgi �
Gi D CŒfi;1; : : : ; fi;i � D

CŒpi;1; : : : ; pi;i �, where pi;j is the coefficient of t j�1 in the characteristic polyno-
mial of xi thought of as an i � i matrix. In particular,˚.x/ D .0; : : : ; 0/ if and only
if xi is nilpotent for i D 1; : : : ; n.

Kostant and Wallach produce a cross-section to the map ˚ using the (upper)
Hessenberg matrices. For 1 � i; j � n, let Ei;j 2 g denote the elementary matrix
with 1 in the .i; j /-th entry and zero elsewhere. Let bC � g be the standard Borel
subalgebra of upper triangular matrices and let e D Pn

iD2 Ei;i�1 be the sum of the
negative simple root vectors. We call elements of the affine variety e C b (upper)
Hessenberg matrices:

e C b D

2

6

6

6

6

6

4

a11 a12 � � � a1n�1 a1n
1 a22 � � � a2n�1 a2n
0 1 � � � a3n�1 a3n
:::

:::
: : :

:::
:::

0 0 � � � 1 ann

3

7

7

7

7

7

5

.

Kostant and Wallach prove the following remarkable fact ([24], Theorem 2.3).

Theorem 2.8. The restriction of the Kostant–Wallach map˚ jeCb W eCb! C
.nC1

2 /

to the Hessenberg matrices e C b is an isomorphism of algebraic varieties.

Remark 2.9. For x 2 g, let R.x/ D f�1.x1/; : : : ; �i .xi /; : : : ; �n.x/g be the collec-
tion of

�

nC1
2

�

-eigenvalues of x1; : : : ; xi ; : : : ; x counted with repetitions. The num-
bers R.x/ are called the Ritz values of x and play an important role in numerical
linear algebra (see for example [29, 30]). In this language, Theorem 2.8 says that
any

�

nC1
2

�

-tuple of complex numbers can be the Ritz values of an x 2 g and that
there is a unique Hessenberg matrix having those numbers as Ritz values. Contrast
this with the Hermitian case in which the necessarily real eigenvalues of xi must
interlace those of xi�1 (see for example [21]). This discovery has led to some new
work on Ritz values by linear algebraists [29, 34].

Theorem 2.8 suggests the following definition from [24].
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Definition 2.10. We say that x 2 g is strongly regular if the differentials
f.dfi;j /x W i D 1; : : : ; n; j D 1; : : : ; ig are linearly independent. We denote
the set of strongly regular elements of g by gsreg.

By Theorem 2.8, eCb � gsreg, and since gsreg is Zariski open, it is dense in both the
Zariski topology and the Hausdorff topology on g [27]. Hence, the polynomials JGZ

in (14) are independent. For c 2 C
.nC1

2 /, let ˚�1.c/sreg WD ˚�1.c/ \ gsreg denote
the strongly regular elements of the fiber ˚�1.c/. It follows from Theorem 2.8 that

˚�1.c/sreg is nonempty for any c 2 C
.nC1

2 /.
By a well-known result of Kostant [23], if x is strongly regular, then xi 2 gi is

regular for all i . We state several equivalent characterizations of strong regularity.

Proposition 2.11 ([24], Proposition 2.7 and Theorem 2.14). The following state-
ments are equivalent.

(i) x is strongly regular.
(ii) The tangent vectors f.	fi;j /x I i D 1; : : : ; n � 1; j D 1; : : : ; ig are linearly

independent.
(iii) The elements xi 2 gi are regular for all i D 1; : : : ; n and zgi .xi / \

zgiC1
.xiC1/ D 0 for i D 1; : : : ; n� 1, where zgi .xi / denotes the centralizer of

xi in gi .

To see that the restriction of the functions JGZ to a regular adjoint orbit G � x
forms an integrable system, we first observe that G � x \ gsreg ¤ ; for any
regular x. This follows from the fact that any regular matrix is conjugate to a
companion matrix, which is Hessenberg and therefore strongly regular. Note that the
functions fn;1; : : : ; fn;n restrict to constant functions on G � x, so we only consider
the restrictions of ffi;j W i D 1; : : : ; n � 1; j D 1; : : : ; ig. Let qi;j D fi;j jG
x for
i D 1; : : : ; n � 1 , j D 1; : : : ; i and let U D G � x \ gsreg. Then U is open and
dense in G � x. By Equation (12), part (ii) of Proposition 2.11 and Proposition 2.5
imply respectively that the functions fqi;j W i D 1; : : : ; n � 1; j D 1; : : : ig are
independent and Poisson commute on U . Observe that there are

n�1
X

iD1
i D n.n � 1/

2
D dim.G � x/

2

such functions. Hence, they form an integrable system on regular G � x.
It follows from our work in Section 2.1 that the connected components of the

regular level sets of the moment map

y ! .q1;1.y/; : : : ; qi;j .y/; : : : ; qn�1;n�1.y//

are the leaves of a polarization of G � x \ gsreg. It is easy to see that such regular
level sets coincide with certain strongly regular fibers of the Kostant–Wallach map,
namely the fibers ˚�1.c/sreg where c D .c1; : : : ; cn/, ci 2 C

i with cn D ˚n.x/ (see
Equation (15)). This follows from Proposition 2.11 and the fact that regular matrices
which have the same characteristic polynomial are conjugate (see Remark 2.7).
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We therefore turn our attention to studying the geometry of the strongly regular
set gsreg and Lagrangian submanifolds˚�1.c/sreg of regular G � x.

Remark 2.12. The Gelfand–Zeitlin system described here can be viewed as a
complexification of the one introduced by Guillemin and Sternberg [19] on the
dual to the Lie algebra of the unitary group. They show that the Gelfand–Zeitlin
integrable system on u.n/� is a geometric version of the classical Gelfand–Zeitlin
basis for irreducible representations of U.n/ [18]. More precisely, they construct
a geometric quantization of a regular, integral coadjoint orbit of U.n/ on u.n/�
using the polarization from the Gelfand–Zeitlin integrable system and show that the
resulting quantization is isomorphic to the corresponding highest weight module for
U.n/ using the Gelfand–Zeitlin basis for the module.

There is strong empirical evidence (see [17]) that the quantum version of the
complexified Gelfand–Zeitlin system is the category of Gelfand–Zeitlin modules
studied by Drozd, Futorny, and Ovsienko [13]. These are Harish-Chandra modules
for the pair .U.g/; � /, where � � U.g/ is the Gelfand–Zeitlin subalgebra of the
universal enveloping algebra U.g/ [16]. It would be interesting to produce such
modules geometrically using the geometry of the complex Gelfand–Zeitlin system
developed below and deformation quantization.

2.4 Integration of the Gelfand–Zeitlin system and the group A

We can study the Gelfand–Zeitlin integrable system on gl.n;C/ and the structure of
the fibers ˚�1.c/sreg by integrating the corresponding Hamiltonian vector fields to

a holomorphic action of C.
n
2/ on g. The first step is the following observation.

Theorem 2.13. Let fi;j .x/ D tr.xji / for i D 1; : : : ; n � 1, j D 1; : : : ; i . Then
the Hamiltonian vector field 	fi;j is complete on g and integrates to a holomorphic
action of C on g whose orbits are given by

ti;j � x WD Ad.exp.ti;j jx
j�1
i // � x; (16)

for x 2 g, ti;j 2 C.

Proof. Denote the right side of Equation (16) by �.ti;j ; x/. We show that
� 0.ti;j ; x/ D .�	fi;j /�.ti;j ;x/ for any ti;j 2 C, so that �.�ti;j ; x/ is an integral
curve of the vector field 	fi;j . For the purposes of this computation, replace the
variable ti;j by the variable t . Then

d

dt

ˇ

ˇ

ˇ

ˇ

tDt0
Ad.exp.t jxj�1i // � x D ad.jxj�1i / � Ad.exp.t0 jx

j�1
i // � x

D ad.jxj�1i / � �.t0; x/:
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Clearly, exp.t0jx
j�1
i / centralizes xi , so that �.t0; x/i D xi . This implies

ad.jxj�1i / � �.t0; x/ D ad.j.�.t0; x/i /j�1/ � �.t0; x/:

Now it is easily computed that rfi;j .y/ D jy
j�1
i for any y 2 g. Thus,

Equation (11) implies that

ad.j.�.t0; x/i /j�1/ � �.t0; x/ D �.	fi;j /�.t0;x/: ut

We now consider the Lie algebra of Gelfand–Zeitlin vector fields

a WD spanf	fi;j W i D 1; : : : ; n � 1; j D 1; : : : ; ig: (17)

By Equation (8), a is an abelian Lie algebra, and since gsreg is nonempty, dim a D
�

n
2

�

, by (ii) of Proposition 2.11. Let A be the corresponding simply connected Lie

group, so that A Š C
.n2/. We take as coordinates on A,

t D .t1; : : : ; t i ; : : : ; tn�1/ 2 C � � � � � C
i � � � � � C

n�1 D C
.n2/;

where t i 2 C
i with t i D .ti;1; : : : ; ti;i /, with ti;j 2 C for i D 1; : : : ; n � 1, j D

1; : : : ; i . Since a is abelian the actions of the various ti;j given in Equation (16)
commute. Thus, we can define an action of A on g by composing the actions of the
various ti;j in any order. For a D .t 1; : : : ; t n�1/ 2 A, a � x is given by the formula

a � x D Ad.exp.t1;1// � : : : � Ad.exp.jti;j x
j�1
i // � : : :

� Ad.exp..n � 1/tn�1;n�1xn�2n�1// � x:
(18)

Theorem 2.13 shows that this action integrates the action of a on g, so that

Tx.A � x/ D spanf.	fi;j /x W i D 1; : : : ; n � 1; j D 1; : : : ; ig: (19)

Since the functions JGZ Poisson commute, it follows from Equation (12) that
A � x � G � x is isotropic with respect to the KKS symplectic structure onG �x. Note
also that Equation (4) implies that 	fi;j fk;l D 0 for any i; j and k; l . It follows that
fk;l is invariant under the flow of 	fi;j for any i; j and therefore is invariant under
the action of A given in Equation (18). Thus, the action of A preserves the fibers of
the Kostant–Wallach map ˚ defined in Equation (15).

It follows from Equation (19) and Part (ii) of Proposition 2.11 that x 2 gsreg

if and only if dim.A � x/ D �

n
2

�

, which holds if and only if A � x � G � x
is Lagrangian in regular G � x. Thus, the group A acts on the strongly regular
fibers ˚�1.c/sreg and its orbits form the connected components of the Lagrangian
submanifold ˚�1.c/sreg � G � x. Hence, the leaves of the polarization of a regular
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adjoint orbitG�x constructed from the Gelfand–Zeitlin integrable system are exactly
the A-orbits on G � x \ gsreg. Moreover, there are only finitely many A-orbits in
˚�1.c/sreg.

Theorem 2.14 ([24], Theorem 3.12). Let c 2 C
.nC1

2 / and let ˚�1.c/sreg be a
strongly regular fiber of the Kostant–Wallach map. Then ˚�1.c/sreg is a smooth
algebraic variety of dimension

�

n
2

�

whose irreducible components in the Zariski
topology coincide with the orbits of A on ˚�1.c/sreg:

Remark 2.15. Our definition of the Gelfand–Zeitlin integrable system involved
choosing the specific set of algebraically independent generators JGZ for the algebra
J.n/ in Equation (13). However, it can be shown that if we choose another
algebraically independent set of generators, J 0GZ, then their restriction to each
regular adjoint orbit G � x forms an integrable system, and the corresponding
Hamiltonian vector fields are complete and integrate to an action of a holomorphic
Lie group A0 whose orbits coincide with those of A, [24], Theorem 3.5. Our
particular choice of generators JGZ is to facilitate the easy integration of the
Hamiltonian vector fields 	f , f 2 JGZ in Theorem 2.13.

2.5 Analysis of the A-action on ˚�1.c/sreg

Kostant and Wallach [24] studied the action of A on a special set of regular
semisimple elements in g defined by:

g˝ D fx 2 g W xi is regular semisimple and �i .xi /\ �iC1.xiC1/ D ; for all ig:
(20)

Let ˝ D ˚.g˝/ � C
.nC1

2 /. By Remark 2.7, we have g˝ D ˚�1.˝/. In [24], the
authors show that the action of A is transitive on the fibers ˚�1.c/ for c 2 ˝ and
that these fibers are

�

n
2

�

-dimensional tori.

Theorem 2.16 ([24], Theorems 3.23 and 3.28). The elements of g˝ are strongly
regular, so that ˚�1.c/ D ˚�1.c/sreg for c 2 ˝ . Moreover, ˚�1.c/ is a

homogeneous space for a free algebraic action of the torus .C�/.n2/ and therefore is
precisely one A-orbit.

Remark 2.17. An analogous Gelfand–Zeitlin integrable system exists for complex
orthogonal Lie algebras so.n;C/. One can also show that this system integrates to
a holomorphic action of Cd on so.n;C/, where d is half the dimension of a regular
adjoint orbit in so.n;C/. One can then prove the analogue of Theorem 2.16 for
so.n;C/. We refer the reader to [8] for details.

The thesis of the first author generalizes Theorem 2.16 to an arbitrary fiber

˚�1.c/sreg for c 2 C
.nC1

2 / (see [7]). The methods used differ from those used to
prove Theorem 2.16, but the idea originates in some unpublished work of Wallach,
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who used a similar strategy to describe the A-orbit structure of the set g˝ . We
briefly outline this strategy, which can be found in detail in [9], Section 4. The
key observation is that the vector field 	fi;j acts via Equation (16) by the centralizer
ZGi .xi / of xi in Gi . The problem is that the group ZGi .xi / is difficult to describe
for arbitrary xi , so that the formula for the A-action in Equation (18) is too difficult
to use directly. However, if x 2 gsreg and Ji is the Jordan canonical form of xi ,
then the group Zi WD ZGi .Ji / is easy to describe, since xi 2 gi is regular for
i D 1; : : : ; n by (iii) of Proposition 2.11. Further, for x 2 ˚�1.c/sreg, xi is in a fixed
regular conjugacy class for i D 1; : : : ; n. This allows us to construct morphisms
˚�1.c/sreg ! Gi ; given by x ! gi .x/, where Ad.gi .x/�1/ �x D Ji , with Ji a fixed
Jordan matrix (depending only on ˚�1.c/sreg). We can then use these morphisms to
define a free algebraic action of the groupZ WD Z1� � � ��Zn�1 on ˚�1.c/sreg such
that the Z-orbits coincide with the A-orbits. The action of Z is given by

.z1; : : : ; zn�1/ � x D Ad.g1.x/z1g1.x/�1/ � : : : � Ad.gi .x/zi gi .x/�1/ � : : :
�Ad.gn�1.x/zn�1gn�1.x/�1/ � x;

(21)

where zi 2 Zi for i D 1; : : : ; n � 1 and x 2 ˚�1.c/sreg, (cf. Equation (18)).
The action of the group Z in Equation (21) is much easier to work with than the

action ofA in Equation (18) and allows us to understand the structure of an arbitrary
fiber ˚�1.c/sreg. The first observation is that we can enlarge the set of elements on
which the action of A is transitive on the fibers of the Kostant–Wallach map from
the set g˝ to the set g� defined by

g� D fx 2 g W �i .xi /\ �iC1.xiC1/ D ;g:
Let � D ˚.g�/. Note that by Remark 2.7, ˚�1.�/ D g� .

Theorem 2.18 ([9], Theorem 5.15). The elements of g� are strongly regular.
If c 2 �, then ˚�1.c/ D ˚�1.c/sreg is a homogeneous space for a free algebraic
action of the groupZ D Z1� � � � �Zn�1 given in Equation (21), and thus is exactly
one A-orbit. Moreover, g� is the maximal subset of g for which the action of A is
transitive on the fibers of ˚ .

For general fibers the situation becomes more complicated.

Theorem 2.19 ([9], Theorem 5.11). Let x 2 gsreg be such that there are ji distinct
eigenvalues in common between xi and xiC1 for 1 � i � n � 1, and let c D ˚.x/.
Then there are exactly 2j A-orbits in ˚�1.c/sreg, where j D Pn�1

iD1 ji . The orbits
of A on ˚�1.c/sreg coincide with the orbits of a free algebraic action of the group
Z D Z1 � � � � �Zn�1 defined on ˚�1.c/sreg in Equation (21).

Remark 2.20. After the proof of Theorem 2.19 was established in [7], a similar
result appeared in an interesting paper of Bielwaski and Pidstrygach [3]. Their argu-
ments are independent and completely different from ours. It would be interesting
to study the relation between the two different approaches to establishing the result
of Theorem 2.19.
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We highlight a special case of Theorem 2.19, which we will investigate in much
greater detail below in Section 3.

Corollary 2.21. Consider the strongly regular nilfiber

˚�1.0/sreg WD ˚�1.0; : : : ; 0/sreg:

Then there are exactly 2n�1 A-orbits in ˚�1.0/sreg. These orbits coincide with the

orbits of a free algebraic action of .C�/n�1 � C
.n2/�nC1 on ˚�1.0/sreg.

Proof. The first statement follows immediately from Remark 2.7 and Theorem 2.19.
For the second statement, we observe that in this case the group

Z D ZG1.e1/ � � � � �ZGn�1 .en�1/;

where ei 2 gi is the principal nilpotent Jordan matrix. It follows thatZ D .C�/n�1�
C
.n2/�nC1. ut
Theorem 2.19 gives a complete description of the local structure of the

Lagrangian foliation of regular adjoint orbits of g by the Gelfand–Zeitlin
integrable system and shows the system is locally algebraically integrable,
giving natural algebraic “angle coordinates” coming from the action of the group
Z D Z1 � � � � � Zn�1. However, Theorem 2.19 does not say anything about the
global nature of the foliation. Motivated by Theorem 2.19, we would like to extend
the local Z-action on ˚�1.c/sreg given in (21) to larger subvarieties of g. However,
this is not possible, except in certain special cases. The definition of the Z-action
uses the fact that the Jordan form of each xi for i D 1; : : : ; n�1 is fixed on the fiber
˚�1.c/sreg. The problem with trying to extend this action is that there is in general
no morphism on a larger variety which assigns to xi its Jordan form. The issue is
that the ordered eigenvalues of a matrix are not in general algebraic functions of the
matrix entries.

For the set g˝ , Kostant and Wallach resolve this issue by producing an étale
covering g˝.e/ of g˝ on which the eigenvalues are algebraic functions [25]. They
then lift the Lie algebra a of Gelfand–Zeitlin vector fields in Equation (17) to
the covering where they integrate to an algebraic action of the torus .C�/.

n
2/. In

our paper [10], we extend this to the full strongly regular set using the theory of
decomposition classes [4] and Poisson reduction [15].

3 The geometry of the strongly regular nilfiber

In recent work [11], we take a very different approach to describing the geometry of
gsreg by studying the Borel subalgebras that contain elements of gsreg. We develop a
new connection between the orbits of certain symmetric subgroups Ki on the flag
varieties of gi for i D 2; : : : ; n and the Gelfand–Zeitlin integrable system on g.
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We use this connection to prove that every Borel subalgebra of g contains strongly
regular elements, and we determine explicitly the Borel subalgebras which contain
elements of the strongly regular nilfiber ˚�1.0/sreg D ˚�1.0; : : : ; 0/sreg. We show
that there are 2n�1 such Borel subalgebras, and that the subvarieties of regular
nilpotent elements of these Borel subalgebras are the 2n�1 irreducible components
of ˚�1.0/sreg given in Corollary 2.21. This description of the nilfiber is much more

explicit than the one given in Corollary 2.21, since the Z D .C�/n�1 � C
.n2/�nC1-

action of Equation (21) is not easy to compute explicitly. We refer the reader to our
paper [11] for proofs of the results of this section.

3.1 K -orbits and ˚�1.0/sreg

We begin by considering the strongly regular nilfiber ˚�1.0/sreg of the Kostant–
Wallach map. By Remark 2.7 and (iii) of Proposition 2.11, we note that x 2
˚�1.0/sreg if and only if the following two conditions are satisfied for every
i D 2; : : : ; n:

(a) xi�1; xi are regular nilpotent.

(b) zgi�1 .xi�1/ \ zgi .xi / D 0:
(22)

We proceed by finding the Borel subalgebras in gi which contain elements satisfying
(a) and (b), and we then use these Borel subalgebras to construct the Borel
subalgebras of g which contain elements of ˚�1.0/sreg.

LetKi WD GL.i�1;C/�GL.1;C/ � GL.i;C/ be the group of invertible block
diagonal matrices with an .i � 1/� .i � 1/ block in the upper left corner and a 1� 1
block in the lower right corner. Let Bi be the flag variety of gi . Then Ki acts on Bi
by conjugation with finitely many orbits (see for example [35]). We observe that the
conditions (a) and (b) in (22) are Ad.Ki/-equivariant. Thus, the problem of finding
the Borel subalgebras of gi containing elements satisfying these conditions reduces
to the problem of studying the conditions for a representative in each Ki -orbit.
In this section, we find all Ki -orbitsQi through Borel subalgebras containing such
elements, and in the process reveal some new facts about the geometry ofKi -orbits
on Bi . In the following sections, we explain how to link the orbits Qi together
for i D 2; : : : ; n to produce the Borel subalgebras of g that contain elements
of ˚�1.0/sreg and use these Borel subalgebras to study the geometry of the fiber
˚�1.0/sreg.

For concreteness, let us fix i D n, so thatKn D GL.n�1;C/�GL.1;C/ and Bn
is the flag variety of gl.n;C/. For b 2 Bn, let Kn � b denote the Kn-orbit through b.
We analyze each of the conditions in (22) in turn.
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Theorem 3.1 ([11], Proposition 3.6). Suppose x 2 g satisfies condition (a) in (22)
and that x 2 b, with b � g a Borel subalgebra of g. Then b 2 Q, where Q is a
closed Kn-orbit.

Theorem 3.1 follows from a stronger result. The group Kn is the group of fixed
points of the involution � on G, where �.g/ D cgc�1 with c D diagŒ1; : : : ; 1;�1�.
Let kn D Lie.Kn/, so that kn is the Lie algebra of block diagonal matrices kn D
gl.n � 1;C/˚ gl.1;C/. Then g D kn ˚ pn, where pn is the �1-eigenspace for the
involution � on g. Let 
kn W g! kn be the projection of g onto kn along pn, and let
Nkn be the nilpotent cone in kn.

Theorem 3.2 ([11], Theorem 3.7). Let b � g be a Borel subalgebra and let
n D Œb; b�, with nreg the regular nilpotent elements in b. Suppose that b 2 Q withQ
a Kn-orbit in Bn which is not closed. Then 
kn.n

reg/\Nkn D ;:
Remark 3.3. By the Kn-equivariance of the projection 
kn W g! kn, it suffices to
prove Theorem 3.2 for a representative of the Kn-orbit Q. Standard representatives
are given by the Borel subalgebras bi;j discussed later in Notation 4.23 and
Example 4.30. Let b D bi;j be such a representative. To compute 
kn.n

reg/, one
needs to understand the action of � on the roots of b with respect to a �-stable
Cartan subalgebra h0 � b. In general, this action is difficult to compute. It is easier
to replace the pair .b; �/ with an equivalent pair .bC; � 0/ where bC � g is the
standard Borel subalgebra of upper triangular matrices and � 0 is an involution of
g which stabilizes the standard Cartan subalgebra of diagonal matrices h � bC.
We then prove the statement of the theorem for the pair .bC; � 0/. The construction
and computation of the involution � 0 is explained in detail in Equation (31) and
Example 4.30, where it is denoted by � Ov and �

cvi;j
respectively.

Theorem 3.1 permits us to focus only on closedKn-orbits. There are n such orbits
in Bn, two of which are QC;n D Kn � bC, the orbit of the n � n upper triangular
matrices, and Q�;n D Kn � b�, the orbit of the n � n lower triangular matrices (see
Example 4.16). We now study the second condition in (22).

Proposition 3.4. LetQ D Kn �b be a closedKn-orbit and let x 2 n D Œb; b� satisfy
condition (b) in (22). Then Q D QC;n or Q D Q�;n.
This is an immediate consequence of the following result. Recall the projection

n�1 W g! gn�1 defined by 
n�1.x/ D xn�1:
Proposition 3.5 ([11], Proposition 3.8). Let b � g be a Borel subalgebra that
generates a closedKn-orbitQ, which is neither the orbit of the upper nor the lower
triangular matrices. Let n D Œb; b� and let nn�1 WD 
n�1.n/. Let zg.n/ denote the
centralizer of n in g and let zgn�1

.nn�1/ denote the centralizer of nn�1 in gn�1. Then

zgn�1
.nn�1/ \ zg.n/ ¤ 0: (23)
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Remark 3.6. We note that the projection 
n�1 W g ! gn�1 is Kn-equivariant, so
that it suffices to prove Equation (23) for a representative b of the closed Kn-orbit
Q. We can take b to be one of the representatives given below in Example 4.16.

For any i D 2; : : : ; n, let QC;i denote the Ki -orbit of the i � i upper triangular
matrices in Bi and letQ�;i denote theKi -orbit of the i � i lower triangular matrices
in Bi . Combining the results of Theorem 3.1 and Proposition 3.4, we obtain:

Theorem 3.7. Let x 2 gi satisfy the two conditions in (22) and suppose that x 2 b,
with b � gi a Borel subalgebra. Then Ki � b D QC;i or Ki � b D Q�;i .

3.2 Constructing Borel subalgebras out of Ki -orbits

In this section we explain how to link together the Ki -orbits QC;i and Q�;i for
i D 2; : : : ; n to construct all the Borel subalgebras containing elements of
˚�1.0/sreg. The key to the construction is the following lemma.

Lemma 3.8 ([11], Proposition 4.1). Let Q be a closed Kn-orbit in Bn and let
b 2 Q. Then 
n�1.b/ � gn�1 is a Borel subalgebra.

We can use Lemma 3.8 to give an inductive construction of special subvarieties of
Bn by linking together closed Ki -orbits Qi for i D 2; : : : ; n. For this construction,
we view Ki � KiC1 by embedding Ki in the upper left corner of KiC1. We also
make use of the following notation. If m � g is a subalgebra, we denote by mi the
image of m under the projection 
i W g! gi .

Suppose we are given a sequence Q D .Q2; : : : ;Qn/ with Qi a closed Ki -orbit
in Bi . We call Q a sequence of closed Ki -orbits. For b 2 Qn, bn�1 is a Borel
subalgebra by Lemma 3.8. Since Kn acts transitively on Bn�1, there is k 2 Kn such
that Ad.k/bn�1 2 Qn�1 and the variety

XQn�1;Qn WD fb 2 Bn W b 2 Qn; bn�1 2 Qn�1g
is nonempty. Lemma 3.8 again implies that .Ad.k/bn�1/n�2 D .Ad.k/b/n�2
is a Borel subalgebra in gn�2, so that there exists an l 2 Kn�1 such that
Ad.l/.Ad.k/b/n�2 2 Qn�2. Since Kn�1 � Kn, the variety

XQn�2;Qn�1;Qn WD fb 2 Bn W b 2 Qn; bn�1 2 Qn�1; bn�2 2 Qn�2g
is nonempty. Proceeding in this fashion, we can define a nonempty closed subvariety
of Bn by

XQ WD fb 2 Bn W bi 2 Qi; 2 � i � ng: (24)

Theorem 3.9 ([11], Theorem 4.2). Let Q D .Q2; : : : ;Qn/ be a sequence of closed
Ki -orbits. Then the variety XQ is a single Borel subalgebra of g that contains the
standard Cartan subalgebra of diagonal matrices. Moreover, if b � g is a Borel
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subalgebra which contains the diagonal matrices, then b D XQ for some sequence
of closed Ki -orbits Q.

Notation 3.10. In light of Theorem 3.9, we refer to the Borel subalgebras XQ as
bQ for the remainder of the discussion.

3.3 Borel subalgebras containing elements of ˚�1.0/sreg

Now we can at last describe the Borel subalgebras of g that contain elements of
˚�1.0/sreg and use these to determine the irreducible component decomposition of
˚�1.0/sreg explicitly. Since x 2 ˚�1.0/sreg if and only if xi 2 gi satisfies the two
conditions in (22) for all i D 2; : : : ; n, Theorem 3.7 implies:

Proposition 3.11 ([11], Theorem 4.5). Let x 2 ˚�1.0/sreg. Then x 2 bQ, where
the sequence of closedKi -orbits Q D .Q2; : : : ;Qn/ hasQi D QC;i orQi D Q�;i
for each i D 2; : : : ; n.

Example 3.12. It is easy to describe explicitly these Borel subalgebras. For
example, for g D gl.3;C/ there are four such Borel subalgebras:

bQ
�

;Q
�

D
2

4

h1 0 0

a1 h2 0

a2 a3 h3

3

5 bQ
C

;Q
C

D
2

4

h1 a1 a2

0 h2 a3
0 0 h3

3

5

bQ
C

;Q
�

D
2

4

h1 a1 0

0 h2 0

a2 a3 h3

3

5 bQ
�

;Q
C

D
2

4

h1 0 a1

a2 h2 a3
0 0 h3

3

5

,

where ai ; hi 2 C.

We can use these Borel subalgebras to describe the fiber ˚�1.0/sreg. Let nreg
Q be

the subvariety of regular nilpotent elements of bQ. Proposition 3.11 implies that

˚�1.0/sreg �
G

Q
n

reg
Q ; (25)

where Q D .Q2; : : : ;Qn/ ranges over all 2n�1 sequences where Qi D QC;i or
Q�;i . We note that the union on the right side of (25) is disjoint, since a regular
nilpotent element is contained in a unique Borel subalgebra (see for example [6],
Proposition 3.2.14). We claim that the inclusion in (25) is an equality and that
the right side of (25) is an irreducible component decomposition of the variety
˚�1.0/sreg. The key observation is the converse to Proposition 3.11.

Proposition 3.13 ([11], Prop. 3.11, Thm. 4.5). Let Q D .Q2; : : : ;Qn/ be a
sequence of closed Ki -orbits with Qi D QC;i orQ�;i . Then n

reg
Q � ˚�1.0/sreg.
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Thus, the variety n
reg
Q is an irreducible subvariety of ˚�1.0/sreg of dimension

dim nQ D
�

n
2

�

. It follows from Theorem 2.14 that nreg
Q is an open subvariety of a

unique irreducible component Y of ˚�1.0/sreg. But then by (25), we have

Y D
G

Q0

n
reg
Q0

;

where the disjoint union is taken over a subset of the set of all sequences
.Q02; : : : ;Q0n/ with Q0i D QC;i or Q�;i . Since Y is irreducible, we must have
n

reg
Q D Y . This yields the main theorem of [11].

Theorem 3.14 ([11], Theorem 4.5). The irreducible component decomposition of
the variety ˚�1.0/sreg is

˚�1.0/sreg D
G

Q
n

reg
Q ; (26)

where Q D .Q2; : : : ;Qn/ ranges over all 2n�1 sequences where Qi D QC;i or
Q�;i . The A-orbits in ˚�1.0/sreg are exactly the varieties nreg

Q , for Q as above.

The description of ˚�1.0/sreg in Equation (26) is much more explicit than the
one given in Corollary 2.21, where the components are described as orbits of the

group Z D .C�/n�1 � C
.n2/�nC1 where Z acts via the formula in Equation (21). In

fact, we can describe easily the varieties nreg
Q Š .C�/n�1 � C

.n2/�nC1.

Example 3.15. For g D gl.3;C/, Theorem 3.14 implies that the four A-orbits in
˚�1.0/sreg are the regular nilpotent elements of the four Borel subalgebras given in
Example 3.12.

n
reg
Q

�

;Q
�

D
2

4

0 0 0

a1 0 0

a3 a2 0

3

5 n
reg
Q

C

;Q
C

D
2

4

0 a1 a3

0 0 a2
0 0 0

3

5

n
reg
Q

C

;Q
�

D
2

4

0 a1 0

0 0 0

a2 a3 0

3

5 n
reg
Q

�

;Q
C

D
2

4

0 0 a1
a2 0 a3
0 0 0

3

5

,

where a1; a2 2 C
� and a3 2 C.

Remark 3.16. We note that the 2n�1 Borel subalgebras appearing in Theorem 3.14
are exactly the Borel subalgebras b with the property that each projection of b to
gi for i D 2; : : : ; n is a Borel subalgebra of gi whose Ki -orbit in Bi is related via
the Beilinson–Bernstein correspondence to Harish-Chandra modules for the pair
.gi ; Ki / coming from holomorphic and anti-holomorphic discrete series. It would
be interesting to relate our results to representation theory, especially to work of
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Kobayashi [22]. For more on the relation between geometry of orbits of a symmetric
subgroup and Harish-Chandra modules, see [12, 20, 38].

3.4 Strongly regular elements and Borel subalgebras

It would be interesting to study strongly regular fibers ˚�1.c/sreg for arbitrary

c 2 C
.nC1

2 / using the geometry of Ki -orbits on Bi . The following result is a step
in this direction.

Theorem 3.17 ([11], Theorem 5.3). Every Borel subalgebra b � g contains
strongly regular elements.

We briefly outline the proof of Theorem 3.17. For complete details see [11],
Section 5. For ease of notation, we denote the flag variety Bn of gl.n;C/ by B.
Let h � g denote the standard Cartan subalgebra of diagonal matrices and let H be
the corresponding Cartan subgroup. Define

Bsreg D fb 2 B W b \ gsreg ¤ ;g:

We want to show that Bsreg D B. Consider the variety Y D B n Bsreg. We show
that Y is closed and H -invariant. Let b 2 Y and consider its H -orbit, H � b.
Since Y is closed, H � b � Y . We know that H � b contains a closed H -orbit.
But the closed H -orbits on B are precisely the Borel subalgebras b which contain
the Cartan subalgebra h ([6], Lemma 3.1.10). Thus, it suffices to show that no
Borel subalgebra b with h � b can be contained in Y . This can be shown using
the characterization of such Borel subalgebras as bQ, with Q D .Q2; : : : ;Qn/ a
sequence of closed Ki -orbits (see Theorem 3.9) and properties of closed Ki -orbits
(see [11], Proposition 5.2).

4 The geometry of K -orbits on the flag variety

Proofs of the results discussed in Section 3 require an understanding of aspects of
the geometry and parametrization of Kn-orbits on the flag variety Bn of gl.n;C/.
In this section, we develop the theory of orbits of a symmetric subgroup K of an
algebraic group G acting on the flag variety B of G, as developed by Richardson,
Springer, and others. Our aim is to apply this theory in the specific example of
G D GL.n;C/ and K D GL.n � 1;C/ � GL.1;C/, which provides the details
behind the computations of [11], Section 3.1. We hope our exposition will make
this important theory more accessible. See the papers [32, 33], and [38] for results
concerning orbits of a general symmetric subgroup on the flag variety.
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4.1 Parameterization of K -orbits on G=B

Let G be a reductive group over C such that ŒG;G� is simply connected. Let
� W G ! G be a holomorphic involution, and we also refer to the differential of
� as � W g ! g. Since � W g ! g is a Lie algebra homomorphism, it preserves
Œg; g� and the Killing form < �; � > of g. Let K D G� and assume that the fixed set
.Z.G/0/� is connected, where Z.G/0 is the identity component of the center of G.
Then by a theorem of Steinberg ([36], Corollary 9.7),K is connected.

Let B be the flag variety of g, and recall that if B is a Borel subgroup
of G, the morphism G=B ! B, gB 7! Ad.g/b, where b D Lie.B/, is a
G-equivariant isomorphism G=B Š B. The involution � acts on the variety T of
Cartan subalgebras of g by t 7! �.t/ for t 2 T , and the fixed set T � is the variety of
�-stable Cartan subalgebras. We consider the variety

C D f.b; t/ 2 B � T W t � bg:
ThenG acts on C through the adjoint action, and the subvariety C� D C \ .B � T � /

is K-stable. Consider the G-equivariant map 
 W C ! B given by projection onto
the first coordinate, 
.b; t/ D b. It induces a map

� W KnC� ! KnB; �.K � .b; t// D K � b (27)

from the set of K-orbits on C� to the set of K-orbits on B.

Proposition 4.1. The map � is a bijection.

For a proof of this proposition, we refer the reader to [33], Proposition 1.2.1.
We summarize the main ideas. To show the map � is surjective, it suffices to show
that every Borel subalgebra contains a �-stable Cartan subalgebra. This follows
from [36], Theorem 7.5. To show that the map is injective, it suffices to show that
if t; t0 are �-stable Cartan subalgebras of a Borel subalgebra b, then t and t0 are
K \ B-conjugate, which is verified in [33].

Throughout the discussion, we will fix a �-stable Borel subalgebra b0 and
�-stable Cartan subalgebra t0 � b0. Such a pair exists by [36], Theorem 7.5, and
is called a standard pair. Let N D NG.T0/ be the normalizer of T0, where T0 is
the Cartan subgroup with Lie algebra t0. We consider the map  0 W G ! C given
by  0.g/ D .Ad.g/b0;Ad.g/t0/, which is clearly G-equivariant with respect to the
left translation action on G and the adjoint action on C. It is easy to see that  0 is
constant on left T0-cosets, and induces an isomorphism of varieties

 W G=T0! C: (28)

To parameterize the K-orbits on B using Proposition 4.1, we introduce the variety
V D  �10 .C� /. It is easy to show that V is the set

V D fg 2 G W g�1�.g/ 2 N g: (29)
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By Equation (28) and theG-equivariance of the map  0, it follows that the morphism
 induces a bijection,

 W KnV=T0! KnC� ; (30)

which we also denote by  . Combining Equation (30) with Proposition 4.1,
we obtain the following useful parametrization of K-orbits on B (cf. [33],
Proposition 1.2.2).

Proposition 4.2. There are natural bijections

KnV=T0$ KnC� $ KnB$ KnG=B0:

Let V denote the set of .K; T0/-double cosets in V . By [35], Corollary 4.3, V is
a finite set and hence

The number of K-orbits on B is finite.

Notation 4.3. For v 2 V , let Ov 2 V denote a representative, so that v D K OvT .
Denote the correspondingK-orbit in B by K � b Ov , where b Ov D Ad. Ov/b0.

We end this section with a discussion of how � acts on the root decomposition of
g with respect to a �-stable Cartan subalgebra t.

Definition 4.4. For .b; t/ 2 C� and ˛ 2 ˚ D ˚.g; t/, let e˛ 2 g˛ be a root vector in
the corresponding root space. We say that ˛ is positive for .b; t/ if g˛ � b. We define
the type of ˛ for the pair .b; t/ with respect to � as follows.

(1) If �.˛/ D �˛, then ˛ is said to be real.
(2) If �.˛/ D ˛, then ˛ is said to be imaginary. In this case, there are two

subcases:

(a) If �.e˛/ D e˛, then ˛ is said to be compact imaginary.
(b) If �.e˛/ D �e˛ , then ˛ is said to be noncompact imaginary.

(3) If �.˛/ ¤ ˙˛, then ˛ is said to complex. If also ˛ and �.˛/ are both positive,
we say ˛ is complex �-stable.

Remark 4.5. Let ˛ be a positive root. Then �.˛/ is positive if and only if ˛ is
imaginary or complex �-stable.

For v 2 V with representative Ov 2 V , we define a new involution by the formula,

� Ov D Ad. Ov�1/ ı � ı Ad. Ov/ D Ad. Ov�1�. Ov// ı �: (31)

Note that � Ov.t0/ D t0, and consider the induced action of � Ov on ˚.g; t0/.

Definition 4.6. Let ˛ 2 ˚.g; t0/; v 2 V , and Ov 2 V be a representative for v.
We define the type of the root ˛ for v to be the type of the root ˛ for the pair .b0; t0/
with respect to the involution � Ov .
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For example, a root ˛ is imaginary for v if and only if � Ov.˛/ D ˛. Note that if
k Ovt is a different representative for v, then �k Ovt D Ad.t�1/ ı � Ov ı Ad.t/. It follows
easily that the type of ˛ for v does not depend on the choice of a representative Ov.
Further, the involution � Ov of ˚.g; t0/ does not depend on the choice of Ov, and we
refer to � Ov as the involution associated to the orbit v.

For v 2 V and b Ov D Ad. Ov/b0, consider the �-stable Cartan subalgebra t0 D
Ad. Ov/t0 � b Ov . For ˛ 2 ˚.g; t0/, we define Ad. Ov/˛ WD ˛ ı Ad. Ov�1/ 2 ˚.g; t0/:
Proposition 4.7. For ˛ 2 ˚.g; t0/, the type of ˛ for v is the same as the type of
Ad. Ov/˛ for the pair .b Ov; t0/ with respect to � .

Proof. This follows easily from the identity � ı Ad. Ov/ D Ad. Ov/ ı � Ov: ut
By Proposition 4.7, we may compute the action of � on the positive roots in

˚.g; t0/ for the pair .b Ov; t0/ using the involution � Ov on our standard positive system
˚C.g; t0/ in ˚.g; t0/.

Remark 4.8. We also denote the corresponding involution onG by � Ov . By abuse of
notation, we denote conjugation on G by Ad, i.e., for g; h 2 GI Ad.g/h D ghg�1.
Thus � Ov W G ! G is also given by the formula in Equation (31). Its differential at
the identity is � Ov W g! g.

4.2 The W -action on V

The fact that K-orbits on the flag variety have representatives coming from V was
used by Springer [35] to associate a Weyl group element �.v/ to theK-orbit indexed
by v 2 V . The element �.v/ plays a crucial role in understanding the action of the
involution � Ov associated to v on the roots for the standard pair ˚.g; t0/.

We first consider the map � W G ! G given by �.g/ D g�1�.g/: Note that
��1.N / D V . Then following [35], Section 4.5, we define for v D K OvT0

�.v/ D �. Ov/T0 2 N=T0 D W: (32)

We refer to the map � as the Springer map and �.v/ as the Springer invariant of
v 2 V . It is easy to check that �.v/ is independent of the choice of representative Ov.

The Springer map is not injective, but we can study its fibers using an action of
W on V , which we now describe. The groupN acts on V on the left by n � Ov D Ovn�1
for Ov 2 V and n 2 N . This action induces a W -action on V given by

w � v WD K Ov Pw�1T0; (33)

where Ov 2 V is a representative of v 2 V and Pw 2 N is a representative of w 2 W .
It is easy to check that the formula in Equation (33) does not depend on the choice
of representatives Pw or Ov. We refer to this action as the cross action ofW on V . The
Springer map intertwines the cross action of W on V with a certain twisted action
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of W on itself. We note that since T0 is �-stable, � acts on N and hence on W . We
define the twisted conjugation action of W on itself by:

w0 � w D w0w�..w0/�1/; for w;w0 2 W: (34)

Proposition 4.9. (1) The Springer map � W V ! W isW -equivariant with respect
the cross action on V and the twisted W -action on W .

(2) ([32], Proposition 2.5) Suppose for v; v0 2 V , we have �.v/ D �.v0/. Then
v0 D w � v for some w 2 W .

Part (1) is an easy calculation using the definition of �. Part (2) is nontrivial and
relies on many of the results of [32], Section 2.

4.3 Closed K -orbits on B

In this section we use the properties of the Springer map developed in the previous
section to find representatives for the closed K-orbits on B and describe the
involution � Ov associated to such orbits.

Since � acts on W , we can consider the W -fixed point subgroup, W � . By
[31], Lemma 5.1, T0 \ K is a maximal torus of K , and by [31], Lemma 5.3, the
subgroup NK.T0 \ K/ � NG.T0/. It follows that the group homomorphism
NK.T0 \ K/=.T0 \ K/ ! NG.T0/=T0 is injective. Hence, we may regard WK

as a subgroup of W , and it is easy to see that it has image in W � .

Theorem 4.10. There is a one-to-one correspondence between the set of closed
K-orbits on B and the coset spaceW �=WK . The correspondence is given by

wWK ! K Pw�1T0; (35)

for Pw 2 N a representative of w 2 W � .

To prove Theorem 4.10, we describe equivalent conditions for a K-orbit on B to
be closed. We begin with the following lemma (see [5], Lemma 3).

Lemma 4.11. Let B � G be a Borel subgroup. Then the following statements are
equivalent.

(i) The Borel subgroup B is �-stable.
(ii) The subgroup .B \K/0 is a Borel subgroup ofK , where .B \K/0 denotes the

identity component of B \K .

Let v0 2 V correspond to the K-orbit K � b0 so that v0 D KT0, and we choose
the representative bv0 D 1. Define V0 WD fv 2 V W K � b Ov is closedg.
Proposition 4.12. The following statements are equivalent.

(i) v 2 V0.
(ii) For any representative Ov 2 V of v 2 V , the Borel subalgebra b Ov D Ad. Ov/b0 is

�-stable.
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(iii) �.v/ D 1.
(iv) v 2 W � � v0.
Proof. We first show that (i) implies (ii). Let v 2 V0, and let B Ov � G be the
Borel subgroup of G corresponding to the Borel subalgebra bOv . ThenK � b Ov � B is
projective, so that the homogeneous space K=.K \ B Ov/ Š K � b Ov is projective, and
hence K \ B Ov is parabolic. Since K \ B Ov is solvable, it follows that K \ B Ov is a
Borel subgroup of K . Part (ii) now follows from Lemma 4.11.

We now prove that (ii) implies (iii). Suppose that v 2 V and that b Ov D Ad. Ov/b0
is �-stable. Thus, Ad.�. Ov//�.b0/ D Ad. Ov/b0. But b0 is itself �-stable, implying that
Ov�1�. Ov/ 2 B0. But then Ov�1�. Ov/ D �. Ov/ 2 B0 \N D T0 by definition of V . Thus,
�.v/ D �. Ov/T0 D 1.

We next show that (iii) implies (iv). Suppose that �.v/ D 1. Clearly, �.v0/ D 1.
It then follows from part (2) of Proposition 4.9 that v D w � v0 for some w 2 W .
But then part (1) of Proposition 4.9 implies

1 D �.v/ D �.w � v0/ D w�.v0/�.w
�1/ D w�.w�1/;

whence w 2 W � and v 2 W � � v0.
Lastly, we show that (iv) implies (i). If v 2 W � � v0, then v D K PwT0, where
Pw 2 N is a representative of w 2 W � . We note that since w 2 W � , �. Pw/ D Pwt
for some t 2 T0. It follows that b Ov D Ad. Pw/b0 is �-stable, since t0 � b0. Let
B Ov be the Borel subgroup corresponding to b Ov , so that B Ov is �-stable. It follows
from [31], Lemma 5.1 that B Ov \K is connected and therefore is a Borel subgroup
by Lemma 4.11. Since .B Ov \ K/ is a Borel subgroup, the variety K=.B Ov \ K/ is
complete, and the orbit K � b Ov Š K=.B Ov \K/ is a complete subvariety of B and is
therefore closed. ut

We now prove Theorem 4.10.

Proof (of Theorem 4.10). It follows from Proposition 4.12 that

V0 D W � � v0: (36)

By [32], Proposition 2.8, the stabilizer of v0 in W is precisely WK � W � . Thus,
the elements of the orbit W � � v0 are in bijection with the coset space W �=WK .
Equation (35) then follows from the definition of the cross action of V on W . ut

Recall the notion of the type of a root ˛ 2 ˚.g; t0/ for v from Definition 4.6, and
note that by Equation (31),

� Ov D Ad. Ov�1�. Ov// ı � D Ad.�. Ov// ı �: (37)

Proposition 4.13. For v 2 V0, every positive root ˛ 2 ˚C.g; t0/ is imaginary or
complex �-stable for v. Moreover, a positive root ˛ 2 ˚C.g; t0/ is imaginary (resp.
complex) for v if and only if it is imaginary (resp. complex) for v0.
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Proof. By Equation (37), for v 2 V , � Ov.˛/ D �.v/.�.˛// for ˛ 2 ˚.g; t0/. Since
v 2 V0, then �.v/ D 1 by Proposition 4.12, so

� Ov.˛/ D �.˛/ (38)

for any ˛ 2 ˚.g; t0/. Since b0 � g is �-stable, Remark 4.5 implies that any
˛ 2 ˚C.g; t0/ is complex �-stable or imaginary for v0. Both statements of the
proposition now follow immediately from Equation (38). ut
Remark 4.14. Let v 2 V0 and let � Ov be the involution associated to the orbit v.
To determine the action of � Ov on ˚.g; t0/, Proposition 4.13 implies that it suffices to
find which roots are compact (resp. noncompact) imaginary for v. By Theorem 4.10,
we may take Ov D Pw�1, where Pw is a representative for w 2 W � . By Proposition 4.7,
it follows that a root ˛ 2 ˚.g; t0/ is compact (resp. noncompact) imaginary for v if
and only if w�1.˛/ is compact (resp. noncompact) for the pair .Ad.w�1/b0; t0/ with
respect to � .

Notation 4.15. We will make use of the following notation for flags in C
n. Let

F D .V0 D f0g � V1 � � � � � Vi � � � � � Vn D C
n/

be a flag in C
n, with dimVi D i and Vi D spanfv1; : : : ; vi g, with each vj 2 C

n. We
will denote this flag F by

F D .v1 � v2 � � � � � vi � viC1 � � � � � vn/:

We denote the standard ordered basis of Cn by fe1; : : : ; eng. For 1 � i; j � n, let
Ei;j be the matrix with 1 in the .i; j /-entry and 0 elsewhere.

Example 4.16. Let G D GL.n;C/ and let � be conjugation by the diagonal
matrix c D diagŒ1; 1; : : : ; 1;�1�. Then K D GL.n � 1;C/ � G.1;C/ and k D
gl.n�1;C/˚gl.1;C/. Since this involution is inner,W � D W D Sn, the symmetric
group on n letters and WK D Sn�1. We can take b0 to be the standard Borel subal-
gebra of n�n upper triangular matrices and t0 � b0 to be the diagonal matrices. By
Theorem 4.10, the n closed orbits are then parameterized by the identity permutation
and the n � 1 cycles f.n � 1 n/; .n � 2 n � 1 n/; : : : ; .i : : : n/; : : : ; .1 : : : n/g. We
consider the closed K-orbit v 2 V0 corresponding to the cycle w D .i : : : n/. By
Equation (35), it is generated by the Borel subalgebra bi WD Ad.w�1/b0, which is
the stabilizer of the flag:

Fi WD .e1 � � � � � ei�1 � en
„ƒ‚…

i

� ei � � � � � en�1/: (39)

Notice that Fn is the standard flag in C
n and F1 isK-conjugate to the opposite flag.

We denoteQi WD K � bi , so Q1; : : : ;Qn are the n closed orbits.
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Let �i 2 t�0 be the linear functional �i .t/ D ti for t 2 t0, where t D
diagŒt1; : : : ; ti ; : : : ; tn� with each ti 2 C. According to [26], any root of the form
�i � �k or �k � �i is noncompact imaginary for v while all other roots are compact
imaginary, and the involution � Ov associated to v acts on the functionals by � Ov.�i / D
�i for all i . The second assertion follows easily from Equation (38). By Remark 4.14,
˛ D �k � �j is compact (resp. noncompact) imaginary for v if and only if w�1.˛/
is compact (resp. noncompact) imaginary with respect to � . The first assertion
then follows from the observation that roots of the form �n � �k and �k � �n are
noncompact imaginary with respect to � and all other roots are compact imaginary.

4.4 The case of general K -orbits in B

In this section we compute �. Ov/ and �.v/ inductively based on the closed orbit case
in Section 4.3. We thus obtain a formula for � Ov for anyK-orbit in B.

For the first step, we take a K-orbit Q and a simple root ˛ and construct a
K-orbit denoted m.s˛/ � Q which either coincides with Q or contains Q in its
closure as a divisor. Let Q D K � b Ov � B for v 2 V , let ˛ 2 ˚.g; t0/ be a
simple root, and let p˛ be the minimal parabolic subalgebra generated by ˛. Let P˛
denote the corresponding parabolic subgroup, and let 
˛ W G=B0 ! G=P˛ denote
the canonical projection, which is a P˛=B0 D P

1-bundle.

Lemma-Definition 4.17. The variety 
�1˛ 
˛.Q/ is irreducible and K acts on

�1˛ 
˛.Q/ with finitely many orbits. The unique open K-orbit in 
�1˛ 
˛.Q/ is
denoted by m.s˛/ �Q.

Proof. Note that 
�1˛ 
˛.Q/ D K OvP˛=B0, and it follows easily that 
�1˛ 
˛.Q/ is
irreducible, since it is the image of the double coset KvP˛ under the projection
p W G ! G=B0. The variety K OvP˛=B0 is clearly K-stable. It follows that it has
a unique open orbit, since the set of K-orbits in K OvP˛=B0 is a subset of the set of
K-orbits on B, and hence is finite. ut

The orbit m.s˛/ � Q may be equal to Q itself. However, in the case where
m.s˛/�Q ¤ Q, then dimm.s˛/�Q D dimQC1, since the map 
˛ W G=B0 ! G=P˛
is a P

1-bundle. To compute m.s˛/ �Q explicitly (following [38], Lemma 5.1), we
recall first some facts about involutions for SL.2;C/.

Let˘ � ˚C.g; t0/ denote the set of simple roots and let ˛ 2 ˘ . Let h˛ D 2H˛
<˛;˛>

with H˛ 2 t0 such that hH˛; xi D ˛.x/ for x 2 t0, and let e˛ 2 g˛, f˛ 2 g�˛ be
chosen so that Œe˛; f˛� D h˛ . Hence, the subalgebra s.˛/ D spanfe˛; f˛; h˛g forms
a Lie algebra isomorphic to sl.2;C/. Let �˛ W sl.2;C/! s.˛/ be the map

�˛ W
�

0 1

0 0

�

! e˛; �˛ W
�

0 0

1 0

�

! f˛; �˛ W
�

1 0

0 �1
�

! h˛: (40)
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Then �˛ W sl.2;C/ ! s.˛/ is a Lie algebra isomorphism, which integrates to an
injective homomorphism of Lie groups �˛ W SL.2;C/ ! G, which we will also
denote by �˛. We let S.˛/ be its image.

To perform computations, it is convenient for us to choose specific representa-
tives for the Cayley transform u˛ with respect to ˛ and the simple reflection s˛ .
Let

u˛ D �˛
�

1p
2

�

1 {

{ 1

��

: (41)

Note that g D 1p
2

�

1 {

{ 1

�

2 SL.2;C/ is the Cayley transform which conjugates

the torus in SL.2;C/ containing the diagonal split maximal torus of SL.2;R/ to a
torus of SL.2;C/ containing a compact maximal torus of SL.2;R/. Let

Ps˛ D �˛
��

0 {

{ 0

��

: (42)

Then Ps˛ is a representative for s˛ 2 W . Note that u2˛ D Ps˛ .
Let �1;1 W SL.2;C/! SL.2;C/ be the involution on SL.2;C/ given by

�1;1.g/ D
�

1 0

0 �1
�

g

�

1 0

0 �1
�

for g 2 SL.2;C/.
Lemma 4.18. Suppose ˛ 2 ˘ is compact (resp. noncompact) imaginary for v.
Then �˛ is compact (resp. noncompact) imaginary for v.

Proof. Since � Ov.g˛/ D g˛ , it follows easily that � Ov.g�˛/ D g�˛: The rest of the
proof follows since � Ov preserves the Killing form. ut
Lemma 4.19. If ˛ is noncompact imaginary for v, then

� Ov ı �˛ D �˛ ı �1;1: (43)

Proof. It suffices to verify Equation (43) on the Lie algebra sl.2;C/. On sl.2;C/
the maps in Equation (43) are linear, and we need only check the equation on a
basis for sl.2;C/. Since ˛ is noncompact imaginary for v, we have � Ov.e˛/ D �e˛ ,
� Ov.f˛/ D �f˛ , and � Ov.h˛/ D h˛ by Lemma 4.18, and the result follows. ut
Remark 4.20. It follows from the proof of Lemma 4.19 that s.˛/�Ov D Ch˛ .

Proposition 4.21. Let Q D K � b Ov with v 2 V and let ˛ 2 ˚C.g; t0/ be a simple
root. Then m.s˛/ �Q ¤ Q if and only if ˛ is noncompact imaginary for v or ˛ is
complex �-stable for v. If ˛ is noncompact imaginary, thenm.s˛/ �Q D K �b0, with
b0 D Ad. Ovu˛/b0, where u˛ is the Cayley transform with respect to ˛. If ˛ is complex
�-stable, thenm.s˛/ �Q D K � b0, with b0 D Ad. Ovs˛/b0.
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Proof. Let K Ov D K \ Ad. Ov/P˛ be the stabilizer in K of 
˛. OvB0=B0/. Let
L Ov D 
�1˛ 
˛. OvB0=B0/, which is identified with Ad. Ov/P˛=Ad. Ov/B0 Š P

1. We
claim that the map � from the set of K Ov-orbits in L Ov to the set of K-orbits in
K OvP˛=B0 given by �. OQ/ D K � OQ is bijective. Indeed, if Q1 � K OvP˛=B0 is a
K-orbit, then for z1; z2 2 Q1 \ L Ov , we have z2 D k � z1 for some k 2 K , and

˛.z1/ D 
˛.z2/. It follows that k stabilizes 
˛. OvB0=B0/, so k 2 K Ov . Hence,
Q1 \ L Ov is a K Ov-orbit, and it is routine to check that Q1 7! Q1 \ L Ov is inverse
to �, giving the claim. Let U˛ be the unipotent radical of P˛ , and let Z.M˛/

0 be
the identity component of the center of a Levi subgroup of P˛ . Then Ad. Ov/P˛ acts
on the fiber L Ov through its quotienteS Ov WD Ad. Ov/P˛=Ad. Ov/.Z.M˛/

0U ˛/, which is
locally isomorphic to Ad. Ov/S.˛/. HenceK Ov acts onL Ov through its image eK Ov ineS Ov .
For ˛ noncompact imaginary for v, it follows from Remark 4.20 that eK Ov has Lie
algebra Ad. Ov/.Ch˛/, and hence eK Ov is either a torus of eS Ov normalizing OvB0=B0 or
the normalizer of such a torus. Hence, the points OvB0=B0 and Ovs˛B0=B0 are in zero-
dimensional eK Ov-orbits, and the complementL Ov � . OvB0=B0[ Ovs˛B0=B0/ is a single
eK Ov-orbit containing Ovu˛B0=B0. From the definition of the bijection �, it follows
that K OvB0=B0 is a proper subset of K Ovu˛B0=B0, where the closure is taken in the
varietyK OvP˛=B0. Since dim.K OvP˛=B0/ D dim.K OvB0=B0/C 1, we conclude that
m.s˛/ �Q D K Ovu˛B0=B0. This verifies the proposition in the case of noncompact
imaginary roots, and the other cases are similar, and discussed in detail in Section 2
of [33]. ut
Remark 4.22. In [38], the author discriminates between two types of noncompact
roots. For G D GL.n;C/ and K D GL.p;C/ � GL.n � p;C/, all noncompact
roots for all orbits are type I.

Notation 4.23. We let G D GL.n;C/ and K D GL.n � 1;C/ � G.1;C/ as in
Example 4.16. We let bi;j be the Borel subalgebra stabilizing the flag

Fi;j D .e1 � � � � � ei C en
„ ƒ‚ …

i

� eiC1 � � � � � ej�1 � ei
„ƒ‚…

j

� ej � � � � � en�1/;

and we let Qi;j D K � bi;j .

Example 4.24. We let G and K be as in Example 4.16 and compute m.s˛/ � Qc

for each closed K-orbitQc . By Example 4.16, Qc D Qi D K � bi , where bi is the
stabilizer of the flag Fi from Equation (39). Let vi be the corresponding element of
V . By Example 4.16, the simple roots ˛i�1 D �i�1 � �i and ˛i D �i � �iC1 are
the only noncompact imaginary simple roots for vi , and all other simple roots are
compact (for i D 1 and i D n, one of these two roots does not exist). Since Qi D
K � Ad. Pw/b0, where Pw is a representative for the element .n : : : i / of W , it follows
from Proposition 4.21 thatm.s˛i�1 /�Qi D K �Ad. Pwu˛i�1/b0. A routine computation
shows that the K-orbitK � Ad. Pwu˛i�1 /b0 contains the stabilizer of the flag

Fi�1;i D .e1 � � � � � ei�1 C en
„ ƒ‚ …

i�1
� ei�1 � � � � � en�1/:
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Hence,

m.s˛i�1 / �Qi D Qi�1;i : (44)

A similar calculation shows that

m.s˛i / �Qi D Qi;iC1: (45)

Let Qc D K � bOv be a closedK-orbit and let B Ov � G be the Borel subgroup with
Lie.B Ov/ D b Ov . We observed in the proof of Proposition 4.12 that K \ B Ov is a Borel
subgroup ofK so thatQc Š K=.K\B Ov/ is isomorphic to the flag variety BK ofK .

Definition-Notation 4.25. For a K-orbit Q on B, we let l.Q/ WD dim.Q/ �
dim.BK/. The number l.Q/ is called the length of the K-orbitQ.

Proposition 4.26. Let Q be any K-orbit in B. Then there exists a sequence of
simple roots ˛i1 ; : : : ; ˛ik 2 ˚C.g; t0/ and a closed orbit Qc such that Q D
m.s˛ik / � : : : �m.s˛i1 / �Qc. We letQj D m.s˛ij / � : : : �m.s˛i1 / �Qc. If for j D 1; : : : ; k,
the root ˛ij is complex �-stable or noncompact imaginary forQj�1, then l.Q/ D k.

Proof. This follows easily from [32], Theorem 4.6 . ut
Let Qv be the K-orbit corresponding to v 2 V . We now compute the involution

associated to the orbit m.s˛/ � Qv when ˛ is complex �-stable or noncompact
imaginary for v from the involution for the orbit Qv . We denote the parameter
v0 2 V for m.s˛/ � Qv by v0 D m.s˛/ � v. By results from Section 4.3 and
Proposition 4.26, we can then determine �

bv0

for any v0 in V .
There are two different cases we need to consider.

Case 1: ˛ is noncompact imaginary for v. Let v0 D m.s˛/ � v. Then by
Proposition 4.21,K � b

bv0

D K �Ad. Ovu˛/b0, where u˛ is the representative for the
Cayley transform with respect to ˛ given in Equation (41).

We can now compute �
bv0

in terms of � Ov .

Proposition 4.27. Let v0 D m.s˛/ � v, where ˛ is noncompact imaginary for v.

(1) Then Ovu˛ 2 V is a representative of v0, and

�.bv0/ D �. Ovu˛/ D Ps˛�1�. Ov/;

and

�.v0/ D s˛�.v/:

(2) The involution for v0 is given by

�
bv0

D Ad.�.bv0// ı � D Ad. Ps˛�1/Ad.�. Ov// ı � D Ad. Ps˛�1/ ı � Ov;
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and �
bv0

acts on the roots ˚.g; t0/ by:

�
bv0

D s˛� Ov:

Proof. It is easy to verify that if g D 1p
2

�

1 {

{ 1

�

, then �1;1.g/ D g�1. Hence,

by Lemma 4.19, it follows that � Ov.u˛/ D u�1˛ . Thus, by Equation (37), �.u˛/ D
Ad.�. Ov/�1/.u�1˛ /: It follows that

�. Ovu˛/ D u�1˛ �. Ov/�.u˛/ D u�1˛ �. Ov/�. Ov/�1u�1˛ �. Ov/ D u�2˛ �. Ov/:

Since u�2˛ D Ps˛�1, it follows that �. Ovu˛/ D Ps˛�1�. Ov/. By Equation (29) and
Proposition 4.21, it follows that Ovu˛ 2 V is a representative of m.s˛/ � v. By
Equation (32), we have �.m.s˛/ � v/ D s˛�.v/. Part (2) of the proposition now
follows from part (1) and Equation (37). ut
Case 2: ˛ is complex �-stable for v.

Proposition 4.28. Let ˛ be complex �-stable for v.

(1) Let v0 D m.s˛/ �v. Then v0 has representative bv0 D Ov Ps˛ , so that v0 D s˛�v 2 V
and

�. Ov Ps˛/ D Ps˛�1�. Ov/�. Ps˛/;

whence

�.v0/ D s˛�.v/�.s˛/:

(2) The involution �
bv0

on g associated to v0 is given by

�
bv0

D Ad. Ps˛�1�. Ov/�. Ps˛// ı � D Ad. Ps˛�1/ ı � Ov ı Ad. Ps˛/;

so that the action of �
bv0

on the roots ˚.g; t0/ is given by

�
bv0

D s˛�.v/�.s˛/� D s˛� Ovs˛:

Proof. By Proposition 4.21, we have b
bv0

D Ad. Ov Ps˛/b0 so that v0 D s˛ � v by
Equation (33). The rest of the proof follows by definitions. ut
Lemma 4.29. Let Qv be the K-orbit corresponding to v 2 V , and let ˛ be
a complex �-stable simple root for v. Let ˇ be a root of ˚C.g; t0/. Then ˇ is
noncompact imaginary for v if and only if s˛.ˇ/ is noncompact imaginary for
m.s˛/ � v.
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Proof. Let v0 D m.s˛/ � v. Then by Proposition 4.28 (2), �
bv0

.s˛.ˇ// D s˛.� Ov.ˇ//.
Hence, ˇ is imaginary for v if and only if s˛.ˇ/ is imaginary for v0. To prove the
noncompactness assertion, it suffices to apply Proposition 4.28 (2) to a root vector
Ad. Ps˛�1/.xˇ/, where xˇ is a nonzero root vector in gˇ . ut
Example 4.30. We show how this theory helps describe the K-orbits Qi;j in the
case when G D GL.n;C/ and K D GL.n � 1;C/ � G.1;C/. We let vi;iC1 2 V
parametrize the orbit Qi;iC1. By Equation (45) and Propositions 4.12 and 4.27 (1),
the Springer invariant �.vi;iC1/ D .i i C 1/ D s˛i , and using also Example 4.16,
vi;iC1 has representative 1vi;iC1 D .n n � 1 : : : i/u˛i , where u˛i is the Cayley
transform from Equation (41). Hence, ˛i is real for vi;iC1, while ˛i�1 and ˛iC1 are
the only �-stable complex simple roots (as before, in the case i D 1 or n�1, only one
of these complex roots exists). Further, the imaginary roots for vi;iC1 are the roots
�j � �k with j; k 62 fi; i C 1g and have root vectorsEj;k . Then by Proposition 4.27
(2), �

bvi;iC1
.Ej;k/ D Ad. Ps˛i �1/�

bvi
.Ej;k/, where Ps˛i is the representative for s˛i 2 W

given in Equation (42). But by Example 4.16, �
bvi
.Ej;k/ D Ej;k, so the roots �j � �k

are compact. Hence, there are no noncompact imaginary roots forQi;iC1.
We now consider all orbits Qi;j with i < j . We let vi;j 2 V denote the

corresponding parameter, and we let si D .i i C 1/ with representative Psi given
by the corresponding permutation matrix.

Claim. (1) Qi;j D m.sj�1/ � : : : �m.si / �Qi and l.Qi;j / D j � i .
(2) �.vi;j / is the transposition .i j /, �

cvi;j
D .i j / on roots, and Qi;j has

representative given by the elementbvi;j D .n n � 1 : : : i/u˛i PsiC1 : : : Psj�1.
(3) The simple roots ˛i�1 D �i�1 � �i and ˛j D �j � �jC1 are the only complex

�-stable simple roots for vi;j , and there are no noncompact imaginary roots for
vi;j .

We prove these claims by induction on j�i . Example 4.24 and our discussion in the
first paragraph proves the claim when j�i D 1. It suffices to show that (1)–(3) of the
claim for Qi;j imply the claim for Qi;jC1. By Proposition 4.21 and Claims (2) and
(3) for Qi;j , it follows that m.sj / �Qi;j ¤ Qi;j and m.sj / �Qi;j has representative
1vi;jC1. A routine computation with flags then shows thatK �Ad.1vi;jC1/b0 D Qi;jC1.
Hence,

m.sj / �Qi;j D Qi;jC1: (46)

Claim (1) for Qi;jC1 then follows by induction. Claim (2) for Qi;j and Proposi-
tion 4.28 (1) imply that �.vi;jC1/ is the transposition .i j C 1/. The formula for
�
bvi;jC1

in Claim (2) follows from Proposition 4.28 part (2). Claim (3) now follows

by Lemma 4.29 and an easy computation. This verifies Claims (1)–(3) for the orbit
Qi;jC1.

We remark that a computation similar to the one above verifies that

m.si�1/ �Qi;j D Qi�1;j : (47)
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Example 4.31. We retain the notation from the last example. We assert that every
K-orbit Q in B is either of the form Qi or Qi;j with i < j and that these orbits
are all distinct. We prove the first assertion by induction on l.Q/. If l.Q/ D 0, then
Q is closed, so Q D Qi by Example 4.16. If l.Q/ D 1, then by Proposition 4.26,
Q D m.si / �Qc for some closed orbit Qc , so by Example 4.24 and Equations (44)
and (45), it follows that Q D Qi;iC1 for some i . If l.Q/ D k > 1, then
Proposition 4.26 implies Q D m.si / � eQ, where l.eQ/ D k � 1, so by induction
eQ D Qj;jCk�1 for some j , and by Claim (3) of Example 4.30, the simple root ˛i is
either ˛j�1 or ˛jCk�1. The first assertion now follows by Equations (46) and (47).
By Example 4.16, the orbits Qi are distinct. By Claim (2) of Example 4.30, the
Springer invariant for Qi;j is .i j /, so that Qi;j D Qi 0;j 0 if and only if i D i 0 and
j D j 0. We now have a complete classification of the K-orbits on B.

Example 4.32. We claim that Q1;n is the unique open orbit of K on B, where
we retain notation from the previous two examples. Indeed, by Claim (1) from
Example 4.30, l.Q1;n/ D n � 1 D dimQ1;n � dim.BK/, so that dimQ1;n D
n � 1C dim.BK/ D dim.B/. It follows that Q1;n is open in B.

Remark 4.33. The last three examples verify the assertions of [40], Section 2, and
[26] for the case G D GL.n;C/ andK D GL.n� 1;C/�GL.1;C/. In particular,
they justify the statements made in [11], Section 3.1. Example 4.30 explains the
definition of the element v in Equation (3.3) of [11] and the construction of the
involution � 0 in [11], Section 3.1, which is the critical ingredient in the proof of
Theorem 3.2 above (see Remark 3.3).
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1 Introduction

In [44], Schubert gave explicit cell decompositions of the complex Grassmannians.
The cells in these decompositions, the Schubert cells, are defined by certain
incidence conditions and are naturally parametrized by integer partitions, or equiv-
alently, Young diagrams. More precisely, the Schubert cells in the Grassmannian
Gr.p; p C q/ of complex p-planes in C

pCq can be parametrized by the Young
diagrams that fit inside a p � q-rectangle, such that the (complex) dimension of
each Schubert cell is equal to the number of boxes of the corresponding Young
diagram and the partial ordering on the set of the Schubert cells given by inclusion
of their closures, the Schubert varieties, corresponds to the partial ordering given by
inclusion of Young diagrams.

In [35], Kostant generalized Schubert’s cell decompositions of the Grassman-
nians to flag varieties G=P , where G is a complex (semi-)simple algebraic group
and P is any parabolic subgroup of G. These cell decompositions are obtained
from the Bruhat decomposition (due to Harish-Chandra [24]) of G and the cells are
parametrized by a certain subset W I of the Weyl group W of G. The (complex)
dimension of each Schubert cell is equal to the length of the corresponding Weyl
group element and the partial ordering on the set of Schubert varieties is given by the
Bruhat ordering onW restricted toW I. In the special case whenG=P is a Hermitian
symmetric space (or, equivalently, a cominuscule flag variety), it follows from
Proctor’s thesis [41] that the poset W I is a distributive lattice that can be identified
with the lattice of lower-order ideals of the poset of positive noncompact roots.
It turns out that the poset of positive noncompact roots can always be embedded
into a two-dimensional square lattice and its lower-order ideals are represented by
generalized Young diagrams. These diagrams have recently been (re)discovered by
several authors [36, 42, 47].

The main purpose of this paper is to show how these generalized Young diagrams
can be used to study categories of highest weight modules for Hermitian symmetric
spaces and related topics. These categories were studied extensively by Enright and
Shelton in [19,20] and this paper may be viewed as an illustrated guide to the results
in [19, 20]. This paper also extends work by Lascoux and Schützenberger [38]
and Boe [6] on the calculation of Kazhdan–Lusztig polynomials for Hermitian
symmetric spaces and work by Enright and Willenbring [22] and Enright and
Hunziker [16, 17] on Bernstein–Gelfand–Gelfand resolutions and Hilbert series of
unitary highest weight representations.

To assuage the reader’s curiosity how all of this is related to syzygies of
determinantal varieties, let us consider the determinantal variety Yp�2 � Mp of
complex p � p matrices of rank � p � 2. Via Howe duality, the coordinate
ring CŒYp�2� carries the structure of a unitary highest weight module of the
real Lie algebra u.p; p/. This highest weight module—and in fact every unitary
highest weight module—admits a Bernstein–Gelfand–Gelfand resolution in terms
of parabolic Verma modules. Each parabolic Verma module, as a GLp �GLp-
module, is of the form S ˝ F , where S WD CŒMp� is the coordinate ring of Mp
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e

Figure 1 Young lattice associated to the Grassmannian Gr.2; 4/

with the usual GLp �GLp-action and F is a finite-dimensional simple GLp �GLp-
module. As we will explain in Section 7, the parabolic Verma modules that appear
in the resolution of CŒYp�2� are in a natural bijection with the Young diagrams that
were shown in Figure 1 and we have a minimal free resolution of CŒYp�2� as a
graded S -module of the form

0 �! 
 

	�! 
 %

&


˚


&
% 


	�! S �! CŒYp�2� �! 0;

where the two arrows that are marked with a dot are homogenous maps of degree
pC1 and the other maps are of degree 1. The mystery of what precisely the diagrams
stand for is revealed in Example 7.11.

We remark that much of this work should be considered expository. In particular,
we added background material for students and experts who are familiar with
flag varieties and determinantal varieties, but who have not had much exposure to
category O (and vice versa).
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School on Geometry and Representation Theory. The second author would like
to thank the organizers for their hospitality as well as the participants for their
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S. Evens, W. Graham, S. Kumar, D. Nakano, P. Trapa, R. Varley, and R. Zierau. We
also thank J. Alexander for his careful proofreading.
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2 Parabolic subalgebras of Hermitian type

Throughout the paper let g be a complex simple Lie algebra of rank n. We fix a
Cartan subalgebra h of g and denote by ˆ � h� the root system of g relative to h.
For every ˛ 2 ˆ we have a 1-dimensional root space

g˛ WD fx 2 g j Œh; x� D ˛.h/x for all h 2 hg:

We fix a simple system… � ˆ and write… D f˛1; : : : ; ˛ng, where the simple roots
˛i are labelled as in Bourbaki [9]. The simple system determines a positive system
ˆC � ˆ. Let

b WD h˚
M

˛2ˆC

g˛

be the corresponding standard Borel subalgebra of g. Any Borel subalgebra of g is
conjugate to b under the action of the adjoint group of g.

A parabolic subalgebra p of g is a subalgebra containing some Borel subalgebra
of g. If p contains the fixed Borel subalgebra b, we say that p is a standard parabolic
subalgebra. By the remark above, any parabolic subalgebra p of g is conjugate
to a standard parabolic subalgebra under the action of the adjoint group of g.
There is a one-to-one correspondence between subsets of … and standard parabolic
subalgebras of g as follows. For I � …, define a root system ˆI by

ˆI WD ˆ \
X

˛2I

Z˛:

Next define a reductive subalgebra mI of g and a nilpotent subalgebra uI of g by

mI WD h˚
M

˛2ˆI

g˛ and uI WD
M

˛2ˆCnˆI

g˛:

Then pI WD mI˚ uI is a standard parabolic subalgebra of g with Levi subalgebra mI

and nilradical uI. If j… n Ij D 1 we say that pI is a maximal parabolic subalgebra.
The reductive Lie algebra mI can be further decomposed as a direct sum mI D
z I ˚ ŒmI;mI�, where z I WD \˛2I ker˛ is the center of mI and ŒmI;mI� is the
semisimple part of mI. Note that dim z I D j… n Ij; in particular, pI is a maximal
parabolic subalgebra if and only if the center of mI is one-dimensional.

To simplify notation, we often omit the subscript I. Thus, we would simply write
p D m˚ u instead of pI D mI ˚ uI. Of particular importance is the set

ˆ.u/ WD ˆC nˆI;

which we will later study as a partially ordered subset ofˆC.
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2.1 Parabolic subalgebras of Hermitian type

Suppose that gR is a noncompact real form of g with Cartan decomposition gR D
mR ˚ sR and assume that mR has a nontrivial center zR. This latter condition is
equivalent to .gR;mR/ being the pair of Lie algebras of an irreducible Hermitian
symmetric pair .GR;MR/ of noncompact type, which means that GR=MR is a
noncompact symmetric space that admits a complex structure such that GR acts
as biholomorphic transformations.

Example 2.1. The simple Lie algebra gR D sl.n;R/ has a Cartan decomposition
gR D mR ˚ sR, where mR D so.n/ and sR is the space of real symmetric matrices
of trace 0. The center of mR is nontrivial if and only if n D 2 (in which case
mR is equal to its center). The Hermitian symmetric space SL.2;R/= SO.2/ can be
identified with the upper halfplane H WD fz 2 C j Im z > 0g on which SL.2;R/ acts
as linear fractional transformations as usual.

The general theory implies that zR D Rh0, where h0 can be chosen such
that ad.h0/ W g ! g has eigenvalues 0 and ˙i with the 0-eigenspace being the
complexification m of mR. Define

s˙ WD fx 2 g j Œh0; x� D ˙ixg:

Then the space sC is the holomorphic tangent space to the Hermitian symmetric
space GR=MR at eMR. Furthermore, Œm; sC� D sC, ŒsC; sC� D 0, and p WD
m˚sC is a maximal parabolic subalgebra of g with Levi componentm and nilradical
sC. If a (standard) parabolic subalgebra p � g can be obtained in this way, we
say that p is of Hermitian type. The distinguished class of parabolic subalgebras of
Hermitian type (which are also called parabolic subalgebras of cominuscule type in
the literature) can be characterized in a variety of equivalent ways.

Lemma 2.2. Let p D pI be a maximal parabolic subalgebra of g with Levi
decomposition p D m˚ u. Then the following are equivalent:

(i) The parabolic subalgebra p is of Hermitian type.
(ii) There exists an element h 2 z.m/ such that u D fx 2 g j Œh; x� D xg.

(iii) The nilradical u is abelian.
(iv) If ˛; ˇ 2 ˆ.u/, then the sum ˛ C ˇ is not a root.
(v) If ˛; ˇ 2 ˆ.u/ and ˇ � ˛ 2 …, then ˇ � ˛ 2 I.

(vi) The simple root in … n I occurs with coefficient 1 in the highest root � .
(vii) The pair .g;m/ is of type .An;Ap�1 � An�p/ with 1 � p � n, .Bn;Bn�1/,

.Cn;An�1/, .Dn;An�1/, .Dn;Dn�1/, .E6;D5/, or .E7;E6/.

Proof. We prove the implications (i)) (ii)) � � � ) (vii)) (i).
(i)) (ii): Take h WD �ih0, where h0 is defined as above.
(ii)) (iii): Assume that u D fx 2 g j Œh; x� D xg for some h 2 g. Then, by the

Jacobi identity, for every x; y 2 u we have
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0 D Œh; Œx; y��C Œx; Œy; h�� C Œy; Œh; x�� D Œx; y� � Œx; y� � Œx; y� D �Œx; y�:

Thus u is abelian.
(iii)) (iv): Suppose that there exist ˛; ˇ 2 ˆ.u/ such that ˛ C ˇ 2 ˆ. Then

Œg˛; gˇ� D g˛Cˇ 6D 0 and hence u is not abelian.
(iv)) (v): Let ˛; ˇ 2 ˆ.u/ such that ˇ � ˛ 2 …. Suppose that ˇ � ˛ D ˛p 2

… n I. Then ˇ � ˛ 2 ˆ.u/ and ˇ D ˛ C .ˇ � ˛/ is a sum of two roots in ˆ.u/.
(v)) (vi): There exists a sequence of positive roots ˇ1; : : : ; ˇk 2 ˆC such that

ˇ1 is the simple root in … n I, ˇk is the highest root � , and ˇiC1 � ˇi 2 … for
1 � i � k � 1. Since ˆ.u/ D fPj cj ˛j 2 ˆC j cp � 1g, the roots ˇi are in fact
in ˆ.u/. Assuming (v) it follows that ˇiC1 � ˇi 2 I for 1 � i � k � 1 and hence
� DPj cj ˛j with cp D 1.

(vi)) (vii): By inspection.
(vii) ) (i): For each of the types listed there exists a pair of real Lie algebras

.gR;mR/ such that (i) is satisfied. Explicitly, these pairs are given in Table 1. ut

If p D m˚ u is of Hermitian type, the roots in ˆI are called the compact roots
and the roots in ˆ nˆI are called the noncompact roots. Note that there is a unique
noncompact simple root, namely the root ˛ 2 …n I. The set of positive noncompact
roots,ˆ.u/ D ˆC nˆI, will play a distinguished role in this paper.

Table 1. Hermitian symmetric pairs of noncompact type
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3 Generalized Young diagrams of Hermitian type

In the following, let . ; / denote the nondegenerate bilinear form on h� which is
induced from the Killing form of g. For ˛ 2 ˆ, set ˛_ WD 2˛=.˛; ˛/ and define the
reflection s˛ W h� ! h� by s˛.�/ D ��.�; ˛_/˛. The reflections are elements of the
Weyl group W which is generated by the simple reflections s˛ , ˛ 2 …. The length
of an element w 2 W , denoted `.w/, is the length of the shortest word representing
w as a product of the simple reflections.

3.1 Some basic observations due to Kostant

For w 2 W , define

ˆw WD ˆC \ wˆ�:

It is well known that jˆwj D `.w/, the length of w. Furthermore, there is a unique
element wı 2 W such that ˆw

ı

D ˆC. For any subset ‰ � ˆC define h‰i WD
P

˛2‰ ˛.

Lemma 3.1 (Kostant [34, (5.10.1)]). For every w 2 W ,

w� D � � hˆwi;

where � WD 1
2
hˆCi as usual.

Proof. It follows immediately from the definitions that hˆCi C hwˆ�i D 2hˆwi.
Since hwˆ�i D �hwˆCi, this implies � � w� D hˆwi. ut
For subsets ‰1;‰2 � ˆC define ‰1 PC‰2 WD .‰1 C‰2/\ˆC.

Proposition 3.2 (Kostant [34, Prop. 5.10]). The mapping w 7! ˆw is a bijection
of W onto the family of subsets ‰ � ˆC such that both ‰ and ‰c WD ˆC n‰ are
closed under PC. ut
Proof. Since the W -orbit of � consists of jW j elements, the lemma above implies
that the mapping w 7! ˆw is injective. It follows immediately from the definition
that ˆw is closed under PC. Since .ˆw/

c D ˆC \ wˆC D ˆC \ wwıˆ� D ˆww
ı

,
it also follows that .ˆw/

c is closed under PC. Now consider a subset ‰ � ˆC such
that both ‰ and‰c are closed under PC. Define e‰ WD ‰ [�.‰c/: Then e‰ is closed
under PC andˆ D e‰[�e‰ is a disjoint union. This means that e‰ is a positive system
of roots. Since the Weyl group acts transitively on positive systems, there exists a
(unique) w 2 W such that wˆ� D e‰. Obviously,‰ D ˆw ut
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3.2 Minimal length coset representatives

Let p D pI be a standard parabolic subalgebra with Levi decomposition p D m˚ u
and let WI WD hs˛ j ˛ 2 Ii, which we identify with the Weyl group of the reductive
Lie algebra m. Note that since the Levi decomposition p D m˚ u is adm-invariant,
ˆI and ˆ.u/ are stable under the action of WI.

Definition 3.3. Following Kostant [34, (5.13.1)], define

IW WD fw 2 W j ˆw � ˆ.u/g:

For later reference, we also define W I WD fw�1 j w 2 IW g.
Proposition 3.4 (Kostant [34, Prop. 5.13]). Every element w 2 W can be uniquely
written in the form w D uv, where u 2 WI and v 2 IW . Furthermore, if w D uv is
such a decomposition, then `.w/ D `.u/C `.v/.
Proof. Let v1; v2 2 IW and suppose that v1v

�1
2 2 WI. Since ˆ.u/ is stable under

WI, it follows that ˆv�1
2
� ˆv�1

1
. Since v2v

�1
1 D .v1v

�1
2 /
�1 2 WI it also follows

that ˆv�1
1
� ˆv�1

2
and hence ˆv�1

2
D ˆv�1

1
. By Proposition 3.2, v1 D v2. Now let

w 2 W be arbitrary and consider‰ WD ˆCI \wˆ�. Then‰ and ‰c WD ˆCI n‰ are
both closed under PC. By Proposition 3.2, with ˆC replaced by ˆCI andW replaced
by WI, there exists u 2 WI such that ‰ D ˆCI \ uˆ�I . Since the decomposition
ˆ� D ˆ�I [ �ˆ.u/ is stable under WI, it follows that ‰ D ˆCI \ uˆ� and hence
ˆw \ ˆCI D ˆu. Set v WD u�1w. Again using that ˆ.u/ is stable under WI, it is
straightforward to show that ˆw \ ˆ.u/ D uˆv . In particular, ˆv � u�1ˆ.u/ D
ˆ.u/ and hence v 2 IW . Since ˆw \ˆCI D ˆu and ˆw \ ˆ.u/ D uˆv, it follows
thatˆw D ˆu [ u.ˆv/ is a disjoint union. This shows that `.w/ D `.u/C `.v/. ut
Corollary 3.5. The set IW is the set of minimal length coset representatives of
WInW (i.e., the set of right cosets of WI). ut
Remark 3.6 (cf. [34, Rem. 5.13]). In the literature, the set IW of minimal length
coset representatives of WInW is often characterized in different equivalent ways.
In fact, for w 2 W , the following are equivalent:

(i) ˆw � ˆ.u/.
(ii) w�1ˆCI � ˆC.

(iii) w� is ˆCI -dominant integral.
(iv) `.s˛w/ D `.w/C 1 for all ˛ 2 I.

Proof. Let ˛ 2 ˆC. Then ˛ 2 ˆw if and only if w�1˛ 2 ˆ�. Since ˆ.u/ D
ˆC n ˆI, this immediately gives the equivalence of (i) and (ii). The equivalence of
(ii) and (iii) is also obvious since .w�; ˛_/ D .�;w�1˛_/ D .�; .w�1˛/_/. Finally,
(i) and (iv) are equivalent precisely because IW is the set of minimal length coset
representatives of WInW . ut
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3.3 Ideals

If .P ;�/ is any partially ordered set, we say that a subset I � P is a lower-order
ideal of P if x 2 I and x � y 2 P implies y 2 I. Similarly, a subset J � P
is called an upper order ideal of P if x 2 J and x � y 2 P implies y 2 J . In
the following, we will view the sets ˆC and ˆ.u/ as partially ordered sets with the
usual ordering induced from the ordering on h�, i.e., � � � if and only if � � � is
a sum of positive roots or zero.

Lemma 3.7. Suppose p is of Hermitian type. Let w 2 IW . Thenˆw is a lower-order
ideal of ˆ.u/ and ˆ.u/ nˆw is an upper order ideal of ˆC.

Proof. Let w 2 IW , ˛ 2 ˆw, and ˇ 2 ˆ.u/ such that ˇ < ˛. We have to show
that w�1ˇ < 0. We may assume ı WD ˛ � ˇ 2 ˆC. First, note that ı 2 ˆCI since
ı 2 ˆ.u/ would imply (by Lemma 2.2 (iv)) that ˛ D ˇ C ı is not a root which
is absurd. By Remark 3.6 (ii), it then follows that w�1ı > 0 and hence w�1ˇ D
w�1˛ � w�1ı < 0. This proves the first statement of the lemma. Now let w 2 IW ,
˛ 2 ˆ.u/ n ˆw and ˇ 2 ˆC such that ˇ > ˛. This time we have to show that
w�1ˇ > 0. By a similar argument as above we may assume ı WD ˇ � ˛ 2 ˆC.
Again we must have ı 2 ˆCI since otherwise ˇ D ˛Cı is not a root. It then follows
that w�1ˇ D w�1˛ C w�1ı > 0. ut
Proposition 3.8. Suppose that p is of Hermitian type. Then we have a bijection

IW ! fideals of b contained in ug

given by w 7! aw WDP˛2ˆ.u/nˆw
g˛:

Proof. By Lemma 3.7, ˆ.u/ n ˆw is an upper order ideal of ˆC. This implies that
P

˛2ˆ.u/nˆw
g˛ is an ideal of b. Conversely, if a is an ideal of b contained in u, then

a DP˛2ˆ.u/n‰ g˛ for some subset ‰ � ˆ.u/ such that ˆ.u/ n‰ is an upper order
ideal of ˆC. By Proposition 3.2, it follows that ‰ D ˆw for some w 2 IW if we
show that both‰ and‰c D ˆC n‰ are closed under PC. Since‰ � ˆ.u/ and since
u is abelian we have‰ PC‰ D ¿. Now let ˛; ˇ 2 ˆc . Since ‰c D ˆCI [ .ˆ.u/ n‰/
and since ˆCI is closed under PC, we may assume that ˛ 2 ˆ.u/ n ‰. Then, since
ˆ.u/ n‰ is an ideal of ˆC, ˛ C ˇ 2 ˆ.u/ n‰. ut

3.4 Bruhat ordering

For v;w 2 W , write v ! w if `.w/ > `.v/ and w D vs˛ for some ˛ 2 ˆC. Then
define v < w if there exists a sequence v D w1 ! w2 ! : : : ! wm D w. The
resulting partial ordering “�” onW is called the Bruhat ordering. If in the definition
of v ! w we insist that w D vs˛ for some ˛ 2 …, then the resulting ordering
is called the (right) weak Bruhat ordering. For the weak ordering, the following
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terminology is useful. For ˛ 2 …, we say that the simple reflection s˛ is a right
ascent for w 2 W if `.ws˛/ D `.w/C 1 and hence w! ws˛; similarly, s˛ is called
a right descent for w if `.ws˛/ D `.w/� 1 and hence ws˛ ! w.

Lemma 3.9. Let w 2 W and ˛ 2 …. Then s˛ is an ascent for w if and only if
w˛ > 0. Furthermore, if w˛ > 0, then ˆws˛ D ˆw [ fw˛g. ut
Proposition 3.10. Let v;w 2 W . Then v �weak w if and only if ˆv � ˆw.

Proof. By Lemma 3.9, if w D vs˛ with ˛ 2 …, then ˆv � ˆw D ˆv [ fv˛g.
For the converse suppose that ˆv � ˆw and `.w/ D `.v/ C 1. We claim that
w D vs˛ for some ˛ 2 …. Suppose not. Then, by the lemma, for all right ascents
s˛ for v we have must v˛ 62 ˆw since otherwise ˆw D ˆvs˛ which would imply
w D vs˛ by Proposition 3.2. Furthermore, for all right descents s˛ for v we have
�v˛ 2 ˆv � ˆw since �v˛ > 0 and v�1.�v˛/ D �˛ < 0. It follows that
w�1v˛ > 0 for all ˛ 2 …, which means that w�1v has no right descents. This
implies w�1v D e and hence w D v, which contradicts `.w/ D `.v/C 1. ut
Corollary 3.11. Suppose p is of Hermitian type. Let w 2 IW and let si 6D sj be
two simple reflections such that wsi ;wsj 2 IW and `.wsi / D `.wsj / D `.w/ � 1.
Then si sj D sj si , wsi sj 2 IW , and `.wsi sj / D `.w/ � 2.

Proof. By Lemma 3.9 and Proposition 3.8, we have awsi D aw ˚ gw˛i and
awsj D aw ˚ gw˛j . Since awsi ; awsj � u and u is abelian(!), the sum awsi C awsj D
aw ˚ gw˛j ˚ gw˛j is also an abelian ideal of b contained in u. By Proposition 3.8,
aw˚gw˛j˚gw˛j D av for some v 2 IW such that `.v/ D `.w/�2. Since‰v � ‰wsi ,
‰v � ‰wsj , and `.wsi / D `.wsj / D `.v/C1, by Proposition 3.10 there exist simple
reflections sk; sl such that wsi sk D wsj sl D v. Therefore, si sk D sj sl and it follows
from the exchange condition for Coxeter groups that this is only possible if i D l

and j D k. Thus, si sj D sj si and wsi sj D v 2 IW . ut
Corollary 3.12. Suppose p is of Hermitian type. Then the Bruhat ordering and the
weak Bruhat ordering of IW coincide, i.e., for any v;w 2 IW , v � w if and only if
v �weak w.

Proof. Suppose the Bruhat ordering and the weak Bruhat ordering on IW do not
coincide. Then there would exist an element w 2 IW and simple reflections si 6D sj
such that wsi ;wsj 2 IW , `.wsi / D `.wsj / D `.w/ � 1, and si sj 6D sj si . By
Corollary 3.11, this is impossible if u is abelian. ut
Remark 3.13. The fact that the Bruhat ordering and the weak Bruhat ordering of a
(co-)minuscule quotient coincide is well known and is already implicit in Proctor’s
thesis [41] (see Stembridge [46] for a nice discussion).
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3.5 Involutions

There is a canonical, order-inverting, length complementary involution on IW . This
involution will play an important role later on when we study categories of highest
weight modules in §5.

Lemma 3.14. Let wı and w I be the longest elements in W and WI, respectively.
Then the mapping eW IW ! IW given by x 7! Qx WD w Ixwı is an order-inverting,
length complementary involution.

Proof. Since w I.ˆ
C
I / D �ˆCI and wı.ˆC/ D �ˆC, if x 2 IW , then

.w Ixwı/�1.ˆCI / D wıx�1w I.ˆ
C
I / � ˆC and hence w Ixwı 2 IW . (Here we used

that w�1ı D wı and w�1I D w I.) Now let x; y 2 IW such that `.y/ D `.x/C 1 and
y D xs˛ for some ˛ 2 …. By Lemma 3.9 we have x˛ 2 ˆy and hence x˛ 2 ˆ.u/.
Since wIˆ.u/ D ˆ.u/, this implies that ex.wı˛/ D .w Ixwı/.wı˛/ D w Ix˛ > 0.
Next observe that

ey D wIywı D wIxs˛wı D wIxwıwıs˛wı D wIxwısw
ı

˛ Dexsw
ı

˛:

The reflection sw
ı

˛ D s�w
ı

˛ is a simple reflection since wıˆC D �ˆ and hence
wı… D �…. Sinceex.�wı˛/ < 0 it follows that `.ey/ D `. Qx/ � 1 by Lemma 3.9.

ut
Corollary 3.15. If w 2 IW , then ˆ.u/ nˆw D w IˆQw.

Proof. Let w 2 IW . By the definition ofew,
êw D ˆC\wIwˆ� and hence w I

êw D
w Iˆ

C \ wˆ�. Now let ˛ 2 ˆ.u/ and w 2 IW . Then ˛ 2 w Iˆ.u/ � w Iˆ
C

by Lemma 3.14. Thus, if ˛ 2 ˆ.u/ n ˆw, then w�1˛ < 0 and ˛ 2 w I
êw D

w Iˆ
C \ wˆ�. Conversely, if ˛ 2 w I

êw D w Iˆ
C \ wˆ�, then w�1˛ < 0 which

implies that ˛ 2 ˆ.u/ nˆw. ut

3.6 Diagrams of Hermitian type

The Hasse diagrams of the posetsˆ.u/ for p of Hermitian type appeared in the paper
[29] by Jakobsen, who called them diagrams of Hermitian type. They played a key
role in his approach to the classification of unitary highest weight representations.
The same diagrams appeared already in Proctor’s thesis [41], but Proctor did not
interpret them explicitly in terms of roots. Here we follow Jakobsen’s approach.

Lemma 3.16 (Jakobsen [29, Lemma 4.1]). Suppose p is of Hermitian type. Let
ˇ 2 ˆ.u/ and let ˛i1 ; : : : ; ˛ik be distinct elements of I such that ˇ C ˛ij 2 ˆ.u/
for j D 1; : : : ; k. Then k � 2. Furthermore, if k D 2, then ˛i1 ? ˛i2 and ˇ C ˛i1C
˛i2 2 ˆ.u/.
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= {

⎛
⎜⎜⎜⎜⎝

· · · · ∗ ∗ ∗
· · · · ∗ ∗ ∗
· · · · ∗ ∗ ∗
· · · · ∗ ∗ ∗
· · · · · · ·
· · · · · · ·
· · · · · · ·

⎞
⎟⎟⎟⎟⎠

} Φ( ) =

α4

θ = 6
i=1 αi

3

2

1

5

6

Figure 2 The poset ˆ.u/ for .A6;A3 � A2/

Proof. Jakobsen gave a nice proof which does not use the classification of Hermitian
symmetric pairs, but since it is quite long we do not include it here. If we
allow ourselves to use the classification, it is straightforward to verify the lemma
case-by-case. ut

By the lemma, if p is of Hermitian type, the Hasse diagram of the poset ˆ.u/ is
two-dimensional and can be drawn on a square lattice. These diagrams are shown
in the appendix for each Hermitian symmetric pair. The following example shows
how to intuitively understand these diagrams in type A.

Example 3.17. Consider the Hermitian symmetric pair .A6;A3�A2/ corresponding
to gR D su.4; 3/ and let p D m ˚ u be the corresponding parabolic subgroup of
g D sl.7;C/. Then u can be identified with the space of complex 4 � 3 matrices,
M4;3.C/, which is embedded in g as a block in the top right corner. Figure 2 shows
the nilradical u and Hasse diagram of ˆ.u/.

Note that the unique simple root in ˆ.u/ is ˛4 D �4� �5 and the corresponding root
subspace is spanned by the elementary matrix E4;5. The highest root is � D �1 � �7
and the corresponding root subspace is spanned by E1;7. For two roots ˛; ˇ 2 ˆ.u/
such that ˇ covers ˛, the edge connecting the nodes of ˛ and ˇ is labelled by the
subscript of the simple root ˇ � ˛ 2 I. For example, the neighboring node in the
NW direction of the node of ˛4 corresponds to the root ˛4C˛3 D �3� �5. Note that
not all edge labels are shown with the understanding that for every diamond in the
diagram, opposite sides (edges) have the same label. For example, the neighboring
node in the NE direction of the node of ˛4 corresponds to the root ˛4C˛5 D �4��6.

Suppose w 2 IW . Then ˆw � ˆ.u/ is a lower-order ideal and ˆ.u/ n ˆw is
an upper-order ideal corresponding to an abelian ideal aw of b contained in u. We
can view the Hasse diagram of ˆw as a sub diagram of the Hasse diagram of the
poset ˆ.u/. The fact that ˆw is a lower-order ideal of ˆ.u/ means that whenever a
node belongs to the Hasse diagram of ˆw, its neighboring nodes in the SE or SW
direction also belong to the Hasse diagram of ˆw. Figure 3 shows an abelian ideal
aw of b contained in u and the Hasse diagram of the lower-order ideal ˆw � ˆ.u/
for a typical element w 2 IW . (The Hasse diagram of ˆw is shown in bold.)
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w = {

⎛
⎜⎜⎜⎜⎝

· · · · · ∗ ∗
· · · · · ∗ ∗
· · · · · · ∗
· · · · · · ·
· · · · · · ·
· · · · · · ·
· · · · · · ·

⎞
⎟⎟⎟⎟⎠

} Φw =

Figure 3 An ideal aw � u for .A6;A3 � A2/

Φw =

Figure 4 A Young diagram for .A6;A3 � A2/

Finally, we will associate a generalized Young diagram to each lower-order ideal
ˆw � ˆ.u/ as follows. Start with the poset ˆw viewed as a subdiagram of the
Hasse diagram of ˆ.u/. Then replace the nodes of the diagram of ˆw with boxes
(squares) so that two boxes share a side if and only if the two corresponding nodes
are connected. Finally rotate the resulting diagram 135ı clockwise so that the node
corresponding to the simple root in … n I now corresponds to the top left box.
Figure 4 shows the Young diagram corresponding to ˆw for the same element
w 2 IW as in Figure 3. (The intermediate diagram, i.e., the diagram before the
135ı clockwise rotation, is not shown in Figure 3, but it is shown in Figure 6 on the
left.)

For each Hermitian symmetric pair the generalized Young diagram correspond-
ing to the longest element w 2 IW , i.e., the element such that ˆw D ˆ.u/, is
shown in the appendix. (The numbers that are filled into the boxes will be explained
shortly.) For the classical pairs of type .Dn;An�1/ and .Cn;An�1/, the generalized
Young diagrams corresponding to a general element w 2 IW are also called shifted
Young diagrams. An example of a shifted Young diagram for type .C6;A5/ is shown
in Figure 7 on the right.

Using Corollary 3.12, it is easy to obtain the Hasse diagram of the poset IW by
starting with the generalized Young diagram of the longest element in IW . Several
examples of the resulting Hasse diagrams for Hermitian symmetric pairs of small
rank can be found at various places in this paper: for the pair .A3;A1 � A1/ see
Figure 1 on page 123; for .A4;A2 � A1/ see Figure 8 on page 140; for .C3;A2/ see
Figure 9 on page 141; for .E6;D5/ see Figure 13 on page 154, diagram on the left;
for .E7;E6/ and .D6;D5/ see Figure 14 on page 177.
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Remark 3.18. The Hasse diagrams of IW should not be confused with the Hasse
diagrams of ˆ.u/. For starters, the Hasse diagram of ˆ.u/ can always be drawn on
a two-dimensional lattice, whereas the Hasse diagram of IW cannot if the rank of
the Hermitian symmetric pair is > 2.

However, if the Hermitian symmetric pair is of rank 2, then the poset IW is
isomorphic to a poset of the form ˆ.u/ for some other Hermitian symmetric pair.
For example, the poset IW for .E6;D5/ is isomorphic to the posetˆ.u/ for .E7;E6/.
Here is the explanation. For the Hermitian symmetric pair .g;m/ of type .E7;E6/,
the 27-dimensionalm-module u is a minuscule representation of E6. Thus, the Weyl
group WI of type E6 acts transitively on ˆ.u/. The stabilizer .WI/˛7 WD fw 2 WI j
w˛7 D ˛7g is generated by the simple reflections s1; s2; s3; s4; s5 and hence .WI/˛7
is a Weyl group of type D5. The resulting bijection WI=.WI/˛7 Š ˆ.u/ is in fact an
isomorphism of posets.

3.7 Canonical reduced expressions

Definition 3.19. Suppose p is of Hermitian type. Define a map

f W ˆ.u/! …

as follows. For ˇ 2 ˆ.u/, the sets ˆ.u/<ˇ WD f� 2 ˆ.u/ j � < ˇg and ˆ.u/�ˇ WD
f� 2 ˆ.u/ j � � ˇg are lower-order ideals of ˆ.u/. Therefore, by Lemma 3.7 and
Proposition 3.8, there exist v;w 2 IW such that ˆ.u/<ˇ D ˆv and ˆ.u/�ˇ D ˆw.
Sinceˆw D ˆv P[fˇg there exists a unique f .ˇ/ 2 … such that w D vsf .ˇ/, namely
f .ˇ/ WD v�1ˇ.

Lemma 3.20. Suppose p is of Hermitian type. If v0;w0 2 IW are two elements such
that ˆw0 D ˆv0

P[fˇg, then v0�1ˇ D f .ˇ/.
Proof. Let v;w 2 IW be as above, i.e., ˆv D ˆ.u/<ˇ and ˆw D ˆ.u/�ˇ. Then
ˆv � ˆv0 and ˆw � ˆw0 and hence v � v0 and w � w0. We will prove that
v0�1ˇ D f .ˇ/ by induction on `.w0/ � `.w/. If `.w0/ D `.w/, there is nothing to
prove since w D w0 and v D v0 in this case. So assume `.w0/ > `.w/ and let ˛ 2 …
such that w � w0s˛ < w0. Note that ˆw � ˆw0s˛ � ˆw0 and hence ˇ 2 ˆw0s˛ .
Set ˛0 WD v0�1ˇ. Then s˛ 6D s˛0 are two right descents for w. By Corollary 3.11,
s˛s˛0 D s˛0s˛ and w0s˛0s˛ D v0s˛ < v0 in IW . In particular, ˆw0s˛ D ˆv0s˛ [ fˇg
and we may assume that .v0s˛/�1ˇ D f .ˇ/ (induction hypothesis). Since s˛ and
s˛0 commute, ˛ ? ˛0 and hence s˛˛0 D ˛0. Thus, v0�1ˇ D s˛v0�1ˇ D .v0s˛/�1ˇ D
f .ˇ/. ut
Proposition 3.21. Suppose p is of Hermitian type. Let w 2 IW and write

ˆw D fˇ1; ˇ2; : : : ; ˇlg



Diagrams of Hermitian type 135

such that for every 1 � j � l , the set fˇ1; ˇ2; : : : ; ˇj g is a lower-order ideal of
ˆ.u/. Then

w D sf .ˇ1/sf .ˇ2/ � � � sf .ˇl /
is a reduced expression for w. Furthermore, w D sˇl sˇl�1 � � � sˇ1 .
Proof. Set w0 WD 0 and for 1 � j � l , let wj 2 IW be such that ˆwj D
fˇ1; ˇ2; : : : ; ˇj g. Then ˆj D ˆj�1 P[fˇj g and hence wj D wj�1sf .ˇj / and
f .ˇj / D .wj�1/�1ˇj by Lemma 3.20. It follows that w D sf .ˇ1/sf .ˇ2/ � � � sf .ˇl /
which is a reduced expression for w since l D jˆwj D `.w/. For the second
statement, recall that for v 2 W and ˛ 2 ˆ, we have vs˛v�1 D sv˛ . With v D wj�1
and ˛ D f .ˇj / D .wj�1/�1ˇj we obtain wj�1sf .ˇj /.wj�1/�1 D sˇj and hence
wj D wj�1sf .ˇj / D sˇj wj�1. Thus, w D sˇl sˇl�1 � � � sˇ1 . ut

This proposition combined with the generalized Young diagrams from the
previous section give a very concrete way to write canonical reduced expressions
for the elements of IW . First fill the boxes of the diagram of the longest element
of IW with the numbers 1; 2; : : : ; n so that the box corresponding to ˇ 2 ˆ.u/ is
assigned the number i such that f .ˇ/ D ˛i . The top-left box is always assigned the
label of the unique simple root in … n I.

Example 3.22. Consider the Hermitian symmetric pair of type .A3;A1 � A1/
corresponding to gR D su.2; 2/. Then the canonical reduced expressions of the
elements w 2 IW are as shown in Figure 5.

Example 3.23. Recall that an element w 2 W is called a Coxeter element if a
reduced expression of w contains every simple reflection exactly once. It is a nice

2 1
3 2 = s2s1s3s2

2 1
3 = s2s1s3

2
3 = s2s3 2 1 = s2s1

2 = s2

e

Figure 5 Diagrams associated to the Grassmannian Gr2.C4/
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little fact that if p is of Hermitian type, then IW contains a unique Coxeter element
and its generalized Young diagram is a fattened version of the Dynkin diagram of
g. For example, if .ˆ;ˆI/ D .E7;E6/, the Coxeter element in IW is the following
element:

7 6 5 4 3 1

2
D s7s6s5s4s3s1s2:

The reader is invited to verify this fact for the other Hermitian symmetric pairs
by consulting the appendix.

3.8 Lascoux–Schützenberger notation

For the classical Hermitian symmetric pairs corresponding to the real Lie algebras
gR D su.p; q/, sp.n;R/ and so�.2n/ there is another description of the elements
in IW in terms of binary sequences. This description was used for su.p; q/ by
Lascoux–Schützenberger in [38] and later for sp.n;R/ and so�.2n/ by Boe in [6]
to calculate Kazhdan–Lusztig polynomials for Hermitian symmetric spaces. This
description will be particularly useful when we describe certain equivalences of
categories of highest weight categories in Section 5.

For w 2 IW , draw the generalized Young diagram of w rotated 135ı counter-
clockwise. The upper boundary of this diagram is a zigzag path consisting of (unit)
line segments and the generalized Young diagram of w is uniquely determined by
this path. To describe the path (from left to right) we construct a binary sequence
(also from left to right) by writing a 1 for each line segment of positive slope and a 0
for each line segment of negative slope. The length of the binary we create is pC q
for gR D su.p; q/, n for gR D sp.n;R/, and n � 1 for gR D so�.2n/. By abuse
of notation, we will write the binary sequence to denote the corresponding element
w 2 IW . Figures 6 and 7 show the binary sequence of a typical element w 2 IW for
gR D su.4; 3/ and gR D sp.6;R/, respectively.

The Bruhat ordering of IW can be described in terms of the binary sequences
as follows. Suppose gR D sp.n;R/. If v D a1a2 � � �an and w D b1b2 � � �bn, then
v � w if and only if

k
X

iD1
ai �

k
X

iD1
bi

4 3 2 1
5 4

6
w = 1001010

Figure 6 Lascoux–Schützenberger notation for type .A6;A3 � A2/
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6 5 4 3 2 1
6 5 4 3

6 5
6

w = 101011

Figure 7 Lascoux–Schützenberger notation for type .C6;A5/

for 1 � k � n. For 1 � i � n � 1, the simple reflection si is a right descent of
w D b1b2 � � � bn if bibiC1 D 10. The simple reflection sn is a right descent if bn D 1.
For example, the right descents for w D 101011 are s1, s3, and s6. The descriptions
of the Bruhat ordering for the Hermitian symmetric pairs corresponding to su.p; q/
and so�.2n/ are similar and left to the reader.

4 Schubert varieties

4.1 Generalized flag varieties and Hermitian symmetric spaces

Let G be a connected, simple, complex linear algebraic group with Lie algebra
g and let B � G be the closed algebraic subgroup corresponding to the Borel
subalgebra b � g. The variety G=B is called the full flag variety of G. For I � …,
let P D P I be the parabolic subgroup of G with Lie algebra p D pI. The variety
G=P is called a generalized flag variety. It is a smooth complex projective variety
of dimension jˆ.u/j. If p is a maximal parabolic of Hermitian type, we also say that
G=P is a cominuscule flag variety. The connection to Hermitian symmetric spaces
is as follows. Let p be a maximal parabolic subalgebra of Hermitian type and let
gR D mR ˚ sR be the corresponding real form of g. Define

kR WD mR ˚ isR:

Then the Lie algebra kR is a compact real form of g. Let KR and MR be the
analytic Lie subgroups of G (viewed as a real Lie group) corresponding to the Lie
subalgebras kR and mR of g. Then KR is a maximal compact subgroup of G and

KR=MR Š G=P:
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Thus, KR=MR is a complex manifold on which KR acts by biholomorphic
transformations. It follows that KR=MR is a compact Hermitian symmetric space.
Conversely, it follows from the classification of compact Hermitian symmetric
spaces that every compact Hermitian symmetric spaces every arises that way (up
to isomorphism).

Proposition 4.1 (Kostant [35]). A generalized flag variety G=P is a compact
Hermitian symmetric space if and only if P is of Hermitian type. ut

There is also a Hermitian symmetric space of noncompact type in the picture. Let
GR be the analytic Lie subgroup of G corresponding to the noncompact real form
gR of g. Harish-Chandra proved that

GR=MR ,! G=P

is a diffeomorphism onto an open subset of G=P . Thus, GR=MR is a complex
manifold on which GR acts by biholomorphic transformations and it follows that
GR=MR is a Hermitian symmetric space of noncompact type. The corresponding
pair of Lie algebras .gR;mR/ is one of the pairs in Table 1.

Example 4.2. Let G D SL.2;C/ and P the parabolic subgroup of upper tri-
angular matrices. This parabolic subgroup is of Hermitian type corresponding to
the real form GR D SU.1; 1/. Then G=P D CP

1 D C [ f1g and GR=MR D
fz 2 C j jzj < 1g, where the actions of G and GR are given by linear fractional
transformations.

4.2 Schubert cells and Schubert varieties

Let T � B be the maximal torus of G corresponding to the Cartan subalgebra
h � b. Then the Weyl group can be identified by W D NG.T /=T and we have the
Bruhat decomposition (cf. Harish-Chandra [24])

G D
[

w2W
BwB;

where, by abuse of notation, the w in BwB stands for any of the representatives of
the coset w 2 NG.T /=T . If P is a parabolic subgroup of G containing B , then the
torus T acts with finitely many fixed points on the generalized flag varietyG=P and
these fixed points are naturally parametrized by the elements of the poset W I WD
fw 2 W j w�1 2 IW g. Explicitly, the T -fixed point in G=P that corresponds to
w 2 W I is the coset wP . The B-orbit of wP is the generalized Schubert cell

C.w/ D C I.w/ WD BwP:
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Let X.w/ WD C.w/ be the Zariski closure of C.w/ in G=P . Then X.w/ is a
projective variety of dimension `.w/. Furthermore,

X.w/ D
[

v�w

C.v/

is a cell decomposition. This in fact gives a CW complex, where all the cellsC.v/ Š
C
`.v/ Š R

2`.v/ have even real dimension. Therefore, the differential of the CW
complex are all zero and it follows that the 2i -th homology group of X.w/ with
integer coefficients is

H2i .X.w/;Z/ Š Z
#fv2W Ijv�w and `.v/Dig:

For w 2 W I define the Poincaré polynomial of X.w/ by

pw.t/ WD
X

t i dimQH2i ..X.w/;Q/ D
X

v�w

t `.v/:

If X.w/ is smooth, then X.w/ is a compact manifold and hence by Poincaré duality,
the Poincaré polynomial pw.t/ is palindromic. It is perhaps surprising that the
converse is almost true (see Proposition 4.3 below).

4.3 Rational smooth Schubert varieties

A complex algebraic variety Z of complex dimension d is said to be
rationally smooth if for every point z 2 Z, the relative cohomology group
H2i .Z;Z n fzgIQ/ D 0 if i 6D d . If the variety Z is smooth (and hence a complex
manifold of complex dimension d ), then Z is rationally smooth. By a result of
D. Peterson, if the groupG is of type A-D-E, then every rationally smooth Schubert
variety inG=P is in fact smooth (cf. Carrell–Kuttler [12] for a proof). Furthermore,
we have the following useful criterion for rational smoothness of Schubert varieties
in G=P (Figure 8).

Proposition 4.3 (Carrell–Peterson [11]). For w 2 W I the following are equiva-
lent:

(i) The generalized Schubert variety X.w/ in G=P is rationally smooth.
(ii) The Poincaré polynomial pw.t/ is palindromic. ut
Now suppose that G=P is a Hermitian symmetric space. Let w 2 W I. Then w�1 2
IW and hence ˆw�1 � ˆ.u/ is a lower-order ideal which we can represent by a
generalized Young diagram as in Section 6. (In other words, the generalized Young
diagram of w is the generalized Young diagram of w�1 2 IW that was previously
defined.) If w 6D e, then the Poincaré polynomial of w is of the form pw.t/ D
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e

Figure 8 Smooth Schubert varieties for .A4;A2 � A1/

1C tC� � � since there exists a unique element of length 1 inW I, namely the simple
reflection s˛ with ˛ 2 … n I. Thus, a necessary condition for the polynomial pw.t/

to be palindromic is that w can have at most one (left) descent. This means that the
generalized Young diagram of w 2 W I can have at most one SE corner. In type A,
where the generalized Young diagrams are ordinary Young diagrams, this condition
is equivalent to the diagram being a rectangle (see Figure 8).

For the other Hermitian symmetric spaces G=P the situation is similar. Suppose
that G is not of type A. Then the poset W I also contains a unique element of length
2. This has to do with fact that there exists a unique compact simple root that is
connected to the simple noncompact root ˛ 2 … in the Dynkin diagram. Thus, for
w 2 W I with `.w/ � 2, the Poincaré polynomial of w is of the form pw.t/ D
1 C t C t2 C � � � . This means that if pw.t/ is palindromic, the generalized Young
diagram of w has a unique SE corner and the diagram with this corner removed also
has a unique SE corner. For the Hermitian symmetric pairs of type .Cn;An�1/ and
.Dn;An�1/, where the generalized Young diagrams are shifted Young diagrams, the
diagrams that satisfy this condition are the diagrams that have a single row and the
shifted diagrams corresponding to strict partitions of the form .k; k�1; : : : ; 3; 2; 1/.

4.4 Smooth Schubert varieties

As we observed above, if G is of simply laced type, then every rationally smooth
Schubert variety in G=P is also smooth (Figure 9). It turns out that for any
Hermitian symmetric space G=P the smooth Schubert varieties are also easy to
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Figure 9 Smooth and rationally smooth Schubert varieties for .C3;A2/

describe. We start with a general observation. Let Q � G be another parabolic
subgroup containing B and with Levi decomposition Q D LN . Then L \ B is
a Borel subalgebra and L \ P is a parabolic subgroup of the reductive group L.
Furthermore, B D .L \ B/N . Now let L act on G=P by left multiplication. Since
the stabilizer of eP is the parabolic subgroup L \ P , the orbit map ' W L! G=P ,
x 7! x.eP / D xP , induces a closed embedding of the generalized flag variety
L=.L\ P/ into G=P .

Lemma 4.4. Under the closed embedding L=.L \ P/ ,! G=P , the image of
any .L \ B/-orbit in L=.L \ P/ is a B-orbit in G=P . In particular, the image
of L= .L \ P/ is a smooth Schubert variety in G=P . Furthermore, this Schubert
variety is the Q-orbit of the coset eP .

Proof. Let x 2 L and b 2 B . Since B D .L \ B/N , we may write b D bLn

with bL 2 L \ B and n 2 N . Then since N is normalized by L, we have bx D
bLnx D bLxn

0 for some n0 2 N . Since N � P (in fact, N � B � P ), it
follows that .L\B/xP D BxP . This shows that the image of any .L\B/-orbit in
L=.L\P/ is a B-orbit inG=P . Since L=.L\P/ is the closure of an .L\B/-orbit
and since L=.L\P/ ,! G=P is a closed embedding, it follows that L=.L\P/ is
isomorphically mapped onto the closure of aB-orbit. Hence the image ofL=.L\P/
is a smooth Schubert variety. SinceQ D LN andN � P , it follows that theL-orbit
of eP is in fact a Q-orbit. ut
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Suppose P is any (standard) maximal parabolic subgroup of G, not necessarily of
Hermitian type. For J � …, let QJ D L JN J be the standard parabolic subgroup
corresponding to J. We say that J is connected if the corresponding subgraph of the
Dynkin diagram of G is connected. Then we can define an injective map from the
set of connected subsets of … containing ˛ to the set of smooth Schubert varieties
in G=P by J 7! L J=.L J \ P/ ,! G=P . Using results of Brion and Polo [10],
J. Hong, in her paper [26], showed that this map is also surjective if G=P is a
Hermitian symmetric space.

Proposition 4.5 (cf. Hong [26, Prop. 2.11]). Suppose that G=P is a Hermitian
symmetric space. Let � be the Dynkin diagram of G. Then we have a bijection

�

connected subdiagrams of �
containing the marked node

�

! fsmooth Schubert varieties in G=P g

given as above by J 7! L J=.L J \ P/ ,! G=P . ut
Example 4.6. Consider the cominuscule flag variety G=P corresponding to the
Hermitian symmetric pair of type .C3;A2/. In this case there are 8 Schubert
varieties, of which 6 are rationally smooth. Four of the rationally smooth Schubert
varieties are in fact smooth (see Figure 9).

Remark 4.7. In [7], Boe and Hunziker proved that the conclusion of Proposi-
tion 4.5 holds for arbitrary maximal parabolic subgroups P � G as long as the
Dynkin diagram � is simply laced.

4.5 Rational smoothness and Kazhdan–Lusztig polynomials

For x � w 2 IW define

`.x;w/ WD `.w/ � `.x/:

Proposition-Definition 4.8 (Deodhar [14]). First, there exists a unique family
fRI

x;w.q/ j x � w 2 W Ig of polynomials in ZŒq� such that

(1) degRI
x;w.q/ D `.x;w/ and RI

w;w.q/ D 1;
(2) if s˛ is a simple reflection in W such that s˛x 2 W I and `.s˛w/ < `.w/, then

RI
x;w.q/ D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

RI
s˛x;s˛w.q/ if `.s˛x/ < `.x/

.q � 1/RI
x;s˛w.q/C qRI

s˛x;s˛w.q/ if `.s˛x/ > `.x/

and s˛x 2 W I

qRI
x;s˛w.q/ if `.s˛w/ > `.x/

and s˛x 62 W I:
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Second, there exists a unique family fP I
x;w.q/ j x � w 2 W Ig of polynomials in

ZŒq� such that

(3) P I
w;w.q/ D 1 and degPx;w.q/ � .`.x;w/ � 1/=2 if x < w;

(4) q`.x;w/P I
x;w.q

�1/ D
X

x�y�w

RI
x;y.q/ � P I

y;w.q/

The polynomials P I
x;w.q/ are called parabolic Kazhdan–Lusztig polynomials. In

the special case when I D ¿, the parabolic Kazhdan–Lusztig polynomials are the
ordinary Kazhdan–Lusztig polynomials that were in introduced by Kazhdan and
Lusztig in [33]. The following well known result is a straightforward generalization
of a result of Kazhdan and Lusztig.

Proposition 4.9. For w 2 W I the following are equivalent.

(i) The generalized Schubert variety X.w/ in G=P is rationally smooth.
(ii) P I

x;w.q/ D 1 for all x � w.
ut

If G=P is a Hermitian symmetric space, the polynomials P I
x;w.q/ are easy to

calculate. This was done by Lascoux and Schützenberger for Grassmannians in [38]
and by Boe for the other classical Hermitian symmetric spaces in [6]. In Section 5
we will extend these results to all Hermitian symmetric spaces by using generalized
Young diagrams.

5 Parabolic category Op

Let g be a complex simple Lie algebra and let p D pI be a standard parabolic
subalgebra of g with Levi decomposition p D m ˚ u. As usual, let U.g/ denote
the universal enveloping algebra of g. Following Rocha–Caridi, the category Op

(“parabolic category O”) is defined as the full subcategory of the category of U.g/-
modules whose objects V satisfy the following conditions:

(1) V is a finitely generated U.g/-module;
(2) V is a semisimple U.m/-module, i.e., V is a direct sum of finite-dimensional

simple modules;
(3) V is locally u-finite, i.e., dimU.u/v <1 for all v 2 V .

The key objects in Op are the parabolic Verma modules. Define

�CI WD f� 2 h� j .�C �; ˛_/ 2 Z>0 8˛ 2 ˆCI g:

For � 2 �CI , let F� be the finite-dimensional simple m-module with highest weight
�. As usual, F� may be viewed as a p-module by letting the nilradical u act trivially.
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Then the parabolic Verma module (PVM) with highest weight � is the induced
module

M I.�/ WD U.g/˝U.p/ F�:

The module M I.�/ is a quotient of the ordinary Verma module M.�/ with highest
weight �. Let L.�/ denote the simple quotient of both M I.�/ and M.�/. The
Verma module M.�/ and all of its subquotients, in particular M I.�/ and L.�/,
admit an infinitesimal character which we denote ��. Recall that this means that
�� W Z.U.g//! C is a character of the center of U.g/ such that z � v D ��.z/v for
all z 2 Z.U.g// and all v in the module. For a character � W Z.U.g//! C, let Op

�

denote the full subcategory of Op consisting of modules V such that z � �.z/ acts
locally nilpotently on V for all z 2 Z. Then the category Op decomposes as a direct
sum

Op D
M

�

Op
�:

The categories Op
� are called the infinitesimal blocks of Op. In general, the

infinitesimal blocks may be decomposable.
The Weyl groupW acts on h� via the “dot action”, i.e., the action given by

w � � D w.�C �/� �:

For �;� 2 h�, �� D �� if and only if � 2 W �� by Harish-Chandra’s theorem. An
element � 2 h� is called antidominant if .�C �; ˛_/ 62 Z>0 for all ˛ 2 ˆC. In the
following we will restrict our attention to integral weights. If � 2 h� is integral, i.e.,
.�; ˛_/ 2 Z for all ˛ 2 ˆC, then there exists a unique antidominant � 2 h� such
that � 2 W � �. From now until the remainder of this section, � will always denote
an antidominant integral element of h�, i.e.,

.�C �; ˛_/ 2 Z�0 for all ˛ 2 ˆC.

If � D ��, we will also write Op
� instead of Op

�. We will say that � is regular if
jW � �j D jW j. Equivalently, � is regular if and only if .� C �; ˛_/ 6D 0 for all
˛ 2 ˆ. By the Jantzen–Zuckerman translation principle, the categories Op

� for �
regular are all Morita equivalent and we will write Op

reg for any such category.

5.1 Parameterization of the simple modules in Op
�

Let wI be the longest element of WI.

Lemma 5.1. If w 2 IW , then w Iw � � 2 �CI .



Diagrams of Hermitian type 145

Proof. Let w 2 IW . By Remark 3.6, w�1ˆCI � ˆC. Then, since we have that
.wIw.�C�/; ˛_/ D .�C�;w�1w I˛

_/ and w Iˆ
C
I D �ˆCI , we find that .wIw.�C

�/; ˛_/ > 0 for all ˛ 2 ˆCI . Thus, w Iw � � 2 �CI . ut
Definition 5.2. For w 2 IW , define

L.w/ WD L.w Iw � �/:

Then, w 7! L.w/ defines a surjective map from IW to the set of simple modules
in Op

�. If � is regular, this map is a bijection. However, if � is singular, i.e., if
jW ��j < jW j, the map is not injective. To see this, define the set of singular simple
roots by

† D †� WD f˛ 2 … j .�C �; ˛_/ D 0g:

Note that W† WD hs˛ j ˛ 2 †i is equal to the stabilizer group

fw 2 W j w � � D �g

and � is regular if and only if † D ¿. If w0 2 wW† then L.w/ D L.w0/.
Definition 5.3. Define

IW † WD fw 2 IW j w < ws˛ and ws˛ 2 IW 8˛ 2 †g:

If † D ¿ then IW † D IW . If I D ¿ then IW † D W † by Remark 3.6 (iv).

Proposition 5.4 (cf. Boe–Nakano [8, Prop. 2.3]). We have a bijection

IW † �! fsimple modules in Op
�g

given by w 7! L.w/. ut
Remark 5.5. Suppose that � is regular and let w be the longest element in
IW † D IW , i.e., the element such that wı D w Iw. Then L.w/ is the unique finite-
dimensional simple module in Op

�.

Remark 5.6. Given I; † � …, it is in general not obvious whether IW † 6D ¿, i.e.,
whether the corresponding block Op

� is nonzero. In [40], K. Platt gave a beautiful
characterization of the nonzero blocks using the theory of nilpotent orbits.

In the Hasse diagram of IW , a node that corresponds to an element of IW † is a
node having an edge with label s˛ going up from it for every ˛ 2 †.

Example 5.7. Consider .ˆ; I/ D .A4; f˛1; ˛2; ˛4g/. Then jIW j D 8 and hence Op
reg

contains eight simple modules. If† D f˛1g, then IW † D f ; ; g. If† D f˛2g,
then IW † D f ; ; g. If † D f˛1; ˛3g, then IW † D f g. If † D f˛1; ˛2g, then
IW † D ¿. All of this follows by looking at Figure 10.
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Figure 10 The poset IW for .A4;A2 � A1/

Example 5.8. Consider .ˆ;ˆI/ D .E7;E6/. Then † D f˛2; ˛5; ˛7g is the only
subset † � … such that j†j D 3 and IW † 6D ¿. More precisely, if † D
f˛2; ˛5; ˛7g, then IW † D fwg, where w is the element

7 6 5 4 3 1

2 4 3

5 4

6

w D .s7s6s5s4s3s1/.s2s4s3/.s5s4/.s6/

Remark 5.9. Suppose p is a parabolic subalgebra of Hermitian type. Then
maxfs j s D j†j for some † � … with IW † 6D ¿g is equal to the real rank of
gR. Furthermore, for any † � … with IW † 6D ¿, the roots in † are orthogonal to
one another. In particular,ˆ† is of type .A1/s D A1 � � � � � A1, where s D j†j.
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5.2 Kostant modules in Op
reg

Theorem 5.10 (cf. Kostant [34, Thm. 5.14]). Let L.�/ be a finite-dimensional
irreducible g-module of highest weight �, viewed as a module in Op

reg. Then, as
an m-module,

Hi.u; L.�// Š
M

y2IW
l.y/Di

Fy
�

for i � 0. ut
To extend this result to infinite-dimensional simple modules in Op

reg it is
convenient to use the involution on IW from Lemma 3.14 to rewrite the sum in
the theorem. Let L.�/ be a finite-dimensional g module with highest weight �, i.e.,
�C � D wı � �, where � is antidominant integral and regular. Then L.�/ D L.w/,
where w is the longest element in IW , i.e., the element w 2 IW such that wı D w Iw.
If y 2 IW with `.y/ D i , then y � � D w Iey � � and `.ey;w/ D i . Thus,
Hi.u; L.w// ŠLx Fx , where the sum is over all x 2 IW with `.x;w/ D i .
Definition 5.11. A simple moduleL.w/ in Op

reg is called a Kostant module if, as an
m-module,

Hi.u; L.w// Š
M

x�w
l.x;w/Di

Fx:

for i � 0.

Thus, if w 2 IW is the longest element, then L.w/ is a Kostant module by
Kostant’s theorem (Theorem 5.10). The remaining Kostant modules in Op

reg can be
characterized in terms of Kazhdan–Lusztig polynomials.

Definition 5.12. For x;w 2 IW define the parabolic Kazhdan–Lusztig–Vogan
polynomial

IPx;w.q/ WD
X

i�0
q
l.x;w/�i

2 dim ExtiOp.M I.x/; L.w//:

It follows from the Kazhdan–Lusztig conjectures (which were proved by Casian
and Collingwood in [13] for category Op) that IPx;w.q/ D P I

x�1;w�1 .q/, where the
polynomial on the right hand side is the parabolic Kazhdan–Lusztig polynomial that
was defined by Deodhar [14].
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Theorem 5.13. For w 2 IW the following are equivalent.

(i) The simple module L.w/ in Op
reg is a Kostant module.

(ii) IPx;w.q/ D 1 for all x � w 2 IW .
(iii) IPe;w.q/ D 1.

Proof. It is well known (and follows, for example, by a straightforward extension
of the proof of Schmid [43, Lemma 5.13], the corresponding statement in ordinary
category O), that

Homm.Fx;H
i .u; L.w/// Š ExtiOp.M I.x/; L.w// as vector spaces:

It then follows immediately from the Definition 5.11 of a Kostant module that the
simple module L.w/ in Op

reg is a Kostant module if and only if IPx;w.q/ D 1

for every x � w. The equivalence of (ii) and (iii) follows from the fact that
IPx;w.q/ � IPe;w.q/ is a polynomial with nonnegative integers which was first
observed by Irving. ut

5.3 BGG resolutions

The construction of the resolution of a Kostant module L.w/ in Op
reg is com-

binatorial and completely analogous to the construction of the resolution of a
finite-dimensional simple module that was given by Lepowsky [39] (and originally
by Bernstein–Gelfand–Gelfand [5] for p D b). For the convenience of the reader,
we repeat some of the details. By [39, Prop. 3.7], for every arrow x ! y in IW there
exists a nonzero g-module map fx;y W M I.x/! M I.y/, which lifts to the standard
map between the (ordinary) Verma modules having the same highest weights as
M I.x/ andM I.y/, respectively. Recall that a quadruple .w1;w2;w3;w4/ of elements
in W is called a square if w2 6D w3 and w1 ! w2 ! w4 and w1 ! w3 ! w4. By
[5, Lemma 10.4], it is possible to assign to each arrow x ! y in W a number
"x;y D ˙1 such that for every square, the product of the four numbers assigned to
the sides of the square is �1. Now for any x; y 2 IW with `.y/ D `.x/C 1, define
a g-module map hx;y WM I.x/!M I.y/ by

hx;y WD
(

"x;yfx;y if x < yI
0 otherwise:

Let x; z 2 IW with `.z/ D `.x/ C 2. It was proved in [5, Lemma 10.3] that the
number of elements y 2 W such that x ! y ! z is either zero or two. It follows
immediately that the number of such y 2 IW is either zero, one, or two. Lepowsky
showed [39, Thm. 4.3] that if there is one, then fy;zıfx;y D 0 and hence hy;zıhx;y D
0. And if there are two, i.e., if x ! y ! z and x ! y0 ! z with y 6D y0, then
hz;y ı hx;y D �hz;y0 ı hx;y0 .
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These observations can now be used to construct a complex for any simple
module L.w/ in Op

reg. For 0 � i � `.w/, define

Ci WD
M

x�w
l.x;w/Di

M I.x/

and for 1 � i � `.w/, define di W Ci ! Ci�1 as the matrix of maps di D .hx;y/,
where x 2 Œe;w�`.w/�i and y 2 Œe;w�`.w/�.i�1/. Furthermore, let d0 W C0 D
M I.w/! L.w/ be the canonical quotient map.

Lemma 5.14. The sequence 0 ! C`.w/ ! � � � ! C1 ! C0 ! L.w/ ! 0 is
a complex, i.e., di�1 ı di D 0 for 1 � i � l.w/. Furthermore, for every x 2
Œe;w�`.w/�i , the restriction of di to M I.x/ is nonzero.

Proof. Note that if x; z 2 Œe;w� and y 2 IW with x ! y ! z, then y 2 Œe;w�. The
observations above then immediately imply that di�1 ı di D 0 for 2 � i � `.w/.
Thus it remains to show that d0 ıd1 D 0. This follows since for every x ! w in IW ,
the image of fx;y WM I.x/!M I.w/ is contained in the radical of M I.w/, which is
equal to the kernel of the quotient map M I.w/! L.w/. ut
Theorem 5.15 (cf. Boe–Hunziker [7]). LetL.w/ be a simple module in Op

reg. Then
for w 2 IW the following are equivalent:

(i) The truncated BGG–Lepowsky complex for L.w/ is exact.
(ii) L.w/ is a Kostant module.

(iii) The Schubert variety X.w�1/ in G=P is rationally smooth.

Proof. (i) ) (ii): Identifying u with u� via the Killing form, we obtain an
isomorphismHi.u; L.w// Š Hi.u; L.w// ofm-modules. SinceHi.u; L.w// is also
isomorphic to TorU.u/i .C; L.w//, we can compute Hi.u; L.w// by any projective
U.u/-module resolution of L.w/. Now suppose that the truncated BGG–Lepowsky
complex for L.w/ is exact. Then this complex is a free U.u/-module resolution
of L.w/ since by the PBW Theorem every parabolic Verma module M I.x/, as a
U.u/-module, is isomorphic to the free module U.u/˝Fx . By applying the functor
C ˝U.u/ to this resolution and by taking the i -th homology of the resulting
complex we obtain

Hi.u; L.w// Š
M

x�w
l.x;w/Di

Fx

and hence L.w/ is a Kostant module.
(ii)) (i): Suppose that L.w/ is a Kostant module. By the lemma above, L.w/

is a generalized Kostant module in the sense of [17, 2.7]. By [17, Thm. 2.8], the
truncated BGG complex is exact.

The equivalence of (ii) and (iii) follows from Proposition 4.9 and Theorem 5.13
(and the comments just before Theorem 5.13). ut



150 Thomas J. Enright, Markus Hunziker, and W. Andrew Pruett

Example 5.16. Let p be the parabolic subalgebra of g D sl.4;C/ corresponding
to the Hermitian symmetric pair .A3;A1 � A1/. Fix a regular block Op

reg. Then the
BGG resolution of the finite-dimensional simple module in Op

reg is of the form

0!M I.e/!M I. /!M I. /˚M I. /!M I. /!M I. /! L. /! 0:

As explained above, by truncating the BGG resolution we obtain complexes for the
other simple modules in Op

reg. For example, the BGG complex

0!M I.e/!M I. /!M I. /! L. /! 0

is exact, whereas the BGG complex

0!M I.e/!M I. /!M I. /˚M I. /!M I. /! L. /! 0

is not exact (by Proposition 4.3 and Theorem 5.15).

5.4 A modified ordering for singular blocks

For regular blocks, it is possible to compute Ext-groups, and hence u-cohomology,
using Kazhdan–Lusztig polynomials. It turns out that this is also possible for
singular blocks. Fix a singular block Op

� and, as before, let IW † denote the set
that parameterizes the simple modules in Op

�.

Definition 5.17. For x;w 2 IW † define the polynomial IP †
x;w.q/ by

IP †
x;w.q/ WD

X

i�0
q
`.x;w/�i

2 dim ExtiOp.M I.x/; L.w//:

There is a beautiful formula due to Soergel [45] and Irving [28] that allows one to
compute the IP †

x;w.q/ in terms of (regular parabolic) KLV polynomials. It says that
for x;w 2 IW †,

IP †
x;w.q/ D

X

z2W†
.�1/`.z/ IPxz;w.q/ :

Definition 5.18. For x < w in IW define �I.x;w/ by

�I.x;w/ WD dim Ext1Op.M I.x/; L.w//:

For x;w 2 IW †, write x !� w if x < w in the Bruhat ordering, � I.x;w/ 6D 0 and
there is no x < z < w in IW † with � I.z;w/ 6D 0. Then define �� as the ordering
on IW † generated by the covering relations x !� w. We call this ordering on IW †

the �-ordering or the Ext1-ordering.
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Remark 5.19. Note that by definition, x �� w implies x � w in the Bruhat
ordering. If † D ¿ or I D ¿, then the Ext1-ordering and the Bruhat ordering
coincide. The proof is easy in the case when † D ¿. The case when I D ¿ follows
via Koszul duality for parabolic and singular category O (cf. Beilinson–Ginzburg–
Soergel [4] and Backelin [3]).

In general, the posets IW † are very complicated. For example, they need not be
graded, i.e., two chains connecting two elements in IW † can have different length
(see Boe–Hunziker [7] for examples). However, in the Hermitian symmetric cases,
the posets IW † are always nice. In fact, IW † is either isomorphic to a poset of the
form I0W 0 corresponding to another Hermitian symmetric pair (of smaller rank) or
isomorphic to a disjoint union of two such posets.

Example 5.20. Consider the Hermitian symmetric pair of type .Cn;An�1/ and
suppose that† contains the long simple root ˛n. If w 2 IW † is written in Lascoux–
Schützenberger notation (see Figure 7) as a binary sequence of length n, we say that
w is even if the binary sequence has an even number of 1’s and odd if the binary
sequence has an odd number of 1’s. Suppose that x;w 2 IW † such that x < w in
the Bruhat ordering. In [19] it was proved that

�I.x;w/ D
(

1 if x and w have the same parity;

0 if x and w have opposite parity:

It follows that the poset IW † with respect to the �-ordering can be written as a
disjoint union

IW † D IW †
even [ IW †

odd ;

where the elements from IW †
even and IW †

odd are not comparable (see Figure 11).
Furthermore, if j†j D m, then the posets IW †

even and IW †
odd are both isomorphic to the

poset I0W 0 corresponding to the Hermitian symmetric pair .Cn�2m;An�2m�1/. The
isomorphisms IW †

even Š I0W 0 and IW †
odd Š I0W 0 are described explicitly as follows.

Suppose that † D f˛i1 ; ˛i2 ; : : : ; ˛img with i1 < i2 < � � � im�1 < im D n. We note
that in fact jij � ijC1j � 2 for 1 � j � m � 1. Let w 2 IW †

even or w 2 IW †
odd and

write w in Lascoux–Schützenberger notation as a binary sequence w D b1b2 � � �bn.
Delete all the segments bij bijC1 for j < m and the last digit bn. The resulting binary
sequence has length n�2mC1. If we remove its right most digit we obtain a binary
sequence of length n � 2m that corresponds to an element w0 2 I0W 0.

For a representative example, consider n D 9 and † D f˛2; ˛7; ˛9g. Then every
w D IW † is of the form w D b101b4b5b6010. The mappings IW †

even ! I0W 0 and
IW †

odd ! I0W 0 are given by w D b101b4b5b6010 7! w0 D b1b4b5. These maps are
invertible since for a given element w0 D b1b4b5 2 I0W 0, there is a unique choice for
b6 2 f0; 1g such that w D b101b4b5b6010 is even or odd, respectively.
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Figure 11 The �-ordering of IW † for .ˆ; I; †/ D .C5; f˛1; : : : ; ˛4g; f˛5g/

5.5 Equivalences of categories

Theorem 5.21 (cf. Enright–Shelton [19, 20]). Suppose p is of Hermitian type.

(a) Suppose that eitherˆ has one root length, orˆ has two root lengths and all the
roots in † are short. Then there exists an equivalence of categories

E W Op
� ! Op0

reg;

where p0 is a parabolic subalgebra of Hermitian type of a complex simple Lie
algebra g0 of rank � n. More precisely, there exists an isomorphism of posets
IW † ! I0W 0 such that E W L.w/ 7! L.w0/ and E W M I.w/ 7! MI0.w0/.
Furthermore, if x � w 2 IW † then IP †

x;w.q/ D I0Px0;w0.q/.
(b) Suppose that ˆ has two root lengths and † contains a long root. Then there

exists an equivalence of categories

E W Op
� ! Op0

reg ˚Op0

reg;

where p0 is a parabolic subalgebra of Hermitian type of a complex simple Lie
algebra g0 of rank � n. More precisely, the poset IW † with respect to the
�-ordering is a disjoint union IW † D IW †

even [ IW †
odd and the categoryOp

� has a
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decomposition into a direct sum Op
� D Op

�;even˚Op
�;odd such that all extensions

between modules in different summands are zero. There exist isomorphisms
of posets IW †

even ! I0W 0 and IW †
odd ! I0W 0 and corresponding equivalences

of categories Eeven W Op
�;even ! Op0

reg and Eeven W Op
�;odd ! Op0

reg such that
L.w/ 7! L.w0/ and M I.w/ 7! MI0.w0/. Furthermore, if x � w 2 IW † are
either both even or both odd, then IP †

x;w.q/ D I0Px0;w0.q/.

Proof. The construction of the functors E , Eeven and Eodd is complicated and beyond
the scope of this paper. We refer the reader to [19] for details. Here we content
ourselves with understanding the isomorphisms of the underlying posets. For the
Hermitian pairs corresponding to gR D su.p; q/, sp.n;R/, and so�.2n/ these
isomorphisms are given by using Lascoux–Schützenberger notation as in Exam-
ple 5.20. For the remaining Hermitian symmetric pairs, the poset isomorphisms are
easy to check using Hasse diagram of IW . Two examples are shown in Figures 12
and 13. We leave the details to the reader. ut

Because of Theorem 5.21, if p is of Hermitian type it makes sense to define
Kostant modules and Bernstein–Gelfand–Gelfand resolutions in singular infinitesi-
mal blocks Op

�.

Example 5.22. Suppose gR D su.3; 2/ and consider the simple module L.�/ of
highest weight � D �!3. Then � D wIw � �, where �C � D �!1 � !3 � !4 and
w D s3s2s1s4s3. Note that † D f˛2g and IW † D f ; ; /g. The poset IW †

is isomorphic to the poset I0W 0 D f ; ; eg corresponding to g0
R
D su.2; 1/. By

applying the exact functor E�1 to the BGG resolution

0!M 0I0.e/!M 0I0. /!M 0I0. /! L0. /! 0

5 + 6

4 + 6

3 + 6 4 + 5

2 + 6 3 + 5

1 + 6 2 + 5 3 + 4

1 + 5 2 + 4

1 + 4 2 + 3

1 + 2

1 + 21 + 2

1 + 3

2 + 3

2 + 5

1 + 5

3 + 5

∼=

2

α4

1

3

2

Figure 12 The poset ˆ.u/Œ�� for gR D so�.12/ and � D �!6
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Figure 13 The isomorphism IW f˛4g Š I0W 0 for .ˆ;ˆI/ D .E6;D5/, .ˆ0; ˆ0

I0 / D .A5;A4/

of the finite-dimensional module L0. / in Op0

reg, we obtain a resolution

0!M I. /!M I. /!M I. /! L. /! 0

of the simple module L.�/ D L. / in the singular block Op
�.

5.6 A recursion for parabolic Kazhdan–Lusztig polynomials

In [38], Lascoux and Schützenberger gave an efficient combinatorial algorithm to
calculate Kazhdan–Lusztig polynomials for Grassmannians. In [6], Boe extended
the techniques of Lascoux and Schützenberger to obtain a similar algorithm for
the Hermitian symmetric spaces of type .Cn;An�1/ and .Dn;An�1/. Here we will
use diagrams of Hermitian type to give an algorithm that works for all Hermitian
symmetric spaces. The key is the notion of capacity which we will shortly define.
Consider a diagram of Hermitian type, i.e., the Hasse diagram of a poset ˆ.u/ as
shown in the appendix. Note how all these Hasse diagrams are drawn on a square
lattice that is tilted 45ı. We will assume in the following that the square lattice
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is normalized such that the diagonals of each square (diamond) have unit length.
Recall the map f W ˆ.u/ ! … from Definition 3.19. We observe that for any
simple root ˛ 2 … except ˛2 in the two exceptional cases, the fiber f �1.˛/ consists
of roots in ˆ.u/ whose corresponding nodes in the Hasse diagram of ˆ.u/ lie on a
vertical line. (The latter is equivalent to the statement that in the generalized Young
diagram of the longest element of IW , the boxes that are filled with the same number
all lie on the same diagonal.) In particular, the vertical distance between two nodes
in the Hasse diagram corresponding to two roots in the fiber f �1.˛/ is a nonnegative
integer. This last statement is also true if ˛ D ˛2 in the two exceptional cases. For
example, in type .E6;D5/, the fiber f �1.˛2/ contains two roots and the vertical
distance between the two corresponding nodes is 2.

Definition 5.23. For x;w 2 IW f˛g such that x � w in IW , define the capacity of w
with respect to x as the nonnegative integer

c.x;w/ WD vertical distance between the nodes of ˇx and ˇw;

where ˇx; ˇw 2 ˆ.u/ are the roots such thatˆxs˛ nˆx D fˇxg,ˆws˛ nˆw D fˇwg,
respectively.

Theorem 5.24. Let x < w 2 IW such that x 2 IW f˛g and xs˛ � w in IW .

(a) Suppose that either w 62 IW f˛g or w 2 IW f˛g,ˆ has two root lengths, ˛ is long,
and c.x;w/ is odd. Then

IPx;w.q/ D IPxs˛ ;w.q/:

(b) Suppose that w 2 IW f˛g. Also, if ˆ has two root lengths and ˛ is long, assume
that c.x;w/ is even. Then

IPx;w.q/ D IPxs˛ ;w.q/C qc.x;w/ � I
0

Px0;w0.q/:

Proof. If c.x;w/ is replaced by .`.x;w/ � `.x0;w0//=2, then the proposition is
Theorem 15.4 in [19]. This theorem also holds in the exceptional cases as follows
from the work in [20]. Thus, it remains to show that

c.x;w/ D `.x;w/ � `0.x0;w0/
2

:

For the Hermitian symmetric pairs corresponding to su.p; q/, sp.n;R/, and
so�.2n/, this follows from the results of Lascoux–Schützenberger and Boe. For
example, for sp.n;R/ it was shown by Boe in the proof of [6, Propostion 3.14].

For the remaining Hermitian symmetric pairs we proceed case-by-case. First note
that if x � y � w 2 IW f˛g, then c.x;w/ D c.x; y/C c.y;w/, `.x;w/ D `.x; y/C
`.y;w/, and `0.x0;w0/ D `.x0; y0/ C `0.y0;w0/. This means that we may assume
that w0 covers x0 in I0W 0. Now, as a representative case, consider the Hermitian
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symmetric pair of type .E7;E6/ and ˛ D ˛4. The poset isomorphism IW f˛g Š I0W 0
is shown in Figure 13. The edges in the Hasse diagram of IW corresponding to the
simple reflection s4 are shown in bold. The bold nodes at the top of the bold edges
correspond to the elements of IW f˛g multiplied by s4. Suppose that x < w 2 IW f˛g
are the elements with

xs4 D 7 6 5 4 and ws4 D 7 6 5 4 3

2 4
:

Then c.x;w/ D 1 and .`.x;w/ � `.x0;w0//=2 D .3 � 1/=2 D 1. The identity
c.x;w/ D .`.x;w/ � `.x0;w0//=2 is quickly verified in the same way for the other
11 pairs of elements x < w 2 IW f˛g such that w0 covers x0. ut
Example 5.25. Consider the Hermitian symmetric pair .D6;D5/. Suppose that x <
w 2 IW f˛2gare the elements with

xs2 D 1 2 ws2 D
1 2 3 4 5

6 4

3

2

:

Then the capacity c.x;w/ D 3 and hence, by Theorem 5.24 (b),

IPx;w.q/ D IPxs2;w.q/C q3 � I
0

Px0;w0.q/

The poset I0W 0 contains two elements in linear order which implies that I0Px0;w0.q/ D
1. Therefore, IPx;w.q/ D 1C q3.
Example 5.26. Consider the Hermitian symmetric pair .E7;E6/. Let x D e and let
w 2 IW be the submaximal element. Then x;w 2 IW f˛7g. The capacity c.x;w/ D 8
and hence, by Theorem 5.24 (b),

IPe;w.q/ D IPs7;w.q/C q8 � I
0

Pe0 ;w0.q/:

The poset I0W 0 contains three elements in linear order which implies that
I0Px0;w0.q/ D 1. Note that IW f˛7g also contains three elements. Let u 2 IW f˛7g
be element with e < u < w. Then, by using Theorem 5.24 (a) repeatedly,
IPs7;w.q/ D IPu;w.q/. The capacity c.u;w/ D 4 and hence, by Theorem 5.24
(b),

IPu;w.q/ D IPus7;w.q/C q4 � I
0

Pu0 ;w0.q/:

By the same arguments as before, I0Pu0;w0.q/ D 1 and IPus7;w.q/ D IPw;w.q/ D 1.
Therefore, IPx;w.q/ D 1C q4 C q8.
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6 BGG resolutions of unitary highest weight modules

Suppose that gR is a noncompact real form of g with Cartan decomposition gR D
mR ˚ sR and assume that mR has a nontrivial center zR. Let p be the corresponding
parabolic subalgebra of g of Hermitian type. A simple module L.�/ in the category
Op is called unitarizable if there exists a gR-invariant Hermitian scalar product
on L.�/. In [15], Enright showed that every unitary highest weight module is a
Kostant module. Hence every unitary highest weight module has a generalized BGG
resolution.

6.1 Reduced Hermitian symmetric pairs

Definition 6.1 (cf. Enright [15]). For � 2 �CI , defineˆ.u/Œ�� as the set of all roots
ˇ 2 ˆ.u/ such that:

(1) .�C �; ˇ_/ 2 Z>0;
(2) ˇ is orthogonal to „� WD f˛ 2 ˆ.u/ j .�C �; ˛_/ D 0g;
(3) ˇ is short if ˆ has two root lengths and„� contains a long root .

Next define WŒ�� WD hsˇ j ˇ 2 ˆ.u/Œ��i and ˆŒ�� WD f˛ 2 ˆ j s˛ 2 WŒ��g.
Then ˆŒ�� is an (abstract) irreducible root system. Let gŒ�� be the semisimple part
of the reductive Lie algebra with Cartan subalgebra h and root system ˆŒ�� and
let bŒ�� be the Borel subalgebra of gŒ�� corresponding to the positive system ˆŒ�� \
ˆC � ˆŒ��. Let mŒ�� be the reductive Lie subalgebra of gŒ�� with Cartan subalgebra
gŒ�� \ h and root system ˆŒ�� \ ˆ I and let uŒ�� be the sum of the root spaces of
gŒ�� corresponding to the roots in .ˆŒ�� \ ˆC/ n ˆ I. Then pŒ�� WD mŒ�� ˚ uŒ�� is a
parabolic subalgebra of gŒ�� containing bŒ��. Note that uŒ�� is abelian sinceˆ.uŒ��/ WD
.ˆŒ��\ˆC/nˆ I is a subset ofˆ.u/ and hence the sum of two roots inˆ.uŒ��/ is never
a root. A parabolic subalgebra with abelian nilradical is always a maximal parabolic
subalgebra. Therefore, by Lemma 2.2, pŒ�� is of Hermitian type and .gŒ��;mŒ��/ is
a complexified Hermitian symmetric pair, called the reduced Hermitian symmetric
pair associated to L.�/.

The standard parabolic subalgebra pŒ�� of gŒ�� corresponds to a subset E � …Œ��,
where …Œ�� denotes the set of simple roots of the positive system ˆŒ�� \ ˆC. The
set …Œ�� n E contains exactly one element, namely the unique noncompact root in
…Œ��. We caution the reader that…Œ�� is not a subset of… in general. In particular, if
w 2 WŒ�� and `Œ��.w/ denotes the length of w with respect to the simple system…Œ��,
then `Œ��.w/ 6D `.w/ in general. Furthermore, the poset E.WŒ��/ is not a subset of IW

in general. However, by definition, E.WŒ��/ � WŒ�� � W .

Remark 6.2. Note that ˆ.u/Œ�� � ˆ.uŒ��/, but in general the two sets do not have
to be equal. However, in all the examples that are discussed in this paper, we always
have equality.
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Before we continue, we will discuss three examples in detail. A good under-
standing of these examples will be essential in the proof of the main theorems
in Section 7. In all these examples, we use coordinate descriptions for roots and
weights with respect to the standard bases given by the �i ’s. For more general
examples (and rigorous proofs), we refer the reader to the paper [22] by Enright
and Willenbring.

Example 6.3. Consider gR D u.p; q/1 and � D �k!p , where !p is the p-
th fundamental weight and 1 � k � minfp; qg. Let n D p C q. Then � �
.�k; : : : ;�kI 0; : : : ; 0/ and

�C � � .n � k; n � k � 1; : : : ; n � k � p C 1 I q; q � 1; : : : ; 1/;

where x � y is the equivalence relation on h� D C
n given by x�y 2 C.1; : : : ; 1/ �

h� D C
n. Furthermore,

ˆ.u/ D f�i � �j j 1 � i � p ; p C 1 � j � ng:

We claim (and the reader is invited to verify) that

„� D f�i � �iCk j p � k C 1 � i � pg

and

ˆ.u/Œ�� D f�i � �j j 1 � i � p � k , p C k C 1 � j � p C qg:

This poset is isomorphic to the poset of noncompact roots of a Hermitian symmetric
pair corresponding to u.p � k; q � k/. The minimal element in ˆ.u/Œ�� is the root
�p�k��pCkC1, which is the noncompact root in…Œ��. By calculating the differences
of neighboring roots in ˆ.u/Œ��, we find that the compact roots in …Œ�� are the roots
of the form �i � �iC1 with 1 � i � p � k � 1 or p C k C 1 � i � p C q � 1. We
do haveˆ.u/Œ�� D ˆ.uŒ��/ in this case.

As a representative example, consider .p; q/ D .6; 4/ and k D 2. In this case,
�C � � .8; 7; 6; 5; 4; 3I 4; 3; 2; 1/. Note that the segments shown in bold to the left
and to the right of the semicolon are identical and of length k D 2. From this we
see that „� D f˛ 2 ˆ.u/ j .�C �; ˛_/ D 0g consists of the two roots �5 � �7 and
�6��8. (In the general case we would find„� D f�i ��iCk j p�kC1 � i � pg as
claimed above.) The roots inˆ.u/ that are orthogonal to �5��7 and �6��8 are of the
form ˇ D �i � �j with 1 � i � p � k D 4 and pC kC 1 D 9 � j � pC q D 10.
For all of these roots ˇ we have .� C �; ˇ_/ 2 Z>0. This shows that ˆ.u/Œ�� is as
claimed.

1We work with the nonsimple Lie algebra u.p; q/ rather than su.p; q/ for convenience.
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It will be important later to know how to evaluate y.� C �/ for y 2 E.WŒ��/.
As a representative example, consider again .p; q/ D .6; 4/ and k D 2 as above.
Since ˆ.u/Œ�� is the poset of noncompact roots of a Hermitian symmetric pair
corresponding to u.p� k; q� k/ D u.4; 2/, the elements of E.WŒ��/ are represented
by Young diagrams contained in . Suppose that y 2 E.WŒ��/ is represented by
the Young diagram . The boxes of the top row (from left to right) correspond
to the roots ˇ1 WD �4 � �9, ˇ2 WD �3 � �9, and ˇ3 WD �2 � �9. The boxes
of the second row (from left to right) correspond to the roots ˇ4 WD �4 � �10
and ˇ5 WD �3 � �10. By Proposition 3.21, y D sˇ5sˇ4sˇ3sˇ2sˇ1 . To evaluate
y.� C �/, we proceed row by row. Recall that � C � � .8; 7; 6; 5; 4; 3I 4; 3; 2; 1/.
First we find sˇ3sˇ2sˇ1 .� C �/ � .8; 6; 5; 2; 4; 3I 4; 3; 7; 1/. Then we apply sˇ5sˇ4
to find y.� C �/ � .8; 6; 2; 1; 4; 3I 4; 3; 7; 5/. Here the numbers printed in bold
are the numbers that moved to a different sides of the semicolon. In the proof of
Theorem 7.9, we will reveal the general pattern.

Example 6.4. Consider gR D sp.n;R/ and � D � k
2
!n, where !n is the n-th

fundamental weight and 1 � k � n. Then � D .� k
2
;� k

2
; : : : ;� k

2
/ and � C � D

.n � k
2
; n � 1 � k

2
; : : : ; 1 � k

2
/. Furthermore, ˆ.u/ D f�i C �j j 1 � i � j � ng.

We claim that

ˆ.u/Œ�� D f�i C �j j 1 � i < j � n � k C 1g;

which is the poset of noncompact roots of a Hermitian symmetric pair of type
.Dn�kC1;An�k/. The simple system …Œ�� is the usual simple system of Dn�kC1.

As a first representative example, consider n D 5, k D 1. In this case, � D
. 9
2
; 7
2
; 5
2
; 3
2
; 1
2
/ and „� D ¿. Since „� D ¿, the set ˆ.u/Œ�� consists of all roots

ˇ 2 ˆ.u/ satisfying condition (1). If ˇ 2 ˆ.u/ is short, i.e., of the form �i C �j
with i < j , then .�C �; ˇ_/ 2 Z>0. However, if ˇ 2 ˆ.u/ is long, i.e., of the form
2�i , then .�C �; ˇ_/ is not an integer. Thus, it follows that

ˆ.u/Œ�� D f�i C �j j 1 � i < j � 6g:

As a second representative example, consider n D 6, k D 2. In this case, � D
.5; 4; 3; 2; 1; 0/ and „� D f2�5g. We start with condition (2). The set of ˇ 2 ˆ.u/
that are orthogonal to „� D f2�5g is the set f�i C �j j 1 � i � j � 4g. Every root
in this set also satisfies condition (1). Since „� contains a long root, condition (3)
requires that the roots in ˆ.u/Œ�� must be short, i.e., of the form �i C �j with i < j .
Thus,ˆ.u/Œ�� D f�i C �j j 1 � i < j � 4g.
Example 6.5. Suppose that gR D so�.2n/ and � D �2k!n, where !n is the n-th
fundamental weight and 1 � k � n=2. Then � D .�k;�k; : : : ;�k/ and �C � D
.n � 1 � k; n � 2 � k; : : : ;�k/. Furthermore,

ˆ.u/ D f�i C �j j 1 � i < j � ng:
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We claim that

ˆ.u/Œ�� D f"i C "j j 1 � i < j with j � n � 2k � 1 or j D n � kg;

which is the poset of noncompact roots of a Hermitian symmetric pair of type
.Dn�2k;An�2k�1/. The noncompact root in …Œ�� is the root �n�2k�1 C �n�k . The
compact roots in…Œ�� are the roots f�i��iC1 j 1 � i � n�2k�2g[f�n�2k�1��n�kg
(see Figure 12).

As a representative example, consider n D 6, k D 1. In this case, � C � D
.4; 3; 2; 1; 0;�1/ and „� D f�4 C �6g. All roots in ˆ.u/ except �4 C �6 and �5 C �6
satisfy condition (1). The roots in ˆ.u/ that are orthogonal to „� are the roots of
the form �i C �j with i < j and i; j 62 f4; 6g. Thus,

ˆ.u/Œ�� D f�i C �j j 1 � i < j with j � 3 or j D 5g:

The poset ˆ.u/Œ��, viewed as a subposet of ˆ.u/, is shown in Figure 12 on the left.
Note that there is a unique poset isomorphism from the poset of noncompact roots
of .D4;A3/, which is shown in Figure 12 on the right, to the poset ˆ.u/Œ��. This
induces a bijection from the set of simple roots of D4 to …Œ�� given as follows:

˛1 7! .�1 C �5/� .�2 C �5/ D �1 � �2;
˛2 7! .�2 C �5/� .�3 C �5/ D �2 � �3;
˛3 7! .�1 C �3/� .�1 C �5/ D �3 � �5;
˛4 7! �3 C �5:

Note that the roots �3 ˙ �5 2 …Œ�� are not in ….

6.2 Unitary highest weight modules are Kostant modules

For y 2 W , let y 2 IW denote the minimal length coset representative of WI y. We
note that by Remark 3.6 (iii), if � 2 �CI and y 2 W , then y � � 2 �CI .

Theorem 6.6 (Enright [15]). Let L.�/ be a unitary highest weight module of
highest weight �. Then, as an m-module,

Hi.u; L.�// Š
M

y

Fy
�;

where the sum is over all y 2 E.WŒ��/ � W such that `Œ��.y/ D i . ut
Remark 6.7. The unitary highest weight modules are not the only Kostant modules
in category Op for which the formula for the u-cohomology groups can be written
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in the form above. However, we did find some counterexamples of Kostant modules
not satisfying this formula in the case when p corresponds to sp.n;R/. In regular
blocks Op

reg, the formula seems to hold for the Kostant moduleL.w/ if the Schubert
variety X.w�1/ in G=P is smooth (see Proposition 4.5).

Corollary 6.8 (cf. Enright–Willenbring [21] and Enright–Hunziker [16]). Let
L.�/ be a unitary highest weight module of highest weight �. Then there exists an
exact sequence of g-modules, 0! Cr ! � � � ! C1! C0 ! L.�/! 0; with

Ci WD
M

y

M I.y � �/;

where the sum is over all y 2 E.WŒ��/ � W such that `Œ��.y/ D i . ut

6.3 A curious observation

By Lemma 3.1, if � D 0 is the highest weight of the trivial representation, then

y � � D � � hˆyi:

This means that if MI.y � �/! MI.y
0 � �/ is a map in the BGG resolution of L.0/

in Op
reg, then the highest weight of y � � D y0 � � � ˇ, where ˇ is the unique root in

ˆy0nˆy . This nice property characterizes the trivial representations among all finite-
dimensional representations. Incidentally, if p is of Hermitian type corresponding to
the noncompact simple Lie algebra gR, then the trivial representation is also the only
unitarizable finite-dimensional representation of gR.

Remarkably, it appears that the BGG resolution of every unitary highest weight
module satisfies an analogous property as long as ˆ has only one root length
(i.e., the Dynkin diagram is of simply laced type). This is based on the following
conjecture.

Conjecture 6.9. Suppose that L.w/ is a unitarizable highest weight module in Op
�

such that L.w/ 6DM I.w/. If ˆ has only one root length, then

�h�C �; ˛_i 2 f0; 1g for all ˛ 2 supp.w/:

Lemma 6.10. Let x < w 2 IW . If ˆw D ˆx [ fˇ1; : : : ; ˇrg such that ˆx [
fˇ1; : : : ; ˇkg is a lower-order ideal of ˆ.u/ for every 1 � k � r , then

x � � D w � �C
r
X

iD1
h�C �; f .ˇi /_iˇi :
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Proof. By Proposition 3.21, w D xsf .ˇ1/sf .ˇ2/ � � � sf .ˇr / D sˇr � � � sˇ1x. We will
show by induction that

sˇk � � � sˇ1x D x � � �
k
X

iD1
h�C �; f .ˇi /_iˇi : (*)

For k D 1, we have

sˇ1x � � D x � � � hx � �; ˇ_1 iˇ1 D x � � � h�C �; x�1ˇ_1 iˇ1:

By Lemma 3.20, x�1ˇ_1 D f .ˇ1/
_. Thus, (*) holds when k D 1. Using the same

argument in the induction step proves (*) in general. ut
Example 6.11. Consider gR D su.3; 2/. Let � D �!3, which is the highest weight
of a Wallach representation. Then � D wIw ��, where �C � D �!1 �!3 �!4 and

w D 3 2 1

4 3
D s3s2s1s4s3:

The following shows wIˇ for ˇ 2 ˆ.u/.

wI

�

�3 � �4 ; �2 � �4 ; �1 � �4
�3 � �5 ; �2 � �5 ; �1 � �5

�

D
�

�1 � �5 ; �2 � �5 ; �3 � �5
�1 � �4 ; �2 � �4 ; �3 � �4

�

:

The BGG resolution of L. / D L.�/ in Op
� is of the form

0!M I. /!M I. /!M I. /! L. /! 0:

By Lemma 6.10, the highest weights of the terms in the resolution are

M I. / DM I.�/;

M I. / DM I.� � .�2 � �4/� .�3 � �5//;
M I. / DM I.� � .�2 � �4/� .�3 � �5/� .�1 � �4//:

7 Syzygies of determinantal ideals

In [37], Lascoux (using geometric methods originally developed by Kempf in his
thesis) gave an explicit construction of minimal free resolutions of the determinantal
ideals of general p� q-matrices (in characteristic 0). In [31], Józefiak, Pragacz, and
Weyman gave a similar construction of minimal free resolutions of the determinantal
ideals of symmetric and antisymmetric matrices. By Weyl’s fundamental theorems
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Table 2. Data for Howe duality

gR MR u KR Z

u.p; q/ U.p/ �U.q/ Mp;q U.k/ Mp;k˚Mk;q

sp.n;R/ eU.n/ Symn WD fx 2 Mn j x D xtg O.k/ Mn;k

so�.2n/ U.n/ Altn WD fx 2 Mn j x D �xtg Sp.k/ Mn;2k

of classical invariant theory, these resolutions also give minimal free resolutions of
rings of invariants of the classical groups. As was first observed by Howe, the latter
carry the structure of a unitary highest weight module for a dual group.

7.1 Howe duality

Consider Table 2. In the case when gR D sp.n;R/, the group MR is the double
cover of U.n/ given by

eU.n/ WD f.u; s/ 2 U.n/ � C j det u D s2g:

The groupMR acts on u by the usual actions:

U.p/ � U.q/ ˚ Mp;q W ..u1; u2/; x/ 7! u1x u2
�1

eU.n/ ˚ Symn W ..u; s/; x/ 7! uxut

U.n/ ˚ Altn W .u; x/ 7! uxut :

The groupKR acts on Z as follows:

U.k/ ˚ Mp;k ˚Mk;q W .h; .z1; z2// 7! .z1h
�1; hz2/

O.k/ ˚ Mn;k W .h; z/ 7! zh�1

Sp.k/ ˚ Mn;2k W .h; z/ 7! zh�1:

Finally, the groupMR also acts on Z:

U.p/ � U.q/ ˚ Mp;k ˚Mk;q W ..u1; u2/; .z1; z2// 7! .u1z1; z2u
�1
2 /

eU.n/ ˚ Mn;k W ..u; s/; z/ 7! uz

U.n/ ˚ Mn;2k W .u; z/ 7! uz:
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In each case, define a polynomial map 
 W Z ! u of degree 2 by:


 W Mp;k ˚Mk;q ! Mp;q; .z1; z2/ 7! z1z2


 W Mn;k ! Symn; z 7! zzt


 W Mn;2k ! Altn; z 7! zJ zt :

Then 
 is MR-equivariant and constant on KR-orbits. Define

Yk WD 
.Z/ � u:

In each case, Yk is a determinantal variety or Yk D u. More precisely, for K D
GLk we have Yk D fx 2 Mp;q j rkx � kg, for K D Ok we have Yk D fx 2
Symn j rkx � kg, and for K D Sp2k we have Yk D fx 2 Altn j rkx � 2kg. Let
CŒYk� denote the coordinate ring of Yk and let CŒZ�K denote the ring ofK-invariant
polynomials on Z.

Theorem 7.1 (cf. Weyl [48]). The map 
 W Z ! Yk � u induces an isomorphism

� W CŒYk�! CŒZ�K of algebras given by 
�.f / D f ı 
 .

Proof. Since 
 W Z ! Yk is surjective, 
� W CŒYk�! CŒZ� is injective. Since 
 is
constant onK-orbits, 
�CŒYk� � CŒZ�K . By Weyl’s first fundamental theorems for
the classical groupsK D GLk , Ok , and Sp2n, it follows that CŒZ�K is generated by
the functions 
�.xij / and hence 
�CŒYk� D CŒZ�K . For example, if K D Ok , then
the algebra of invariants CŒZ�K is generated by the quadratic functions 
�.xij / D
Pk

lD1 zi lzlj . The other two cases are similar. ut
Since 
 W Z ! Yk � u is MR-equivariant, the isomorphism 
� W CŒYk� !

CŒZ�K is also MR-equivariant, i.e., an intertwining map. To be able to extend the
MR-action on CŒYk� and CŒZ� to a .g;MR/-action, we need to twist the usual MR-
action on CŒZ� as follows:

U.p/ � U.q/ ˚ CŒMp;k ˚Mq;k� W ..u1; u2/:f /.z/ D .det u1/
�kf .u�11 z1; z2u2/

eU.n/ ˚ CŒMn;k� W ..u; s/:f /.z/ D s�kf .u�1z/
U.n/ ˚ CŒMn;2k� W .u:f /.z/ D .det u/�kf .u�1z/:

Let D.Z/K denote the algebra of K-invariant polynomial differential operators.

Lemma 7.2 (cf. Howe [27]). There exists an injective Lie algebra homomorphism
� W g! D.Z/K such that

(a) the g-action on CŒZ� that is defined via � is compatible with the MR-action
given above, i.e., CŒZ� is a .g;MR/-module;

(b) the action of S.u/ D CŒu� on CŒZ� that is defined via � is given by left
multiplication via 
� W CŒu�! CŒZ�;

(c) �.g/ generates the algebra D.Z/K .
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Proof. Consider the case whenK D O.k;C/. For 1 � i; j � n, define

qij WD 
�.xij / D
k
X

lD1
zi lzjl ; Eij WD

k
X

lD1
zjl

@

@zi l
; ij WD

k
X

lD1

@2

@zi l @zjl
:

All these operators are in D.Z/K . For a 2 C
�, define �a W g D sp.n;C/! D.Z/K

by

enCi;j C enCj;i 7! aqij ; eij � enCj;nCi 7! �Eij � k
2
ıij ; ei;nCj C ej;nCi 7! � 1aij :

Then one can check that �a is a Lie algebra homomorphism. Furthermore, the action
of m D gl.n;C/ on CŒZ�, which is found by differentiating the action of MR D
eU.n/, is given by

.eij :f /.z/ D .�Eij � k
2
ıij /f .z/

and coincides with the action of m via �a since the embedding gl.n;C/! sp.n;C/
is given by eij 7! eij � enCj;nCi . Thus, �a satisfies (b).

If we identify u� with u via the trace form trAB on sp.n;C/, then the linear
form on u that we called xij is identified with the element 1

2
.enCi;j C enCj;i /. Thus,

if we choose a D 2, then �a satisfies (c). If we identify u� with u by using a
different invariant form on sp.n;C/, say the Killing form, then another choice for a
is necessary.

To show that �a.g/ generates the algebra D.Z/K , we note that the symbols (with
respect to the Bernstein filtration of the Weyl algebra D.Z/) of the operators aqij ,
�Eij � k

2
, andij generate the associated graded algebra grD.Z/K D CŒZ˚Z��K

by Weyl’s fundamental theorem for K D O.n;C/.
The proofs in the other two cases are similar. ut

Let OK denote the set of isomorphism classes of (finite-dimensional) simple
K-modules. For � 2 OK , let V� be a simple K-module in the class � .

Theorem 7.3 (Howe duality). Let † WD f� 2 OK j HomK.V�;CŒZ�/ 6D 0g. Then,
as a K � .g;MR/-module,

CŒZ� D
M

�2†
V� ˝ V � ;

where V � WD HomK.V� ;CŒZ�/ is a simple highest weight module of g with V � 6Š
V � 0

whenever � 6D � 0. ut
Proof. Since �.g/ generates the algebra D.Z/K and since CŒZ� is a simple
D.Z/-module, the result follows from a general duality theorem of Goodman and
Wallach [23]. For explicit formulas for the highest weights of the g-modules V � see
Kashiwara–Vergne [32]. ut
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Remark 7.4. Every g-module V � is in fact unitarizable. Furthermore, if gR D
su.p; q/ or sp.n;R/, every unitary highest weight module L.�/ such that L.�/ 6D
M I.�/, i.e., for which the highest weight � is a reduction point, arises in that way.

Corollary 7.5. The coordinate rings CŒYk� carry the structure of a unitary highest
weight module of g. For gR D u.p; q/, sp.n;R/, and so�.2n/ these g-modules are
the Wallach representationsL.�k!p/, L.� k2 !n/, andL.�2k!n/, respectively. ut
Proof. By Theorem 7.3, the invariant ring V triv D CŒZ�K is a highest weight
module. The highest weight vector is given by the constant function 1 2 CŒZ�K .
We can then use Theorem 7.1 to define a g-action on CŒYk�. Again, the highest
weight vector is given by the constant function 1 2 CŒYk�. By the definition of the
twisted MR-action on CŒZ�K , it follows that the highest weights are � D �k!p ,
� k
2
!n, and �2k!n, respectively. ut

Remark 7.6. Note that as anMR-module with respect to the usual action on CŒYk�

we have

CŒYk� Š L.�/˝ F��:

7.2 Minimal free resolutions of determinantal ideals

Let g D u ˚ m ˚ u as above. Since u is abelian, we have U.g/ D S.u/ ˝ U.p/
by the PBW Theorem. It follows that the parabolic Verma moduleM I.�/ of highest
weight �, as an S.u/- and as an m-module, is isomorphic to

M I.�/ D S.u/˝ F�;

where the actions are the obvious actions. In particularM I.�/ is a free S.u/-module
of rank dimF� . If we identify u with the dual u� via the Killing form, then S.u/ is
identified with CŒu�, the coordinate ring of u. In the following, to simplify notation,
we will write S WD S.u/.
Theorem 7.7. Let CŒYk� be the coordinate ring of the determinantal variety Yk � u
as above, viewed as an S -module and as an MR-module with respect to the usual
(untwisted) action. Let L.�/ be the Wallach representation of g of highest weight �
such that CŒYk� D L.�/˝ F�� as an m-module. Then the BGG resolution of L.�/,
tensored by the 1-dimensional m-module F��, gives an MR-equivariant, minimal
free resolution of the coordinate ring CŒYk� as an S -module.

Proof. Note that the functor ˝ F�� is an exact since F�� is 1-dimensional. The
functor also commutes with the S -action which is given by multiplication from the
left. Furthermore, note that the S -action on CŒYk� is the usual S -action in light
of Lemma 7.2 (b). Thus we do obtain an MR-equivariant, free resolution of the
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coordinate ring CŒYk� as an S -module. The minimality of the resolution follows by
the argument given in the proof of Theorem 5.15. ut

The resolution given by Theorem 7.7 is in fact a minimal free resolution of graded
S -modules. Recall from Lemma 2.2 that there exists and element h 2 h in the center
of m such that u D fx 2 g j Œh; x� D xg. If V is any semisimple m-module with
integral weights, then h has integer eigenvalues on V and we obtain a Z-grading
on V having the property that each simple m-submodule of V is contained in a
homogenous component. If we view the coordinate ring CŒYk� as an m-module
(via the untwisted action), the resulting grading on CŒYk� is the usual grading.
Similarly, each term in the resolution of CŒYk� is a gradedm-module. Furthermore, if
M I.�/˝ F�� ! M I.�

0/ ˝ F�� is a map in the resolution, then it is homogenous
of degree .�0 � �/.h/ � .� � �/.h/ D .�0 � �/.h/. In algebraic geometry it is
customary to shift the degrees of the terms in a graded resolution such that all maps
end up being homogenous of degree 0. For a given integer d � 0, define S.�d/ as
the free S -module of rank one with the i -th homogenous component given by

S.�d/i WD SdCi :

Similarly, we can shift the grading of any graded S -module V . We now shift the
degree of each term in our resolution as follows

.M I.�/˝ F��/.�d/ D S.�d/˝ F���;

where d D .� � �/.h/. Then all maps of the resulting graded resolution are
homogenous of degree 0.

Our goal is now to compute the minimal free resolution of CŒYk� explicitly
for each of the determinantal varieties Yk � u and describe its terms by using
generalized Young diagrams. To do this efficiently, we need more notation.

7.3 Frobenius notation

It will be convenient to use Frobenius notation for integer partitions. Let � D
.�1; : : : ; �l / be a partition and let �0 D .�01; : : : ; �0m/ be its dual partition, whose
Young diagram is the transpose of the Young diagram of �. The length r of the
diagonal of the Young diagram of � is called the Frobenius rank (or Durfee rank)
of �. For 1 � i � r , define ai WD �i � i C 1 and bi WD �0i � i C 1. Then
.a1; : : : ; ar j b1; : : : ; br / is called the Frobenius symbol of �. The partition � is
uniquely determined by its Frobenius symbol and we will, by abuse of notation,
write � D .a1; : : : ; ar j b1; : : : ; br /. For example,




 D .4; 3; 1/ D .4; 2 j 3; 1/:
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Here we filled the diagonal boxes with dots for emphasis. We can also use
Frobenius notation for the shifted partitions (Young diagrams) that arise for
gR D sp.n;R/ and so�.2n/. Given positive integers a1 > � � � > ar , we write
.a1; : : : ; ar j 1r/ for the shifted partition (Young diagram), whose i -th row has
length ai . For example,







D .4; 2; 1 j 13/:

7.4 Schur functors

To be able to compare our resolutions of the determinantal ideals directly to the
resolutions as they are presented in [49], we will use the Schur functors that
were defined by Akin–Buchsbaum–Weyman in [1]. Let E be a finite-dimensional
complex vector space and let � D .�1; : : : ; �l / be a partition with its dual partition
�0 D .�01; : : : ; �0m/.
Definition 7.8. Following [1], define the Schur functor L�E as the image of the
composite map

^�1E ˝ � � � ˝ ^�lE ! ˝j�jE ! S�
0

1E ˝ � � � ˝ S�0

mE;

where^pE and SpE denote exterior and symmetric powers, respectively, and j�j D
Pl

iD1 �i D
Pm

jD1 �0j .

For example, L.p/E D ^pE and L.1p/E D SpE . Note that this differs from the
more common definition of the Schur functor S�E via Young symmetrizers,2 where
S.p/E D SpE and S.1

p/E D ^pE .
The Schur functors are useful in constructing the irreducible representations

of the general linear group GLn.C/, or equivalently, the unitary group U.n/. Let
E D C

n and identify GL.E/ D GLn.C/. Then L�E is the simple GLn.C/-
module of highest weight

Pm
iDj �0j �j and L�E� is the simple GLn.C/-module of

highest weight�Pm
jD1 �0n�jC1�j , where the �j are defined as usual for the standard

maximal torus consisting of diagonal matrices and highest weights are defined with
respect to the standard Borel subgroup consisting of upper triangluar matrices.

2The Schur functor L�E has the advantage that it can be defined for a free module E over a
commutative ring or a field of positive characteristics.
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7.5 The Lascoux resolution

We identify Mp;q D Hom.F;E/, where E D C
p and F D C

q are the natural
representations of U.p/ and U.q/, respectively. Note that as a U.p/�U.q/-module,
Hom.F;E/ D E ˝ F �, where˝ denotes the (external) tensor product.

Theorem 7.9. Let gR D u.p; q/ and let � D �k!p be the highest weight of the
k-th Wallach representation, where k � minfp; qg. If y 2 E.WŒ��/ is the element
represented by the partition .a1; : : : ; ar j b1; : : : ; br /, then as an MR D U.p/ �
U.q/-module,

Fy
��� D L.a1Ck;:::;arCkjb1;:::;br /E� ˝ L.b1Ck;:::;brCkja1;:::;ar /F:

Furthermore, .y ����/.h/ D jyjCrk, where jyj is the content of the corresponding
partition.

Proof. Using the same notation as in Example 6.3, we have � C � � .n � k; n �
k � 1; : : : ; n � k � p C 1 I q; q � 1; : : : ; 1/, where n D p C q. By Example 6.3,

ˆ.uŒ��/ D ˆ.u/Œ�� D f�i � �j j i < j and i; j 2 Œ1; p � k� [ Œp C k; n�g:

If y 2 E.WŒ��/ is the element represented by the partition .a1; : : : ; ar j b1; : : : ; br /,
then

y.�C�/ � .�; : : : ;�; q�k�brC1; : : : ; q�k�b1C1I qCa1; : : : ; qCar ;�; : : : ;�/;

where the coordinates � are a permutation of the coordinates of .n � k; n � k �
1; : : : ; n � k � p C 1 I q; q � 1; : : : ; 1/ not contained in fq � k � br C 1; : : : ; q �
k � b1C 1g [ fqC a1; : : : ; qC arg. It follows that y � �� � D y.�C �/� .�C �/
is the highest weight of L.a1Ck;:::;arCkjb1;:::;br /E� ˝ L.b1Ck;:::;brCkja1;:::;ar /F .

As a representative example, consider the case when .p; q/ D .6; 4/ and
k D 2. Then � C � � .8; 7; 6; 5; 4; 3I 4; 3; 2; 1/. If y is represented by the
partition .3; 2/ D .3; 1 j 2; 1/, then y.� C �/ � .8; 6; 2; 1; 4; 3I 4; 3; 7; 5/ by
Example 6.3. Note that numbers 7 and 5 moved from left to right (relative to the
semicolon), and the numbers 2 and 1 moved from right to left (relative to the
semicolon). In general, the numbers that move from left to right are the numbers
q C a1; : : : ; q C ar and the number that move from right to left are the numbers
q � k � br C 1; : : : ; q � k � b1C 1. (This can be proved rigorously by an induction
on the number of rows of the diagram of y.) By sorting the segments to the left and
right of the semicolon we obtain y.� C �/ � .8; 6; 4; 3; 2; 1I 7; 5; 4; 3/ and hence
y � � � � D y.�C �/ � .�C �/ D .0;�1;�2;�2;�2;�2I 3; 2; 2; 2/. This is the
highest weight of L.5;3j2;1/E� ˝ L.4;3j3;1/F . ut
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The result of Theorem 7.9 can be visualized as follows:

y D 
 
  S.�d/˝
 
 ���
���

�
˝

 ���
���

!

:

The diagram on the left is the Young diagram representing y 2 E.WŒ��/ with the
diagonal boxes filled with a dot. The integer d is the number of boxes of this diagram
plus k times the number of dots. In the example shown, k D 3 and d D 7C 2 � 3 D
13. The two diagrams on the right correspond to the partitions .a1Ck; : : : ; ar Ck j
b1; : : : ; br / and .b1 C k; : : : ; br C k j a1; : : : ; ar /, respectively. The diagram of the
partition .a1 C k; : : : ; ar C k j b1; : : : ; br / is obtained from the diagram of y by
adding k boxes to each of its first r rows. The added boxes are filled with an �.
Similarly, the diagram of the partition .b1 C k; : : : ; br C k j a1; : : : ; ar / is obtained
from the transposed diagram of y by adding k boxes to each of its first r rows.

In the following examples, we simply write the Young diagram of y for the term
S ˝ Fy
���. The arrows that are marked with a dot correspond to a homogenous
map of degree k C 1 and the other maps are homogenous of degree 1. The dotted
arrows arise where the diagram at the tail has one more dotted box than the diagram
at the head.

Example 7.10 (The Eagon–Northcott Complex). Consider the case when p � q
and k D q � 1.

0 �! 
 � � �
„ ƒ‚ …

p � q C 1 boxes

�! � � � �! 
 �! 
 	�! S �! CŒYq�1� �! 0;

where the diagrams are shorthand for


 � � �
„ ƒ‚ …

i boxes

D S.�q � i C 1/˝ �L.qCi�1/E� ˝ L.q;1i�1/F
�

:

In the special case when q D 1 this is the Koszul complex.

Example 7.11 (The Gulliksen–Negard Complex). Consider the case when p D
q and k D p � 2.

0 �! 
 

	�! 
 %

&


˚


&
% 


	�! S �! CŒYp�2� �! 0;
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where the diagrams are shorthand for


 
 D S.�2p/˝ .L.p;p/E� ˝ L.p;p/F /

 D S.�p � 1/˝ .L.p;1/E� ˝ L.p;1/F /

 D S.�p/˝ .L.p;1/E� ˝ L.p/F /

 D S.�p/˝ .L.p/E� ˝ L.p;1/F /

 D S.�p C 1/˝ .L.p�1/E� ˝ L.p�1/F /:

For an explicit description of the differentials, see Weyman [49, (6.1.8)].

7.6 The determinantal ideals for symmetric matrices

We identify Symn D S2E , where E D C
n is the natural representation of U.n/.

Theorem 7.12. Let gR D sp.n;R/ and let � D � k
2
!n be the highest weight of

the k-th Wallach representation, where 1 � k � n. If y 2 E.WŒ��/ is the element
represented by the partition .a1; : : : ; ar j 1r/, then as a eU.n/-representation,

Fy
� ˝ F�� D
(

L.a1Ck;:::;arCkja1C1;:::;arC1/E� if r is even

L.a1Ck;:::;arCk;kja1C1;:::;arC1;1/E� if r is odd,

where E� is the dual of E . Furthermore, .y � � � �/.h/ D jyj C rk=2 if r is even
and .y � � � �/.h/ D jyj C .r C 1/k=2 if r is odd.

Proof. We have � D .� k
2
;� k

2
; : : : ;� k

2
/, � D .n; n� 1; : : : ; 1/, and hence �C � D

.n � k
2
; n � 1 � k

2
; : : : ; 1 � k

2
/. By Example 6.4,

ˆ.uŒ��/ D ˆ.u/Œ�� D f�i C �j j 1 � i < j � n � k C 1g:

If y 2 E.WŒ��/ is the element represented by the partition .a1; : : : ; ar j 1r/, then

y.�C �/ D
(

.�; : : : ;�;�ar � k
2
; � � � ;�a1 � k

2
/ if r is even,

.�; : : : ;�;� k
2
;�ar � k

2
; � � � ;�a1 � k

2
/ if r is odd,

where the coordinates � are permutation of the coordinates of �C � not contained
in fa1 C k

2
; : : : ; ar C k

2
g or fa1 C k

2
; : : : ; ar C k

2
; k
2
g, respectively. It follows that

y � � � � is the highest weight of the Schur module

L.a1Ck;:::;arCkja1C1;:::;arC1/E
�
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or

L.a1Ck;:::;arCk;kja1C1;:::;arC1;1/E
�;

respectively. As a representative example, consider the case when n D 6 and k D 1.
Then � C � D . 11

2
9
2
; 7
2
; 5
2
; 3
2
; 1
2
/ and n � k C 1 D 6. If y is represented by the

partition .4; 1 j 12/, then y.� C �/ D . 11
2
; 7
2
; 5
2
; 1
2
;� 3

2 ;� 9
2 / and hence y � � �

� D y.� C �/ � .� C �/ D .0;�1;�1;�2;�3;�5/. This is the highest weight
of the Schur module L.5;2j5;2/E . If y is represented by the partition .4; 2; 1 j 13/,
then y.� C �/ D . 11

2
; 7
2
;� 1

2 ;� 3
2 ;� 5

2 ;� 9
2 / and hence y � � � � D y.� C �/ �

.�C �/ D .0;�1;�4;�4;�4;�5/. This is the highest weight of the Schur module
L.5;3;2;1j5;3;2;1/E . ut

The result of Theorem 7.12 can be visualized as follows:

y D 
 ı  S.�d/˝

 ��ı ��

(r even)

y D 
 ı 
  S.�d/˝

 ��ı ��
���� (r odd)

Here the diagrams on the left are the Young diagrams representing y 2 E.WŒ��/ with
every other diagonal box filled with a solid dot. The integer d equals the number of
boxes plus k times the number of solid dots. Depending whether r is even or odd,
we add k boxes to the first r rows or to the first r C 1 rows to obtain the diagrams
on the right.

In the following examples, we follow the same conventions as in the case of the
Lascoux resolution.

Example 7.13 (The Goto–Józefiak–Tachibana Complex). Consider the case
when k D n � 2. Then we have a resolution

0 �! 
 ı �! 
 �! 
 	�! S �! CŒYn�2� �! 0;

where the diagrams are shorthand for


 ı D S.�n� 1/˝ L.n;n;2/E�


 D S.�n/˝ L.n;n�1;1/E�

 D S.�nC 1/˝ L.n�1;n�1/E�:
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Example 7.14 (The Complex of Length 6). Consider the case when k D n � 3.
Then we have a resolution

0 �! 
ı 

	�! 
ı �! 
ı %&




̊ ı
&
% 
 �! 


	�! S �! CŒYn�3� �! 0;

where the diagrams are shorthand for


 ı 
 D S.�2n/˝ L.n;n;n;n/E
�


 ı D S.�n � 2/˝ L.n;n;2;2/E�

 ı D S.�n � 1/˝ L.n;n�1;2;1/E�


 D S.�n/˝ L.n�1;n�1;2/E�

 ı D S.�n/˝ L.n;n�2;1;1/E�


 D S.�nC 1/˝ L.n�1;n�2;1/E�

 D S.�nC 2/˝ L.n�2;n�2/E�:

7.7 The determinantal ideals for skew symmetric matrices

We identify Altn D ^2E , where E D C
n is the natural representation of U.n/.

Theorem 7.15. Let gR D so�.2n/ and let � D �2k!n be the highest weight of
the k-th Wallach representation, where 1 � k � n=2. If y 2 E.WŒ��/ is the element
represented by the partition .a1; : : : ; ar j 1r/, then as a eU.n/-representation,

Fy
� ˝ F�� D L.a1C2kC1;:::;arC2kC1ja1;:::;ar /E�:

Proof. We have � D �2k!n D .�k;�k; : : : ;�k/, � D .n � 1; n � 2; : : : ; 0/,
and hence � C � D .n � k � 1; n � k � 2; : : : ;�k/. Let m D n � 2k � 1. By
Enright–Willenbring, ˆCŒ�� D f"i C "j j 1 � i < j with j � m or j D n � kg. If

y 2 E.WŒ��/ is the element represented by the partition .a1; : : : ; ar j 1r/, then

y.�C �/ D .�; : : : ;�;�ar � k; : : : ;�a1 � k/;

where the coordinates � are permutation of the coordinates of �C� not contained in
fa1Ck; : : : ; arCkg. It follows that y ���� is the highest weight of the Schur module
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L.a1C2kC1;:::;arC2kC1ja1;:::;ar /E�. To illustrate this consider the case when n D 6 and
k D 1. Then � C � D .4; 3; 2; 1; 0;�1/ and m D 3. If y is represented by the
partition .3; 1 j 12/, then y.� C �/ D .3; 1; 0;�1;�2;�4/ and hence y � � � � D
y.�C �/� .�C �/ D .�1;�2;�2;�2;�2;�3/. This is the highest weight of the
Schur module L.6;4j3;1/E . ut
Example 7.16 (The Buchsbaum–Eisenbud Complex). Consider the case when
n D 2t C 1, k D t � 1. Then we have a resolution

0 �! 
 

	�! 
 �! 
 	�! S �! CŒYt�1� �! 0

where the diagrams are shorthand for


 
 D S.�2t � 1/˝ L.2tC1;2tC1/E�


 D S.�t � 1/˝ L.2tC1;1/E�

 D S.�t/˝ L.2t/E�:

For an explicit description of the differentials see Weyman [49, (6.18)].

Example 7.17 (The Józefiak–Pragacz Complex). Consider the case when n D
2t C 2 and k D t � 1. Then Yk D Yt�1 D fA 2 Alt2tC2 j rkA � 2t � 1g and we
have a resolution

0�!
 
 

	�! 
 
 �! 
 


	
%
&


˚

 


&
%
	

 �! 
 	�! S �! CŒYt�1��!0;

where the diagrams are shorthand for


 
 D S.�3t � 3/˝L.2tC2;2tC2;2tC2/E�


 
 D S.�2t � 3/˝ L.2tC2;2tC2;2/E�


 
 D S.�2t � 2/˝ L.2tC2;2tC1;1/E�


 D S.�2t � 1/˝ L.2tC1;2tC1/E�

 
 D S.�t � 2/˝ L.2tC2;1;1/E�


 D S.�t � 1/˝ L.2tC1;1/E�

 D S.�t/˝L.2t/E�:
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7.8 Determinantal varieties for the exceptional groups

Let now .GR;MR/ be any irreducible Hermitian symmetric pair of noncompact type
and let M be the complexification of the (compact) group MR. Then M acts with
finitely many orbits on u and the orbit closures form a linear chain of affine varieties

f0g D Y0 � Y1 � � � � � Yr�1 � Yr D u;

where r is the rank of the Hermitian symmetric pair. (For the Hermitian symmetric
pairs in the dual pair setting that we discussed above, the varieties Yk are the
classical determinantal varieties.) For 1 � k � r � 1, it follows from work by
Joseph [30] that the coordinate ring CŒYk� carries the structure of a unitary highest
weight module, namely the k-th Wallach representation of gR. If � is the highest
weight of the k-th Wallach representation, then as an MR-module,3

CŒYk� Š L.�/˝ F��;

where the MR-action on CŒYk� is the natural action obtained from the MR-action
on Yk . As in Theorem 7.7, the BGG resolution of L.�/ gives rise to a minimal free
MR-equivariant resolution of CŒYk� as a graded S -module, where S D S.u/ D
CŒu�.

Example 7.18. Consider the case when the Hermitian symmetric pair is of type
.E6;D5/. Then u is a 16-dimensional spin representation of m and Y1 is an
11-dimensional closed subvariety of u whose ideal is generated by homogenous
polynomials of degree 2. The corresponding Wallach representation has highest
weight � D �3!6 and lies in a semiregular block with † D f˛4g. The diagram
on the left in Figure 13 shows the Hasse diagram of IW † as a subposet of IW . More
precisely, the solid nodes are the nodes of the Hasse diagram of IW corresponding
to the elements of IW †. The node corresponding to the Wallach representationL.�/
is the maximal element of IW †. (The bold edges of the Hasse diagram of IW are the
edges with label s4.) Also shown are the generalized Young diagrams corresponding
to the elements of IW †. The boxes with label s4 (in the sense of Definition 3.19)
are filled with a dot. The poset IW † is isomorphic to a regular parabolic poset
I0W 0 Š E.WŒ��/ corresponding to a Hermitian symmetric pair of type .A5;A4/. The
Hasse diagram of the poset I0W 0 is the diagram on the right in Figure 13.

Note that some of the boxes of the Young diagrams corresponding to the elements
of I0W 0 have been filled with a dot according to the following rule. Let x; y 2 IW †

such that x0 ! y0 in I0W 0. Then the (unique) box of the diagram of y0 that is not in
the diagram of x0 is left blank if x ! y in IW and filled with a dot if x 6! y in IW .

With this notation in place we can now describe the resolution of CŒY1�. As before
in our classical examples, we simply write the generalized Young diagram of y 2

3It may be necessary to replace GR and MR by suitable finite covers.
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E.WŒ��/ for the term S ˝ Fy
���. The arrows that are marked with a dot correspond
to a homogenous map of degree 2 and the other maps are homogenous of degree 1:

0 • • •
S C[Y1] 0

By calculating the dimensions of the m-modules Fy
��� for y 2 E.WŒ��/ we can
write the minimal free resolution of CŒY1� more explicitly as follows:

0! S.�8/! S.�6/10! S.�5/16! S.�3/16! S.�2/10! S ! CŒY1�! 0:

Example 7.19. Consider a Hermitian symmetric pair of type .E7;E6/. Then u is a
27-dimensional minuscule representation of m and Y1 is a 17-dimensional closed
subvariety of u whose ideal is generated by homogenous polynomials of degree 2.
The corresponding Wallach representation has highest weight � D �4!7 and lies
in a semiregular block with † D f˛4g. The diagram on the left in Figure 14 shows
the Hasse diagram of IW † as a subposet of IW . The poset IW † is isomorphic to
a regular parabolic poset I0W 0 Š E.WŒ��/ corresponding to a Hermitian symmetric
pair of type .D6;D5/. The Hasse diagram of the poset I0W 0 is the diagram on the
right in Figure 14. Some of the boxes of the generalized Young diagrams have been
filled with a dot according to the rule that was described in Example 7.18.

Using the same conventions in Example 7.18, we can describe the minimal free
resolution of CŒY1� as follows:

0 → •→ → •→ →
•

⊕
•

→ •→ →

•→ S → C[Y1] → 0

By calculating the dimensions of the m-modules Fy
��� for y 2 E.WŒ��/ we can
write the minimal free resolution of CŒY1� more explicitly as follows:

0! S.�15/! S.�13/27! S.�12/78! S.�10/351! S.�9/650

! S.�8/351 ˚ S.�7/351! S.�6/650! S.�5/351! S.�3/78! S.�2/27
! S ! CŒY1�! 0:

8 Hilbert series of determinantal varieties

Let S be a polynomial ring over C in finitely many variables and let V DL

i�0 Vi
be a finitely generated, graded S -module. Then the Hilbert series of V is defined as
the formal power series
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Figure 14 The isomorphism IW f˛4g Š I0W 0 for .ˆ;ˆI/ D .E7;E6/, .ˆ0; ˆ0

I0 / D .D6;D5/

HV .t/ WD
X

i�0
.dimVi /t

i :

Suppose that V is generated by the elements in degree 1. Then it follows from
Hilbert’s syzygy theorem that HV .t/ is a rational function of the form

HV .t/ D f .t/

.1 � t/D ;
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where f .t/ 2 ZŒt � such that f .1/ 6D 0. The order of the pole at t D 1 is equal to the
Krull dimensionD WD DimV of the module V which is also equal to the Gelfand–
Kirillov dimension of V in this case. The positive integer f .1/ is the Bernstein
degree of V . Furthermore, if V is a Cohen–Macaulay module, then the coefficients
of the numerator polynomial f .t/ are nonnegative integers.

8.1 A wonderful correspondence

Let S D S.u/ D CŒu�, where u is the nilradical of a parabolic subalgebra of
Hermitian type corresponding to gR D su.p; q/, sp.n;R/, or so�.2n/, and let
Yk � u be a determinantal variety as in §7. Recall that CŒYk� Š CŒZ�K by
Theorem 7.1, i.e., the coordinate ring CŒYk� is isomorphic to an invariant ring of a
reductive group. By a result of Hochster and Eagon [25], CŒYk� is a Cohen-Macaulay
ring and hence the Hilbert series of CŒYk� is of the formHCŒYk �.t/ D f .t/=.1� t/D ,
where the numerator polynomial f .t/ 2 ZŒt � has nonnegative coefficients. It turns
out that the coefficients of f .t/ can be interpreted as the Hilbert series of a certain
finite-dimensional representation that corresponds to the Wallach representation
on CŒYk�. Special cases of this correspondence were discovered by Enright and
Willenbring in [22] and extended by Enright and Hunziker in [16]. The picture has
recently been completed by Alexander, Hunziker, and Willenbring in [2].

To any of the Wallach representations L.�kc / of gR D su.p; q/, sp.n;R/,
and so�.2n/, associate a real Lie algebra g0

R
and a distinguished dominant integral

weight k 0 as in Table 3. Then, in the language of §5, the poset IW † is isomorphic
to the poset I0W 0 and the simple g-module L.�kc / corresponds to the finite-
dimensional g0-module of highest weight k 0.

Theorem 8.1 (Alexander–Hunziker–Willenbring [2]). LetL be the k-th Wallach
representation of highest weight �kc , 1 � k � r � 1, and let E be the finite-
dimensional g0-representation of highest weight k 0 as in the Table 3. Then

HL.q/ D HE.q/

.1 � q/D ;

where D D dim u � dim u0. ut

Table 3. The wonderful correspondence

gR �kc g0

R
k 0

su.p; q/ �k!p su.p � k; q � k/ k!0

p�k

sp.n;R/ � k
2
!n so�.2n� 2k C 2/ k!0

n�kC1

so�.2n/ �2k!n sp.n� 2k � 1;R/ k!0

n�2k�1
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Proof. We sketch the idea of the proof. Details will appear in [2].
Let S D CŒu� and S 0 D CŒu0�. Let h 2 h such that u D fx 2 g j Œh; x� D xg and

h0 2 h0 such that u0 D fx0 2 g j Œh0; x0� D x0g. Furthermore, set � WD �kc and
�0 WD k 0. If M I.�/ D S ˝ F� and M 0I0.�/ D S 0 ˝ F 0�0

are any two corresponding
terms (via the poset isomorphism IW † Š I0W 0) in the BGG resolutions of L andE ,
respectively, then miraculously

dimF� D dimF 0�0

and .� � �/.h/ D .�0 � �0/.h0/:

By using the Euler-Poincaré principle to calculate the Hilbert series from the graded
resolutions, the theorem follows. ut
Theorem 8.2 (Enright–Hunziker–Wallach [18, Thm. 3.1]). Let .g;m/ be an
irreducible complexified Hermitian symmetric pair and let Ek be the finite-
dimensional g-module with highest weight k , where  is the fundamental weight
that is orthogonal to the compact roots. Then, as an m-module,

Ek ˝ F�k D
M

k�m1�


�mr�0
F�.m1�1C


Cmr�r /;

where �1 < �2 < � � � < �r are Harish-Chandra’s strongly orthogonal noncompact
roots with �1 being the noncompact simple root. ut

For m � 1 and � D .�1; : : : ; �m/ an integer partition with at most m parts, let
F
.m/
� denote the simple GL.m;C/-module with highest weight �1�1 C � � � C �m�m.

Combining Theorem 8.1 and Theorem 8.2 we obtain the following Hilbert series.

Corollary 8.3. Let Yk D fx 2 Mp;q j rkx � kg with 1 � k � minfp; qg� 1. Then

HCŒYk �.t/ D
1

.1 � t/k.pCq�k/
X

�

.dimF .p�k/
� /.dimF .q�k/

� /t j�j;

where the sum is over all partitions � whose Young diagram fit inside a rectangle of
size minfp � k; q � kg � k. ut
Corollary 8.4. Let Yk D fx 2 Symn j rkx � kg with 1 � k � n� 1. Then

HCŒYk �.t/ D
1

.1 � t/k.2n�kC1/=2
X

�

.dimF .n�kC1/
� /t j�j=2;

where the sum is over all partitions � whose Young diagram has only columns of
even length and fit inside a rectangle of size .n � k C 1/ � k. ut
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Corollary 8.5. Let Yk D fx 2 Altn j rkx � 2kg with 1 � k � Œn=2� � 1. Then

HCŒYk �.t/ D
1

.1 � t/k.2n�2k�1/
X

�

.dimF .n�2k�1/
� /t j�j=2;

where the sum is over all partitions � whose Young diagram has only rows of even
length and fit inside a rectangle of size .n � 2k � 1/ � 2k. ut

Appendix: diagrams of Hermitian type

Below, for each Hermitian symmetric pair, the Hasse diagram of the posetˆ.u/ and
the generalized Young diagram of the longest element of IW are shown. For ˇ; ˇ0 2
ˆ.u/ such that ˇ0�ˇ D ˛i 2 …, the edge connecting the nodes corresponding to ˇ
and ˇ0 is labelled by the integer i . (Not all labels are shown. The omitted labels are
easily obtained by noting that opposite sides of every diamond have the same label.)

Type .An;Ap�1 � An�p/, here shown for n D 6 and p D 4:

4 3 2 1

5 4 3 2

6 5 4 3

˛4

� = ˛1 C ˛2 C ˛3 C ˛4 C ˛5 C ˛6

3

2

1

5

6

Type .Bn;Bn�1/, here shown for n D 5:

1 2 3 4 5

4

3

2

1

2

3

4

5

5

4

3

2

˛1

� = ˛1 C 2˛2 C 2˛3 C 2˛4 C 2˛5
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Type .Cn;An�1/, here shown for n D 5:

5 4 3 2 1

5 4 3 2

5 4 3

5 4

5

4

3

2

1

4

3

2

1

˛5

� = 2˛1 C 2˛2 C 2˛3 C 2˛4 C ˛5

Type .Dn;Dn�1/, here shown for n D 6:

1 2 3 4 5

6 4

3

2

1

2

3

4

5

6

4

3

2

˛1

� D ˛1 C 2˛2 C 2˛3 C 2˛4 C ˛5 C ˛6

Type .Dn;An�1/, here shown for n D 6:

6 4 3 2 1

5 4 3 2

6 4 3

5 4

6

4

3

2

1

5

4

3

2

˛6

� D ˛1 C 2˛2 C 2˛3 C 2˛4 C ˛5 C ˛6



182 Thomas J. Enright, Markus Hunziker, and W. Andrew Pruett

Type .E6;D5/:

6 5 4 3 1

2 4 3

5 4 2

6 5 4 3 1

5

4

3

1

2

4

5

3

4

2

˛6

� = ˛1 C 2˛2 C 2˛3 C 3˛4 C 2˛5 C ˛6

Type .E7;E6/:

7 6 5 4 3 1

2 4 3

5 4 2

6 5 4 3 1

7 6 5 4 3

2 4

5

6

7

6

5

4

3

1

2

4

5

3

4

2

6

5

4

3

1

˛7

� = 2˛1 C 2˛2 C 3˛3 C 4˛4 C 3˛5 C 2˛6 C ˛7
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1 Introduction

The spectral decomposition of the unitary representation L2.HnG/, when
X D HnG is a symmetric space, has been studied extensively, especially in the
case when G is a real Lie group. In particular, through the work of many authors
(such as [1, 3, 7, 20, 26]), one now has the full Plancherel theorem in this setting.

In a recent preprint [23], Sakellaridis and Venkatesh considered the more general
setting where X D HnG is a spherical variety and G is a real or p-adic
group. Motivated by the study of periods in the theory of automorphic forms and
the comparison of relative trace formulas, they formulated an approach to this
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problem in the framework of Langlands functoriality. More precisely, led by and
refining the work of Gaitsgory–Nadler [9] in the geometric Langlands program, they
associated to a spherical variety X D HnG (satisfying some additional technical
hypotheses)

• a dual group LGX ;
• a natural map � W LGX � SL2.C/ �! LG.

The map � induces a map from the set of tempered L-parameters of GX to the set of
Arthur parameters of G, and if one is very optimistic, it may even give rise to a map

�� W bGX �! bG

where GX is a (split) group with dual group LGX and bGX and bG refer to the unitary
dual of the relevant groups. Assuming for simplicity that this is the case, one has the
following conjecture:

Sakellaridis–Venkatesh Conjecture. One has a spectral decomposition

L2.HnG/ Š
Z

bGX

W.
/˝ ��.
/ d�.
/

where � is the Plancherel measure of bGX and W.
/ is some (finite-dimensional)
multiplicity space. The multiplicity space W.
/ should be related to the space of
continuousH -invariant functionals on the representation ��.
/.

In particular, the class of the spectral measure of L2.HnG/ is absolutely
continuous with respect to that of the pushforward by �� of the Plancherel measure
on bGX , and its support is contained in the set of those Arthur parameters of G
which factor through �. Moreover, from the point of view of Arthur parameters, the
multiplicity space should be related to the number of inequivalent ways an Arthur
parameter valued in LG can be lifted to LGX (i.e., factored through �).

The main purpose of this paper is to verify the above conjecture in many cases
when HnG, or equivalently GX , has low rank, and to specify the multiplicity
space W.
/. In particular, we demonstrate this conjecture for many cases when
GX has rank 1, and also some cases when GX has rank 2 or 3 (see the tables in
[23, §15 and §16]). More precisely, our main result is:

Theorem 1. The conjecture of Sakellaridis–Venkatesh holds for the spherical
varieties X D HnG listed in Tables 1 and 2.

Table 1. Classical cases

X D HnG GX

GLn�1nGLn GL2

SOn�1nSOn fSL2

Sp2n�2nSp2n SO.4/
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Table 2. Exceptional cases

X D HnG GX

SO3nSL3 fSL3

Sp6nSL6 SL3

SL3nG2 fSL2

.J;  / nG2 PGL3

SU3nSpin7 .Spin3 � Spin5/=�2
G2nSpin7 SL2

G2nSpin8 SL32=�2

Spin9nF4 PGL2

F4nE6 SL3

For the classical cases, the precise results are contained in Theorem 3 in §3.8 and
the ensuing discussion in §3.9. We note that Theorem 3 gives the spectral decom-
position, in the spirit of the Sakellaridis–Venkatesh conjecture, of the so-called
generalized Stiefel manifolds [17], which are homogeneous but not necessarily
spherical varieties. The exceptional cases are covered in §8.4 (Theorem 4), §8.5 and
§9. We note that over R, Kobayashi has given in [15] an explicit description of the
discrete spectrum of the generalized Stiefel manifolds in terms of Aq.�/ modules;
he has also described in [16] the spectrum of certain special spherical varieties such
as SL3nG2 which can be related to symmetric spaces (as we explain in §4.4). His
viewpoint is quite disjoint from that of this paper.

Theorem 1 is proved using the technique of theta correspondence. More
precisely, it turns out that for the groups listed in the above table, one has a
reductive dual pair

GX �G � S

for some larger group S . One then studies the restriction of the minimal representa-
tion of S to the subgroupGX �G. In the context of theta correspondence in smooth
representation theory, one can typically show the following rough statement: For a
representation 
 of G,


 has  -generic (and hence nonzero) theta lift to GX

m

 has nonzeroH -period.

Our main theorem is thus the L2-manifestation of this phenomenon, giving a
description of L2.HnG/ in terms of L2.GX/. This idea is not really new: a well-
known example of this kind of result is the correspondence between the irreducible
components of the spherical harmonics on R

n under the action of O.n;R/, and
holomorphic discrete series of the group fSL.2;R/, the double cover of SL.2;R/.
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Another example is given by the classical paper of Rallis and Schiffmann [21],
where they used the oscillator representation to relate the discrete spectrum of

L2.O.p; q � 1/nO.p; q//
with the discrete series representations of fSL.2;R/. Later, Howe [12] showed
how these results can be inferred from his general theory of reductive dual
pairs, and essentially provided a description of the Plancherel measure of
L2.O.p; q � 1/nO.p; q// in terms of the representation theory of fSL.2;R/.
Then Ørsted and Zhang [29, 30] proved a similar result for the space
L2.U.p; q � 1/nU.p; q// in terms of the representation theory of U.1; 1/. We
give a more steamlined treatment of these classical cases in Section 2, which
accounts for Table 1. The rest of the paper is then devoted to the exceptional cases
listed in Table 2.

Acknowledgement. Both authors would like to pay tribute to Nolan Wallach for
his guidance, encouragement and friendship over the past few years. It is an honor
to be his colleague and student respectively. We wish him all the best in his
retirement from UCSD, and hope to continue to interact with him mathematically
and personally for many years to come.

We thank T. Kobayashi for a number of helpful and illuminating conversations
during his visit to Singapore in March 2012, and the referee for his/her careful
reading of the manuscript and his/her many pertinent comments which helped
improve the exposition of the paper.

2 Classical dual pairs

We begin by introducing the classical dual pairs.

2.1 Division algebra D

Let k be a local field, and let j�j denote its absolute value. LetD D k, a quadratic field
extension of k or the quaternion division k-algebra, and let x 7! x be its canonical
involution. The case whenD is the split quadratic algebra or quaternion algebra can
also be included in the discussion, but for simplicity, we shall stick with division
algebras. We have the reduced trace map Tr W D ! k and the reduced norm map
Q W D ! k. If D ¤ k, one has Tr.x/ D x C x 2 k andQ.x/ D x � x 2 k.

2.2 Hermitian D-modules

Let V and W be two right D-modules. We will denote the set of right D-module
morphisms between V and W by
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HomD.V;W / D fT W V �! W j T .v1aC v2b/ D T .v1/aC T .v2/b
for all v1, v2 2 V , a, b 2 Dg:

In the same way, if V and W are two leftD-modules, we set

HomD.V;W / D fT W V �! W j .av1 C bv2/T D a.v1/T C b.v2/T
for all v1, v2 2 V , a, b 2 Dg:

If V D W , we will denote this set by EndD.V /. Notice that for right D-module
morphisms we are putting the argument on the right, while for left D-module
morphisms we are putting it on the left.

In general, for every statement involving right D-modules one can make an
analogous one involving left D-modules. From now on, we will focus on right
D-modules, and we will leave the reader with the task of making the corresponding
definitions and statements involving left D-modules. Set

GL.V;D/ D fT 2 EndD.V / jT is invertibleg:
When it is clear from the context what the division algebra is, we will just denote
this group by GL.V /.

Let V 0 be the set of right D-linear functionals on V . There is a natural left
D-module structure on V 0 given by setting

.a�/.v/ D a�.v/; for all a 2 D, v 2 V , and � 2 V 0.
Observe that with this structure,W ˝D V 0 is naturally isomorphic to HomD.V;W /

as a k-vector space. Given T 2 HomD.V;W /, we will define an element in
HomD.W

0; V 0/, which we will also denote T , by setting .�T /.v/ WD �.T v/.
This correspondence gives rise to natural isomorphisms between EndD.V / and
EndD.V 0/ and between GL.V / and GL.V 0/.

Definition 1. Let " D ˙1. We say that .V; B/ is a right "-Hermitian D-module, if
V is a right D-module and B is an "-Hermitian form, i.e., B W V � V �! D is a
map such that

1. B is sesquilinear. That is, for all v1, v2, v3 2 V , a, b 2 D,

B.v1; v2aC v3b/ D B.v1; v2/aC B.v1; v3/b and

B.v1aC v2b; v3/ D aB.v1; v3/C bB.v2; v3/:
2. B is "-Hermitian. That is,

B.v;w/ D "B.w; v/ for all v;w 2 V .

3. B is nondegenerate.

Usually, 1-Hermitian D-modules are simply called Hermitian, while
�1-Hermitian D-modules are called skew-Hermitian. To define left "-Hermitian
D-modules .V; B/, we just have to replace the sesquilinear condition by
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B.av1 C bv2; v3/ D aB.v1; v3/C bB.v2; v3/ and

B.v1; av2 C bv3/ D B.v1; v2/aC B.v1; v3/b;

for all v1, v2, v3 2 V , a, b 2 D.
Given a right "-HermitianD-module .V; B/, we will define

G.V;B/ D fg 2 GL.V / jB.gv; gw/ D B.v;w/ for all v, w 2 V g;

to be the subgroup of GL.V / preserving the "-Hermitian form B . When there is
no risk of confusion regarding B , we will denote this group by G.V /. Later on,
we shall sometimes need to use the same notation to denote a covering group of
G.V;B/; see §2.4.

Given a right "-HermitianD-module .V; B/, we can construct a left "-Hermitian
D-module .V �; B�/ in the following way: as a set, V � will be the set of symbols
fv� j v 2 V g. Then we give V � a left D-module structure by setting, for all
v, w 2 V , a 2 D,

v� C w� D .v C w/� and av� D .va/�.

Finally, we set

B�.v�;w�/ D B.w; v/ for all v, w 2 V .

In an analogous way, if V is a left D-module, we can define a right D-module
V �, and V �� is naturally isomorphic with V . Given T 2 EndD.V /, we can define
T � 2 EndD.V �/ by setting v�T � WD .T v/�. With this definition, it is easily seen
that .TS/� D S�T �, for all S , T 2 EndD.V /. Therefore the map g 7! .g�/�1
defines an algebraic group isomorphism between GL.V / and GL.V �/.

Now observe that the formB induces a leftD-module isomorphismB[ W V � �!
V 0 given by B[.v�/.w/ D B.v;w/ for v, w 2 V . In what follows, we will make
implicit use of this map to identify these two spaces. With this identification we can
think of T � as a map in EndD.V / defined by v�.T �w/ WD .v�T �/.w/, i.e., T � is
defined by the condition that

B.v; T �w/ D B.T v;w/ for all v, w 2 V :

Observe that this agrees with the usual definition of T �.
A D-submodule X � V is said to be totally isotropic if BjX�X D 0. If X is a

totally isotropic submodule, then there exists a totally isotropic submodule Y � V
such that BjX˚Y�X˚Y is nondegenerate. If we set

U D .X ˚ Y /? WD fu 2 V jB.u;w/ D 0 for all w 2 X ˚ Y g;
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then V D X ˚ Y ˚ U , and BjU�U is nondegenerate. In this case we say that
X and Y are totally isotropic, complementary submodules. Observe that then
B[jY � W Y � �! X 0 is an isomorphism. As before we will make implicit use of
this isomorphism to identify Y � with X 0.

2.3 Reductive dual pairs

Let .V; BV / be a right "V -Hermitian D-module and .W;BW / a right "W -Hermitian
D-module such that "V "W D �1. On the k-vector space V ˝D W � we can define a
symplectic form B by setting

B.v1 ˝D �1; v2 ˝D �2/ D Tr.BW .w1;w2/B�V .�2; �1//

for all v1, v2 2 V and �1, �2 2 V �. Let

Sp.V ˝D W �/ D fg 2 GL.V ˝D W �; k/ j B.gv; gw/ D B.v;w/
for all v, w 2 V ˝D W �g:

Observe that

Sp.V ˝D W �/ D G.V ˝D W �; B/ D G.V ˝D W �/:

Moreover, there is a natural map G.V / �G.W / �! Sp.V ˝D W �/ given by

.g1; g2/ � v ˝D � D g1v ˝ �g�2 :

We will use this map to identifyG.V / andG.W / with subgroups of Sp.V ˝DW �/.
These two subgroups are mutual commutants of each other, and is an example of a
reductive dual pair.

2.4 Metaplectic cover

The group Sp.V ˝D W �/ has an S1- cover Mp.V ˝D W �/ which is called a
metaplectic group. It is known that this S1-cover splits over the subgroups G.V /
and G.W /, except when V is an odd-dimensional quadratic space, in which case it
does not split overG.W /. In this exceptional case, we shall simply redefineG.W / to
be the induced double cover, so as to simplify notation. We remark also that though
the splittings (when they exist) are not necessarily unique, the precise choice of the
splittings is of secondary importance in this paper.
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2.5 Siegel parabolic

Assume in addition that there is a complete polarizationW D E ˚ F; where E , F ,
are complementary totally isotropic subspaces ofW . We will use the "W -Hermitian
form BW to identify F � with E 0 by setting f �.e/ D BW .f; e/. Observe that this
induces an identification between E� and F 0 given by

e�.f / D f �.e/ D BW .f; e/ D "W BW .e; f /:

In what follows, we will use this identifications between F � and E 0, and between
E� and F 0.

Let

P D fp 2 G.W / jp �E D Eg

be the Siegel parabolic subgroup of G.W /, and let P D MN be its Langlands
decomposition. To give a description of the groups M and N , we introduce some
more notation.

Let A 2 EndD.E/. We will define A� 2 EndD.F /, by setting, for all e 2 E ,
f 2 F ,

BW .e; A
�f / D BW .Ae; f /: (1)

Now given T 2 HomD.F;E/, define T � 2 HomD.F;E/ by setting, for all
f1, f2 2 F ,

BW .f1; T
�f2/ D "W BW .Tf1; f2/: (2)

Given " D ˙1, set

HomD.F;E/" D fT 2 HomD.F;E/ jT � D "T g:

It is then clear that HomD.F;E/ D HomD.F;E/1 ˚ HomD.F;E/�1.
Now we have

M D
��

A

.A�/�1
� ˇ

ˇ

ˇ

ˇ

A 2 GL.E/
�

Š GL.E/

and

N D
��

1 X

1

� ˇ

ˇ

ˇ

ˇ

X� D �"W X
�

Š HomD.F;E/�"W :
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2.6 Characters of N

Given a nontrivial character � W k ! C
� and Y 2 HomD.E; F /�"W , define a

character

�Y

��

1 X

1

��

D �.TrF .YX//:

Here TrF is the trace of YX W F �! F seen as a map between k-vector spaces. The
map Y 7! �Y defines a group isomorphism between HomD.E; F /�"W and bN .

Observe that the adjoint action of M on N induces an action of M on bN . Using
the isomorphisms ofM Š GL.E/ and bN Š HomD.E; F /�"W , we can describe the
action of M on bN by the formula

A � Y D .A�/�1YA�1 for all A 2 GL.E/, Y 2 HomD.E; F /�"W .

Given Y 2 HomD.E; F /�"W we can define a ��W -Hermitian form on E , that we
will also denote by Y , by setting

Y.e1; e2/ D e�1 .Ye2/ D "W BW .e1; Ye2/:

Hence the action of M on bN is equivalent to the action of GL.E/ on sesquilinear,
�"W -Hermitian forms on E .

Let˝ be the set of orbits for the action ofM on bN . Given Y 2 HomD.E; F /�"W ,
let O D OY be its orbit under the action of GL.E/ and set

M�Y D fm 2 M j�Y .m�1nm/ D �Y .n/ for all n 2 N g:

Using the identification of M with GL.E/, and of bN with HomD.E; F /�"W , we
see that

M�Y Š fA 2 GL.E/ j .A�/�1YA�1 D Y g D fA 2 GL.E/ jY D A�YAg:

3 Oscillator representation and theta correspondence

After the preparation of the previous section, we can now consider the theta
correspondence associated to the dual pair G.V / � G.W / and use it to establish
certain cases of the Sakellaridis–Venkatesh conjecture for classical groups.
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3.1 Oscillator representation

Fix a nontrivial unitary character � of k. Associated to this character, there exists a
very special representation of the metaplectic group, called the oscillator represen-
tation ˘ of Mp.V ˝D W �/. On restricting this representation to G.V / � G.W /,
one may write

˘ jG.W /�G.V / D
Z

G.W /^

 ˝�.
/ d��.
/; (3)

as a G.W / � G.V /-module, for some measure �� on G.W /^ and where �.
/ is
a (possibly zero, possibly reducible) unitary representation of G.V /. We shall call
the map � the L2-theta correspondence.

3.2 Smooth vs. L2-theta correspondence

One may consider the above restriction of the oscillator representation in the
category of smooth representations (the so-called smooth theta correspondence).
Namely, for 
 2 G.W /^, let 
1 denote the subspace of smooth vectors of 
 .
Then one may consider the maximal 
1-isotypic quotient of ˘1 (the smooth
representation underlying˘ ), which has the form 
1˝�1.
1/ for some smooth
representation�1.
1/ of G.V /, known as the (big) smooth theta lift of 
1. It is
known that �1.
1/ is an admissible representation of finite length. Moreover,
unless k is a 2-adic field, one knows further that �1.
1/ has a unique irreducible
quotient �1.
1/ (the small smooth theta lift of 
1); this is the so-called Howe
duality conjecture. In any case, we may define �1.
1/ to be the maximal
semisimple quotient of �1.
1/.

It is natural to wonder how the L2-theta correspondence and the smooth theta
correspondence are related. One can show using the machinery developed in
Bernstein’s paper [2] that, in the context of (3), for �� -almost all 
 , there is a
nonzero surjective equivariant map

˘1 �! 
1 ˝�.
/1:

Such a map necessarily factors through

˘1� 
1 ˝�1.
1/� 
1 ˝�.
/1;

so that one has a surjection

�1.
1/� �.
/1:
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Thus, we see that �.
/1 is of finite length and unitarizable, so that �.
/1 is
semisimple. Hence, we have a surjection

�1.
1/� �.
/1:

Since �1.
1/ is semisimple, we deduce that

�.
/1 � �1.
1/;
so that �.
/ is a direct sum of finitely many irreducible unitary representations for
�� -almost all 
 . Indeed, if k is not a 2-adic field, �.
/ is irreducible with

�.
/1 D �1.
1/
for �� -almost all 
 .

Hence, the L2-theta correspondence gives a map

� W G.W /^ �! R�0.G.V /^/

where R�0.G.V /^/ is the Grothendieck semigroup of unitary representations of
G.V / of finite length. If k is not 2-adic, � takes value in G.V /^ [ f0g. Moreover,
one has the compatibility ofL2-theta lifts (considered in this paper) with the smooth
theta lifts.

3.3 Restriction to P � G.V /

We may restrict ˘ further to P � G.V /. By Mackey theory, for a unitary
representation 
 of G.W /,


jP D
M

OY 2˝
IndPM�Y N

W�Y .
/; (4)

where W�Y .
/ is an M�Y N -module such that n � � D �Y .n/�, for all n 2 N ,
� 2 W�Y .
/.

Therefore, from (3) and (4), we have

˘ D
M

OY 2˝

Z

bG.W /

IndPM�Y N
W�Y .
/˝�.
/ d��.
/: (5)

3.4 The Schrödinger model

On the other hand, we may compute the restriction of ˘ to P � G.V / using an
explicit model of ˘ . The complete polarization W D E ˚ F induces a complete
polarization

V ˝D W � D V ˝D E� ˚ V ˝D F �:
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With the identifications introduced above, V ˝D F � D HomD.E; V /, and the
representation ˘ can be realized on the Hilbert space L2.HomD.E; V //; this
realization of ˘ is called the Schrödinger model. The action of P � G.V / in this
model can be described as follows.

Let B[
V W V �! .V �/0 be given by

.w�/.B[
V v/ D BV .w; v/:

Then the action of P �G.V / on L2.HomD.E; V // is given by the formulas

�

1 X

1

�

� �.T / D �.TrF .XT
�B[

V T //�.T / 8X 2 HomD.F;E/�"W ; (6)

�

A

.A�/�1
�

� �.T / D jdetF .A/j� dimD.V /=2�.TA/ 8A 2 GL.E/; (7)

g � �.T / D �.g�1T / 8g 2 G.V /: (8)

Let

˝V D fOY j OY is open in HomD.E; F /�"W
and Y D T �B[

V T for some T 2 HomD.E; V /g:
Given OY 2 ˝V , we will set

%Y D fT 2 HomD.E; V / jT �B[
V T 2 OY g:

Then
[

OY 2˝V
%Y � HomD.E; V /

is a dense open subset, and its complement in HomD.E; V / has measure 0.
Therefore

L2.HomD.E; V // Š
M

OY 2˝V
L2.%Y / (9)

and each of these spaces is clearly P � G.V /-invariant, according to the formulas
given in equations (6)–(8).

We want to show that the spaces L2.%Y / are equivalent to some induced
representation for P � G.V /. To do this, observe that the “geometric” part of the
action of P �G.V / on L2.%Y / is transitive on %Y . In other words, under the action
of P �G.V / on HomD.E; V / given by

��

A X

.A�/�1
�

; g

�

� T D gTA�1 for all

�

A X

.A�/�1
�

2 P ; g 2 G.V /;
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and T 2 HomD.E; V /, each of the %Y ’s is a single orbit. Fix TY 2 %Y such that
T �Y B[

V TY D Y . The stabilizer of TY in P �G.V / is the subgroup

.P �G.V //TY D
���

A X

.A�/�1
�

; g

�

2 P �G.V /
ˇ

ˇ

ˇ

ˇ

gTY D TY A
�

:

Let g 2 G.V / be such that gTY D TY A for some A 2 GL.E/. Then by the
definition of G.V /

Y D T �Y B[
V TY D T �Y g�B[

V gTY D A�YA;

that is, A is an element in M�Y .
Define an equivalence relation in HomD.E; V / by setting T � S if T D SA

for some A 2 M�Y . Given T 2 HomD.E; V / we will denote its equivalence class,
under this equivalence relation, by ŒT �. Let

PM�Y
.HomD.E; V // D fŒT � jT 2 HomD.E; V /g:

Since G.V / acts by left multiplication on HomD.E; V /, there is natural action of
G.V / on the space PM�Y

.HomD.E; V //. Set

G.V /TY D fg 2 G.V / j gTY D TY g and

G.V /ŒTY � D fg 2 G.V / j gŒTY � D ŒTY �g:

Then .P �G.V //TY �M�Y �G.V /ŒTY �, and according to equations (6)–(8),

L2.%Y / Š IndP�G.V /.P�G.V //TY �Y (10)

Š IndP�G.V /M�Y N�G.V /ŒTY � Ind
M�Y N�G.V /ŒTY �
.P�G.V //TY �Y : (11)

Now consider the short exact sequence

1 �! 1 �G.V /TY �! .P �G.V //TY
q�!M�Y N �! 1;

where q is the projection into the first component. Observe that the map q

induces an isomorphism G.V /TY nG.V /ŒTY � Š M�Y . From this exact sequence and
equation (11), we get that

L2.%Y / Š IndP�G.V /M�Y N�G.V /ŒTY � L
2.G.V /TY nG.V /ŒTY �/�Y

Š IndPM�Y N
L2.G.V /TY nG.V //�Y : (12)
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The action of M�Y N on L2.G.V /TY nG.V /ŒTY �/�Y is given (by definition) as
follows: N acts by the character �Y , and M�Y acts on L2.G.V /TY nG.V /ŒTY �/�Y
on the left using the isomorphism G.V /TY nG.V /ŒTY � Š M�Y . Then according to
equations (9) and (12)

L2.HomD.E; V // Š
M

OY 2˝V
IndPM�Y N

L2.G.V /TY nG.V //�Y : (13)

But now, from equations (5), (13) and the uniqueness of the decomposition of the
N -spectrum, we obtain

Proposition 1. As an M�Y N �G.V /-module,

L2.G.V /TY nG.V //�Y Š
Z

bG.W /

W�Y .
/˝�.
/ d�� .
/; (14)

Our goal now is to give a more explicit characterization of the spaces W�Y .
/

and the measure �� appearing in this formula.

3.5 Stable range

Let .V; BV / and .W;BW / be as before. Assume now that there is a totally isotropic
D-submodule X � V such that dimD.X/ D dimD.W /; in other words, the dual
pair .G.V /;G.W // is in the stable range. In this case, the map

� W bG.W / �! bG.V /

can be understood in terms of the results of J. S. Li [18]. The measure �� appearing
in equation (3) is also known in this case: it is precisely the Plancherel measure of
the group G.W /. In order to make this paper more self-contained, we will include
an alternative calculation of the measure �� using the so-called mixed model of the
oscillator representation.

3.6 Mixed model

LetX , Y be totally isotropic, complementary subspaces of V such that dimD.X/ D
dimD.W /, and let U D .X ˚ Y /?. We will use BV to identify Y with .X�/0 by
setting

.x�/y D BV .x; y/; for all x 2 X , y 2 Y .
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Given A 2 GL.X/, we can use the above identification to define an element A� 2
GL.Y / in the following way: given x 2 X and y 2 Y , we will set .x�/.A�y/ WD
.x�A�/y, i.e., we will define A� 2 GL.Y / by requiring that

BV .x;A
�y/ D BV .Ax; y/; for all x 2 X , y 2 Y .

Observe that the map A 7! .A�/�1 defines an isomorphism between GL.X/ and
GL.Y /. Furthermore if x 2 X , y 2 Y and A 2 GL.X/, then

BV .Ax; .A
�/�1y/ D BV .x; y/:

Therefore, we can define a map GL.X/�G.U / ,! G.V / that identifiesGL.X/�
G.U / with the subgroup of G.V / which preserves the direct sum decomposition
V D X ˚ Y ˚ U .

Consider the polarization

V ˝D W � D .X ˝W � ˚ U ˝ F �/
M

.Y ˝W � ˚ U ˝ E�/:

Then as a vector space

L2.X ˝W � ˚ U ˝ F �/ Š L2.HomD.W;X//˝ L2.HomD.E;U //: (15)

Let .!U ;L2.HomD.E;U /// be the Schrödinger model of the oscillator representa-
tion associated to the metaplectic group fSp.U ˝D W �/. We will identify the space
appearing on the right-hand side of equation (15) with the space of L2 functions
from HomD.W;X/ to L2.HomD.E;U //. This is the so-called mixed model of the
oscillator representation.

The action of G.W / � GL.X/ � G.U / on this model can be described in the
following way: If T 2 HomD.W;X/ and S 2 HomD.E;U /, then

g � �.T /.S/ D Œ!U .g/�.Tg/�.S/ 8g 2 G.W / (16)

h � �.T /.S/ D �.T /.h�1S/ 8h 2 G.U / (17)

A � �.T /.S/ D jdetX.A/jdimW=2�.A�1T /.S/ 8A 2 GL.X/: (18)

We now want to describe this space as an induced representation. To do this,
observe that the set of invertible elements in HomD.W;X/ forms a single orbit
under the natural action of G.W / � GL.X/. Furthermore this orbit is open and
dense, and its complement has measure 0. Fix T0 2 HomD.W;X/ invertible, and
define an "W -Hermitian form BT0 on X , by setting

BT0.x1; x2/ D BW .T �10 x1; T
�1
0 x2/:

The group that preserves this form is precisely

G.X;BT0/ D fT0gT �10 j g 2 G.W /g � GL.X/:
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Let

.G.W / �GL.X//T0 D f.g; T0gT �10 / j g 2 G.W /g Š G.W /
be the stabilizer of T0 in G.W / �GL.X/. Then, according to equations (16)–(18),

L2.W ˝X/˝ L2.HomD.E;U // Š IndG.W /�GL.X/.G.W /�GL.X//T0 L
2.HomD.E;U //

Š IndG.W /�GL.X/G.W /�G.X;BT0 / Ind
G.W /�G.X;BT0 /
.G.W /�GL.X//T0 L

2.HomD.E;U //:

Here .G.W / � GL.X//T0 is acting on L2.HomD.E;U // by taking projection into
the first component, and then using the oscillator representation to define an action
of G.W / on L2.HomD.E;U //. But this representation is equivalent to taking
projection into the second component and using the Schrödinger model of the
oscillator representation of fSp.U ˝X�/ (where X is equipped with the form BT0 )
to define an action of G.X;BT0/ on L2.HomD.T0.E/; U //. Therefore

L2.W � ˝X/˝L2.HomD.E;U //

Š IndG.W /�GL.X/G.W /�G.X;BT0 / Ind
G.W /�G.X;BT0 /
.G.W /�GL.X//T0 L

2.HomD.T0.E/; U //

Š IndG.W /�GL.X/G.W /�G.X;BT0 /.Ind
G.W /�G.X;BT0 /
.G.W /�GL.X//T0 1/˝ L

2.HomD.T0.E/; U //

Š IndG.W /�GL.X/G.W /�G.X;BT0 /
Z

bG.W /


� ˝ .
T0 ˝ L2.HomD.T0.E/; U /// d�G.W /.
/

Š
Z

bG.W /


� ˝ IndGL.X/G.X;BT0 /

T0 ˝ L2.HomD.T0.E/; U // d�G.W /.
/: (19)

Here 
� is the contragredient representation of 
 , 
T0 is the representation of
G.X;BT0/ given by 
T0.g/ D 
.T �10 gT0/, for all g 2 G.X;BT0/, and �G.W / is
the Plancherel measure of G.W /. Note that the multiplicity space of 
� in (19) is
nonzero for each 
 in the support of �G.W /, i.e., as a representation of G.W /, ˘ is
weakly equivalent to the regular representation L2.G.W //.

Comparing (3) with (19), we obtain

Proposition 2. If .G.W /;G.V // is in the stable range, with G.W / the smaller
group, then in equations (3) and (14), �� D �G.W / is the Plancherel measure

of bG.W /.

3.7 The Bessel–Plancherel theorem

Finally, we want to identify the multiplicity space W�Y .
/ in (14). Note that this is
purely an issue about representations of G.W /; a priori, it has nothing to do with
theta correspondence. What we know is summarized in the following theorem.
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Theorem 2 (Bessel–Plancherel Theorem). Let .W;BW / be an "W -Hermitian
D-module, and assume that W has a complete polarization

W D E ˚ F;
where E , F are totally isotropic complementary subspaces. Let

P D fp 2 G.W / jp �E D Eg
be a Siegel parabolic subgroup of G, and let P D MN be its Langlands
decomposition. Given � 2 bN , let O� be its orbit under the action of M , and let
M� be the stabilizer of � in M . Then

1. For �G.W /-almost all tempered representations 
 of G.W /,


jP Š
M

O�2˝W
IndPM�N

V�.
/:

Here �G.W / is the Plancherel measure of G.W /,

˝W D fO� 2 ˝ jO� is open in bN g;

and V�.
/ is some M�N -module such that the action of N is given by the
character �.

2. If O� 2 ˝W , then there is an isomorphism ofM� �G.W /-modules:

L2.NnG.W /I�/ Š
Z

bG.W /

V�.
/˝ 
 d�G.W /.
/: (20)

where V�.
/ is the same space appearing in (1).

3. If dimD.W / D 2, then for O� 2 ˝W , dimV�.
/ <1 and

V�.
/ Š W h�.
/ D f� W 
1 �! C j�.
.n/v/ D �.n/�.v/ for all n 2 N g

as an M�N -module. Here 
1 stands for the set of smooth vectors of 
 and the
space on the RHS is the space of continuous �-Whittaker functionals on 
1.

4. If k is Archimedean, andM� is compact, then

V�.
/ � W h�.
/
as a dense subspace, and for any irreducible representation � of M�, one has an
equality of �-isotypic parts:

V�.
/Œ�� D W h�.
/Œ��:
Moreover, this space is finite-dimensional.
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Proof. Part 2 follows from an argument analogous to the proof of the Whittaker–
Plancherel theorem given by Sakellaridis–Venkatesh [23, §6.3]. For the proof of part
1 observe that by the Harish-Chandra Plancherel theorem

L2.G.W //jP�G.W / D
Z

bG.W /


�jP ˝ 
 d�G.W /.
/:

On the other hand,

L2.G.W //jP�G.W / D
M

O�2˝W
IndPM�N

L2.NnG.W /I�/

D
M

O�2˝W
IndPM�N

Z

bG.W /

V�.
/˝ 
 d�G.W /.
/

D
Z

bG.W /

2

4

M

O�2˝W
IndPM�N

V�.
/

3

5˝ 
 d�G.W /.
/:

Therefore


�jP Š
M

O�2˝W
IndPM�N

V�.
/

for �G.W /-almost all 
 . In the Archimedean case, this result has also been proved in
the thesis [10] of the second named author without the �G.W /-almost all restriction,
yielding an alternative proof of part 2 for the Archimedean case.

Part 3 is part of the Whittaker–Plancherel theorem, which was proved by
Wallach in the Archimedean case [27], and independently by Delorme, Sakellaridis–
Venkatesh and U-Liang Tang in the p-adic case [4, 5, 23, 25].

Finally, Part 4 was shown by Wallach and the second named author in [11].

We note that Theorem 2(1) is a refinement of equation (4): it implies that in (4),
only the open orbits O� in ˝ contribute. Moreover, for � 2 ˝W , the space V�.
/
in Theorem 2 is the same as the space W�.
/ in (4) and (14).

3.8 Spectral decomposition of generalized Stiefel manifolds

We may now assemble all the previous results together. For OY 2 ˝V , the space
G.V /TY nG.V / is known as a generalized Stiefel manifold. From equations (14)
and (19), we deduce the following.

Theorem 3. Suppose that G.V /TY nG.V / is a generalized Stiefel manifold. If, in
the notation of equation (20)

L2.NnG.W /I�Y / Š
Z

bG.W /

W�Y .
/˝ 
 d�G.W /.
/;
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then

L2.G.V /TY nG.V // Š
Z

bG.W /

W�Y .
/˝�.
/ d�G.W /.
/:

In a certain sense, the last pair of equations says that the Plancherel measure of
the generalized Stiefel manifold G.V /TY nG.V / is the pushforward of the Bessel–
Plancherel measure of G.W / under the �-correspondence. We note that in [15],
Kobayashi has obtained an explicit description of the discrete spectrum of these
generalized Stiefel manifold in the real case, in terms of Aq.�/ modules.

3.9 The Sakellaridis–Venkatesh conjecture

Using the previous theorem, we can obtain certain examples of the Sakellaridis–
Venkatesh conjecture:

• Taking D D k, k � k or M2.k/ to be a split k-algebra and W to be skew-
hermitian with dimD W D 2, we obtain the spectral decomposition of HnG WD
G.V /TY nG.V / in terms of the Bessel–Plancherel (essentially the Whittaker–
Plancherel) decomposition for GX , where HnG and GX are listed in the
following table.

X D HnG GX

GLn�1nGLn GL2

SOn�1nSOn fSL2 or SL2
Sp2n�2nSp2n SO.4/

This establishes the cases listed in Table 1 in Theorem 1.

• Taking D to be a quadratic field extension of k or the quaternion division
k-algebra, and W to be skew-hermitian, we obtain the spectral decomposition of

HnG D Un�1nUn; Spn�1.D/nSpn.D/
in terms of the Bessel–Plancherel decomposition of U2 and O2.D/. This gives
non-split versions of the examples above.

3.10 Multiplicity space

In addition, the multiplicity space W�.
/ D W h�.
/ can be described in terms of
the space ofH -invariant (continuous) functionals on�.
/1. Indeed, by the smooth
analog of our computation with the Schrödinger model in §3.4, one can show:
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Lemma 1. For any irreducible smooth representation �1 of G.V /, let �1.�1/
denote the big (smooth) theta lift of �1 to G.W /. Then for � 2 OY 2 ˝W � bN ,
there is a natural isomorphism of M�-modules:

W h�.�
1.�1// Š HomG.V /TY

.�1;C/:

In the cases we are considering above, one can show that if 
 is an irreducible
tempered representation of G.W /, then the small (smooth) theta lift � D �1.
1/
is irreducible (even when k is 2-adic), and moreover, the big (smooth) theta lift
�1.�1/ of �1 back to G.W / is irreducible and thus isomorphic to 
1. By our
discussion in §3.2, we see that for �G.W /-almost all 
 , one has

�.
/1 Š �1.
1/ D �:
Thus the above lemma implies that

W�.
/ D W h�.
/ Š HomH.�.
/
1;C/:

This concludes the proof of the classical cases of Theorem 1.

3.11 Unstable range

Though we have assumed that .G.W /;G.V // is in the stable range from
§3.5, it is possible to say something when one is not in the stable range as well.
Namely, in §3.6, one would take X to be a maximal isotropic space in V (so
dimX < dimW here), and consider the mixed model defined onL2.HomD.W;X//

˝L2.HomD.E;U //. As an illustration, we note the result for the case whenW is a
symplectic space of dimension 2 and V is a split quadratic space of dimension 3, so
that

G.W / �G.V / Š fSL2 � SO3 Š fSL2 � PGL2:

For a nonzero Y 2 bN , the subgroupG.V /TY ofG.V / is simply a maximal torusAY
of PGL2.

Proposition 3. We have

L2.G.V /TY nG.V // D L2.AY nPGL2/

Š
Z

bG.W /

.W�.�/˝W�Y .�//˝��.
/ d�G.W /.
/:
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We record the following corollary which is needed in the second half of this
paper:

Corollary 1. The unitary representation L2.sl2/ associated to the adjoint action
of PGL2 on its Lie algebra sl2 is weakly equivalent to the regular representation
L2.PGL2/.

Proof. Since the union of strongly regular semisimple classes are open dense in sl2,
we see that L2.sl2/ is weakly equivalent to

L

A L
2.AnPGL2/, where the sum runs

over conjugacy classes of maximal tori A in PGL2. Applying Proposition 3, one
deduces that

M

A

L2.AnPGL2/ Š
Z

bG.W /

M�.
/˝��.
/ d�G.W /.
/

with

M�.
/ D W�.
/˝
 

M

A

W�A.
/

!

:

One can show that the theta correspondence with respect to � induces a bijection

�� W f
 2 1G.W / W W�.
/ ¤ 0g  !1G.V /:

Moreover, one can write down this bijection explicitly (in terms of the usual
coordinates on the unitary duals of fSL2 and PGL2). From this description, one
sees that

.��/�.�G.W // D �G.V /:

This shows that
Z

bG.W /

M�.
/˝��.
/ d�G.W /.
/ Š
Z

bG.V /

M�.�
�1
� .�//˝ � d�G.V /.�/;

with M�.�
�1
� .�// ¤ 0. This proves the corollary.

4 Exceptional structures and groups

The argument of the previous section can be adapted to various dual pairs in
exceptional groups, thus giving rise to more exotic examples of the Sakellaridis–
Venkatesh conjecture. In particular, we shall show that the spectral decomposition
of L2.X/ D L2.HnG/ can obtained from that of L2.GX/, with X and GX given in
Table 3.



206 Wee Teck Gan and Raul Gomez

Table 3.

X D HnG GX

SO3nSL3 fSL3

Sp6nSL6 SL3

SL3nG2 fSL2

.J;  / nG2 PGL3

SU3nSpin7 .Spin3 � Spin5/=�2
G2nSpin7 SL2

G2nSpin8 SL32=�2

Spin9nF4 PGL2

F4nE6 SL3

The unexplained notation will be explained in due course. Comparing with the
tables in [23, §15 and §16], we see that these exceptional examples, together with the
classical examples treated earlier, verify the conjecture of Sakallaridis–Venkatesh
for almost all the rank-1 spherical varieties (with certain desirable properties), and
also some rank-2 or rank-3 ones. Indeed, they also include low rank examples of
several infinite families of spherical varieties, such as Sp2nnSL2n, SOnnSLn and
SUnnSO2nC1.

Though the proof will be similar in spirit to that of the previous section, we
shall need to deal with the geometry of various exceptional groups, and this
is ultimately based on the geometry of the (split) octonion algebra O and the
exceptional Jordan algebra J.O/. Thus we need to recall some basic properties of
O and its automorphism group. A good reference for the material in this section is
the book [13]. One may also consult [19] and [28].

4.1 Octonions and G2

Let k be a local field of characteristic zero and let O denote the (8-dimensional)
split octonion algebra over k. The octonion algebra O is non-commutative and non-
associative. Like the quaternion algebra, it is endowed with a conjugation x 7! Nx
with an associated trace map Tr.x/ D x C Nx and an associated norm map N.x/ D
x � Nx. It is a composition algebra, in the sense that N.x � y/ D N.x/ �N.y/.

A useful model for O is the so-called Zorn’s model, which consists of 2 � 2-
matrices

�

a v

v0 b

�

; with a; b 2 k, v 2 V Š k3 and v0 2 V 0,

with V a 3-dimensional k-vector space with dual V 0. By fixing an isomorphism
^3V Š k, one deduces natural isomorphisms

^2V Š V 0 and ^2 V 0 Š V;
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and let h�;�i denote the natural pairing on V 0 �V . The multiplication on O is then
defined by

�

a v

v0 b

�

�
�

c w
w0 d

�

D
�

ac C hw0; vi awC dv C v0 ^ w0
cv0 C bw0 C v ^ w bd C hv0;wi

�

:

The conjugation map is

�

a v

v0 b

�

7!
�

b �v
�v0 a

�

so that

T r

�

a v

v0 b

�

D aC b and N

�

a v

v0 b

�

D ab � hv0; vi:

Any non-central element x 2 O satisfies the quadratic polynomial x2 � Tr.x/ �
x C N.x/ D 0. Thus, a non-central element x 2 O generates a quadratic
k-subalgebra described by this quadratic polynomial. A nonzero element x has
rank 2 if N.x/ ¤ 0; otherwise it has rank 1.

The automorphism group of the algebra O is the split exceptional group of
type G2. The group G2 contains the subgroup SL.V / Š SL3 which fixes the
diagonal elements in Zorn’s model, and acts on V and V 0 naturally. Clearly, G2
fixes the identity element 1 2 O, so that it acts on the subspace O0 of trace zero
elements. The following proposition summarizes various properties of the action of
G2 on O0.

Proposition 4. (i) Fix a 2 k�, and let ˝a denote the subset of x 2 O0 with
N.x/ D a, then ˝a is nonempty and G2 acts transitively on ˝a with stabilizer
isomorphic to SU3.Ea/, where Ea D kŒx�=.x2 � a/.

(ii) The automorphism group G2 acts transitively on the set ˝0 of trace zero, rank
1 elements. For x 2 ˝0, the stabilizer of the line k � x is a maximal parabolic
subgroup Q D L � U with Levi factor L Š GL2 and unipotent radical U a
3-step unipotent group.

Now we note:

• When a 2 .k�/2 in (i), the stabilizer of an element in ˝a is isomorphic to SL3;
this explains the third entry in Table 3.

• In (ii), the 3-step filtration of U is given by

U 	 ŒU; U � 	 Z.U / 	 f1g
where ŒU; U � is the commutator subgroup and Z.U / is the center of U .
Moreover,

dimZ.U / D 2 and dim ŒU; U � D 3;



208 Wee Teck Gan and Raul Gomez

so that ŒU; U �=Z.U / Š k. If  is a nontrivial character of k, then  gives rise
to a nontrivial character of ŒU; U � which is fixed by the subgroup ŒL;L� Š SL2.
Setting J D ŒL;L� � ŒU; U �, we may extend  to a character of J trivially across
ŒL;L�. This explains the fourth entry of Table 3.

Though the octonionic multiplication is neither commutative or associative, the
trace form satisfies

Tr..x � y/ � z/ D Tr.x � .y � z//;

(so there is no ambiguity in denoting this element of k by Tr.x � y � z/) and G2 is
precisely the subgroup of SO.O; N / satisfying

Tr..gx/ � .gy/ � .gy// D Tr.x � y � z/ for all x; y; z 2 O:

4.2 Exceptional Jordan algebra and F4

Let J D J.O/ denote the 27-dimensional vector space consisting of all 3 � 3
Hermitian matrices with entries in O. Then a typical element in J has the form

˛ D
0

@

a z Ny
Nz b x
y Nx c

1

A ; with a; b; c 2 k and x; y; z 2 O.

The set J is endowed with a multiplication

˛ ı ˇ D 1

2
� .˛ˇ C ˇ˛/

where the multiplication on the RHS refers to usual matrix multiplication. With this
multiplication, J is the exceptional Jordan algebra.

The algebra J carries a natural cubic form d D det given by the determinant map
on J , and a natural linear form tr given by the trace map. Moreover, every element
˛ 2 J satisfies a cubic polynomial X3 � tr.˛/X2 C s.˛/X � d.˛/. One says that
˛ ¤ 0 has rank 3 if d.˛/ ¤ 0, rank 2 if d.˛/ D 0 but s.˛/ ¤ 0, and rank 1 if
d.˛/ D s.˛/ D 0. For example, ˛ 2 J has rank 1 if and only if its entries satisfy

N.x/ D bc; N.y/ D ca; N.z/ D ab; xy D cNz; yz D a Nx; zx D b Ny:

More generally, the above discussion holds if one uses any composition k-algebra
in place of O. Thus, if B D k, a quadratic algebraK , a quaternion algebraD or the
octonion algebra O, one has the Jordan algebra J.B/. One may consider the group
Aut.J.B/; det/ of invertible linear maps on J.B/ which fixes the cubic form det,
and its subgroup Aut.J; det; e/ which fixes an element e with det.e/ ¤ 0. For the
various B’s, these groups are listed in Table 4.
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Table 4.

B Aut.J.B/; det/ Aut.J.B/; det; e/

k SL3 SO3

K SL3.K/=�3 SL3

D SL3.D/=�2 D SL6=�2 PGSp6

O E6 F4

Proposition 5. (i) For any a 2 k�, the group Aut.J.B/; det/ acts transitively on
the set of all e 2 J with det.e/ D a, with stabilizer group Aut.J.B/; det; e/
described in Table 4. If e is the unit element of J.B/, then Aut.J.B/; det; e/ is
the automorphism group of the Jordan algebra J.B/.

(ii) The group F4 D Aut.J.O// acts transitively on the set of rank 1 elements in
J.O/ of trace a ¤ 0. The stabilizer of a point is isomorphic to the group Spin9
of type B4.

In particular, the proposition explains the first, second, eighth and nineth entries of
Table 3.

4.3 Triality and Spin8

An element ˛ 2 J D J.O/ of rank 3 generates a commutative separable cubic
subalgebra k.˛/ � J . For any such cubic F -algebra E , one may consider the set
˝E of algebra embeddingsE ,! J . Then one has

Proposition 6. (i) The set ˝E is nonempty and the group F4 acts transitively on
˝E .

(ii) The stabilizer of a point in ˝E is isomorphic to the quasi-split simply-
connected group SpinE8 of absolute type D4.

(iii) Fix an embedding j W E ,! J and let E? denote the orthogonal complement
of the image of E with respect to the symmetric bilinear form .˛; ˇ/ D
Tr.˛ ı ˇ/. The action of the stabilizer SpinE8 of j on E? is the 24-dimensional

spin representation, which on extending scalars to k, is the direct sum of
the three 8-dimensional irreducible representations of Spin8.k/ whose highest
weights correspond to the 3 satellite vertices in the Dynkin diagram of typeD4.

As an example, suppose that E D k � k � k, and we fix the natural embedding
E ,! J whose image is the subspace of diagonal elements in J . Then E? is
naturally O˚ O˚ O, and the split group Spin8 acts on this, preserving each copy
of O. This gives an injective homomorphism

� W Spin8 �! SO.O; N / � SO.O; N / � SO.O; N /
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whose image is given by

Spin8 Š fg D .g1; g2; g3/ j Tr..g1x/ � .g2y/ � .g3z// D Tr.x � y � z/
for all x; y; z 2 Og:

From this description, one sees that there is an action of Z=3Z on Spin8 given by the
cyclic permutation of the components of g, and the subgroup fixed by this action is
precisely

G2 D SpinZ=3Z8 :

This explains the 7th entry of Table 3.
More generally , the stabilizer of a triple .x; y; z/ 2 O

3 with .x � y/ � z 2 k� is a
subgroup of Spin8 isomorphic to G2 (see [28]). For example, the stabilizer in Spin8
of the vector .1; 0; 0/ 2 O

3 is isomorphic to the group Spin7 which acts naturally
on O0 ˚ O ˚ O. The action of Spin7 on O0 is via the standard representation of
SO7, whereas its action on the other two copies of O is via the Spin representation.
From the discussion above, we see that the stabilizer in Spin7 of .x; Nx/ 2 O

2, with
N.x/ ¤ 0, is isomorphic to the group G2. In particular, this explains the 6th entry
of Table 3.

On the other hand, the stabilizer in Spin8 of a triple .x; y; z/ 2 O
3 with .x�y/�z …

k� is isomorphic to SU3 � G2 � Spin7 � Spin8 (see [28]). For example, if one
takes x D y D 1 2 O and z … k, then K D kŒz� is an étale quadratic subalgebra
of O and it follows by Proposition 4 that the stabilizer of .1; 1; z/ is isomorphic to
SU3.K/ � Spin7. This explains the 5th entry in Table 3.

By the above discussion, it is not difficult to show the following.

Proposition 7. (i) The group Spin8 acts transitively on the set of rank 1 elements

˛ D
0

@

a z Ny
Nz b x
y Nx c

1

A 2 J.O/

with diagonal part .a; b; c/ 2 k� � k� � k� fixed. Moreover, the stabilizer of a
point is isomorphic to G2.

(ii) The group Spin7 acts transitively on the set of rank one elements ˛ 2 J.O/ as
in (i) above, with Tr.x/ D 0.

4.4 SL3nG2 and G2nSpin7

From the discussion above, we see that there are isomorphisms of homogeneous
varieties

SL3nG2 Š SO6nSO7 and G2nSpin7 Š Spin7nSpin8 Š SO7nSO8:
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Since we have already determined the spectral decomposition ofL2.SO6nSO7/ and
L2.SO7nSO8/ in terms of the spectral decomposition of L2.fSL2/ and L2.SL2/
respectively, we obtain the desired description for SL3nG2 andG2nSpin7. We note
that in [16], Kobayashi used the same observation to deduce the Plancherel theorem
of these spherical varieties from the Plancherel theorem for the corresponding sym-
metric spaces given above in the real case. He also gave an explicit description of the
branching from SO7 to G2 (for representations of SO7 occurring in L2.SO6nSO7/)
in the real case; the p-adic case of this branching is shown in [8].

The rest of the paper is devoted to the remaining cases in Table 3.

5 Exceptional dual pairs

In this section, we introduce some exceptional dual pairs contained in the adjoint
groups of type F4, E6, E7 and E8. We begin with a uniform construction of the
exceptional Lie algebras of the various exceptional groups introduced above. This
construction can be found in [22] and will be useful for exhibiting various reductive
dual pairs. The reader may consult [19, 22, 24] and [28] for the material of this
section.

5.1 Exceptional Lie algebras

Consider the chain of Jordan algebras

k � k � k � E � J.k/ � J.K/ � J.D/ � J.O/

whereE is a cubic k-algebra,K a quadratic k-algebra andD a quaternion k-algebra,
and one has the containment k�k � E only whenE D k�K is not a field. Denoting
such an algebra by R, the determinant map det of J.O/ restricts to give a cubic form
on R. Now set

sR D sl3 ˚mR ˚ .k3 ˝R/˚ .k3 ˝R/0; (21)

with

mR D Lie.Aut.R; det//:

One can define a Lie algebra structure on sR [22] whose type is given by the
following table.



212 Wee Teck Gan and Raul Gomez

R mR sR
k 0 g2

k� k k b3

E E0 d4

J.k/ sl3 f4

J.K/ sl3.K/ e6

J.D/ sl6 e7

J.O/ e6 e8

We denote the corresponding adjoint group with Lie algebra sR by SR, or simply
by S if R is fixed and understood.

Let fe1; e2; e3g be the standard basis of k3 with dual basis fe0ig. The subalgebra
of sl3 stabilizing the lines kei is the diagonal torus t. The nonzero weights under the
adjoint action of t on sR form a root system of type G2. The long root spaces are
of dimension-1 and are precisely the root spaces of sl3, i.e., the spaces spanned by
e0i ˝ ej . We shall label these long roots by ˇ, ˇ0 and ˇ0 � ˇ, with corresponding
1-parameter subgroups

uˇ.x/ D
0

@

1 x 0

1 0

1

1

A ; uˇ0.x/ D
0

@

1 0 x

1 0

1

1

A ; uˇ0�ˇ.x/ D
0

@

1 0 0

1 x

1

1

A :

We also let

wˇ D
0

@

0 1 0

�1 0 0

0 0 1

1

A

denote the Weyl group element associated to ˇ. The short root spaces, on the other
hand, are ei ˝R and e0i ˝R0 and are thus identifiable with R.

5.2 Exceptional dual pairs

We can now exhibit two families of dual pairs in SR.

• From (21), one has

sl3 ˚mR � sR:
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This gives a family of dual pairs

SL3 � Aut.R; det/ �! SR: (22)

We shall only be interested in these dual pairs when R D J.B/.
• For a pair of Jordan algebrasR0 � R, we have sR0 � sR which gives a subgroup
GR0 � SR, where GR0 is isogenous to SR0 . If G0R0;R D Aut.R;R0/, then one
has a second family of dual pairs

GR0 �G0R0;R �! SR: (23)

With R0 � R fixed, we shall simply write G � G0 for this dual pair. For the
various pairs R0 � R of interest here, we tabulate the associated dual pairs in
the table below.

R0 � R G�G0

k � J.K/ G2�PGL3
k� k � J.D/ Spin7�.Spin3�Spin5/=�2
E � J.D/ Spin8�SL2.E/=�2
J.k/ � J.D/ F4�PGL2

Observe that in the language of Table 3, withX D HnG, the dual pairs described
above are precisely GX �G.

5.3 Heisenberg parabolic

The presentation (21) also allows one to describe certain parabolic subalgebras of
sR. If we consider the adjoint action of

t D diag.1; 0;�1/ 2 sl3

on s, we obtain a grading s D ˚isŒi � by the eigenvalues of t . Then

8

ˆ

ˆ

<

ˆ

ˆ

:

sŒ0� D t˚m˚ .e2 ˝R/˚ .e02 ˝R0/
sŒ1� D ke02 ˝ e1 ˚ .e1 ˝R/˚ .e03 ˝R0/˚ ke03 ˝ e2
sŒ2� D ke03 ˝ e1;

and p D ˚i�0sŒi � is a Heisenberg parabolic subalgebra.
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We denote the corresponding Heisenberg parabolic subgroup by PS DMS �NS .
In particular, its unipotent radical is a Heisenberg group with 1-dimensional center
ZS Š uˇ0.k/ Š sŒ2� and

NS=ZS Š sŒ1� D k˚R˚R0 ˚ k:

The semisimple type of its Levi factor MS is given in the table below.

S MS

F4 C3

E6 A5
E7 D6

E8 E7

The Lie bracket defines an alternating form on NS=ZS which is fixed by P1
S D

ŒPS ; PS �. This gives an embedding

P1
S DM1

S �Ns ,! Sp.NS=ZS/ ËNS:

5.4 Intersection with dual pairs

For a pairR0 � R, with associated dual pair given in (23), it follows by construction
that

.GR0 �G0R0;R/ \ PS D P �G0R0;R;

where P is the Heisenberg parabolic subgroup of GR0 . On the other hand, for the
family of dual pairs given in (22),

.SL3 � Aut.R; det// \ PS D B � Aut.R; det/

where B is a Borel subgroup of SL3.

5.5 Siegel parabolic

The group S of type E6 or E7 has a Siegel parabolic subgroup QS D LS � US
whose unipotent radical US is abelian; we call this a Siegel parabolic subgroup. The
semisimple type of LS and the structure of US as an LS -module is summarized in
the following table.
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S LS US US as LS -module
E6 D5 O˚O half-spin representation of dimension 16
E7 E6 J.O/ minuscule representation of dimension 27

Let ˝Q � US be the orbit of a highest weight vector in US . The following
proposition describes the set ˝Q:

Proposition 8. (i) If S is of type E6, then

˝Q D f.x; y/ 2 O
2 W N.x/ D N.y/ D 0 D x � Nyg:

(ii) If S is of type E7, then

˝Q D f˛ 2 J W rank.˛/ D 1g:

5.6 Intersection with dual pairs

With R0 � R fixed, with associated dual pair G � G0 as given in (23), one may
chooseQS so that

.G �G0/\QS D G �Q0

with Q0 D L0 � U0 a Siegel parabolic subgroup of G0, so that U0 is abelian. The
groupQ0 and the embeddingU0 � US can be described by the following table.

G0 Q0 U0 � US
PGL3 maximal parabolic k2 � O

2

.Spin3 � Spin5/=�2 (Borel)�(Siegel parabolic) k˚ Sym2.k/ � J.O/
SL2.E/=�2 Borel E � J.O/
PGL2 Borel k � J.O/

Identifying the opposite unipotent radical NU0 with the dual space of U0 using the
Killing form, one has a natural projection

� W US �! U 0:

This is simply given by the projection from US to U 0 along U?0 .
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6 Generic orbits

In this section, we consider an orbit problem which will be important for our
applications. Namely, with the notation at the end of the last section, we have an
action of L0 � G on the set ˝Q � US . We would like to determine the generic
orbits of this action. For simplicity, we shall consider the case when S D E6 and
E7 separately.

6.1 Dual pair in E6

Suppose first that S D E6 so that G0 � G D PGL3 � G2. In this case, the natural
L �G2-equivariant projection � W NUS �! NU0 is given by

�.x; y/ D .Tr.x/;Tr.y//:

The nonzero elements in NU0 Š k2 are in one orbit of L0; we fix a representative
.0; 1/ 2 k2 and note that its stabilizer in L0 is the “mirabolic” subgroup PL0 of
L0 Š GL2. Then the fiber over .0; 1/ is given by

f.x; y/ 2 O
2 W N.x/ D N.y/ D Tr.x/ D 0; Tr.y/ D 1; x � Ny D 0g;

and carries a natural action of PL0 �G2. We note:

Lemma 2. (i) The group G2 acts transitively on the fiber ��1.0; 1/ and the
stabilizer of a point .x0; y0/ is isomorphic to the subgroup ŒL;L� �Z.U / � J .

(ii) If we consider the subset f.x0; y0 C �x0/ W � 2 kg � ��1.0; 1/, then the
subgroup of PL0 �G2 stabilizing this subset is isomorphic to

.PL0 �L � ŒU; U �/0 D f.h; g � u/ W deth D detgg:

The action of the element

�

a b

0 1

�

� g � u 2 .PL0 � L � ŒU; U �/0

is by

.x0; y0 C �x0/ 7! .x0; y0 C a�1 � .�C b � p.u//x0/

where p W J �! k Š J=ŒL;L� � Z.U / is the natural projection. Thus, there is a
unique generic L0 �G2 orbit on˝Q given by

.L0 �G2/ �.PL0�L
ŒU;U �/0 k:
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6.2 Dual pairs in E7

Now suppose that S D E7. As above, we first determine the generic L0-orbits on
NU0. For each genericL0-orbit in NU0, let us take a representative � and let Z� denote

its stabilizer in L0. Then the fiber ��1.�/ is preserved by Z� � G. In each case,
it follows by Prop. 5(ii) and Prop. 7 that G acts transitively on ��1.�/. Denote the
stabilizer inG ofe� 2 ��1.�/ byH�. Then under the action ofZ��G, the stabilizer
group eH� ofe� sits in a short exact sequence

1 Hχ H̃χ
p

Zχ 1.

Thus, the generic L0 �G-orbits are given by the disjoint union
[

generic �

.Z� �G/ �
eH�
e�;

where the union runs over the genericL0-orbits on NU0 ande� is an element in ��1.�/
with stabilizer eH�. We summarize this discussion in the following table.

G generic L0-orbits ��1.�/ Z� H�

F4 singleton ˛ 2 J.O/ trivial Spin9

rank 1, trace 1

Spin8 .a; b; c/ ˛ 2 J.O/ center of G0 G2

2 .k�

=k�2
/3=k� rank 1, trace 1 D �2 � �2

Spin7 AD diag.b; c/ ˛ 2 J.O/ O2 SU3

2 Sym2k2=GL2.k/ diagonalD .1; b; c/

Tr.z/ D 0

7 Minimal representation

In this section, we introduce the (unitary) minimal representation ˘ of S and
describe some models for˘ . Note that when S D F4,˘ is actually a representation
of the double cover of F4. When S is of type E , then˘ is a representation of S .

7.1 Schrödinger model

Because the groups S D E6 and E7 have a Siegel parabolic subgroup, there is an
analog of the Schrödinger model for the minimal representation˘ of S . By [6], the
representation ˘ can be realized on the space L2.˝Q;�Q/ of square-integrable
functions on ˝Q with respect to a LS -equivariant measure �Q on ˝Q. This is
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analogous to the Schrödinger model of the Weil representation. In particular, we
have the following action of QS on ˘ :

(

.l � f /.�/ D ıQS .l/
r � f .l�1 � �/

.u � f /.�/ D �.u/ � f .�/;

where r D 1=4 (resp. 2=9) if S is of type E6 (resp. E7).

7.2 Mixed model

For general S D SR, one has the analog of the mixed model, on which the action of
the Heisenberg groupPS is quite transparent. Recall thatNS=ZS D k˚R˚R0˚k
and one has an embedding

P1
S D ŒPS ; PS � ,! Sp.NS=ZS/ ËNS:

Then by [14], the mixed model of the minimal representation is realized on the
Hilbert space

IndPS
P1S
L2.R0 ˚ k0/ Š L2.k� ˚R˚ k/;

where the action of P1
S on L2.R ˚ k/ is via the Heisenberg–Weil representation

(associated to any fixed additive character  of k). The explicit formula can be
found in [22, Prop. 43].

In fact, one can describe the full action of S on˘ by giving the action of an extra
Weyl group element. More precisely, if wˇ is the standard Weyl group element in
SL3 associated to the root ˇ (see §5.1), then by [22, Prop. 47], one has

.wˇ � f /.t; x; a/ D  .det.x/=a/ � f .�a=t; x;�a/:

Since S is generated by PS and the element wˇ , this completely determines the
representation˘ .

For example, one may work out the action of an element u�ˇ.b/ D wˇuˇ.b/w�1ˇ
(see §5.1). A short computation gives

.u�ˇ.b/ � f /.t; x; a/ D  
�

b det.x/

a � t2
�

� f .t � ab
t
; a � a

2b

t2
; x/:

If f is continuous, then the above formula gives

.u�ˇ.b/ � f /.1; x; 0/ D  .�b det.x// � f .1; x; 0/: (24)

This formula will be useful in the last section.
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8 Exceptional theta correspondences: G � G 0

Now we may study the restriction of the minimal representation˘ to the dual pairs
introduced earlier. In this section, we shall treat the family of dual pairsG�G0 given
in (23). For simplicity, we shall consider the case when S D E6 and E7 separately.

8.1 Restriction to G � G 0 � E7

Suppose first that S is of type E7, so that ˝Q is the set of rank-1 elements in
J D J.O/. Consider the Schrödinger model for ˘ . On restricting ˘ to Q0 � G,
we have the following formulae:

8

ˆ

ˆ

<

ˆ

ˆ

:

.g � f /.˛/ D f .g�1 � ˛/ for g 2 G;

.u.a/ � f /.˛/ D  .Tr.a � ˛// � f .˛/ for u.a/ 2 U0;

.l � f /.˛/ D j det.l/js � f .l�1 � ˛/ for l 2 L0,
where s is a real number whose precise value will not be important to us here.

From our description of genericL0�G-orbits given in §6.2, we deduce as in the
derivation of (12) that as a Q0 �G-module,

˘ Š
M

� generic

IndQ0�G
U0�eH�

�˝ 1 Š
M

� generic

IndQ0

Z�
U0L
2.H�nG/: (25)

Here, G and Z� Š eH�=H� act on L2.H�nG/ by right and left translation
respectively, and U0 acts by �.

8.2 Abstract decomposition

On the other hand, there is an abstract direct integral decomposition

˘ D
Z

bG0


 ˝�.
/ d��.
/:

Restricting to Q0, we may write


jQ0 Š
M

�

IndQ0

Z�
U0W�.
/

for some Z� � U0-moduleW�.
/ with U0 acting via �. Thus,

˘ Š
M

�

Z

bG0

IndQ0

Z�
U0W�.
/˝�.
/ d��.
/: (26)
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8.3 Comparison

Comparing (25) and (26), we deduce that there is an isomorphism of G-modules:

L2.H�nG/ Š
Z

bG0

W�.
/˝�.
/ d��.
/: (27)

If G0 is isogenous to a product of SL2, the space W�.
/ D W h�.
/ has been
determined in Theorem 2(3) and is at most 1-dimensional. If G0 is .Spin3 �
Spin5/=�2, Theorem 2(1, 2, 4), still gives some partial results on W�.
/.

8.4 Mixed model

To explain the measure d��.
/, we consider the mixed model of ˘ restricted to
P �G0. Since

N=ZS D k˚R0 ˚R00 ˚ k � NS=ZS:
Under its adjoint action on R˚ k, G0 fixes R0 ˚ k pointwise, and its action on R?0
is described in the following table.

G0 R0 R?0
PGL2 J.k/ adjoint˚3

SL32=�2 k3 ˚3iD1stdi ˝ std_iC1
.Spin3 � Spin5/=�2 k � k .Spin˝ Spin/˚ .1˝ std /

Thus as a representation of G0, we have

˘ Š L2.k�/˝ L2.R0 ˚ k/˝ L2.R?0 /

where G0 acts only on L2.R?0 / and the action is geometric. Thus, ˘ is weakly
equivalent toL2.R?0 / as a representation ofG0. By our description of theG0-module
R?0 , we have:

Lemma 3. (i) If G0 D PGL2 or SL32=�2, the representation L2.R?0 / (and
hence˘ ) is weakly equivalent to the regular representation L2.G0/.

(ii) If G0 D .Spin3 � Spin5/=�2, the representation L2.R?0 / (and hence ˘ ) is
weakly contained in the regular representation L2.G0/.

Proof. (i) When G0 D PGL2, this follows from Corollary 1. When G0 D
SL32=�2, the representation of G0 on E?A is the restriction of a representation
of fG0 D GL32=k� (by the same formula). Now the action of fG0 on R?0
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has finitely many open orbits with representatives .1; 1; g/ 2 GL32 with g
regular semisimple, and the stabilizer of such a representative is T with T
a maximal torus in PGL2. Hence, as a representation offG0, L2.R?0 / is weakly
equivalent to

M

T

IndeG
0

TC Š
M

T

IndeG
0

PGL2
L2.T nPGL2/

as T runs over conjugacy classes of maximal tori in PGL2. By Corollary 1
and the continuity of induction, we deduce that L2.R?0 / is weakly equivalent
to L2.fG0/. Thus, on restriction to G0, L2.E?/ is weakly equivalent to L2.G0/,
as desired.

(ii) We shall only give a sketch in this case. By considering the generic orbits
of G0 on R?0 as in (i), one shows that L2.R?0 / is weakly equivalent to the
representation L2.Spin3nSpin3 � Spin5/. One then checks that tempered
matrix coefficients on Spin3�Spin5 are absolutely integrable on the subgroup
Spin3. Using the same argument as in [23, §6], one deduces that the spectral
measure of L2.Spin3nSpin3�Spin5/ is absolutely continuous with respect
to the Plancherel measure of G0, whence the result.

Concluding, we have

Theorem 4. There is an isomorphism of G-modules:

L2.H�nG/ Š
Z

bG0

W�.
/˝�.
/ d�G0.
/;

where W�.
/ is some multiplicity space and �G0 is the Plancherel measure. When
G0 D PGL2 or SL32=�2, W�.
/ D W h�.
/ as given in Theorem 2(3).

In addition, as we discussed in §3.10, the smooth analog of our argument in this
section implies that when G0 D PGL2 or SL32=�2,

W�.
/ D W h�.
/ Š HomH�.�
1.
1/;C/ D HomH�.�.
/

1;C/

for �G0 -almost all 
 .

8.5 Restriction to PGL3 � G2

We now treat the dual pair PGL3 �G2 in S D E6, which can be done by a similar
analysis. In this case,˝Q � O

2. If we restrict the action of S toQ0�G2, we deduce
by Lemma 2(ii) that as a representation of Q �G2,

˘ Š IndQ0�G2
.PL0�L
ŒU;U �/0 
UL

2.k/;
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where the action of .PL0 � L � ŒU; U �/0 on L2.k/ is given through the geometric
action described in Lemma 2(ii) and the action of U0 is by a nontrivial character
fixed by PL0 .

By using the Fourier transform on L2.k/, we deduce that as a representation of
.PL0 � L � ŒU; U �/0,

L2.k/ Š Ind
.PL0�L
ŒU;U �/0
UL0�J  �1 ˝  :

Hence, as a representation of Q0 �G2
˘ Š IndQ0

N0
�˝ IndG2J  ; (28)

where N0 D UL0 � U0 is the unipotent radical of a Borel subgroup of PGL3 and �
is a generic character of N0.

On the other hand, we have abstractly

˘ Š
Z

bPGL3


jQ0 ˝�.
/ d��.
/: (29)

We note that if 
 is tempered, then


jQ0 Š IndQ0

N0
�;

in which case we deduce on comparing (28) and (29) that

L2..J;  /nG2/ D IndG2J  Š
Z

bPGL3

�.
/ d��.
/: (30)

For (30) to hold, we thus need to show that �� is absolutely continuous with respect
to the Plancherel measure of PGL3.

For this, we examine the mixed model of ˘ which is realized on L2.k� �
J.k2/ � k/. Noting that J.k2/ Š gl3 as PGL3-module [19], we deduce that as a
representation of PGL3, ˘ is weakly equivalent to the representation on L2.sl3/
associated to the adjoint action on sl3. As in Corollary 1, we know that L2.sl3/ is
weakly equivalent to

L

T L
2.T nPGL3/, with T running over conjugacy classes of

maximal tori in PGL3.
Using the same argument as in [23, §6], one can show that for each T , the spectral

measure for L2.T nPGL3/ is absolutely continuous with respect to the Plancherel
measure ofPGL3, and hence so is the spectral measure ofL2.sl3/; this justifies (30)
and shows that

L2..J;  /nG2/ D IndG2J  Š
Z

bPGL3

W.
/˝�.
/ d�PGL3.
/

for some multiplicity space W.
/ of dimension� 1.
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It is natural to ask:

Question 1. For which adjoint simple algebraic groupG is the representationL2.g/
of G weakly equivalent to the regular representation L2.G/?

Corollary 1 verifies this conjecture for PGL2. If the conjecture holds for PGL3,
one can then takeW.
/ to be C for all 
 . In general, it is not difficult to show (using
the argument in [23, §6] for example) that the support of the spectral measure of
L2.g/ is contained in the tempered spectrum of G. We had initially conjectured that
L2.g/ is weakly equivalent to L2.G/. However, Kobayashi has explained to us that
for the adjoint group G D PU.n; 1/ (over R), there is a family of holomorphic
discrete series representations which does not occur in L2.g/. Since it is unclear
what the correct statement is in general, we decided to formulate the above question.

9 Exceptional theta correspondence: SL3 � Aut.R; det/

Finally we come to the family of dual pairs SL3 � Aut.R; det/ � S D SR given
by (22). What is interesting about this situation is that the group S may have no
Siegel parabolic subgroup, so that the argument below is not the analog of that in
the classical cases of §3. To simplify notation, we shall set G D Aut.R; det/. Note
that in the case of F4, S is the double cover of F4 and the dual pair is fSL3 � G D
fSL3 � SL3.

Let Q0 D L0 � U0 � SL3 be the maximal parabolic subgroup stabilizing the
subspace ke1 C ke2, so that

L0 Š GL2 and U0 D uˇ0�ˇ.k/ � uˇ0.k/:

Let � be a generic character of U0 trivial on uˇ0�ˇ.k/. The stabilizer in L0 of � is
a subgroup of the form T0 Ë UL0 with T0 Š k� contained in the diagonal torus and
UL0 D u�ˇ.k/. On restricting the minimal representation ˘ to Q0 � G, we may
write

˘ Š IndQ0�G
PL0U0�G˘�

for some representation˘� of PL0U0 �G with U0 acting by �. Here, we have used
the theorem of Howe–Moore which ensures that the trivial character of U0 does not
intervene.

Now we can describe the PL0U0 � G-module ˘� using the mixed model of ˘ .
Recall that this mixed model of ˘ is realized on L2.k� � R � k/. Moreover, the
action of U0 D uˇ0�ˇ.k/ � uˇ0.k/ in this model is

(

.uˇ0.z/f /.t; x; a/ D  .tz/ � f .t; x; a/

.uˇ0�ˇ.y/f /.t; x; a/ D  .ay/ � f .t; x; a/:
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As such, ˘� is the representation obtained from ˘ by specializing (continuous)
functions f 2 ˘ to the function x 7! f .1; x; 0/ of R. Thus

˘� D L2.R/;

where the action of T0 �G is geometric, with T0 acting by scaling on R. Moreover,
it follows by (24) that the action of u�ˇ.b/ 2 UL0 is

.u�ˇ.b/ � f /.x/ D  .�b � det.x// � f .x/:

Now the set fx 2 R W det.x/ ¤ 0g is open dense and by Proposition 5(i), it is
the union of finitely many generic orbits of T0 � G indexed by k�=.k�/3. For each
a 2 k�=.k�/3, let Ha be the corresponding stabilizer group whose type is described
in Table 4 in §4.2. Then

˘ Š
M

a

IndQ0�G
N0�Ha�a ˝ C Š

M

a

IndQ0

N0
�a ˝ L2.HanG/:

On the other hand, one has abstractly

˘ Š
Z

cSL3


jQ0 ˝�.
/ d�� .
/:

Now we note:

Lemma 4. As a representation of SL3, ˘ is weakly equivalent to L2.SL3/.

Proof. If S is of typeE , the groupSL3 is contained in a conjugate of the Heisenberg
parabolic subgroup PS . Indeed, after an appropriate conjugation, we may assume
that

SL3 � Aut.J.k2/; det/ D SL3 ��3 SL3 � Aut.J.B/; det/;

where B D k2, M2.k/ or the split octonion algebra O in the respective case. From
the description of the mixed model, one sees that ˘ is nearly equivalent to the
representation of SL3 on L2.J.B// D L2.J.k2// ˝ L2.J.k2/?/. Since J.k2/ Š
M3.k/with SL3 acting by left multiplication, we see that J.k2/ is weakly equivalent
to the regular representation of SL3. This implies that˘ is weakly equivalent to the
regular representation of SL3.

The case when S D F4 is a bit more intricate; we omit the details here.

Thus �� D �SL3 and every 
 in the support of �� is tempered, so that


jQ0 D
M

a2k�

=.k�

/3

W h�a .
/˝ IndQ0

N0
�a:
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Comparing, we see that

L2.HanG/ Š
Z

cSL3

W h�a.
/˝�.
/d�SL3.
/;

as desired.
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Proof of the 2-part compositional shuffle
conjecture
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Abstract In a recent paper [9] J. Haglund, J. Morse and M. Zabrocki advanced
a refinement of the Shuffle Conjecture of Haglund et. al. [8]. They introduce
the notion of “touch composition” of a Dyck path, whose parts yield the posi-
tions where the path touches the diagonal. They conjectured that the polyno-
mial

˝rCp1Cp2 � � �Cpk 1 ; h�1h�2 � � �h�l
˛

, where Cp1Cp2 � � �Cpk 1 is essentially
a rescaled Hall–Littlewood polynomial and r is the Macdonald eigen-operator
introduced in [1], enumerates by t areaqdinv the parking functions whose Dyck paths
hit the diagonal by .p1; p2; : : : ; pk/ and whose diagonal word is a shuffle of l
increasing words of lengths �1; �2; : : : ; �l . In this paper we prove the case l D 2

of this conjecture.
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1 Introduction

Parking functions are endowed by a colorful history and jargon (see for instance
[7]) that is very helpful in dealing with them combinatorially as well as analytically.
Here we will represent them interchangeably as two line arrays or as tableaux.
A single example of this correspondence should be sufficient for our purposes.
In the figure below we have on the left the two-line array, with the list of cars
V D .v1; v2; : : : ; vn/ on top and their diagonal numbers U D .u1; u2; : : : ; un/ on
the bottom. In the corresponding n � n tableau of lattice cells we have shaded the
main diagonal (or 0-diagonal) and drawn the supporting Dyck path. The component
ui gives the number of lattice cells EAST of the i th NORTH step and WEST of the
main diagonal. The cells adjacent to the NORTH steps of the path are filled with the
corresponding cars from bottom to top.

(1)

The resulting tableau uniquely represents a parking function if and only if the cars
increase up the columns.

A necessary and sufficient condition for the vector U to give a Dyck path is that

u1 D 0 and 0 � ui � ui�1 C 1:

Given this, the column increasing property of the corresponding tableau is assured
by the requirement that V D .v1; v2; : : : ; vn/ is a permutation in Sn satisfying

ui D ui�1 C 1 H) vi > vi�1:

We should mention that the component ui may also be viewed as the order of the
diagonal supporting car vi . In the example above, car 3 is in the third diagonal, 1 and
8 are in the second diagonal, 5, 7 and 6 are in the first diagonal, and 2 and 4 are in
the main diagonal. We have purposely listed the cars by diagonals from right to left
starting with the highest diagonal. This gives the diagonal word of PF which we
will denote �.PF /. It is easily seen that �.PF / can also be obtained directly from
the 2-line array by successive right to left readings of the components of the vector
V D .v1; v2; : : : ; vn/ according to decreasing values of u1; u2; : : : ; un. In previous
work, each parking function is assigned a weight

w.PF / D t area.PF /qdinv.PF /;
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where

area.PF / D u1 C u2 C � � � C un (2)

and

dinv.PF / D
X

1�i<j�n

	

�.ui D uj & vi < vj /C�.ui D uj C 1& vi > vj /



:

It is clear from this imagery that the sum in Equation 2 gives the total number of cells
between the supporting Dyck path and the main diagonal. We also see that two cars
in the same diagonal with the car on the left smaller than the car on the right will
contribute a unit to dinv.PF /, we call this a primary diagonal inversion. The same
holds true when a car on the left is bigger than a car on the right with the latter in the
adjacent lower diagonal, we call this a secondary diagonal inversion. For instance,
in the example above we see .6; 7/ as the only primary diagonal inversion and .6; 2/,
.8; 7/, .8; 5/ as the secondary ones. Thus, in the present example we have

area.PF / D 10; dinv.PF / D 4; �.PF / D 31857624;

yielding

w.PF / D t10q4:

Here and thereafter, the vectors U and V in the two-line representation will be also
referred to as U.PF / and V.PF /. It will also be convenient to denote by PFn the
collection of parking functions in the n � n lattice square.

In [9], J. Haglund, M. Morse and M. Zabrocki introduced a new parking function
statistic called touch composition. This is the composition p.PF / whose parts give
the sizes of the intervals between successive 0’s of the vectorU.PF /. Geometrically
the parts of p.PF / yield the places where the supporting Dyck path hits the main
diagonal. For instance, for the PF in the example we have p.PF / D .5; 3/.

The Compositional Shuffle Conjecture [9] states that for any composition
.p1; p2; : : : ; pk/ ˆ n and any partition � D .�1; �2; : : : ; �l / ` n we have the
identity

˝rCp1Cp2 � � �Cpk 1 ; h�1h�2 � � �h�l
˛

D
X

PF2PFn
p.PF /D.p1;p2;:::;pk/

t area.PF /qdinv.PF /�
�

�.PF / 2 E1[[E2[[ � � �[[El
�

; (3)

where r is the Macdonald eigen-operator introduced in [1], h�1h�2 � � �h�l is the
complete homogeneous symmetric function basis indexed by �, E1, E2, : : :, El
are successive segments of the word 1234 � � �n of respective lengths �1; �2; : : : ; �l



230 Adriano M. Garsia, Gouce Xin, and Mike Zabrocki

and the symbol �.�.PF / 2 E1[[E2[[ � � �[[El/ is to indicate that the sum is to
be carried out over parking functions in PFn whose diagonal word is a shuffle of
the words E1;E2; : : : ; El . Last but not least the operator Ca acts on a symmetric
polynomial F ŒX� according to the plethystic formula

CaF ŒX� D .� 1q /a�1F


X � 1�1=q
z

�
X

m�0
zmhmŒX�

ˇ

ˇ

ˇ

za
: (4)

In this paper we show that the symmetric function methods developed in [5] can be
used to prove the l D 2 case of Equation 3, that is the identity

˝rCp1Cp2 � � �Cpk 1 ; hrhn�r
˛

D
X

PF2PFn
p.PF /D.p1;p2;:::;pk/

t area.PF /qdinv.PF /�
�

�.PF / 2 12 � � � r [[ r C 1 � � �n�: (5)

Since in [9] it is shown that
X

pˆn
Cp1Cp2 � � �Cpk1 D en;

summing Equation 5 over all compositions of n we obtain that
˝ren ; hrhn�r

˛

D
X

PF2PFn

t area.PF /qdinv.PF /�
�

�.PF / 2 12 � � � r [[ r C 1 � � �n� (6)

which is the two-part case of the original Shuffle Conjecture. The identity in
Equation 6 was, in fact, established, in a 2004 paper [6], by Haglund as the ultimate
bi-product of an intricate variety of new identities of Macdonald Polynomial Theory.
Our proof of Equation 5 turns out to be much simpler and uses even less machinery
than the simplified version of Haglund’s original proof given in [4]. Basically, as
was done in [5], we only use a small collection of Macdonald polynomial identities
established much earlier in [2] and [3] to prove a recursion satisfied by the left-hand
side of Equation 5. Then show that the right-hand side satisfies the same recursion,
with equality in the base cases.

This recursion, which is the crucial result of this paper, may be stated as the
following theorem.

Theorem 1. For all compositions p D .p1; p2; : : : ; pk/ and 0 < r < n we have

˝rCp1Cp2 � � �Cpk1 ; hrhn�r
˛ D tp1�1˝rBp1�2Cp2 � � �Cpk 1 ; hr�1hn�1�r

˛

C �.p1 D 1/
	

˝rCp2 � � �Cpk 1 ; hrhn�1�r
˛C ˝rCp2 � � �Cpk1 ; hr�1hn�r

˛




(7)
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with Ba D !eBa! and for any symmetric function F ŒX�

eBaF ŒX� D F


X � 1�q
z

�
X

m�0
zmhmŒX�

ˇ

ˇ

ˇ

za
: (8)

What is remarkably different in this case in contrast with the developments in
[5] is that here the symmetric function side guided us on what had to be done in
the combinatorial side. In fact we shall see that Equation 5 unravels in a totally
unexpected manner some surprising inclusion-exclusions of parking functions.

The reader is advised to have at hand a copy of [5] in reading this work not
only for specific references to the identities we use here but also for the notation
and definitions of the various symmetric function constructs we deal with in this
writing. We already gave in Section 2 of [5] titled a A Macdonald Polynomial Kit a
detailed list of Macdonald polynomial theory identities that play an essential role in
this branch of algebraic combinatorics, and thus we will not repeat it here.

This paper is divided into three sections; in the first section we prove some
auxiliary symmetric function identities we use here that are not in [5], in the second
section we prove Theorem 1, and in the third section we derive its combinatorial
consequences.

Acknowledgment. The authors are indebted to Angela Hicks for helpful guidance
in the combinatorial part of this work.

2 Auxiliary symmetric function identities

As we mentioned in the introduction, this section makes heavy use of the notation,
definitions and identities listed in Section 2 of [5]. We will present this auxiliary
material as a sequence of propositions.

The first obstacle that is encountered in dealing with the shuffle conjecture is to
obtain a useable expression for the scalar product of a Macdonald polynomial with
a homogeneous basis element; in the two-part case this obstacle can be overcome
by means of the following identity proved in [3].

Proposition 1. For all f 2 �Dr and � ` n we have

hf hn�r ; eH�i D r�1
�

!f ŒX��
M
�
�ˇ

ˇ

X!MB��1 : (9)

Given this, we obtain the following proposition.

Proposition 2. For � ` n and 0 < r < n,

hhrhn�r ; eH�i D Fr ŒMB� � 1� (10)
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with

Fr ŒX� D
r
X

kD0
hr�kŒ 1M �r�1ekŒ XM �: (11)

Proof. From Equation 9 with f D hr we derive that

hhrhn�r ; eH�i D r�1
�

er Œ
X��
M
�
�ˇ

ˇ

X!MB��1 :

But

r�1�er ŒX��M
�
� D

r
X

kD0
er�kŒ��M �r�1ekŒ XM � D

r
X

kD0
hr�kŒ 1M �r�1ekŒ XM �

and Equation 10 is thus a consequence of Proposition 1. ut
Proposition 3. With n factors C1 we have

C1C1 � � �C11 D q�.n2/.q; q/nhn


X
1�q

� D q�.n2/eHnŒX I q� : (12)

In particular it follows that

rC1C1 � � �C11 D .q; q/nhn


X
1�q

�

: (13)

Proof. From the definition in Equation 4 it follows that

C11 D e1ŒX� D .1 � q/e1Œ X1�q �
which is the case n D 1 of Equation 12. So we will proceed by induction and assume
that we have

Cn�1
1 1 D q�.n�1

2 /.q; q/n�1hn�1


X
1�q

�

:

Given this, applying C1 to both sides and using Equation 4 again we get

q.
n�1
2 /

.q;q/n�1
Cn
11 D hn�1

 .X� 1�1=qz /

1�q
�
X

m�0
zmhmŒX�

ˇ

ˇ

ˇ

z

D hn�1


X
1�qC.X � 1�1=q

z.1�q/ /
�
X

m�0
zmhmŒX�

ˇ

ˇ

ˇ

z

D hn�1


X
1�q C 1

qz

�
X

m�0
zmhmŒX�

ˇ

ˇ

ˇ

z

D
n�1
X

kD0
hn�1�kŒ X1�q �

1
qk
hkC1ŒX�
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D q
n�1
X

kD0
hn�1�kŒ X1�q �hkC1Œ

X
q
�

D q
n
X

kD0
hn�kŒ X1�q �hkŒ

X
q
� � qhnŒ X1�q �

D qhn


X
1�q C X

q

� � qhnŒ X1�q �

D qhn
X.qC.1�q/

q.1�q/
� � qhnŒ X1�q �

D 1
qn�1 hn



X
.1�q/

� � qhnŒ X1�q �

D 1�qn
qn�1 hnŒ

X
1�q � :

This completes the induction and proves the first equality in Equation 12.
The second equality in Equation 12 results from a well-known formula for the
Macdonald polynomial eH� when � D .n/. The equality in Equation 13 follows
then from the definition of the operator r. ut

Our next auxiliary result shows how the C and B operators commute, but to
prove it we need some notation. For given expressions E1;E2; : : : ; Ek and P ŒX� a
symmetric polynomial we set

P .r1;r2;:::;rk/ŒX� D P ŒX C E1u1 C E2u2 C � � � C Ekuk�
ˇ

ˇ

ˇ

u
r1
1 u

r2
2 


urkk

:

The important property is that if

Q.r1/ŒX� D P ŒX C E1u1�
ˇ

ˇ

ˇ

u
r1
1

;

then

Q.r1/ŒX C E2u2�
ˇ

ˇ

ˇ

u
r2
2

D P ŒX C E1u1 C E2u2�
ˇ

ˇ

ˇ

u
r1
1 u

r2
2

D P .r1;r2/ŒX�:

Proposition 4.

�

q CbBa�BaCb

�

P ŒX�

D .q � 1/.�1/aCb�1q1�b �

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if aC b > 0
P ŒX� if aC b D 0
P

r1Cr2D�.aCb/P
.r1;r2/ŒX� if aC b < 0:

(14)
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Proof. Using Equation 4 we get (with E1 D �.1 � q/)

.�q/b�1CbP ŒX� D
d
X

r1D0
P .r1/ŒX� 1zr1

X

m�0
zmhmŒX�

ˇ

ˇ

ˇ

zb
D

d
X

r1D0
P .r1/ŒX�hbCr1 ŒX�

(15)

and Equation 15 gives (with E2 D �.1 � q/)

.�q/b�1BaCbP ŒX� D
d
X

r1D0
P .r1/



X C � 1�qz2

�

hbCr1


X C � 1�qz2

�

˝Œ��z2X�
ˇ

ˇ

ˇ

za2

D
d
X

r1;r2D0
P .r1;r2/. 1z2

/r2
bCr1
X

sD0
hbCr1�s ŒX�hs



�
1�q

z2

�

˝Œ��z2X�
ˇ

ˇ

ˇ

za2

D
d
X

r1;r2D0

bCr1
X

sD0
P .r1;r2/hbCr1�s ŒX�hs



�.1 � q/�˝Œ��z2X�
ˇ

ˇ

ˇ

z
aCr2Cs
2

D
d
X

r1;r2D0

bCr1
X

sD0
P .r1;r2/ŒX�hbCr1�s ŒX�.�1/shs



.1 � q/�haCr2CsŒ��X� :

Now note that Equation (2.24) of [5] for r D 0 and u D q gives

hs


1 � q� D
(

1 if s D 0;
1 � q if s > 0:

(16)

We can thus write

.�q/b�1BaCbP ŒX� D
d
X

r1;r2D0
P .r1;r2/ŒX�hbCr1 ŒX�haCr2 Œ��X�

C .1 � q/
d
X

r1;r2D0

bCr1
X

sD1
P .r1;r2/ŒX�hbCr1�s ŒX�.�1/shaCr2CsŒ��X�

and the change of summation index u D aC r2 C s gives

.�q/b�1BaCbP ŒX� D
d
X

r1;r2D0
P .r1;r2/ŒX�hbCr1 ŒX�haCr2 Œ��X�

C .1 � q/
d
X

r1;r2D0

aCbCr1Cr2
X

uDaCr2C1
P .r1;r2/ŒX�haCbCr1Cr2�uŒX�.�1/u�a�r2huŒ��X�:

(17)
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Similarly we get (with E1 D �.1 � q/)

BaP ŒX� D
d
X

r2D0
P .r2/ŒX�. 1z2

/r2
X

u�0
zu
2huŒ��z2X�

ˇ

ˇ

ˇ

za2
D

d
X

r2D0
P .r2/ŒX�hr2CaŒ��X� :

Thus (with E2 D �.1 � q/)

.�q/b�1CbBaP ŒX�

D
d
X

r2D0
P .r2/



X � 1�1=q
z

�

hr2Ca
 � ��X � 1�1=q

z1

��

˝Œz1X�
ˇ

ˇ

ˇ

zb1

D
d
X

r1;r2D0
P .r1;r2/ŒX�. 1z1 /

r1

r2Ca
X

sD0
hr2Ca�sŒ��X� . 1z1 /shs



�.1 � 1=q/�˝Œz1X�
ˇ

ˇ

ˇ

zb1

D
d
X

r1;r2D0
P .r1;r2/ŒX�

r2Ca
X

sD0
hr2Ca�sŒ��X� .�1/shs



1 � 1=q�hr1CsCbŒX�:

Note that now Equation 16 gives

hs


1 � 1
q

� D

8

ˆ

<

ˆ

:

1 if s D 0;

1 � 1
q

if s > 0:

Thus

.�q/b�1CbBaP ŒX� D
�

1� .1 � 1
q
/
�

d
X

r1;r2D0
P .r1;r2/ŒX�hr2CaŒ��X� hr1CbŒX�

C �1 � 1
q

�

d
X

r1;r2D0
P .r1;r2/ŒX�

r2Ca
X

sD0
hr2Ca�sŒ��X� .�1/s hr1CsCbŒX�

and the change of summation index u D r2 C a � s gives

.�q/b�1CbBaP ŒX� D 1

q

d
X

r1;r2D0
P .r1;r2/ŒX�hr2CaŒ��X� hr1CbŒX�

C �1 � 1
q

�

d
X

r1;r2D0
P .r1;r2/ŒX�

aCr2
X

uD0
huŒ��X� .�1/r2Ca�u haCbCr1Cr2�uŒX�: (18)
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In summary we get

.�q/b�1 qCbBaP ŒX� D
d
X

r1;r2D0
P .r1;r2/ŒX�hr2CaŒ��X� hr1CbŒX� (19)

C �q � 1�.�1/a
d
X

r1;r2D0
P .r1;r2/ŒX�

aCr2
X

uD0
huŒ�X� .�1/r2 haCbCr1Cr2�uŒX�:

On the other hand Equation 17 can also be written as

.�q/b�1BaCbP ŒX� D
d
X

r1;r2D0
P .r1;r2/ŒX�hr2CaŒ��X� hr1CbŒX� (20)

C .�1/a.1� q/
d
X

r1;r2D0

aCbCr1Cr2
X

uDaCr2C1
P .r1;r2/ŒX�haCbCr1Cr2�uŒX�.�1/r2huŒ�X�

and thus subtraction gives

.�q/b�1�q CbBa � BaCb

�

P ŒX� (21)

D �q � 1�.�1/a
d
X

r1;r2D0
P .r1;r2/ŒX�

aCbCr1Cr2
X

uD0
huŒ�X� .�1/r2 haCbCr1Cr2�uŒX�

D �q � 1�.�1/a
d
X

r1;r2D0
P .r1;r2/ŒX�.�1/r2 haCbCr1Cr2 ŒX �X�:

Carrying out the summations and using the definition ofP .r1;r2/ŒX�we finally obtain

.�q/b�1�q CbBa�BaCb

�

P ŒX�

D .q � 1/.�1/a �

8

ˆ

ˆ

<

ˆ

ˆ

:

0 if aC b > 0;
P ŒX� if aC b D 0;
P

r1Cr2D�.aCb/P
.r1;r2/ŒX� if aC b < 0;

which is easily seen to be Equation 14, completing the proof. ut
In particular we have shown that

Theorem 2. For all a C b > 0, our Hall–Littlewood operators have the following
commutativity property

Ba Cb D q Cb Ba: (22)
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An important ingredient in Macdonald polynomial theory is a modified
symmetric function scalar product we will refer to as the �-scalar product which
makes the basis feH�ŒX I q; t �g� an orthogonal set. More precisely, we have the basic
identities

˝

eH�; eH�

˛

� D
(

0 if � ¤ �
w�.q; t/ if � D � (23)

where the w�.q; t/ are polynomials in NŒq; t � whose precise definition can be found
in Section 2 of [5].

The �-scalar product and the Hall scalar product are related by the identity ([5]
Equation (2.16)),

˝

f ; g
˛ D ˝f ; !g�˛� (24)

where for convenience, for any symmetric function gŒX� we set

g�ŒX� D g X
M

�

.with M D .1� q/.1 � t//: (25)

To compute the action of r on a symmetric function we need to expand that
function in terms of the basis feH�ŒX I q; t �g� and Equation 23 is the tool we need
to carry this out. In the remainder of the paper we will make use of the following
expansions.

Proposition 5. For all n � 1 and 0 < r < n we have

(a) en


X
M

� DP�`n
eH�ŒX Iq:t �

w�
;

(b) hn


X
M

� DP�`n
T�eH�ŒX Iq;t �

w�

(c) er


X
M

�

en�r


X
M

� DP�`n
eH�ŒX Iq:t �

w�
Fr ŒMB� � 1�

with Fr ŒX� given by Equation 11.

Proof. Using Equation 23 and Equation 24 we obtain

e�n D
X

�`n

eH�ŒX I q:t �
w�

˝

eH� ; hn
˛

and Proposition 5(a) follows since it is well known, ([5] Equation (2.25)), that

˝

eH� ; hn
˛ D 1: (26)

Similarly, we get

h�n D
X

�`n

eH�ŒX I q:t �
w�

˝

eH� ; en
˛

(27)
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and Proposition 5(b) follows since it is well known, ([5] Equation (2.25)), that

˝

eH� ; en
˛ D T�: (28)

The formula in Proposition 5(c) is less immediate. We can again start by writing

e�r e�n�r D
X

�`n

eH�ŒX I q:t �
w�

˝

eH� ; hrhn�r
˛

:

However, we have no simple evaluation for the scalar product
˝

eH� ; hrhn�r
˛

other
than resorting to the identity in Equation 10 which gives

e�r e�n�r D
X

�`n

eH�ŒX I q:t �
w�

Fr ŒMB� � 1� (29)

with Fr given by Equation 11. This proves Proposition 5(c) and completes our proof.
ut

Remark 1. As we will shortly see, our proof of Theorem 1 will require working
with the polynomial re�r e�n�r . Since r is defined [1], by setting for the Macdonald
basis

reH� D T�eH�; (30)

the formula in Proposition 5 (c) gives

rer


X
M

�

en�r


X
M

� D
X

�`n

T�eH�ŒX I q:t �
w�

Fr ŒMB� � 1�: (31)

Introducing the operator �r by setting for the Macdonald basis

�reH� D Fr ŒMB� � 1�eH�: (32)

The formula in Proposition 5(b) allows us to write Equation 31 in the form

re�r e�n�r D �rh�n : (33)

We surprised ourselves in discovering that such a simple idea allows us to get around
the unavailability of a simple evaluation for the scalar product

˝

eH� ; hrhn�r
˛

.
By delivering an expression for re�r e�n�r that we can work within our calculations,
this idea made possible all the results of the present paper.
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3 Proof of the symmetric function recursion

We begin by showing the following basic reduction.

Theorem 3. The identity

˝rCp1Cp2 � � �Cpk1 ; hrhn�r
˛ D tp1�1˝rBp1�2Cp2 � � �Cpk1 ; hr�1hn�1�r

˛

C �.p1 D 1/
�˝rCp2 � � �Cpk 1 ; hrhn�1�r

˛C ˝rCp2 � � �Cpk1 ; hr�1hn�r
˛�

(34)

holds for all compositions .p1; p2; : : : ; pk/ ˆ n and all 0 < r < n, if and only if
the following symmetric function identity holds for all 0 < r < n and a � 1:

C�a�rh�n ŒX� D ta�1B�a�2�r�1h�n�2ŒX�C �.aD1/
	

�rh
�
n�1ŒX�C �r�1h�n�1ŒX�




;

(35)

where the operators C�a and B�a are the �-scalar product adjoints of Ca and Ba,
respectively.

Proof. Note first that since the polynomials Cp2 � � �Cpk1 are essentially only a
rescaled version of the Hall–Littlewood polynomials, they span the space�D.n�p1/.
Thus (34) can hold true as asserted if and only if for all F ŒX� 2 �D.n�p1/ we have

˝rCp1F ŒX� ; hrhn�r
˛ D tp1�1˝rBp1�2F ŒX� ; hr�1hn�1�r

˛

C �.p1 D 1/
	

˝rF ŒX� ; hrhn�1�r
˛C ˝rF ŒX� ; hr�1hn�r

˛




:

Now passing to �-scalar products we may rewrite this identity in the form

˝rCp1F ŒX� ; e
�
r e
�
n�r
˛

� D tp1�1
˝rBp1�2F ŒX� ; e�r�1e�n�1�r

˛

� (36)

C �.p1 D 1/
	

˝rF ŒX� ; e�r e�n�1�r
˛

�C
˝rF ŒX� ; e�r�1e�n�r

˛

�



: (37)

Next we move all the operators acting on F ŒX� to the other side of their respective
�-scalar products and obtain

˝

F ŒX� ; C�p1re�r e�n�r
˛

� D tp1�1
˝

F ŒX� ; B�p1�2re�r�1e�n�1�r
˛

�

C �.p1 D 1/
	

˝

F ŒX� ; re�r e�n�1�r
˛

� C
˝

F ŒX� ; re�r�1e�n�r
˛

�



: (38)

Of course r does not get a “�” since, by Equation 23, all Macdonald polynomial
eigen-operators are necessarily self-adjoint with respect to the �-scalar product.

But now the arbitrariness of F ŒX� shows that Equation 38 can be true if and only
if we have the following symmetric function equality
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C�p1re�r e�n�r D tp1�1B�p1�2re�r�1e�n�1�r C �.p1D1/
�re�r e�n�1�r Cre�r�1e�n�r

�

:

Replacing p1 by a and using Equation 33 for various values of r and n yields
Equation 35 and completes our proof. ut

Our next task is now to prove Equation 35. To begin we will need the following
expansion.

Proposition 6.

�rh
�
n ŒX� D

r
X

kD0
hr�kŒ 1M �.�1/k

X

�`k

1

w�
hn


X. 1
M
� B�/

�

: (39)

Proof. Note first that Equations 31 and 33 give

�rh
�
n ŒX� D

X

�`n

T�eH�ŒX I q:t �
w�

Fr ŒMB� � 1�: (40)

Recall from Equation 11 that

Fr ŒX� D
r
X

kD0
hr�kŒ 1M �r�1ekŒ XM �; (41)

and since Equations 5 and 30 give

r�1ekŒ XM � D
X

�`k

T �1� eH�ŒX I q; t �
w�

; (42)

we can write

Fr ŒX� D
r
X

kD0
hr�kŒ 1M �

X

�`k

T �1� eH�ŒX I q; t �
w�

I (43)

Equation 40 becomes

�rh
�
n ŒX� D

X

�`n

T�eH�ŒX I q; t �
w�

r
X

kD0
hr�kŒ 1M �

X

�`k

T �1�
eH�ŒMB� � 1�I q; t �

w�

D
r
X

kD0
hr�kŒ 1M �

X

�`k

1

w�

X

�`n

T�eH�ŒX I q; t �
w�

eH�ŒMB� � 1�I q; t �
T�

: (44)

We now use the Macdonald reciprocity formula from Equation (2.21) of [5],

eH�ŒMB� � 1I q; t �
T�

D .�1/n�k
eH�ŒMB� � 1�I q; t �

T�
; (45)
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and Equation 44 becomes

�rh
�
n ŒX� D

r
X

kD0
hr�kŒ 1M �.�1/n�k

X

�`k

1

w�

X

�`n

eH�ŒX I q; t �eH�ŒMB� � 1I q; t �
w�

I

(46)

a use of the Macdonald–Cauchy identity from Equation (2.17) of [5]

X

�`n

eH�ŒX I q; t �eH�ŒY I q; t �
w�

D en


XY
M

�

gives

�rh
�
n ŒX� D

r
X

kD0
hr�kŒ 1M �.�1/n�k

X

�`k

1

w�
en


X.B� � 1
M
/
�

;

which is Equation 39 because of the relation (see Equation (2.6) of [5])

en


X.B� � 1
M
/
� D .�1/nhnŒX. 1M � B�/�:

Our proof is now complete. ut
We are now ready to start working on the identity in Equation 35. We will start

with the term

B�a�2�r�1h�n�2ŒX�

which, using Equation 39 with r!r � 1 and n!n � 2, becomes

B�a�2�r�1h�n�2ŒX� D
r�1
X

kD0
hr�1�kŒ 1M �.�1/k

X

�`k

1

w�
B�a�2hn�2



X. 1
M
� B�/

�

:

(47)

Let us now recall that in [5] (Theorem 3.6) it was shown that the action of the
operators B�a and C�a on a symmetric polynomialP ŒX� may be computed by means
of the two plethystic formulas:

B�aP ŒX� D P


X C M
z

�
X

m�0
zmhm

�X
1�t
�

ˇ

ˇ

ˇ

z�a
(48)

and

C�aP ŒX� D .�1q /a�1P


X � �M
z

�
X

m�0
.� z

q
/mhm

�X
1�t
�

ˇ

ˇ

ˇ

z�a
: (49)
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We can thus use Equation 48 to get

B�a�2hn�2


X. 1
M
� B�/

�

D hn�2


.X CM=z/. 1
M
� B�/

�
X

m�0
zmhm

�X
1�t
�

ˇ

ˇ

ˇ

z�aC2

D
n�2
X

sD0
hn�2�s



X. 1
M
� B�/

�

hs


M. 1
M
� B�/

�

1
zs

X

m�0
zmhm

�X
1�t
�

ˇ

ˇ

ˇ

z�aC2

D
n�2
X

sDa�2
hn�2�s



X. 1
M
� B�/

�

hs Œ1 �MB�� hs�aC2Œ�X=.1 � t/�: (50)

Using this in Equation 47 gives

B�a�2�r�1h�n�2ŒX� D
r�1
X

kD0
hr�1�kŒ 1M �.�1/k

X

�`k

1

w�
�

n�2
X

sDa�2
hn�2�s



X. 1
M
� B�/

�

hs Œ1 �MB�� hs�aC2Œ�X=.1 � t/�

D
r�1
X

kD0
hr�1�kŒ 1M �.�1/k

n�2
X

sDa�2
hs�aC2Œ�X=.1 � t/� �

X

�`k

1

w�
hn�2�s



X. 1
M
� B�/

�

hs Œ1 �MB�� (51)

and a change s!s � 2 of summation index finally gives

B�a�2�r�1h�n�2ŒX� D
r�1
X

kD0
hr�1�kŒ 1M �.�1/k

n
X

sDa
hs�aŒ�X1�t � �

X

�`k

1

w�
hn�s



X. 1
M
� B�/

�

hs�2 Œ1 �MB�� : (52)

Let us now work on the left-hand side of Equation 35, which, using Equation 39
is simply

C�a�rh�n ŒX� D
r
X

kD0
hr�kŒ 1M �.�1/k

X

�`k

1

w�
C�ahn



X. 1
M
� B�/

�

: (53)
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Now Equation 49 gives

.�q/a�1C�ahn


X. 1
M
� B�/

� D hn


.X � �M=z/. 1
M
� B�/

�
X

m�0
.� z

q
/mhm

�X
1�t
�

ˇ

ˇ

ˇ

z�a

D
n
X

sD0
hn�s



X. 1
M
� B�/

�

hs
��M. 1

M
� B�/

�

1
zs

X

m�0
.� z

q
/mhm

�X
1�t
�

ˇ

ˇ

ˇ

z�a

D
n
X

sD0
hn�s



X. 1
M
� B�/

�

.�1/shs Œ�1CMB�� .� 1q /s�ahs�a
�X
1�t
�

:

Thus

C�

a hn


X. 1
M
� B�/

� D .�q/
n
X

sD0

hn�s



X. 1
M
� B�/

�

hs Œ�1CMB�� .� 1q /shs�a


�X
1�t

�

and Equation 53 becomes

C�a�rh�n ŒX� D
r
X

kD0
hr�kŒ 1M �.�1/k

X

�`k

1

w�
�

.�q/
n
X

sD0
hn�s



X. 1
M
� B�/

�

hs Œ�1CMB�� .� 1q /shs�a
�X
1�t
�

(54)

D
r
X

kD0
hr�kŒ 1M �.�1/k .�q/

n
X

sDa
.� 1

q
/s�

hs�a
�X
1�t
�
X

�`k

1

w�
hn�s



X. 1
M
� B�/

�

hs Œ�1CMB�� : (55)

We now will make use of the following two summation formulas (Equations (2.28)
and (2.29) of [3], see also [10]):

X

�!�
c��.q; t/ .T�=T�/

k D

8

ˆ

ˆ

<

ˆ

ˆ

:

tq

M
hkC1



.�1CMB�/=tq
�

if k � 1 ;

B�.q; t/ if k D 0 :
(56)

X

� �
d��.q; t/ .T�=T�/

k D

8

ˆ

ˆ

<

ˆ

ˆ

:

.�1/k�1 ek�1
 � 1CMB�

�

if k � 1;

1 if k D 0 :
(57)

We will start by using Equation 56 in the form

hs Œ�1CMB�� D .tq/s�1M
X

�!�
c�� .

T�
T�
/s�1��.s D 1/
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and obtain

C�a�rh�n ŒX� D
r
X

kD0
hr�kŒ 1M �.�1/k.�q/

n
X

sDa
.� 1

q
/shs�a

�X
1�t
� �

X

�`k

1

w�
hn�s



X. 1
M
� B�/

�

	

.tq/s�1M
X

�!�
c�� .

T�
T�
/s�1��.s D 1/




D
r
X

kD0
hr�kŒ 1M �.�1/k�1

n
X

sDa
t s�1hs�aŒ�X1�t �

X

�`k

1

w�
hn�s



X. 1
M
� B�/

��
	

M
X

�!�
c�� .

T�
T�
/s�1




C �.a D 1/
r
X

kD0
hr�kŒ 1M �.�1/k

X

�`k

1

w�
hn�1



X. 1
M
� B�/

�

D
r
X

kD0
hr�kŒ 1M �.�1/k�1

n
X

sDa
t s�1hs�aŒ�X1�t �

X

�`k

1

w�
hn�s



X. 1
M
� B�/

��
	

M
X

�!�
c�� .

T�
T�
/s�1




C �.a D 1/�rh�n�1ŒX� (58)

by applying Equation 39.
Now, changing the order of � and � summations and using the relation (from

Equation (2.30) of [5])

w�
w�
Mc�� D d�� ;

we may rewrite Equation 58 as

C�a�rh�n ŒX� � �.a D 1/�rh�n�1ŒX�

D
r
X

kD0
hr�kŒ 1M �.�1/k�1

n
X

sDa
t s�1hs�aŒ� X

1�t �
X

�`k�1

1

w�
�

X

� �

w�
w�

hn�s


X. 1
M
� B�/

�

Mc�� .
T�
T�
/s�1

D
r
X

kD0
hr�kŒ 1M �.�1/k�1

n
X

sDa
t s�1hs�aŒ� X

1�t �
X

�`k�1

1

w�
�

�
X

� �
hn�s



X. 1
M
� B�/

�

d��.
T�
T�
/s�1: (59)
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Next we split B�.q; t/ into the sum B�.q; t/ D B�.q; t/C T�
T�

and apply Equation 57
to get

X

� �
d��.

T�
T�
/s�1hn�s



X. 1
M
� B�/

�

D
n�s
X

uD0
hn�u�s



X. 1
M
� B�/

�

huŒ�X�
X

� �
d��
�

T�
T�

�uCs�1

D
n�s
X

uD0
hn�u�s



X. 1
M
� B�/

�

huŒ�X��
	

.�1/uCs�2euCs�2


MB� � 1
�C�.uC s D 1/




D
n
X

vDs
hn�v



X. 1
M
� B�/

�

hv�s Œ�X�
	

hv�2


1 �MB�
�C�.v D 1/




:

Using this in Equation 59 gives

C�a�rh�n ŒX� � �.a D 1/�rh�n�1ŒX�

D
r
X

kD0
hr�kŒ 1M �.�1/k�1

n
X

sDa
t s�1hs�aŒ� X

1�t �
X

�`k�1

1

w�
�

�
n
X

vDs
hn�v



X. 1
M
� B�/

�

hv�s Œ�X�
	

hv�2


1 �MB�
�C�.v D 1/




:

Since there are no partitions of k � 1 for k D 0 we make the change of variable
k!k C 1 and obtain

C�a�rh�n ŒX���.a D 1/�rh�n�1ŒX�

D
r�1
X

kD0
hr�1�kŒ 1M �.�1/k

n
X

sDa
t s�1hs�aŒ� X

1�t �
X

�`k

1

w�
�

n
X

vDs
hn�v



X. 1
M
� B�/

�

hv�s Œ�X��
	

hv�2


1 �MB�
�C�.v D 1/




: (60)

Now the term multiplying �.v D 1/ on the right-hand side is

r�1
X

kD0
hr�1�kŒ 1M �.�1/k

n
X

sDa
t s�1hs�aŒ� X

1�t ��

�
X

�`k

1

w�

n
X

vDs
hn�v



X. 1
M
� B�/

�

hv�s Œ�X�:
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Now v D 1 forces s D 1, which in turn forces a D 1. So this term reduces to

r�1
X

kD0
hr�1�kŒ 1M �.�1/k

X

�`k

1

w�
hn�1



X. 1
M
� B�/

�

which we recognize as �r�1h�n�1ŒX�. Thus Equation 60 reduces to

C�a �rh�n ŒX� � �.a D 1/
	

�rh
�
n�1ŒX�C �r�1h�n�1ŒX�




D
r�1
X

kD0
hr�1�kŒ 1M �.�1/k

n
X

sDa
t s�1hs�aŒ� X

1�t �
X

�`k

1

w�
�

n
X

vDs
hn�v



X. 1
M
� B�/

�

hv�s Œ�X�hv�2


1 �MB�
�

: (61)

Calling this last factor LF we have

LF D ta�1
n
X

sDa

n
X

vDs
hv�s Œ�X�hs�aŒ� tX

1�t ��

�
X

�`k

1

w�
hn�v



X. 1
M
� B�/

�

hv�2


1�MB�
�

D ta�1
n
X

vDa

v
X

sDa
hv�s Œ�X�hs�aŒ� tX

1�t ��

�
X

�`k

1

w�
hn�v



X. 1
M
� B�/

�

hv�2


1�MB�
�

:

But making the substitution s � a D u we get

v
X

sDa
hv�s Œ�X�hs�aŒ� tX

1�t � D
v�a
X

uD0
hv�a�uŒ�X�huŒ� tX

1�t � D hv�aŒ� X
1�t �:

This gives

LF D ta�1
n
X

vDa
hv�aŒ� X

1�t �
X

�`k

1

w�
hn�v



X. 1
M
� B�/

�

hv�2


1 �MB�
�

and Equation 61 becomes

C�a�rh�n ŒX� � �.a D 1/
	

�rh
�
n�1ŒX�C�r�1h�n�1ŒX�
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D ta�1
r�1
X

kD0
hr�1�kŒ 1M �.�1/k

n
X

vDa
hv�aŒ� X

1�t ��

X

�`k

1

w�
hn�v



X. 1
M
� B�/

�

hv�2


1 �MB�
�

:

A look at Equation 52 reveals that this last expression is none other than
ta�1B�a�2�r�1h�n�2ŒX�. In other words we have proved the identity

C�a�rh�n ŒX� D ta�1B�a�2�r�1h�n�2ŒX�
C �.a D 1/

	

�rh
�
n�1ŒX�C�r�1h�n�1ŒX�




and our proof of Theorem 1 is thus complete.

4 Combinatorial consequences

Let us denote by PFp1;p2;:::;pk .r/, for 0 < r < n, the collection of parking functions
with composition .p1; p2; : : : ; pk/ ˆ n and diagonal word a shuffle of 12 � � � r with
r C 1 � � �n. In symbols

PFp1;p2;:::;pk .r/ D
˚

PF2PFn W p.PF /D.p1;p2;:::;pk / & �.PF /212


r [[ rC1


n g

and set

˘.p1;p2;:::;pk/.r I q; t/ D
X

PF2PFp1;p2;:::;pk
.r/

t area.PF /qdinv.PF /:

Our basic goal in this section is to prove the identity in Equation 5 which can be
written as

˘.p1;p2;:::;pk /.r I q; t/ D
˝rCp1Cp2 � � �Cpk 1 ; hrhn�r

˛

: (62)

Our plan is to verify that both sides satisfy the same recursion and that they are
equal for all the base cases. Now we proved (by Theorem 1) that the right-hand side
satisfies

˝rCp1Cp2 � � �Cpk1 ; hrhn�r
˛

D tp1�1˝rBp1�2Cp2 � � �Cpk1 ; hr�1hn�1�r
˛C �.p1 D 1/�

	

˝rCp2 � � �Cpk 1 ; hrhn�1�r
˛C˝rCp2 � � �Cpk1 ; hr�1hn�r

˛




: (63)
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To extract information from this recursion we need to rewrite it in a combinatorially
more revealing form. Proposition 4 was included precisely for this purpose. In fact,
the Haglund-Morse-Zabrocki conjectures suggest that the operator Bp1�2 in the
expression

Bp1�2Cp2 � � �Cpk1

must be moved to the right passed all operators Cpi to act on 1. This requires using
Equation 14, but only for b � 1 and a � �1. This reduces it to the following two
cases:

BaCb D qCbBa (for a � 0 & b � 1) (64)

B�1C1 D qC1B�1C.q � 1/I (for a D �1 & b D 1) (65)

with I the identity operator.
We are thus led to the following version of Equation 63.

Proposition 7. The right-hand side of Equation 62 satisfies the following
recursions:

(a) When p1 > 1,

˝rCp1Cp2 � � �Cpk1 ; hrhn�r
˛

(66)

D tp1�1qk�1˝rCp2 � � �CpkBp1�21 ; hr�1hn�1�r
˛

(b) When p1 D 1,

˝rC1Cp2 � � �Cpk1 ; hrhn�r
˛

D ˝rCp2 � � �Cpk1 ; hrhn�1�rChr�1hn�r
˛

C .q � 1/
k
X

iD2
.piD1/qi�2

˝rCp2 � � � � � �Cpk1 ; hr�1hn�1�r
˛

:

(67)

Proof. Note that when p1 > 1 then p1 � 2 � 0 and since all parts of a composition
are � 1 we can use Equation 64 k � 1 times and immediately obtain Equation 66
from Equation 63. Next note that for p1 D 1 we need to move B�1 passed all Cpi

in the expression

B�1Cp2 � � �Cpk1:

To see how Equation 67 comes out of this operation we need only work it out in a
special case. Let us take k D 4. Given this, we have, by repeated uses of 64 and 65,
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B�1Cp2Cp3Cp41 D qCp2B�1Cp3Cp41C �.p2 D 1/.q � 1/Cp3Cp41

D q2Cp2Cp3B�1Cp41C �.p3 D 1/q.q � 1/Cp2Cp41

C �.p2 D 1/.q � 1/Cp3Cp41

D q3Cp2Cp3Cp4B�11C �.p4 D 1/q2.q � 1/Cp2Cp31C
C �.p3 D 1/q.q � 1/Cp2Cp41C �.p2 D 1/.q � 1/Cp3Cp41:

But the first term vanishes, since the operator B�a decreases degrees by a, and we
get that

˝rB�1Cp2Cp3Cp41 ; hrhn�r
˛

D .q � 1/
4
X

iD2
.piD1/qi�2

˝rCp2 � � � � � �Cp41 ; hr�1hn�1�r
˛

:

Of course we can complete the proof of Equation 67 by an induction argument, but
it wouldn’t add anything to what we have just seen. ut

Now it was shown in [9] that

Ba1 D
X

pˆa
Cp1Cp2 � � �Cpl.p/1; (68)

where l.p/ denotes the length of the composition p.
Given this, by combining Proposition 7 and Equation 68 we obtain the following

theorem.

Theorem 1. The two sides of Equation 62 satisfy the same recursion if for all
.p1; p2; : : : ; pk/ ˆ n, and 0 < r < n,

(a) when p1 > 1

˘.p1;p2;:::;pk /.r I q; t/
D tp1�1qk�1

X

zˆp1�2
˘.p2;:::;pk ;z1;z2;:::;zl.z//.r � 1I q; t/ (69)

(b) when p1 D 1
˘.1;p2;:::;pk/.r I q; t/ D ˘.p2;:::;pk/.r I q; t/C˘.p2;:::;pk/.r � 1I q; t/

C .q � 1/
k
X

iD2
.piD1/qi�2˘.p2;:::; :::pk/.r � 1I q; t/: (70)

To verify these two identities we need some observations. To begin, for a
PF 2 PFp1;p2;:::;pk .r/, it will be convenient to refer to 1; 2; � � � r as the small
cars and to r C 1; : : : ; n as big cars. Now the condition that �.PF / is a shuffle
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of increasing small cars with increasing big cars forces small cars as well as big
cars to be increasing from higher to lower diagonals and from right to left along
diagonals. Thus there will never be a small car on top of a small car or a big car on
top of a big car. This implies that the Dyck paths supporting our parking functions
will necessarily have only columns of NORTH steps of length at most 2. For the
same reason, primary diagonal inversions will occur only when a small car is to
the left of a big car in the same diagonal. Likewise a secondary diagonal inversion
occurs only when a big car is to the left of a small car in the adjacent lower diagonal.

Given this, it will be convenient to represent a PF 2 PFp1;p2;:::;pk .r/ by the
reduced tableau obtained by replacing all the small cars by a 1 and all big cars by
a 2. Clearly, to recover PF from such a tableau we need only replace all the 10s by
1; 2; : : : ; r and all the 20s by rC1; : : : ; n proceeding by diagonals, from the highest
to the lowest and within diagonals from right to left.

More precisely, we will work directly with the corresponding two-line array
viewed as a sequence of columns which we will call dominos and refer to it as
dom.PF /.

For instance on the left in the display below, we have a PF 2 PF6;3;1.5/. We
purposely depicted the big cars 6; 7; 8; 9; 10 in a larger size than the small cars
1; 2; 3; 4; 5. On the right we have its reduced tableau with the adjacent column of
diagonal numbers. On the bottom we display dom.PF /.

(71)

It may be good to say a few words about the manner in which the parking
functions of a family PFp1;p2;:::;pk .r/ can be constructed. First, we create all the
Dyck paths which hit the diagonal according to the composition .p1; p2; : : : ; pk/
and have no more than min.r; n � r/ columns of length two and all remaining
columns of length one. Then, for each of these Dyck paths, we fill the lattice cells
adjacent to its columns of length two with a 1 below a 2, then place, along the
columns of length one, the remaining r �min.r; n� r/ 10s and n� r �min.r; n� r/
20s in all possible ways.
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Now that we are familiarized with these parking functions we can proceed to
establish the identities in Theorem 1. To verify Equation 69 we need only construct
a bijection

˚ W PFp1;p2;:::;pk .r/ ”
[

zˆp1�2
PF .p2;:::;pk ;z1;z2;:::;zl.z//.r � 1/ (72)

such that

area.PF / D p1 � 1C area.˚.PF // and dinv.PF / D k � 1C dinv.˚.PF //:
(73)

The combinatorial interpretation of these equalities is very suggestive.

• some NORTH steps of the supporting Dyck path must be shifted to the right to
cause a loss of area of p1 � 1.

• Note that p1 > 1 forces a PF 2 PFp1;p2;:::;pk .r/ to start with a column of
length 2. If we could remove this column we will cause a loss of one diagonal
inversion for each of the remaining cars in the main diagonal, thereby satisfying
the required dinv loss of k � 1.

Led by these two observations and the experience gained in previous work [5] we
construct the map ˚ as follows .

Given a PF 2 PFp1;p2;:::pk .r/ with p1 > 1, we apply to dom.PF / the following
4 step procedure, and then let ˚.PF / be the parking function corresponding to the
resulting domino sequence.

Step 1: Cut dom.PF / in two sections, the first containing its first p1 dominos and
the second containing the remaining n � p1.

Step 2: Remove from the first section the first two dominos.
Step 3: Decrease by 1 the diagonal number of every domino remaining in the first

section.
Step 4: Cycle the processed first section to the end of the second section.

For instance in the display below, we have first the result of applying Steps 1,2,3 to
the domino sequence in Equation 4 and then below it we give the domino sequence
resulting from Step 4 together with the corresponding reduced tableau and the image
by ˚ of the parking function in 71.

(74)

(75)
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To complete the proof of Equation 69 we need to show that ˚ is a bijection as stated
in Equation 72 and that the requirements in Equation 73 are satisfied.

To begin, ˚.PF / is in PF .p2;:::;pk ;z1;z2;:::;zl.z//.r � 1/ with

z D .z1; z2; : : : ; zl.z// ˆ p1 � 2;

since decreasing by 1 the diagonal numbers in step 3 will cause the p1 � 2 last
cars of ˚.PF / to have a supporting Dyck path that hits the diagonal according to
a composition of p1 � 2. Conversely, given a PF 0 2 PF .p2;:::;pk ;z1;z2;:::;zl.z//.r � 1/
we can reconstruct the domino sequence of the parking function PF that ˚ maps
to PF 0, by applying the following sequence of steps to dom.PF 0/.

Step -1: Cut dom.PF 0/ into two successive sections of respective lengths
p2 C � � � C pk and p1 � 2.

Step -2: Add 1 to the area numbers of the dominos in the second section.
Step -3: Cycle back the resulting second section to precede the first section.
Step -4: Prepend the resulting domino sequence by the pair Œ 1

0
�Œ 2
1
�.

It is not difficult to see that this construction always yields a legitimate domino
sequence of a reduced parking function. For instance, note that since the second
section of dom.PF 0/ will necessarily start with one Œ 1

0
� or Œ 2

0
�, then after Step -2

these will become Œ 1
1
� or Œ 2

1
� and thus we are always able to precede any one of them

by the pair Œ 1
0
�Œ 2
1
� and obtain a domino sequence of a parking function with diagonal

composition .p1; p2; : : : pk/. This should make it clear that the ˚ is a bijection as
stated in Equation 72.

It remains to verify the equalities in Equation 73.
It is quite evident that the area equality is guaranteed by Step 3 together with the

removal of the domino Œ 2
1
� in Step 2. Moreover, the dinv equality holds true for two

reasons:

• Before we removed the pair Œ 1
0
�Œ 2
1
�, every domino Œ 1

0
� to the right contributed a

secondary diagonal inversion with the removed Œ 2
1
� and every domino Œ 2

0
� to the

right contributed a primary diagonal inversion with the removed Œ 1
0
�. Thus the

loss of dinv is precisely k� 1 which is the number of times the Dyck path of PF
returns to the main diagonal.

• No dinv gains or losses are produced by the reversal of the sequence orders in
Step 4, since the combination of Step 3 and Step 4 causes all the primary diagonal
inversions to become secondary and all the secondary to become primary (a pair
of examples are illustrated in Equation 71 and 75 by corresponding arrows in the
reduced tableaux).

This completes our proof of Equation 69. ut
Our next task is to verify Equation 70. We will start with some auxiliary obser-

vations. Note first that for any PF 2 PFp1;p2;:::;pk .r/ we may regard dom.PF / as
a sequence of sections of lengths p1; p2; : : : ; pk. Each section starts with a small
car domino Œ 1

0
� or a big car domino Œ 2

0
�. We will call them main diagonal dominos.
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More precisely, for any pi D 1, its corresponding section reduces to a single main
diagonal domino. Conversely, each Œ 2

0
� occurring in dom.PF / must be the sole

element of sections of length 1. This is due to the fact each section of length greater
than 1 must start with the pair of dominos Œ 1

0
�Œ 2
1
�.

Now let PF 2 PF1;p2;:::;pk .r/ and let PF 0 be the parking function whose
domino sequence is dom.PF / with its initial domino removed. Suppose first that
dom.PF / starts with a big car domino Œ 2

0
�. In that case we set ˚.PF / D PF 0 and

we are done, since PF 0 2 PFp2;:::;pk .r/. Moreover, there is no area loss, and since
the removed Œ 2

0
� did not make any diagonal inversions with any of the succeeding

dominos, we have

t area.PF /qdinv.PF / D t area.˚.PF //qdinv.˚.PF // :

Suppose next that dom.PF / starts with a Œ 1
0
�. Note that in this case PF 0 2

PFp2;:::;pk .r � 1/. However, here the removed Œ 1
0
� is used to make a diagonal

inversion with every main diagonal domino Œ 2
0
� of dom.PF /. Thus in this case we

have

t area.PF /qdinv.PF / D t area.PF 0/qdinv.PF 0/qm; (76)

where m gives the number of Œ 2
0
� in dom.PF /. We certainly cannot set ˚.PF / D

PF 0 here, since the weight of PF 0 occurs with coefficient 1 in the second term on
the right-hand side of Equation 70. It turns out that the sum on the right-hand side of
Equation 70 is precisely what is needed to perform the necessary correction when
m > 0. To see how this comes about, we start by writing qm as the sum

qm D 1C .q � 1/C .q � 1/q C .q � 1/q2 C � � � C .q � 1/qm�1;

so that Equation 76 may be rewritten as

t area.PF /qdinv.PF /

D t area.PF 0/qdinv.PF 0/ C .q � 1/
m
X

sD1
t area.PF 0/qdinv.PF 0/Cs�1: (77)

Now, suppose that the dominos Œ 2
0
� occur in dom.PF / in positions

1 < i1 < i2 < � � � < im � n :

Note that, by one of our prior observations, we must have pis D 1 for all 1 � s � m.
Given this, let PF .is/ be the parking function whose domino sequence is obtained
by removing from dom.PF / the initial domino Œ 1

0
� together with the domino Œ 2

0
� in

position is . Now since every main diagonal domino in dom.PF / located between
the two removed dominos used to make a primary or secondary diagonal inversion
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with one or the other of the removed dominos, and the initial domino Œ 1
0
� made a

diagonal inversion with the removed Œ 2
0
� as well as with all the big car dominos in

position isC1; : : : ; im, we derive that

dinv.PF 0/Cm D dinv.PF / D dinv.PF .is//C is � 2C 1Cm � s:

This gives

qdinv.PF 0/Cs�1 D qdinv.PF .is //Cis�2:

Using this in Equation 77 rewrites it in the more suggestive form

t area.PF /qdinv.PF /

D t area.PF 0/qdinv.PF 0/ C .q � 1/
m
X

sD1
qis�2t area.PF .is //qdinv.PF .is //: (78)

Let us now set for any PF 2 PF1;p2;:::;pk .r/

˚.PF / D

8

ˆ

ˆ

<

ˆ

ˆ

:

PF 0 if dom.PF / starts with a Œ 2
0
�;

�

PF 0; PF .i1/; PF .i2/; : : : ; PF .im/
�

if dom.PF / starts with a Œ 1
0
�;

and note that Equation 78 shows that this defines a weight preserving, bijective map
of PF1;p2;:::;pk .r/ onto a disjoint family of subsets covering the union

PFp2;:::;pk .r/
[

PFp2;:::;pk .r � 1/
[

piD1
PF .p2;:::; ;:::pk/

.r � 1/

Indeed this map is onto since

1. if PF 0 2 PFp2;:::;pk .r/, then it is the image by ˚ of the PF whose domino
sequence is obtained by prepending dom.PF 0/ by a Œ 2

0
�;

2. if PF 0 2 PFp2;:::;pk .r�1/, then it is in the image by˚ of the PF whose domino
sequence is obtained by prepending dom.PF 0/ by a Œ 1

0
�;

3. if PF .i/ 2 PF .p2;:::; ;:::pk/.r � 1/ with pi D 1, then it is in the image by ˚ of

the PF whose domino sequence is obtained by prepending dom.PF .i// by a Œ 1
0
�

and inserting a Œ 2
0
� in position i .

Given this, Equation 70 is simply obtained by summing Equation 77 over all PF 2
PF1;p2;:::;pk .r/. This completes our proof that the two sides of Equation 62 satisfy
the same recursion.
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We are left to verify the equality in the base cases. To this end note that since at
each use of the recursion one or more of the following happens:

• r is decreased.
• The composition p is getting finer,
• The number of parts of p decreases.

From the beginning we have required that 0 < r < n, simply because when r D 0 or
r D n the family PFp1;p2;:::;pk .r/ reduces to a triviality. In fact, if there are no small
cars, or no big cars, the family is empty unless p reduces to a string of 10s and if that
happens then there is only one parking function with no area and no dinv. Thus the
polynomial ˘p1;p2;:::;pk .r/ either vanishes or it is equal to 1. Not withstanding this,
the recursion forces us to include all the degenerate cases. Omitting some trivial
cases in which both the combinatorial side as well as the symmetric function side
are easily shown to vanish. The only significant basic cases are when p reduces to
a string of 10s and 0 < r < n. In this case the family PF1n.r/ consists of all the
parking functions obtained by placing along the main diagonal and from right to left
all the shuffles of 12 � � � r with r C 1 � � �n. In this case there is no area and the dinv
statistic reduces to an inversion count. The corresponding polynomial then is none
other than the q-binomial coefficient

˘1n.r/ D
hn

r

i

q
:

We need to show that the symmetric function side yields the same result. That is
with n occurrences of C1 we have

˝rC1C1 � � �C11 ; hrhn�r
˛ D

hn

r

i

q
: (79)

Now we have shown (Proposition 3) that in this case we have

rC1C1 � � �C11 D .q; q/nhn


X
1�q

�

: (80)

However we obtain from the Cauchy identity that

˝

hn


X
1�q

�

; h�ŒX�
˛ D h�Œ 1

1�q �

which combined with Equation 80 gives

˝rC1C1 � � �C11 ; hrhn�r
˛ D .q; q/n

.q; q/r .q; q/n�r
(81)

which is another way of writing Equation 79.
This completes our proof of Equation 5. ut
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Remark 2. We must note that the very nature of case p1 D 1 in Equation 69 makes
it stand apart from any of the recursions encountered in all previous parking function
literature. For this reason there is no way we could have discovered what to do
with our parking functions in this degenerate case without help from the symmetric
function side. What is fascinating is that the intricacy of this case and the parking
function magic that takes place is none other but a side product of the commutativity
relations afforded by the C and B operators. In this context it is interesting to see
that Equation 70 tells us about q-binomial coefficients. In fact, when p reduces to a
string of 10s, using Equation 81, then Equation 70 states that

.q; q/n

.q; q/r .q; q/n�r
D .q; q/n�1
.q; q/r .q; q/n�1�r

C .q; q/n�1
.q; q/r�1.q; q/n�r

C .q � 1/
n
X

iD2
qi�2

.q; q/n�2
.q; q/r�1.q; q/n�1�r

: (82)

Since

.q � 1/
n
X

iD2
qi�2 D .q � 1/

n�2
X

iD0
qi D .q � 1/ 1 � q

n�1

1 � q D qn�1 � 1;

Equation 82 becomes

.q; q/n

.q; q/r .q; q/n�r
D .q; q/n�1

.q; q/r .q; q/n�1�r
C .q; q/n�1

.q; q/r�1.q; q/n�r

C .qn�1 � 1/ .q; q/n�2
.q; q/r�1.q; q/n�1�r

or better

.q; q/n

.q; q/r .q; q/n�r
D .q; q/n�1

.q; q/r .q; q/n�1�r
C .q; q/n�1

.q; q/r�1.q; q/n�r
�.1 � qn�r /.q; q/n�1
.q; q/r�1.q; q/n�r

which is just another way of writing the classical recursion

.q; q/n

.q; q/r .q; q/n�r
D .q; q/n�1
.q; q/r .q; q/n�1�r

Cqn�r .q; q/n�1
.q; q/r�1.q; q/n�r

:

This fact brings us to view these ramifications of the shuffle conjecture as parking
function versions of q-binomial identities.
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1 Introduction

With the emergence of quantum information science in recent years, much effort
has been given to the study of entanglement [7]: in particular, to its characterization,
manipulation and quantification [15]. It was realized that highly entangled states are
the most desirable resources for many quantum information processing tasks. While
two-party entanglement has been very well studied, entanglement in multi-qubits
systems is far less understood. Perhaps one of the reasons is that n qubits (with
n > 3) can be entangled in an uncountable number of ways [5, 6, 18] with respect
to stochastic local operations assisted by classical communication (SLOCC). It is
therefore not very clear what role entanglement measures can play in multi-qubits
or multi-qudits systems unless they are defined operationally. One exception from
this conclusion are entanglement measures that are defined in terms of the absolute
value of SL-invariant polynomials [3, 6, 10, 12, 14, 16, 18, 19].

Two important examples are the concurrence [20] and the square root of the
3-tangle (SRT) [3]. The concurrence and the SRT, respectively, are the only
SL.2;C/ ˝ SL.2;C/ and SL.2;C/ ˝ SL.2;C/ ˝ SL.2;C/ invariant measures of
entanglement that are homogenous of degree 1. The reason for that is that in two
or three qubit-systems there exists a unique SL-invariant polynomial. However,
for 4-qubits or more, the picture is different since there are many homogenous
SL-invariant polynomials such as the 4-tangle [16] or the hyperdeterminant [12].

In this paper, we find the generating set of all SL-invariant polynomials with
the property that they are also invariant under any permutation of the four qubits.
Such polynomials yield a measure of entanglement that capture genuine 4 qubits
entanglement. In addition, we show that the 4-qubit hyperdeterminant [12] is the
only homogeneous SL-invariant polynomial (of degree 24) that is non-vanishing
precisely on generic states.

This paper is written with a variety of audiences in mind. First and foremost are
the researchers who study quantum entanglement. We have therefore endeavored
to keep the mathematical prerequisites to a minimum and have opted for proofs
that emphasize explicit formulas for the indicated SL-invariant polynomials. We are
aware that there are shorter proofs of the main results using the important work of
Vinberg [17]. However, to us, the most important aspect of the paper is that the Weyl
group of F4 is built into the study of entanglement for 4 qubits. Indeed, the well-
known result of Shepherd–Todd on the invariants for the Weyl group of F4 gives an
almost immediate proof of Theorem 2.1. The referee has indicated a short proof of
Theorem 3.3 using more algebraic geometry. Although our proof is longer, we have
opted to keep it since it is more elementary. We should also point out that in the
jargon of Lie theory the hyperdeterminant is just the discriminant for the symmetric
space corresponding to SO.4; 4/.
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2 Symmetric invariants

Let Hn D ˝nC2 denote the space of n-qubits, and let G D SL.2;C/˝n act on Hn

by the tensor product action. An SL-invariant polynomial, f . /, is a polynomial in
the components of the vector  2 Hn, which is invariant under the action of the
group G. That is, f .g / D f . / for all g 2 G. In the case of two qubits there
exists only one unique SL-invariant polynomial. It is homogeneous of degree 2 and
is given by the bilinear form . ; /:

f2. / � . ; / � h �j�y ˝ �y j i ;  2 C
2 ˝ C

2 ;

where �y is the second 2 � 2 Pauli matrix with i and �i on the off-diagonal terms.
Its absolute value is the celebrated concurrence [20].

Also in three qubits there exists a unique SL-invariant polynomial. It is homoge-
neous of degree 4 and is given by

f4. / D det

�

.'0; '0/ .'0; '1/

.'1; '0/ .'1; '1/

�

;

where the two qubits states 'i for i D 0; 1 are defined by the decomposition j i D
j0ij'0i C j1ij'1i, and the bilinear form .'i ; 'j / is defined above for two qubits.
The absolute value of f4 is the celebrated 3-tangle [3].

In four qubits, however, there are many SL-invariant polynomials and it is
possible to show that they are generated by four SL-invariant polynomials (see
e.g., [6] for more details and references). Here we are interested in SL-invariant
polynomials that are also invariant under the permutation of the qubits.

Consider the permutation group Sn acting by the interchange of the qubits. Let
eG be the group Sn ËG: That is, the set Sn �G with multiplication

.s; g1 ˝ � � � ˝ gn/.t; h1 ˝ � � � ˝ hn/ D .st; gt�11h1 ˝ � � � ˝ gt�1nhn/:

Then eG acts on Hn by these two actions. We are interested in the polynomial
invariants of this group action.

One can easily check that f2 and f4 above are also eG-invariant. However,
this automatic eG-invariance of G-invariants breaks down for n D 4. As is well
known [6], the polynomials on H� that are invariant underG are generated by four
polynomials of respective degrees 2, 4, 4, 6. For eG we have the following theorem:

Theorem 2.1. The eG-invariant polynomials on H� are generated by four
algebraically independent homogeneous polynomials h1; h2; h3 and h4 of respective
degrees 2; 6; 8 and 12: Furthermore, the polynomials can be taken to be
F1.z/;F3.z/;F4.z/;F6.z/ as given explicitly in Eq. (1) of the proof.
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Proof. To prove this result we will use some results from [6]. Let

u0 D 1

2
.j0000i C j0011i C j1100i C j1111i/;

u1 D 1

2
.j0000i � j0011i � j1100i C j1111i/;

u2 D 1

2
.j0101i C j0110i C j1001i C j1010i/;

u3 D 1

2
.j0101i � j0110i � j1001i C j1010i/:

LetA be the vector subspace of H� generated by the uj . ThenGA contains an open
subset of H� and is dense. This implies that any G-invariant polynomial on H� is
determined by its restriction to A. Writing a general state in A as z D P

ziui , we
can choose the invariant polynomials such that their restrictions to A are given by

E0.z/ D z0z1z2z3; Ej .z/ D z2j0 C z2j1 C z2j2 C z2j3 ; j D 1; 2; 3:

In [6] we give explicit formulas for their extensions to H�:
Also, let W be the group of transformations of A given by

fg 2 G j gA D AgjA:

ThenW is the finite group of linear transformations of the form

ui 7�! "ius�1i

with "i D ˙1, s 2 S4 and "0"1"2"3 D 1. One can show [6, 19] that every
W -invariant polynomial can be written as a polynomial in E0; E1; E2; E3. We now
look at the restriction of the S4 that permutes the qubits toA. Set �i D .i; iC1/, i D
1; 2; 3 where .2; 3/ corresponds to fixing the first and last qubit and interchanging
the second and third. Then they have matrices relative to the basis uj W

�1jA D

2

6

6

6

4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

3

7

7

7

5

; �2jA D 1

2

2

6

6

6

4

1 1 1 1

1 1 �1 �1
1 �1 �1 1

1 �1 1 �1

3

7

7

7

5

; �3jA D

2

6

6

6

4

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 �1

3

7

7

7

5

:

Since S4 is generated by .1; 2/; .2; 3/; .3; 4/, it is enough to find thoseW -invariants
that are also �i jA invariant for i D 1; 2. We note that the only one of the Ej that is not
invariant under �1jA is E0 and E0.�1z/ D �E0.z/ for z 2 A. Thus if F.x0; x1; x2; x3/
is a polynomial in the indeterminates xj , then F.E0; E1; E2; E3/ is invariant under
� D �1jA if and only if x0 appears to even powers. It is an easy exercise to show
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that if E4 D z80 C z81 C z82 C z83, then any polynomial in E20 ; E1; E2; E3 is a polynomial
in E1; E2; E3; E4 and conversely (see the argument in the very beginning of the next
section). Thus we need only find the polynomials in E1; E2; E3; E4 that are invariant
under � D �2jA. A direct calculation shows that E1 is invariant under � . Also,

E21 ı � D E21 ; E2 ı � D 3

4
E21 �

1

2
E2 C 6E0 ; E0 ı � D � 1

16
E21 C

1

8
E2 C 1

2
E0:

Since E0; E21 ; E2 forms a basis of the W -invariant polynomials of degree 4 this
calculation shows that the space of polynomials of degree 4 invariant under �; �
and W (hence under eW ) consists of the multiples of E21 . The space of polynomials
invariant under W and � and homogeneous of degree 6 is spanned by E31 ; E1E2,
and E3. From this it is clear that the space of homogeneous degree 6 polynomials
that are invariant under eW is two dimensional. Since E31 is clearly eW -invariant there
is one new invariant of degree 6. Continuing in this way we find that to degree 12
there are invariants h1; h2; h3; h4 of degrees 2; 6; 8 and 12, respectively, such that:
(1) the invariant of degree 8, h3, is not of the form ah41C bh1h2, (2) there is no new
invariant of degree 10, and (3) the invariant of degree 12, h4, cannot be written in
the form ah61 C bh31h2 C ch21h3. To describe these invariants we write out a new set
of invariants. We put

Fk.z/ D 1

6

X

i<j

�

zi � zj
�2k C 1

6

X

i<j

�

zi C zj
�2k
: (1)

We note that F1 D E1, F2 D E21 . A direct check shows that these polynomials are
invariant under eW . Since F3.z/ ¤ cE31 we can use it as the “missing polynomial”.
If one calculates the Jacobian determinant of F1.z/;F3.z/;F4.z/;F6.z/, then it is
not 0. This implies that none of these polynomials can be expressed as a polynomial
in the others. Thus they can be taken to be h1; h2; h3; h4.

Let AR denote the vector space over R spanned by the uj . If � 2 AR is non-

zero, then we set for a 2 A, s�a D a � 2h�jai
h�j�i �. Then such a transformation

is called a reflection. It is the reflection about the hyperplane perpendicular to �.
The obvious calculation shows that � D su3and if ˛ D 1

2
.u0 � u1 � u2 � u3/,

then � D s˛ . We note that W is generated by the reflections corresponding to
u0 � u1, u1 � u2; u2 � u3 and u2 C u3. This implies that the group eW is generated
by reflections. One also checks that it is finite (actually of order 576). The general
theory (cf. J. E. Humphreys [8, Thm 3.5, p. 54]) implies that the algebra of invariants
is generated by algebraically independent homogeneous polynomials. Using this it
is easy to see that F1.z/;F3.z/;F4.z/;F6.z/ generate the algebra of invariants.

Remark 2.2. Alternatively, we note that eW is isomorphic with the Weyl group
of the exceptional group F4 (see Bourbaki, Chapitres 4, 5, et 6, Planche VIII pp.
272, 273). The exponents (on p. 273) are 1, 5, 7, 11. This implies that the algebra
of invariants is generated by algebraically independent homogeneous polynomials
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of degrees one more than the exponents, so 2, 6, 8, 12. We also note that the
basic invariants for F4 were given as F1.z/;F3.z/;F4.z/;F6.z/ for the first time
by M. L. Mehta [11].

For n � 4 qubits the analogue of the space A would have to be of dimension
2n � 3n: Thus even if there were a good candidate one would be studying, say,
for 5 qubits, a space of dimension 17 and an immense finite group that cannot be
generated by reflections.

3 A special invariant (hyperdeterminant) for 4 qubits

In this section we show that the hyperdeterminant for qubits is the only polynomial
that quantifies genuine 4-way generic entanglement. We start by observing that
Newton’s formulas (relating power sums to elementary symmetric functions) imply
that if a1; : : : ; an are elements of an algebra over Q (the rational numbers), then

a1a2 � � �an D fn.p1.a1; : : : ; an/; : : : ; pn.a1; : : : ; an//

with fn a polynomial with rational coefficients in n indeterminates and
pi .x1; : : : ; xn/ DP xij . This says that in the notation of the previous theorem

�.z/ D
Y

i<j

.zi � zj /
2.zi C zj /

2

is eW -invariant. Indeed, take a1; : : : ; an.n�1/ to be

f.zi � zj /
2 j i < j g [ f.zi C zj /

2 j i < j g

in some order. We will also use the notation � for the corresponding polynomial of
degree 24 on H�.

We define the generic set, ˝ , in H� to be the set of elements, v, such that Gv
is closed and dimGv is maximal (that is, 12). Then every such element can be
conjugated to an element of A by an element of G. It is easily checked that

˝ \A D fP ziui j zi ¤ ˙zj if i ¤ j g:

This implies that ˝ D f� 2 H� j �.�/ ¤ 0g.
Proposition 3.1. If f is a polynomial on H� that is invariant under the action of
G and is such that f .H� �˝/ D 0, then f is divisible by � .

Proof. Since f .z/ D 0 if zi D ˙zj for i ¤ j we see that f is divisible by zi � zj
and zi C zj for i < j . Thus if

.z/ D
Y

i<j

.zi � zj /.zi C zj /;
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then f D g with g a polynomial on A. One checks that .sz/ D det.s/.z/ for
s 2 W (see the notation in the previous section). Since f .sz/ D f .z/ for s 2 W we
see that g.sz/ D det.s/g.z/ for s 2 W: But this implies that g.z/ D 0 if zi D ˙zj
for i ¤ j . So g is also divisible by . We conclude that f is divisible by 2. This
is the content of the theorem.

Lemma 3.2. � is an irreducible polynomial.

Proof. Let � D �1�2 � � ��m be a factorization into irreducible (non-constant)
polynomials. If g 2 G, then since the factorization is unique up to order and scalar
multiple there is for each g 2 G, a permutation �.g/ 2 Sm and ci .g/ 2 C � f0g,
i D 1; : : : ; m such that �j ı g�1 D cj .g/��.g/j for j D 1; : : : ; m. The map
g 7�! �.g/ is a group homomorphism. The kernel of � is a closed subgroup of G.
Thus G= ker � is a finite group that is a continuous image of G. So it must be the
group with one element since G is connected. This implies that each �j satisfies
�j ıg�1 D cj .g/�j for all g 2 G. We therefore see that cj W G ! C�f0g is a group
homomorphism for each j . But the commutator group of G is G. Thus cj .g/ D 1

for all g. This implies that each of the factors �j is invariant under G. Now each
�j jA divides �jA thus it must be a product

Y

i<j

.zi � zj /
aij .zi C zj /

bij

by unique factorization. We note that if i < j , then f.zi C zj / ı s j s 2 W g D
f.zi � zj / ı s j s 2 W g D f".zi C zj / j i < j; " 2 f˙1gg [ fzi � zj j i ¤ j g.
This implies that since �j jA is non-constant and W -invariant that each �j jA must be
divisible byjA. Now arguing as in the previous proposition, the invariance implies
that �j is divisible by 2 D � . This implies that m D 1.

Theorem 3.3. If f is a polynomial on H� such that f .�/ ¤ 0 for � 2 ˝ , then
there exists c 2 C, c ¤ 0 and r such that f D c�r .
Proof. We may assume that f is non-constant. Let h be an irreducible factor of f .
Then h.�/ ¤ 0 if � 2 ˝ . This implies that the irreducible variety

Y D fx 2 H� j h.x/ D 0g � H� �˝ D fx 2 H� j �.x/ D 0g:

Since both varieties are of dimension 15 over C they must be equal. This implies
that h must be a multiple of � . Since f factors into irreducible non-constant factors
the theorem follows.

4 Discussion

In this paper we have shown that the set of all 4-qubit SL-invariant polynomials that
are also invariant under permutations of the qubits is generated by four polynomials
of degrees 2, 6, 8, 12. Using a completely different approach, in [14] it was also
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shown that these polynomials exist, but they were not given elegantly as in Eq. (1). In
addition, we have shown here that the hyperdeterminant [12] is the only SL-invariant
polynomial (up to its powers) that is not vanishing precisely on the set of generic
states.

Since the hyperdeterminant (in our notations �.z/) quantifies generic entangle-
ment, a state with the most amount of generic entanglement can be defined as a
state, z, that maximizes j�.z/j. We are willing to conjecture that the state

jLi D 1p
3
.u0 C !u1 C N!u2/ ; ! � ei
=3 ;

is the unique state (up to a local unitary transformation) that maximizes j�.z/j.
It was shown in [6] that the state jLimaximizes uniquely many measures of 4 qubits
entanglement. Moreover, one can easily check that the state jLi is the only state for
which E0 D E1 D E2 D 0 while E3.jLi/ D 1=9. It is known that a state with such
a property is unique [9]. Similarly, we found out the unique state, jF i for which
F1.jF i/ D F3.jF i/ D F4.jF i/ D 0 but F6.jF i/ ¤ 0. The (non-normalized)
unique state (up to a local unitary transformation) is

jF i D .3 �p3/u0 C .1C i/
p
3u1 C .1 � i/

p
3u2 � i.3�

p
3/u3 :
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Abstract We define a “finite maximal torus” of a compact Lie group G to be a
maximal finite abelian subgroup A of G. We introduce structure for finite maximal
tori parallel to the classical structure for maximal tori, like roots and the Weyl group;
and we recall a large number of (previously known) examples.
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1 Introduction

SupposeG is a compact Lie group, with identity componentG0. There is a beautiful
and complete structure theory for G0, based on the notion of maximal tori and root
systems introduced by Élie Cartan and Hermann Weyl. The purpose of this paper is
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to introduce a parallel structure theory using “finite maximal tori.” A maximal torus
is by definition a maximal connected abelian subgroup of G0. We define a finite
maximal torus to be a maximal finite abelian subgroup of G.

It would be etymologically more reasonable to use the term finite maximally
diagonalizable subgroup, but this name seems not to roll easily off the tongue.
A more restrictive notion is that of Jordan subgroup, introduced by Alekseevskiı̆
in [1]; see also [6], Definition 3.18. Also very closely related is the notion of fine
grading of a Lie algebra introduced in [14], and studied extensively by Patera and
others.

The classical theory of root systems and maximal tori displays very clearly many
interesting structural properties of G0. The central point is that root systems are
essentially finite combinatorial objects. Subroot systems can easily be exhibited by
hand, and they correspond automatically to (compact connected) subgroups of G0;
so many subgroups can be described in a combinatorial fashion. A typical example
visible in this fashion is the subgroup U.n/ � U.m/ of U.n C m/. A more exotic
example is the subgroup .E6 � SU.3//=�3 of E8 (with �3 the cyclic group of third
roots of 1).

Unfortunately, there is so far no general “converse” to this correspondence: it
is not known how to relate the root system of an arbitrary (compact connected)
subgroup of G0 to the root system of G0. (Many powerful partial results in
this direction were found by Dynkin in [5].) Consequently there are interesting
subgroups that are more or less invisible to the theory of root systems.

In this paper we will describe an analogue of root systems for finite maximal
tori. Again these will be finite combinatorial objects, so it will be easy to describe
subroot systems by hand, which must correspond to subgroups ofG. The subgroups
arising in this fashion are somewhat different from those revealed by classical root
systems. A typical example is the subgroup PU.n/ of PU.nm/, arising from the
action of U.n/ on C

n ˝C
m. A more exotic example is the subgroup F4 �G2 of E8

(see Example 4.5).
In Section 2 we recall Grothendieck’s formulation of the Cartan–Weyl theory in

terms of “root data.” His axiomatic characterization of root data is a model for what
we seek to do with finite maximal tori.

One of the fundamental classical theorems about maximal tori is that if T is a
maximal torus in G0, and eG0 is a finite covering of G0, then the preimageeT of T in
eG0 is a maximal torus in eG0. The corresponding statement about finite maximal tori
is false (see Example 4.1); the preimage often fails to be abelian. In order to keep
this paper short, we have avoided any serious discussion of coverings.

In Section 3 we define root data and Weyl groups for finite maximal tori. We will
establish analogues of Grothendieck’s axioms for these finite root data, but we do
not know how to prove an existence theorem like Grothendieck’s (saying that every
finite root datum arises from a compact group).

In Section 4 we offer a collection of examples of finite maximal tori. The exam-
ples (none of which is original) are the main point of this paper, and are what
interested us in the subject. Reading this section first is an excellent way to approach
the paper.
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Of course it is possible and interesting to work with maximal abelian subgroups
which may be neither finite nor connected. We have done nothing about this.

Grothendieck’s theory of root data was introduced not for compact Lie groups but
for reductive groups over algebraically closed fields. The theory of finite maximal
tori can be put into that setting as well, and this seems like an excellent exercise. It is
not clear to us (for example) whether one should allowp-torsion in a “finite maximal
torus” for a group in characteristic p; excluding it would allow the theory to develop
in a straightforward parallel to what we have written about compact groups, but
allowing p-torsion could lead to very interesting examples of finite maximal tori.

Much of the most interesting structure and representation theory for a connected
reductive algebraic groupG0 (over an algebraically closed field) can be expressed in
terms of (classical) root data. For example, the irreducible representations of G0 are
indexed (following Cartan and Weyl) by orbits of the Weyl group on the character
lattice; and Lusztig has defined a surjective map from conjugacy classes in the Weyl
group to unipotent classes in G. It would be fascinating to rewrite such results in
terms of finite root data; but we have done nothing in this direction.

2 Root data

In this section we introduce Grothendieck’s root data for compact connected Lie
groups. As in the introduction, we begin with

G D compact connected Lie group: (2.1a)

The real Lie algebra of G and its complexification are written

g0 D Lie.G/; g D g0 ˝R C: (2.1b)

The conjugation action of G on itself is written Ad:

AdWG ! Aut.G/; Ad.g/.x/ D gxg�1 .g; x 2 G/: (2.1c)

The differential (in the target variable) of this action is an action of G on g0 by Lie
algebra automorphisms

AdWG ! Aut.g0/: (2.1d)

This differential of this action of G is a Lie algebra homomorphism

adW g0 ! Der.g0/; ad.X/.Y / D ŒX; Y � .X; Y 2 g0/: (2.1e)
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Analogous notation will be used for arbitrary real Lie groups. The kernel of the
adjoint action of G on G or on g0 is the center Z.G/:

Z.G/ D fg 2 G j gxg�1 D x; all x 2 Gg
D fg 2 G j Ad.g/.Y / D Y; all Y 2 g0g:

(2.1f)

So far all of this applies to arbitrary connected Lie groups G. We will also have
occasion to use the existence of a nondegenerate symmetric bilinear form B on g0,
with the invariance properties

B.Ad.g/X;Ad.g/Y / D B.X; Y / .X; Y 2 g0; g 2 G/: (2.1g)

We may arrange for this form to be negative definite: if for example G is a group of
unitary matrices, so that the Lie algebra consists of skew-Hermitian matrices, then

B.X; Y / D tr.XY /

will serve. (Since X has purely imaginary eigenvalues, the trace of X2 is negative.)
We will also write B for the corresponding (nondegenerate) complex-linear sym-
metric bilinear form on g.

Definition 2.2. A maximal torus of a compact connected Lie groupG is a maximal
connected abelian subgroup T of G.

We now fix a maximal torus T � G. Because of [11], Corollary 4.52, T is
actually a maximal abelian subgroup ofG, and therefore equal to its own centralizer
in G:

T D ZG.T / D GT D fg 2 G j Ad.t/.g/ D g; (all t 2 T )g: (2.3a)

Because T is a compact connected abelian Lie group, it is isomorphic to a
product of copies of the unit circle

S1 D fe2
i� j� 2 Rg; Lie.S1/ D RI (2.3b)

the identification of the Lie algebra is made using the coordinate � . The character
lattice of T is

X�.T / D Hom.T; S1/

D f�WT ! S1 continuous, �.st/ D �.s/�.t/ .s; t 2 T /g:
(2.3c)

The character lattice is a (finitely generated free) abelian group, written additively,
under multiplication of characters:

.�C �/.t/ D �.t/�.t/ .�; � 2 X�.T //:
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The functorX� is a contravariant equivalence of categories from compact connected
abelian Lie groups to finitely generated torsion-free abelian groups. The inverse
functor is given by Hom into S1:

T ' Hom.X�.T /; S1/; t 7! .� 7! �.t//: (2.3d)

The cocharacter lattice of T is

X�.T / D Hom.S1; T /

D f	WS1 ! T continuous, 	.zw/ D 	.z/	.w/ .z;w 2 S1/g:
(2.3e)

There are natural identifications

X�.S1/ D X�.S1/ D Hom.S1; S1/ ' Z; �n.z/ D zn .z 2 S1/:

The composition of a character with a cocharacter is a homomorphism from S1 to
S1, which is therefore some nth power map. In this way we get a biadditive pairing

h�; �iWX�.T / �X�.T /! Z; (2.3f)

defined by

h�; 	i D n, �.	.z// D zn .� 2 X�.T /; 	 2 X�.T /; z 2 S1/: (2.3g)

This pairing identifies each of the lattices as the dual of the other:

X� ' HomZ.X
�;Z/; X� ' HomZ.X�;Z/: (2.3h)

The functor X� is a covariant equivalence of categories from compact connected
abelian Lie groups to finitely generated torsion-free abelian groups. The inverse
functor is given by tensoring with S1:

X�.T /˝Z S
1 ' T; 	 ˝ z 7! 	.z/: (2.3i)

The action by Ad of T on the complexified Lie algebra g of G, like any complex
representation of a compact group, decomposes into a direct sum of copies of
irreducible representations; in this case, of characters of T :

g D
X

�2X�.T /

g�; g� D fY 2 g j Ad.t/Y D �.t/Y .t 2 T /g: (2.3j)

In particular, the zero weight space is

g.0/ D fY 2 g j Ad.t/Y D 0 .t 2 T /g
D Lie.GT /˝R C D Lie.T /˝R C D t;

(2.3k)
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the complexified Lie algebra of T ; the last two equalities follow from (2.3a).
We define the roots of T in G to be the nontrivial characters of T appearing in
the decomposition of the adjoint representation:

R.G; T / D f˛ 2 X�.T /� f0g j g˛ ¤ 0g: (2.3l)

Because of the description of the zero weight space in (2.3k), we have

g D t˚
X

˛2R.G;T /
g˛; (2.3m)

We record two elementary facts relating the root decomposition to the Lie bracket
and the invariant bilinear form B:

Œg˛; gˇ� � g˛Cˇ; (2.3n)

B.g˛; gˇ/ D 0; ˛ C ˇ ¤ 0: (2.3o)

Example 2.4. Suppose G D SU.2/, the group of 2 � 2 unitary matrices of
determinant 1. We can choose as a maximal torus

SD.2/ D
��

e2
i� 0

0 e�2
i�
�

j � 2 R

�

' S1:

We have given this torus a name in order to be able to formulate the definition of
coroot easily. The “D” is meant to stand for “diagonal,” and the “S” for “special”
(meaning determinant one, as in the “special unitary group”). The last identification
gives canonical identifications

X�.SD.2// ' Z; X�.SD.2// ' Z:

The Lie algebra of G is

su.2/ D f2 � 2 complex matrices X j tX D �X; tr.X/ D 0g:

The obvious map identifies

su.2/C ' f2 � 2 complex matrices Z j tr.Z/ D 0g D sl.2;C/:

The adjoint action of SD.2/ on g is

Ad

�

e2
i� 0

0 e�2
i�
��

a b

c �a
�

D
�

a e4
i�b

e�4
i� c �a
�

:
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This formula shows at once that the roots are

R.SU.2/; SD.2// D f˙2g � X�.SD.2// ' Z;

with root spaces

sl.2/2 D
��

0 t

0 0

�

j t 2 C

�

; sl.2/�2 D
��

0 0

s 0

�

j s 2 C

�

:

When we define coroots in a moment, it will be clear that

R_.SU.2/; SD.2// D f˙1g � X�.SD.2// ' Z:

Now we are ready to define coroots in general. For every root ˛, we define

gŒ˛� D Lie subalgebra generated by root spaces g˙˛: (2.5a)

It is easy to see that gŒ˛� is the complexification of a real Lie subalgebra g
Œ˛�
0 , which

in turn is the Lie algebra of a compact connected subgroup

GŒ˛� � G: (2.5b)

This subgroup meets the maximal torus T in a one-dimensional torus T Œ˛�, which is
maximal in GŒ˛�. There is a continuous surjective group homomorphism

�˛WSU.2/! GŒ˛� � G; (2.5c)

which we may choose to have the additional properties

�˛.SD.2// D T˛ � T .d�˛/C .sl.2/2/ D g˛: (2.5d)

The homomorphism �˛ is then unique up to conjugation by T in G (or by SD.2/
in SU.2/). In particular, the restriction to SD.2/ ' S1, which we call ˛_, is a
uniquely defined cocharacter of T :

˛_WS1 ! T; ˛_.e2
i� / D �˛
�

e2
i� 0

0 e�2
i�
�

: (2.5e)

The element ˛_ 2 X�.T / is called the coroot corresponding to the root ˛. We write

R_.G; T / D f˛_ j ˛ 2 R.G; T /g � X�.T / � f0g: (2.5f)

Essentially because the positive root in SU.2/ isC2, we see that

h˛; ˛_i D 2 .˛ 2 R.G; T //: (2.5g)
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We turn now to a description of the Weyl group (of a maximal torus in a compact
group). Here is the classical definition.

Definition 2.6. Suppose G is a compact connected Lie group, and T is a maximal
torus in G. The Weyl group of T in G is

W.G; T / D NG.T /=T;
the quotient of the normalizer of T by its centralizer. From this definition, it is clear
that W.G; T / acts faithfully on T by automorphisms (conjugation):

W.G; T / ,! Aut.T /:

By acting on the range of homomorphisms,W.G; T /may also be regarded as acting
on cocharacters:

W.G; T / ,! Aut.X�.T //; .w � 	/.z/ D w � .	.z//
.w 2 W; 	 2 X�.T / D Hom.S1; T /; z 2 S1/:

Similarly,

W.G; T / ,! Aut.X�.T //; .w � �/.t/ D �.w�1 � t//
.w 2 W; � 2 X�.T / D Hom.T; S1/; t 2 T /:

The actions on the dual lattices X�.T / and X�.T / are inverse transposes of each
other. Equivalently, for the pairing of (2.3g),

hw � �; 	i D h�;w�1 � 	i .� 2 X�.T /; 	 2 X�.T //:

We recall now how to construct the Weyl group from the roots and the coroots;
this is the construction that we will seek to extend to finite maximal tori. We begin
with an arbitrary root ˛ 2 R.G; T /, and �˛ as in (2.5c). The element

�˛ D �˛
�

0 1

�1 0

�

2 NG.T / (2.7a)

is well defined (that is, independent of the choice of �˛) up to conjugation by
T \GŒ˛�. Consequently the coset

s˛ D �˛T 2 NG.T /=T D W.G; T / (2.7b)

is well defined; it is called the reflection in the root ˛. Because it is constructed from
the subgroupG˛ , we see that

�˛ commutes with ker.˛/ � T , (2.7c)
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and therefore that

s˛ acts trivially on ker.˛/ � T . (2.7d)

A calculation in SU.2/ shows that

�

0 1

�1 0

�

acts by inversion on SD.2/, (2.7e)

and therefore that

s˛ acts by inversion on im.˛_/ � T . (2.7f)

The two properties (2.7d) and (2.7f) are equivalent to

s˛.t/ D t � ˛_.˛.t//�1 .t 2 T /: (2.7g)

From this formula we easily deduce that

s˛.�/ D � � h�; ˛_i˛ .� 2 X�.T // (2.7h)

and similarly

s˛.	/ D 	 � h˛; 	i˛_ .	 2 X�.T //: (2.7i)

Here is the basic theorem about the Weyl group.

Theorem 2.8. Suppose G is a compact connected Lie group, and T � G is a
maximal torus. Then the Weyl group of T in G (Definition 2.6) is generated by the
reflections described by any of the equivalent conditions (2.7g), (2.7h), or (2.7i):

W.G; T / D hs˛ j ˛ 2 R.G; T /i :

The automorphisms s˛ of X�.T / must permute the roots R.G; T /, and the
automorphisms s˛ of X�.T / must permute the corootsR_.G; T /.

Grothendieck’s understanding of the classification of compact Lie groups by
Cartan and Killing is that the combinatorial structure of roots and Weyl group
determinesG completely. Here is a statement.

Definition 2.9 (Root datum; see [16], 7.4). An abstract (reduced) root datum is a
quadruple‰ D .X�; R;X�; R_/, subject to the requirements

(a) X� and X� are lattices (finitely generated torsion-free abelian groups), dual to
each other (cf. (2.3h)) by a specified pairing

h; iWX� �X� ! ZI
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(b) R � X� and R_ � X� are finite subsets, with a specified bijection ˛ 7! ˛_ of
R onto R_.

These data define lattice endomorphisms (for every root ˛ 2 R)

s˛ WX� ! X�; s˛.�/ D � � h�; ˛_i˛;
s˛ WX� ! X�; s˛.	/ D 	 � h˛; 	i˛_;

called root reflections. It is easy to check that each of these endomorphisms is the
transpose of the other with respect to the pairing h; i. We impose the axioms

(RD 0) if ˛ 2 R, then 2˛ … R;
(RD 1) h˛; ˛_i D 2 .˛ 2 R/; and
(RD 2) s˛.R/ D R; s˛.R

_/ D R_ .˛ 2 R/.
Axiom (RD 0) is what makes the root datum reduced. Axiom (RD 1) implies that
s2˛ D 1, so s˛ is invertible. The Weyl group of the root datum is the group generated
by the root reflections:

W.‰/ D hs˛ .˛ 2 R/i � Aut.X�/:

The definition of root datum is symmetric in the two lattices: the dual root
datum is

‰_ D .X�; R_; X�; R/:

The inverse transpose isomorphism identifies the Weyl group with

W.‰_/ D hs˛ .˛_ 2 R_/i ' W.‰/:

Theorem 2.8 (and the material leading to its formulation) show that if T is a
maximal torus in a compact connected Lie groupG, then

‰.G; T / D .X�.T /; R.G; T /;X�.T /; R_.G; T // (2.10)

is an abstract reduced root datum. The amazing fact—originating in the work of Car-
tan and Killing, but most beautifully and perfectly formulated by Grothendieck—is
that the root datum determines the group, and that every root datum arises in this
way. Here is a statement.

Theorem 2.11 ([4], exp. XXV; also [16], Theorems 9.6.2 and 10.1.1). Suppose
‰ D .X�; R;X�; R_/ is an abstract reduced root datum. Then there is a maximal
torus in a compact connected Lie group T � G so that

‰.G; T / ' ‰
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(notation (2.10)). The pair .G; T / is determined by these requirements up to an
inner automorphism from T . We have

W.G; T / D NG.T /=T ' W.‰/:

Sketch of proof. What is proved in [4] is that to ‰ there corresponds a complex
connected reductive algebraic group G.‰/. There is a correspondence between
complex connected reductive algebraic groups and compact connected Lie groups
obtained by passage to a compact real form (see for example [13], Theorem 5.12
(page 247)). Combining these two facts proves the theorem.

�

3 Finite maximal tori

Throughout this section we write

G D (possibly disconnected) compact Lie group

G0 D identity component of G.
(3.1)

We use the notation of (2.1), especially for the identity componentG0.

Definition 3.2. A finite maximal torus for G is a finite maximal abelian subgroup

A � G: (3.3)

The definition means that the centralizer in G of A is equal to A:

ZG.A/ D A: (3.3a)

The differentiated version of this equation is

Zg.A/ D fX 2 g j Ad.a/X D X; all a 2 Ag D Lie.A/ D f0gI (3.3b)

the last equality is because A is finite. We define the large Weyl group of A in G0
to be

Wlarge.G0; A/ D NG0.A/=ZG0.A/ D NG0.A/=.A\G0/: (3.3c)

Clearly

Wlarge.G0; A/ � Aut.A/; (3.3d)

a finite group.
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The term “large” should be thought of as temporary. We will introduce in
Definition 3.8 a subgroup Wsmall.G;A/, given by generators analogous to the root
reflections in a classical Weyl group. We believe that the two groups are equal; but
until that is proved, we need terminology to talk about them separately.

In contrast to classical maximal tori, finite maximal tori need not exist. For exam-
ple, if G D U.n/, then any abelian subgroup must (after change of basis) consist
entirely of diagonal matrices; so the only maximal abelian subgroups are the
connected maximal tori, none of which is finite.

For the rest of this section we fix a (possibly disconnected) compact Lie group
G, and a finite maximal torus

A � G: (3.4a)

Our goal in this section is to introduce roots, coroots, and root transvections, all by
analogy with the classical case described in Section 2.

The character group of A is

X�.A/ D Hom.A; S1/

D f�WA! S1 �.ab/ D �.a/�.b/ .a; b 2 A/g:
(3.4b)

The character group is a finite abelian group, written additively, under multiplication
of characters:

.�C �/.a/ D �.a/�.a/ .�; � 2 X�.A//:

In particular, we write 0 for the trivial character ofA. We can recoverA fromX�.A/
by a natural isomorphism

A ' Hom.X�.A/; S1/; a 7! Œ� 7! �.a/�: (3.4c)

As a consequence, the functor X� is a contravariant exact functor from the
category of finite abelian groups to itself. The group X�.A/ is always isomorphic
to A, but not canonically.

For any positive integer n, define

�n D fz 2 C j zn D 1g; (3.4d)

the group of nth roots of unity in C. We identify

X�.Z=nZ/ ' �n; �!.m/ D !m .! 2 �n;m 2 Z=nZ/: (3.4e)

Similarly we identify

X�.�n/ ' Z=nZ; �m.!/ D !m .m 2 Z=nZ; ! 2 �n/: (3.4f)



Finite maximal tori 281

Of course we can write

�n D fe2
i� j � 2 Z=nZg ' Z=nZ;

and so identify a particular generator of the cyclic group �n; but (partly with the
idea of working with reductive groups over other fields, and partly to see what is
most natural) we prefer to avoid using this identification.

A character� 2 X�.A/ is said to be of order dividing n if n� D 0; equivalently, if

�WA! �n: (3.4g)

We will say “character of order n” to mean a character of order dividing n. We write

X�.A/.n/ D f� 2 X�.A/ j n� D 0g
D Hom.A;�n/;

(3.4h)

for the group of characters of order n. Therefore

X�.A/ D
[

n�1
X�.A/.n/: (3.4i)

We say that � has order exactly n if n is the smallest positive integer such that
n� D 0; equivalently, if

�WA� �n (3.4j)

is surjective.
The action by Ad of A on the complexified Lie algebra g of G decomposes into

a direct sum of characters:

g D
X

�2X�.A/

g�; g� D fY 2 g j Ad.a/Y D �.a/Y .a 2 A/g: (3.4k)

According to (3.3b), the trivial character does not appear in this decomposition; that
is, g0 D 0. We define the roots of A in G to be the characters of A that do appear:

R.G;A/ D f˛ 2 X�.A/g j g˛ ¤ 0g � X�.A/� f0g: (3.4l)

The analogue of the root decomposition (2.3m) has no term like the Lie algebra
of the maximal torus:

g D
X

˛2R.G;A/
g˛: (3.4m)



282 Gang Han and David A. Vogan Jr.

Just as for classical roots, we see immediately that

Œg˛; gˇ� � g˛Cˇ; (3.4n)

and

B.g˛; gˇ/ D 0; ˛ C ˇ ¤ 0: (3.4o)

Fix a positive integer n. A cocharacter of order dividing n is a homomorphism

	W�n ! A: (3.5a)

We will say “cocharacter of order n” to mean a cocharacter of order dividing n. The
cocharacter has order exactly n if and only if 	 is injective.

If we fix a primitive nth root !, then a cocharacter 	 of order n is the same thing
as an element x 2 A of order n by the correspondence

x D 	.!/: (3.5b)

We write

X�.A/.n/ D Hom.�n; A/ (3.5c)

for the group of cocharacters of order n. The natural surjection

�mn� �n; ! 7! !m

gives rise to a natural inclusion

Hom.�n; A/ ,! Hom.�mn; A/; X�.A/.n/ ,! X�.A/.mn/: (3.5d)

Using these inclusions, we can define the cocharacter group of A

[

n

X�.A/.n/: (3.5e)

The functor X� is a covariant equivalence of categories from the category of finite
abelian groups to itself; but the choice of a functorial isomorphism A ' X�.A/
requires compatible choices of primitive nth roots!n for every n. (The compatibility
requirement is !n D !mmn.) Partly to maintain the analogy with cocharacters of
connected tori, and partly for naturality, we prefer not to make such choices, and to
keep X�.A/ as a group distinct from A.

Suppose � 2 X�.A/ is any character and 	 2 X�.A/.n/ is an order n cocharacter.
The composition � ı 	 is a homomorphism�n ! S1. Such a homomorphism must
take values in �n, and is necessarily raising to the mth power for a unique m 2
Z=nZ ' .1=n/Z=Z. In this way we get a natural pairing
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X�.A/ �X�.A/.n/! .1=n/Z=Z;

�.	.!// D !nh�;	i .� 2 X�.A/.n/; 	 2 X�.A/.n/; ! 2 �n/:
(3.5f)

Taking the union over n defines a biadditive pairing

X�.A/ �X�.A/! Q=Z (3.5g)

which identifies

X�.A/ ' Hom.X�.A/;Q=Z/; X�.A/ ' Hom.X�.A/;Q=Z/: (3.5h)

Before defining coroots in general, we need an analog of Example 2.4.

Example 3.6. Suppose A � H is a finite maximal torus, in a compact Lie group
H of strictly positive dimension N . Assume that the roots of A in H lie on a single
line; that is, that there is a character ˛ so that

R.H;A/ � fm˛ j m 2 Zg � X�.A/: (3.6a)

(We do not assume that ˛ itself is a root.) Since H is assumed to have positive
dimension, there must be some (necessarily nonzero) roots; so ˛ must have some
order exactly n > 0:

˛WA� �n: (3.6b)

Fix now a primitive nth root of unity !, and an element y 2 A so that

�.y/ D !: (3.6c)

Then

hm˛ D fX 2 h j Ad.y/X D !mXg: (3.6d)

From this description (or indeed from (3.4m) and (3.4n)) it is clear that hŒm� D hm˛
is a Z=nZ-grading of the complex reductive Lie algebra h, and that hŒ0� D 0.
According to the Kač classification of automorphisms of finite order (see for
example [10], pp. 490–515; what we need is Lemma 10.5.3 on page 492)

h is necessarily abelian, (3.6e)

so the identity componentH0 is a compact torus.
We chose y so that ˛.y/ generates the image of ˛. From this it follows

immediately that A is generated by y and the kernel of ˛:

A D hker.˛/; yi: (3.6f)



284 Gang Han and David A. Vogan Jr.

Because of the definition of roots and (3.6a), Ad.ker.˛//must act trivially on h, and
therefore on H0. It follows that

ZH0.A/ D Hy
0 ;

the fixed points of the automorphism Ad.y/ on the torusH0. Since A is assumed to
be maximal abelian, we deduce that

A\H0 D Hy
0 : (3.6g)

We are therefore going to analyze this fixed point group.
Because

Aut.H0/ D Aut.X�.H0//; (3.6h)

the automorphism Ad.y/ is represented by a lattice automorphism

y� 2 Aut.X�.H0//; .y�/n D 1 (3.6i)

and therefore (after choice of a lattice basis) by an invertibleN �N integer matrix

Y� 2 GL.N;Z/; .Y�/n D I: (3.6j)

Because 0 is not a root, the matrix Y� does not have one as an eigenvalue. Every
eigenvalue must be a primitive d th root of 1 for some d dividing n (and not equal
to 1). Define

my.d/ D multiplicity of primitive d th roots as eigenvalues of Y�
D dim.hm˛/; all m such that gcd.m; n/ D n=d: (3.6k)

Then the characteristic polynomial of the matrix Y� is

det.xI � Y�/ D
Y

d jn; d>1
ˆd .x/

my.d/: (3.6l)

The lattice basis chosen to get the matrix Y� identifies

H0 ' C
N =ZN : (3.6m)

In this picture, the fixed points of Ad.y/ correspond to

fv 2 C
N j Y�.v/ � v 2 Z

N g=ZN D .Y� � I /�1ZN=ZN

' Z
N =.Y� � I /ZN :

(3.6n)
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If D is any nonsingularN �N integer matrix, then

jZN=DZ
N j D j detDj;

(as follows for example from looking at Riemann sums and the linear change of
variable formula for integrating over a cube in R

N ). Consequently the number of
fixed points of Ad.y/ is

jHy
0 j D j det.I � Y�/j
D

Y

d jn; d>1
ˆd .1/

my.d/:
(3.6o)

Here ˆd is the d th cyclotomic polynomial

ˆd .x/ D
Y

!2�d primitive

.x � !/: (3.6p)

Evaluating cyclotomic polynomials at 1 is standard and easy:

ˆd.1/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0 d D 1
p d D pm; (p prime, m � 1)

1 d divisible by at least two primes:

(3.6q)

Inserting these values (3.6o) gives

jHy
0 j D

Y

pm jn
p prime, m � 1

pdimh.n=pm/˛ : (3.6r)

It is easy to see that every element ofHy
0 has order dividing n.

Definition 3.7. Suppose A is a finite maximal torus in the compact Lie group G,
and ˛ 2 R.G;A/ is a root of order exactly n:

1 �! ker˛ �! A
˛�!�n �! 1: (3.7a)

The characters of A that are trivial on ker˛ are precisely the multiples of ˛.
(The reason is that the characters of �n are precisely the integer multiples of the
“tautological” character sending each nth root of 1 to itself; and this in turn is a
consequence of the fact that the group �n is cyclic.) If we define

GŒ˛� D ZG.ker˛/; (3.7b)
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(a compact subgroup of G), then its complexified Lie algebra is

gŒ˛� D
X

m2Z
gm˛: (3.7c)

That is, the pair .GŒ˛�; A/ is of the sort considered in Example 3.6. We now use the
notation of that example, choosing in particular a primitive nth root ! 2 �n, and an
element y 2 A so that

˛.y/ D !: (3.7d)

As we saw in the example, .GŒ˛�/0 is a (connected) torus, on which y acts as an
automorphism of order n, and

A \ .GŒ˛�/0 D ..GŒ˛�/0/
y: (3.7e)

The outer parentheses are included for clarity: first take the identity component, then
compute the fixed points of Ad.y/. Reversing this order would give .GŒ˛�/y D A,
which has a trivial identity component. But we will omit them henceforth. We define
the group of coroots for ˛ to be

R_.˛/ D f	W�n ! .GŒ˛�/
y
0 � ker˛ � Ag � X�.ker˛/.n/ � X�.n/; (3.7f)

the cocharacters taking values in the group of fixed points of Ad.y/ on .GŒ˛�/0.
Choosing a primitive nth root of 1 identifies R_.˛/ with .GŒ˛�/

y
0 . Its cardinality

may therefore be computed in terms of root multiplicities using (3.6r):

jR_.˛/j D j.GŒ˛�/
y
0 j

D
Y

pmjn
p prime, m � 1

pdimg.n=pm/˛ : (3.7g)

There are nontrivial coroots for ˛ if and only if there is a nontrivial prime power pm

dividing n so that .n=pm/˛ is a root.

Definition 3.8. Suppose A is a finite maximal torus in the compact Lie group G,
and ˛ 2 R.G;A/ is a root of order n, and

	W�n ! .GŒ˛�/
y
0 � ker˛ � A (3.8a)

is a coroot for ˛ (Definition 3.7). A transvection generator for .˛; 	/ is an element

�.˛; 	/ 2 .GŒ˛�/0 (3.8b)

with the property that

Ad.y�1/.�.˛; 	// D �.˛; 	/	.!/: (3.8c)
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We claim that there is a transvection generator for each coroot. To see this, write the
abelian group .GŒ˛�/0 additively. Then the equation we want to solve looks like

ŒAd.y�1/� I �� D 	.!/:

Because the determinant of the Lie algebra action is

j det.Ad.y�1/� I /j D j det.I �Ad.y//j D j det.I � Y�/j

which is equal to the number of coroots (see (3.6o)), we see that (3.8c) has a solution
�.˛; 	/, and that in fact �.˛; 	/ is unique up to a factor from .GŒ˛�/

y
0 .

The defining equation for a transvection generator may be rewritten as

�.˛; 	/ y �.˛; 	/�1 D y 	.˛.y//: (3.8d)

Because �.˛; 	/ is built from exponentials of root vectors for roots that are multiples
of ˛, �.˛; 	/ must commute with ker˛:

�.˛; 	/ a0 �.˛; 	/
�1 D a0 .a0 2 ker˛ � A/: (3.8e)

Combining the last two formulas, and the fact that A is generated by ker˛ and y,
we find that

�.˛; 	/ a �.˛; 	/�1 D a 	.˛.a// .a 2 A/: (3.8f)

In particular,

�.˛; 	/ 2 NG0.A/; (3.8g)

and the root transvection is the coset

s.˛; 	/ D �.˛; 	/.A \G0/ 2 NG0.A/=.A\G0/ D Wlarge.G;A/: (3.8h)

We define the small Weyl group of A in G to be the subgroup

Wsmall.G;A/ D
˝

s.˛; 	/ .˛ 2 R.G;A/; 	 2 R_.˛/˛ ; (3.8i)

generated by root transvections.

Conjecture 3.9. If A is a finite maximal torus in a compact Lie group G (Defini-
tion 3.2), the normalizer of A in G0 is generated by A \ G0 and the transvection
generators �.˛; 	/ described in Definition 3.8. Equivalently,

Wsmall.G;A/ D Wlarge.G;A/

(Definitions 3.2 and 3.8).
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In case G is the projective unitary group PU.n/, then it is shown in [9] that A
must be one of the subgroups described in (4.3) below. In these cases the conjecture
is established in [8].

We want to record explicitly one of the conclusions of Example 3.6.

Proposition 3.10. Suppose A is a finite maximal torus in a compact Lie group G
(Definition 3.2), and that ˛ and ˇ are roots of A in G.

1. If ˛ and ˇ are both multiples of the same root � , then Œg˛; gˇ� D 0.
2. If ˛ and ˇ have relatively prime orders, then Œg˛; gˇ� D 0.

Proof. Part (1) is (3.6e) (together with the argument used in Definition 3.7 to get into
the setting of Example 3.6). If ˛ and ˇ have ordersm and n, then the hypothesis of
(2) produces integers x and y so that mx C ny D 1. Consequently

ˇ D .mx C ny/ˇ D mxˇ D mx.˛ C ˇ/;

and similarly

˛ D ny.˛ C ˇ/:

So (2) follows from (1) (with � D ˛ C ˇ).

We conclude this section with a (tentative and preliminary) analogue of
Grothendieck’s notion of root datum.

Definition 3.11 (Finite root datum). An abstract finite root datum is a quadruple
‰ D .X�; R;X�; R_/, subject to the requirements

(a) X� andX� are finite abelian groups, dual to each other (cf. (3.5h)) by a specified
pairing

h; iWX� �X� ! Q=ZI

(b) R � X� � f0g
(c) R_ is a map from R to subgroups of X�; we call R_.˛/ the group of coroots

for ˛.

We impose first the axioms

(FRD 0) If ˛ has order n, and k is relatively prime to n, then k˛ is also a root and
R_.˛/ D R_.k˛/ � X�.n/; and

(FRD 1) If 	 2 R_.˛/, then h˛; 	i D 0.

(The condition about k is a rationality hypothesis, corresponding to some automor-
phism being defined over Q. The rest of (FRD 0) says that the order of a coroot must
divide the order of the corresponding root. Axiom (FRD 1) says that a coroot must
take values in the kernel of the corresponding root.)
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For each root ˛ of order n and coroot 	 2 R_.˛/ we get homomorphisms of
abelian groups

s.˛; 	/WX� ! X�; s.˛; 	/.�/ D � � nh�; 	i˛;
s.˛; 	/WX� ! X�; s.˛; 	/.�/ D � � nh˛; �i	;

called root transvections. The coefficients of ˛ and of 	 in these formulas are
integers because of axiom (FRD)(0); so the formulas make sense. It is easy to check
that each of these endomorphisms is the transpose of the other with respect to the
pairing h; i. The axiom (FRD)(1) means that s.˛; 	/ is the identity on multiples of ˛,
and clearly s.˛; 	/ induces the identity on the quotientX�=h˛i. Therefore s.˛; 	/ is
a transvection, and

s.˛; �/WR_.˛/ ,! Aut.X�/

is a group homomorphism.
We impose in addition the axioms

(FRD 2) If ˛ 2 R and 	 2 R_.˛/, then s.˛; 	/.R/ D R.
(FRD 3) If ˛ 2 R and 	 2 R_.˛/, then s.˛; 	/.R_.ˇ// D R_.s.˛; 	/.ˇ//.
The Weyl group of the root datum is the group generated by the root transvections:

W.‰/ D hs.˛; 	/ .˛ 2 R; 	 2 R_.˛//i � Aut.X�/:

The inverse transpose isomorphism identifies the Weyl group with a group of
automorphisms of X�.

We have shown in this section that the root datum

‰.G;A/ D .X�.A/;R.G;A/;X�.A/;R_/ (3.12)

of a finite maximal A torus in a compact Lie group G is an abstract finite root
datum. The point of making these observations is the hope of finding and proving
a result analogous to Theorem 2.11: that an abstract finite root datum determines a
pair .G;A/ uniquely.

We do not yet understand precisely how to formulate a reasonable conjecture
along these lines. First, in order to avoid silly counterexamples from finite groups,
we should assume

G D G0AI (3.13)

that is, that A meets every component of G.
To see a more serious failure of the finite root datum to determine G, consider

the finite root datum

.Z=6Z; f1; 5g; .1=6/Z=Z; R_/; (3.14a)
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in which R_.1/ D R_.5/ D f0g. Write

A D ZŒx�=hˆ6.x/i D ZŒx�=hx2 � x C 1i; (3.14b)

the ring of integers of the cyclotomic field QŒ!6�, with !6 a primitive sixth root of
unity. The choice of !6 defines an inclusion �6 ,! A sending !6 to the image of x.
Therefore the rank two free abelian group A acquires an action of A D �6. If we
write T 1 for the two-dimensional torus with

X�.T 1/ D A; (3.14c)

then the equivalence of categories (2.3i) provides an action of �6 on T 1. Explicitly,
the action of !6 on T 1 is

!6 � .z;w/ D .w�1; zw/ .z;w 2 S1/: (3.14d)

The roots for this action are 1 and 5. According to (3.6r) (or by inspection of (3.14d))
the action of A on T 1 has no fixed points. It follows that A is a maximal abelian
subgroup of

G1 D T 1 Ì A; (3.14e)

and that the corresponding finite root datum is exactly the one described by (3.14a).
So far so good. But we could equally well use the 2m-dimensional torus

T m D T 1 � � � � � T 1

with the diagonal action of �6, and define

Gm D T m Ì A: (3.14f)

AgainA D �6 is a maximal abelian subgroup, and the root datum is exactly (3.14a).
So in this case there are many different G, of different dimensions, with the same
finite root datum.

The most obvious way to address this particular family of counterexamples
is to include root multiplicities as part of the finite root datum, and to require
that they compute the cardinalities of the coroot groups R_.˛/ by (3.7g). (If A
is an elementary abelian p-group, then the coroot groups determine the root
multiplicities: if ˛ has multiplicity m, then jR_.˛/j D pm. That is why we needed
A of order 6 to have make an easy example where many multiplicities are possible.)
But the root multiplicities alone do not determineG; one can make counterexamples
with G0 a torus and A cyclic using cyclotomic fields of class number greater than
one. Perhaps the finite root datum should be enlarged to include the tori GŒ˛�

0 (or
rather the corresponding lattices), equipped with the action of �n constructed in
Definition 3.7.
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4 Examples

Example 4.1. The simplest example of a finite maximal torus is in the three-
dimensional compact group

G D SO.3/
of three by three real orthogonal matrices. We can choose

A D
8

<

:

0

@

�1 0 0

0 �2 0

0 0 �3

1

A j �i D ˙1;
Y

i

�i D 1
9

=

;

:

This is the “Klein four-group,” the four-element group in which each non-identity
element has order 2. We can identify characters with subsets of S � f1; 2; 3g,
modulo the equivalence relation that each subset is equivalent to its complement:
S � Sc . The formula is

�S.�1; �2; �3/ D
Y

i2S
�i :

Thus the trivial character of A is �; D �f1;2;3g, and the three nontrivial characters
correspond to the three two-element subsets fi; j g (or equivalently to their three
one-element complements):

�fi;j g.�1; �2; �3/ D �i �j :
The Lie algebra g D so.3/ consists of 3 � 3 skew-symmetric matrices. The root
spaces of A are one-dimensional:

g�
fi;jg

D C.eij � ej i/ .1 � i ¤ j � 3/;
the most natural and obvious lines of skew-symmetric matrices. Therefore

R.G;A/ D f�fi;j g 2 X�.A/ j .1 � i ¤ j � 3/g;
the set of all three nonzero characters of A.

Each root space is the Lie algebra of one of the three obvious SO.2/ subgroups
of SO.3/, and these are the toriGŒ˛�

0 used in Definition 3.7. The automorphism y of
each torus is inversion, so the coroots are the two elements of order (1 or) 2 in each
torus. If 	 is the nontrivial coroot attached to the root .i; j /, then the transvection
s.˛; 	/ acts on f1; 2; 3g by transposition of i and j . The (small) Weyl group is
therefore

Wsmall.G;A/ D S3:
Since this is the full automorphism group of A, it is also equal to the large Weyl
group.
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It is a simple and instructive matter to make a similar definition forO.n/, taking
for A the group of 2n diagonal matrices. The whole calculation is exactly parallel to
that for the root system of U.n/, with the role of the complex units S1 played by the
real units f˙1g, or, on the level of X�, with Z replaced by Z=2Z.

Example 4.2. We begin with the unitary group

eG D U.n/ D n � n unitary matrices: (4.2a)

The center of eG consists of the scalar matrices

Z.n/ D fzI j z 2 S1g ' S1 (4.2b)

(notation (2.3b)). We are going to construct a finite maximal torus A inside the
projective unitary group

G D PU.n/ D U.n/=Z.n/: (4.2c)

It is convenient to construct a preimageeA � eG D U.n/.
The Lie algebra of U.n/ consists of skew-Hermitian n � n complex matrices:

eg0 D u.n/ D fX 2 Mn.C j tX D �Xg: (4.2d)

An obvious map identifies its complexification with all n � n matrices:

eg D Mn.C/ D gl.n;C/: (4.2e)

The adjoint action is given by conjugation of matrices. Dividing by the center gives

g0 D pu.n/ D u.n/=iRI; (4.2f)

g D pgl.n;C/ DMn.C/=CI: (4.2g)

It will be convenient to think of U.n/ as acting on the vector space

C
n D functions on Z=nZ;

functions on the cyclic group of order n. We will call the standard basis

e0; e1; : : : ; en�1

with ei the delta function at the group element iCnZ. It is therefore often convenient
to regard the indices as belonging to Z=nZ.

We are going to define two cyclic subgroups

� WZ=nZ! U.n/; � W�n ! U.n/ (4.2h)
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of U.n/. We will also be interested in

 W�n ! Z.n/;  .!/ D !I: (4.2i)

The map � comes from the action of Z=nZ on itself by translation; the generator
1 D 1C nZ acts by

�.1/ D

0

B

B

B

B

B

B

B

@

0 1 0 � � � 0

0 0 1 � � � 0

:::

0 0 0 � � � 1

1 0 0 � � � 0

1

C

C

C

C

C

C

C

A

: (4.2j)

Often it is convenient to compute with the action on basis vectors:

�.m/ei D ei�m;

as usual with the subscripts interpreted modulo n. The map � is from the character
group of Z=nZ. The element ! 2 �n is realized as multiplication by the character
m 7! !m:

�.!/ D

0

B

B

B

B

@

1 0 � � � 0

0 ! � � � 0

:::

0 0 � � � !n�1

1

C

C

C

C

A

: (4.2k)

This time the formula on basis vectors is

�.!/ei D !iei :

Each of � and � has order n, and their commutator is

�.!/�.m/�.!�1/�.�m/ D !mI D  .!m/ 2 Z.G/:

The three cyclic groups � , � , and  generate a group

eA D h�.Z=nZ/; �.�n/;  .�n/i (4.2l)

of order n3, with defining relations

�.!/�.m/�.!�1/�.�m/ D  .!m/; � D  �; � D  � I (4.2m)
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this group is a finite Heisenberg group of order n3. (One early appearance of
such groups is in [12], pp. 294–297. There is an elementary account of their
representation theory in [17], Chapter 19.)

The “finite maximal torus” we consider is

A D image of eA in PU.n/

D eA= .�n/ ' .Z=nZ/ � �n:
(4.2n)

We will explain in a moment why A is maximal abelian. The adjoint action of A on
the Lie algebra is easily calculated to be

Ad.�.m//.ers/ D er�m;s�m; (4.2o)

with the subscripts interpreted modulo n. Similarly

Ad.�.!//.ers/ D !r�sers: (4.2p)

The character group of A is

X�.A/ ' �n � Z=nZ ��;j .�.m/�.!// D �m!j :

We now describe the roots of A in the Lie algebra g D Mn.C/=CI . Fix

j 2 Z=nZ; � 2 �n;
and define

X�;j D
X

r�sDj
�rers D �.�/�.�j /: (4.2q)

(That is, the root vectors as matrices can be taken equal to the group elements as
matrices.) It follows from (4.2o) and (4.2p) that

Ad.�.m//.X�;j / D �mX�;j ; Ad.�.!//.X�;j / D !jX�;j : (4.2r)

That is,X�;j is a weight vector for the character .�; j / 2 X�.A/. The weight vector
X1;0 is the identity matrix, by which we are dividing to get g; so .1; 0/ is not a root.
Therefore

R.G;A/ D f.�; j / ¤ .1; 0/ 2 X�.A/g ' Œ�n � Z=nZ� � .1; 0/; (4.2s)

the set of n2 � 1 nontrivial characters of Z=nZ � �n.
There remains the question of why A is maximal abelian in PU.n/. Suppose

g 2 PU.n/A. Choose a preimage eg 2 U.n/ � Mn.C/. Then the fact that g
commutes with the images of � and � in PU.n/ means that

�.m/eg�.�m/ D b.m/eg; �.!/eg�.!�1/ D c.!/eg:
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If we writeeg in the matrix basis X�;j of (4.2q), the conclusion is that b.m/ D � is
an nth root of unity, that c.!/ D !j , and that

eg D zX�;j D z�.�/�.�j /: (4.2t)

Therefore g D �.�/�.�j / 2 A, as we wished to show.
We want to understand, or at least to count, the coroots corresponding to each

root ˛ of order d . Since every (nontrivial) character of A has multiplicity one as
a root, we conclude from (3.7g) that there are precisely d coroots 	 attached to ˛.
In particular, if pm is the largest power of some prime dividing n, and ˛ has order
pm, then (since A ' .Z=nZ/2)

ker˛ ' .Z=nZ/ � Z=.n=pm/Z:

So in this case there are exactly pm homomorphisms from �pm into ker˛, and
all of them must be coroots. We conclude that the root transvections include all
transvections of A attached to characters of order exactly pm. One can show that
these transvections generate SL.2;Z=nZ/, so

Wsmall.G;A/ ' SL.2;Z=nZ/: (4.2u)

We conclude this example by calculating the structure constants of g in the root
basis. Using the relation X�;j D �.�/�.�j / from (4.2q), and the commutation
relation (4.2m), we find that

X�;jX ;k D �.�/�.�j /�. /�.�k/
D  j �.�/�. /�.�j /�.�k/
D  j �.� /�.�j � k/ D  jX� ;jCk:

Similarly

X ;kX�;j D �kX� ;jCk:
Therefore

ŒX�;j ; X ;k � D . j � �k/X� ;jCk: (4.2v)

A fundamental fact about classical roots in reductive Lie algebras (critical to
Chevalley’s construction of reductive groups over arbitrary fields; see [16],
Chapter 10) is that the structure constants may be chosen to be integers. Here
we see that the structure constants are integers in the cyclotomic field QŒ�n�.

The preceding example can be generalized by replacing the cyclic group Z=nZ

with any abelian group F of order n, and A by F �X�.F / ([18], page 148). IfD is
the largest order of an element of F , then the symplectic form takes values in �D :

†..f1; �1/; .f2; �2// D �1.f2/Œ�2.f1/��1: (4.3a)
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Characters of A may be indexed by elements of A using the symplectic form:

˛x.a/ D †.a; x/:
The transvection generators are precisely the symplectic transvections

a 7! aC 	.ha; xi/ (4.3b)

on A. Here x is any element of A of order d , and

	W�d ! hxi

is any homomorphism. They generate the full symplectic group

Wsmall.G;A/ D Sp.A;†/I (4.3c)

a proof may be found in [8], Theorem 3.16. (When F is a product of elementary
abelian p groups for various primes p, the assertion that symplectic transvections
generate the full symplectic group comes down to the (finite) field case, and there it
is well known.)

Here is a very different example.

Example 4.4. We begin with the compact connected Lie group G of type E8; this
is a simple group of dimension 248, with trivial center. We are going to describe a
finite maximal torus

A D Z=5Z � �5 � �5: (4.4a)

The roots will be the 124 nontrivial characters of A, each occurring with multiplic-
ity 2. The groupA is described in detail in [7], Lemma 10.3. We present here another
description, taken from [2], p. 231.

An element of the maximal torus T of G may be specified by specifying its
eigenvalue �i (a complex number of absolute value 1) on each of the eight simple
roots ˛i (the white vertices in Figure 1. Then the eigenvalue �0 on the lowest root
˛0 (the black vertex) is specified by the requirement

��10 D
8
Y

iD1
�
ni
i ; (4.4b)

2 4 6 5 4 3 2 1

3

Figure 1 Extended Dynkin diagram for E8
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1 1 1 ω 1 1 1 1

1

Figure 2 Toral subgroup �5 � E8

with ni the coefficient of ˛i in the highest root (the vertex labels in the figure).
Equivalently, we require

8
Y

iD0
�
ni
i D 1: (4.4c)

There is a map

�W�5 ! T (4.4d)

in which the element �.!/ corresponds to the diagram of Figure 2. The eight roots
labeled 1 in this diagram are simple roots for a subsystem of type A4 � A4. As is
explained in [3], page 219, this subsystem corresponds to a subgroup

H D .SU.5/� SU.5//=.�5/�; (4.4e)

the quotient by the diagonal copy of �5 in the center.
We have

G�.�5/ D H; �.�5/ D Z.H/: (4.4f)

Because of this, the rest of the calculations we want to do can be performed
inside H . It is convenient to label the two SU.5/ factors as L and R (for “left”
and “right”).

We now recall the maps � , � , and  of Example 4.2. Because 5 is odd, they are
actually maps into SU.5/ (rather than just U.5/). We use subscripts L and R to
denote the maps into the two factors ofH , so that for example

�L � �RW�5 � �5 ! H:

Taking the diagonal copies of these maps gives

��W�5 ! SU.5/ � SU.5/; ��WZ=5Z! SU.5/� SU.5/: (4.4g)

The diagonal map  � is trivial. According to (4.2m), we have

��.!/��.m/��.!
�1/��.�m/ D  �.!m/ (4.4h)
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in SU.5/ � SU.5/; so in the quotient groupH , we get

�� � �� � �WZ=5Z � �5 � �5 ! H � GI (4.4i)

the image is our abelian group A of order 125. Because of (4.4f), we have

GA D H��;�� ; (4.4j)

and an easy calculation in SU.5/ � SU.5/ (parallel to the one leading to (4.2t))
shows that this is exactly A. So A is indeed a finite maximal torus.

We turn next to calculation of the roots. The character group of A is

X�.A/ D �5 � Z=5Z � Z=5Z:

The roots .�; j; 0/ are those in the centralizer H of �.�5/; so they are the roots of
A in

h D sl.5;C/L � sl.5;C/R:

These were essentially calculated in Example 4.2. We have

g�;j;0 D hXL
�;j ; X

R
�;j i ..�; j / ¤ .1; 0/:

Here the root vectors are the ones defined in (4.2q). In particular, each of these 24
roots has multiplicity two.

To study the root vectors for the 100 roots .�; j; k/ with k ¤ 0 modulo 5, one
can analyze the representation of H on g=h, which has dimension 200. We will not
do this here; the conclusion is that every root space has dimension two.

Since all 124 characters of A have multiplicity two, it follows from (3.7g) that
each root ˛ has exactly 25 coroots; these are all the homomorphisms

	W�5 ! ker˛ � A:
The corresponding transvections

s.˛; 	/.�/ D � � h�; 	i˛ (4.4k)

are all the transvections moving � by a multiple of ˛; the multiple is given by the
linear functional 	 which is required only to vanish on ˛. The (small) Weyl group
generated by all of these transvections is therefore

Wsmall.G;A/ D SL.A/ ' SL.3;F5/; (4.4l)

the special linear group over the field with five elements. Its cardinality is

jWsmall.G;A/j D .52 C 5C 1/.5C 1/.1/.53/.5 � 1/2 D 372000:
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1 1 ω 1 1 1 1 1

1

Figure 3 Toral subgroup �6 � E8

Precisely parallel discussions can be given for G D F4, A D Z3 ��3 ��3, and for
G D G2, A D Z2 � �2 � �2. We omit the details. The next example, however, is
sufficiently different to warrant independent discussion.

Example 4.5. We begin as in Example 4.4 with G a compact connected group of
type E8. We are going to describe a finite maximal torus

A D Z=6Z � �6 � �6: (4.5a)

The roots will be the 215 nontrivial characters of A. The 7 characters of order 2 will
have multiplicity two; the 26 characters of order 3 will have multiplicity two; and
the 182 characters of order 6 will have multiplicity one. To begin, we define

�W�6 ! T (4.5b)

so that the element �.!/ corresponds to the diagram of Figure 3. This time the eight
roots labeled 1 are those for a subsystem of type A5 � A2 � A1. As we learn in [3],
page 220, the corresponding subgroup of G is

H D .SU.6/� SU.3/ � SU.2//= �.�6/I (4.5c)

here

 �W�6 ! �6��3��2 D Z.SU.6/�SU.3/�SU.2//;  �.!/ D .!; !2; !3/:

Because the centralizer of a single element of a compact simply connected Lie group
is connected, we conclude that

G�.�6/ D H; �.�6/ D Z.H/: (4.5d)

Again we want to make use of the maps defined in Example 4.2. The first difficulty
is that because 6 and 2 are even, the maps �SU.2/, �SU.2/, �SU.6/, and �SU.6/ take
some of their values in matrices of determinant�1. In order to correct this, we fix a
primitive twelfth root � of 1, and define

e�SU.6/WZ=12Z! SU.6/; e�SU.6/.m/ D �m � �U.6/.2m/;
e�SU.3/WZ=12Z! SU.3/; e�SU.3/.m/ D �U.3/.4m/;
e�SU.2/WZ=12Z! SU.2/; e�SU.2/.m/ D �3m � �U.2/.6m/:

(4.5e)
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It is easy to check that these three maps are well defined. If we form the diagonal

e��WZ=12Z! SU.6/� SU.3/ � SU.2/; (4.5f)

then

e��.6/ D .�6; 1; �18/ D .�1; 1;�1/ D  �.�1/:
The image in H of this element is trivial; soe�� descends to

��WZ=6Z! H: (4.5g)

In exactly the same way we can define

e��W�12 ! SU.6/� SU.3/ � SU.2/; (4.5h)

descending to

��W�6 ! H: (4.5i)

Just as in Example 4.4, we find a group homomorphism

�� � �� � �WZ=6Z � �6 � �6 ! H � GI (4.5j)

the image is our abelian group A of order 216. Because of (4.5d), we have

GA D H��;�� ; (4.5k)

and a calculation in SU.6/ � SU.3/ � SU.2/ (parallel to the one leading to (4.2t))
shows that this is exactly A. So A is indeed a finite maximal torus.

We turn next to the roots. The character group of A is

X�.A/ D �6 � Z=6Z � Z=6Z: (4.5l)

The roots .�; j; 0/ are those in the centralizer H of �.�6/; so they are the roots of
A in

h D sl.6;C/ � sl.3;C/ � sl.2;C/:

These were essentially calculated in Example 4.2. We have

g�;j;0 D
D

X
sl.6/
�;j ; X

sl.3/
�;j ; X

sl.2/
�;j

E

.�; j / ¤ .1; 0/: (4.5m)

The meaning of the first of these root vectors (defined in (4.2q) for n D 6) is clear.
The second root vector makes sense if both � and j have order 3, that is, if � is the
square of a sixth root of 1, and j is twice an integer modulo 6. Similarly, the third
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root vector makes sense if � and j both have order 2. The second and third root
vectors cannot both make sense, for in that case .�; j / would be trivial.

We have therefore shown that, among the 35 roots ˛ vanishing on �.�6/,

dim g˛ D

8

ˆ

ˆ

<

ˆ

ˆ

:

1 if ˛ has order 6

2 if ˛ has order 3

2 if ˛ has order 2.

(4.5n)

By analyzing the action of A in the 202-dimensional representation of H on g=h,
one can see that the same statements hold for all 215 roots.

We now calculate the coroots. If ˛ is a root of order 6, then (3.6r) says that the
number of coroots is

2dimg.6=2/˛ � 3dimg.6=3/˛ D 22 � 32 D 36I
so the coroots are all the 36 homomorphisms

	W�6 ! ker˛ ' .Z=6Z/2: (4.5o)

The corresponding root transvections are all the transvections associated to the
character ˛.

If ˇ is a root of order 3, then (3.6r) says that the number of coroots is

3dimg.3=3/ˇ D 32 D 9I
so the coroots are all the 9 homomorphisms

	W�3 ! kerˇ ' .Z=3Z/2 � .Z=2Z/3: (4.5p)

The corresponding root transvections are all the transvections associated to the
character ˇ.

Similarly, if � is a root of order 2, there are 4 coroots, and the root transvections
are all of the 4 transvections associated to � .

We see therefore that the (small) Weyl group of A in G contains all the
transvection automorphisms of A ' .Z=6Z/3; so

Wsmall.G;A/ ' SL.3;Z=6Z/ ' SL.3;Z=2Z/� SL.3;Z=3Z/; (4.5q)

a group of order 168 � 13392D 2249856.
The 27 characters of A of order 3 are exactly the characters trivial on the

8-element subgroup AŒ2� of elements of order 2 in A; so GŒ3� D GAŒ2� has Lie
algebra

gŒ3� D
X

3ˇD0
gˇ: (4.5r)
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The 26 roots here all have multiplicity 2, so GŒ3� has dimension 52. It turns out that

GŒ3� ' F4 � AŒ2�: (4.5s)

Similarly, if we define GŒ2� D GAŒ3�, then

GŒ2� ' G2 � AŒ3�: (4.5t)

Now Proposition 3.10 guarantees that GŒ2� and GŒ3� commute with each other, so
we get a subgroup

GŒ2� �GŒ3� � G; G2 � F4 � E8: (4.5u)

Perhaps most strikingly

W.G;A/ D W.GŒ2�; A/ �W.GŒ3�; A/I (4.5v)

this is just the product decomposition noted in (4.5q).
The construction also shows (since AŒ2� � G2 and AŒ3� � F4) that each of the

subgroups G2 and F4 is the centralizer of the other in E8. The existence of these
subgroups has been known for a long time (going back at least to [5], Table 39 on
page 233; see also [15], pages 62–65); but it is not easy to deduce from the classical
theory of root systems alone.
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Kostant), where K denotes a block diagonal embedding of a product of general
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integer partitions � D .�.1/; : : : ; �.m//, we will let c�� be the multiplicity of F�n in

them-fold tensor product F�
.1/

n ˝� � �˝F�
.m/

n under the diagonal action of GLn. That
is, c�� denotes a (generalized) Littlewood–Richardson coefficient.

We remark that the usual exposition of Littlewood–Richardson coefficients
(see [4, 5, 9–11, 13]) concerns the case where m D 2. However, by iterating
the Littlewood–Richardson rule (or its equivalents) one obtains several effective
combinatorial interpretations of our c��.

The subject of this exposition concerns some interpretations of the positive

integer
P

	

c��


2

where the sum is over certain finite subsets of nonnegative

integer partitions. We believe that such sums have under-appreciated combinatorial
significance. For example, one immediately observes the very simple specialization
to the case where �.j / D .1/ for all j D 1; : : : ; m, in which case the sum of
squares ismŠ, which may be viewed as a consequence of Schur–Weyl duality. More
generally, if � D .�1 � � � � � �m � 0/ is a partition and �.j / D .�j /, then c�� is
equal to the Kostka number K�� (i.e., the multiplicity of the weight indexed by �
in F�n).

Our motivation for considering these numbers comes from invariant theory.
On the one hand, we consider the conjugation action of the general linear group
on several copies of the n � n matrices. On the other hand, we consider the
K-conjugation action on one copy of the n � n matrices, where K denotes a
block diagonal embedding of a product of general linear groups. These problems
are related, and have been studied extensively. We make no attempt to survey the
literature, but recommend [3].

Central to this work is the notion of a Hilbert series. Let V be a graded
vector space. That is, V D L1

dD0 Vd where Vd is a finite-dimensional subspace.
The Hilbert series,

P1
dD0.dimVd /qd , formally records the dimensions of the

graded components. Here q is an indeterminate. We also consider multivariate
generalizations corresponding to situations where V is graded by a cone in a lattice.

In our setting, V will be a space of invariant polynomial functions on m copies
of the n � n matrices. For fixed values of the parameters, the Hilbert series is the
Taylor expansion of a rational function around zero. When these parameters are
small, one can expect to write down the numerator and denominator explicitly.
These polynomials encode structural information about the invariants. However, as
the size of the matrix becomes large, these rational functions are difficult to compute
explicitly. This motivates reorganizing the data by studying the coefficients of the
Hilbert series of a fixed degree as the size of the matrix goes to infinity. The limit
exists. The formal series recording this information will be referred to as the stable
Hilbert series.

Certain sums of squares of Littlewood–Richardson coefficients describe the
coefficients of the (stable) Hilbert series for the invariant algebra in each case. These
Hilbert series, stably, may be expressed as a product. Furthermore, a “principal
specialization” of this product is then related to the Hilbert series of theK-invariant
subspace in the GLn-harmonic polynomials. [Harmonic in the sense of Kostant (see
[12]), which generalizes the usual notion of a harmonic polynomial.]
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Unless otherwise stated, we will only need notation for representations with
polynomial matrix coefficients, which are indexed by partitions with nonnegative
integer components. The sum of the parts of a partition � will be called the size
(denoted j�j), while the number of parts will be called the length denoted `.�/. As
usual, we will also write � ` d to mean j�j D d . Furthermore, we also adapt
the (non-standard) notation that if � D .�.1/; : : : ; �.m// is a finite sequence of
partitions, we set j�j D Pm

jD1 j�.j /j, and write � ` d to mean j�j D d . From
a combinatorial point of view, the results involve a specialization of the following

Theorem 1.1 (Main Formula). Let t1; t2; t3; : : : denote a countably infinite set of
indeterminates. We have

1
Y

kD1

1

1 � �tk1 C tk2 C tk3 C � � �
� D

X

�

X

�

	

c��


2

t�;

where the outer sum is over all partitions � and the inner sum is over all finite

sequences of partitions � D .�.1/; �.2/; �.3/; : : :/ with t� D t j�.1/ j1 t
j�.2/j
2 t

j�.3/j
3 : : : :

Proof. See Section 7. ut
As an application of the main formula, we turn to the space, H.gln/, of

GLn-harmonic polynomial functions on the adjoint representation (with its natural
gradation) by polynomial degree, H.gln/ D

L1
dD0Hd .gln/. The group GLn acts

on H.gln/. Note that the constant functions are the only GLn-invariant harmonic
functions. However, if K is a reductive subgroup of GLn, the space of K-invariant
functions is much larger. Consider the example when the group K is the block
diagonally embedded copy of GLn1 � � � � � GLnm in GLn, with n1 C � � � C nm D n.
We will denote this group by K.n/ where n D .n1; : : : ; nm/. The purpose of this
paper is to relate the dimension of the K.n/-invariant polynomials in Hd .gln/ to
a sum of squares of Littlewood–Richardson coefficients. See Theorem 5.1 for the
precise statement.

We consider this question because the related algebraic combinatorics are par-
ticularly elegant, and hence have expository value in connecting harmonic analysis
with algebraic combinatorics. However, this example is the tip of an iceberg. Indeed,
one can replace GLn with any algebraic group G (with g DLie.G/) and K.n/ with
any subgroup ofG. This area of investigation is wide open and well motivated as an
examination of the special symmetries of harmonic polynomials.

In Section 2, we describe a general “answer” to this question when K is a
symmetric subgroup of a reductive groupG. This answer is not as explicit as would
be desired, but applies to any symmetric pair .G;K/. The remainder of the paper
is related to the G D GLn example with K D K.n/. Note that when m D 2 (i.e.,
n D .n1; n2/) the pair .G;K/ is symmetric, but for m > 2 is not. We remark that in
the m D 2 case, the results presented here were first described in [18]. Our present
discussion amounts to a generalization to m > 2.

After setting up appropriate notation in Section 3 we provide an interpretation for
a description of the Hilbert series of theK.n/-invariants in the GLn-harmonic poly-
nomials on gln in Sections 4 and 5. Chief among these involves sums of squares of
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Littlewood–Richardson coefficients. We recall other combinatorial interpretations
in Section 6. These interpretations involve counting the conjugacy classes in the
general linear group over a finite field.

Acknowledgements. The first author wishes to thank Marquette University for
support during the preparation of this article. The second author wishes to thank
the National Security Agency for support. We also would like to thank both Lindsey
Mathewson and the referee for pointing out several references that improved the
exposition.

2 The case of a symmetric pair

Let G denote a connected reductive linear algebraic group over the complex
numbers and let g be its complex Lie algebra. We have g D z.g/ ˚ gss , where
z.g/ denotes the center of g, while gss D Œg; g� denotes the semisimple part
of g. A celebrated result of Kostant (see [12]) is that the polynomial functions
on g, denoted CŒg�, are a free module over the invariant subalgebra, CŒg�G , under
the adjoint action. Choose a Cartan subalgebra h of g, and let ˚ and W denote the
corresponding set of roots and Weyl group, respectively. Choose a set of positive
roots ˚C, and let ˚� D �˚C denote the negative roots. Set � D 1

2

P

˛2˚C

˛.
For w 2 W , let l.w/ denote the number of positive roots sent to negative roots
by w. Fix an indeterminate t . There exist positive integers e1 � e2 � � � � � er

such that
P

w2W tl.w/ D
Qr
jD1 1�t

ej

1�t where r is the rank of gss . A consequence
of the Chevalley restriction theorem ([2]) is that CŒg�G is freely generated, as a
commutative ring, by dim z.g/ polynomials of degree 1, and r polynomials of degree
e1; : : : ; er . These polynomials are the basic invariants, while e1; : : : ; er are called
the exponents of G.

2.1 Harmonic polynomials

We define the harmonic polynomials on g by

Hg D
˚

f 2 CŒg� j .f / D 0 for all  2 DŒg�G
�

;

where DŒg�G is the space of constant coefficient G-invariant differential operators
on g. In [12], it is shown that as a G-representation Hg is equivalent to the
G-representation algebraically induced from the trivial representation of a maximal
algebraic torus T in G. Thus, by Frobenius reciprocity, the irreducible rational
representations of G occur with multiplicity equal to the dimension of their zero
weight space. Moreover, as a representation of G, the harmonic polynomials are
equivalent to the regular functions on the nilpotent cone in g.
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The harmonic polynomials inherit a gradation by degree from CŒg�. Set Hd
g D

Hg \ CŒg�d . Thus, Hg D L1
dD0Hd

g . We next consider the distribution of the
multiplicity of an irreducible G-representation among the graded components of
Hg. A solution to this problem was originally due to Hesselink [8], which we recall
next.

Let }t W h� ! N denote Lusztig’s q-analog of Kostant’s partition function and as
always N D f0; 1; 2; 3; : : :} is the set of nonnegative integers. That is }t is defined
by the equation

Y

˛2˚C

1

1 � te˛ D
X

	2Q.g;h/
}t .	/e

	

where Q.g; h/ � h� denotes the lattice defined by the integer span of the roots.
As usual, e	 denotes the corresponding character of T , with Lie.T / D h. As usual,
we set }.	/ D 0 for 	 … Q.g; h/.

Let P.g/ denote the integral weights corresponding to the pair (g; h). The
dominant integral weights corresponding to ˚C will be denoted by PC.g/. Let
L.�/ denote the (finite-dimensional) irreducible highest weight representation with
highest weight � 2 PC.g/. The multiplicity of L.�/ in the degree d harmonic
polynomials Hd .g/ will be denoted by md.�/. Set m�.t/ D P1

dD0 md.�/t
d .

Hesselink’s theorem asserts that

m�.t/ D
X

w2W
.�1/l.w/}t .w.�C �/� �/:

See [17] for a generalization of this result.
We remark that the above formula is very difficult to implement in practice. This

is in part due to the fact that the order of W grows exponentially with the Lie
algebra rank. Thankfully, only a small number of terms actually contribute to the
overall multiplicity. See [7] for a very interesting special case where the number of
contributed terms is shown to be a Fibonacci number.

2.2 The K -spherical representations of G

Let .G;K/ be a symmetric pair. That is, G is a connected reductive linear algebraic
group over C and K D fg 2 G j �.g/ D Gg, where � is a regular automorphism
of G of order two. Since K will necessarily be reductive the quotient, G=K is
an affine variety and the C-algebra of regular function CŒG=K� is multiplicity-
free as a representation of G. This fact follows from the (complexified) Iwasawa
decomposition of G. Put another way, there exists S � PC.g/ such that for all
� 2 PC.g/ we have

dimL.�/K D
�

1; � 2 S ,
0; � 62 S .
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Note that the subset S may be read off of the data encoded in the Satake diagram
associated to the pair .G;K/. The above fact implies that the Hilbert series
Ht.G;K/ D P1

dD0 hd td with hd D dimHd .g/K has the following formal
expression:

Ht.G;K/ D
X

w2W
.�1/l.w/

 

X

�2S
}t .w.�C �/� �/

!

:

This formula seems rather encouraging. Unfortunately, the inner sum is very
difficult to put into a closed form for general w 2 W . This is, in part, a reflection of
the fact that the values of }t cannot be determined from a “closed form” expression.
However, note that w.�C�/�� often falls outside of the support of}t , and therefore
it may be possible to obtain explicit results along these lines. Moreover, the point
of this exposition is to advertise that combinatorially elegant expressions may exist.
At least this is the case for the pair (GLn1Cn2;GLn1 �GLn2), as we shall see.

3 Preliminaries

We let gln denote the complex Lie algebra of n � n matrices with the usual
bracket, ŒX; Y � D XY � YX , for X; Y 2 gln. Let Eij denote the n � n matrix
with a 1 in row i and column j , and 0 everywhere else. The Cartan subalgebra
will be chosen to be the span of fEii j 1 � i � ng. The dual basis in h� to
.E11; E22; : : : ; Enn/ will be denoted .�1; : : : ; �n/. Choose the simple roots as usual,
˘ D f�i � �iC1 j 1 � i < ng. Let ˚ (resp. ˚C) denote the roots (resp. positive
roots). We will identify h with h� using the trace form .H1;H2/ D Tr.H1H2/

(for H1;H2 2 h/. The fundamental weights are !i D Pi
jD1 �j 2 h� for

1 � i � n � 1. We also set !n DPn
jD1 �j 2 h�. Let P.GLn/ D Pn

jD1 Z!j ,

and PC.GLn/ D Z!n CPn�1
jD1N!j .

From this point on, we will write .a1; : : : ; an/ for
P

ai�i . Thus, we have � D
.�1; : : : ; �n/ 2 PC.GLn/ iff each �i in an integer and �1 � � � � � �n. The finite-
dimensional irreducible representation of GLn with highest weight �will be denoted
.
�;F�n/ where


� W GLn ! GL.F�n/:

To simply notation will write F�n for .
�;F�n/.
Throughout this article, the representations of GLn which we will consider have

polynomial matrix coefficients. Thus the components of the highest weight �will be
nonnegative integers. Therefore, if � is a (nonnegative integer) partition with at most
` parts (` � n), then the n-tuple, .�1; : : : ; �`; 0; : : : ; 0/, corresponds to the highest
weight of a finite-dimensional irreducible representation of GLn (with polynomial
matrix coefficients).
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Under the diagonal action, GLn acts on the d -fold tensor product ˝dCn.
Schur–Weyl duality (see [5] Chapter 9) asserts that the full commutant to the
GLn-action is generated by the symmetric group action defined by permutation of
factors. Consequently, one has a multiplicity-free decomposition with respect to the
joint action of GLn �Sd . Moreover, if n � d , then every irreducible representation
of Sd occurs. The irreducible representation of Sd paired with F�n will be denoted
by V �

d . The full decomposition into the irreducibleGLn � Sd -representation is

Od
C
n Š

M

�

F�n ˝ V �
d ;

where the sum is over all nonnegative integer partitions � of size d and length at
most n. Note that when n D d , then the condition on `.�/ is automatic. Thus,
all irreducible representations of V �

d occur. In this manner, the highest weights of
GLn-representations provide a parametrization of the Sd -representations.

3.1 Littlewood–Richardson coefficients

Let d D .d1; : : : ; dm/ denote a tuple of positive integers with d D d1 C � � � C dm.
Let Sd denote the subgroup of Sd consisting of permutations that stabilize the sets
permuting the first m1 indices, then the secondm2 indices, etc. Clearly, we have

Sd Š Sd1 � � � � � Sdm:

The irreducible representations of Sd are of the form

V.�/ D V �.1/

d1
˝ � � � ˝ V �.m/

dm
;

where �.j / is a partition of size dj . It is well known that if an irreducible
representation V �

d of Sd is restricted to Sd , then the multiplicity of V.�/ in V �
d

is given by the Littlewood–Richardson coefficient c��. This fact is a consequence of
Schur–Weyl duality.

4 Invariant polynomials on matrices

A permutation of f1; 2; : : : ; mg may be written as a product of disjoint cycles.
This result is fundamental to combinatorial properties of the symmetric group Sm.
Keeping this elementary fact in mind, let X D .X1;X2; : : : ; Xm/ be a list of
complex n � n matrices. Let Tr denote the trace of a matrix and define
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Tr� .X/ D Tr.X
�
.1/
1

X
�
.1/
2

� � �X
�
.1/
m1

/ Tr.X
�
.2/
1

X
�
.2/
2

� � �X
�
.2/
m2

/ � � �
� � �Tr.X

�
.k/
1

X
�
.k/
2

� � �X
�
.k/
mk

/

where � D .�.1/1 �
.1/
2 � � ��.1/m1 /.�.2/1 �

.2/
2 � � ��.2/m2 / � � � .�.k/1 �

.k/
2 � � ��.k/mk / is a permutation

of m D P

mi written as a product of k disjoint cycles. Observe that the cycles
of � may be permuted and rotated without changing the permutation. In turn, the
function Tr� displays these same symmetries.

Chief among the significance of Tr� is the fact that they are invariant under the
conjugation action g � .X1; : : : ; Xm/ D .gX1g

�1; : : : ; gXmg�1/; where g 2 GLn.
By setting some of the components of .X1; : : : ; Xm/ equal, one defines a polynomial
of equal degree but on fewer than m copies of Mn. Intuitively, this fact may be
described by allowing equalities in the components of the cycles of � . That is
(formally), we consider � up to conjugation by Levi subgroup of Sm.

In [14,15], C. Procesi described these generators for the algebra of GLn-invariant
polynomials, denoted CŒV �GLn , on V D Mm

n , and provided a proof that these
polynomials span the invariants. [Here we let Mn denote the complex vector
spaces of n � n matrices (with entries from C).] Hilbert tells us that the ring of
invariants must be finitely generated. Thus, there must necessarily be algebraic
relations among this (infinite) set of generators. In light of Procesi’s work, these
generators and relations are understood. However, recovering the Hilbert series from
these data is not automatic.

In order to precisely quantify the failure of the Tr� being indepen-
dent, we introduce the formal power series An.t/ D An.t1; t2; : : : ; tm/ D
P

an.d/t
d , where we will use the notation d D .d1; : : : ; dm/, td D t

d1
1 � � � tdmm

and the coefficient are defined as an.d/ D dimCŒMm
n �

GLn
d , where CŒMm

n �d D
CŒMn ˚ � � � ˚Mn�.d1;


 ;dm/ denotes the homogeneous polynomials of degree di
on the i th copy of Mn. The multivariate series, An.t/, is called the Hilbert Series
of the invariant ring. Except in some simple cases, a closed form for An.t/ is not
known. Part of this exposition is to point out the rather simple fact that an.d/
may be expressed in terms of the squares of Littlewood–Richardson coefficients.
Furthermore, we prove

Proposition 4.1. For any natural numbers m and d D .d1; : : : ; dm/ the limit
limn!1 an.d/ exists. If we call the limiting value a.d/ and set eA.t/ DP a.d/td ,
then

eA.t/ D
1
Y

kD1

1

1 � .tk1 C tk2 C � � � C tkm/
:

Proof. The polynomial functions on Mn are multiplicity-free under the action of
GLn �GLn given by .g1; g2/f .X/ D f .g�11 Xg2/ for g1; g2 2 GLn, X 2 Mn and
f 2 CŒMn�. The decomposition is a “Peter–Weyl” type, CŒMn� ŠL�

F�n
�� ˝ F�n ,

where the sum is over all nonnegative integer partitions � with `.�/ � n. We have
CŒ˚miD1Mn� Š ˝miD1CŒMn�. Thus
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CŒMm
n � Š

0

@

M

�.1/

	

F�
.1/

n


� ˝ F�
.1/

n

1

A˝ � � � ˝
0

@

M

�.m/

	

F�
.m/

n


� ˝ F�
.m/

n

1

A

Š
M

˛;ˇ

0

@

X

�D.�.1/;


 ;�.m//
c˛�c

ˇ
�

1

A

�

F˛n
�� ˝ Fˇn ;

with respect to the GLn �GLn action on the diagonal of Mm
n . Note that in

multidegree .d1; : : : ; dm/ the sum is over all � with j�.j /j D dj . If we restrict
to the subgroup f.g; g/ j g 2 GLng of GLn �GLn, we obtain an invariant
exactly when ˛ D ˇ. The dimension of the GLn-invariants in the degree d

homogeneous polynomials on Mm
n is therefore

P

	

c��


2

where the sum is over all

� D .�.1/; : : : ; �.m// and � ` m with length at most n. The degree d component
decomposes into multi-degree components .d1; : : : ; dm/ with d DP dj .

If d � n, then the condition that `.�/ � n is automatic, and this fact implies
that if c�� ¤ 0, then `.�.j // � n for all j . Thus, the dimension of the degree d

invariants in CŒMm
n � is

P

	

c��


2

where the sum is over all partitions of size d . If we

specialize the main formula so that tj D 0 for j > m, then the sums of squares of
Littlewood–Richardson coefficients agree with eA.t/. ut

For our purposes, we will specialize the multigradation on the invariants in
CŒMm

n � to one that is more coarse. From this process, we can relate the stabilized
Hilbert series of the invariants in HŒMn�. This specialization will be the subject of
the next section.

We now turn to another problem that we shall see is surprisingly related. Consider
the n � n complex matrix

X D

2

6

6

6

4

X.1; 1/ X.1; 2/ � � � X.1;m/
X.2; 1/ X.2; 2/ � � � X.2;m/
:::

:::
: : :

:::

X.m; 1/ X.m; 2/ � � � X.m;m/

3

7

7

7

5

where X.i; j / is an ni � nj complex matrix with n DP nj . Define

Tr� .X/ D
k
Y

jD1
Tr
	

X.�
.j /
1 ; �

.j /
2 /X.�

.j /
2 ; �

.j /
3 /X.�

.j /
3 ; �

.j /
4 / � � �X.�.j /mj

; �
.j /
1 /




:

Let K.n/ denote the block diagonal subgroup of GLn of the form

K.n/ D

2

6

4

GLn1
: : :

GLnm

3

7

5
:
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The group K.n/ acts on Mn by restricting the adjoint action of GLn. The
K.n/-invariant subring of CŒMn� (denoted CŒMn�

K.n/) is spanned by Tr� .X/.
For small values of the parameter space, these expressions are far from linearly
independent (as in the last example). Formally, one cannot help but notice the
symbolic map Tr� 7! Tr� . We will try next to make a precise statement along these
lines.

Define CŒMn�d to be the homogeneous degree d polynomials on Mn, and let
CŒMn�

K.n/

d denote the K.n/-invariant subspace. Set a.n/.d / D dimCŒMn�
K.n/

d , and
A.n/.t/ DP1dD0 a.n/.d / td . Analogous to Proposition 4.1, we have

Proposition 4.2. For any nonnegative integer d , the limit

lim
n1!1

lim
n2!1

� � � lim
nm!1

a.n1;


 ;nm/.d /

exists. Denote the limiting value a.d/ and set A.t/ DP1dD0 a.d/td . We have

A.t/ D
1
Y

kD1

1

1 �m tk
:

Proof. We begin with the GLn �GLn-decomposition CŒMn� D L�

F�n
�� ˝ F�n

with respect to the action in the proof of Proposition 4.1. The irreducible
GLn-representation F�n is reducible upon restriction to K.n/. The decomposition is
given in terms of Littlewood–Richardson coefficients

F�n Š
M

�D.�.1/;


 ;�.m//
c�� F�

.1/

n ˝ � � � ˝ F�
.m/

n :

Therefore, as a K.n/ �K.n/-representation we have

CŒMn�d D
X

�;�

 

X

�

c��c
�
�

!

	

˝mjD1F�
.j /

nj


� ˝
	

˝mjD1F�
.j /

nj




;

where the sum is over all � with j�j D d , `.�/ � n and `.�.j //; `.�.j // � nj . If we
restrict to the diagonally embedded K.n/-subgroup, we obtain an invariant exactly

when � D �. Thus, a.n/.d / D P

	

c��


2

, with the appropriate restrictions on �

and �.
If all nj � d , then the condition on the lengths of partitions disappears, and we

may sum over all � ` d . The result follows by specializing the main formula by
setting tj D t for 1 � j � m and tj D 0 for j > m. ut

Although we will not need it for our present purposes, it is worth pointing out that
the algebra CŒMn� has a natural Nm gradation defined by the action of the center of
K.n/. This multigradation refines the gradation by degree. The limiting multigraded
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Hilbert series is the same as that of Proposition 4.1. Upon specialization to
t1 D t2 D � � � D tm D t we obtain the usual gradation by degree (in both situations).
The advantage of considering the more refined gradation is that one can consider
the direct limit as m and n go to infinity. This will be relevant in the next section.

5 Harmonic polynomials on matrices

A specific goal of this article is to understand the dimension of the space of degree d
homogeneousK.n/-invariant harmonic polynomials on Mn. With this fact in mind,
we observe the following specialization of the product in the main formula. Let tj D
t j . Then we obtain

1
Y

kD1

1

1 � .tk C t2k C t3k C � � � / D
1
Y

kD1

1

1 � tk

1�tk
D
1
Y

kD1

1 � tk
1 � 2tk :

For a sequence � D .�.1/; �.2/; : : :/ set gr.�/ DP1jD1 j j�.j /j. The equation in the
main formula becomes

1
Y

kD1

1 � tk
1 � 2tk D

X

�

X

�

	

c��


2

tgr.�/:

The notation gr is used for the word grade. We explain this choice next. Let
CŒMnI d� denote the polynomials functions on the n� n complex matrices together
with the gradation defined by d times the usual degree. That is, CŒMnI d1�.d2/
denotes the degree d2 homogeneous polynomials, but regarded as the d1d2 graded
component in CŒMnI d1�. We consider the N-graded complex algebra An defined as

An D CŒMnI 1�˝ CŒMnI 2�˝ CŒMnI 3�˝ � � �

D
1
X

ıD0
AnŒı�;

where AnŒı� is the graded ı 2 N component (with the usual grade defined on
a tensor product of algebras). The group GLn acts on each CŒMnI d� by the
adjoint action, and respects the grade. Under the diagonal action on the tensors,
the GLn-invariants, AGLn

n , have An.t/ as the Hilbert series when t is specialized
to .t1; t2; t3; : : :/ D .t; t2; t3; : : :/. This GLn-action respects the ı component in the
gradation. That is, that the Hilbert series is

An.t; t
2; t3; : : :/ D

1
X

ıD0
dim .AnŒı�/

GLn t ı:
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For d D 0; : : : ; n the coefficient of td in An.t; t2; : : :/ is the same as the coefficient
of td in eA.t; t2; : : :/. Summarizing, we can say that stably, as n ! 1, the Hilbert
series of AGLn

n is
Q1
kD1 1�tk

1�2tk .

We turn now to the GLn-harmonic polynomials on Mn together with its usual
gradation by degree. Kostant’s theorem [12] tells us that

CŒMn� Š CŒMn�
GLn ˝H.Mn/:

As before let K D K.n1; n2/ denote the copy of GLn1 �GLn2 (symmetrically)
embedded in GLn1Cn2 . Passing to the K.n1; n2/-invariant subspaces we obtain

CŒMn�
K D CŒMn�

GLn ˝H.Mn/
K:

The Hilbert series of CŒMn�
GLn is well known to be

Qn
kD1 1

1�tk , while the Hilbert
series CŒMn�

K is An.t; t/. These facts imply that the dimension of the degree
d homogenous K-invariant harmonic polynomials is the coefficient of td in
Fn.t/ D An.t; t/

Qn
jD1.1 � t j /. We have that the coefficient of td in Fn.t/ for

d D 0; : : : ;min.n1; n2/ agrees with the coefficient of td in

eA.t; t2; t3; � � � /
1
Y

kD1
.1 � tk/ D

1
Y

kD1

1 � tk
1 � 2tk :

Again summarizing, we say that stably, as n1; n2 ! 1, the Hilbert series of
H.Mn1Cn2/K.n1;n2/ is the same as AGLn

n as n; n1; n2 ! 1. That is, for fixed ı we
have

lim
n1;n2!1

dimH.Mn1Cn2/
K.n1;n2/

ı D lim
n!1 dimAnŒı�

GLn :

Observe that this procedure generalizes. Let m � 2. Analogous to before, let
CŒMm

n I d� denote the polynomial function on Mm
n D Mn ˚ � � � ˚Mn (m-copies)

together with the N-gradation defined such that CŒMm
n I d1�d2 consists of the degree

d2 homogeneous polynomials but regarded as being the d1d2-th graded component.
Note that the ı-th component in the grade is (0) if ı is not a multiple of d1.

Let Am
n be the N-graded algebra defined as

Am
n D CŒMm�1

n I 1�˝ CŒMm�1
n I 2�˝ CŒMm�1

n I 3�˝ � � � :

Since Am
n is a tensor product of N-graded algebras, it has the structure of an

N-graded algebra. As before let Am
n Œı� be the ı-th graded component. The group

GLn acts on each CŒMm
n I d� by the adjoint action, and respects the grade.

Next, set t1 D t2 D � � � D tm�1 D t , then tm D tmC1 D � � � D t2m�2 D t2, then
t2m�1 D � � � D t3m�3 D t3, and so on. The result of this procedure is
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Theorem 5.1. For all n D .n1; : : : ; nm/ 2 Z
mC and d 2 N, let

hd .n/ D dim
�

Hd .Mn/
�K.n/

:

Then for fixed d , the limit

lim
n1!1

� � � lim
nm!1

hd .n1; : : : ; nm/

exists. Let the limiting value be hd . Then

hd D lim
n!1 dim .Am

n Œd �/
GLn :

Proof. After the specialization we obtain

1
Y

kD1

1

1�.tkC � � �Ctk
„ ƒ‚ …

m�1 copies

C t2k C � � � C t2k
„ ƒ‚ …

m�1 copies

C � � � / D
1
Y

kD1

1

1 � .m � 1/.tk C t2k C � � � /

D
1
Y

kD1

1

1 � .m � 1/ tk

1�tk

D
1
Y

kD1

1

1�tk�.m�1/tk
1�tk

D
1
Y

kD1

1� tk
1 �m tk :

The significance of this calculation is that it allows for another interpretation of
sums of Littlewood–Richardson coefficients. The rest of the proof is identical to the
m D 2 case in the preceding discussion. ut

5.1 A bigraded algebra and a specialization
of the main formula

As before, the group GLn acts on Mn by conjugation, and then in turn acts
diagonally on Mn ˚ Mn. That is, given .X; Y / 2 Mn ˚ Mn, and g 2 GLn, we
have g � .X; Y / D .gXg�1; gYg�1/. We then obtain an action on CŒMn ˚Mn�.

We have already observed that the algebra CŒMn ˚Mn� is bigraded. That is, let
CŒMn ˚Mn�.i; j / denote the homogenous polynomial functions on Mn ˚Mn of
degree i in the first copy ofMn and degree j in the second copy ofMn. Let a and b
be positive integers. We set
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CŒMn ˚MnI .a; b/�.ai; bj / D CŒMn ˚Mn�.i; j /

with the other components zero. Put another way, CŒMn˚MnI .a; b/� is the algebra
of polynomial function onMn˚Mn together with the bi-gradation defined by .a; b/
times the usual degree. As before we consider the infinite tensor product

Bn D
1
O

aD1

1
O

bD1
CŒMn ˚MnI .a; b/�:

Next, note the following, obvious, identity:

1
Y

kD1

1

1 � xkyk

.1�xk/.1�yk/
D
1
Y

kD1

.1 � xk/.1 � yk/
1 � .xk C yk/ :

We observe that this is a specialization of the product in the main formula.
Specifically, let qi tj D zs where zs is given as the .i; j / entry in the following
table.

qi tj q q2 q3 q5 q6 � � �
t z1 z2 z4 z7 z11 � � �
t2 z3 z5 z8 z12 z17 � � �
t3 z6 z9 z13 z18 z24 � � �
t4 z10 z14 z19 z25 z32 � � �
t5 z15 z20 z26 z33 z41 � � �
:::

:::
:::

:::
:::

:::
: : :

Then,

1
Y

kD1

1

1 � .zk1 C zk2 C zk3 C � � � /
D
1
Y

kD1

1

1 �
X

i;j�1
.qi tj /k

D
1
Y

kD1

1

1 � qk tk

.1�qk/.1�tk/

D
1
Y

kD1

.1 � qk/.1 � tk/
1 � .qk C tk/ :

In this way, the GLn-invariants in the harmonic polynomials on Mn ˚Mn may
be related to the multigraded algebra structure B, as in the singly graded case.

This identity becomes significantly more complicated when generalized to
harmonic polynomials on more than two copies of the matrices. This fact will be
the subject of future work.
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6 Some combinatorics related to finite fields

In this section, we collect remarks of a combinatorial nature that provide a more
concrete understanding of the sum of squares that we consider in this paper.

From elementary combinatorics one knows that the infinite product

1
Y

kD1

1

1 � q tk D
1
X

nD0

1
X

`D0
pn;`q

`tn;

where pn;` is the number of partitions of n with exactly ` parts. When q is
specialized to a positive integer the coefficients of this series in t has many
interpretations.

6.1 The symmetric group

Fix a positive integer d , and a tuple of positive integers d D .d1; d2; : : : ; dm/

with d1 C � � � C dm D d . As before, let Sd denote the subgroup of Sd isomor-
phic to Sd1 � � � � � Sdm embedded by letting the i th factor permute the set Ji where
fJ1; : : : ; Jmg is the partition of f1; : : : ; d g into the m contiguous intervals with
jJi j D di . That is, J1 D f1; 2; : : : ; d1g, J2 D fd1 C 1; : : : ; d1 C d2g, etc.

The group Sd acts on Sd by conjugation. Let the set of orbits be denoted by
O.d/. We have

Proposition 6.1. For any d D .d1; : : : ; dm/,

jO.d/j D
X

�`m

X

�D.�.1/;


 ;�.m//

	

c��


2

where the inner sum is over all tuples of partitions with �.j / ` dj .

Proof. We begin with the Peter–Weyl type decomposition of CŒSd �

CŒSd � Š
M

�`d

�

V �
d

�� ˝ V �
d :

We then recall that Littlewood–Richardson coefficients describe the branching rule
from Sd to Sd :

V � D
M

�

c��V
�.1/ ˝ � � � ˝ V �.m/ :

Combining the above decompositions, we obtain the result from Schur’s Lemma.
ut
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Figure 1 2-colored necklaces

It is an elementary fact that the Sd -conjugacy class of a permutation � in Sd
is determined by the lengths of the disjoint cycles of � . A slightly more general
statement is that the Sd -conjugacy class of � 2 Sd is determined by a union of
cycles in which each element of a cycle is “colored” by colors corresponding to
J1; : : : ; Jm. It is not difficult to write down a proof of this fact, but we omit it here
for space considerations.

If one fixes d , then the sum over all d -compositions,
P

d jO.d/j, may be
interpreted as the number of d -bead unions of necklaces with each bead colored
bym colors. For example if m D 2, and d D 4, the resulting set may be depicted as
noted in Figure 1.

A single k-bead necklace has Z=kZ-symmetry. If the beads of this necklace are
colored with m colors, then the resulting colored necklace may have smaller group
of symmetries. Using Polya enumeration (i.e., “Burnside’s Lemma”), one can count
such necklaces by the formula



Sums of squares of Littlewood–Richardson coefficients 321

Nk.m/ D 1

k

X

r jk
�.r/m

k
r ;

where � denotes the Euler totient function. That is, �.r/ is the number of positive
integers relatively prime to r . The theory forming the underpinnings of the above
formula may be put in a larger context of cycle index polynomials. We refer
the reader to Doron Zeilberger’s survey article (IV.18 of [6]).

The generating function for disjoint unions of such necklaces can be given by the
product

�m.t/ D
1
Y

kD1

�

1

1 � tk
�Nk.m/

That is, the number of d -bead necklaces, counted up to cyclic symmetry, is equal to
the coefficient of td in �.t/. The main formula specializes to

�m.t/ D
X

�;�`d

	

c��


2

t j�j; (1)

where the sum is over all partitions � and over all m-tuples of partitions � D
.�.1/; : : : ; �.m// such that

Pm
iD1 j�.i/j D d .

Equation 1 begs for an (explicit) bijective proof which is no doubt obtained by
merging both the Littlewood–Richardson rule and the Robinson–Schensted–Knuth
bijection. It is likely that more than one “natural” bijection exists.

6.2 The general linear group over a finite field

Let p denote a prime number, and v 2 Z
C. Set q D pv . Let GLm.q/ denote the

general linear group of invertible m � m matrices over the field with q elements.
The set, Cm.q/, of conjugacy classes of GLm.q/ has a cardinality of note in that the
infinite products has the following expansion:

1
Y

kD1

1 � tk
1 � q tk D

X

mD0
jCm.q/jtm;

see [1, 16], and the references within.
Note that from Equation 1 we obtain a new formula for the number of conjugacy

classes of GLm.q/, namely,

 1
Y

kD1
.1 � tk/

!

�q.t/ D
1
Y

kD1

�

1

1 � tk
�Nk.q/�1

:
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7 Proof of the main formula

Before proceeding, we require some more notation. Given a partition � D .�1 �
�2 � � � � / with v1 ones, and v2 twos, etc., we will call the sequence .v1; v2; : : :/ the
type vector of �. Note that `.�/ DP

vi , while the size of � is m D j�j DP

�i D
P

ivi . As is standard, we set

z� D .v1Š1v1 /.v2Š2v2/.v3Š3v3/ � � � :

It is elementary that the cardinality of a conjugacy class of a permutation with cycle
type � is mŠ

z�
. (Equivalently, the centralizer subgroup has order z�.)

We now prove the main formula. The product on the left side (LS) may be
expanded using the sum of a geometric series, the multinomial theorem, and then
the sum-product formula, as follows

LS D
1
Y

kD1

1

1 � .tk1 C tk2 C tk3 C � � � /

D
1
Y

kD1

1
X

uD0
.tk1 C tk2 C � � � /u

D
1
Y

kD1

1
X

uD0

X

u1Cu2C


Du

uŠ

u1Šu2Š � � � t
ku1
1 t

ku2
2 � � �

D
1
Y

kD1

X

u1;u2;




.u1 C u2 C � � � /Š
u1Šu2Š � � � t

ku1
1 t

ku2
2 � � �

D
X

u
.i /
j ;




1
Y

iD1

.u.i/1 C u.i/2 C � � � /Š
u.i/1 Šu

.i/
2 Š � � �

t
iu
.i /
1

1 t
iu
.i /
2

2 � � �

(with all sequences having finite support.) We will introduce another sequence, a D
.a1; a2; : : :/ and extract the coefficient of ta DQ t

ai
i in the above formal expression

to obtain

LS D
X

a

0

B

@

X

u
.i /
j W8j;

P

i iu
.i /
j Daj

1
Y

iD1

.u.i/1 C u.i/2 C � � � /Š
u.i/1 Šu

.i/
2 Š � � �

1

C

A
ta

The above is not such a complicated expression, although these formal manipu-
lations may, at first, seem daunting. Observe that the sequence u.1/j ; u

.2/
j ; : : : with

P

i iu
.i/
j D aj encodes a partition of aj with the number i occurring exactly u.i/j
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times, while
P

i�1 u.i/j is the length of the partition. We will call this partition �.j /.

That is, �.j / has type vector .u.1/j ; u
.2/
j ; : : :/. The coefficient of ta may be rewritten

as a sum over all double sequences u.i/j such that for all j ,
P

i iu
.i/
j D aj of

1
Y

iD1

.u.i/1 C u.i/2 C � � � /Š
u.i/1 Šu

.i/
2 Š � � �

D
1
Y

iD1

.u.i/1 C u.i/2 C � � � /Ši
P

u
.i /
j

.u.i/1 Ši
u
.i /
1 /.u.i/2 Ši

u
.i /
2 / � � �

: (2)

Given a (finitely supported) sequence of partitions � D .�.1/; �.2/; : : :/, we denote
the partition obtained from the (sorted) concatenation of all �.j / by [�.j /. Thus, if
�.j / has type vector .u.i/1 ; u

.i/
2 ; : : :/, then the number of i ’s in [�.j / is u.i/1 C u.i/2 C

� � � . It therefore follows that the numerator of the right-hand side of Equation 2 is
z� when � D [�.j /. The denominator can easily be seen to be z�.j / . From this
observation we obtain

LS D
X

�

z[1

jD1�
.j /

Q1
jD1 z�.j /

zj�
.1/j

1 zj�
.2/j

2 zj�
.3/j

3 � � � :

7.1 An application of the Hall scalar product

Let �n denote the Sn-invariant polynomials (over C as usual) in the indeterminates
x1; : : : ; xn, let �Œx� D lim �n denote the inverse limit. Thus, �Œx� is the
algebra of symmetric functions. For a nonnegative integer partition �, we let s�.x/
denote the Schur function. That is, for each n, s�.x/ projects to the polynomial
s�.x1; : : : ; xn/ which, as a function on the diagonal matrices, coincides with the
character of the GLn-irrep F�n . The set fs�.x/ W � ` d g is a C-vector space basis
of the homogeneous degree d symmetric functions. We will define a nondegenerate
symmetric bilinear form h�; �i by declaring

˝

s˛.x/; sˇ.x/
˛ D ı˛ˇ for all nonnegative

integer partitions ˛, ˇ. This form is the Hall scalar product.
Given an integer m, define pm.x/ D xm1 C xm2 C � � � to denote the power sum

symmetric function. Given � ` N , set p�.x/ D Q

p�j .x/. We remark that the left
side of the main formula is easily seen to be

P

� p�.t/.
It is a consequence of Schur–Weyl duality that the coefficients of the Schur

function expansion

p�.x/ D
X

�

��.�/s�.x/

are the characters of the SN -irrep indexed by � evaluated at any permutation with
cycle type �. It is a standard exercise to see, from the orthogonality of the character
table, that p�.x/ are an orthogonal basis of �Œx�, and hp�.x/; p�.x/i D z� .
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We next consider another set of indeterminates, y D y1; y2; : : :. Set �Œx;y � D
�Œx�˝�Œy �. The Hall scalar product extends to �Œx;y� in the standard way as

˝

f .x/˝ g.y/; f 0.x/g0.y/˛ D ˝f .x/; f 0.x/˛ ˝g.y/; g0.y/˛ ;
where f .x/; f 0.x/ 2 �Œx� and g.y/; g0.y/ 2 �Œy �. (We then extend by linearity
to all of �Œx;y�.)

The character-theoretic consequence of (GLn;GLk)-Howe duality is the Cauchy
identity:

1
Y

i;jD1

1

1 � xiyj D
X

�

s�.x/s�.y/ (3)

(in the infinite sets of variables). In fact, for any pair of dual bases, a�; b�, with
respect to the Hall scalar product, one has

Q1
i;jD1 1

1�xi yj D
P

� a�.x/b�.y/. From
this fact one obtains

1
Y

i;jD1

1

1 � xiyj D
X

�

p�.x/p�.y/=z�: (4)

From our point of view, we will expand the following scalar product
* 1
Y

kD1

1
Y

i;jD1

1

1 � xiyj tk ;
1
Y

i;jD1

1

1 � xiyj

+

(5)

in two different ways, corresponding to Equations 3 and 4.
First, by homogeneity of the Schur function and Cauchy’s identity

1
Y

kD1

X

�

s�.x/s�.y/t
j�j
k D

X

�D.�.1/;�.2/;:::/

Y

j

s�.j / .x/
Y

j

s�.j / .y/t
j�.1/j
1 t

j�.2/j
2 � � � :

Since the multiplication of characters is the character of the tensor product of the
corresponding representations, we have s˛sˇ DP c

�

˛ˇs� in the x (resp. y) variables.
Expanding the above product gives

* 1
Y

kD1

1
Y

i;jD1

1

1 � xiyj tk ;
1
Y

i;jD1

1

1 � xiyj

+

D
X

�

	

c��


2

t
j�.1/j
1 t

j�.2/j
2 � � � :

Secondly, the scalar product in (5) may be expressed as
* 1
Y

kD1

X

�.k/

p�.k/ .x/p�.k/ .y/=z�.k/ t
j�.k/ j;

X

�

p�.x/p�.y/=z�

+

:

We observe that
Q1
kD1 p�.k/ D p� where � D [1kD1�.k/.
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7.2 A remark from “Macdonald’s book”

The results presented in this paper emphasize describing the cardinality of an orbit
space by a sum of Littlewood–Richardson coefficients. It is important to note,
however, that the main formula can be written simply as

X

�

p�.x/ D
X

�

 

X

�

	

c��


2

!

x
�.1/

1 x
�.2/

2 x
�.3/

1 � � �

So from the point of view of [13], one realizes that the main formula is simply a
way of expanding

P

p�.x/. With this remark in mind, we recall the “standard”
viewpoint.

For a nonnegative integer partition ı D .ı1 � ı2 � � � � / let xı D x
ı1
1 x

ı2
2 x

ı3
3 � � � .

The monomial symmetric function,mı.x/, is the sum over the orbit obtained by all
permutations of the variables. The monomial symmetric functions are a basis for the
algebra�.

The question becomes obtaining an expansion of
P

� p�.x/ into monomial
symmetric functions. This question is answered immediately by observing the
expansion of p� into monomial symmetric functions, which can be found in [13]
on page 102 of Chapter I, Section 6. For partitions � and ı define L.�; ı/ by the
expansion

p�.x/ D
X

ı

L�ımı.x/:

We next provide a combinatorial description of L�ı . Let � denote a partition of
length `. Given an integer valued function, f , defined on f1; 2; 3; : : : ; `g, set

f .�/i D
X

j Wf .j /Di
�j

for each i � 1.
The sequence .f .�/1; f .�/2; f .�/3; : : :/ does not have to be weakly decreasing.

For example, if � D .1; 1; 1/ and f .1/ D 1, f .2/ D 4 and f .3/ D 4 then
f .�/1 D 1, f .�/4 D 2 and f .�/k D 0 for all k ¤ 1; 4. However, often this
sequences does define a partition. We have

Proposition 7.1. L�;ı is equal to the number of functions f such that f .�/ D ı.
Proof. See [13] Proposition I (6.9) ut
From Proposition 7.1 and the main formula, we obtain

Corollary 1. Given a partition ı, the cardinality of

ff j for some partition � , f .�/ D ı g
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is equal to

X

�

X

�

	

c��


2

where the sum is over all � such that j�.j /j D ıj for all j and j�j D j�j.
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In [HY] Hong and Yacobi defined a category M constructed as an inverse limit of
polynomial representations of the general linear groups. The main result of [HY] is
that g acts on M (in the sense of Chuang and Rouquier), and categorifies the Fock
space representation of g.

The result in [HY] is motivated by a well-known relationship between the basic
representation of g and the symmetric groups. Let Rd denote the category of repre-
sentations of Sd over k, and let R denote the direct sum of categories Rd . By work
of Lascoux, Leclerc, and Thibon [LLT], it is known that R is a categorification of
the basic representation of g (in a weaker sense than the Chuang–Rouquier theory).
This means that there are exact endo-functors Ei ; Fi W R ! R (i 2 Z=pZ)
whose induced operators on the Grothedieck group give rise to a representation
of g isomorphic to its basic representation.

Since R consists of all representations of all symmetric groups, and the represen-
tations of symmetric groups and general linear groups are related via Schur–Weyl
duality, it is natural to seek a category which canonically considers all polynomial
representations of all general linear groups. This is precisely the limit category of
polynomial representations alluded to above.

The limit category M is naturally equivalent (Lemma B.2, [HY]) to the category
P of “strict polynomial functors of finite degree” introduced by Friedlander and
Suslin in [FS] (in characteristic zero the category P appears in [Mac]). The objects
of P are endo-functors on V (the category of finite-dimensional vector spaces
over k) satisfying natural polynomial conditions, and the morphisms are natural
transformations of functors.

Friedlander and Suslin’s original motivation was to study the finite generation of
affine group schemes. This is related to the study of extensions of representations
of general linear groups over fields of positive characteristic (cf. Section A.27, [J]).
Since their landmark work, the theory of polynomial functors has developed in many
directions. In algebraic topology, the category P is connected to the category of
unstable modules over the Steenrod algebra, to the cohomology of the finite linear
groups [FFSS,Ku], and also to derived functors in the sense of Dold and Puppe [T2].
Polynomial functors are also applied to the cohomology of group schemes. For
example, the category P is used in the study of support varieties for finite group
schemes [SFB], to compute the cohomology of classical groups [T1], and in the
proof of cohomological finite generation for reductive groups [TvdK].

The goal of this paper is to develop an explicit connection relating the category
of strict polynomial functors to the affine Kac–Moody algebra g. We describe a
categorical action of g on P (in the sense of [CR, R, KL, KL2, KL3]), which is
completely independent of the results or arguments in [HY]. The main advantage
of this approach is that the category P affords a more canonical setting for
categorical g-actions. Indeed, many of the results obtained in [HY] have a simple
and natural formulation in this setting. Further, we hope that the ideas presented here
will provide new insight to the category of polynomial functors. As an example of
this, in the last section of the paper we describe how the categorification theory
implies that certain blocks of the category P are derived equivalent. These kinds of
applications are typical in this framework; the main result in [CR] was to establish
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derived equivalences between blocks of representations of the symmetric groups.
Categorical g-actions have since been used in Lie theory to establish equivalences
of abelian categories (see e.g., Theorems 1.1 in [BS1, BS2]).

The category of strict polynomial functors is actually defined over arbitrary
fields, but the general definition given in [FS] is more involved than the one we use
(the problem comes from the fact that different polynomials might induce the same
function over finite fields). All our results remain valid in this general context, but
we have opted to work over an infinite field to simplify the exposition. In addition,
we assume in our main theorem that p ¤ 2. The theorem is valid also for p D 2,
but including this case would complicate our exposition.

In the sequel to this work we continue the study of P from the point of view of
higher representation theory [HY2]. We show that Khovanov’s category H naturally
acts on P , and this gives a categorification of the Fock space representation of the
Heisenberg algebra when char.k/ D 0. When char.k/ > 0 the commuting actions
of g0 (the derived algebra of g) and the Heisenberg algebra are also categorified.
Moreover, we formulate Schur–Weyl duality as a functor from P to the category of
linear species. The category of linear species is known to carry actions of g and the
Heisenberg algebra. We prove that Schur–Weyl duality is a tensor functor which is
a morphism of both the categorical g-action and the categorical Heisenberg action.

Finally, we mention the work by Ariki [A] on qraded q-Schur algebras, and
the recent work by Stroppel–Webster on quiver Schur algebras [SW]. These works
suggest the existence of a graded version of the polynomial functor, which would
gives rise to a natural categorification of the Fock space of the quantum affine
algebra Uq.bsln/. It would be interesting to pursue this generalization of our present
work. We also mention ongoing work of the second author with L. Rigal, where
they define a notion of quantum strict polynomial functors, which should also fit
well within the categorification scheme.

Acknowledgments. We thank the referee for many helpful comments which
greatly improved the exposition of the paper.

2 Type A Kac–Moody algebras

Let g denote the following Kac–Moody algebra (over C):

g D
(

sl1 if p D 0
bslp if p > 0

By definition, the Kac–Moody algebra sl1 is associated to the Dynkin diagram:

· · · • • • • · · ·
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while the Kac–Moody algebra bslp is associated to the diagram with p nodes:

• • · · · • •

The Lie algebra g has standard Chevalley generators fei ; fi gi2Z=pZ. Here and
throughout, we identify Z=pZ with the prime subfield of k. For the precise relations
defining g, see e.g., [Kac].

We let Q denote the root lattice and P the weight lattice of g. Let
f˛i W i 2 Z=pZg denote the set of simple roots, and fhi W i 2 Z=pZg the simple
coroots. The cone of dominant weights is denoted PC and denote the fundamental
weights f�i W i 2 Z=pZg, i.e.,

˝

hi ;�j

˛ D ıij . When p > 0 the Cartan subalgebra of
g is spanned by the hi along with an element d . In this case we also let ı DPi ˛i ;
then �0; : : : ; �p�1; ı form a Z-basis for P . When p D 0 the fundamental weights
are a Z basis for the weight lattice.

Let Sn denote the symmetric group on n letters. Sn acts on the polyno-
mial algebra ZŒx1; : : : ; xn� by permuting variables, and we denote by Bn D
ZŒx1; : : : ; xn�

Sn the polynomials invariant under this action. There is a natural
projection Bn � Bn�1 given by setting the last variable to zero. Consequently,
the rings Bn form a inverse system; let BZ denote the subspace of finite degree
elements in the inverse limit lim �Bn. This is the algebra of symmetric functions in
infinitely many variables fx1; x2; : : :g. Let B D BZ˝Z C denote the (bosonic) Fock
space.

The algebra BZ has many well-known bases. Perhaps the nicest is the basis of
Schur functions (see e.g., [Mac]). Let } denote the set of all partitions, and for
� 2 } let s� 2 BZ denote the corresponding Schur function. Let us review some
combinatorial notions related to Young diagrams. Firstly, we identify partitions with
their Young diagram (using English notation). For example, the partition .4; 4; 2; 1/
corresponds to the diagram

The content of a box in position .k; l/ is the integer l �k 2 Z=pZ. Given �; � 2 },
we write μ λ if � can be obtained from � by adding some box. If the arrow
is labelled i , then � is obtained from � by adding a box of content i (an i -box, for

short). For instance, if m D 3, � D .2/ and � D .2; 1/ then μ
2

λ . An i -box of
� is addable (resp. removable) if it can be added to (resp. removed from) � to obtain
another partition.
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Of central importance to us is the Fock space representation of g on B (or BZ).
The Schur functions form a Z-basis of the algebra of symmetric functions:

BZ D
M

�2}
Zs�:

The action of g onB is given on this basis by the following formulas: ei :s� DP s�,

where the sum is over all � such that μ
i

λ, and fi :s� D P

s�, where the sum

is over all � such that λ
i

μ. Moreover, d acts on s� by m0.�/, where m0.�/

is the number of boxes of content zero in �. These equations define an integral
representation of g (see e.g., [LLT]).

Note that s; is a highest weight vector of highest weight �0. We note also that
the standard basis of B is a weight basis. Let mi.�/ denote the number of i -boxes
of �. Then s� is of weight wt.�/, where

wt.�/ D �0 �
X

i

mi.�/˛i : (1)

For a k-linear abelian category C, let K0.C/ denote the Grothendieck group of C,
and let K.C/ denote the complexification of K0.C/. If A 2 C we let ŒA� denote its
image in K0.C/. Similarly, for an exact functor F W C ! C 0 we let ŒF � W K0.C/ !
K0.C 0/ denote the induced operator on the Grothendieck groups. Slightly abusing
notation, the complexification of ŒF � is also denoted by ŒF �.

We will also need the following combinatorial definition: for a partition � of d ,
the permutation �� 2 Sd is defined as follows. Let t� be the Young tableaux with
standard filling: 1; : : : ; �1 in the first row, �1 C 1; : : : ; �2 in the second row, and so
forth. Then ��, in one-line notation, is the row-reading of the conjugate tableaux tı� .
For example, if � D .3; 1/, then, �� D 1423, the permutation mapping 1 7! 1; 2 7!
4; 3 7! 2, and 4 7! 3.

3 Categorical g-actions

Higher representation theory concerns the action of g on categories rather than
on vector spaces. The pioneering work on higher representation theory concerned
constructing actions on Grothendieck groups of representation theoretic categories
of algebraic or geometric origin; this is known as “weak” categorification. We are
concerned with “strong” categorical g-actions, in a sense to be made precise below.
The foundational papers which define this notion are [CR,KL,KL2,KL3,R]. There
are great overviews of the theory appearing in [L, Ma].

At the very least, an action of g on a k-linear additive category C consists of the
data of exact endo-functors Ei and Fi on C (for i 2 Z=pZ), such that g acts on
K.C/ via the assignment ei 7! ŒEi � and fi 7! ŒFi �. For instance, if i and j are
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not connected in the Dynkin diagram of g (i.e., Œei ; fj � D 0), then we require that
ŒŒEi �; ŒFj �� D 0 in End.K.C//. This is known as a “weak categorification”.

This notion is qualified as “weak” because the relations defining g, such as
Œei ; fj � D 0, are not lifted to the level of categories. A stronger notion of
categorification would require isomorphisms of functors lifting the relations of g,
e.g., functorial isomorphisms Ei ı Fj ' Fj ı Ei . Moreover, these isomorphisms
need to be compatible in a suitable sense. Making these ideas precise leads to an
enriched theory, which introduces new symmetries coming from an affine Hecke
algebra.

To give the definition of categorical g-action we use here, due to Chuang and
Rouquier (a related formulation appears in the works of Khovanov and Lauda [KL]),
we first introduce the relevant Hecke algebra.

Definition 1. Let DHn be the degenerate affine Hecke algebra of GLn. As an
abelian group

DHn D ZŒy1; : : : ; yn�˝ ZSn:

The algebra structure is defined as follows: ZŒy1; : : : ; yn� and ZSn are subalgebras,
and the following relations hold between the generators of these subalgebras:

�iyj D yj �i if ji � j j � 1

and

�iyiC1 � yi�i D 1 (2)

(here �1; : : : ; �n�1 are the simple generators of ZSn).

Remark 1. One can replace Relation (2) by

�iyi � yiC1�i D 1: (3)

These two presentations are equivalent; the isomorphism is given by

�i 7! �n�i ; yi 7! ynC1�i :

Definition 2. [Definition 5.29 in [R]] Let C be an abelian k-linear category.
A categorical g-action on C is the data of:

1. an adjoint pair .E; F / of exact functors C ! C;
2. morphisms of functorsX 2 End.E/ and T 2 End.E2/, and
3. a decomposition C DL!2P C! .

Let Xı 2 End.F / be the endomorphism of F induced by adjunction. Then given
a 2 k let Ea (resp. Fa) be the generalized a-eigensubfunctor ofX (resp.Xı) acting
on E (resp. F ). We assume that
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4. E DLi2Z=pZEi ,
5. the action of fŒEi �; ŒFi �gi2Z=pZ onK.C/ gives rise to an integrable representation

of g;
6. for all i , Ei.C!/ � C!C˛i and Fi .C!/ � C!�˛i ,
7. the functor F is isomorphic to the left adjoint of E , and
8. the degenerate affine Hecke algebraDHn acts on End.En/ via

yi 7! En�iXEi�1 for 1 � i � n; (4)

and

�i 7! En�i�1TEi�1 for 1 � i � n � 1: (5)

Remark 2. The definition (cf. Definition 5.29 in [R]) uses Relation (2). For our
purposes we use Relation (3). On the representations of the symmetric groups (the
main example considered in [CR, Section 3.1.2]) another variant of Relation (3) is
used.

Remark 3. To clarify notation, the natural endomorphism yi of En assigns to
M 2 C an endomorphism of En.M/ as follows: first evaluate the natural transfor-
mation at the object Ei�1.M/ yielding a morphismXEi�1.M/ W Ei.M/! Ei.M/:

Applying the functor En�i to this morphism we obtain the endomorphism .yi /M W
En.M/! En.M/. See [BS1, BS2] for a more details on this construction.

The functorial isomorphisms lifting the defining relations of g are constructed
from the data of categorical g-action. More precisely, the adjunctions betweenE and
F and the functorial morphismsX and T are introduced precisely for this purpose.
The action of DHn on End.En/ in part (8) of Definition 2 is needed in order to
express the compatibility between the functorial isomorphisms. See [R] for details.

4 Polynomial functors

4.1 The category P

Our main goal in this paper is to define a categorical g-action on the category P of
strict polynomial functors of finite degree, and show that this categorifies the Fock
space representation of g. In this section we define the category P and recall some
of its basic features.

Let V denote the category of finite-dimensional vector spaces over k.
For V;W 2 V , polynomial maps from V to W are by definition elements of
S.V �/ ˝W , where S.V �/ denotes the symmetric algebra of the linear dual of V .
Elements of Sd .V �/˝W are said to be homogeneous of degree d .
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Definition 3. The objects of the category P are functors M W V ! V that satisfy
the following properties:

1. for any V;W 2 V , the map of vector spaces

Homk.V;W /! Homk.M.V /;M.W //

is polynomial, and
2. the degree of the map

Endk.V /! Endk.M.V //

is bounded with respect to V 2 V .

The morphisms in P are natural transformations of functors. ForM 2 P we denote
by 1M 2 HomP.M;M/ the identity natural transformation.

Let I 2 P be the identity functor from V to V and let k 2 P denote the constant
functor with value k. Tensor products in V define a symmetric monoidal structure
˝ on P , with unit k. The category P is abelian.

Let M 2 P and V 2 V . By functoriality M.V / carries a polynomial action of
the linear algebraic group GL.V /. We denote this representation by 
M;V , or by 

when the context is clear:


M;V W GL.V /! GL.M.V //:

Similarly, a morphism � W M ! N induces a GL.V /-equivariant map �V W
M.V / ! N.V /. Thus evaluation on V yields a functor from P to Pol.GL.V //,
the category of polynomial representations of GL.V /.

Remark 4. Given a morphism � WM ! N of polynomial functorsM;N , one can
talk about im.�/ 2 P . Explicitly, this functor is given on V 2 V by im.�/.V / D
im.�V /, and on linear maps f W V ! W by im.�/.f / D N.f /jim.�V /. This is
well-defined since � is a natural transformation.

4.2 Degrees and weight spaces

The degree of a functor M 2 P is the upper bound of the degrees of the
polynomials Endk.V / ! Endk.M.V // for V 2 V . For example, the functors of
degree zero are precisely the functors V ! V which are isomorphic to constant
functors. A functor M 2 P is homogeneous of degree d if all the polynomials
Endk.V /! Endk.M.V // are homogeneous polynomials of degree d .

For M 2 P , GL.k/ acts onM.V / by the formula

� �m D 
M;V .�1V /.m/; for � 2 GL.k/ and m 2M.V /:
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This action is a polynomial action of GL.k/, so M.V / splits as a direct sum of
weight spaces

M.V / D
M

d�0
M.V /d ;

where

M.V /d D fm 2M.V / W � �m D �dmg:
Moreover, if f W V ! W is a linear map, it commutes with homotheties, so M.f /
is GL.k/-equivariant. Hence M.f / preserves weight spaces, and we denote by
M.f /d its restriction to the d -th weight spaces.

So we can define a strict polynomial functorMd by letting

Md.V / D M.V /d;Md.f / D M.f /d :

A routine check shows that Md is homogeneous of degree d . Thus, any functor
M decomposes as a finite direct sum of homogeneous functors Md of degree d .
Similarly, a morphism � W M ! N between strict polynomial functors preserves
weight spaces. So it decomposes as a direct sum of morphisms of homogeneous
functors �d W Md ! Nd . This can be formulated by saying that the category P
is the direct sum of its subcategories Pd of homogeneous functors of degree d :

P D
M

d�0
Pd : (6)

If M 2 P , we define its Kuhn dual M] 2 P by M].V / D M.V �/�, where
‘�’ refers to k-linear duality in the category of vector spaces. Since .M ]/] ' M ,
duality yields an equivalence of categories [FS, Prop 2.6]:

] W P '�! Pop:

A routine check shows that ] respects degrees, i.e., M] is homogeneous of degree
d if and only if M also is. Indeed, if � 2 GL.k/, then for ` 2 M].V / and
m 2 M.V �/, we have that .� � `/.m/ D `.M.��/.m// D `.M.�/.m//.

The following theorem, due to Friedlander and Suslin [FS], shows the cat-
egories Pd are a model for the stable categories of homogeneous polynomial
GLn.k/-modules of degree d . Let Pold .GL.V // denote the category of polynomial
representations of GL.V / of degree d .

Theorem 1. Let V 2 V be a k-vector space of dimension n � d . The functor
induced by evaluation on V :

Pd ! Pold .GL.V //;

is an equivalence of categories.
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As a consequence of Theorem 1, we obtain that strict polynomial functors are
noetherian objects in the following sense:

Corollary 1. Let M 2 P . Assume there is an increasing sequence of subfunctors
of M :

M0 �M1 � � � � �Mi � � � � :
Then there exists an integer N such that for all n � N , Mn D MN .

Let˝d denote the d -th tensor product functor, which sends V 2 V to V ˝d 2 V .
Then ˝d 2 Pd . Let � be a tuple of nonnegative integers summing to d , and let
S� � Sd denote the associated Young subgroup. We denote by � � the subfunctor
of˝d defined by � �.V / D .V ˝d /S� .

Proposition 1 (Theorem 2.10, [FS]). The functor � �, � 2 }, a partition of d , is
a (projective) generator of Pd .

In other words, the objectsM 2 Pd are exactly the functorsM W V ! V which can
be obtained as subquotients of a direct sum of a finite number of copies of the d -th
tensor product functor˝d .

4.3 Recollections of Schur and Weyl functors

In this section we introduce Schur functors and Weyl functors. These strict
polynomial functors are the functorial version of the Schur modules and the Weyl
modules, and they were first defined in [ABW].

Let }d denote the partitions of d . For � 2 }d let �ı denote the conjugate
partition. We define a morphism of polynomial functors d� as the composite:

d� W ��ı

1 ˝ � � � ˝��ı

n ,!˝d ���! ˝d � S�1 ˝ � � � ˝ S�m:
Here the first map is the canonical inclusion and the last one is the canonical
epimorphism. The middle map is the isomorphism of ˝d which maps v1 ˝ � � �vd
onto v��.1/ ˝ � � � ˝ v��.d/, where �� 2 Sd is the permutation defined in the last
paragraph of Section 2.

Definition 4. Let � 2 }d .

1. The Schur functor S� 2 Pd is the image of d� (cf. Remark 4).
2. The Weyl functor W� is defined by duality W� WD S]�.
3. Let L� be the socle of the functor S�.

Remark 5. In [ABW, def. II.1.3], Schur functors are defined in the more general
setting of “skew partitions” �=˛, (i.e., pairs of partitions .�; ˛/ with ˛ � �), and
over arbitrary commutative rings. They denote Schur functors byL�ı , but we prefer
to reserve this notation for simple objects in Pd .
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The following statement makes the link between Schur functors and induced
modules (also called costandard modules, or Schur modules) and between Weyl
functors and Weyl modules (also called standard modules or Verma modules).

Proposition 2. Let � 2 }d .

(i) There is an isomorphism of GL.kn/-modules S�.kn/ ' H0.�/, where
H0.�/ D indGL.kn/B�

.k�/ is the induced module from [J, II.2].
(ii) There is an isomorphism of GL.kn/-modulesW�.k

n/ ' V.�/, where

V.�/ D H0.�w0�/
�

is the Weyl module from [J, II.2].

Proof. We observe that (ii) follows from (i). Indeed, we know that V.�/ is the
transpose dual of H0.�/, and evaluation on kn changes the duality ] in P into
the transpose duality. To prove (ii), we refer to [Mar]. The Schur module M.�/
defined in [Mar, Def 3.2.1] is isomorphic to H0.�/ (this is a theorem of James, cf.
[Mar, Thm 3.2.6]). Now, using the embedding ofM.�/ into S�1.kn/˝� � �˝S�m.kn/
of [Mar, Example (1) p.73], and [ABW, Thm II.2.16], we get an isomorphism
S�.k

n/ 'M.�/. ut
The following portemanteau theorem collects some of the most important

properties of the functors S�, W�, L�, � 2 }d .

Theorem 2. (i) The functors L�, � 2 }d form a complete set of representatives
for the isomorphism classes of irreducible functors of Pd .

(ii) Irreducible functors are self-dual: for all � 2 }d , L]� ' L�.
(iii) For all � 2 }d , the L� which appear as composition factors in S� satisfy

� � �, where � denotes the lexicographic order. Moreover, the multiplicity of
L� in S� is one.

(iv) For all �;� 2 }d ,

ExtiP.W�; S�/ D
�

k if � D � and i D 0,
0 otherwise.

Proof. All these statements have functorial proofs, but for sake of brevity we shall
use Proposition 2, together with the fact that evaluation on V for dimV � d

is an equivalence of categories. Thus, (i) follows from [Mar, Thm. 3.4.2], (ii)
follows from [Mar, Thm. 3.4.9], (iii) follows from [Mar, Thm. 3.4.1(iii)]. Finally,
(iv) follows from [J, Prop. 4.13] and [FS, Cor. 3.13]. ut

Note that for any d � 0 the categories Pd are of finite global dimension
(cf. e.g., Theorem 3.3.8, [Mar]). Therefore projective objects descend to a basis
of the Grothendieck group. Simple objects of course also descend to a basis.

Corollary 2. The equivalence classes of the Weyl functors ŒW�� for � 2 } form a
basis of K.P/.
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Proof. Order } by the lexicographic order, denoted �. By parts (ii) and (iii) of
Theorem 2, the multiplicity of L� in W� is one, and all other simple objects
appearing as composition factors in W� are isomorphic to L�, where � � �. Form
the matrix of the map given by ŒL�� 7! ŒW�� in the basis ŒL���2} (ordered by �).
This is a lower triangular matrix, with 1’s on the diagonal. Hence it is invertible and
we obtain the result. ut
Corollary 3. The map K.P/ ! K.P/ given by ŒM � 7! ŒM ]� is the identity. In
particular, for all � 2 }, ŒW�� D ŒS��.
Proof. By Theorem 2(ii) simple functors are self-dual, hence the result. ut

4.4 Polynomial bifunctors

We shall also need the category P Œ2� of strict polynomial bi-functors. The objects of
P Œ2� are functorsB W V�V ! V such that for every V 2 V , the functorsB.�; V / and
B.V; �/ are in P and their degrees are bounded with respect to V . Morphisms in P Œ2�

are natural transformations of functors. The following example will be of particular
interest to us.

Exmaple 1. Let M 2 P . We denote by MŒ2� the bifunctor:

MŒ2� W V � V ! V
.V;W / 7! M.V ˚W /
.f; g/ 7! M.f ˚ g/:

MappingM to MŒ2� yields a functor: P ! P Œ2�.

If B 2 P Œ2� and .V;W / is a pair of vector spaces, then functoriality endows
B.V;W / with a polynomialGL.V / �GL.W /-action, which we denote by 
B;V;W
(or simply by 
 if the context is clear):


B;V;W W GL.V / �GL.W /! GL.B.V;W //:

Evaluation on a pair .V;W / of vector spaces yields a functor from P Œ2� to
Reppol.GL.V / �GL.W //.

A bifunctor B is homogeneous of bidegree .d; e/ if for all V 2 V , B.V; �/ (resp.
B.�; V /) is a homogeneous strict polynomial functor of degree d , (resp. of degree
e). The decomposition of strict polynomial functors into a finite direct sums of
homogeneous functors generalizes to bifunctors. Indeed, if B 2 P Œ2�, the vector
space B.V;W / is endowed with a polynomial action ofGL.k/�GL.k/ defined by

.�; �/ �m D 
B;V;W .�1V ; �1W /.m/;
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and pairs of linear maps .f; g/ induce GL.k/ � GL.k/-equivariant morphisms
B.f; g/. So for i; j � 0 we can use the .i; j / weight spaces with respect to the
action of GL.k/ �GL.k/ to define bifunctorsBi;j , namely

Bi;j .V;W / D fm 2 B.V;W / W .�; �/ �m D �i�jmg
and Bi;j .f; g/ is the restriction of B.f; g/ to the .i; j /-weight spaces. Functors
Bi;j are homogenous of bidegree .i; j / and P Œ2� splits as the direct sum of its full

subcategories P Œ2�
i;j of homogeneous bifunctors of bidegree .i; j /. If B 2 P Œ2�, we

denote by B�;j the direct sum

B�;j D
M

i�0
Bi;j : (7)

Note that we have also a duality for bifunctors

] W P Œ2� '�! P Œ2� op;

which sends B to B], with B].V;W / D B.V �;W �/�, and which respects the
bidegrees (the same argument as in the previous section for usual polynomial
functors works also in the bi-functor case).

The generalization of these ideas to the category of strict polynomial tri-
functors of finite degree P Œ3�, which contains the tri-functors MŒ3� W .U; V;W / 7!
M.U ˚ V ˚W /, and so on, is straightforward.

We conclude this section by introducing a construction of new functors in P from
old ones that will be used in the next section. Let M 2 P and consider the functor
MŒ2�.�; k/ 2 P . By (7) we have a decomposition

MŒ2�.�; k/ D
M

i�0
M

Œ2�
�;i .�; k/:

In other words, MŒ2�
�;i .V; k/ is the subspace of weight i of M.V ˚ k/ acted on by

GL.k/ via the composition

GL.k/ D 1V �GL.k/ ,! GL.V ˚ k/ 
M;V˚k�����! GL.M.V ˚ k//:
Since evaluation on V ˚k as well as taking weight spaces are exact, the assignment
M 7! M

Œ2�
�;i .�; k/ defines an exact endo-functor on P . Hence it descends to an

operator on Grothendieck groups.

5 Categorification data

Having defined the notion of categorical g-action and the category P , we are now
ready to begin the task of defining a categorical g-action on P . The present section is
devoted to introducing the necessary data to construct the categorification (cf. items
(1)–(3) of Definition 2. The following section will be devoted to showing that
this data satisfies the required properties (cf. items (4)–(8) of Definition 2).
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5.1 The functors E and F

Define E;F W P ! P by

E.M/ D MŒ2�
�;1.�; k/

F.M/ D M ˝ I
for M 2 P . These are exact functors (F is clearly exact; for the exactness of E see
the last paragraph of Section 4.4). We prove that E and F are bi-adjoint.

Proposition 3. The pair .F;E/ is an adjoint pair, i.e., we have an isomorphism,
natural with respect to M;N 2 P:

ˇ W HomP.F.M/;N / ' HomP.M;E.N //:

Proof. We shall use the category P Œ2� of strict polynomial bifunctors. There are
functors:

� W P � P ! P Œ2� ˝ W P � P ! P

 W P Œ2� ! P Œ2� W P ! P Œ2�

respectively given by

M �N.V;W / D M.V /˝N.W / M ˝N.V / D M.V /˝N.V /
B.V / D B.V; V / M Œ2�.V;W / DM.V ˚W /:

We observe that .M � N/ D M ˝ N . Moreover, we know (cf. [FFSS, Proof of
Thm 1.7] or [T1, Lm 5.8]) that  and Œ2� are bi-adjoint.

Now we are ready to establish the existence of the adjunction isomorphism. We
have the following natural isomorphisms:

HomP.F.M/;N / D HomP.M ˝ I;N /
' HomP Œ2� .M � I;N Œ2�/

' HomP.M.�/;HomP.I.�/; N.� ˚ �///:
Here HomP.I.�/; N.� ˚ �// denotes the polynomial functor which assigns to
V 2 V the vector space HomP.I;N.V ˚ �//. By Yoneda’s Lemma [FS, Thm
2.10], for any F 2 P , HomP.I; F / ' F.k/ if F is of degree one, and zero
otherwise. In particular, HomP.I;N.V ˚ �// ' N.V ˚ k/1 D E.N /.V /.
Hence, HomP.I.�/; N.� ˚ �// ' E.N / and we conclude that there is a natural
isomorphism:

HomP.F.M/;N / ' HomP.M;E.N //: ut
We are now going to derive the adjunction .E;F/ from proposition 3 and a duality

argument. The following lemma is an easy check.
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Lemma 1. For all M 2 P , we have isomorphisms, natural with respect to M :

F.M/] ' F.M ]/ ; E.M/] ' E.M ]/:

Proof. We have an isomorphism:

F.M/] D .M ˝ I /] 'M] ˝ I ] D F.M ]/ ;

and a chain of isomorphisms:

E.M/] D �MŒ2�
�;1.�; k/

�] ' .M Œ2�
�;1/

].�; k/
' .M Œ2� ]/�;1.�; k/
' .M ]/

Œ2�
�;1.�; k/ D E.M ]/:

In the chain of isomorphisms, the first isomorphism follows from the isomorphism
of vector spaces k_ ' k, the second follows from the fact that duality preserves
bidegrees, and the last from the fact that duality of vector spaces commutes with
direct sums.

Proposition 4. The pair .E;F/ is an adjoint pair, i.e., we have an isomorphism,
natural with respect to M;N 2 P:

˛ W HomP.E.M/;N / ' HomP.M;F.N //:

Proof. The adjunction isomorphism of proposition 4 is defined as the composite of
the natural isomorphisms:

HomP.E.M/;N / ' HomP.N ];E.M/]/ ' HomP.N ];E.M ]//

' HomP.F.N ]/;M ]/ ' HomP.F.N /];M ]/ ' HomP.M;F.N //: ut

Remark 6. The unit and counits of the adjunctions appearing in Propositions 3,4
are implicit from the canonical isomorphisms. For an explicit description see [HY2].

5.2 The operators X and T

We first introduce the natural transformation X W E ! E. We assume that p ¤ 2.
For any V 2 V , let U.gl.V ˚ k// denote the enveloping algebra of gl.V ˚ k/, and
let XV 2 U.gl.V ˚ k// be defined as follows. Fix a basis V D Ln

iD1 kei ; this
choice induces a basis of V ˚ k. Let xi;j 2 gl.V ˚ k/ be the operator mapping ej
to ei and e` to zero for all ` ¤ j . Then define

XV D
n
X

iD1
xnC1;i xi;nC1 � n:
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The element XV does not depend on the choice of basis. (For a proof of this see
Lemma 3.27 in [HY]. Note also the similarity to constructions which appear in
[BS1, BS2]. We also remark that this is where the hypothesis that p ¤ 2 is used.)

The groupGL.V /�GL.k/ � GL.V ˚ k/ acts on the Lie algebra gl.V ˚ k/ by
the adjoint action, hence on the algebra U.gl.V ˚ k/. By Lemma 4.22 in [HY] we
have:

Lemma 2. Let V 2 V . Then XV commutes with GL.V / �GL.k/, i.e.,

XV 2 U.gl.V ˚ k//GL.V /�GL.k/:

The universal enveloping algebra U.gl.V ˚ k// acts on M.V ˚ k/ via differen-
tiation:

d
M;V W U.gl.V ˚ k//! End.M.V ˚ k//:

Exmaple 2. If M D I is the identity functor of V , and f 2 gl.V ˚ k/, then
d
I;V˚k.f / D f . More generally, if d � 2 and M D ˝d is the d -th tensor
product, then d
˝d ;V˚k sends f 2 gl.V ˚ k/ onto the element

d
X

iD1
.1V˚k/˝i�1 ˝ f ˝ .1V˚k/˝d�i 2 End..V ˚ k/˝d /:

The element XV acts on the vector space M.V ˚ k/ via d
M;V , and we denote
by XM;V the induced k-linear map:

XM;V WM.V ˚ k/!M.V ˚ k/:

By Lemma 2,XM;V isGL.V /�GL.k/-equivariant. Thus it restricts to the subspaces
E.M/.V / of weight 1 under the action of f1V g � GL.k/. We denote the resulting
map also by XM;V :

XM;V W E.M/.V /! E.M/.V /:

Proposition 5. The linear maps XM;V W E.M/.V / ! E.M/.V / are natural with
respect to M and V . Hence they define a morphism of functors

X W E! E:

Proof. The action of U.gl.V ˚ k// on M.V ˚ k/ is natural with respect to M .
Hence the k-linear maps XM;V are natural with respect to M .

So it remains to check the naturality with respect to V 2 V . For this, it suffices
to check that for all M 2 P , and for all f 2 Hom.V;W /, diagram (D) below is
commutative.
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M.V ˚ k/
M.f˚1k/

��

XV;M

��

M.W ˚ k/
XW;M

��
M.V ˚ k/

M.f˚1k/
�� M.W ˚ k/:

.D/

We observe that if diagram (D) commutes for a given strict polynomial
functor M , then by naturality with respect to M , it also commutes for direct
sums M˚n, for n � 1, for the subfunctors N � M and the quotients M � N .
But as we already explained in Remark 1, every functorM 2 P is a subquotient of
a finite direct sum of copies of the tensor product functors˝d , for d � 0. Thus, to
prove naturality with respect to V , it suffices to check that diagram (D) commutes
forM D ˝d for all d � 0.

In the case of the tensor products ˝d the action of U.gl.V ˚ k/ is explicitly
given in Example 2. Using this expression, a straightforward computation shows
that diagram (D) is commutative in this case. This finishes the proof. ut

We next introduce a natural transformation T W E2 ! E2. Let M 2 P and
V 2 V . By definition,

E2.M/ DMŒ3�
�;1;1.�; k; k/:

Consider the map 1V ˚� W V ˚k˚k ! V ˚k˚k given by: .v; a; b/ 7! .v; b; a/.
ApplyingMŒ3� to this map we obtain a morphism:

TM;V WMŒ3�
�;1;1.V; k; k/!M

Œ3�
�;1;1.V; k; k/:

Lemma 3. The linear maps TM;V W E2.M/.V / ! E2.M/.V / are natural with
respect to M and V . Hence they define a morphism of functors

T W E2 ! E2:

Proof. Clearly the maps TM;V are natural with respect to M . Let f W V ! W

be a linear operator of vector spaces. We need to show that the following diagram
commutes:

E2 (M)(f)

E2 (M)(f)

TM,V

E2 (M )(W )

E2 (M )(W )E2 (M )(V )

E2 (M )(V )

TM,W

:

On the one hand, E2.M/.f / is the restriction of MŒ3�.f ˚ 1k ˚ 1k/ to the tri-
degrees .�; 1; 1/. On the other hand, TM;V is the restriction of MŒ3�.1V ˚ �/ to the
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tri-degrees .�; 1; 1/. Since f ˚ 1k ˚ 1k clearly commutes with 1V ˚ � , the above
diagram commutes. ut

5.3 The weight decomposition of P

As part of the data of categorical g-action, we need to introduce a decomposition
of P indexed by the weight lattice P of g. In this section we define such a
decomposition via the blocks of P .

We begin by recalling some combinatorial notions. For a nonnegative integer d ,
let }d denote the set of partitions of d . A partition � is a p-core if there exist no
� � � such that the skew-partition �=� is a rim p-hook. By definition, if p D 0,
then all partitions are p-cores. Given a partition �, we denote by e� the p-core
obtained by successively removing all rim p-hooks. For instance, the 3-core of
.6; 5; 2/ is 3; 1/. The p-weight of � is by definition the number .j�j � je�j/=p. The
notation j�j denotes the size of the partition �. Define an equivalence relation � on
}d by decreeing � � � ife� D e�.

Let �;� 2 }d . As a consequence of (11.6) in [Kl] we have

e� D e�” wt.�/ D wt.�/: (8)

(See (1) for the definition of wt.�/.) Therefore we index the set of equivalence
classes }d= � by weights in P , i.e., a weight ! 2 P corresponds to a subset
(possibly empty) of }d . For a more explicit description of the bijection which
associates to a weight of Fock space a p-core partition; see Section 2 of [LM].

Let IrrPd denote the set of simple objects in Pd up to isomorphism. This set is
naturally identified with }d . We say two simple objects in Pd are adjacent if they
occur as composition factors of some indecomposable object in Pd . Consider the
equivalence relation � on IrrPd generated by adjacency. Via the identification of
IrrPd with }d we obtain an equivalence relation� on }d .

Theorem 3 (Theorem 2.12, [D]). The equivalence relations � and � on }d are
the same.

Given an equivalence class � 2 IrrPd= �, the corresponding block P� � Pd
is the subcategory of objects whose composition factors belong to �. The block
decomposition of P is given by P D L

P�, where � ranges over all classes in
IrrPd= � and d � 0.

By the above theorem and Equation (8), we can label the blocks of Pd by weights
! 2 P . Moreover, by Equation (1), wt.�/ determines the size of �. Therefore the
block decomposition of P can be expressed as

P D
M

!2P
P!:
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The p-weight of a block P! is the p-weight of �, where ! D wt.�/. This is well-
defined since if wt.�/ D wt.�/ then j�j D j�j ande� D e�, and hence the p-weights
of � and � agree.

6 Categorification of Fock space

In the previous section we defined all the data necessary to formulate the action g
on P . In this section we prove the main theorem:

Theorem 4. Suppose p ¤ 2. The category P along with the data of adjoint
functors E and F, operators X 2 End.E/ and T 2 End.E2/, and the weight
decomposition P D L

!2P P! defines a categorical g-action (in the sense of
Definition 2) which categorifies the Fock space representation of g.

Remark 7. The theorem is still true for p D 2. We only include this hypothesis
for ease of exposition (one can prove the p D 2 case using hyperalgebras instead of
enveloping algebras).

To prove this theorem we must show that the data satisfies properties (4)–(6), (8)
of Definition 2, and that the resulting representation of g on K.P/ is isomorphic to
the Fock space representation (property (7) already appears as Proposition 3).

6.1 The functors Ei

In this section we prove property (4) of Definition 2. For all a 2 k, and M 2 P we
can form a nested collection of subspaces of E.M/, natural with respect to M :

0 � Ea;1.M/ � Ea;2.M/ � � � � � Ea;n.M/ � � � � � E.M/;

where Ea;n.M/ is the kernel of .XM � a/n W E.M/! E.M/. We define

Ea.M/ D
[

n�0
Ea;n.M/:

Since the inclusions Ea;n.M/ � Ea;nC1.M/ are natural with respect to M , the
assignmentM 7! Ea.M/ defines a sub-endofunctor of E.

Lemma 4. The endofunctor E W P ! P splits as a direct sum of its subfunctors Ea:

E D
M

a2k
Ea:
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Moreover, for all M 2 P there exists an integer N such that for all n � N ,
Ea.M/ D Ea;n.M/.

Proof. The decomposition as a direct summand of generalized eigenspaces is
standard linear algebra. The finiteness of the filtration .Ea;n.M//n�0 follows from
Corollary 1. ut
Proposition 6. Let � 2 } be a partition of d and set W D W�.

(i) The polynomial functor E.W / carries a Weyl filtration:

0 D E.W /0 � E.W /1 � � � � � E.W /N D E.W /:

The composition factors which occur in this filtration are isomorphic toW� for
all � such that � �! � and each such factor occurs exactly once.

(ii) The operator XW W E.W / ! E.W / preserves the filtration of E.W /, and
hence it acts on the associated graded object.

(iii) Given 0 � i � N � 1, set j 2 Z=pZ and � 2 } such that

E.W /iC1=E.W /i ' W�, and �
j�! �. Then XW acts on E.W /iC1=E.W /i by

multiplication by j .

In particular Ea D 0 for a 62 Z=pZ, and hence

E D
M

i2Z=pZ
Ei :

Proof. Theorem II.4.11 of [ABW] yields a filtration of the bifunctor SŒ2�� with
associated graded object

L

˛�� S˛�S�=˛ . Here, S�=˛ 2 Pj�j�j˛j refers to the Schur
functor associated to the skew partition �=˛ and S˛ � S�=˛ is the homogeneous
bifunctor of bidegree .j˛j; j�j � j˛j/, defined by .V; U / 7! S˛.V / ˝ S�=˛.U /.

Thus .SŒ2�� /�;1 has a filtration whose graded object is the sum of the S˛ � S�=˛ with
j�j D j˛j C 1. In this case, S�=˛ is the identity functor of V by definition. Thus
taking U D k, we get a filtration of E.S�/ whose graded object is

L

S˛ , for all
˛ ! �. The first part of the proposition follows by duality ]. (For an alternative
proof based on [Mar] and [GW, Thm. 8.1.1], see [HY, Lemma A.3].)

For any V 2 V , by Lemma 4.22 in [HY] the map XW;V preserves the filtration of
GL.V /-modules:

0 D E.W /0.V / � E.W /1.V / � � � � � E.W /N .V / D E.W /.V /:

Indeed, since Weyl modules are highest weight modules, CV˚k acts on

W.V ˚ k/

by scalar, and CV acts on the factors of the filtration by scalar as well. Therefore
XW preserves the filtration of E.W /, proving the second part of the proposition.
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Finally, let � and j be chosen as in the third part of the proposition. By
Lemma 5.7(1) in [HY], for any V 2 V ,XW;V acts by j on E.W /iC1.V /=E.W /i .V /.
ThereforeXW acts on E.W /iC1=E.W /i also by j . ut

By the adjunction of E and F and the Yoneda Lemma, the operator X 2 End.E/
induces an operator Xı 2 End.F/. The generalized eigenspaces of this operator
produce subfunctors Fa of F, which, by general nonsense, are adjoint to Ea.
Therefore we have decompositions

E D
M

i2Z=pZ
Ei ;F D

M

i2Z=pZ
Fi :

6.2 The action of g on K.P/

In this section we prove property (5) of Definition 2. The functors Ei ;Fi , being
exact functors, induce linear operators

ŒEi �; ŒFi � W K.P/! K.P/

for all i 2 Z=pZ. Define a map ~ W g ! End.K.P// by ei 7! ŒEi � and fi 7! ŒFi �.
Let � W K.P/! B be given by �.ŒW��/ D v�.

Proposition 7. The map ~ is a representation of g and � is an isomorphism of
g-modules.

Proof. By Corollary 2 � is a linear isomorphism. By Proposition 6,

ŒEi �.ŒW��/ D
X

�
i

�� �

ŒW��:

Therefore � intertwines ei and ŒEi �, i.e., � ı ŒEi � D ei ı � . Consider the bilinear
form on K.P/ given by

hM;N i D
X

i�0
.�1/i dim Exti .M;N /:

By adjunction ŒEi � and ŒFi � are adjoint operators with respect to h�; �i, and by
Theorem 2(iv),

˝

W�; S�
˛ D ı��. Therefore

ŒFi �.ŒS��/ D
X

�
i

�� �

ŒS��:
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Hence by Corollary 3, � also intertwines the operators fi and ŒFi �. Both claims of
the proposition immediately follow. ut

6.3 Chevalley functors and weight decomposition of P

In this section we prove property (6) of Definition 2.

Proposition 8. Let ! 2 P . For every i 2 Z=pZ, the functors Ei ;Fi W P ! P
restrict to Ei W P! ! P!C˛i and Fi W P! ! P!�˛i :

Proof. We prove that Ei .P!/ � P!C˛i (the proof for Fi being entirely analogous).
Since Ei is exact it suffices to prove that ifL� 2 P! , then Ei .L�/ 2 P!C˛i . Then, by
the same idea as used in the proof of Lemma 2, it suffices to show that if W� 2 P! ,
then Ei .W�/ 2 P!C˛i . By Proposition 6, Ei .W�/ has a Weyl filtration with factors

all of the form W�, where μ
i

λ. But then � 2 ! C ˛i , so W� 2 P!C˛i .
Therefore Ei .W�/ 2 P!C˛i . ut

6.4 The degenerate affine Hecke algebra action on En

In this section we prove property (8) of Definition 2.

Proposition 9. The assignments

yi 7! En�iXEi�1 for 1 � i � n;

�i 7! En�i�1TEi�1 for 1 � i � n � 1

define an action ofDHn on End.En/.

Proof. By definition, En.M/.V / is the subspace of M.V ˚ kn/ formed by the
vectors of weight $n D .1; 1; : : : ; 1/ for the action of GL.k/�n. Here GL.k/�n
acts via the composition:

GL.k/�n D 1V �GL.k/�n � GL.V ˚ kn/

M;V˚kn�����! GL.M.V ˚ kn//:

The map .�n�i /M;V is equal to the restriction of M.ti / to En.M/.V /, where
ti W V˚kn ! V˚kn maps .v; x1; : : : ; xn/ to .v; x1; : : : ; xiC1; xi ; : : : ; xn/. To check
that the �i define an action of ZSn on En, we need to check that the .�i /M;V define
an action of the symmetric group on En.M/.V /. By Remark 1 it suffices to check
this for M D ˝d , and this is a straightforward computation. Moreover, it is also
straightforward from the definition that the yi commute with each other. Thus they
define an action of the polynomial algebra ZŒy1; : : : ; yn� on En. Similarly, �i and yj
commute with each other if ji � j j � 1.
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So, to obtain the action of the Hecke algebra on End.En/, it remains to show that
�iyi � yiC1�i D 1 (see Remark 2). This will be proved by showing the following
identity in End.E2/:

T ı EX �XE ı T D 1: (9)

To check (9), it suffices to check that for all M 2 P and all V 2 V ,

TM;V ı E.XM /V � XE.M/ ı TM;V D 1E2.M/.V / (10)

If (10) holds for M 2 P , then by naturality with respect to M , it also holds for
direct sums M˚n, for subfunctorsN � M , and quotientsM � N . By Remark 1,
every functor M 2 P is a subquotient of a finite direct sum of copies of the tensor
product functors ˝d , for d � 0. Thus it suffices to check that Equation (10) holds
forM D ˝d for all d � 0.

Let M D ˝d and let V 2 V . Choose a basis .e1; : : : ; en/ of V . We naturally
extend this to a basis .e1; : : : ; enC2/ of V ˚ k˚ k. By definition, E2.˝d /.V / is the
subspace of .V ˚k˚k/˝d spanned by the vectors of the form ei1˝� � �˝eid , where
exactly one of the eik equals enC1 and exactly one of the eik equals enC2. Let us fix
a vector 	 D ei1 ˝ � � � ˝ eid with enC1 in a-th position and enC2 in b-th position.
We will show that Equation (10) holds for 	.

First, note that TM;V .	/ D ei.ab/.1/ ˝ � � � ˝ ei.ab/.d/ , where .ab/ denotes the
transposition of Sd which exchanges a and b. Then

.XE/M;V ı TM;V .	/ D
0

@

n
X

jD1
xnC1;j xj;nC1 � n

1

A :.ei.ab/.1/ ˝ � � � ˝ ei.ab/.d/ /

D
X

`¤a;b
ei.`ba/.1/ ˝ � � � ˝ ei.`ba/.d/ :

Now we compute the other term on the left hand side of (10). Then

TM;V ı .EX/M;V .	/ D TM;V ı
0

@

nC1
X

jD1
xnC2;j xj;nC2 � .nC 1/

1

A .	/

D
X

`¤a;b
ei.`ba/.1/ ˝ � � � ˝ ei.`ba/.d/ C 	:

Therefore (10) holds.

This completes the proof of Theorem 4. ut
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7 Remarks

We conclude the paper by mentioning briefly some consequences of the categorical
g-action on P .

7.1 Derived equivalences

For this discussion we focus on the case p D char.k/ > 0. The main motivation
for Chuang and Rouquier’s original work on categorification was to prove Broué’s
abelian defect conjecture for the symmetric groups, which can be reduced to
showing that any two blocks of symmetric groups of the same p-weight are derived
equivalent [CR]. Their technique applies to the setting of sl2-categorifications. Since
for every simple root ˛ of g there is a corresponding root subalgebra of g isomorphic
to sl2, we have in fact defined a family of sl2-categorifications onP . To each of these
categorifications we can apply the Chuang–Rouqueir machinery.

Let W aff D Sp Ë Q denote the affine Weyl group associated to g, acting on
P in the usual way. By [Kac, Section 12], any weight ! appearing in the weight
decomposition of Fock space is of the form �.!0/� `ı, where � 2 W aff and ` � 0.
By Proposition 11.1.5 in [Kl], ` is exactly the p-weight of the corresponding block.
Therefore the weights of any two blocks are conjugate by some element of affine
Weyl group if and only if they have the same p-weight. By Theorem 6.4 in [CR] we
obtain

Theorem 5. If two blocks of P have the same p-weight, then they are derived
equivalent.

7.2 Misra–Miwa crystal

We can also apply the theory of categorical g-action to crystal basis theory. The
crystal structure is a combinatorial structure associated to integrable representations
of Kac–Moody algebras, introduced originally by Kashiwara via the theory of
quantum groups. From Kashiwara’s theory one can construct a canonical basis for
the corresponding representations, which agrees with Lusztig’s canonical basis of
geometric origins.

Loosely speaking, the crystal structure of an integrable representation of some
Kac–Moody algebra consists of a set B in bijection with a basis of the representa-
tion, along with Kashiwara operatorseei ;ef i on B indexed by the simple roots of the
Kac–Moody algebra, along with further data. For a precise definition see [Kas].

From the categorical g-action on P we can recover the crystal structure of Fock
space as follows. For the set B we take IrrP � K.P/, the set of equivalence classes
of simple objects. We construct Kashiwara operators on IrrP by composing the
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Chevalley functors with the socle functor:

eei ;ef i D ŒŒsocle ıEi �; Œsocle ıFi � W IrrP ! IrrP :

The other data defining a crystal structure can also be naturally obtained. In
Section 5.3 of [HY] it is shown that this data agrees with the crystal of B originally
discovered by Misra and Miwa [MM]. In particular, we can construct the crystal
graph of Fock space by taking the Z=pZ-colored directed graph whose vertices are

IrrP and edges are μ
i

λ if ef i .�/ D �. This graph is equal to the Misra–Miwa
crystal of Fock space.
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Abstract A class of algebras that unify a variety of calculations in the representa-
tion theory of classical groups is discussed. Because of their relation to the classical
Pieri Rule, these algebras are called double Pieri algebras. A generalization of the
standard monomial theory of Hodge is developed for double Pieri algebras, that uses
pairs of semistandard tableaux, rather than a single one. SAGBI theory and toric
deformation are key tools. The deformed double Pieri algebras are described using
a doubled version of Gelfand–Tsetlin patterns. The approach allows the discussion
to avoid dealing with relations between generators.
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1 Introduction

There is a large literature devoted to describing the finite-dimensional irreducible
representations of reductive complex algebraic groups, mutatis mutandis, the
irreducible representations of compact Lie groups. See, for example [17, 21, 27,
30, 42, 43, 44, 56] and their references. In this effort, a substantial collection of
combinatorial tools, including Young diagrams and tableaux, the Robinson–
Schensted and other correspondences, Gelfand–Tsetlin patterns, canonical and
crystal bases, among others, were developed over the course of the 20th century.
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More recently, techniques have been developed that connect some of these
combinatorial objects more closely to representations, and some of them have come
to be seen as proxies for more fundamental structures. In particular, the idea
of describing rings that arise naturally in representation theory in terms of flat
deformation to semigroup rings (aka, toric deformation), has brought new insight
into the area, and has provided a context in which the combinatorial objects emerge
in a reasonably straightforward way from the structure of the rings in question. For
a fair number of the most basic cases, the relevant semigroups are of a special, very
pleasant nature, and are naturally defined in terms of partially ordered sets. This is
the structure that has given rise to Gelfand-Tsetlin and similar kinds of patterns. Very
useful in this approach is the SAGBI theory, which describes a ring of polynomial
functions by means of an associated semigroup of highest terms, with respect to a
designated term order, of elements of the ring.

The goal of this article is to review some of this development, and in particular, to
highlight the role of a certain family of algebras, here termed double Pieri algebras,
that unify a variety of calculations in the representation theory of the classical
groups.

We will assume that the reader is familiar with basic general concepts and
constructions in representation theory, including what a group representation is,
subrepresentations and quotient representations, irreducible representations, direct
sums, complete reducibility, dual or contragredient representations, intertwining
operator/G-morphism of representations, equivalence of representations, tensor
product of representations, restriction of a representation to a subgroup, multiplica-
tive characters of commutative groups, and the fact that these themselves form a
group under pointwise multiplication. Some key ideas and facts, such as matrix
coefficients, complete reducibility of representations of reductive groups, and the
theory of the highest weight, will be reviewed, because of their salience for setting
the context for the central results.

2 Theorem of the highest weight and the flag algebra

Let G be a reductive complex algebraic group [2, 17]. For most of this paper, G
will be the group GLn.C/ D GLn of invertible complex n � n matrices, or closely
related to it. We want to discuss representations of G. To do this, one has to say
something about what sort of representations are allowed.

For a compact group, one can just agree to consider finite-dimensional continu-
ous representations. Since G D GLn.C/ is not compact, one needs to pay a little
more attention to the issue.

One solution could be to regard GLn.C/ as the complexification of the unitary
group Un, which is compact. One could then agree to study representations of
GLn.C/ that are holomorphic extensions of continuous representations of Un.
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A second solution is to regard GLn as an algebraic group. It supports a ring of
“rregular” functions,1 generated by the matrix entries gij W 1 � i; j � n of the
typical element g of GLn, together with the reciprocal of the determinant function.
This ring is the union of finite-dimensional subspaces invariant by multiplication
by elements of GLn on the right or on the left. We can restrict attention to
representations that are “rregular” in the sense that their matrix coefficients (to be
defined below) are in this ring.

In fact, these two solutions coincide, and the resulting family of representations
are the same. These are the representations we will study.

A fundamental fact is that such a representation is completely reducible [2, 17]:
it can always be decomposed as a direct sum of irreducible subrepresentations.
We will take this for granted in what follows. The collection of irreducible
representations of G is denoted bG.

Up to conjugation, there is a unique maximal connected solvable subgroup
BG D B of G, called the Borel subgroup of G [2, 17]. For G D GLn, we may
take BGLn D Bn to be the group of invertible upper triangular n � n matrices.

In turn, B contains a unique normal unipotent subgroup, U D UG , which in the
case ofGLn isUGLn D Un, the group of upper triangular matrices that are unipotent,
that is, have all diagonal entries equal to 1. The group B also contains a maximal
torus A D AG , an abelian complement to U in B , consisting of diagonalizable
operators. The torus A is unique up to conjugation in B . For GLn, we may take
A D AGLn D An as the group of invertible diagonal n � n matrices.

The irreducible representations of the torus A are all one-dimensional, so they
amount to (rregular) homomorphisms

� W A! C� ' GL1:

In other words, they can be thought of as (rregular, or holomorphic) complex-valued
functions � on A that satisfy �.aa0/ D �.a/�.a0/. They are often referred to as
characters.

The identity map of GL1 ' C� is a character, and all (rregular) characters of
GL1 are just the integer powers of the identity character. Thus, the character group
of GL1 is just Z.

Since An ' .GL1/
n, the group OAn of characters of An is isomorphic to Zn.

Explicitly, for an n-tuple Ě of integers ˇj , the associated character � Ě in bAn is

� Ě.Œa�/ D
n
Y

iD1
a
ˇi
i : (1)

1We use the neologism “irregular,” rather than the more usual but overused “regular,” to refer to
functions in a specified well behaved algebra of nice functions on a given set.
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Here

Œa� D

2

6

6

6

6

6

6

6

6

6

4

a1 0 0 0 : : : 0

0 a2 0 0 : : : 0

0 0 a3 0 : : : 0

: : : : :

: : : : :

: : : : :

0 0 0 0 : : : an

3

7

7

7

7

7

7

7

7

7

5

W aj ¤ 0 (2)

Let R.G/ be the rregular functions on G. We can define the left and right regular
actions on R.G/ by the recipes

Lh.f /.g/ D f .h�1g/; Rh.f /.g/ D f .gh/; g; h 2 GI f 2 R.G/: (3)

Let � be a representation of G on a (finite-dimensional, complex) vector space
V . Let �� be the contragredient representation on the vector space dual V � to V .
Recall that the formula connecting � and �� is

��.�/.Ev/ D �.�.g/�1Ev/; g 2 G; Ev 2 V; � 2 V �: (4)

Define a function on G, the matrix coefficient ��;Ev of V with respect to Ev in V and
� in V � by

��;Ev.g/ D �.�.g/�1Ev/ D ��.g/.�/.Ev/: (5)

It is straightforward to check that

Lh.��;Ev/ D ��;�.h/.Ev/I and Rh.��;Ev/ D ���.h/.�/;Ev: (6)

In other words, for a fixed �, the map

ˆ� W V ! R.G/; ˆ�.Ev/ D ��;Ev; (7)

is an intertwining operator between V and the left regular representation of G.
A nice, standard, easily verified fact [23] is

Proposition 2.1. The map �! ˆ� is an isomorphism from V � to the vector space
HomG.V;R.G// of G-intertwining maps from V to the left regular representation.

The discussion in the previous paragraph was valid for essentially any group G.
Return to letting G be a complex reductive group. Let � be a (rregular) represen-
tation of G on V . Consider the space V UG of vectors invariant under the unipotent
subgroup UG D U . Since AG D A normalizes UG , A will leave V U invariant, as
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is easily checked. Since A is commutative and reductive, any representation of it
breaks up into eigenspaces. Thus, we may write

V UG ' ˚�2 OA.V U /.A;�/; (8)

where .V U /.A;�/ indicates the � eigenspace for A, for � in OA.

Theorem 2.2 (of the Highest Weight [17]).

(a) Let � be any (rregular) representation of (the reductive connected algebraic
group) G on a (finite-dimensional, complex) vector space V . Then V U is
nonzero.

(b) If � is irreducible, then V U is one-dimensional; and
(c) the character �� of A such that V U D .V U /.A;��/ determines � up to

equivalence.

A vector in V U is called a highest weight vector for V , and when V is irreducible,
the character �� is called the highest weight of �. Similarly, we write �� for the
irreducible representation with highest weight �.

If � is any finite-dimensional but not necessarily irreducible representation of G
on the space V , let V D ˚j Vj be a decomposition of V into irreducible summands.
Then

V U D �˚j Vj
�U D ˚j V U

j D ˚j .V U
j /

.A;�j / (9)

is the corresponding decomposition of the space of highest weight vectors into
eigenspaces for A. We see that there is one � eigenvector for each summand that
is isomorphic to the irreducible representation V� with highest weight �. In other
words, if we know the decomposition of V U into A-eigenspaces, we know the
decomposition of V into irreducible representations. In fact, we know not just the
multiplicities of the irreducible representations, but we know the highest weight
vectors in the sum of the irreducible constituents of a given isomorphism type. This
principle underlies much of the discussion below.

Not all characters ofA can be highest weights. However, the collection of highest
weights of irreducible representations do form a semigroup in bA. This can be seen
by taking tensor products. If Ev is a highest weight vector for the representation �
with weight �� D �, and Ev0 is a highest weight vector for the representation �0, with
weight ��0 D �0, then the vector Ev ˝ Ev0 in V ˝ V 0 will be a highest weight vector
with weight ��0.

Characters of A that are highest weights of representations are called dominant
characters. The semigroup of dominant characters is denoted bAC. To explicitly
compute the semigroup bAC for G D GLn is not difficult, but would involve too
long a digression. Here we simply record that it is ([17])

bACn D f� Ě W ˇi � ˇiC1; 1 � i � n � 1g: (10)
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Take an irreducible representation � of G on the space V . Let �o be the highest
weight vector in V �. Consider the matrix coefficient mappingˆ�o . Then the second
formula in (6) shows that the functions in ˆ�o.V / will be invariant under right
translation by UG D U . Thus, they will factor to the coset space G=U . We denote
by R.G=U ) the algebra of functions in R.G/ that factor to G=U . Thus we can say
that ˆ�o.V / � R.G=U /.

Moreover, again using formula (6), we can compute that

Ra.ˆ�o .Ev// D ��� .a/ˆ�o.v/

for a in AG D A. In other words, the functions of ˆ�o.V / are eigenvectors, with
eigencharacter ��� under right translation by the torus A.

From Proposition 2.1 and the uniqueness of the highest weight vector in an
irreducible representation, we see that there is only one embedding (up to scalar
multiples) of � into R.G=U /, namely the one constructed using ˆ�o . We may
conclude therefore that the image of this embedding is the eigenspace for right
translations by A, for the character ��� . We can summarize this discussion in the
following statement.

Theorem 2.3.

(a) The ring R.G=U / of rregular functions on the coset space G=U decomposes
into a direct sum of one copy of each rregular irreducible representation of G:

R.G=U / '
X

�2 OG
V� D

X

�2 OAC

V�: (11)

(b) Moreover, each space V� is an eigenspace for right translations by A, with
eigencharacter ��� . This entails that

V�� � V��0

D V���0

in R.G=U /: (12)

(c) Thus, R.G=U / has the structure of an bA-graded algebra, with the irreducible
representation spaces V� being the homogeneous components.

We call R.G=U / the flag algebra for G. It and algebras constructed from it will
be the central objects in our discussion.

Remark 2.4. Note that the space V� supporting the irreducible representation
with highest weight � is not the �-eigenspace under right translations by A, but
the ��-eigenspace, where �� denotes the highest weight of the contragredient
representation.
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3 Branching algebras

LetH � G be a reductive subgroup. An important problem in representation theory
is to describe, for an irreducible representationV� ofG, the restriction .V�/jH to give
the decomposition of V� into irreducible representations for H . This is the finite-
dimensional version of harmonic analysis; it is often called the branching problem.
Thanks to the theorem of the highest weight, this problem can be encoded in the
structure of an algebra, a subalgebra of the flag algebra R.G=UG/.

Specifically, let BH D AHUH be a Borel subgroup of H . Consider the
algebra R.G=UG/UH of rregular UH -invariant functions on G=UG . We have the
decomposition

R.G=UG/
UH '

0

B

@

X

�2 OAC

G

V�

1

C

A

UH

'
X

�2 OAC

G

.V�/
UH

'
X

�2 OAC

G

0

B

@

X

 2 OAC

H

.V UH
� /.AH ; /

1

C

A
(13)

'
X

�2 OAC

G

X

 2 OAC

H

.V UH
� /.AH ; /:

Here .V UH
� /.AH ; / indicates the  -eigenspace for AH acting on the space V UH

�

of UH -invariant vectors in V�. According to the theory of the highest weight, the
dimension of .V UH

� /.AH ; / gives the multiplicity of the irreducible representation
W in the representation .V�/jH . On the other hand, we know that .V UH

� /.AH ; /

is the ��-eigenspace for AG acting on G=UG on the right, intersected with the
 -eigenspace for AH acting on G=UG on the left. Thus, R.G=UG/UH is an
OAG � OAH -graded algebra, whose � �  homogeneous component has dimension

equal to the multiplicity of W in V�. Thus, this algebra encodes the branching rule
from G to H . We therefore call it the .G;H/ branching algebra.

The branching algebraR.G=UG/UH presents a solution to the branching problem
from G to H . How practical this solution is depends on how explicitly we can
describe the algebra. In the following sections we will discuss some methods
for describing algebras, and then will study some examples in which explicit
descriptions can be given.

Remarks. (a) Note that, in fact, the algebra gives more than the multiplicities of
.V�/jH – it gives explicit highest weight vectors for the H -constituents of V�.

(b) The value of finding highest weight vectors is emphasized in [57].
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4 Tensor product algebras

Given a group G and two representations � and �0 of G, one can form the
tensor product � ˝ �0 of the two representations. This construction comes up
in the consideration of interacting quantum mechanical systems with symmetry,
for example, in the description of multi-q-bit systems in quantum information
theory [55]. Typically, even if � and �0 are irreducible, the product � ˝ �0 will not
be, and it is a natural problem to find its irreducible components. The point of this
section is to note that this problem can be considered as a branching problem.

If G and G0 are reductive groups, and � is a representation of G on V , and � is
a representation of G0 on W , then we can define the tensor product representation
�˝ � of G �G0 on the space V ˝W by the recipe

.�˝ �/.g; g0/.Ev ˝ Ew/ D .�.g/Ev/˝ .�.g0/Ew/ (14)

for g 2 G, g0 2 G0, Ev 2 V and Ew 2 W . If � and � are irreducible representations
of G and G0 respectively, then � ˝ � is an irreducible representation of G � G0.
Moreover the mapping

OG � OG0 !3.G �G0/ (15)

given by

.�; �/! �˝ �; (16)

is a bijection.
In case G0 D G, then the groupG may be embedded diagonally in G �G:

g ! .g; g/:

We call the image of this map�G, the diagonal subgroup ofG�G. The tensor prod-
uct � ˝ �0 of two irreducible representations to make an irreducible representation
of G �G is sometimes called the outer tensor product, and the restriction of �˝ �0
to �G is then referred to as the inner tensor product. Decomposing inner tensor
products is thus a particular case of decomposing the restriction of representations
to a subgroup; i.e., it is a branching problem. Let �UG D U�G be the maximal
unipotent subgroup of the Borel of �G. The branching algebra associated with the
tensor product problem is

R..G �G/=UG�G/�UG D R..G �G/=.UG � UG//�UG
' .R.G=UG/˝R.R=UG//�UG : (17)

We will refer to this algebra as the tensor product algebra for G.
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5 .GLn; GLm/-duality

We now begin closer consideration of our main examples, involving GLn and
closely related subgroups. To prepare, we recall the notion of polynomial repre-
sentation of GLn, and the associated “diagram notation” (see e.g., [17, 20]).

Polynomial representations of GLn: As mentioned in §3, the highest weights
of irreducible representations of GLn have the form � Ě, where the components ˇi

of the n-tuple Ě satisfy ˇi � ˇiC1. A representation whose highest weight satisfies
ˇj � 0 for all j (equivalently, ˇn � 0) is called a polynomial representation. It can
be shown that the matrix coefficients of a polynomial representation are polynomials
in the coordinate functions xij on the n � n matrices.

Among the representations of GLn, we have the distinguished one dimensional
determinant representation, det, given by g ! detg. The highest weight of det is
just restriction of det to An. As a character of An, we have

det D �E1n ; (18)

where E1n is the n-tuple all of whose coordinates are equal to 1.
If � is any irreducible representation ofGLn, then the tensor product det˝� will

again be irreducible. If the highest weight of � is � Ě, then the highest weight of
det˝� will just be �E1n� Ě D � ĚCE1n . Clearly, by tensoring with a suitable power of

det (for example, we could take det�ˇn ), we can arrive at a representation with a
highest weight corresponding to an n-tuple E�, with entries

�1 � �2 � �3 � : : : � �d > 0 D �dC1 D 0 D : : : D 0:

In particular, any irreducible representation of GLn can be written as the tensor
product of a power of det with a polynomial representation.

The polynomial representations of GLn span a subring of the flag algebra
R.GLn=Un/. We will denote this subalgebra by RC.GLn=Un/.

Diagram notation: There is a special notation for polynomial representations
that is useful in many contexts. Given any sequence

D D f�1 � �2 � �3 � : : : � �d > 0g; (19)

we can extend it by zeroes to make an n-tuple for any n � d , which will then define
a dominant weight for GLn.

The sequence D is called a partition of the number
P

i �i . The �i are the parts
of D, and d is the number of parts, and is also referred to as the depth of the
partition. The term “depth” comes from the practice of associating toD a (Young or
Ferrers) diagram, which for us will mean an array of left justified rows of squares
or “boxes”, with each row stacked one above the next, with �i boxes in the i -th row.
Later on, we will see that it is useful to label these boxes in various ways to produce
what are called tableaux.
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Given a diagramD of depth d , and any integer n � d , we denote the representa-
tion ofGLn corresponding toD by �Dn . This “diagram notation” for the polynomial
representations of GLn will be what we use from now on.

With diagram notation in hand, we can state a central fact of finite-dimensional
representation theory for the classical groups.

Let GLn �GLm act on the n �m matricesMnm by the recipe

.g; g0/.T / D .gt /�1T .g0/�1: (20)

We get a representation 
 of GLn � GLm on the ring P.Mnm/ of polynomial
functions onMnm in the usual way:


.g; g0/.p/.T / D p..g; g0/�1.T // D p.gtTg0/: (21)

Theorem 5.1 (.GLn;GLm/ duality). As a GLn � GLm module, we have the
decomposition

P.Mnm/ '
X

D

�Dn ˝ �Dm ; (22)

where the sum is over all Young diagrams with at most min.n;m/ rows.

The key fact here is that the diagram D in all tensor products is the same for
GLn and forGLm. This result is a simple application of the idea of multiplicity-free
action, which provides an effective method for exploiting highest weight theory. See
for example [21] or [17] for details.

If we look at the GLm highest weight vectors in P.Mnm/, then .GLn;GLm/
duality tells us that

P.Mnm/
Um '

 

X

D

�Dn ˝ �Dm
!Um

'
X

D

�

�Dn ˝ �Dm
�Um '

X

D

�Dn ˝ .�Dm /Um:
(23)

Highest weight theory says that the dimension of .�Dm/
Um is just 1. Therefore, the

sum (23) is a multiplicity free sum of irreducible representations ofGLn. Moreover,
the line .�Dm /

Um is an eigenline for the torus Am in GLm, with character  D . Also,
the space P.Mnm/

Um is an algebra, on which Am acts by automorphisms. Thus
P.Mnm/

Um is an bACm -graded algebra, so that except for the fact that the diagrams
D are limited to have at most m rows, P.Mnm/

Um bears a strong resemblance to
RC.GLn=Un/. In fact, it is an easy matter [21] to construct an embedding

˛n;m W P.Mnm/
Um ! RC.GLn=Un/; (24)

with image consisting of all VD where D has at most m rows. We call
˛n;m.P.Mnm/

Um/ a band-limited subalgebra of RC.GLn=Un/. In what follows,
we usually will suppress the embedding ˛n;m.
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6 Duality between tensor products and block
diagonal restriction

Consider GLn � GLmC` acting on Mn.mC`/. We have the GLn � GLmC` module
decomposition as in §5:

P.Mn.mC`// '
X

D

�Dn ˝ �DmC`: (25)

On the other hand, we can write Mn.mC`/ ' Mnm ˚Mn`, which implies that

P.Mn.mC`// ' P.Mnm/˝ P.Mn`/: (26)

Applying §5 to each factor, we obtain a decomposition of P.Mn.mC`// as a module
for .GLn �GLm/ � .GLn �GL`/ ' .GLn �GLn/ � .GLm �GL`/:

P.Mn.mC`// '
 

X

E

�En ˝ �Em
!

˝
 

X

F

�Fn ˝ �F`
!

'
X

E;F

�

�En ˝ �Fn
�˝ ��Em ˝ �F`

�

: (27)

The relationship between the groups involved in these decompositions is
described by this diagram.

GLn � GLmC`

\ [ (28)

.GLn �GLn/ � .GLm �GL`/

The copy ofGLn in the upper row is embedded diagonally in the factorGLn�GLn
in the lower row. Denote this upper copy by �GLn. The product GLm � GL` is
embedded block diagonally in GLmC`.

Write U�GLn D �Un. Consider the algebra P.Mn.mC`//�Un�Um�U` of joint
highest weight vectors for �GLn, GLm and GL`. We can interpret this algebra
in two different ways, suggested by the top row and the bottom row of display (28).

Looking at this from the point of view of the top row, we find that

P.Mn.mC`//�Un�.Um�U`/ '
�

P.Mn.mC`//�Un
�Um�U`

/: (29)

We know from §5 that the algebra P.Mn.mC`//�Un is isomorphic to (a band-
limited subalgebra of) the flag algebra RC.GLmC`=UmC`/. The algebra
�

P.Mn.mC`//�Un
�Um�U` then appears as the subalgebra of highest weight vectors



364 Roger Howe

for the block diagonal subgroup GLm � GL` � GLmC`. In other words, we can
think of the algebra P.Mn.mC`//�Un�.Um�U`/ as (a band-limited subalgebra of) the
.GLmC`; GLm � GL`/ branching algebra. The corresponding decomposition into
submodules is as follows:

 

X

D

�Dn ˝ �DmC`
!�Un�.Um�U`/

'
X

D

.�Dn /
�Un ˝ .�DmC`/Um�U` : (30)

On the other hand, looking at P.Mn.mC`//�Un�.Um�U`/ from the point of view of
the bottom row, we have

P.Mn.mC`//�Un�.Um�U`/ '
�

.P.Mnm/˝ P.Mn`//
Um�U`��Un

' �P.Mnm/
Um ˝ P.Mn`/

U`
��Un

: (31)

Again from §5, we know that the algebra P.Mnm/
Um ˝ P.Mn`/

U` is isomorphic to
(a band-limited subalgebra of) the flag algebraRC.GLn�GLn=Un�Un/. Then the
algebra

�

P.Mnm/
Um ˝ P.Mn`/

U`
��Un consists of the subalgebra of �GLn highest

weight vectors. In other words, we can think of the algebra P.Mn.mC`//�Un�.Um�U`/
as (a band-limited subalgebra of) the GLn tensor product algebra. The correspond-
ing decomposition into submodules is as follows:

 

X

E;F

�

�En ˝ �Fn
�˝ ��Em ˝ �F`

�

!�Un�.Um�U`/

'
X

E;F

�

�En ˝ �Fn
��Un ˝ .�Em/Um ˝ .�F` /U` : (32)

From the above, we see that the homogeneous components of

P.Mn.mC`//�Un�.Um�U`/

simultaneously compute the multiplicities of irreducible representations of GLm �
GL` in restrictions of representations ofGLmC`, and the multiplicities of irreducible
representations of GLn in tensor products of such representations.

This construction can be iterated. Remarks similar to the above apply if we break
up m into many summands: If we write m D Pa

iD1 mi , then we can think of the
algebra

P.Mnm/
�Un�.Qi Umi /

either as describing restrictions fromGLm to the block diagonal subgroup
Q

i GLmi ,
or as describing manyfold tensor products of representations of GLn, of represen-
tations of depths limited by the mi . Here �GLn indicates the diagonal subgroup in
.GLn/

a, where a is the number of summands into which m is decomposed.
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7 The Pieri algebra

We first apply the ideas of §6 to the case when ` D 1. From the point of view of
tensor products, this amounts to computing products of the form �Dn ˝ Sr.Cn/, a
general representation with a symmetric power of the standard representation. This
is the classical Pieri Rule [14].

From the point of view of branching, it amounts to describing restrictions of
representations of GLmC1 to GLm � GL1. This is the famous computation that
formed the basis of the paper of Gelfand and Tsetlin, and led to Gelfand–Tsetlin
patterns [16].

As is explained in [21] or [17], this situation is again multiplicity-free. Accord-
ingly, the algebra

P.Mn.mC1//�Un�Um

is a polynomial ring on a canonical set of generators. Again, according to [21], these
generators are

ık D det

2

6

6

6

6

6

6

6

6

6

4

x11 x12 x13 : : : x1k
x21 x22 x23 : : : x2k

x31 x32 x33 : : : x3k
: : : : :

: : : : :

: : : : :

xk1 xk2 xk3 : : : xkk

3

7

7

7

7

7

7

7

7

7

5

and

ı.k�1;1/ D det

2

6

6

6

6

6

6

6

6

6

4

x11 x12 x13 : : : x1.k�1/ y11
x21 x22 x23 : : : x2.k�1/ y21
x31 x32 x33 : : : x3.k�1/ y31

: : : : : :

: : : : : :

: : : : : :

xk1 xk2 xk3 : : : xk.k�1/ yk1

3

7

7

7

7

7

7

7

7

7

5

: (33)

Here xab for 1 � a � n, 1 � b � m, are the entries of a typical matrix in Mnm, and
ya1 are the entries of the .mC 1/-th column of a matrix in Mn.mC1/.

8 SAGBI theory: Lattice cones and highest terms

To go beyond the Pieri Rule, we must interpret what it says in a robust way. This
involves looking at the highest terms of monomials in the functions ık and ı.k�1;1/.
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The general idea is to approximate general rings by rings with a more transparent
structure. The traditional approach of describing rings in terms of generators and
relations effectively amounts to comparing a general (affine) ring with polynomial
rings. But since there is only one polynomial ring in each dimension, this is a
somewhat Procrustean approach to dealing with rings. It might seem desirable to
have a larger collection of “model algebras”, with which to compare a general affine
ring. Over the last several decades, it has become appreciated that there is a plausible
collection of candidates for such model algebras.

A notable reason that we feel comfortable with polynomial rings is that they
have a transparent multiplication. A polynomial ring in generators xi has a basis of
monomials

xEa D xa11 xa22 xa33 : : : xann ; (34)

where Ea D

2

6

6

6

6

6

6

6

6

6

4

a1
a2
a3
:

:

:

an

3

7

7

7

7

7

7

7

7

7

5

is an n-tuple of nonnegative integers (aka a multi-index). These

monomials multiply according to the standard rule

xEa � xEb D xEaCEb: (35)

In other words, the monomials form a semigroup under multiplication. Since the
monomials form a basis, the polynomial ring P.x1; x2; x3; : : : ; xn/ just amounts
to the semigroup ring on the semigroup of monomials. This semigroup is of
course .ZC/n, the free abelian semigroup on n generators: P.x1; x2; x3; : : : ; xn/ '
C..ZC/n/. This suggests perhaps enlarging the set of “model algebras”, with which
we could compare more general algebras, to include semigroup rings.

Lattice cones: A fairly natural and general class of semigroups are the lattice
cones. They consists of the integer points in a convex cone in cartesian n-space.
More explicitly, for a linear function � on Rn, let the positive half-space for � be
the set

HC� D fEx 2 Rn W �.Ex/ � 0g: (36)

For a collection L D f�i g of linear functions, define the positive cone for L by

CCL D \iHC�i : (37)

This cone is closed under vector addition: it is a semigroup. It is also closed under
multiplication by positive scalars, and it is convex: given two points in CCL , the
whole line segment between them also lies in L.
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Consider the intersection CCL \ Zn. It is clearly a semigroup. Moreover, when
possible, it is finitely generated [3].

Theorem 8.1 (Gordan’s Lemma). If the functionals �i in L are rational, in the
sense that they take rational values on Zn, then CCL \ Zn is finitely generated as a
semigroup.

We call a semigroup CCL \ Zn defined by rational functionals �i a lattice cone.
(In [3], it is called a normal affine semigroup.)

Although lattice cones are finitely generated subsemigroups of Zn, they are
obtained somewhat indirectly. The straightforward way to obtain a finitely generated
subsemigroup of Zn would be to select a finite set B of integral vectors Ebi 2 Zn,
and take the semigroup they generate. It turns out that such a semigroup is not
too far from being a lattice cone. Let SB be the semigroup generated by B . We
can also describe SB as the set of all linear combinations of elements of B with
nonnegative integer coefficients. Let CB be the set of all linear combinations of
elements of B with nonnegative real coefficients. Standard duality results [3] show
that CB is a rational polyhedral cone. Clearly SB � CB \ Zn. Moreover, it can be
shown [3] that there is a whole number J such that J � .CB \ Zn/ � SB . Thus SB
looks like a “lattice cone with holes”. It is gotten by deleting some elements from
CB \ Zn, but retains enough that one can recapture CB \ Zn as a subsemigroup
of the rational vector space spanned by B . (Note that CB \ Zn is not canonically
determined by SB as an abstract semigroup, but depends on how B is embedded

in Zn. For example, the subsemigroup of .ZC/2 generated by Ev1 D
�

c1
0

�

and

Ev2 D
�

d

c2

�

will be isomorphic to .ZC/2, for any positive integers c1; c2 and d .

However, the lattice cones CfEv1;Ev2g \ Z2 run through infinitely many isomorphism
classes of semigroup, and for a given isomorphism class, there are infinitely many
inequivalent embeddings .ZC/2 ! CB .)

It should be clear from the above that the affine semigroup rings, among which
the lattice cones form a distinguished subset, provide a rich class of potential model
algebras. The next question would be, given a general affine ring, how might we
find a semigroup ring to model it?

A fairly general answer to this question is provided by SAGBI theory [50]. This
adapts the tools developed to allow computations with ideals (Gröbner basis theory)
to directly describe rings. In particular, it makes use of the idea of term order on
the monomials in the polynomial ring P.x1; x2; x3; : : : ; xn/. A term order is a total
ordering� on .ZC/n satisfying the following conditions.

.i/ E0 is the minimal element in .ZC/n:

.ii/ Any decreasing sequence is finite: .Noetherian condition:/ (38)

.iii/ If Ea � Eb; then EaC Ec � Eb C Ec; for any Ea; Eb; Ec in .ZC/n:

.Compatibility with addition:/
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Given a term order � on .ZC/n, and any polynomial p in n variables, we can
define LT .p/ D xEa, where Ea is the largest exponent among all monomials appear-
ing with nonzero coefficients in the monomial expansion of p. The compatibility
condition on term orders implies that for any pair p, q of polynomials, we have

LT .pq/ D LT .p/LT .q/: (39)

Now let R � P.x1; x2; x3; : : : ; xn/ be a subalgebra of the polynomials. Define
LT .R/ D fLT .p/ W p 2 Rg to be the collection of leading terms of all elements
of R. The condition (39) says that LT .R/ is a semigroup. It may or may not be
finitely generated, but if it is, a general result [6] says that the associated semigroup
ring is a good approximation to R, in a suitable technical sense.

Theorem 8.2. For a subring R � P.x1; x2; x3; : : : ; xn/, if the semigroup LT .R/
is finitely generated, then the associated semigroup ring C.LT .R// is a flat
deformation of R.

We refer to [6] for the definition of flat deformation, as well as the proof
of Theorem 8.2. We note that the flat deformations constructed by Theorem 8.2
are not canonical, and the nature of their relation to the original ring R is not
completely clear. The deformed ring C.LT .R//may require many more generators
than doesR itself. For our purposes of understanding the .G;H/ branching algebras
R.G=UG/

UH , whose main features of interest are the bAG � bAH multigrading, and
the associated homogeneous components, it will be enough to know that the term
order � is compatible with the multigrading, in the sense that C.LT .R// also
possesses a bAG � bAH multigrading, and the homogeneous components are taken
to homogeneous components, so that we can compute the dimensions of these
components in C.LT .R/. This will be more or less clear from the constructions
given below.

Thus, term orders give us a method of looking for semigroup rings that model
a general ring. We should observe that term orders exist in abundance, and it is
quite easy to construct them [7]. One method uses linear functionals. Let f�ig be a
collection of linear functions on Rn that are positive, in the sense that their values
on the positive orthant .RC/n are nonnegative. To a multi-index Ea, we can associate
the sequence

Ea! .�1.Ea/; �2.Ea/; �3.Ea/; : : :
of real numbers. We can order .ZC/n, by the lexicographic order on this sequence:
Ea > Eb if

.i/ �1.Ea/ > �1.Eb/; or if

.ii/ �1.Ea/ D �1.Eb/; and �2.Ea/ > �2.Eb/; or if (40)

.iii/ �1.Ea/ D �2.Eb/; and �2.Ea/ D �2.Eb/; and �3.Ea/ > �3.Eb/; or if

etc.
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If the �i span .Rn/�, then this will define a total order on .ZC/n. Indeed, if �1
is totally irrational, in the sense that its kernel does not contain any rational vectors
(equivalently, the entries of �1 should be linearly independent over the rationals),
then the values of �1 alone will define a term order on .ZC/n.

Among this type of term order, we single out a particular collection that is
important for our purposes. For this, we first impose a total ordering on the variables
of the polynomial ring. Essentially, this amounts to choosing a permutation � of the
indices f1; 2; 3; : : : ; ng, and declaring that

x�.1/ > x�.2/ > x�.3/ > : : : > x�.n/:

(If our variables are not named xi in the standard way, we should somehow specify
the desired total order.) Then we use the functionals �1 D P

i ai ; �2 D a�1 ; �3 D
a�2 ; : : : To determine which of two monomials xEa or xEb is larger with respect to this
order, we first look at the total degree of the monomials, and choose the one with
larger degree if these are unequal. If they are the same, then we choose the one with
the larger exponent for x�.1/. If these also are the same, we choose the one with the
larger exponent for x�.2/; and so forth. This term order is often called the graded
lexicographic order (with respect to the given ordering of the coordinates).

To summarize, given a ring R of polynomials and a term ordering � on
monomials, if we can determine the semigroup LT .R/, and show in particular
that it is finitely generated, then the semigroup ring C.LT .R// forms a “good
approximation” to R, in the sense of Theorem 8.2.

SAGBI theory turns out to be very effective for studying the rings of interest
here. Before going into the details, we should point out that, in allowing general
semigroup rings as model algebras, one is in some sense going to the opposite
extreme from allowing only the polynomial ring as the single model algebra in a
given dimension. There is a huge zoo of semigroup rings, and even of lattice cones.
Already in dimension 2, there is a large variety of lattice cones, and their associated
semigroups can require arbitrarily many generators. Dimension 3 represents a large
step up in complexity from dimension 2, and dimension 4 is still wilder.

Therefore, it is worthwhile to notice that the lattice cones that appear in the
calculations below are among the nicest imaginable. They are from the very pleasant
class of lattice cones studied by Hibi [18]. We will call them Hibi cones.

A Hibi cone is attached to a partially ordered set (poset). Briefly, given a partially
ordered set � , with order relation �, the Hibi cone attached to � is the cone

.ZC/�; (41)

of nonnegative, integer-valued, order preserving functions on � . Degeneration to
Hibi rings allows your algebra to be described in terms of “patterns” of some sort,
analogous to Gelfand–Tsetlin patterns.

In contrast to the plethora of lattice cones, there are obviously only finitely
many Hibi cones in each dimension. Further, these cones have very nice properties.
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These are discussed for example in [22], see also [18] and [49]. Generators and
relations for Hibi cones can be given explicitly in terms of � . Also, there is
a canonical decomposition of a Hibi cone into integral simplicial subcones that
provides an abstract version of the “standard monomial theory” of Hodge [19].
Thus, although we will not emphasize it, the algebras analyzed below will all have a
standard monomial theory. (We note that standard monomial theory has been studied
extensively by Lakshmibai and various coworkers [39, 40, 41], etc.)

9 Highest terms for the Pieri algebra

We apply the ideas of §8 to the Pieri algebra. We use variables xab and ya1 for
entries of a matrix in Mn.mC1/, as in formulas (33). We want to define a term order
on monomials in these variables. First, we totally order the variables by the rule:

x11 > x21 > x31 > : : : > xn1 > x12 >

x22 > : : : > xnm > y11 > y21 > : : : > yn1: (42)

In other words, we order the xab according to the lexicographic order on their
indices, and the yc1 according to the value of c, and we say that any of the xab
is greater than any of the yc1.

We will use the graded lexicographic order on the monomials in these variables.
It is easy to check that, with respect to this term order, the leading terms of the
generators (33) are

LT .ık/ D
k
Y

aD1
xaa; and LT .ı.k�1;1// D .

k�1
Y

aD1
xaa/yk1: (43)

We assume for convenience that m < n. The case of m � n can be dealt with
similarly. From inspection of these generators, we see that the following relations
hold.

(i) xab with a ¤ b does not appear in any highest term;
(ii) If xaa appears in a highest term, then so does x.a�1/.a�1/.

(iii) If ya1 appears in a highest term, then so does x.a�1/.a�1/.

From these conditions, it is easy to check that the highest term of a monomial in the
ık and the ı.k�1;1/ has the form

 

m
Y

aD1
x`aoaa

! 

mC1
Y

bD1
y
db1
b1

!

; (44)

where the exponents `ao and db1 satisfy

`ao � `.aC1/o C d.aC1/1:
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Since we automatically have db1 � 0, we know that `aoC da1 � `ao. Hence the full
collection of inequalities between the exponents of highest terms can be captured by

`ao � `.aC1/o C d.aC1/1 � `.aC1/o: (45)

It is also not hard to argue that, conversely, any collection of exponents satisfying the
inequalities (45) comes from the highest term of a monomial in the ık and ı.k�1;1/.

If we think of this algebra as computing tensor products of a general represen-
tation �Don of GLn with a symmetric power Sd .Cn/ of the standard representation,
then these inequalities can be interpreted nicely in terms of diagrams. The exponents
`ao are the lengths of the rows of the diagram Do, and the sums `ao C da1 are
the lengths of the rows of a constituent of the tensor product. The inequality
`ao � `.aC1/o C d.aC1/1 says that the length of a given row in the tensor product
constituent is not longer than the next higher row of the original representation �Don .
This is frequently called the “interleaving condition”. This gives a nice way to
present the possible constituents, and it also provides a good basis for inductive
arguments, as we will see in the next section.

One can regard this situation as defining a nested pair of diagrams: the diagram
Do of the original �Dn , and the diagramD1 of the constituent of �Dn ˝ Sd .Cn/. One
can distinguish the original Do as a subdiagram of D1 by leaving the boxes of Do

blank, while filling the boxes of D1 � Do with a 1. In row a, the boxes of Do are
the leftmost `ao boxes, and the boxes with a 1 are the rightmost da1 boxes. In other
words, the a-th row ofD1 is obtained from the a-th row of Do by adding da1 boxes
at the end, labeled with 1s. This is an example of a skew tableau. In terms of the
tableau, the interleaving conditions can be interpreted as saying that the boxes with
1 in them form a skew row, meaning that no two are in the same column.

The lengths of the rows of Do are `ao, and the lengths of the rows of D1 are
`a1 D `ao C da1. The interleaving conditions are then expressed by the inequalities

`ao � `.aC1/1 � `.aC1/o: (46)

Finally, also for later discussion, we note that, if we consider the set of points

�.n;m;1/ D
���a
�a
�

W 1 � a � m
�

[
���aC 1
�a

�

W 1 � a � mC 1
�

; (47)

and if we define

�

���a
�a
��

D `ao and �

���aC 1
�a

��

D `a1 D `ao C da1; (48)

then �.n;m;1/ is a totally ordered subset of Z2 with its standard (coördinatewise)
partial order, and � is an increasing function on this set. Moreover, the map that takes
the highest terms to the collection of such increasing functions on � is a bijective
map of semigroups.
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10 Iterated Pieri algebras

We now consider the algebra P.Mn.mCp//. (Note that we have abandoned ` as
the index denoting the columns beyond the first m, because we need to use ` for
indicating lengths of rows of diagrams.) We think of this as

P.Mn.mCp// ' P.Mnm/˝ P.Mnp/ ' P.Mnm/˝ P.Cn/˝p : (49)

That is, we are thinking of this as aGLn-module obtained by starting with P.Mnm/,
and tensoring p times in succession with P.Cn/.

We consider the GLm highest weight vectors in this algebra, thinking of GLm as
a subgroup of GLmCp . Note that this is the same as considering the highest weight
vectors for the full product block diagonal subgroup GLm � .GL1/p � GLmCp ,
since the unipotent radical of .GL1/p is trivial. We have

P.Mn.mCp//Um ' P.Mnm/
Um ˝ P.Cn/˝p : (50)

We want to describe the GLn-module structure of this algebra. In other words, we
want to describe the algebra

P.Mn.mCp//Um�Un '
	

P.Mnm/
Um ˝ P.Cn/˝p


Un
: (51)

Because this algebra results from repeating the process that gave the Pieri rule, we
call it an iterated Pieri algebra.

Each stage in the process leading to the iterated Pieri algebra is essen-
tially the same as the creation of the original Pieri algebra: to pass from
P.Mnm/

Um ˝P.Cn/˝j to P.Mnm/
Um ˝P.Cn/˝.jC1/

we start with a representation
of GLn, corresponding to some diagram Dj , and we add boxes at the end of each
row of Dj , observing the interleaving condition, to obtain a new diagram DjC1. In
more detail, if the a-th row of Dj has length `aj , then we add da.jC1/ boxes at the
end to obtain a row of length `a.jC1/ D `aj C da.jC1/. For the same reasons as in
the case of the ordinary Pieri algebra, the interleaving conditions should hold: each
row of DjC1 should not be longer than the previous row of Dj :

`aj C da.jC1/ � `.a�1/j : (52)

If for each j , we mark the boxes added in passing from Dj to DjC1 with the
label j C 1, then we will obtain a diagram with boxes labeled with nothing, or with
a number from 1 to p. The labels will increase weakly as you move from left to right
in a row. The boxes with a given label b will form a skew row. This is equivalent
to saying that the labels in the (labeled) boxes increase strictly as you move down
a column. Such a diagram with boxes labeled in this way is called a semistandard
tableau.
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We can explicitly exhibitGLn highest weight vectors that will represent all these
highest weights. These will be products of highest weight vectors of copies of the
exterior powersƒk.Cn/. These will correspond to column tableaux whose diagram
consists of a single column, i.e., with all rows having length one. Denote the column
tableau by T . Suppose that c rows of T are unlabeled, and that there are d rows with
labels, and that the r D .c C b/-th row of T is labeled with jb . Then we have the
correspondingGLn highest weight vector

ıT D det

2

6

6

6

6

6

6

6

6

6

6

6

4

x11 x12 : : : x1c y1j1 y1j2 : : : y1jd
x21 x22 : : : x2c y2j1 y2j2 : : : y2jd
x31 x32 : : : x3c y3j1 y3j2 : : : y3jd

: : : : : : : : : : : :

: : : : : : : : : : : :

: : : : : : : : : : : :

: : : : : : : : : : : :

xs1 xs2 : : : xsc ysj1 ysj2 : : : ysjd

3

7

7

7

7

7

7

7

7

7

7

7

5

: (53)

Here s D cC d . If we extend the order of the variables described in §9 by ordering
the yab in the same way as we ordered the xb—by lexicographic ordering of the
indices—and if we declare all xab to precede all ycd , then the highest term of ıT is
easily determined to be just the diagonal term of ıT :

LT .ıT / D
 

c
Y

aD1
xaa

! 

d
Y

bD1
y.cCb/jb

!

: (54)

Now consider any semistandard skew tableau T, and write it as a union of column
tableaux Tc . with Tc being the c-th column of T. Then set

ıT D
Y

c�1
ıTc : (55)

Then we can check that

LT .ıT/ D
 

Y

a

x`aoaa

!

0

@

Y

b;c

y
dbc
bc

1

A ; (56)

where `ao is the number of unlabeled boxes in the a-th row, and dbc is the number
of boxes in the b-th row labeled with a c. These exponents fill out the lattice cone
specified by the interlacing conditions at each stage:

`a.k�1/ D `ao C
k�1
X

cD1
dac � `ao C

k
X

cD1
dac (57)

D `ak � `.a�1/.k�1/ D `.a�1/o C
k�1
X

cD1
d.a�1/c:
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As in the case of p D 1, there is a nice way to describe the interlacing conditions
in terms of order-preserving functions on a partially ordered set, namely the subset
of Z2 defined by the conditions

�.n;m;p/ D
���aC k

�a
�

W 1 � a � nI 0 � k � pI k � a �m
�

: (58)

If we define

�T

���aC k
�a

��

D `a;k ; (59)

then the interlacing conditions simply translate to the statement that �T is an
increasing function on �.n;m;p/.

To summarize the argument of this section:

Theorem 10.1. For the term order described above, the semigroup

LT .P.Mn.mCp//Um�Un/

is a lattice cone isomorphic to the cone .ZC/�.n;m;p/; of order preserving, nonnega-
tive integer-valued functions on the poset �.n;m;p/.

Remarks 10.2.

(a) The results above are a (perhaps slightly more general and flexible) combination
of Hodge’s standard monomial theory [19] combined with the Gelfand–Tsetlin
[16] results on torus eigenbases for representations ofGLn, based on branching
from GLn to GLn�1. The two points of view were finally combined in [15],
which introduced the idea of toric deformation in this context (see also [53] for
the Grassmannian case; this used highest terms), and these ideas were further
refined in [38, 45] and [32]. Extensions of toric deformation arguments to other
flag algebras and more general multiplicity-free actions are given in [1,4,5,32].

(b) We would like to highlight the extent to which the logic of this account depends
on the highest terms. First, using the skew tableau/GT pattern technology, one
finds a combinatorial parametrization of the constituents of the tensor products
that counts the multiplicity of any given representation in the indicated tensor
products. Then one encodes the parameters as a collection of exponents, and
observes that these exponents exactly constitute a lattice cone, isomorphic to the
Hibi cone .ZC/�.n;m;p/;. Finally, one defines a term order and produces highest
weight vectors for GLn whose highest terms have the previously described
exponents. These highest weight vectors are monomials in an explicit set
of elements, the ıT for column tableaux T . The fact that these monomials
have distinct highest terms guarantees that they are linearly independent, and
therefore, the monomials for a given highest weight span a space of the required
dimension. These monomials therefore exhaust the highest weight vectors of a
given type, and therefore span the algebra being studied. It is the upper bound
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given by the combinatorial parameters, together with the lower bound given by
the distinctness of the highest terms, and the matching of highest terms with
combinatorial parameters, that guarantees everything is found.

In this reasoning, we have paid no direct attention to the algebra structure
of the iterated Pieri algebra

�

P.Mnm ˝ P.Cn/˝p
�Um�Un . We find at the end

that the ıT must be generators for the algebra, but we have not given any
consideration to the relations between them. Thanks to general SAGBI theory,
we have exhibited

�

P.Mnm/˝ P.Cn/˝p
�Um�Un as a flat deformation of the

Hibi ring on the poset �.n;m;p/, and we note that the relations for a Hibi
ring are easily described [18,22]. Although this does not determine the relations
between the ıT , it does allow one to make some conclusions about their
qualitative nature. Detailed exploration of this topic is beyond the scope of this
article.

(c) The above discussion was built around the case when m < n. If m � n, the
set �.n;m;p/ is somewhat simpler. Indeed, then the condition k � a � m never
applies, and can be omitted. Then the points of �.n;m;p/ form a parallelogram
with two horizontal sides and two diagonal sides. When m < n, the region also
has a vertical side on the lower left, and when mC p > n, it is a pentagon.

11 Double Pieri algebras

We have been concentrating on describing P.Mn.mCp//Um as a module for GLn.
However, the starting situation of P.Mnm/ is symmetric in m and n, and we could
clearly tensor P.Mnm/ with copies of P.Cm/ and get an analogous decomposition
of the resulting GLm module.

In fact, we can do both at the same time. Since the original ring is a sum of tensor
products �Dn ˝ �Dm , and since the tensoring with P.Cn/ (respectively, with P.Cm/)
has no effect on the module structure for the other member of the pair .GLn;GLm/,
we may conclude that the GLn �GLm constituents of

P.Mnm/˝
	

P.Cn/˝p



˝
	

P.Cm/˝q



D P.Mnm/˝ P.Mnp/˝ P.Mqm/

will be parametrized by pairs of semistandard skew tableaux .T; T 0/, one for GLn
(with up to n rows), and one for GLm (with up to m rows). The tableaux are
independent of each other, except that they must have the same initial diagram:
Do D D0o.

We will refer to the algebras

L.n;p/.m;q/ D .P.Mnm/˝ P.Mnp/˝ P.Mqm//
Un�Um (60)

as double (iterated) Pieri algebras. It turns out that we can analyze them by a direct
extension of the ideas used on the (single) iterated Pieri algebras

.P.Mnm/˝ P.Mnp//
Un�Um:
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In particular, we can write down a set of functions whose highest terms will encode
a general pair .T; T 0/ of the skew tableaux of the sort that arise.

Indeed, consider the functions

ı.sII IJ / D det

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

x11 x12 x13 : : : x1.sCh/ y1c1 y1c2 : : : y1cg
x21 x22 x23 : : : x2.sCh/ y2c1 y2c2 : : : y2cg
x31 x32 x33 : : : x3.sCh/ y3c1 y3c2 : : : y3cg

: : : : : : : : :

: : : : : : : : :

: : : : : : : : :

xk1 xk2 xk3 : : : xk.sCh/ ykc1 ykc2 : : : ykcg
zd11 zd12 zd13 : : : zd1.sCh/ 0 0 : : : 0

zd21 zd22 zd23 : : : zd2.sCh/ 0 0 : : : 0

zd31 zd32 zd33 : : : zd3.sCh/ 0 0 : : : 0

: : : : : : : : :

: : : : : : : : :

: : : : : : : : :

zdh1 zdh2 zdh3 : : : zdh.sCh/ 0 0 : : : 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

; (61)

where I D fc1 < c2 < c3 < : : : < cgg, and J D fd1 < d2 < d3 < : : : < dhg
are subsets of the whole numbers from 1 to p, and from 1 to q, respectively. (Also,
k D s C g, but we did not want to use such a cumbersome subscript for the row
index of the matrix.)

Here the xab are the entries in a matrix in Mnm, the yac are the coordinates of
the copies of Cn, and the zdb are the coordinates of the copies of Cm (thought of as
row vectors). We order these coordinates in similar fashion to earlier sections. We
give each set of coordinates a total order defined by the lexicographic order on their
subscripts (except, for the zdb , we look at the second index first). We then declare all
the xab to dominate all the yac , which in their turn dominate all the zdb . (In fact, it is
irrelevant which have precedence between the yac and the zdb , since these variables
play essentially independent roles, as we will see.) For term order, we will use the
graded lexicographic order with respect to this ordering of the variables.

With respect to this order, it is not difficult to check that

LT .ı.sII IJ // D
 

s
Y

aD1
xaa

! 

g
Y

iD1
y.sCi /ci

!

0

@

h
Y

jD1
zdj .sCj /

1

A : (62)

We see that this highest term records the data from one column tableau for GLn,
and a second column tableau for GLm. The two tableaux have the same number of
blank entries, namely s, corresponding to the factors xaa, then they have arbitrary
(and independent) increasing entries in the non-blank boxes. Thus, products of these
elements can be used to create a highest term that encodes any pair of semistandard
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skew tableaux with the same diagram of blank boxes. The exponents of these leading
terms will fill out a lattice cone defined by the interleaving conditions for each
semistandard tableau.

This result can also be formulated cleanly in terms of Hibi rings. We have seen
(Theorem 10.1) that, for the algebra

�

P.Mnm/
Um ˝ P.Cn/˝p

�Un , the corresponding

semigroup LT .
�

P.Mnm/
Um ˝ P.Cm/˝p

�Un
/ of highest terms is isomorphic to the

poset lattice cone .ZC/.�.n;m;p/;/. A similar result of course holds for the iterated
Pieri algebra

�

P.Mnm/
Un ˝ P.Cn/˝q

�Um for GLm.
Now consider the reflection

� W
�

a

b

�

!
�

b

a

�

of R2. This of course preserves Z2, and defines an order preserving isomorphism
of Z2. Thus, we could as well formulate Theorem 10.1 as saying that

	

P.Mnm/
Un ˝ P.Cm/˝q


Um ' .ZC/.�.�.m;n;q//;/:

We further note that �.�.m;n;q// intersects �.n;m;p/ in the set of their (common)
intersection with the diagonal, i.e., the points

���a
�a
�

W 1 � a � min.n;m/

�

:

Also, given a pair .T; T 0/ of semistandard tableaux arising from the double
Pieri algebra, the values of the functions �T in .ZC/.�.n;m;p/;/ and of �T 0 in
.ZC/.�.�.m;n;q//;/ corresponding to T and to T 0 respectively, agree on the intersection
�.�.m;n;q// \ �.n;m;p/, since these values just record the lengths of the rows of the
original diagram from which the skew tableaux T and T 0 are built.

Therefore, the two functions �T and �T 0 fit together to define a single function
�T;T 0 on

�.n;p/.m;q/ D �.n;m;p/ [ �.�.m;n;q//: (63)

We claim that the function �T;T 0 is an increasing function on �.n;p/.m;q/. This follows
because the intersection �.n;m;p/ \ �.�.m;n;q// is “solid”, in the sense that, if E� is in
�.n;m;p/, and E� is in �.�.m;n;q//, and E� � E� with respect to the standard order on Z2,
then there is a point E� in �.n;m;p/ \ �.�.m;n;q// for which E� � E� � E�. Thus,

�T;T 0. E�/ D �T . E�/ � �T .E�/ D �T 0.E�/ � �T 0.E�/ D �T;T 0.E�/:

Essentially the same argument applies when E� � E�.
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Thus, pairs .T; T 0/ of semi-standard tableaux with equal unlabeled subdiagrams
give rise to order preserving functions on �.n;p/.m;q/. The converse may be shown by
similar arguments. We can summarize this discussion with the following statement.

Theorem 11.1. The semigroup of leading terms LT .L.n;p/.m;q// of the double Pieri
algebra L.n;p/.m;q/, with respect to the term order described above, is isomorphic to
the poset lattice cone .ZC/.�.n;p/.m;q/;/.

Remarks 11.2.

(a) Although the theory of diagrams associated to the iterated Pieri algebras has a
long history and a substantial literature, going back to [16], diagrams for objects
like the double Pieri algebra have received much less attention. The paper
[10] discusses double tableaux in connection with describing a GLn � GLm-
compatible basis for P.Mnm/; this work and [11] and [8] use double tableaux
to establish the first and second fundamental theorems of classical invariant
theory, in the sense of Weyl [56], in a characteristic free manner.

(b) The iterated Pieri algebras of §10 appear as the “boundary values” L.n;p/.m;0/
and L.n;0/.m;q/ of the four-parameter family L.n;p/.m;q/ of double Pieri algebras.

12 Applications: Pieri rules for classical groups

Because of the reciprocity discussed in §6, between tensor products and branching,
the description of the iterated Pieri algebras P.Mn.mCp//Um�Un given above implies
the Hodge–Gelfand–Tsetlin description of the flag algebra for GLn [15, 16, 19,
32, 38, 53], and indeed, it was in this context that the technology of tableaux and
patterns was developed. That connection in itself should be sufficient impetus for
studying the iterated Pieri algebras.

However, Pieri algebras and closely related Hibi rings play a much wider role
in representation theory. The description of the flag algebra for Sp2n [32], and
the branching rules from Sp2n to Sp2k for k < n [33] is quite parallel to GLn,
even though there is no multiplicity-one branching rule to get things started. (Some
would argue that there is such a multiplicity-one branching rule [47], but it requires
leaving the family of reductive groups.) Also, analogs of Gelfand–Tsetlin patterns
for symplectic groups go back to Zhelobenko [37, 46, 58].) Indeed, the branching
algebras for Sp2n are isomorphic to appropriate branching algebras for GL2n
[36]. Hibi rings also describe many branching rules for On, but only with some
restrictions, known as the stable range. It seems likely that describing the full flag
algebra for SOn will require a mild generalization of Hibi rings.

Moreover, Pieri algebras provide a context for understanding a wide range of
phenomena in the representation theory of the classical groups. It is explained in
[26] how to use the iterated Pieri algebras in a proof of the Littlewood–Richardson
rule, from which a large family of branching rules for classical symmetric pairs can
be understood [28].
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With Pieri algebras and related Hibi rings being so useful in representation
theory, the extension to the double Pieri algebras is then perhaps justified by its
simplicity. However, these algebras also appear naturally in some calculations for
the classical groups. In particular, they provide a description of the analog for other
classical groups of the iterated Pieri rule.

As noted in §6, the Pieri rule for GLn has two interpretations, related by a
reciprocity law: it describes either tensoring a representation with a representation
corresponding to a diagram with only one row, or restricting a representation
from GLnC1 to GLn. For the orthogonal group On or the symplectic group
Sp2m, branching to smaller subgroups of the same type bears strong similarities
to the case of GLn, as mentioned above. However, tensoring with representations
whose associated diagram has only one row – symmetric powers of the standard
representation of Sp2n, or spherical harmonics forOn, is more complicated than for
GLn; in particular, the resulting tensor products are not always multiplicity-free.
In [54], a description of the tensoring with one-rowed representations is given in
terms of diagrams, but it involves erasing boxes as well as adding boxes, making
iteration not straightforward.

In this section, we will show how to combine the results above with some facts
from classical invariant theory (in the formulation of [20]) to describe the analogs
for symplectic groups of the Pieri rule and the iterated Pieri rule. An essentially
parallel discussion can be given for orthogonal groups, and also a similar treatment
of a more general Pieri rule for GLn, that considers tensoring not only with the
symmetric powers Sd .Cn/ of the standard representation, but also with their duals.
These are discussed in more detail in [25].

We recall some facts from the dual pair formulation of classical invariant
theory [20]. Let Sp2n � GL2n be the subgroup that preserves the symplectic form

< Eu; Ev >D
n
X

iD1
ui v.2nC1�i / � u.2nC1�i /vi ; (64)
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7

7

7

7

7

7

5

and Ev D

2

6

6

6

6

6

6

6

6

6

4

v1
v2
v3

:

:

:

v2n

3

7

7

7

7

7

7

7

7

7

5

in C2n:

Let Sp2n act on M2nm ' .C2n/m by the restriction of the action (20)) of GL2n.
Then the symplectic pairings

rcd D
X

i�n
xicx.2nC1�i /d � x.2nC1�i /cxid ; (65)
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of the columns of X in M2nm give polynomials that are invariant under the action
of Sp2n. They span a space that is invariant under the action of GLm on the
right, and under this action, their span is irreducible and isomorphic to ƒ2.Cp/,
the second exterior power of Cp (aka, the skew-symmetric p � p matrices).
The First Fundamental Theorem (FFT) of classical invariant theory [17, 56] says
that these quadratic polynomials generate the full algebra P.M2nm/

Sp D ISp of
Sp2n-invariant polynomials.

Let

�cd D
X

i�n

@2

@xic@x.2nC1�i /d
� @2

@x.2nC1�i /c
@xid

(66)

be the partial Laplacians. They are second order, constant coefficient differential
operators, and they are also invariant under (that is, they commute with) the action of
Sp2n. Moreover, they generate the full algebra of Sp2n-invariant constant coefficient
differential operators. This fact is more or less the Fourier transform of the FFT.

By use of the partial Laplacians, the FFT can be extended to describe the full
isotypic decomposition of Sp2n acting on P.M2nm/ [20]. Define

H.M2nm; Sp/ D \c;d ker�cd D \D2ƒ2.Cm/ kerD: (67)

These are the Sp2n-harmonics in P.M2nm/.
Then:

(i) The multiplication map

H.M2nm; Sp/˝ ISp ! P.M2nm/ (68)

is onto.
(ii)

H.M2nm; Sp/ '
X

D

�DG ˝ �Dm (69)

as Sp2n � GLm-module, where �D is the irreducible Sp2n representation
generated by the GL2n highest weight vector in �D2n, for D with at most n
rows. (As was the case for .GL2n;GLm/-duality, the diagram D here should
also have at most m rows.)

Moreover, whenm is small compared to n (precisely, whenm < n; this condition
is referred to as the stable range), we have the following additional properties.

.i/ ISp ' P.ƒ2.Cm// is the full polynomial algebra on the generators

rcd I that is; the rcd are algebraically independent:

.ii/ H.M2nm/
USp2n D P.M2nm/

UGL2n is a subalgebra of P.M2nm/: (70)
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.iii/ H.M2nm; Sp2n/˝ ISp ' P.M2nm/: That is, the multiplication

mapping is a linear isomorphism:

.Indeed, an isomorphism of .Sp2n �GLm/-modules./

In the stable range, we can describe the analog for Sp2n of the iterated Pieri
algebra, using a double Pieri algebra forGL2n. We want to consider tensor products
of a general representation �D of Sp2n with the symmetric powers Sd .C2n/ of
the basic representation of Sp2n. (The restriction of Sd .C2n/ from GL2n to Sp2n
remains irreducible.)

As a model for the representations of Sp2n, we will use H.M2nm; Sp/
UGLm , the

GLm highest weight vectors in the Sp2n harmonics. According to equation (69), this
contains one copy of each irreducible representation �DSp2n for diagrams D having
up to m rows (assuming that m < n, which is the stable range). According to
equation (68), we can write

H.M2nm; Sp/ ' P.M2nm/=J; (71)

where J is the ideal generated by the space ƒ2.Cm/ of quadratic Sp invariants (cf.
formula (65)).

Thus, for the iterated Pieri Rule, we want to compute

�

.P.M2nm/=J /
UGLm ˝ P.M2nq/

�USp2n :

We proceed as follows. We abbreviate

UGLm D U 0m;USp2n D USp; and UGL2n D U2n:

We calculate

	

.P.M2nm/=J /
U 0

m ˝ P.M2nq/

USp ' �P.M2nm/=J ˝ P.M2nq

�

/U
0

m�USp

' �P.M2n.mCq//=J1/
�U 0

m�USp (72)

where J1 denotes the ideal in P.M2n.mCq// generated by ƒ2.Cm/. Continuing, this
equals

�

.H.M2n.mCq//˝ P.ƒ2.CmCq///=J1
�U 0

m�USp (73)

' �.H.M2n.mCq//˝ P.ƒ2.Cm/˚ƒ2.Cq/˚ .Cm ˝ Cq///=J1
�U 0

m�USp

' �H.M2n.mCq//˝ P.ƒ2.Cq/˚ .Cm ˝ Cq//
�U 0

m�USp
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' �H.M2n.mCq//USp ˝ P.ƒ2.Cq//˝ P.Mmq/
�U 0

m

' �H.M2n.mCq//USp ˝ P.Mmq/
�U 0

m ˝ P.ƒ2.Cq//

D �.P.M2n.mCq//U2n ˝ P.Mmq/
�U 0

m ˝ P.ƒ2.Cq//

' �.P.M2nm/˝ P.M2nq//
U2n ˝ P.Mmq/

�U 0

m ˝ P.ƒ2.Cq//

' �P.M2nm/˝ P.M2nq/˝ P.Mmq/
�U2n�U 0

m ˝ P.ƒ2.Cq//

D L.2n;q/.m;q/ ˝ P.ƒ2.Cq//:

Here L.2n;q/.m;q/ is as in formula (60).
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1 Introduction

The purpose of this paper is to analyze the steady state solutions of Maxwell’s
equations in a vacuum using the tools of representation theory. By steady state we
mean those solutions that extend to the conformal compactification of Minkowski
space (cf. [D]). We will now explain this. We look upon the solutions of Maxwell’s
equations as tensor valued on R

4 with the flat Lorentzian metric given by

�dx21 � dx22 � dx23 C dt2;
where x1; x2; x3 and x4 D t yield the standard coordinates of R4. The space R

4

with this metric will be denoted byR1;3. The conformal compactification is the space
S3�f˙1gS1 (modulo the product action of˙1) with (up to a positive scalar multiple
on both factors) the product metric with the negative of the constant curvature 1
metric on S3 and the usual metric on S1. The injection f of R4 into S3 �f˙1g S1 is
the inverse of a variant of stereographic projection (see Section 2). This embedding
is not an isometry, but it is conformal. Our approach to Maxwell’s equations uses the
equivalent formulation in terms of differential 2-forms on Minkowski space. More
generally, if .M; g/ is an oriented Lorentzian four manifold (signature .�;�;�;C/
or .1; 3/) and if “ � ” denotes the Hodge star operator on 2-forms relative to the
volume form � , with g.�; �/ D �1, then there is a version of Maxwell’s equations
on ˝2.M/ (differential two forms) given by

d! D d � ! D 0:
Let M and N be four-dimensional Lorentzian manifolds, let F W M ! N be a
conformal transformation, and let ! be a solution to Maxwell’s equations on N .
Then F �! is a solution to Maxwell’s equations onM . Since f is conformal we see
that the pullback of solutions to Maxwell’s equations on S3�f˙1gS1 yields solutions
to the usual Maxwell equations.

The group of conformal transformations of S3 �f˙1g S1 is locally the group
SO.4; 2/ and thus the solutions to Maxwell’s equations on S3 �f˙1g S1 form
a representation of this group. We can interpret this as follows: We first note
that we can replace S3 �f˙1g S1 with the group U.2/. If on Lie.U.2// we put
the Lorentzian form that corresponds to the quadratic form � detX , then the
corresponding bi-invariant metric on a U.2/ is isometric, up to positive scalar
multiple, with S3 �f˙1g S1. We interpret this space as the Shilov boundary of the
Hermitian symmetric space that corresponds to G D SU.2; 2/ (which is locally
isomorphic with SO.4; 2/).

We denote by Maxw the space of complex solutions in ˝2.U.2// to Maxwell’s
equations. We show that there is a canonical nondegenerate G-invariant Hermitian
form on Maxw. Further, we show that as a smooth Fréchet representation of
G, Maxw splits into the direct sum of four irreducible (Fréchet) representations
(of moderate growth) that are mutually orthogonal relative to the form. This form
is positive definite on two of the irreducible pieces and negative definite on the
other two. Since the K D S.U.2/ � U.2// isotypic components of Maxw are all
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finite dimensional we see that this yields four unitary irreducible representations
of G. Two of the representations are holomorphic (negative energy in the physics
literature) and two are anti-holomorphic (positive energy). We also describe them in
terms of the Aq.�/ that yield second continuous cohomology (the four theta stable
parabolics q involved relate these representations to twister theory) and in terms of
quaternionic representations (SU.2; 2/ is the quaternionic real form of SL.4;C/).
These representations are actually representations of PSU.2; 2/. In this group there
is a dual pair PSU.1; 1/; SO.3/ establishing an analogue of Howe duality in each
of the four representations. The realization of these representations is intimately
related to the work in [K]. We use the decomposition of the restriction of these
representations to PSU.1; 1/ to analyze the frequency distribution of the solutions
in each of the PSU.2; 2/ representations.

We interpret the plane wave solutions as generalized Whittaker vectors on Maxw
and the solutions as wave packets of the Whittaker vectors. We study those wave
packets with frequency spectrum fitting Planck’s black body radiation law for
intensity and arbitrary temperature. This means that we can fit our solutions to
the measured background radiation on a steady state universe. We give a short
discussion of how Segal’s equilibrium solution [S1] might be related to our analysis.
We make no assertions as to how such a steady state universe might physically exist.
There are many suggestions in the literature (e.g., the work of Hoyle et al. [HBN]).
All seem complicated. However, we will content ourselves with the assertion that the
big bang is not necessarily the only possible interpretation of background radiation.

There is also an interpretation of the red shift that can be gleaned from this work
involving the relationship between the measurement of time from the proposed
“big bang” and the steady state “time” which is periodic but with a large period
appearing to move faster as we look backwards or forwards in terms of “standard”
time. (See [S2].)

We are aware that many of the aspects of representation theory in this paper
could have been done in more generality. We have constrained our attention to
the four representations at hand since the main thrust of this paper is to show how
representation theory can be used to study well-known equations in physics.

Parts of this work should be considered expository. Related work has been done
by [HSS] on the action of the conformal group on solutions of the wave equation
and [EW] relating positive energy representations to generalized Dirac equations.

We would like to thank the referee for the careful review of this paper, for the
explanation of Segal’s work on the background radiation and for pointing out many
references that we should have included.

2 Conformal compactification of Minkowski space

Let R1;3 denote R
4 with the pseudo-Riemannian (Lorentzian) structure given by

.x; y/ D �x1y1 � x2y2 � x3y3 C x4y4. Here xi ; i D 1; 2; 3; 4; are the standard
coordinates on R

4 and we identify the tangent space at every point with R
4.
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We can realize this space as the space of 2� 2 Hermitian matrices (a 4-dimensional
vector space over R), V , with the Lorentzian structure corresponding to the
quadratic form given by the determinant. Note that

det

"

x4 C x3 x1 C ix2
x1 � ix2 x4 � x3

#

D .x; x/:

We can also realize the space in terms of skew-Hermitian matrices u.2/ D iV

and noting that the form becomes � det. With this interpretation, and realizing that
u.2/ D Lie.U.2// we have an induced Lorentzian structure, h: : : ; : : :i on U.2/.
We also have a transitive action of K D U.2/ � U.2/ on U.2/ by right and left
translation

.g1; g2/u D g1ug�12 :

Since the isotropy group at I is M D diag.U.2// D f.g; g/jg 2 U.2/g, we see that
K acts by isometries on U.2/ with this structure.

We will now consider a much bigger group that acts. We first consider the
indefinite unitary group G Š U.2; 2/ given by the elements, g 2 M4.C/ such
that

g

"

0 iI2

�iI2 0

#

g� D
"

0 iI2

�iI2 0

#

:

Here as usual g� means conjugate transpose. G \ U.4/ is the group of all matrices
of the 2 � 2 block form

"

A B

�B A

#

satisfying AB� D BA� and AA� C BB� D I . These equations are equivalent to
the condition

A˙ iB 2 U.2/:

It is easy to see that the map

� W G \ U.4/! U.2/ � U.2/

given by

"

A B

�B A

#

7! .A� iB;AC iB/
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defines a Lie group isomorphism. This leads to the action of G \ U.4/ on U.2/
given by

�

A B

�B A

�

� x D .A� iB/x.AC iB/�1:

Note that the stabilizer of I2 is the subgroup isomorphic with M given by the
elements

�

A 0

0 A

�

; A 2 U.2/:

We extend this to a map of G to U.2/ given by

˚ W
�

A B

C D

�

7! .AC iC /.A� iC /�1:

This makes sense since A � iC is invertible if

�

A B

C D

�

2 G. We consider the

subgroup P of G that consists of the matrices

"

g gX

0 .g�/�1

#

with g 2 GL.2;C/ and X 2 H (in other words, X� D X/: Then every element
of G can be written in the form kp with k 2 G \ U.4/ and p 2 P . We note that
˚.kp/ D ˚.k/ D k � I . Now, U.4/\K acts transitively on G=P and the stabilizer

of the identity coset is the group

�

A 0

0 A

�

; A 2 U.2/. We will identify K with

U.4/\G (under � ) andM with the stabilizer of the identity. ThusG=P D K=M .
We consider the subgroupN :

�

I 0

Y I

�

; Y � D Y:

If we write

�

I 0

Y I

�

D kp

with

k D
�

A B

�B A

�



390 Bertram Kostant and Nolan R. Wallach

as above, then A 2 GL.2;C/ and

�BA�1 D Y:

One can see that if we set

k.Y / D
2

4

Ip
ICY 2

�Yp
ICY 2

Yp
ICY 2

Ip
ICY 2

3

5 ;

then

k.Y /P D
�

I 0

Y I

�

P:

This gives an embedding of H into U.2/

Y 7�! .I C iY /.I � iY /�1;

the Cayley transform. We next explain how this is related to the Cayley transform
in the sense of bounded symmetric domains.

We note that it is more usual to look upon G (in its more usual incarnation) as
the group of all elements g 2 GL.4;C/ such that

g

�

I 0

0 �I
�

g� D
�

I 0

0 �I
�

:

Let us set G1 equal to this group. The relationship between the two groups is given
as follows. Set

L D 1p
2

�

I iI

I �iI
�

(a unitary matrix) if

�.g/ D LgL�I

then � defines an isomorphism of G onto G1. G1 has an action by linear fractional
transformations on the bounded domain D, given as the set of all Z 2 M2.C/ such
thatZZ� < I (here< is the order defined by the cone of positive definite Hermitian

matrices. If g D
�

A B

C D

�

2 G1, then

g �Z D .AZ C B/.CZ CD/�1:
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We note that if Y � D Y , then

�

��

I 0

Y I

��

� I D .I C iY /.I � iY /�1

and

�

��

I Y

0 I

��

� I D I:

The embedding F of Minkowski space R
1;3 into U.2/ given by

.x1; x2; x3; x4/ 7!
�

x4 C x3 x1 C ix2
x1 � ix2 x4 � x3

�

D X 7�! .I C iX/.I � iX/�1

embeds it as a dense open subset. However, it is only a conformal embedding.
Indeed

Lemma 2.1. The embedding F is conformal with

.F � h: : : ; : : :i/x D 4
	

1C 2
X

x2i C .x; x/2

�1

.: : : ; : : :/x:

Proof. We note that Tu.U.2// D fuX jX 2 u.2/g. Furthermore, huX; uXiu D
� det.X/. Now let Y 2 M2.C/ be such that Y � D Y , that is Y 2 H . Let Q.Y / D
.I C iY /.I � iY /�1. We calculate hdQY .v/; dQY .v/iQ.Y / for v 2 H thought of as
being an element of TY .H/. We get

dQY .v/ D iv.I � iY /�1 C .I C iY /.I � iY /�1iv.I � iY /�1

D i.I C iY /.I � iY /�1..I � iY /.I C iY /�1 C I /v.1 � iY /�1

D 2iQ.Y /.I C iY /�1v.1 � iY /�1:

Thus

hdQY .v/; dQY .v/iQ.Y / D 4
det.v/

det.I C Y 2/ D 4
.v; v/Y

det.I C Y 2/ :

Now calculate det.I C Y 2/ in terms of the xi . ut
More generally, we have

Lemma 2.2. The action of G (or G1) on U.2/ given by the linear fractional
transformations is conformal relative to the pseudo-Riemannian metric h: : : ; : : :i
on U.2/.
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Proof. Let

�.Z/ D g �Z D .AZ C B/.CZ CD/�1

with g 2 G1. Then if X 2 u.2/ we have

d�Z.ZX/ D .AZX � �.Z/CZX/.CZ CD/�1

D �.Z/.�.Z/�1AZX � CZX/.CZ CD/�1:
Thus since � detX D hZX;ZXiZ we have

hd�Z.ZX/; d�Z.ZX/i�.Z/
D det

�

.�.Z/�1AZ � CZ/.CZ CD/�1� hZX;ZXiZ :
This proves the conformality. ut

We note that

.�.Z/�1AZX � CZX/.CZCD/�1

D .CZ CD/..AZ C B/�1AZ � .CZ CD/�1CZ/.CZ CD/�1:
Thus the conformal factor is

det..AZ C B/�1AZ � .CZ CD/�1CZ/
D det..AZ C B/�1B � .CZ CD/�1D/:

3 Maxwell’s equations on compactified Minkowski space

We will first recall Maxwell’s equations in Lorentzian form. For this we need some
notation. If M is a smooth manifold, then ˝k.M/ will denote the space of smooth
k-forms on M . We note that if .M; g/ is an n-dimensional pseudo-Riemannian
manifold, then g induces nondegenerate forms on each fiber ^kT .M/�x which we
will also denote as gx . If M is oriented, then there is a unique element � 2 ˝n.M/

such that if x 2 M and v1; : : : ; vn is an oriented pseudo-orthonormal basis of
T .M/x (i.e., jgx.vi ; vj /j D ıij ), then �x.v1; : : : ; vn/ D 1. Using � we can define
the Hodge � operator on M as follows: If ! 2 ^kT .M/�x , then �! is defined
to be the unique element of ^n�kT .M/�x such that � ^ �! D gx.�; !/�x for all
� 2 ^kT .M/�x .

The next result is standard.

Lemma 3.1. Let F W M ! N be a conformal orientation-preserving mapping of
oriented pseudo-Riemannian manifolds. If dimM D dimN D 2k, then F � � ! D
�F �! for ! 2 ˝k .
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With this notation in place we can set up Maxwell’s equations. Take t D x4 in
R
1;3 and let ! 7�! �! denote the Hodge star operator on differential forms with

respect to the Lorentzian structure .: : : ; : : :/ and the orientation corresponding to
� D dx1 ^ dx2 ^ dx3 ^ dt . Then Maxwell’s equations in an area free of current
(simple media e.g., in a vacuum, with the dielectric constant, the permeability and
thus the speed of light normalized to 1) can be expressed in terms of 2-forms as

d! D d � ! D 0 (3.1)

with d the exterior derivative. We note that in this formulation if E D .e1; e2; e3/

and B D .b1; b2; b3/ are respectively the electric field intensity and the magnetic
field intensity vectors, then

! D b1dx2 ^ dx3 � b2dx1 ^ dx3 C b3dx1 ^ dx2
�e1dx1 ^ dt � e2dx2 ^ dt � e3dx3 ^ dt .

The equations (3.1) are then the same as

r � E D r � B D 0

and

@

@t
E D �r � B;

@

@t
B D r � E:

Here the � operation is just E ! B and B ! �E, which is the duality between
electricity and magnetism in the physics literature.

We note that if M D R
1;3 and N D U.2/ with the Lorentzian structures

described in the previous section, if F is the map described above, and if ! 2
˝2.U.2// satisfies the equations (3.1), then F �! satisfies Maxwell’s equations
on R

1;3. We will thus call the equations (3.1) Maxwell’s equations on compactified
Minkowski space.

The group G (or G1) acts on U.2/ by conformal diffeomorphisms. Thus we see
that the space of solutions to Maxwell’s equations defines a representation of G
(which acts by pullback). Most of the rest of this article will be devoted to that
analysis of this representation.

Denote by ˝k.U.2//C the complex-valued k-forms. Endow it with the
C1-topology which is a Fréchet space structure and the corresponding action
of G on ˝2.U.2// defines it as a smooth Fréchet representation of G moderate
growth. To see this, we note that as a G-homogeneous space U.2/ Š G=P . Let
� denote the isotropy action of P on V D TIP .G=P /C (i.e., the action of P on
Lie.G/=Lie.P / ˝ C). Then the space ˝k.U.2//C with the C1 topology and G
action by pullback is just the C1 induced representation

IndGP .^kV �/1:



394 Bertram Kostant and Nolan R. Wallach

Furthermore, since it is as a K-representation

IndKM.^kV �/1;

Frobenius reciprocity implies that the representation is admissible (that is, the
multiplicities of the K-types is finite). The maps d and d� are continuous maps
in this topology to ˝3.U.2//C; thus the solutions of Maxwell’s equations on U.2/
define an admissible, smooth Fréchet representation of moderate growth.

4 The K -isotypic components of the space of solutions
to Maxwell’s equations on compactified Minkowski space:
Step 1

In this section we will begin determination of the K-isotypic components of the
space of solutions to Maxwell’s equations. We will proceed by first determining the
isotypic components of kerd on ˝2.U.2//C. We will then use explicit calculations
for the case at hand of d and the Hodge star operator to complete the picture. We will
now begin the first step.

We note that U.2/ is diffeomorphic with SU.2/� S1 under the map

u; z 7! u

�

z 0
0 1

�

with u 2 SU.2/ and z 2 S1 D fz 2 Cjjzj D 1g. We note that SU.2/ is
diffeomorphic with S3 which implies that we have

H1.U.2/;C/ D C;

H2.U.2/;C/ D 0;
and

H3.U.2/;C/ D C:

So de Rham’s theorem implies that we have the following short exact sequences

0! C1! C1.U.2/;C/! kerdj˝1.U.2//C ! C�! 0; (4.1)

0! kerdj˝1.U.2// ! ˝1.U.2//C ! kerdj˝2.U.2//C ! 0I (4.2)

in both sequences the map to the kernel is given by d . Also � is the image of det� d z
z

in the quotient space. These are all morphisms of smooth Fréchet representations of
G of moderate growth.
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We also note that the center of G consists of the multiples of the identity and so
acts trivially on U.2/. NowK D U.2/�U.2/ and the multiples of the identity cor-
respond under this identification with the diagonal elementsC D f.zI; zI /j jzj D 1g
and M is the diagonal U.2/ in K . The actual groups acting on U.2/ are K=C and
M=C . We define K1 D SU.2/ � U.2/ and M1 D f.u; u/ju 2 SU.2/g. Then under
the natural map K=M D K1=M1 we still have a redundancy of �2 D f˙.I; I /g:
We will use the notation .�p;q;r ; F .p;q;r// for the representation of K1 on Sp.C2/˝
Sq.C2/ (Sp.C2/ the pth symmetric power) given by �p;q;r .u; vz/ D zrSp.u/˝Sq.u/
where p; q 2 Z�0, r 2 Z and r � qmod 2. If V is a closed K-invariant subspace
of ˝k.U.2//C, then we denote by Vp;q;r its �p;q;r isotypic component.

Lemma 4.1. As a representation of K1, the space of K1-finite vectors of
kerdj˝2.U.2//C splits into a direct sum

M

k � 0
r � kmod 2

.F kC2;k;r ˚ F k;kC2;r ˚ F kC1;kC1;r /:

Furthermore, if p � q ¤ 0, then

d W ˝1.U.2//p;q;r ! .kerdj˝2.U.2//C/p;q;r

is a bijective K-intertwining operator.

Proof. The Peter–Weyl theorem implies that L2.U.2// is a Hilbert space direct sum
M

�2cU.2/
V � ˝ .V � /�;

where bU.2/ is the set of equivalence classes of irreducible finite-dimensional
representations of U.2/ and V � is a choice of representative of � . We have the exact
sequence

1! f˙.I; 1/g ! SU.2/� S1 ! U.2/! 1

with the last map u; z 7�! zu. This implies (as above) that if we define V p;r to be
the representation, �p;r of SU.2/�S1on Sp.C2/ with �p;r .u; z/v D zrSp.u/v, then
�p;r is the lift of an irreducible representation of U.2/ if and only if r � pmod 2.

These representations give a complete set of representatives for bU.2/. We note that
the dual representation of �p;r is equivalent with �p;�r . We therefore see that the
space of K-finite vectors in C1.U.2//C is isomorphic with the direct sum

M

p 2 Z�0
r � pmod 2

F p;p;r :
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We now apply Frobenius reciprocity to analyze the isotypic components of
˝1.U.2//C. As we have noted as a representation of K it is just the smooth
induced representation of M to K where

M D .U.2// D f.u; u/ju 2 U.2/g
is acting on Lie.U.2//C under Ad.u/. Thus in terms of the parameters above
(identifyingM with U.2/) we have

Lie.U.2//C Š F 0;0 ˚ F 2;0.

Now Frobenius reciprocity implies that

dim HomK.F
p;q;r ;˝1.U.2//C/ (4.3)

D dim HomM .F
p;q;r ; F 0;0/C dim HomM .F

p;q;r ; F 2;0/: (4.4)

The argument above says that dim HomM .F
p;q;r ; F 0;0/ D 0 unless p D q and

r � pmod 2. Now the Clebsch–Gordan formula implies that

F
p;q;r

jM Š
min.p;q/
M

jD0
F pCq�2j;r .

This implies that dim HomM.F p;q;r ; F 2;0/ D 0 unless p D q or jp � qj D 2 and
in either of these cases it is 1. Now the exact sequences (4.1) and (4.2) above imply
the theorem. ut
Remark 4.2. In the physics literature if ! is a solution to Maxwell’s equations (as
in the beginning of Section 3), then a one-form ˇ such that dˇ D ! yields in the E,
B formulation a potential A. In our formulation if we pull back to Minkowski space
and we write

ˇ D
4
X

iD1
ai dxi ;

then considering t D x4 and writing � D a4 and A D .a1; a2; a3/, we then have

E D r �A; B D �@A
@t
Cr�:

This is the dual of what one normally finds in the physics literature. There it is
pointed out that this potential has the ambiguity of a gradient field. We will see that
the only isotypic components of Maxwell’s equations are �p;q;r with jp�qj D 2 and
r D ˙.max.p; q//. Thus using only those Peter–Weyl coefficients yields a unique
potential.

We will use the above lemma and some direct calculations to describe the
K-isotypic components of Maxwell’s equations in the next section.
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5 The K -isotypic components of the space of solutions
to Maxwell’s equations on compactified Minkowski
space: Step 2

We retain the notation of the previous section. Let x4 D iI and

x1 D
�

i 0

0 �i
�

; x2 D
�

0 1

�1 0
�

; x3 D
�

0 i

i 0

�

:

We will use the usual identification of Lie.U.2//(left invariant vector fields)
with skew-Hermitian 2 � 2 matrices (which we denote, as usual, by u.2/). Thus
if x 2 u.2/ then xu is the tangent vector at 0 to the curve t 7�! uetx . We note that
..xj /u; .xk/u/u D "j ıj;k with "j D �.�1/ıj4 : Thus x1; x2; x3; x4 define a pseudo-
orthonormal frame on U.2/. We use this frame to define � . Since there will be many
uses of the star operator and pullbacks we will use the notation J! D �! for
! 2 ^2T �.U.2//u for all u 2 U.2/. We define ˛j to be the left invariant one-form
on U.2/ defined by ˛j .xk/ D ıjk . We note that

J˛1 ^ ˛2 D ˛3 ^ ˛4; J˛1 ^ ˛3 D �˛2 ^ ˛4; J˛2 ^ ˛3 D ˛1 ^ ˛4
and

J˛1 ^ ˛4 D �˛2 ^ ˛3; J˛2 ^ ˛4 D ˛1 ^ ˛3; J˛3 ^ ˛4 D �˛1 ^ ˛2:

From this we note

Lemma 5.1. We have J 2 D �I on each space^2T �.U.2//u. Furthermore, a basis
of the eigenspace for i in ^2T �.U.2//u ˝ C is

Bi D f˛1 ^ ˛4 C i˛2 ^ ˛3; ˛2 ^ ˛4 � i˛1 ^ ˛3; ˛3 ^ ˛4 C i˛1 ^ ˛2g;

a basis for the eigenspace �i is

B�i D f˛1 ^ ˛4 � i˛2 ^ ˛3; ˛2 ^ ˛4 C i˛1 ^ ˛3; ˛3 ^ ˛4 � i˛1 ^ ˛2g:

If � 2 Bi and � 2 B�i , then � ^ � D 0.

We look upon J as an operator on˝2.U.2//C. Since J preserves the real vector
space ˝2.U.2// we get a decomposition

˝2.U.2//C D ˝2.U.2//i ˚˝2.U.2//�i

with Jj˝2.U.2//
˙i
D ˙iI . If ! 2 ˝2.U.2//C, then we denote by ! the complex

conjugate of ! relative to the real space ˝2.U.2//. We note
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Lemma 5.2. With the notation above, we have

˝2.U.2//˙i D
M

�2B
˙i

C1.U.2/;C/�:

We now calculate the exterior derivatives of the ˛j . We observe that if ˛ is a
left-invariant element of ˝1.U.2//, then

d˛.x; y/ D �˛.Œx; y�/

for x; y 2 Lie.U.2//. This implies that

d˛1 D �2˛2 ^ ˛3; d˛2 D 2˛1 ^ ˛3; d˛3 D �2˛1 ^ ˛2: (5.1)

We also note that d˛4 D 0.
We denote by �k the character of SU.2/�S1 given by �k.u; z/ D zk . We denote

by 
 the covering map 
 W SU.2/ � S1 ! U.2/ given by 
.u; z/ D uz. Then we
have

Lemma 5.3. We have

.kerdj˝2.U.2//C/k;k;r D �rdC1.U.2/;C/k;k;0 ^ ˛4
which is defined on U.2/ if r � kmod 2.

Proof. We note that if f 2 C1.U.2/;C/, then df D .x4f /˛4 C � with � D
P

j .xj f /˛j : Thus if df ^ ˛4 D 0, then � D 0. If � D 0, then 
�f .u; z/ D

�f .I; z/. A function in C1.U.2/;C/k;k;0 with this property exists if and only if
k D 0. It is also clear that �rdC1.U.2/;C/k;k;0 ^ ˛4 is contained in kerd . Thus,
since each of the isotypic components of kerdj˝2.U.2//C is irreducible and we have
accounted for all of them by Lemma 4.1, the result follows. ut

We denote by Maxw the space of complex solutions to the Maxwell equations
(as described in the previous section). Then Maxw is a closed subspace of
˝2.U.2//C yielding a smooth Fréchet representation of G of moderate growth
under the action �.g/! D .g�1/�!. We also note that J preserves Maxw and
commutes with the action of G. This implies that Maxw D Maxwi ˚ Maxw�i
(corresponding to the i and �i eigenspaces of J on Maxw). We also note

Lemma 5.4. Maxw˙i D f! 2 ˝2.U.2//CjJ! D ˙i! and d! D 0g.
We can now eliminate some isotypic components of Maxw.

Lemma 5.5. Maxwk;k;r D 0 for all k 2 Z�0 and all r 2 Z.

Proof. If ! 2 Maxwk;k;r , then since

Maxwk;k;r D Maxwk;k;r \Maxwi ˚Maxwk;k;r \Maxw�i
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with each of the summands K-invariant and since each isotypic component is
irreducible, we see that J! D i! of J! D �i!. In either case Lemma 5.1 implies
that ! is not an element of˝1.U.2//C ^ ˛4. But Lemma 5.2 implies that it must be
of that form. This implies that ! D 0. ut

We are finally ready to give the isotypic components of Maxw.

Theorem 5.6. Maxwp;q;r is nonzero if and only if .p; q; r/ is in one the following
forms:

.k C 2; k; k C 2/; .k C 2; k;�.k C 2//; .k; k C 2; k C 2/; .k; k C 2;�.k C 2//:

If it is nonzero it is irreducible. Moreover, the spaces MaxwkC2;k;kC2
and Maxwk;kC2;�k�2 are contained in Maxwi and the spaces MaxwkC2;k;�k�2 and
Maxwk;kC2;kC2 are contained in Maxw�i .

The proof will occupy the rest of the section. If x 2 sl.2;C/ with x D
v C iw; v;w 2 su.2/, then we define the left-invariant vector field xLf .u/ D
d
dt
.f .uetv/C if .uetw//jtD0 and xRf .u/ D d

dt
.f .e�tvu/C if .e�twv//jtD0. We will

think of these vector fields as being on SU.2/ or SU.2/=f˙I g D U.2/=S1I D
PSU.2/. We set e D 1

2
.x2 � ix3/, f D � 12 .x2 C ix3/ and h D �ix1: Then e; f; h

form the standard basis of sl.2;C/.
Let 	Le ; 	

L
f ; 	

L
h (respectively, 	Re ; 	

R
f ; 	

R
h ) be the left (resp. right) invariant one-

forms on PSU.2/ that form a dual basis to eL; f L; hL (respectively, eR; f R; hR).
Let p W U.2/ ! PSU.2/ be the obvious quotient homomorphism and let
˛ab D p�	ab for a D L or R and b D e; f or h. Now ..u; v/�1/�˛Lb .xL/ D
˛Lb .Ad.v/�1xL/ and ..u; v/�1/�˛Rb .xR/ D ˛Rb .Ad.u/�1xR/. Thus, if

g D
��

z 0

0 z�1
�

;

�

w 0

0 w�1
��

with z;w 2 S1, then

.g�1/�˛Le D w�2˛Le ; .g�1/�˛Lf D w2˛Lf ; .g
�1/�˛Lh D ˛Lh

and

.g�1/�˛Re D u�2˛Re ; .g�1/�˛Rf D u2˛Rf ; .g
�1/�˛Rh D ˛Rh :

This implies that

Span
C
.˛Le ; ˛

L
f ; ˛

L
h / D ˝1.U.2//0;2;0

and

Span
C
.˛Re ; ˛

R
f ; ˛

R
h / D ˝1.U.2//2;0;0:

Also relative to the positive root system g ! z2; g ! w2 the highest weight space
of ˝1.U.2//0;2;0 in C˛Lf and that of ˝1.U.2//2;0;0 is C˛Rf .
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We can now describe highest weight vectors for the isotypic components
˝1.U.2//k;kC2;l and ˝1.U.2//kC2;k;l . Let e1 and e2 be the standard basis of C2.
Fix a U.2/ invariant inner product h: : : ; : : :i on each space Sk.C2/. Define

�k.u/ D
˝

Sk.u/ek1 ; e
k
2

˛

:

Then �k is a highest weight vector for C1.U.2//k;k;k D ˝0.U.2//k;k;k. Also we
define �l .u; z/ D zl for u 2 SU.2/ and z 2 S1. We note that if l � kmod 2, then

 k;l .uz/ D zl�k�k.uz/ D �l�k.u; z/�k.uz/

is defined and is a highest weight vector for˝0.U.2//k;k;l . This implies that  k;l˛Lf
is a highest weight vector for˝1.U.2//k;kC2;l and  k;l˛Rf is a highest weight vector

for ˝1.U.2//kC2;k;l . We have shown that Maxw is multiplicity free and Maxw D
Maxwi ˚ Maxw�i . We have also proved that Maxwk;kC2;l D d˝1.U.2//k;kC2;l
and MaxwkC2;k;l D d˝1.U.2//kC2;k;l . We have proved that

(1) Maxwk;kC2;l ¤ 0 if and only if Jd k;l˛Lf D �J k;l˛
L
f with � 2 f˙ig and

MaxwkC2;k;l ¤ 0 if and only if Jd k;l˛Rf D �J k;l˛Rf with � 2 f˙ig.
We are now left with a computation. One checks as above (using that

d˛Lf .X
L; Y L/ D �˛Lf .ŒX; Y �L/)

d˛Lf D 2˛Lh ^ ˛Lf I

we therefore have

d. k;l˛
L
f / D i l k;l˛4 ^ ˛Lf C .k C 2/ k;l˛Lh ^ ˛Lf : (5.2)

We consider i l˛4 ^ ˛Lf C .k C 2/˛Lh ^ ˛Lf . We observe that ˛Lh D i˛1 and

˛Lf D �.˛2 � i˛3/. Thus (using the calculations leading to Lemma 5.1) the right-
hand side of the equation above is equal to

li˛4 ^ ˛2 � l˛4 ^ ˛3 C i.k C 2/˛1 ^ .˛2 � i˛3/

which equals

.�li˛2 ^ ˛4 C .k C 2/J˛2 ^ ˛4/C .�l˛1 ^ ˛4 � i.k C 2/J˛1 ^ ˛4:

We therefore see that if l > 0, then this expression is an element of ˝2.U.2//�i C
.l � k � 2/.�i˛2 ^ ˛4 � .l � k � 2/˛1 ^ ˛4/. If l � 0, then it is an element of
˝2.U.2//i C .l C k C 2/.�i˛2 ^ ˛4 � .l C k C 2/˛1 ^ ˛4/. Thus we have

(2) Maxwk;kC2;l ¤ 0 only if l D k C 2 or l D �.k C 2/. Furthermore,
Maxwk;kC2;kC2 �Maxw�i and Maxwk;kC2;�.kC2/ �Maxwi .
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We note that everything that we have done could have been done with
right-invariant vector fields to complete the proof of the theorem: However we
will proceed in a different way. Let � W U.2/ ! U.2/ be defined by �.u/ D u�1.
Then for x 2 u.2/, we have d�u.x

L
u / D xRu�1 . This implies that

˝

d�u.x
L
u /; d�u.x

L
u /
˛

u�1 D
˝

xRu�1 ; x
R
u�1

˛

u�1 D � detx

since

˝

xRu�1 ; x
R
u�1

˛

u�1 D
˝

dR.u�1/I .xRI /; dR.u�1/I .xRI /
˛

u�1 D
˝

xRI ; x
R
I

˛

I
:

This proves that � is an isometry. It also implies that

.��˛Rf /u.xLu / D .˛Rf /u�1 .d�u.x
L
u // D .˛Rf /u�1 .xRu�1 /:

Hence ��˛Rf D ˛Lf . Now ��d. k;l˛Rf / 2 ˝2.U.2//k;kC2;�l since ���k is a highest
weight vector for C1.U.2//k;k;�k . We also note that ��� D � . Thus ��Maxw D
Maxw. Hence, if d. k;l˛Rf / 2 MaxwkC2;k;l , then ��d. k;l˛Rf / 2 Maxwk;kC2;�l .
So, if l > 0 then, we must have l D k C 2 and if l � 0, then l D �k � 2. Since ��
commutes with J the last assertion also follows.

Remark 5.7. We have

��MaxwkC2;k;kC2 D Maxwk;kC2;�k�2; (5.3)

��MaxwkC2;k;�k�2 D Maxwk;kC2;kC2 and .��/2 D I: (5.4)

6 The Hermitian form

We retain the notation of the previous sections.
We note that

H3.U.2/;R/ D R:

The form � D ˛1 ^ ˛2 ^ ˛3 restricted to SU.2/ satisfies

Z

SU.2/

� D 2
2

and d� D 0. This implies that the class of SU.2/ in the third homology over R is
a basis. (In fact it is well known that this is true over Z). We note that this implies,
in particular, that if ! 2 ˝3.U.3//C satisfies d! D 0, then if M is a compact
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submanifold such that there exists a smooth family of diffeomorphisms of U.2/, ˚t
such that ˚0 D I and ˚1.SU.2// DM , then

Z

SU.2/

! D
Z

M

!:

In particular we have (since U.2; 2/ is connected),

Lemma 6.1. If g 2 U.2; 2/ and if ! 2 ˝3.U.3//C satisfies d! D 0, then
R

SU.2/
! D R

gSU.2/
! D R

SU.2/
g�!:

We will apply this observation to define U.2; 2/ invariant sesquilinear forms on
the spaces Maxw˙i .

Lemma 6.2. Let ˛ 2 ˝1.U.2//C and ! 2 ˝2.U.2//C be such that !; d˛ 2
Maxwi (resp. Maxw�i ). Then d.˛ ^ !/ D 0.

Proof. If d˛ 2 Maxwi , then ! 2 Maxw�i . We note that Maxwell’s equations
imply that d! D 0. Hence d.˛ ^ !/ D d˛ ^ ! and Lemma 5.1 implies that
Maxwi^Maxw�i D 0. Obviously the same argument works for �i . ut
Proposition 6.3. If �;! 2 Maxwi (or Maxw�i ), there exists ˛ 2 ˝1.U.2//C such
that d˛ D !. The expression

Z

SU.2/

˛ ^ �

depends only on ! and � (and not on the choice of ˛). Furthermore, the
integral defines a Hermitian form h!;�i on Maxwi (or Maxw�i ) that satisfies
hg�!; g��i D h!;�i for all g 2 U.2; 2/.
Proof. Suppose that ˇ 2 ˝1.U.2//C is such that dˇ D 0 and

R

S1I
ˇ D 0. Then

since H1.U.2/;C/ is spanned by the class of S1I , de Rham’s theorem implies that
there exists f 2 C1.U.2/;C/ such that df D ˇ. Set �.ˇ/ D R

S1I
ˇ. We note that

�.˛1/ D 2
:

We also note that if � 2 ˝2.U.2//, then .˛1 ^ �/jSU.2/ D 0:
We observed that if ! 2 Maxw˙i , then there exists ˛ 2 ˝1.U.2//C such that

d˛ D !. If dˇ D ! then d.ˇ � ˛/ D 0 and
R

S1I .ˇ � ˛ � �.ˇ�˛/
2


˛1/ D 0 so

ˇ � ˛ � �.ˇ�˛/
2


˛1 D �df with f 2 C1.U.2/;C/. This implies that

Z

SU.2/

˛ ^ � �
Z

SU.2/

ˇ ^ � D
Z

SU.2/

.df � �.ˇ � ˛/
2


˛1/ ^ �

D
Z

SU.2/

d.f �/� �.ˇ � ˛/
2


Z

SU.2/

˛1 ^ � D 0:
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Both of the integrals are 0. We next observe that � D d	. We have

h�;!i � h!;�i D
Z

SU.2/

	

	 ^ d˛ � ˛ ^ d	



D
Z

SU.2/

	

	 ^ d˛ � d	 ^ ˛



D �
Z

SU.2/

d
	

	 ^ ˛



D 0:

We are left with the proof of U.2; 2/ invariance. We will concentrate on Maxwi .
We note that

Z

S1I

˛1 D 2
 .

Let g 2 U.2; 2/. If !;� 2 Maxwi and ˛ 2 ˝1.U.2//C satisfies d˛ D !, then
dg�˛ D g�!: Thus

hg�!; g��i D
Z

SU.2/

g�˛ ^ g�� D
Z

SU.2/

˛ ^ � D h!;�i

by Lemma 6.1. ut
We will now calculate h: : : ; : : :i on each of the isotypic components of Maxw.

We set ˛k;kC2;l D  k;l˛Lf as in the previous section. If l D k C 2 or �.kC 2/, then
!k;kC2;l D d˛k;kC2;l is a highest weight vector for Maxwk;kC2;l .

Lemma 6.4. If l D ˙.k C 2/, then h!k;kC2;l ; !k;kC2;l i D � 4kC8kC1 

2.

Proof. We have seen in formula (5.2) in the previous section that (in the notation
therein)

!k;kC2;l D i l k;l˛4 ^ ˛Lf C .k C 2/ k;l˛Lh ^ ˛Lf :
Thus since ˛4jSU.2/ D 0 we have

˛k;kC2;l ^ !k;kC2;l jSU.2/ D .k C 2/j k;l j2˛Lf ^ ˛Lh ^ ˛Lf :

Using the expressions for ˛Lh and ˛Lf one sees that

˛Lf ^ ˛Lh ^ ˛Lf jSU.2/ D �2˛1 ^ ˛2 ^ ˛3jSU.2/:

Normalized invariant measure on SU(2) is � D 1
2
2
˛1^˛2^˛3jSU.2/. On Sk.C2/we

put the inner product defined by the tensor product. Thus ek1 and ek2 are unit vectors.
Also

j k;l .u/j2 D
˝

Sk.u/ek1 ; e
k
2

˛ ˝

Sk.u/ek1 ; e
k
2

˛

:
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The Schur orthogonality relations imply that

Z

SU.2/

j k;l .u/j2� D 1

k C 1 :

ut

7 Four unitary ladder representations of SU.2; 2/

We will consider U.2; 2/ in the usual form, that is, if I2;2 D
�

I 0

0 �I
�

, then (as in

Section 2)

G1 D fg 2 GL.4;C/jgI2;2g� D I2;2g :

In this form K is the subgroup of block diagonal matrices. g D Lie.U.2; 2//C D
M4.C/. We set

pC D
��

0 X

0 0

�

j X 2 M2.C/

�

and

p� D
��

0 0

Y 0

�

j Y 2M2.C/

�

:

Then g D Lie.K/C ˚ p (here p is the orthogonal complement of Lie.K/C relative
to the trace form) and as a K-module p D pC ˚ p�. We leave it to the reader to
check.

Lemma 7.1. As a representation ofK (under the adjoint action) pC Š F 1;1;�1 and
p� Š F 1;1;1 and

^2.pC/� Š F 2;0;2 ˚ F 0;2;2

and

^2.p�/� Š F 2;0;�2 ˚ F 0;2;�2:

Let 
.g/! D .g�1/�! for ! 2 Maxw. Then we already observed that with
the C1-topology, .
;Maxw/ is an admissible smooth Fréchet representation of
moderate growth. We set MaxwK equal to the space of K-finite vectors of Maxw
and we will use module notation for the action of g D Lie.U.2; 2//C D M4.C/ on
MaxwK , thereby having an admissible finitely generated .g; K/-module.
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Lemma 7.2. pC annihilates Maxw2;0;2 and Maxw0;2;2, whereas p� annihilates
Maxw2;0;�2 and Maxw0;2;�2:

Proof. Using the Clebsch–Gordon formula we have

F 1;1;�1 ˝ F 2;0;2 Š F 3;1;1 ˚ F 1;1;1;

F 1;1;�1 ˝ F 0;2;2 Š F 1;3;1 ˚ F 1;1;1;

F 1;1;1 ˝ F 2;0;�2 Š F 3;1;�1 ˚ F 1;1;�1;

F 1;1;1 ˝ F 0;2;�2 Š F 1;3;�1 ˚ F 1;1;�1:

Theorem 5.6 implies that none of theK-types on the right of these equations occurs
in Maxw. ut

We set

.MaxwC2;0/K D
X

k�0
MaxwkC2;k;kC2; .MaxwC0;2/K D

X

k�0
Maxwk;kC2;kC2;

.Maxw�2;0/K D
X

k�0
MaxwkC2;k;�k�2; .Maxw�0;2/K D

X

k�0
Maxwk;kC2;�k�2:

We will drop the sub-K for the completions of these spaces. We note Theorem 5.6
implies that each of these spaces is totally contained in Maxwi or Maxw�i . This
implies that the Hermitian form, h: : : ; : : :i from the previous section is defined on
each of these spaces.

We have

Theorem 7.3. Each of the spaces MaxwC2;0, Maxw�2;0, MaxwC0;2, Maxw�0;2 is an
invariant irreducible subspace for 
 . Furthermore, the form h: : : ; : : :i is positive
definite on MaxwC2;0, Maxw�2;0 and negative definite on MaxwC0:2, Maxw�0;2.

Proof. We consider MaxwC2;0. We note that using the Clebsch–Gordan formula as
above we have

p�MaxwkC2;k;kC2 �MaxwkC3;kC1;kC3 CMaxwkC3;k�1;kC3
CMaxwkC1;kC2;kC3 CMaxwkC1;k�1;kC3

and

pCMaxwkC2;k;kC2 �MaxwkC3;kC1;kC1 CMaxwkC3;k�1;kC1
CMaxwkC1;kC1;kC1 CMaxwkC1;k�1;kC1:
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Using the form of the K-types of Maxw we see that

p�MaxwkC2;k;kC2 � MaxwkC3;kC1;kC3

and

pCMaxwkC2;k;kC2 � MaxwkC1;k�1;kC1:

This implies that .MaxwC2;0/K is a .g;K/-submodule of Maxw. Hence MaxwC2;0 is
G-invariant. The same argument proves

p�Maxwk;kC2;kC2 � MaxwkC1;kC3;kC3;

pCMaxwk;kC2;kC2 � Maxwk�1;kC1;kC1;

pCMaxwkC2;k;�.kC2/ � MaxwkC3;kC1;�.kC3/;

p�MaxwkC2;k;�.kC2/ � MaxwkC1;k�1;�.kC1/;

and

pCMaxwk;kC2;�.kC2/ � MaxwkC1;kC2;�.kC3/;

p�Maxwk;kC2;�.kC2/ � Maxwk�1;kC1;�.kC1/:

This proves the G-invariance of the indicated spaces. We next note that since
the multiplicities of the K-types of Maxw are all one, the Hermitian form
h: : : ; : : :i restricted to each space Maxwk;l;m is 0, positive definite or negative
definite. Thus Lemma 6.4 implies that the form is negative definite on (MaxwC0;2/K
and (Maxw�0;2/K . Recall that ��.MaxwC0;2/K D .Maxw�2;0/K and �� Maxw�0;2/K D
.MaxwC2;0/K . Furthermore � is orientation-reversing on SU.2/, thus the form on
.MaxwC2;0/K and (Maxw�2;0/K is positive definite. If one of the representations were
not irreducible, then it would have a finite-dimensional invariant subspace (by the
above formulae). Since these representations are all unitarizable and do not contain
one-dimensional invariant subspaces the representations are all irreducible. ut
Remark 7.4. The proof above implies that the last six inclusions above are all
equalities.

We set 
"i;j equal to the action of G on Maxw"
i;j for " D C;� and i; j D 0; 2

or 2; 0.

Theorem 7.5. The representations 
"i;j for " D C;� and i; j D 0; 2 or 2; 0 all
have trivial infinitesimal character (that is equal to the restriction to the center of
U.g/ of the augmentation homomorphism to its center). Furthermore

H2.g;K;Maxw"
i;j / D C; " D C;� and i; j D 0; 2 or 2; 0:
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Proof. By the above, all four of the representations are the spaces of C1 vectors of
an irreducible unitary representation. Since the center of g acts trivially and

dim HomK.^2p;M / D 1

for each M as in the statement, it is enough to prove that the Casimir operator
corresponding to the trace form on g acts by 0 on each of the representations
(c.f. [BW]). We will show that the center of the enveloping algebra acts correctly.
We look at the case MaxwC2;0 and leave the other cases to the reader. By Lemma 7.2,
.MaxwC2;0/K is a highest weight module relative to the Weyl chamber (in " notation)
"1 > "2 > "3 > "4. We calculate the highest weight � D a"1Cb"2Cc"3Cd"4. The
representation factors through the adjoint group so aCbCcCd D 0. By definition
of F 2;0;2 a � b D 2; c � d D 0; c C d D 2. Solving the four equations yields
�2"2 C "3 C "4. � for the chamber that we are studying is 3

2
"1 C 1

2
"2 � 1

2
"3 � 3

2
"4.

Thus �C � D 3
2
"1� 3

2
"2C 1

2
"3� 1

2
"4 D �� for � the cyclic permutation .243/. ut

Let � be the Cartan involution of G1 corresponding to K . In light of the
Vogan–Zuckerman theorem [VZ] this implies that there are four � stable parabolic
subalgebras q"i;j " D C;� and i; j D 0; 2 or 2; 0, such that .Maxw"

i;j /K is
isomorphic with Aq"i;j

.0/ (c.f. [BW]).

Theorem 7.6. One has qC2;0 is the parabolic subalgebra

fŒxij � 2M4.C/ j x21 D x31 D x41 D 0g;

qC0;2 D fŒxij � 2M4.C/ j x41 D x42 D x43 D 0g;

and q�0;2 D .qC0;2/T ; q�2;0 D .qC2;0/T . Thus .Maxw"
i;j /K is isomorphic with Aq"i;j

.0/.

Proof. If q is a �-stable parabolic subalgebra with nilpotent radical u and if un D
u \ p, we set 2�n.q/.h/ D tr ad.h/jun for h 2 h the Cartan subalgebra of diagonal
matrices. One checks that if the parabolics are given as in the theorem, then 2�n.q

C
2;0/

is the highest weight of F 2;0;2, 2�n.qC0;2/ is that of F 0;2;2; 2�n.q
�
2;0/ is the lowest

weight of F 2;0;�2, and 2�n.q�0;2/ is the lowest weight of F 0;2;�2. Now the result
follows from the main theorem (c.f. [W1]). ut
Remark 7.7. This result implies that if we consider the open orbit X of U.2; 2/
in P

3.C/ that has no non-constant holomorphic functions, then there are two holo-
morphic line bundles and two anti-holomorphic line bundles such that their degree
1 smooth sheaf cohomology yields the four versions of solutions of Maxwell’s
equations. The relation between the two realizations is related to the Penrose–
Twistor transform for solutions of the wave equation.

Another realization of these representations is in [GW]. The observation here is
that SU.2; 2/ is the quaternionic real form of SL.4;C/. Since K \ SU.2; 2/ D
S.U.2/ � U.2// there are two invariant quaternionic structures on SU.2; 2/=K \
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SU.2; 2/ and on each there are two line bundles on which the methods of [GW]
apply. Each yields an element of the “analytic continuation” of the corresponding
quaternionic discrete series which is our third realization. We will allow the
interested reader to check these assertions.

Finally, these representations appear in Howe duality between U.2; 2/ and
the U.1/ in its center. The details are worked out in [BW], VIII, 2.10–2.12 in
the notation therein, and the pertinent representations are V2 and V�2 yielding
(MaxwC2;0/K and (MaxwC0;2/K . The other two constituents are obtained by duality.

8 A dual pair in PSU.2; 2/

We continue to consider U.2; 2/ as the group G1 in Section 2 and PSU.2; 2/ the
quotient by the center. Let S be the image of the subgroup of all matrices of the
form

�

aI bI

bI aI

�

with jaj2 � jbj2 D 1. Then S is isomorphic with PSU.1; 1/. The image of the
subgroup of PSU.2; 2/ that centralizes every element of S is the image of the group
of all block 2�2 diagonal elements ofG1,C which is isomorphic with SO.3/. These
two groups form a reductive dual pair (the commutant ofC is S ). Before we analyze
this pair, we will indicate its relationship with time in Minkowski space. If we write
coordinates in Section 2 as x1; x2:x3 and x4 D t , then we have according to our
rules

.0; 0; 0; t/ 7�! .1C i t/
1 � i t I:

In terms of the linear fractional action of U.2; 2/ on U.2/ this corresponds to
2

4

1Ci tp
1Ct 2 I 0

0 1�i tp
1Ct 2 I

3

5 :I:

That is, the time axis is the orbit of K \ S with �I deleted.
As we observed, the center of U.2; 2/ acts trivially on Maxw and thus we can

consider the action of the group C � S through CS on Maxw. Let Hk denote
the representation of SO.3/ on the spherical harmonics of degree k. We denote
by D2k ,k 2 Z � f0g; the discrete series of S (D2k hasK-types 2k C 2sgn.k/Z�0).

Theorem 8.1. As a representation of C � S; .MaxwC2;0/K and .MaxwC0;2/K are
equivalent with

M

k�1
Hk ˝D�.2kC2/
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and .Maxw�2;0/K and .Maxw�0;2/K are equivalent with

M

k�1
Hk ˝D2kC2:

Proof. By considering the K-types we see that each of the modules has finite
K \ CS -multiplicities. We will give details for M D .MaxwC2;0/K . Noting that
S \K is

��

aI

a�1I

�

j jaj D 1
�

we see that the characters that appear for S \K on M are a�4; a�6; : : : each with
finite multiplicity. Thus, as a representation of S , M is a direct sum of highest
weight modules. It is therefore enough to check that the character ofM as a CS\K
module is correct. We note that in the formulation of theK-types, we can look upon
CS \K as the image of the group of all matrices

�

u.y/ 0

0 u.y/x�2
�

with u.y/ D
�

y 0

0 y�1
�

and jxj and jyj D 1. Set t.x; y/ equal to this element. Then

if Ch.V / denotes the character of a CS \K and �k denotes the character of SU.2/
on Sk.C2/, we have as a formal sum

Ch.M/.t.x; y// D
1
X

kD0
�kC2.u.y//�k.u.y//x�2k�4

replacing x with x�1, and plugging in �k.u.y// D yk.1C y�2 C : : :C y�2k/ and
summing we have

x4.y4 � x2y2 C y2 C 1/
.1 � x2/.y2 � x2/.1 � x2y2/ :

If we multiply by 1 � x2 and expand in powers of x, we see that the series is

x4
1
X

kD0
�2kC2.u.y//x2k:

This implies the result in this case since the character of D�2k is

x�2k

1 � x�2
�

resp.
x2k

1C x2
�
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if k > 0 (resp. k < 0). The other highest weight case is exactly the same. The cases
(Maxw�2;0/K and (Maxw�0;2/K are handled in the same way but with the powers of x
inverted. ut

9 Plane wave solutions and (degenerate)
Whittaker vectors

Recall that a plane wave solution to Maxwell’s are those in the following form:

E D ei.z;x/Eo
and

B D ei.z;x/Bo
with Eo and Bo constant vectors, z D .u1; u2; u3; !/ 2 R

4, u D .u1; u2; u3/, x D
.x1; x2; x3; t/ 2 R

4, and as before, .z; x/ D �P uixi C !t . To satisfy Maxwell’s
equations we must have u � Eo D 0;u � Bo D 0 and

r � E D @

@t
B; r � B D � @

@t
E:

The first implies that u � Eo D �!Bo and the second u � Bo D !Eo. Thus,
if the solution is non-constant and ! > 0 (resp. ! < 0) u

kuk ;
BokBok ;

EokEok (resp.
u
kuk ;

BokBok ;
�EokEok ) is an orthonormal basis of R3 obeying the “right-hand screw law”.

Putting these equations together yields !2 D kuk2, that is, z is isotropic in R
1;3,

that is on the null light cone. This fits with the fact that if E;B form a solution to
Maxwell’s equations, then their individual components satisfy the wave equation.

The purpose of this section is to interpret the plane wave solutions in the context
of the four representations we have been studying. In the last few sections we have
been emphasizing the realization of U.2; 2/ which we have denoted byG1. We now
revert to the form G since the embedding of Minkowski space into U.2/ is clearer
for that realization. Recall that the embedding is implemented in two stages; we map
.x1; x2; x3; x4/ to

�

I 0

Y I

�

; Y D
�

x4 C x3 x1 C ix2
x1 � ix2 x4 � x3

�

:

We denote the image group by N (note Y � D Y ). Then we consider the image of I
under the action of G on U.2/ by linear fractional transformations. In this context
to simplify the form subgroup S we must apply a Cayley transform. If we set

L D 1p
2

�

I iI

I �iI
�

;
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then the transform is given by

��1.g/ D L�1gL:

Thus, in this incarnation, we take S to be the set of elements of PSU.2; 2/ as
G=Center.G/ in the form

�

aI bI

cI dI

�

with Im ab D 0; ab � bc D 1; Im cd D 0. This implies that the image of S \N is
the set of matrices

�

I 0

cI I

�

with c 2 R. Let z D .k1; k2; k3; !/ be, as above, an element in the light cone. Then
considering z, as giving a linear functional on Lie.N /, this functional restricted

to

�

0 0

xI 0

�

2 Lie.S\N/ is given by the coefficient of q in the quadratic polynomial

1

2
det

�

! C k3 C qx k1 C ik2
k1 � ik2 ! � k3 C qx

�

which is !x. We will record this as a lemma since we will need to apply it later in
this section.

Lemma 9.1. If z D .k1; k2; k3; !/ is in the null light cone and if we consider z as a
linear functional on Lie.N / (as above), then its value on

�

0 0

xI 0

�

is !x.

We now relate these plane wave solutions to the representations Maxw˙̨;ˇ with

.˛; ˇ/ 2 f.2; 0/; f0; 2/g. Let H ˙̨;ˇ be the corresponding Hilbert space completions

of these smooth Fréchet representations of moderate growth. Then the Maxw˙̨;b
are the spaces of C1 vectors. Fix one of these representations and denote it by
.
;H/. Let CK denote the Casimir operator of K . Let HK be the space of K-
finite vectors and let hv;wik D

˝

.I C CK/kdv;w
˛

for v;w 2 HK , h: : : ; : : :i the
unitary structure and d D dimK . Let Hk be the Hilbert space completion of HK

with respect to h: : : ; : : :ik . Then H0 D H and the maps Tk;l W Hl ! Hk for
k > l � 0 that are the identity on HK are nuclear (see [GV] for the definition).
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Thus we have \k�0Hk D H1. We set H�k equal to the dual Hilbert space to
Hk . Thus .H1/0 D [k�0H�k . We thus have a rigged Hilbert space in the sense
of [GV], Chapter 1. We now consider .
;H/ as a unitary representation of N .
We have (c.f. [W1], Theorem 14.10.3) a direct integral decomposition of .
;H/
as a representation of N given as follows:

Z

supp.
/�bN
C� ˝W�d�.�/

with supp.
/ defined as in [W1, Volume 2, p. 337], � a Borel measure on
supp.
/, and � ! W� a Borel measurable Hilbert vector bundle over supp.
/.
In this case supp.
/ is just the support of � as a distribution. The theorem of
Gelfand–Kostyuchenko (c.f. [GV], p. 117 Theorem 10 and the remarks at the end of
Subsection 1.4.4) implies that there exists k > 0 and a family of nuclear operators
T� W Hk ! W� such that if u 2 Hk , then u.�/ D T�.u/ for �-almost all �. This
implies that for all � and all u 2 Hk ,

T�.
.n/u/ D �.n/T�.u/:

If T� is always 0, then H D 0. We see that there is a subset A of supp.
/ of full
measure with T� ¤ 0 for � 2 A. By definition of the Hk we see that if � 2 A, then
there exists � 2 W 0� such that � ı T� ¤ 0. We have for this choice

� ı T�.
.n/u/ D �.n/� ı T�.u/

for all n 2 N and all u 2 H1. If � 2 bN , then set

Wh�.
/ D f� 2 .H1/0j� ı 
.n/ D �.n/�g:

We have with this notation

Theorem 9.2. Let H1 be one of Maxw2̇;0 or Maxw0̇;2. Then

1. dim Wh�.
/ � 3:
2. Writing

�Z

��

I 0

Y I

��

D ei.Z;Y /

with Z� D Z (this describes all possible �). Then Wh�Z .
/ D 0 if det.Z/ ¤ 0
(i.e., the support of 
 is contained in the null light cone). Furthermore, the
support of 
 is the closure of a single orbit of the action of GL.2;C/ on
fZ 2M2.C/jZ� D Zg given by g �Z D gZg�.
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3. Both 
C2;0; 

C
0;2 have support equal to the set of all �Z with detZ D 0 and trZ �

0 (negative light cone) and both 
�2;0; 
�0;2 have support equal to the set of all �Z
with detZ D 0 and trZ � 0 (positive light cone).

Note: The discussion in the next section indicates that dim Wh�.
/ D 3:

The proof of the theorem will use earlier work of the authors [K, W2, W3].

Proof. We will do all the details for MaxwC2;0. The case MaxwC0;2 is essentially the
same. The cases Maxw�2;0 and Maxw�0;2 are done with an interchange of p˙ with p�.
Set q D k˚ pC where k D Lie.K/C. We consider F 2;0;2 to be the q-module with k
acting through the differential of the K action and pC acting by 0. Set

N.F 2;0;2/ D U.g/˝U.q/ F 2;0;2:

Then Lemma 7.2 implies that we have a surjective .g; K/-module homomorphism

p W N.F 2;0;2/! .MaxwC2;0/K:

Thus p�Wh�.
C2;0/ is contained in

W� D f� 2 HomC.N.F
2;0;2/;C/j�.Y v/ D d�.Y /�.v/; Y 2 Lie.N /g:

Since p� W Wh�.

C
2;0/ ! W� is injective (.MaxwC2;0/K is dense in MaxwC2;0) the

dimension estimate will follow if we prove that dimW� D 3. For this we use the
observation in [W3] that if

L D
��

g 0

0 .g�1/�
�

jg 2 GL.2;C/
�

;

then Lie.LN/C and q are opposite parabolic subalgebras (i.e., Lie.LN /C \ q
is a Levi factor of both parabolic subalgebras). This implies that N.F 2;0;2/ is a
free Lie.N /C module on dimF 2;0;2 D 3 generators. This clearly implies that
dimW� D 3.

We now note if m D
�

g 0

0 .g�1/�
�

then m

�

I 0

Y I

�

m�1 D
�

I 0

g � Y I

�

. Set

n D n.Y / D
�

I 0

Y I

�

. If � 2Wh�Z .

C
2;0/, then

� ı 
C2;0.m/.
C2;0.n/u/ D �.
C2;0.m/
C2;0.n/u/
D �.
C2;0.mnm�1/
C2;0.m/u/
D �Z.mnm�1/� ı 
C2;0.m/.u/
D �g�1 
Z.n/� ı 
C2;0.m/.u/:

Thus �ı
C2;0.m/ 2Wh�
g�1Z

.
C2;0/. This implies that supp(
C2;0) is a union of orbits.
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Using results in [W3] we can show that if Wh�Z .

C
2;0/ ¤ 0 with detZ ¤ 0,

then the GK-dimension of .MaxwC2;0/K is at least dimN=4. Indeed, this condition
implies that the dual module to .MaxwC2;0/K contains an irreducible submodule of
GK-dimension 4. However as a p�-module .MaxwC2;0/K is graded with the k-th
level of the grad being isomorphic with theK-moduleF kC2;k;kC2 whose dimension
is .kC 3/.kC 1/. Thus the GK-dimension of .MaxwC2;0/K is 3: Thus we must have
detZ D 0. To complete the proof, it is enough to prove 3. Since there are three
orbits of L in set of all Z with detZ D 0:

OC D fZj detZ D 0; trZ > 0g;OC D fZj detZ D 0; trZ < 0g; f0g:

Thus we must prove that if Wh�Z .

C
2;0/ ¤ 0 and Z ¤ 0 then trZ < 0. This follows

from Theorem 17 (p. 306) in [W2] (in this reference the roles of � and ��1 are
reversed). We can also prove the result directly using Lemma 9.1. Let � ¤ 0 be an
element of Wh�Z .


C
2;0/ with Z ¤ 0. Then set � D d�Z . If

Z D
�

! C k3 k1 C ik2
k1 � ik2 ! � k3x

�

;

then trZ D 2!. In Lemma 9.1 we saw that

�

�

0 0

xI 0

�

D !x:

Thus if S is as in the previous section and � D �jN\S , then in the notation of [W2]
Theorem 2, r� D !. Thus, that theorem (also see [K]) implies that (taking into
account the reversal of signs mentioned above) r� < 0. This completes the proof.

ut
Remark 9.3. The above results imply that in the steady state solutions to
Maxwell’s equations the plane wave solutions should be looked upon as 2-currents.
That is, using � , they are distributions on Maxw.

10 Planck’s black body radiation law

We will now use the results of the previous section to study the solutions of
Maxwell’s equations that have intensities that follow Planck’s black body radiation
law. We first note that we can take the measure on the (dual) null light cone
f.u1; u2; u3; !/ju21 C u22 C u23 D !2g to be the SO.3; 1/ invariant measure

d� D du1du2du3

.u21 C u22 C u23/
1
2

;
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which in polar coordinates is given by

rdrd�

with d� the normalized SO.3/ invariant measure on the 2-sphere. We will study
one of the representations supported on the positive null light cone. Theorem 5.6
implies that representation 
�0;2 has that property and is contained in Maxwi and its
contragradient 
C0;2 is in Maxw�i . Using the material on plane wave solutions we
have the Hilbert space that corresponds to 
�0;2 pulled back to Minkowski space is
given by the functions

.x; t/ 7! e�i.
P

ui xi�!t/.E.u; !/� iB.u; !//

with E.u; !/ and B.u; !/ corresponding to a plane wave solution for the given
character (see the beginning of Section 9). Thus the real solutions are given by

cos.
X

uixi � !t/E.u; !/C sin.
X

uixi � !t/B.u; !/.

The intensity per unit surface area, S , is given by (u D !� since !2 D r2)

I! D
Z

S

�

cos
	

!.
X

�ixi � t/

2 kE.!�; !/k2

C sin
	

!.
X

�ixi � t/

2 kB.!�; !/k2

�

d�

D
Z

S

kE.u; !/k2 d! D
Z

S

kB.u; !/k2 d!:

(see the beginning of section 9 to see that kE.u; !/k D kB.u; !/k ). Thus to satisfy
the Planck law (after normalizing all constants that can be normalized to 1) the
above integral must be equal to

I! D !3

e
!
T � 1 :

Since

Z 1

0

!4

e
!
T � 1d! <1

and on the positive null light cone ! D r , steady state solutions satisfying Planck’s
law exist in abundance.

In [S1], Segal analyzes the background radiation in what he calls Einstein’s
universe (essentially the universal covering space of U.2/). Thus the time parameter
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becomes “repetitious” rather than periodic (this is also the case in [P]). From the
discussion in the beginning of Section 8, it follows that the energy levels studied by
Segal correspond to the eigenvalues of

L D 1

2

�

I 0

0 �I
�

which corresponds to �i times the infinitesimal generator of the image of the group
of all elements

ei�L D
"

e
i�
2 I 0

0 e� i�2 I

#

in PSU.2; 2/, which under the action on U.2/ described in Section 2, we have
ei�L � I D e�i� I . In our notation (using the same notation for the differential and
the representation of K)

�k;kC2;˙.kC2/.L/ D .k C 2/I

and also

�kC2;k;˙.kC2/.L/ D .k C 2/I:

Thus the positive eigenvalues of L on Maxw appear in Maxw�0;2 and Maxw�2;0.
This implies that the multiplicity of the eigenvalue n D k C 2 with k � 0 is
2.k C 1/.k C 3/ D 2.nC 1.n � 1/ D 2.n2 � 1/. These dimensions of the positive
eigenvalues ofH in the space of solutions to Maxwell’s equations with the spectrum
bounded below by 2 is stated in [S1] with references to [SJOPS] and [PS]. Segal then
argues that this implies that the energy levels of the “equilibrium state” differ “by an
unobservably small amount” from Planck’s Law. The discussion in the beginning of
Section 8 combined with the harmonic analysis of Section 9 indicates that Segal’s
“equilibrium solution” is very close to one of the solutions above satisfying Planck’s
Law.

11 Conclusion

In this paper we have shown (Theorem 7.3) that the solutions to Maxwell’s equations
that extend to the conformal compactification of Minkowski space break up into
four irreducible unitary representations: 2 positive energy and 2 negative energy
(in the sense of lowest weight or highest weight respectively) as a representation of
the conformal group of the wave equation. The support (see Section 9) of each of the
representations is either the forward or backward null light cone. The ones with



Conformal group, Maxwell’s equations, and background radiation 417

positive energy (Theorem 9.2) yield only positive frequencies and thus according
to Planck’s formula E D h� have positive energy in the sense of field theory.
We observe that solutions that extend to the full compactification (i.e., steady state)
can have their frequency spectrum constrained (see Section 10) in such a way
that one has background radiation that follows Planck’s Black Body Law with a
temperature of about 2:7 degrees Kelvin (or any other temperature for that matter).
This says that although the actual steady state models to the universe that fit the
astronomical observations are complicated this work indicates that there can be
a background radiation that fits the measurements that is not the outgrowth of
an initial very high temperature source. We would also like to point out that the
big bang models for the universe have had difficulty fitting the observations also,
leading to theories involving inflation and the return of the cosmological constant.
An interesting alternative which is not unrelated to this paper can be found in [P]
where the conformal structure is emphasized and time does almost cycle. There is
also the chronometric theory of [S1] which we related to our work at the end of the
last section.

We have also shown that these representations fit in larger contexts. However,
although many of the results in this paper generalize to SO.n; 2/ (resp. U.n; 2/),
the beautiful geometric structures that appear in the case n D 4 (resp. n D 2) do
not.
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Abstract Let G be a complex reductive group and V a G-module. Let 
WV !
V==G be the quotient morphism defined by the invariants and set N .V / WD

�1.
.0//. We consider the following question. Is the null cone N .V / reduced,
i.e., is the ideal of N .V / generated by G-invariant polynomials? We have complete
results when G is SL2, SL3 or a simple group of adjoint type, and also when G is
semisimple of adjoint type and the G-module V is irreducible.
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1 Introduction

Let G be a reductive complex algebraic group and let V be a finite-dimensional
G-module. Let 
WV ! V==G be the categorical quotient morphism given by the
G-invariant functions on V , and let

N WD 
�1.
.0// D fv 2 V j Gv 3 0g � V

be the null cone. We say that V is coreduced if N is reduced. This means that
the ideal I.N / � O.V / of the set N is generated by the invariant functions
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m0 WD O.V /G \ I.N /, the homogeneous maximal ideal of O.V /G , and so
I.N / D IG.N / WD m0O.V /, where we use O.X/ to denote the regular functions
on a variety X . If it is important to specify the group or representation involved, we
will use notation such as .V;G/, N .V /, NG.V /, etc.

We say that V is strongly coreduced if every fiber of 
 is reduced. We can
reformulate this in terms of slice representations. Let Gv be a closed orbit. Then
Gv is reductive and we have a splitting of Gv-modules,

V D Tv.Gv/˚Nv:

Then .Nv;Gv/ is the slice representation of Gv at v. We show that the fiber

�1.
.v// is reduced if and only if .Nv;Gv/ is coreduced (Remark 4.1). Hence
V is strongly coreduced if and only if every slice representation of V is coreduced.

A main difficulty in our work is that, a priori, V may be coreduced but 
 may
have a nonreduced fiber F ¤ N . We conjecture that this is never the case:

Conjecture 1. A coreducedG-module is strongly coreduced.

Recall that V is cofree if O.V / is a free module over O.V /G . Equivalently,

WV ! V==G is flat. In the cofree case the associated cone to any fiber F (see
[BK79] or [Kra84, II.4.2]) is the null cone. From this one can immediately see that
N reduced implies that F is reduced, so the conjecture holds when V is cofree.
There is another case in which the associated cone of F is N : the case in which
the isotropy group H of the closed orbit Gv � F has the same rank as G, i.e.,
contains a maximal torus T of G. This was first noticed by RICHARDSON [Ric89,
Proposition 5.5]. If the slice representation ofH at v is not coreduced, then neither is
.V;G/ (Proposition 5.1). For an irreducible representation V of G, having V T ¤ 0
means that the weights of V are in the root lattice; equivalently, the center of G
acts trivially on V . Hence we have a representation of the adjoint group G=Z.G/.
This explains why many of our results require that the group be adjoint, or that at
least one of the irreducible components of our representation contains a zero weight
vector.

For SL2 and SL3 we have a complete classification of the coreduced modules. In
the case of SL3, the coreduced modules are either cofree (for which there is a finite
list of possibilities) or one has the direct sum of arbitrarily many copies of C3 and
.C3/� (§11). We would guess that something similar holds for representations of any
simple algebraic group G. Besides the infinite series of coreduced representations
involving the representations of the smallest dimension for SLn and Spn (see
§9), any coreduced module should be cofree (and for this there is a finite list of
possibilities). If one replaces coreduced by strongly coreduced, then our techniques
should be sufficient to establish this result. For irreducible representations we show
that strongly coreduced and cofree are equivalent (§4), which is the first step. If G
is adjoint, our classification of the coreduced representations produces a finite list
of cofree representations. In case G is semisimple adjoint and not simple and the



Representations with a reduced null cone 421

representation is faithful and irreducible, our classification shows that there are
finitely many coreduced representations, all of which are again cofree. In these cases
the group has two simple factors (Theorem 8.3). We would also guess that one can
add at most finitely many representations to these and still remain coreduced, but
we have not carried out the details. In general, to carry the classification any further,
new techniques are needed.

Here is a summary of the contents of this paper. In §2 we present elementary
results and determine the coreduced representations of tori (Proposition 2.13).
In Section 3 we show how to use covariants to prove that a null cone is not
reduced and as an application we determine the coreduced representations of SL2
(Theorem 3.7). In §4 we show that every cofree irreducible representation of a
simple algebraic group is coreduced (Theorem 4.10) and that, sort of conversely,
every irreducible representation of a simple group which is strongly coreduced is
cofree (Theorem 4.12). In §5 we consider modules V with V T ¤ 0, T a maximal
torus of G. We develop methods (based on weight multiplicities) to show that a
slice representation at a zero weight vector is not coreduced (we say that V has a
bad toral slice). We then show that V has a bad toral slice if all the roots ofG appear
in V with multiplicity two or more (Proposition 5.17).

In §6 we apply our techniques to find the maximal coreduced representations of
the adjoint exceptional groups (Theorem 6.9). The case of F4 is rather complicated
and needs some heavy computations (see Appendix A). In §7 we do the same
thing for the classical adjoint groups (Theorem 7.1), and in §8 we determine the
irreducible coreduced representations of semisimple adjoint groups (Theorem 8.3).
This is not straightforward, e.g., the representation .C7 ˝ C

7;G2 � G2/ is not
coreduced, but showing this is difficult (see Appendix B).

In §9 we show that, essentially, the classical representations of the classical
groups are coreduced (with a restriction for SOn). This is a bit surprising, since
these representations are often far from cofree. In §11 we classify the coreduced
representations of SL3 (not just PSL3). To do this, we need to develop some
techniques for finding irreducible components of null cones (see §10). These
techniques should be useful in other contexts.

Acknowledgments. We thank Michel Brion and John Stembridge for helpful
discussions and remarks, and Jan Draisma for his computations. We thank the
referee for helpful comments.

2 Preliminaries and elementary results

We begin with some positive results. Let G be a reductive group. We do not
assume that G is connected, but when we say that G is semisimple this includes
connectivity. Let V be a finite-dimensionalG-module.
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Proposition 2.1. Suppose that G is semisimple and that V satisfies one of the
following conditions.

(1) dimV==G � 1;
(2) V D AdG.

Then V is coreduced.

Proof. If dimV==G D 0, then N D V is reduced. If dimV==G D 1, then
O.V /G is generated by a homogeneous irreducible polynomial f and its zero
set N is reduced. If V is the adjoint representation of G, then N is irreducible
of codimension equal to the rank ` of G. Since N is defined by ` homogeneous
invariants and the rank of d
 is ` on an open dense subset of N , it follows that N
is reduced and even normal ([Kos63]). ut
Example 2.2. Suppose that G is finite and acts nontrivially on V . Then N D f0g
(as set) is not reduced since not all the coordinate functions can be G-invariant.

Let V be a G-module. Then V==G parameterizes the closed G-orbits in V . Let
Gv be a closed orbit and let Nv be the slice representation of Gv . We say that Gv is
a principal orbit and that Gv is a principal isotropy group if O.Nv/Gv D O.NGv

v /.
In other words, Nv is the sum of a trivial representation and a representation N 0v
with O.N 0v/Gv D C. The principal isotropy groups form a single conjugacy class of
G and the image of the principal orbits in V==G is open and dense. We say that V
is stable if N 0v D .0/; equivalently, there is an open dense subset of V consisting
of closed orbits. If G is semisimple and there is a nonempty open subset of points
with reductive isotropy group, then V is stable. In particular, if the general point in
V has a finite isotropy group, then the representation is stable with finite principal
isotropy groups.

Our example above generalizes to the following.

Remark 2.3. Let V be a G-module where G=G0 ¤ feg. If G=G0 acts nontrivially
on the quotient V==G0, then V is not coreduced. Note that, for example, G=G0 acts
nontrivially if the principal isotropy group of .V;G/ is trivial.

Proposition 2.4. Assume that .V;G0/ is not coreduced. Then .V;G/ is not
coreduced.

Proof. The null cones for G0 and G are the same (as sets). There is an f 2 I.N /
which is not in IG0.N /. Hence f 62 IG.N / and .V;G/ is not coreduced. ut

For the next three more technical results we have to generalize the definition of
coreducedness to pointed G-varieties.

Definition 2.5. A pointedG-variety is a pair .Y; y0/ where Y is an affineG-variety
and y0 is a fixed point. A pointed G-variety .Y; y0/ is coreduced if the fiber

�1.
.y0// is reduced where 
WY ! Y==G is the quotient morphism.
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Lemma 2.6. Let .X; x0/ be a pointed G-variety and Y � X a closed G-stable
subvariety containing x0. Assume that the ideal I.Y / of Y is generated by
G-invariant functions. Then .X; x0/ is coreduced if and only if .Y; x0/ is coreduced.

Proof. Let m � O.X/G be the maximal ideal of 
.x0/ where 
WX ! X==G is the
quotient morphism, and let n � O.Y /G denote the image of m. By assumption, the
ideal mO.X/ contains I.Y / and so O.Y /=.nO.Y // ' O.X/=.I.Y /CmO.X// D
O.X/=.mO.X//. ut
Example 2.7. Let V be a G-module. Denote by �n the n-dimensional trivial
representation and let F � V ˚ �n be a G-stable hypersurface containing 0.
If G is semisimple, then F is defined by a G-invariant polynomial. Hence .F; 0/
is coreduced if and only if V is coreduced.

Lemma 2.8. Let .X; x0/ be a pointedG-variety. LetH be a reductive group acting
on X such that G sends H -orbits to H -orbits. Assume that every G-invariant
function on X is H -invariant. If .X; x0/ is coreduced with respect to G, then so
is .X==H; 
.x0//.

Proof. Put Y WD X==H . Then G acts on Y , because G preserves the H -invariant
functions O.X/H � O.X/. Suppose that f is an element of O.Y / which
vanishes on the null fiber NG.Y; 
H .x0//. By assumption, NG.X; x0/ D

�1H .NG.Y; 
H .x0/// and so f ı 
H vanishes on NG.X; x0/. Hence f ı 
H D
P

i ai bi where the ai areG-invariant and vanish at x0. Since f ı
H isH -invariant,
we may average the bi over H and assume that they are in O.X/H . But then
ai D Nai ı 
H and bi D Nbi ı 
H for unique Nai 2 O.Y /G and Nbi 2 O.Y /. Thus
f DPi Nai Nbi and so .Y; 
H .x0// is coreduced. ut
Example 2.9. If .V;G/ is a coreduced representation and H � G a closed normal
subgroup, then .V==H; 
H .0// is coreduced (with respect to G=H ).

Example 2.10. Let .X; x0/ be a pointed G-variety, let W be a G-module of
dimension n and letH D SOn acting as usual on C

n. Consider the pointed .G�H/-
variety .Y; y0/ WD .X � .W ˝ C

n/; .x0; 0//. Assume that G ! GL.W / has
image in SL.W /. We claim that if .Y; y0/ is a coreduced .G � H/-variety, then
.X � S2.W �/; .x0; 0// is a coreducedG-variety.

By Classical Invariant Theory (see [Pro07]), the generators of the invariants of
.nCn;SOn/ are the inner product invariants fij of the copies of Cn together with
the determinant d . The relations are generated by the equality d2 D det.fij /.
Identifying nCn with W ˝ C

n we see that the quadratic invariants transform by
the representation S2.W �/ of G, the determinant d transforms by

Vn
.W �/ D �1,

and the relation is G-invariant. Now applying Lemmas 2.8 and 2.6 gives the claim.

Lemma 2.11. Let .Y; y0/ be a pointed G-variety and Z � Y a closed G-stable
subvariety containing y0. Suppose that there is a G-equivariant retraction
pW .Y; y0/! .Z; y0/. If .Y; y0/ is coreduced, then so is .Z; y0/.

Proof. Clearly, if y is in the null cone of Y , then p.y/ is in the null cone ofZ. Thus
if f 2 O.Z/ vanishes on the null cone of Z, then ef WD p�f 2 O.Y / vanishes
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on the null cone of Y . By hypothesis we have that ef D P

i ai bi where the ai are
invariants vanishing at y0. Restricting to Z we get a similar sum for f . Hence Z is
coreduced. ut
Example 2.12. (1) If .V1˚V2;G/ is a coreduced representation, then so is .Vi ; G/,

i D 1; 2.
(2) If .V;G/ is a coreduced representation and H � G a closed normal subgroup,

then .V H ;G/ is also coreduced.
(3) Let Vi be a Gi module, i D 1, 2. Then .V1 ˚ V2;G1 � G2/ is coreduced

if and only if both .V1;G1/ and .V2;G2/ are coreduced. Here we use that
N .V1 ˚ V2/ D N .V1/ �N .V2/.

We finish this section with the case of tori which is quite easy. We will then see
in Section 5 that this case can be applied to representations containing zero weights.

Proposition 2.13. Let V be a T -module where T is a torus. Let ˛1; : : : ; ˛n be the
nonzero weights of V . Then V is coreduced if and only if the solutions of

X

i

mi˛i D 0; mi 2 N;

are generated by solutions where the mi are zero or one.

It is well-known that the monoid of relations
P

i mi˛i D 0,mi 2 N is generated by
the indecomposable relations, i.e., by relations which cannot be written as a sum of
two nontrivial relations. So a necessary and sufficient condition for coreducedness
is that the indecomposable relations

P

i ni˛i D 0, ni 2 N, satisfy ni D 0 or 1.

Proof. We may assume that V T D 0. Let x1; : : : ; xn be a weight basis of V �
corresponding to the ˛i . Suppose that there is an indecomposable relation where,
say, m1 � 2. Then the monomial x1x

m2
2 : : : xmnn vanishes on the null cone, but it is

not in the ideal of the invariants. Hence our condition is necessary.
On the other hand, suppose that the indecomposable relations are of the desired

form. Now any polynomial vanishing on N .V / is a sum of monomials with this
property, and a monomial p vanishing on N .V / has a power which is divisible by
an invariant monomial q without multiple factors. But then p is divisible by q and
so N .V / is reduced. ut
Corollary 2.14. Let T D C

�. Then N .V / is reduced if and only if O.V /T D C or
the nonzero weights of V are˙k for a fixed k 2 N.

3 The method of covariants

In this section we explain how covariants can be used to show that a representation
is not coreduced. As a first application we classify the coreduced representations
of SL2.
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Let G be a reductive group and V a representation of G. A G-equivariant
morphism 'WV ! W where W is an irreducible representation of G is called a
covariant of V of typeW . Clearly, covariants of typeW can be added and multiplied
with invariants and thus form an O.V /G-module Cov.V;W / which is known to be
finitely generated (see [Kra84, II.3.2 Zusatz]).

A nontrivial covariant 'WV ! W defines a G-submodule '�.W �/ � O.V / iso-
morphic to the dualW �, and every irreducibleG-submodule of O.V / isomorphic to
W � is of the form '�.W �/ for a suitable covariant '. Moreover, ' vanishes on the
null cone N if and only if '�.W �/ � I.N /. We say that ' is a generating covariant
if ' is not contained in m0 Cov.V;W /, or equivalently, if '�.W �/ is not contained
in IG.N /. Thus we obtain the following useful criterion for non-coreducedness.

Proposition 3.1. If ' is a generating covariant which vanishes on N , then V is not
coreduced.

Remark 3.2. Let f 2 O.V /G be a generating homogeneous invariant of positive
degree, i.e., f 2 m0 nm2

0. Then the differential df WV ! V � is a generating
covariant. In fact, using the contraction .df; Id/ D degf � f , we see that if
df D P

i fi'i where the fi are homogeneous nonconstant invariants, then f D
1

deg f

P

i fi .'i ; Id/ 2 m2
0.

Example 3.3. Let G be SL2 and V D sl2˚ sl2 where sl2 D Lie SL2 is the Lie
algebra of SL2. Then the null cone N .V / consists of commuting pairs of nilpotent
matrices, and so the covariant

'W sl2˚ sl2 ! sl2; .A;B/ 7! AB � 1
2

tr.AB/

�

1 0

0 1

�

vanishes on N .V /, i.e., '�.sl2/ � I.N /. But '�.sl2/ is bihomogeneous of degree
.1; 1/ and therefore is not contained in IG.N / because there are no invariants of
degree 1.

Example 3.4. LetG be SO4 and V D C
4˚C

4˚C
4. The weights of C4 relative to

the maximal torus T D SO2 �SO2 are ˙"1, ˙"2, and the degree 2 invariants (dot
products) qij W .v1; v2; v3/ 7! vi � vj , 1 � i � j � 3, generate the invariant ring. Let
VCC denote the span of the positive weight vectors and let VC� denote the span of
the weight vectors corresponding to "1 and �"2. Then N D GVCC [ GVC�, and
an easy calculation shows that every homogeneous covariant V ! C

4 of degree
3 vanishes on the null cone N . Now, using LiE (see [vLCL92]), one finds that
there are 19 linearly independent homogeneous covariants of type C

4 of degree 3,
whereas there are 6 linearly independent invariants in degree 2, and obviously 3
linear covariants of type C4. Therefore, there is at least one generating covariant of
type C

4 in degree 3 and so V is not coreduced. (See Theorem 9.1(4) for a more
general statement.)

We now use our method to classify the cofree SL2-modules. Starting with the
natural representation on C

2 we get a linear action on the coordinate ring O.C2/ D
CŒx; y� where x has weight 1 with respect to the standard torus T D C

� � SL2.
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The homogeneous components Rm WD CŒx; y�m of degree m give all irreducible
representations of SL2 up to isomorphism. A binary form f 2 Rm will be written as

f D
m
X

iD0
ai

 

m

i

!

xiym�i

so that the corresponding coordinate functions xi are weight vectors of weight
m � 2i . The null cone of Rm consists of those forms f that have a linear factor
of multiplicity strictly greater than m

2
. More generally, for any representation V of

SL2, we have

N D SL2 VC;

where VC is the sum of all weight spaces of strictly positive weight. In particular,
N is always irreducible.

Example 3.5. The binary forms of degree 4 have the following invariants:

A WD x0x4 � 4x1x3 C 3x22 and H WD det

2

4

x0 x1 x2
x1 x2 x3
x2 x3 x4

3

5

classically called “Apolare” and “Hankelsche Determinante” which generate the
invariant ring (see [Sch68]). It is easy to see that the null cone N .R4/ D
SL2.Cx3y ˚ Cx4/ is the closure of the 3-dimensional orbit of x3y and thus has
codimension 2. A simple calculation shows that the Jacobian Jac.H;A/ has rank 2
at x3y. It follows that N .R4/ is a reduced complete intersection. (One can deduce
from rank Jac.H;A/ D 2 that A;H generate the invariants.)

Example 3.6. The representation kR1 D R1 ˚ R1 ˚ � � � ˚ R1 (k copies) can
be identified with the space M2�k.C/ of 2 � k-matrices where SL2 acts by left
multiplication. Then the null cone N is the closed subset of matrices of rank � 1,
which is the determinantal variety defined by the vanishing of the 2 � 2-minors
Mij D x1i x2j � x2i x1j , 1 � i < j � k. It is known that the ideal of N is
in fact generated by the minors Mij . This is an instance of the so-called Second
Fundamental Theorem, see [Pro07, Chap. 11, Section 5.1]. Thus N is reduced, and
the minorsMij generate the invariants.

Theorem 3.7. Let V be a nontrivial coreduced representation of SL2 where
V SL2 D .0/. Then V is isomorphic to R2, R3, R4 or kR1, k � 1.

It is shown in [Dix81] that the representationsRn are not coreduced for n � 5. Our
proof is based on the following results.

Lemma 3.8. Let V be a representation of SL2 and 'WV ! Rm a homogeneous
covariant of degree d .
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(1) If d > m, then '.N / D .0/.
(2) If ˙ Id acts trivially on V and 2d > m, then '.N / D .0/.
Proof. Let VC � V be the sum of the positive weight spaces. Since N D SL2 VC
it suffices to show that ' vanishes on VC. Choose coordinates x1; : : : ; xn on V
consisting of weight vectors and let z D x

k1
1 x

k2
2 � � �xknn be a monomial occurring

in a component of '. Then
P

i ki D d and the weight of z occurs in Rm. Since
m < d the monomial z must contain a variable xi with a weight � 0, and so, z
vanishes on VC. This proves (1).

For (2) we remark that V contains only even weights and so a variable xi with
nonpositive weight has to appear in z as soon as 2d > m. ut
Lemma 3.9. Let V be a nontrivial representation of SL2 not isomorphic to
R1;R2;R3 or R4. Then the principal isotropy group is either trivial or equal to
f˙ Idg.
Proof. This is well known for the irreducible representationsRj , j � 5. Let T and
U denote the usual maximal torus and maximal unipotent subgroup of SL2. Denote
by Hi the generic stabilizer of Ri , i D 1; 2; 3 and 4. Then we have H1 D U ,

H2 D T , H3 D f
�

 0

0  2

�

j  3 D 1g ' Z=3 and

H4 D f
�

 0

0  3

�

j  4 D 1g [ f
�

0  

� 3 0
�

j  4 D 1g ' eQ8;

the group of quaternions of order 8. It is easy to see that the generic stabilizer of
H1 and H3 on any nontrivial representations of SL2 is trivial, and that the generic
stabilizer of H2 and H4 on the R2j , j > 0, is f˙ Idg. ut
Proof (of Theorem 3.7). For V D R2 orR3 the quotient V== SL2 is one-dimensional
and so both are coreduced. In Examples 3.5 and 3.6 we have seen that R4 and kR1
are coreduced. So it remains to show that any other representation V of SL2 is not
coreduced.

By Lemma 3.9 we can assume that the principal isotropy group is trivial
or f˙ Idg. In the first case, V contains a closed orbit isomorphic to SL2. By
Frobenius reciprocity, we know that the multiplicity of Rm in O.SL2/ is equal to
dimRm D m C 1. This implies that the rank of the O.V /G-module Cov.V;Rm/
is at least m C 1. Since we may assume that V is not kR1, removing all but one
copy of R1 gives a module V 0 which still has trivial principal isotropy groups. By
Example 2.12(1) it is sufficient to show that V 0 is not coreduced. Now there has to be
a generating homogeneous covariant 'WV 0 ! R1 of degree > 1. By Lemma 3.8(1)
and Proposition 3.1 it follows that V 0 is not coreduced, hence neither is V .

Now assume that the principal isotropy group is f˙ Idg. As above this implies
that the rank of Cov.V;R2/ is at least 3. Since R2 ˚ R2 is not coreduced
(Example 3.3) we can assume that V contains at most one summand isomorphic
to R2. It follows that there is a generating homogeneous covariant 'WV ! R2 of
degree > 1, and the claim follows by Lemma 3.8(2) and Proposition 3.1. ut
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4 Cofree representations

Let G be a (connected) reductive group, V a G-module and 
WV ! V==G the
quotient morphism.

Remark 4.1. LetGv be a closed orbit with slice representation .Nv;Gv/. Then, by
LUNA’s slice theorem, the fiber F WD 
�1.
.v// is isomorphic to G �Gv N .Nv/
which is a bundle over G=Gv ' Gv with fiber N .Nv/. Hence F is reduced if and
only if Nv is coreduced.

If the fiber F D 
�1.z/ is reduced, then F is smooth in a dense open set U � F
which means that the rank of the differential d
u equals dimV �dimu F for u 2 U .
Thus we get the following criterion for non-coreducedness.

Lemma 4.2. If X is an irreducible component of N .V / and the rank of d
 on X
is less than the codimension of X in V , then V is not coreduced.

Recall that a G-module V is said to be cofree if O.V / is a free O.V /G-module.
Equivalently, O.V /G is a polynomial ring (V is coregular) and the codimension
of N .V / is dimV==G. See [Sch79] for more details and a classification of cofree
representations of simple groups.

Proposition 4.3. Let V be a cofree G-module. If the null cone is reduced, then so
is every fiber of 
WV ! V==G, and every slice representation of V is coreduced.

Proof. Since V is cofree, the map 
 is flat. By [Gro67, 12.1.7], note that the set
fv 2 V j 
�1.
.v// is reduced at vg is open in V . But this set is a cone. Thus if
the null cone is reduced, then so is any fiber of 
 , and every slice representation is
coreduced. ut

For a cofree representation V the (schematic) null cone N .V / is a complete
intersection. Using SERRE’s criterion [Mat89, Ch. 8] one can characterize quite
precisely when N .V / is reduced.

Proposition 4.4. Let V be a cofree G-module. Then V is coreduced if and only if
rank d
 D codimN .V / on an open dense subset of N .V /.

Example 4.5. Let G D SLn and V WD S2.Cn/� ˚ C
n. The quotient map


WV ! C
2 is given by the two invariants f WD det.q/ and h WD q.v/ of bidegrees

.n; 0/ and .1; 2/ where .q; v/ 2 V . An easy calculation shows that for n D 2 the
differential d
 has rank � 1 on the null cone. Hence

.S2.C2/� ˚C
2;SL2/

is not coreduced, which we already know from Theorem 3.7.
We claim that for n � 3 the null cone is irreducible and reduced. Set qk WD

x2k C x2kC1 C � � � C x2n,

Xk WD fqkg � fv 2 C
n j qk.v/ D 0g � V and XnC1 WD f0g �C

n:
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Then N .V / D SnC1
kD2 SLn �Xk. Since dim SLn �Xk D dim SLn qk C n � 1 for 2 �

k � n we get codim SLn �X2 D 2 < codim SLn �Xk for all k > 2, and so N .V / D
SLn �X2 is irreducible. Moreover,

df.q2;v/.q;w/ D a11 and dh.q2;v/.q;w/ D
n
X

iD2
2viyi C q.v/;

where v D .v1; : : : ; vn/, q D P

aij xixj and w D .y1; : : : ; yn/. It follows that the
two linear maps df.q2;v/ and dh.q2;v/ are linearly independent on a dense open set of
X2, hence the claim.

In order to see that the null cone is reduced in a dense set we can use the following
result due to KNOP [Kno86]. Recall that the regular sheet SV of a representation
.V;G/ of an algebraic group is the union of the G-orbits of maximal dimension.

Proposition 4.6. Let .V;G/ be a representation of a semisimple group and let

WV ! V==G be the quotient map. Assume that x 2 V belongs to the regular
sheet and that 
.x/ is a smooth point of the quotient. Then 
 is smooth at x.

Corollary 4.7. Let .V;G/ be a cofree representation of a semisimple group.
Assume that the regular sheet SV of V meets the null cone N .V / in a dense set.
Equivalently, assume that every irreducible component of the null cone contains a
dense orbit. Then .V;G/ is coreduced.

Let � be an automorphism of finite order of a semisimple group H and let
G denote the identity component of the fixed points H� . Given any eigenspace
V of � on the Lie algebra g of G, we have a natural representation of G
on V . These representations .V;G/ are called �-representations. They have been
introduced and studied by VINBERG, see [Vin76]. Among other things he proved
that �-representations are cofree and that every fiber of the quotient map contains
only finitely many orbits. As a consequence of Corollary 4.7 above we get the
following result.

Corollary 4.8. Every �-representation .V;G/ whereG is semisimple is coreduced.

Remark 4.9. The corollary above was first established by PANYUSHEV [Pan85].

Finally we can prove the main result of this section.

Theorem 4.10. An irreducible cofree representation V of a simple group G is
coreduced.

Proof. It follows from the classification (see [Pop76, KPV76, Sch79]) that the only
irreducible cofree representations of the simple groups that are not �-representations
(or have one-dimensional quotient) are the spin representation of Spin13 and the
half-spin representations of Spin14. For these representations, GATTI–VINIBERGHI

[GV78] show that every irreducible component of the null cone has a dense orbit.ut
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Example 4.11. Here is an example of a cofree but not coreduced representation.
Let G D SL2 and let V D sl2˚ sl2 ' 2R2. Example 3.3 shows that V is not
coreduced. Here is a different proof. Each copy ofR2 has a weight basis fx2; xy; y2g
relative to the action of the maximal torus T D C

�. The null cone isU�.Cx2˚Cx2/
where U� is the maximal unipotent subgroup of G opposite to the usual Borel
subgroup. One can easily see that d
.˛x2;ˇx2/ is nontrivial only on the vectors
.�y2; ıy2/, giving a rank of two. But V is cofree with codimN .V / D 3. Thus
V is not coreduced.

We can prove a sort of converse to the theorem above. Recall that V is strongly
coreduced if every fiber of 
 is reduced; equivalently, every slice representation of
V is coreduced.

Theorem 4.12. A strongly coreduced irreducible representation of a simple group
G is cofree.

If G is simple, then we use the ordering of Bourbaki [Bou68] for the simple roots
˛j of G and we let 'j denote the corresponding fundamental representations. We
use the notation �j to denote the 1-dimensional representation of C� with weight j .

Proof. We use the techniques of [KPV76] (but we follow the appendix of [Sch78]).
Let V be non-coregular (which is the same as V not being cofree by the classi-
fications [Pop76, KPV76]). If V is '31.A3/ or '32.A3/, then there is a closed orbit
with finite stabilizer whose slice representation is not coregular. Thus the slice
representation is certainly not trivial, hence V is not strongly coreduced. Otherwise,
there is a copy T D C

� � SL2 � G and a closed orbit Gv, v 2 V T , such that the
identity component G0

v of the stabilizer Gv of v has rank 1. Moreover, one of the
following occurs:

(1) G0
v D T and the slice representation of Gv , restricted to T , has at least 3 pairs

of nonzero weights˙a, ˙b, ˙c (where we could have a D b D c).
(2) The module is '1'2.A3/ or '2'3.A3/, Gv centralizes G0

v D T and the slice
representation is �2C �1C ��1C �2C ��2 where �n denotes the n-dimensional
trivial representation.

(3) G0
v D SL2 and the slice representation ofGv , restricted to T , contains at least 4

pairs of weights˙a, ˙b, : : :.

If, in case (1) above, the weights are not of the form ˙a for a fixed a, then the
G-module V is not strongly coreduced by Corollary 2.14. The same remark holds
in case (3). Of course, in case (2), the module is not strongly coreduced. We went
through the computations again and saw in which cases the weights of the slice
representations were of the form˙a for a fixed a. One gets a list of representations
as follows. (The list is complete up to automorphisms of the group.)

(4) 'i .An/, 5 � i , 2i � nC 1.
(5) 'n.Bn/, n � 7.
(6) 'n.Dn/, n � 9.
(7) 'i .Cn/, 3 � i � n, n � 5.
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For the groups of type A and C, consider SL2 � G such that the fundamental
representation restricted to SL2 is 2R1C�1. For the groups of type B and D consider
SL2 � G such that the fundamental representation restricted to SL2 is 4R1C� . Then
using the techniques of [KPV76] one sees that there is a closed orbit in V SL2 whose
stabilizer has identity component SL2 such that the slice representation restricted
to SL2 contains at least two copies of R2. Hence the slice representation is not
coreduced. ut

We know from the [KPV76] and [Pop76] that an irreducible representation of
a simple group is cofree if and only if it is coregular. Thus we get the following
corollary.

Corollary 4.13. Let .V;G/ be an irreducible representation of a simple group.
Then the following are equivalent:

.V;G/ cofree ” .V;G/ coregular ” .V;G/ strongly coreduced.

5 The method of slices and multiplicity of weights

Let G be a reductive group and T � G a maximal torus. It is well known that the
orbitGv is closed for any zero weight vector v 2 V T . We say that V is aG-module
with a zero weight if V T ¤ .0/. The basic result for such modules is the following.

Proposition 5.1. Let V be a G-module with a zero weight. If the slice representa-
tion at a zero weight vector is not coreduced, then neither is V .

For the proof we use the following result originally due to RICHARDSON [Ric89,
Proposition 5.5]. If X � V is a closed subset of a vector space V , then the
associated cone CX of X is defined to be the zero set of fgrf j f 2 I.X/g
where grf denotes the (nonzero) homogeneous term of f of highest degree. If V is
a G-module and X a closed subset of a fiber F ¤ N .V / of the quotient map, then
CX D C�X n C�X (cf. [BK79, §3]).

Lemma 5.2. Suppose thatGv has the same rank asG. Then the associated cone of
F WD 
�1.
.v// is equal to N .V /.

Proof. We know that the associated cone of every fiber of 
 is contained in N .V /.
For the reverse inclusion we can assume that T � Gv . Let v0 2 N .V /. Then
Tgv0 3 0 for a suitable g 2 G. This implies that T .gv0 C v/ 3 v and so Cgv0 C
v � F . The lemma follows since gv0 2 C�.Cgv0 C v/. ut

Proof (of Proposition 5.1). Suppose that N .V / is reduced, and let 0 ¤ f 2
I.F / where F is as in the lemma above. Then the leading term grf lies in
the ideal of N .V /, so that there are homogeneous fi 2 m0 and homogeneous
hi 2 O.V / such that grf D P

i fihi where degfi C deghi D deg grf for all i .
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Then ef WDPi .fi � fi .v//hi lies in IG.F / and grf D gref . Replacing f by
f � ef we are able to reduce the degree of f . Hence by induction we can show
that f 2 IG.F /. Thus F is reduced. ut
Remark 5.3. The proof above shows that the conclusion of Proposition 5.1 holds
in a more general situation. If the slice representation at v 2 V is not coreduced and
the associated cone of 
�1.
.v// is equal to N .V /, then V is not coreduced.

Example 5.4. We use the proposition above to give another proof that the irre-
ducible representationsR2m of SL2 are not coreduced form � 3 (see Theorem 3.7).
We have RT2m D Cxmym, and a zero weight vector v has stabilizer T ' C

� if m
is odd and N.T / if m is even. The slice representation of T at v has the weights
˙4; : : : ;˙2m (each with multiplicity one), and so, for m � 3, we have at least
the weights ˙4 and ˙6. But then the slice representation restricted to T is not
coreduced by Corollary 2.14, hence neither are the representations R2m of SL2 for
m � 3.

Let G be semisimple with Lie algebra g. If � is a dominant weight of G, let
V.�/ denote the corresponding simple G-module. Recall that the following are
equivalent:

(i) V.�/ has a zero weight;
(ii) All weights of V.�/ are in the root lattice;

(iii) � is in the root lattice;
(iv) The center of G acts trivially on V.�/.

Remark 5.5. Let V be a nontrivial simple G-module with a zero weight. Then the
short roots are weights of V.�/ and the highest short root is the smallest nontrivial
dominant weight. This follows from the following result due to STEINBERG, see
[Ste98]. (We thank John Stembridge for informing us of this result.)

Lemma 5.6. Let � � � be dominant weights. Then there are positive roots ˇi ,
i D 1; : : : ; n, such that

(1) � � � D ˇ1 C ˇ2 C � � � C ˇn, and
(2) � � ˇ1 � � � � � ˇj is dominant for all j D 1; : : : ; n.

Example 5.7. Let G be a semisimple group and g its Lie algebra. If V is
a G-module with a zero weight, then the representation of G on g ˚ V is
not coreduced. This is a special case of a result of PANYUSHEV, see [Pan99,
Theorem 4.5].

Proof. Let T � G be a maximal torus and ˛ a (short) root. Put T˛ WD .ker˛/0.
Then, for a generic x 2 LieT˛ � g we haveGx D CentG T˛ D G˛ �T˛ whereG˛ '
SL2 or ' PSL2, and so the slice representation at x 2 g is Lie.Gx/ ' sl2 C �`�1
where ` D rankG. Now consider the slice representation .S;Gx/ at .x; 0/ 2 g˚V .
Since V has a zero weight all short roots are weights of V (Remark 5.5) and thus the
fixed points ST˛ are of the form .sl2˚W;G˛/ whereW is a nontrivial SL2-module.
Using Example 2.12(2) the claim follows from Theorem 3.7. ut
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If there is a v 2 V T such thatG0
v D T , then we can use Proposition 2.13 to show

that the slice representation at v is not coreduced by giving an indecomposable
relation of the weights of the slice representation which involves coefficients � 2.
We will see that this is a very efficient method to prove non-coreducedness in many
cases.

The lemma below follows from [Ric89, Proposition 3.3]. For completeness we
give a proof.

Lemma 5.8. Let G be a semisimple group and let V be a G-module. Then all the
roots of g are weights of V if and only if there is a zero weight vector v 2 V T whose
isotropy group is a finite extension of the maximal torus T of G.

Proof. Clearly if .Gv/0 D T , then the roots of g are weights of V . Conversely,
assume all the roots appear and let ˛ be a root of g. The weight spaces, with weight
a multiple of ˛, form a submodule of V for the action of the corresponding copy of
SL2. Since ˛ occurs as a weight of V , this module is not the trivial module. Hence
there is a v 2 V T such that x˛.v/ ¤ 0 where x˛ 2 g is a root vector of ˛. Thus the
kernel of x˛ is a proper linear subspace of V T and there is a v 2 V T which is not
annihilated by any x˛ . Then the isotropy subalgebra of v is t. ut
Definition 5.9. We say that a representation V of G has a toral slice if there is a
v 2 V T such that G0

v D T . We say that V has a bad slice if there is a v 2 V T such
that the slice representation at v restricted to G0

v is not coreduced, and that V has a
bad toral slice if, in addition,G0

v D T .

Now Proposition 5.1 can be paraphrased by saying that a representation with a
bad slice is not coreduced.

Example 5.10. Consider the representation .S3k.C3/;SL3/, k � 2. Then the
isotropy group of the zero weight vector is a finite extension of the maximal torus
T of SL3, and the slice representation W of the torus contains the highest weight
2k˛ C kˇ as well as the weights �k˛ and �kˇ. Thus there is the “bad” relation

.2k˛ C kˇ/C 2.�k˛/C .�kˇ/ D 0;
and so V has a bad toral slice.

Example 5.11. The following representations are not coreduced.

(1) G D SL2 �SL2 on .sl2 ˝ sl2/˚ .Ri ˝Rj /, i C j � 1;
(2) G D SL2 �SL2 �SL2 on .sl2 ˝ sl2 ˝ C/˚ .C˝ sl2 ˝ sl2/.

Proof. (1) Let t 2 sl2 be a nonzero diagonal matrix. The stabilizer of

v D t ˝ t 2 sl2 ˝ sl2

is C
� � C

�. If i is odd, then the slice representation contains the weights
.˙2;˙2/ and .˙1; 0/ or .˙1;˙1/, and so we find the bad relations

.2; 2/C .2;�2/C 4.�1; 0/ D 0 or .2; 2/C 2.�1;�1/ D 0:
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The same argument applies if j is odd. If i and j are both even and i > 0, then
the slice representation contains the weights .˙2;˙2/ and .˙2; 0/, and so we
find the bad relation

.2; 2/C .2;�2/C 2.�2; 0/ D 0:

(2) The stabilizer of v D t ˝ t ˝xCx˝ t ˝ t where 0 ¤ x 2 C is C��C� �C�.
The slice representation contains the weights .˙2;˙2; 0/ and .0;˙2; 0/, and
we can proceed as in (1).

ut
Example 5.12. Consider the second fundamental representation of Sp6: '2.C3/ D
V2
0C

6 WD V2
.C6/=Cˇ where ˇ 2V2

.C6/ is the invariant form. It has the isotropy
group Sp2 �Sp4 with slice representation

V2
0C

4C�1. We claim that .2
V2
0C

6;Sp6/
is not coreduced, although it is cofree ([Sch79]). In fact, the slice representation is
.2
V2
0C

4 C C
2 ˝ C

4 C �2;Sp2 �Sp4/. Quotienting by Sp2 we get a hypersurface
F � 3

V2
0C

4 C �3 defined by an Sp4-invariant function. Now the claim follows
from Example 2.7, because .3

V2
0C

4;Sp4/ D .3C5;SO5/ is not coreduced as we
will see in Theorem 9.1(4).

Next we want to show that a representation V is not coreduced if the weights
contain all roots with multiplicity at least 2. This needs some preparation.

Lemma 5.13. Let .V;G/ and .W;H/ be two representations. Let v 2 V and w 2
W be nonzero zero weight vectors with slice representations .NV ˚ �n;Gv/ and
.NW ˚ �m;Hw/ where NGv

V D 0 and NHw
W D 0. Then the slice representation

NV˝W of Gv �Hw at v ˝ w contains

.V ˚.m�1/ ˚NV ;Gv/˚ .W ˚.n�1/ ˚NW ;Hw/

˚ ..g=gv ˚NV /˝ .h=hw ˚NW /;Gv �Hw/:

Proof. The lemma follows from the decomposition .V;Gv/ D .g=gv˚N ˚�n/ and
similarly for .W;Hw/, and the fact that

Tv˝w..G �H/v˝w/ D g.v/˝wCv˝h.w/ � g=gv˝ �mC �n˝h=hw: ut

Corollary 5.14. (1) The two slice representations .NV ;Gv/ and .NW ;Hw/ occur
as subrepresentations of the slice representation at v˝w. In particular, if .V;G/
has a bad slice, then so does .V ˝W;G �H/.

(2) The slice representation at v˝w containsNV ˝NW , g=gv˝h=hw, g=gv˝NW
and NV ˝ h=hw.

(3) If n > 1 (resp. m > 1), then the slice representation contains a copy of W
(resp. V ).
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Remark 5.15. Since Gv and Hw have maximal rank, the isotropy group of v ˝ w
can at most be a finite extension ofGv�Hw. Note also that the corollary generalizes
in an obvious way to a representation of the form

.V1 ˝ V2 ˝ � � � ˝ Vk;G1 �G2 � � � � �Gk/;

where each .Vi ; Gi / is a representation with a zero weight.

Proposition 5.16. Let G D G1 � � � � � Gk be a product of simple groups and
V D V1˝� � �˝Vk a simpleG-module where k > 1. Assume that all roots ofG occur
in V . Then V is coreduced if and only if G is of type A1 � A1 and V D sl2˝ sl2.

Proof. By Lemma 5.8 the product T D T1� � � ��Tk of the maximal tori appears as
the connected component of the isotropy group of an element v1 ˝ � � � ˝ vk 2 V T

where vi is a generic element in V Ti
i . Denote by Wi WD NVi the slice representation

at vi . Then the tensor products Wi1 ˝ � � � ˝ Wim where i1 < � � � < im appear as
subrepresentations of the slice representation at v (see Remark 5.15 above).

First, assume that k > 2. Choose simple roots ˛; ˇ; � ofG1,G2,G3, respectively.
Then

.˛ C ˇ/C .ˇ C �/C .˛ C �/C 2.�˛ � ˇ � �/ D 0

is an indecomposable relation with a coefficient > 1.
Now assume that k D 2 and that rankG1 > 1 and choose two adjacent simple

roots ˛; ˇ of G1 so that ˛ C ˇ is again a root. Let � be a simple root of G2. Then
the relation

.˛ C �/C .˛ � �/C 2.ˇ � �/C 2.�.˛C ˇ/C �/ D 0

is indecomposable, but contains coefficients> 1.
As a consequence,G is of type

A1 � A1;

and V D R2r ˝R2s . Calculating the representation of the maximal torus of A1�A1
at the zero weight vector shows that V is coreduced only for r D s D 1. ut
Proposition 5.17. Let G be a semisimple group and let V be a G-module. Assume
that all roots of G are weights of V with multiplicity at least 2. Then V admits a
bad toral slice.

Proof. Choose a generic element v of the zero weight space V T of V . Then .Gv/0 D
T by Lemma 5.8, and all roots occur in the slice representationW of T at v as well
as the highest weights of V . We will show that there is a bad relation.

If not all simple factors of G are of type A, then there is always a root ˛ which
expressed in terms of simple roots has some coefficient � 2: ˛ D P

i ni˛i where
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f˛1; : : : ; ˛rg is a set of simple roots of g, ni 2 N, and nj > 1 for some j . But then
˛ CPi ni .�˛i / D 0 is a bad relation and thus N is not coreduced.

We may thus assume that G is of type

An1 � An2 � � � � � Ank ;

for n1 � n2 � � � � � nk � 1. Let f˛1; : : : ; ˛ng be a set of simple roots, n WD n1 C
n2C� � �Cnk . We can assume that the highest weights of the irreducible components
of V are all of the form � DPi ni ˛i where ni 2 f0; 1g. It is easy to see that such a
weight is dominant if and only if � is a sum of highest roots. Thus each irreducible
component Vk of V is a tensor product of certain slnj ’s. Now it follows from the
previous proposition that either Vk is isomorphic to slj or isomorphic to sl2 ˝ sl2.
If n1 > 1, then sln1 ˚ sln1 must occur and so V is not coreduced (Example 5.7). The
remaining cases where G is of type A1 � A1 � � � � � A1 follow immediately from
Example 5.11. ut

We finish this section with a criterion for the non-coreducedness of an irreducible
representation of a simple group. We begin with a lemma about weights and
multiplicities. Let U denote a maximal unipotent subgroup of G.

Lemma 5.18. Let �; � be nonzero dominant weights of g.

(1) If there is a weight of V.�/ of multiplicity m, then there are nonzero weights in
V.�C �/ with multiplicity � m.

(2) Suppose that zero is a weight of V.�/. Then the multiplicities of the nonzero
weights of V.�/ are bounded below by the multiplicities of the (short) roots.

Proof. Let v� 2 V.�/; v� 2 V.�/ be highest weight vectors. Recall that the
coordinate ring O.G=U / is a domain and contains every irreducible representation
ofG exactly once. Therefore, the multiplication with v� is injective and sends V.�/
into V.�C �/, i.e., V.�/˝Cv� ,! V.�C �/ as a T -submodule, and we have (1).

For (2), recall that the highest short root is the smallest dominant weight
(Remark 5.5). Looking at root strings (see Remark 5.5 and Lemma 5.6) we see
that the multiplicity of the highest short root has to be at least that of an arbitrary
nonzero weight. ut

The following criterion will be constantly used for the classifications in the
following sections. Let G be a simple group. We use the notation '; ; : : : for
irreducible representations of G and denote by ' the Cartan product of ' and  .

Criterion 5.19. Let '; be irreducible representations of G with a zero weight.
Then ' has a bad toral slice in the following cases.

(i) ' has a bad toral slice.
(ii) ' contains a nonzero weight of multiplicity > 1.

(iii) The zero weight of ' has multiplicity > 1.

Proof. As in the proof above, every nonzero weight vector w 2  defines an
embedding ' ,! ' which shows that ' contains all sums of two (short) roots
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and therefore all roots. Thus ' has a toral slice. In case (i) we choose for w 2  
a weight vector of weight 0 and obtain a T -equivariant embedding ' ,! ' which
shows that ' has a bad toral slice.

In case (ii) the (short) roots occur in ' with multiplicity at least 2. Now let ˛
be a short root. Then 2˛ and ˛ occur in a toral slice representation, and we have the
bad relation .2˛/C 2.�˛/ D 0.

Finally, (iii) implies (ii) by Lemma 5.18(1). ut
Remark 5.20. Let G be of type A, D or E so that all roots have the same length.
If ' D 'i1'i2 � � �'ik is a coreduced representation with a zero weight, then either
k D 1 or all 'ij are multiplicity-free. In all other cases, ' has a bad toral slice.
(If k > 1 and if one of the 'ij has a weight space of multiplicity � 2, then the roots
occur in ' with multiplicity � 2, by Lemma 5.18, and thus ' is not coreduced, by
Proposition 5.17.)

6 Coreduced representations of the exceptional groups

Let G be an exceptional simple group. In this section we classify the coreduced
representations V ofG which contain a zero weight. We know that each irreducible
summand of V is coreduced (Example 2.12(1)). We show that all coreduced repre-
sentations with a zero weight are contained in maximal coreduced representations
all of which we determine. The types En and G2 are easy consequences from what
we have done so far, but the type F4 turns out to be quite involved.

Proposition 6.1. LetG be a simple group of type E and let V be aG-module with a
zero weight. If V is coreduced, then V is the adjoint representation of G. Any other
V with a zero weight has a bad toral slice.

Proof. Since the groups of type E are simply laced, every irreducible representation
' with a zero weight contains all roots and thus has a toral slice. Now it follows
from Lemma 6.2 below that every representation of the form ' ˚ V where V is
nontrivial has a bad toral slice. Hence a coreduced representation with a zero weight
is irreducible.

(a) Let G D E8. One can check with LiE that the fundamental representations
of G, except for the adjoint representation '1.E8/, contain the roots with
multiplicity� 2. Since the zero weight of '1.E8/ has multiplicity� 2, it follows
from Criterion 5.19 that every irreducible representation except for the adjoint
representation has a bad toral slice.

(b) Let G D E7. Of the fundamental representations only '1 D g D AdG,
'3, '4 and '6 are representations of the adjoint group. Using LiE one shows
that every fundamental representation, except for '1 and the 56-dimensional
representation '7, has a nonzero weight of multiplicity at least 6. Hence, by
Remark 5.20, the only other candidates for a coreduced representation besides
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'1 are '2k7 , k � 1. But '27 , contains the roots with multiplicity 5. Thus every
irreducible representation except for the adjoint representation has a bad toral
slice.

(c) Let G D E6. From the fundamental representations only '2 D g and '4
are representations of the adjoint group. By LiE, '3; '4 and '5 have nonzero
weights of multiplicity at least 5, and '21; '1'6 and '26 have nonzero weights of
multiplicities at least 4. Thus all irreducible representations with a zero weight,
except for the adjoint representation '2, have a bad toral slice. ut

Lemma 6.2. Let G be a simple group of type E, V a G-module and T � G a
maximal torus. Then V, considered as a representation of T , is not coreduced.

Proof. We have to show that the weights � D f�i g of V admit a “bad relation,”
i.e., an indecomposable relation

P

i ni�i D 0 where ni � 0 and at least one
nj � 2 (Proposition 2.13). This is clear if � contains the roots, in particular for
all representations of E8.

For E7 we first remark that !1; !3; !4; !6 are in the root lattice and !7 � !2; !5
in the usual partial order. This implies that for every dominant weight � we have
either !1 � � or !7 � �. Thus the weights of V either contain the roots or the Weyl
orbit of !7. Using LiE one calculates the Weyl orbit of !7 and shows that there is a
“bad relation” among these weights.

Similarly, for E6 one shows that for a dominant weight � not in the root lattice,
one has either !1 � � or !6 � �. Then, using LiE, one calculates the Weyl orbit of
!1 and shows that there is a “bad relation” among these weights. Since !6 is dual to
!1 its weights also have a “bad relation.” ut

We prepare to consider F4. The following result will be used several times in
connection with slice representations at zero weight vectors.

Lemma 6.3. Let G be semisimple and let V be a G-module where V G D 0. Let
H � G be a maximal connected reductive subgroup which fixes a nonzero point
v 2 V . Then Gv � V is closed with stabilizer a finite extension ofH .

Proof. Since H is maximal, NG.H/=H is finite so that Gv is closed [Lun75].
Similarly, Gv can only be a finite extension of H . ut

For the maximal subgroups of the simple Lie groups see the works of Dynkin
[Dyn52b, Dyn52a].

Example 6.4. Let V D '2.Cn/, n � 3. Then H WD C1 � Cn�1 is a maximal
subgroup of Cn where .'1.Cn/;C1 � Cn�1/ D '1.C1/˚ '1.Cn�1/. Now H fixes a
line in V . Thus a finite extension ofH (actuallyH itself) is the stabilizer of a closed
orbit, and one easily sees that the slice representation is �1C'2.Cn�1/. By induction
one sees that the principal isotropy group of '2.Cn/ is a product of n copies of SL2.

Example 6.5. Let G D F4 which is an adjoint group. Now '1 D g and '4 is
the irreducible 26-dimensional representation whose nonzero weights are the short
roots. The representations'2 and '3 contain the roots with multiplicities at least two.
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Moreover, '21 ; '1'4 and '24 contain the roots with multiplicities at least 3. Hence
every irreducible representation of G except for '1 and '4 has a bad toral slice.

Proposition 6.6. The representations '1.F4/ and 2'4.F4/ are the maximal core-
duced representations of F4. Moreover, the representation 2'4.F4/ contains a dense
orbit in the null cone.

Proof. The sum '1 C '4 is not coreduced because the slice representation of the
maximal torus is not coreduced (the nonzero weights are the short roots and these
contain a bad relation). This leaves us to consider copies of '4. We know that 2'4
is cofree ([Sch79]). So it suffices to show that 3'4 is not coreduced and that 2'4
contains a dense orbit in the null cone. For both statements we use some heavy
calculations which are given in Appendix A, see Proposition A.1. ut
Example 6.7. Let G D G2 which is an adjoint group. The fundamental represen-
tation '1 of dimension 7 and '2 (adjoint representation) are the only coreduced
irreducible representations. This follows from Criterion 5.19, because '21 contains a
nonzero weight of multiplicity � 2.

Proposition 6.8. Let G D G2. Then 2'1 and the adjoint representation '2 are the
maximal coreduced representations of G.

Proof. See [Sch88] for the invariant theory of G2. The invariants of 2'1 are just
the SO7-invariants, so this representation is coreduced (see Theorem 9.1(4)). Now
V3
.'1/ contains a copy of '1, and it is easy to see that the corresponding covariant

vanishes on the null cone of 3'1. In fact, this holds for any covariant of type '1 of
degree � 3. Since the covariant is alternating of degree 3, it cannot be in the ideal
of the quadratic invariants. More precisely, we have S2.'1 ˝ C

3/G D �1 ˝ S2C3,
and so in S3.'1 ˝ C

3/ we have

S2.'1 ˝ C
3/G � .'1 ˝ C

3/ D '1 ˝ .S2C3 � C3/;

and this space does not contain '1 ˝V3
C
3. Thus 3'1 is not coreduced.

To see that '1 C '2 is not coreduced we choose a nontrivial zero weight vector
in '2 D g which is annihilated by a short root ˛. Then the isotropy group has rank 2
and semisimple rank 1, and the slice representation contains two copies of .R2;A1/,
hence is not coreduced (Theorem 3.7). ut

Let us summarize our results.

Theorem 6.9. The following are the maximal coreduced representations of the
exceptional groups containing a zero weight.

(1) For En: the adjoint representations '2.E6/; '1.E7/; '1.E8/.
(2) For F4: Ad F4 D '1.F4/ and 2'4.F4/.
(3) For G2: Ad G2 D '2.G2/ and 2'1.G2/.
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Remark 6.10. The proofs above and in Appendix A show that if an irreducible
representation .V;G/ of an adjoint exceptional group G is not coreduced, then V
has a bad slice.

7 Coreduced representations of the classical groups

In this section we classify the coreduced representations V of the simple adjoint
groups of classical type. If G is adjoint and simply laced, i.e., of type A or D, then a
reducible representationV is not coreduced by Proposition 5.17, and so the maximal
coreduced representations are all irreducible. We will see that this is also true for G
of type Cn, n � 3, but not for type Bn.

The case of SL2 has been settled in Theorem 3.7 even without assuming that the
center acts trivially. So we may assume that the rank of G is at least 2.

Theorem 7.1. Let G be a simple classical group of rank at least 2. Then,
up to automorphisms, the following representations are the maximal coreduced
representations of G=Z.G/.

(1) G D An, n � 2: Ad An D '1'n, '22.A3/, '
3
1.A2/;

(2) G D Bn, n � 2: Ad Bn D '2.Bn/ .'22 if n=2/, '21.Bn/, n'1.Bn/;
(3) G D Cn, n � 3: Ad Cn D '21.Cn/, '2.Cn/, '4.C4/;
(4) G D Dn, n � 4: Ad Dn D '2.Dn/, '21.Dn/.

In Section 4 we showed that every irreducible cofree representation of a simple
group is coreduced. Looking at the list above and the one in Theorem 6.9 we see
that we have the following partial converse.

Corollary 7.2. Let G be a simple adjoint group and V an irreducible representa-
tion of G. Then V is coreduced if and only if V is cofree.

We start with type An, n � 2. Recall that 'p WD Vp
C
nC1, p D 1; : : : ; n.

Lemma 7.3. Consider the representations 'p and 'q of SLnC1 where 1 � p � q �
n and n � 2. Then there is a nonzero weight of 'p'q of multiplicity � 2 except in
the cases

(1) '21 or '2n,
(2) '1'n,
(3) '22.SL4/,

where the zero weight has multiplicity greater than one in (2) and (3).

Proof. It is easy to calculate that the weight 2"1 C � � � C 2"p�1 C "p C � � � C "qC1
occurs in 'p ˝ 'q with multiplicity q � p C 2 and that it occurs in 'p�1 ˝ 'qC1
once. Since 'p ˝ 'q D 'p'q C 'p�1 ˝ 'qC1 we see that our weight occurs with
multiplicity q � p C 1 in 'p'q . This gives us a nonzero weight of multiplicity at
least two, except in the following two cases:
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(1) '1'n where the above weight is the zero weight, and
(2) '2p where 1 � p � n.

However, in the second case, we can suppose, by duality, that 2p � n C 1. If
2p � n, then one sees as above that "1 C � � � C "2p occurs with multiplicity 1

p

�

2p
p�1
�

which is at least 2 as long as p > 1. If 2p D n C 1, then one computes that
"1 � "2 D 2"1C "3 C � � � C "2p occurs with multiplicity 1

p�1
�

2p�2
p�2

�

which is � 2 as

long as p > 2. Thus the only possibilities are '21 and '22.SL4/. ut
The next lemma was proved by STEMBRIDGE. We give a slightly different

version of his proof.

Lemma 7.4. Let ' be an irreducible representation of PSLnC1, n � 2. Then the
roots ofG occur with multiplicity at least two in ', except in the following cases.

(1) The adjoint representation '1'n;
(2) 'k.nC1/1 .SLnC1/ or its dual, k D 1; 2; : : :;
(3) '22.SL4/ D '21.D3/.

Proof. The representation ' has highest weight � DP

i �i!i where the !i are the
fundamental dominant weights and

P

i i�i is a multiple of n. Now, Lemma 5.18
together with Lemma 7.3 above implies that the only irreducible representations of
PSLnC1 containing the roots with multiplicity one are those listed. ut
Proposition 7.5. Let n � 2. The nontrivial irreducible coreduced representations
of PSLnC1 are the adjoint representation '1'n, '22.SL4/, '31.SL3/ and '32.SL3/. All
other irreducible representations admit a bad toral slice.

Proof. By Proposition 5.17 we know that the only candidates for coreduced irre-
ducible representations of PSLn are those listed in Lemma 7.4 above. So it remains
to show that Skm.Cm/ is not coreduced form > 3 and form D 3; k > 2. Form � 4
the slice representation at a generic fixed point of the maximal torus T contains
the weights ˇi WD km"i and the weight ˛ WD �k.2"1 C 2"2 C "3 C � � � C "m�2/
of the monomial .x3 � � �xm�2x2m�1x2m/k which satisfy the indecomposable relation
m˛ C 2ˇ1 C 2ˇ2 C ˇ3 C � � � C ˇm�2 D 0, and so the slice representation is not
coreduced.

For m D 3 and k > 1 we have the weights ˇi WD 3k"i and the weight
˛ WD �3.k � 1/"1 � 3.k � 2/"2 of the monomial x32x

3.k�1/
3 which satisfy the

indecomposable relation k˛C .k � 1/ˇ1C .k � 2/ˇ2 D 0. Again it follows that the
slice representation is not coreduced. ut

Now we look at type Bn.

Proposition 7.6. LetG D SO2nC1 be the adjoint group of type Bn, n � 2. Then the
only nontrivial irreducible coreduced representations are the adjoint representation
'2, the standard representation '1 and '21 . All other irreducible representations
admit a bad toral slice.

The representations '2 and '21 are maximal coreduced, whereas k'1 is coreduced
if and only if k � n.
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Proof. The highest weights of irreducible representations of G are just sums of the
highest weights !1; : : : ; !n�1; 2!n of the representations W` WD V`

.C2nC1/ for
1 � ` � n. For ` D 2m C 1 or 2m, m � 2, one can compute that the weights
of W` contain the roots of G with multiplicity

�

n�2
m�1

�

which is at least 2. Thus W`

admits a non-coreduced slice representation of a maximal torus and is therefore not
coreduced for ` � 4. For ` D 3, hence n � 3, we have the weights ˙"i ˙ "j ˙ "k
where 1 � i < j < k � n as well as the weights ˙"i , 1 � i � n where the latter
have multiplicity � 2. Now the relation

."1 C "2 C "3/C .�"1 C "2 C "3/C 2.�"2/C 2.�"3/ D 0 (1)

is indecomposable and so the slice representation of the maximal torus is not
coreduced.

Now let V be an irreducible representation of G with highest weight � D
P

i mi!i . Ifmi > 0 for some i � 3 then, by Criterion 5.19, V has a non-coreduced
slice representation of a maximal torus, and thus is not coreduced.

Hence we are left with � D r!1 C s!2 where s is even in case n D 2. Let us
first assume that n > 2. Since '22 contains the roots with multiplicity � dimW T

2 D
n � 3 and since the weights of '1'2 contain the indecomposable weight relation
.2"1C"2/C2.�"1/C.�"2/ D 0 and the short roots occur with multiplicity> 1, we
are reduced to the highest weights r!1. If r � 3, we have the roots and the weights
3"1 and �2"1 which lead one to see that the slice representation is not coreduced.

The arguments in the case n D 2 are the same (one has to replace '2 by '22
everywhere).

Finally, we have to look at direct sums of '1, '2 and '21 . We will see in
Theorem 9.1(2) that k'1 is coreduced if and only if k � n. Since '2 and '21 contain
all roots it remains to show that '21 C '1 and '2 C '1 are not coreduced. First,
consider '21 , n � 4. The subgroup SO3 �SO2n�2 is maximal in SO2nC1, it has
rank n and has slice representation '41.A1/ ˚ '21.Dn�1/ C �1. If we add a copy of
'1.Bn/, then we have a subrepresentation .'41 C '21;A1/ which is not coreduced.
The details work out similarly for n D 2 and n D 3. We are left with AdG C '1.
The slice representation of the group SO3 �.SO2/

n�1 contains two copies of the
standard representation of SO3 on C

3 which is not coreduced (Theorem 3.7). Hence
AdG C '1 is not coreduced. ut

For type Dn we get the following result. Recall that only irreducible representa-
tions of PSO2n can be coreduced (Proposition 5.17).

Proposition 7.7. Let G D PSO2n be the adjoint group of type Dn, n � 4. Then
the only nontrivial coreduced representations are the adjoint representation '2,
'21 , '23.D4/ and '24.D4/, and these are maximal coreduced. All other irreducible
representations admit a bad toral slice.

Proof. The highest weights of representations of SO2n are just sums of the highest
weights!1; : : : ; !n�2; !n�1C!n of the representationsW` WD V`

.C2n/ for 1 � ` �
n�1 and twice the highest weights!n�1 and !n of the two half-spin representations.
Moreover, '2n�1 ˚ '2n ' Wn WD Vn

.C2n/.
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The representations W2m for m > 1 contain the roots of G with multiplicity
�

n�2
m�1

� � 2. The representations Wk for k odd, k > 1, have no zero weights, but
they contain the weights of '1 with multiplicity greater than one. Hence the Cartan
productsWkW` for k; ` � n � 1 odd, k C ` � 4, contain the adjoint representation
more than once, so that the representations are not coreduced. We already know that
'21 is coreduced and by Criterion 5.19 no power '2k1 is coreduced for k � 2.

It remains to consider those representations ' of PSO2n that are Cartan products
with '2n�1 or '2n. If n � 6 is even, then both contain the roots at least three times,
hence ' is not coreduced. If n D 4, then '23 and '24 are outer isomorphic to '21 which
is coreduced. If ' is not exactly one of these representations, then it is not coreduced
by Criterion 5.19. If n is odd, then '2n�1 and '2n both contain the weights of W1 at
least three times, and so ' contains the roots with multiplicity at least 3 and is not
coreduced. ut

For type Cn we will use the following lemma.

Lemma 7.8. Let H1; : : : ;H4 be copies of SL2 and let Vi ' C
2 have the standard

action of Hi . Let H D Q

i Hi and V D L

i<j Vij where Vij D Vi ˝ Vj . Then
.V;H/ is not coreduced.

Proof. Consider the subrepresentation V 0 WD V12 ˚ V14 ˚ V23 ˚ V34 ˚ V24.
We have the quotient mapping (by H1) from V12 ˚ V14 to V 024 ˚ �2 where V 024 is
another copy of V24. The image is a hypersurface F defined by an equation saying
that the invariant of .V 024;H2 �H4/ is the product of the coordinate functions on �2.
By Lemmas 2.6 and 2.8 (see Examples 2.7 and 2.9) the representation V 024 ˚ V23 ˚
V34˚V24˚�2 ofH2�H3�H4 is coreduced if V 0 is coreduced. Quotienting by the
action ofH3, we similarly obtain a representation .V 024˚V 0024˚V24˚�4;H2�H4/ '
.3C4˚ �4;SO4/ which is not coreduced (Example 3.4). Hence .V 0;H/ and .V;H/
are not coreduced. ut

The fundamental representations 'i of Cn are given by '1 D C
2n, '2 D

V2
C
2n=Cˇ, and 'i D Vi

C
2n=ˇ ^Vi�2

C
2n for i D 3; : : : ; n where ˇ 2 V2

C
2n

is the invariant form. They can be realized as the irreducible subspaces
Vi
0.C

2n/ �
Vi
.C2n/ of highest weight !i WD "1C� � �C"i . The generators of the representations

of the adjoint group G D PSp2n are the 'i for i even and the 'i'j for i and j odd.

Proposition 7.9. Let G D PSp2n be the adjoint group of type Cn, n � 3. Then the
nontrivial irreducible coreduced representations ofG are the adjoint representation
'21 , '2 and '4.C4/, and these are all maximal. Moreover, all other irreducible
representations admit a bad slice.

Proof. (a) First consider the case of 'i'j where i and j are odd. We may suppose
that j � 3. Then 'j contains the weight "1 C "2 C "3 (it is a dominant weight
which is the highest weight of 'j minus a sum of positive roots). By the action
of the Weyl group we have all the weights ˙"1 ˙ "2 ˙ "3. In 'i (and 'j ) we
similarly have all the weights˙"k. Thus 'i'j contains the roots 2"1 and "1�"2,
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hence all the roots. Moreover, we have the following indecomposable relation
of weights in 'i'j (none of which are roots):

.2"1 C "2 C "3/C .2"1 � "2 � "3/
C 2.�"1 C 2"2 C "3/C 2.�"1 � 2"2 � "3/ D 0: (2)

Hence 'i'j has a bad toral slice and is therefore not coreduced. The same holds
for every Cartan product of 'i'j with any other representation of G.

Now '41 is a representation of G, but since '21 contains the trivial representa-
tion n times, '41 contains the adjoint representation at least n times, hence has a
bad toral slice and is not coreduced. Therefore, the adjoint representation '21 is
the only coreduced irreducible representation ' D 'i1'i2 � � �'im of G where at
least one ik is odd.

(b) Now we consider representations '2i , 2i � n. These representations, one can
show as above, contain the short roots of G. But the long roots do not occur.
Hence the connected component of the isotropy group at a generic zero weight
vector is covered by a product H WD Qn

jD1 Hj , where each Hj is the copy of
SL2 in G corresponding to the positive long root 2"j . If n � 5 and 2i � 4, then
the slice representation contains the subrepresentation

M

1�j<k�n
Vjk where Vjk WD .C2 ˝ C

2;Hj �Hk/;

which is not coreduced (Lemma 7.8). Finally, one easily sees that any product
'2i'2j contains all the roots as well as the zero sum of weights given above
in equation (2). This includes the case where a factor is '2 or '4. Hence the
irreducible coreduced representations of G are as claimed.

(c) It remains to show that the coreduced representations of G are all irreducible.
As seen above, the connected component of the isotropy group at a generic
zero weight vector of '2 is covered by a product H WD Qn

jD1 Hj , where
each Hj is the copy of SL2 in G corresponding to the positive long root 2"j .
If we add another copy of '2 or the adjoint representation '21 , then the slice
representation contains

L

1�j<k�n Vjk where Vjk WD .C2 ˝ C
2;Hj � Hk/,

which is not coreduced for n � 4. The same holds if n D 4 and we add
a copy of '4.C4/. This proves the claim for n � 4, because '21 and '4.C4/

contain all roots. For '2.C3/ C '21.C3/ we have the slice representation of
H D H1 � H2 � H3 on V12 ˚ V13 ˚ V23 ˚ h1 ˚ h2 ˚ h3 ˚ �2 where the
Hi are copies of SL2 and the Vij are as above. Consider the subrepresentation
.V 0;H1�H2/ WD .V12˚h1˚h2;H1�H2/. The principal isotropy group of h1 is
C
��H2 where C� acts on V12 with weights˙1. Let h02 denote a second copy of

h2. Then the quotient of V12 by C
� is a quadratic hypersurface in h02C �1 which

equates the quadratic invariant of h02 and the square of the coordinate function
on �1. Thus, as in Lemma 7.8, the fact that the representation .h2Ch02C�1;H2/

is not coreduced (Example 5.12) implies that V 0 is not coreduced, hence neither
is '2.C3/ C '21.C3/. Finally, 2'2.C3/ is not coreduced as we have seen in
Example 5.12. ut
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Remark 7.10. The proofs above show that if an irreducible representation .V;G/
of an adjoint classical group G is not coreduced, then V has a bad slice. We have
already seen in the previous section that the same holds for the exceptional groups
(Remark 6.10).

8 Irreducible coreduced representations of semisimple groups

In this section we classify the irreducible coreduced representations of adjoint
semisimple groups.

Example 8.1. The representation .C2nC1 ˝ C
2mC1;SO2nC1 �SO2mC1/ is the

isotropy representation of a symmetric space. (Consider the automorphism � of

SO2.nCmC1/ given by conjugation with
h

Id2nC1 � Id2mC1

i

.) It now follows from

[KR71, Theorem 14, p. 758] that this representation is coreduced for all n;m � 1.
Of course, this is also an example of a �-representation, hence coreduced by
Corollary 4.8.

Example 8.2. The representation .V;G � H/ D .C3 ˝ '1.G2/;SO3 �G2/ is
coreduced. In fact, .V;H/ is cofree and the quotient V==H is the SO3-module
'41 ˚ �2 which is cofree and coreduced. Hence .V;G �H/ is cofree too. Now the
proper nontrivial slice representations of .3'1;G2/ are .2C3 C 2.C3/� C �3;SL3/
(coreduced by Theorem 9.1) and .2C2 C �6;SL2/ (coreduced by Theorem 3.7).
Thus every fiber of 
WV ! V==H is reduced, except for the zero fiber, which has
codimension 7. Thus the null cone of .V;G � H/, which has codimension 4, is
reduced off of a subset of V of codimension 7, hence .V;G �H/ is coreduced.

Surprisingly, these two examples are the only irreducible coreduced representa-
tions besides those where G is simple.

Theorem 8.3. The coreduced irreducible representations of a semisimple non-
simple adjoint group are

.'1.Bn/˝ '1.Bm/;Bn � Bm/ and .'21.A1/˝ '1.G2/;A1 �G2/:

The proof needs some preparation. We first construct a list of non-coreduced
representations which will help to rule out most candidates.

Example 8.4. Let .V;G/ D .Cn ˝ C
m C C

n;SOn �SOm/ where m; n � 2. We
show that V is not coreduced. There are three cases. Recall that

.S2.Cn/˚C
n;SOn/

is not coreduced even for n D 2.
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(1) n < m. Quotienting by the action of SOm we obtain S2.Cn/˚ C
n which is not

coreduced, hence neither is V (Example 2.9).
(2) n D m. By Example 2.10 the representation V is not coreduced since

quotienting by Om we obtain the non-coreduced representation S2.Cn/˚ C
n.

(3) n > m. We have at most n copies of Cn, so by Example 2.10 we may quotient
by the action of On to arrive at the representation

S2.Cm/˚ C
m

which is not coreduced. Hence V is not coreduced.

We have seen in Corollary 5.14 that for two representations .V;G/ and .W;H/
with a zero weight, if .V;G/ has a bad slice, then so does .V ˝W;G�H/. Together
with Remarks 6.10 and 7.10 this implies that we need only consider tensor products
of the irreducible coreduced representations .V;G/ of the simple adjoint groups.
They fall into five types.

(1) .V;G/ D '21.A1/ D .C3;SO3/.
(2) .V;G/ D '41.A1/ or there is a slice representation .W;H/ where H0 D T is a

maximal torus of G (of rank at least 2) and W contains weight spaces of roots
˛, ˇ and �.˛ C ˇ/ or W contains �2 and weight spaces˙˛.

(3) .V;G/ D '1.Bn/, n � 2.
(4) .V;G/ D '1.G2/.
(5) .V;G/ D '4.F4/, '4.C4/, or '2.Cn/, n � 3.

Note that the representations '21.Dn/, n � 3 and '21.Bn/, n � 2, are of type (2) as
is the representation '31.A2/. We consider tensor products of the various types of
representations.

Lemma 8.5. Let .V1;G1/ be of type (2) and let .V2;G2/ be of arbitrary type. Then
.V1 ˝ V2;G1 �G2/ has a bad slice.

Proof. We leave the case that .V1;G1/ or .V2;G2/ is '41.A1/ to the reader. It will be
clear from our techniques what to do in this case. Let T1 be a maximal torus of G1
fixing v1. First, assume that the weights of the slice representation at v1 contain roots
˛, ˇ and �˛ � ˇ. Let T2 be a maximal torus of G2. Suppose first that .V2;G2/ D
.C3;SO3/, Let v2 2 V2 be a zero weight vector and let � be a nonzero weight
of .V2; T2/. Then by Corollary 5.14 the slice representation of T1 � T2 at v1 ˝ v2
contains the weights

�� C ˛; � C ˇ; � � ˛ � ˇ; and � � � ˛ � ˇ:

We have the minimal zero sum

2.�� C ˛/C 2.� C ˇ/C .� � ˛ � ˇ/C .�� � ˛ � ˇ/ D 0;
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hence the slice representation of T1 � T2 is not coreduced. The same argument
works in case .V2;G2/ is of type (2). Now suppose that .V2;G2/ D '1.Bn/,
n � 2. Then we have a slice representation of SO2n �T1 containing the irreducible
componentsC2n˝C˛ , C2n˝Cˇ and C

2n˝C�˛�ˇ . Quotienting by SO2n we obtain
a representation of T1 with weights

2˛; 2ˇ; ˛ C ˇ; �˛; �ˇ and � 2˛ � 2ˇ:
Hence the slice representation is not coreduced. The same argument works in case
.V2;G2/ is of type (5). For type (4) we get a slice representation of SL3 �T1
containing

C
3 ˝ C˛; C

3 ˝ Cˇ; .C
3/� ˝ C�˛�ˇ; and .C3/� ˝C˛;

and quotienting by SL3 we obtain a T1-representation with weights�ˇ, �˛, 2˛ and
˛ C ˇ. Hence we have a non-coreduced slice representation.

Finally, assume that the slice representation at v1 contains �2 and weights ˙˛
and that .V2;G2/ is of arbitrary type. Let ˙� be nonzero weights of V2. Because of
the �2, the slice representation at v1˝v2 contains the weights of V2 (Corollary 5.14).
Hence we have weights˙˛ ˙ � and˙� . and the minimal bad relation

.˛ C �/C .�˛ C �/� 2.�/ D 0:
Thus .V1 ˝ V2;G1 �G2/ is not coreduced. ut

We are left with type (1) and types (3–5).

Lemma 8.6. Suppose that .V1;G1/ is of type (1) or (3) or (5) and that .V2;G2/ is
of type (5). Then .V1 ˝ V2;G1 �G2/ has a bad slice.

Proof. First assume that .V1;G1/ is '1.Bn/, n � 1 (type (1) or type (3)). If .V2;G2/
is '4.F4/, then there is a (principal) slice representation of D4 on �2 where
.'4.F4/;D4/ D .'1 C '3 C '4 C �2/ while .V1;G1/ has a slice representation
of SO2n on �1 where .V1;SO2n/ D .C2n C �1;SO2n/. By Corollary 5.14 there is
a subrepresentation of a slice representation of .V1 ˝ V2;G1 � G2/ which is of
the form .C2n ˝ C

8 ˚ C
2n;SO2n �SO8/. It follows from Example 8.4 that the

slice representation is not coreduced.
If .V2;G2/ is '2.Cm/, m � 4, then there is a slice representation .W;H/ D

.�2 C '2;SL2 �SL2 �Cm�2/ where .'2.Cm/;H/ contains

.C2 ˝ C
2;SL2 �SL2/ ' .C4;SO4/:

There is a non-coreduced subrepresentation of the slice representation of
.V1 ˝ V2;G1 �G2/ of the form .C2n ˝ C

4 ˚ C
2n;SO2n �SO4/. The case of

'2.C3/ is only notationally different and the case of '4.C4/ is similar. Finally, if
.V1;G1/ is of type (5), then the same techniques produce a non-coreduced slice
representation at a zero weight vector. ut

We leave the proof of the following to the reader.
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Lemma 8.7. A tensor product .V1 ˝ V2;G1 � G2/ has a bad slice if .V1;G1/ is
'1.G2/ (type (4)) and .V2;G2/ is of type (5).

We are now left with the problem of tensor products of representations of types
(1), (3) and (4). First, we handle types (1) and (3).

Proposition 8.8. Let 3 � 2k C 1 � 2mC 1 � 2nC 1 and

.V;G/ D .C2nC1 ˝ C
2mC1 ˝ C

2kC1;SO2nC1 �SO2mC1 �SO2kC1/:

Then the slice representation at the zero weight vector is not coreduced.

Proof. The slice representation at the zero weight vector is

.W;H/ D .C2n ˝ C
2m ˝ C

2k C C
2n ˝ C

2m

C C
2m ˝ C

2k C C
2n ˝ C

2k;SO2n �SO2m �SO2k/:

If k > 1, consider the subrepresentation C
2m ˝ C

2k ˚ C
2n ˝ C

2k . Quotienting by
SO2m �SO2n we get .2S2.C2k/;SO2k/ which is not coreduced. Using Example 2.9
we see that .V;G/ is not coreduced.

Now assume that k D 1 but m > 1. We have a subrepresentation

C
2n ˝ C

2m ˚ C
2m ˝ C� ˚C

2m ˝ C��;

where the C˙� are irreducible representations of SO2k ' C
� of weight ˙1.

Quotienting by O2n we obtain the representation

.S2.C2m/˚ C
2m ˝ C� ˚C

2m ˝ C��;SO2m �SO2/:

Let ˙"1; : : : ;˙"m be the weights of C2m for the action of the maximal torus T of
SO2m. Then the slice representation of S2.C2m/ at a generic zero weight vector is,
up to trivial factors, the sum of the C˙2"i . Hence we have a slice representation of
T � SO2 containing

C�2"1 ˚ C�2"2 ˚ .C"1 ˝C�/˚ .C"2 ˝ C��/:

This last representation is not coreduced.
Now assume that n � m D k D 1. We rename the weight "1 of SO2m D SO2 to

be just ". Then we have the subrepresentation

.C2n ˝ C"/˚ .C2n ˝C�/˚ .C�" ˝ C��/:

Quotienting by O2n we get a representation

C2" ˚ C2� ˚ .C" ˝ C�/˚ .C�" ˝ C��/

of C� � C
� which is not coreduced. ut
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Proposition 8.9. Let .V;G/ D .C2nC1 ˝ C
7;SO2nC1 �G2/, n � 2, or

.C3 ˝ C
3 ˝ C

7;SO3 �SO3 �G2/:

Then .V;G/ has a bad slice.

Proof. We leave the latter case to the reader. In the former case we have the slice
representation (minus the trivial factor)

.W;H/ D .C2n ˝ .C3 ˚ .C3/�/;SO2n �SL3/:

If n � 3, then quotienting by O2n we obtain the representation

.S2.C3/˚ S2.C3�/˚ C
3 ˝ C

3�;SL3/

which is not coreduced.
We are left with the case .W;H/ D .C4 ˝ .C3 ˚ C

3�/;SO4 �SL3/. Consider
a 1-parameter subgroup � of SO4 �SL3 whose action on C

4 has weights ˙1 and
on C

3 has weights 2; 0;�2. Then Z�, the span of the positive weight vectors, has
dimension 12 (which is not surprising since .W;H/ is self-dual of dimension 24).
Note that Z� is in the null cone and is stable under a Borel subgroup B of H . Now
one can show that the dimension of U�Z� is 17 D 12 C dimU�, the maximal
possible, where U� is the maximal unipotent subgroup of H opposite B . Hence
HZ� is a component of the null cone (see section 10 for more details).

The positive weights of � on W are 1 and 3 and the negative weights are �1
and �3. This implies that the differential of an invariant of degree > 4 vanishes on
Z�, hence on HZ� . But we have only 4 generating invariants in degree at most 4,
and so the null cone is not reduced alongHZ� , because codimHZ� D 7. ut

We are left with the case G2 �G2 acting on C
7 ˝ C

7.

Proposition 8.10. The representation .C7 ˝ C
7;G2 �G2/ is not coreduced.

We have two proofs of this, and both need some computations. They are given
in Appendix B.

9 Classical invariants

Classical Invariant Theory describes the invariants of copies of the standard
representations of the classical groups, e.g., the GL.V /- or SL.V /-invariants of
mV ˚ nV � or the Sp.V /-invariants of mV where mV WD V ˚m denotes the direct
sum of m copies of V . In this context we will prove the following theorem.

Theorem 9.1. (1) The representation .pV ˚ qV �;GL.V // is coreduced for all
p; q � 0. The null cone is irreducible if and only if p C q � n.
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(2) The representation .pV ˚ qV �;SL.V // is coreduced for all p; q � 0. The null
cone is irreducible in the following cases: p C q � n or .p; q/ D .n; 1/ or
.p; q/ D .1; n/.

(3) The representations .mV;Sp.V // are coreduced for all m � 0, and the null
cone is irreducible and normal.

(4) The representations .mV;O.V //, .mV;SO.V // are coreduced if and only if
2m � dimV . The null cone is irreducible and normal for 2m < dimV .

The basic reference for this section is [Sch87]. Denote by Tm, Bm and Um the
subgroups of GLm consisting of diagonal, upper triangular, and upper triangular
unipotent matrices. If � is a dominant weight, i.e., � D Pm

iD1 �i "i 2 X.Tn/ D
Lm

iD1 Z"i and �1 � �2 � � � � � �m, we denote by  � or  �.m/ the corresponding
irreducible representation of GLm. In the following, we will only deal with
polynomial representations of GLm, so that �i � 0 for all i . Set j�j WD P

�i and
define the height of a dominant weight by ht.�/ WD maxfi j �i > 0g.

The famous CAUCHY formula describes the decomposition of the symmetric
powers of a tensor product where we consider  �.m/˝  �.k/ as a representation
of GLm �GLk (see [Sch87, (1.9) Theorem]).

Proposition 9.2.

Sd .Cm ˝ C
k/ D

M

j�jDd; ht.�/�minfm;kg
 �.m/˝  �.k/:

If � is a dominant weight of height r , then  �.m/ makes sense for any m � r .
In fact,  � is a functor and  �.V / is a well-defined GL.V /-module for every vector
space V of dimension � r . In particular, if �WG ! GL.V / is a representation of a
reductive group G, then all  �.V / for ht.�/ � dimV are representations of G as
well. From the CAUCHY formula we thus get

O.mV /d D Sd .Cm ˝ V �/ D
M

j�jDd; ht.�/�min.m;dimV /

 �.m/˝  �.V �/

as a representation of GLm �G. Taking Um-invariants we find

O.mV /Umd D Sd .Cm ˝ V �/Um D
M

j�jDd; ht.�/�min.m;dimV /

 �.V
�/; (�)

where the torus Tm � GLm acts on  �.V �/ with weight �. Thus the algebra
O.mV /Um is Z

m-graded, and the homogeneous component of weight � is the
G-module  �.V

�/. In particular, O.mV /Um is multiplicity-free as a GL.V /-
module. It follows that the product  �.V �/ �  �.V �/ in O.mV / is equal to
 �C�.V �/. This leads to the following definition.

Definition 9.3. LetG be a connected reductive group and letA be aG-algebra, i.e.,
a commutative C-algebra with a locally finite and rational action of G by algebra
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automorphisms. Two simple submodules U; V � A are called orthogonal if the
product U � V � A is either zero or simple and isomorphic to the Cartan (highest
weight) component of U ˝ V .

The result above can therefore be expressed by saying that all irreducible
GL.V /-submodules of O.mV /Um are orthogonal to each other. The following
crucial result is due to BRION [Bri85, Lemme 4.1].

Proposition 9.4. Let A be a G-algebra and let V1; V2;W � A be simple
submodules. Assume that V1; V2 are both orthogonal to W . Then any simple factor
of V1 � V2 is orthogonal to W .

We will also need the following result about U -invariants (see [Kra84, III.3.3]).

Proposition 9.5. Let G be a connected reductive group, U � G a maximal
unipotent subgroup, and let A be a finitely generatedG-algebra. Then A is reduced,
resp. a domain, resp. normal if and only if AU is reduced, resp. a domain, resp.
normal.

Another consequence of formula .�/ is that O.mV /Um D O.nV /Un for all m �
n D dimV .

We start with the groups GL.V / and SL.V / acting on W WD pV ˚ qV �. It is
known that the GL.V /-invariants are generated by the bilinear forms

fij W .v1; : : : ; vp; 	1; : : : ; 	q/ 7! 	j .vi /:

If V �i is the i th copy of V � in W � � O.W / and Vj the j th copy of V , then
V �i � Vj D sl.V / ˚ Cfij in O.W /, and so V �i and Vj are orthogonal in O.W /=I
where I is the ideal generated by the invariants fij . It follows from Proposition 9.4
above that all simple submodules of O.pV / are orthogonal to all simple submodules
in O.qV �/ modulo I . Thus the GL.V /-homomorphism

O.pV /Up ˝O.qV �/Uq ! .O.pV ˚ qV �/=I /Up�Uq

is surjective, and the same holds if we take invariants under U WD Up �UV �Uq �
GLp �GL.V / � GLq where UV � GL.V / is a maximal unipotent subgroup. This
also shows that the .Up � Uq/-invariants do not change once p � n or q � n, so
that we can assume that p; q � n.

Now we have O.pV /U D CŒx1; : : : ; xp� where xi 2 Vi
V � is a highest

weight vector. Similarly, O.qV �/U D CŒy1; : : : ; yq�, and thus we get a surjective
homomorphism

'WCŒx1; : : : ; xp; y1; : : : ; yq�! .O.pV ˚ qV �/=I /U : (��)

Proof (of both Theorem 9.1(1) and (2)). We claim that the kernel of ' is generated
by the products xrys where r C s > n. This implies that we have an isomorphism

.O.pV ˚ qV �/=I /U ' CŒx1; : : : ; xp; y1; : : : ; yq�=.xiyj j i C j > n/;
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and so Np;q WD N .pV ˚ qV �/ is reduced, by Proposition 9.5. We also see that the
ideal .xiyj j i C j > n/ is prime if and only if it is .0/, i.e., when p C q � n. This
proves the theorem for GL.V /.

To prove the claim we first remark that the kernel of ' is spanned by monomials,
because ' is equivariant under the action of the maximal torus Tp � Tq . Moreover,
it is not difficult to see that '.xrys/ D 0 if rC s > n; see [Sch87, Remark 1.23(2)].

Now let f WD xi1 � � �xipyj1 � � �yjq be a monomial which is not in the ideal
.xiyj j i C j > n/. Then r C s � n where r WD max.pi / and s WD max.qj /.
If .e1; : : : ; en/ is a basis of V and .e�1 ; : : : ; e�n / the dual basis of V �, then we
can assume that xi D e�n�iC1 ^ e�n�iC2 ^ � � � ^ e�n and yj D e1 ^2 ^ � � � ^
ej . Now it is clear that the monomial f does not vanish at the point w WD
.0; : : : ; 0; en�rC1; : : : ; en; e�1 ; : : : ; e�s ; 0; : : : ; 0/ which is in the null cone Np;q .

For the group SL.V / there are more invariants, namely the determinants

di1


in WD det

2

6

4

vi1
:::

vin

3

7

5
where i1 < i2 < � � � < in, and d�j1


jn WD det

2

6

4

	j1
:::

	jn

3

7

5
where

j1 < j2 < � � � < jn. These invariants only appear if p � n, resp. q � n. In
particular, we have the same invariants and the same null cone in case p; q < n.
From the surjectivity of the map ' in .��/ above we see that there remain only the
cases where either p D n and q � n, or q D n and p � n. Let J denote the
ideal generated by the SL.V /-invariants. Then JU D IU C .xn/ if p D n > q,
JU D IU C .yn/ if p < n D q, and JU D IU C .xn; yn/ if p D n D q. Hence

.O.pV ˚ qV �/=J /U ' CŒx1; : : : ; xp0 ; y1; : : : ; yq0 �=.xiyj j i C j > n/

where p0 WD min.p; n � 1/ and q0 WD min.q; n � 1/. The rest of the proof is as
above. ut

Next we study the case where V is a symplectic space, i.e., V is equipped with
a nondegenerate skew form ˇ, dimV D 2n. We have the group G WD Sp.V / �
GL.V / which preserves ˇ. Then the invariants of mV are generated by the bilinear
maps

ˇij W .v1; : : : ; vn/ 7! ˇ.vi ; vj /; 1 � i < j � m:

We denote by  k WD Vk
0 V
� � Vk

V � (k D 1; : : : ; n) the fundamental
representations of Sp.V / where

Vk
V � DVk

0 V
� ˚ ˇ ^Vk�2

V �. We know from
equation .�/ that O.mV /Umk contains a unique copy of

Vk
V � for k � min.m; n/.

Lemma 9.6. Let I � O.mV / be the ideal generated by the invariants ˇij . Then in
O.mV /Um we have

(1)
Vk

V � D  k .mod I / for k D 1; : : : ;min.m; n/;
(2)

Vk
V � �V`

V � D  k ` .mod I / for 1 � k � ` � min.m; n/.
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Proof. Part (1) is clear since  kC2 D VkC2
V �=ˇ

Vk
V �. For part (2) let

x1; : : : ; xn 2 V � correspond to the positive weights "1; : : : ; "n and let y1; : : : ; yn
correspond to the�"j . A simple submodule occurring in k � ` has a highest weight
vector containing a unique term � WD x1 ^ � � � ^ xk � ˛ where ˛ is an `-fold wedge
product of a certain number of xi and yj . But the only possibility for obtaining a
highest weight of Sp.V / is ˛ D x1 ^ � � � ^ xq ^ yk�rC1 ^ � � � ^ yk where q � `

and r D ` � q. This gives the highest weight of a (unique) copy of  p q where
p D k � r .

Suppose that r > 0. We have an element ˇr in .
Vr
.V �/˝Vr

.V �//Sp.V / where
ˇr.v1 ^ � � � ^ vr ;w1 ^ � � � ^ wr / D det.ˇ.vi ;wj //. Here the vi and wj are elements
of V . It is easy to see that ˇr projects to a nontrivial invariant element ˇ0r of  r r ,
and that ˇ0r 2 I r . Then the product of ˇ0r with  p q �  p �  q is a copy of  p q
in  k `, and we have (2). ut
Proof (of Theorem 9.1(3)). It follows from the lemma above and Proposition 9.4 that
all simple submodules in O.mV /Um are orthogonal and the covariants are generated
by  1; : : : ;  m0 where m0 WD min.m; n/. Let UV � Sp.V / be a maximal unipotent
subgroup and let xk 2 Vk

0 V
� � O.mV /Umk be a highest weight vector. Then we

have a surjective homomorphism

'WCŒx1; : : : ; xm0 �! .O.mV /=I /Um�UV :

If W � V is a maximal isotropic subspace, then W ˚m is contained in the null cone
of mV , and for a suitable choice of W , the function xk does not vanish on W ˚m
for k � m0. This implies that ' is an isomorphism, because the action of Tm on
CŒx1; : : : ; xm0 � has one-dimensional weight spaces, and so the kernel of ' is linearly
spanned by monomials. Now the theorem for Spn follows from Proposition 9.5. ut

Finally, let V be a quadratic space, i.e., an n-dimensional vector space with a
nondegenerate quadratic form q. The O.V /-invariants of mV are generated by the
bilinear maps

qij W .v1; : : : ; vm/ 7! q.vi ; vj /; 1 � i � j � m:

The SO.V /-modules  k WD Vk
V � are simple if 2k < n. For n D 2m  m WD

Vm
V � is simple as an O.V /-module, but decomposes as  m D  Cm ˚  �m as an

SO.V /-module.

Lemma 9.7. Let 2m � n and let I � O.mV / be the ideal generated by the
invariants qij . Then in O.mV /Um we have

(1)  k �  ` D  k ` .mod I / for 1 � k � ` � min.m; n�1
2
/;

(2) If n D 2m, then  Cm �  �m D 0 .mod I /.

Proof. Let n D 2s or 2s C 1 so that m � s. We consider a weight basis x1; : : : ; xs
and y1; : : : ; ys (and a zero weight element z if n is odd). First suppose that n is even.
For (1) we can then proceed as in the symplectic case. The only difference is that we
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use the invariant bilinear form q to generate an element q0r lying in . r r/SO.V / and
in I r . As for (2), the highest weight vectors are x1^� � �^xm and x1^� � �^xm�1^ym.
Their product is the image of q01˝ m�1 m�1 in  Cm  �m . The argument of (1) shows
that any other irreducible occurring in  Cm �  �m also lies in I .

Now suppose that n is odd. Then the argument for (1) above goes through except
when the zero weight vector appears in the expression for ˛. So suppose that ˛ D
x1 ^ � � � ^ x`�1 ^ z. Then

x1 ^ � � � ^ xk � ˛ C .x1 ^ � � � ^ x`�1 ^ x`C1 � � � ^ xk ^ z/ � .x1 ^ � � � ^ x`/
is a vector in  k � `. It is obtained from .x1 ^ � � � ^ xk/ � .x1 ^ � � � ^ x`/ by applying
elements of U�. Hence we don’t have a new irreducible component of  k �  `. ut
Proof (of Theorem 9.1(4)). Choose highest weight vectors xk 2 Vk

V � for 2k < n
and xCm 2  Cm , x�m 2  �m for n D 2m. The preceding lemma and Proposition 9.4
show that the induced maps

CŒx1; : : : ; xm�! .O.mV /=I /Um�UV for 2m < n; and

CŒx1; : : : ; x
C
m ; x

�
m�=.x

C
m x
�
m/! .O.mV /=I /Um�UV for 2m D n

are surjective. The weights �.xk/ of the highest weight vectors (with respect to
Tm � TV , TV a maximal torus of SO.V /) are linearly independent, except that in
case n D 2m we have �.xCm / C �.x�m/ D 2�.xm�1/. It follows that the algebras
on the left-hand side are multiplicity free, and so the kernels of the two maps are
spanned by monomials. But it is easy to see that none of the xk , xṁ vanish on the
null cone, and so the two maps are isomorphisms. Again using Proposition 9.5 we
obtain the theorem for the groups O.V / and SO.V / in the case where 2m � n.

It remains to show that the null cone is not reduced for 2m > n. Let n D 2k. (The
case n D 2k � 1 is similar and will be left to the reader.) We may take m D k C 1.
Then in degree k C 1 we find the submodule M WD VkC1

C
kC1 ˝VkC1

V �, by
CAUCHY’s formula (Proposition 9.2). The SO.V /-module

VkC1
V � is simple and

isomorphic to  k�1 D Vk�1
V . We claim that M vanishes on the null cone N , but

is not contained in the ideal I generated by the invariants.
The first part is clear, because N D O.V / �.kC1/W whereW � V is a maximal

isotropic subspace, and every function f1^� � �^fkC1 vanishes on .kC1/W because
dimW D k.

For the second part, we remark that the module  k�1 appears the first time in
degree k � 1, in the form

Vk�1
C
kC1 ˝Vk�1

V �. If M � I , then M must belong
to the product

O..k C 1/V /SO.V /
2 � .Vk�1

C
kC1 ˝Vk�1

V �/

which is a quotient of .S2.CkC1/˝Vk�1
C
kC1/˝Vk�1

V �. But the tensor product
S2.CkC1/˝Vk�1

C
kC1 does not contain the “determinant”

VkC1
C
kC1 as a GLkC1-

module. ut
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10 Non-reduced components of the null cone

We need some information about null cones (see [Hes80, KW06, Ric89] for more
details). Let G be a connected reductive complex group, T � G a maximal torus
and V a G-module. Let X.T / D Hom.T;C�/ denote the character group of T and
let Y.T / D Hom.C�; T / denote the group of 1-parameter subgroups of T . Then
Y.T / and X.T / are dually paired: h�; �i D n if �.�.t// D tn. For any � 2 Y.T /
we set

Z� WD fv 2 V j lim
t!0 �.t/v D 0g D

M

�2X.T /;h�;�i>0
V�

where V� � V denotes the weight space of weight �. These Z� are called positive
weight spaces. Then the Hilbert–Mumford theorem says that N is the union of
the sets GZ�, � 2 Y.T /. In fact, one needs only a finite number of elements of
Y.T /. Pick a system of simple roots for G. Then using the action of the Weyl
group, we can assume that any given � is positive when paired with the simple roots
˛1; : : : ; ˛` 2 X.T /, ` D dimT . In fact, we can always assume that the pairings are
strictly positive and that � only takes the value 0 on the zero weight. We call such
elements of Y.T / generic. Now Z� is stable under the action of the Borel B , thus
GZ� is closed in the Zariski topology, andGZ� is irreducible. Thus there are finitely
many generic �i such that the sets GZ�i are the irreducible components of N .

Remark 10.1. We will use this description of the null cone to show that a given
homogeneous covariant � WV ! W of degree d vanishes on the null cone,
generalizing Lemma 3.8. It suffices to show that � vanishes on Z� for the relevant
generic �’s. Denote by �1; : : : ; �m the weights of Z�. If � ¤ 0 on Z�, then the
highest weight � of W is of the form

P

i di�i where
P

i di D d . (This follows
from the B-equivariance of � .) Hence � vanishes if � cannot be expressed as such
a sum.

Let�.V / denote the set of weights of V . For � 2 Y.T /, let �� denote the subset
of �.V / of elements which pair strictly positively with �. A subset � � �.V /

is called admissible if � D �� for a generic �. In this case set Z� WD Z�. We
will often switch between looking at generic elements of Y.T / (or Y.T /˝ Q) and
corresponding subsets� � �.V /. We say that an admissible� is dominant ifGZ�
is a component of the null cone.

Here is a way to show that the null cone N is not reduced.

Proposition 10.2. Let � � �.V / be dominant and let W � V be a T -stable
complement of Z�. Assume that for any z 2 Z� the differential d
z restricted
to W has rank < codimV GZ�, or, equivalently; there is a subspace W 0 � W

of dimension > codimGZ� Z� such that the differential of any invariant vanishes
on W 0. Then no point of GZ� � N is reduced.
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Proof. Either condition implies that the rank of d
z is less than the codimension of
GZ� for any z 2 Z�. ut
Remark 10.3. Let .v1; : : : ; vn/ be a basis of V consisting of weight vectors of
weight �1; : : : ; �n, and let .x1; : : : ; xn/ be the dual basis. If f D xi1 � � �xid is a
monomial of weight zero, then an xi such that �i … � has to appear. If two such xi
appear in f , then clearly .df /jZ� D 0. This gives our first method to show that N
is not reduced.

(1) Let�0 be the complement of� in�.V /. Let d 2 N be minimal such that every
zero weight monomial f containing exactly one factor xi corresponding to a
weight from�0 has degree � d .

(2) Show that there are not enough invariants of degree � d , i.e., show that the
number of invariants of degree � d is strictly less than the codimension of
GZ�.

If W is irreducible of highest weight �, we denote the highest weight of the dual
representation,W � by ��. The next result will give us another way to see if the null
cone is not reduced. It uses the method of covariants introduced in section 3 (see
Proposition 3.1).

Proposition 10.4. Let 'WV ! W be a covariant, whereW is irreducible of highest
weight �. Let� � �.V / be admissible and assume that ' does not vanish onGZ�.
Then �� 2 N�.

Proof. Let W � be the subspace of O.V / corresponding to '. Let f be a highest
weight vector of W �. Then f has weight �� and f does not vanish on GZ� by
assumption. It follows that f contains a monomial m D xi1xi2 � � �xid where the
corresponding vik all belong to Z�, i.e., �� D �i1 C �i2 C � � � C �id 2 N�. ut
Remark 10.5. This proposition will be used in the following way.

(1) Find a suitable highest weight � and an integer d such that �� cannot be written
as a sum of more than d weights from �.

(2) Show that there are generating covariants of typeW� in degree > d .

By the proposition above this implies that the generating covariants from (2) vanish
on GZ�. In order to apply Proposition 3.1 one has to fix d and check (1) for any
admissible �.

We finish this section by giving some criteria to find the dominant � among the
admissible ones. Let �1 and �2 be admissible subsets of �.V /. Set Zi WD Z�i ,
i D 1; 2. We say that �2 dominates �1, and we write �1 � �2, if GZ1 � GZ2.
Given � 2 W ; the Weyl group of G, let �.�/

1 WD f� 2 �1 j �.�/ 2 �2g and let

Z
.�/
1 denote the sum of the weight spaces with weights in �.�/

1 .

Lemma 10.6. Let �1 and �2 be admissible. Then �2 dominates �1 if and only if
there is a � 2W such that BZ.�/

1 is dense in Z1.
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Proof. Suppose that �1 � �2. Let z 2 Z1. Then there is a g 2 G such that
gz 2 Z2. Write g D u�b where b 2 B , u 2 U and � 2W (Bruhat decomposition).
Since b and u preserve the Zi , we see that bz 2 Z.�/

1 . Thus Z1 is the union of the

constructible subsets BZ.�/
1 , � 2W , and one of them must be dense.

Conversely, suppose that some BZ.�/
1 is dense in Z1. Since �.BZ.�/

1 / lies in
GZ2 and GZ2 is closed, we see that GZ1 � GZ2. ut

The condition that BZ.�/
1 is dense in Z1 has some consequences for the weights

of Z.�/
1 . Denote by ˚C the set of positive roots, i.e., the weights of b WD LieB .

Lemma 10.7. Let Z be a B-module and Z0 � Z a T -stable subspace. If BZ0 is
dense in Z, then

�.Z/ � �.Z0/C .˚C [ f0g/:

In particular,�.Z0/ contains the set ˝ WD f� 2 �.Z/ j � … �.Z/C ˚Cg.
Proof. The tangent map of B � Z0 ! Z at a point .e; z0/ has the form .X; v/ 7!
Xz0 C v, and so bZ0 C Z0 D Z. If z 2 Z0 is a weight vector of weight �, then
b z �L!2˚

C

[f0gZ�C! , hence �.Z/ is as claimed. ut
Proposition 10.8. Let �1;�2 � �.V / be admissible subsets. Define ˝1 WD
f� 2 �1 j � 62 �1 C ˚Cg and suppose that Q�0˝1 contains the simple roots.
Then �1 � �2 implies that �1 � �2.

Proof. Let � be as in Lemma 10.6. Then �.�/
1 contains ˝1 by Lemma 10.7. This

in turn implies that �2 is positive on �.˛j /, j D 1; : : : ; `. Thus each �.˛j / is a
positive root and so � is the identity. Hence ˝1 � Z2 and thus�1 � �2. ut
Corollary 10.9. Suppose that G D SL3 with simple roots ˛ and ˇ. Let � D �� �
�.V / be admissible and maximal with respect to set inclusion. Suppose that �
contains nonzero weights of the form �1 WD �a˛ C bˇ and �2 WD c˛ � dˇ where
the coefficients a, b, c and d are nonnegative rational numbers. Then� is dominant.

Proof. Let ˝ � � be the minimal elements. We may assume that �1 and �2 are in
˝ . Clearly b; c ¤ 0. If a D 0 or d D 0, then the hypotheses of Proposition 10.8
are satisfied. If a; d ¤ 0, then h�; �1i > 0 and h�; �2i > 0 forces bc � ad > 0.
Thus the inverse of the matrix . c �a�d b / has positive entries, so that the hypotheses
of Proposition 10.8 are satisfied and � is dominant. ut

See Example 11.2 below for a calculation of components of a null cone.

11 Coreduced representations of SL3

In this section we classify the coreduced representations of G D SL3
(Theorems 11.10 and 11.12).
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We denote the representation V WD 'r1'
s
2 by V Œr; s�, r; s 2 N, and its highest

weight by Œr; s�. Let ˛ and ˇ be the simple roots of G. We denote a weight p˛C qˇ
of a representation of G by .p; q/ where p, q 2 .1=3/Z and p C q 2 Z. Hence
˛ D .1; 0/ D Œ2;�1�, ˇ D .0; 1/ D Œ�1; 2�, and so

Œr; s� D .2r C s
3

;
r C 2s
3

/ and .p; q/ D Œ2p � q; 2q � p�:

Moreover, Œr; s� is in the root lattice if and only if r � s mod 3.
We leave the following lemma to the reader (see Lemma 5.6).

Lemma 11.1. Let V WD V Œr; s� be an irreducible representation of G and set
.p; q/ D Œr; s�.
(1) The dominant weights of V Œr; s� are the weights Œr 0; s0� obtained starting with

Œr; s� and using the following inductive process: Œr 0; s0� gives rise to Œr 0�2; s0C1�
if r 0 � 2 and to Œr 0 C 1; s0 � 2� if s0 � 2. Finally, Œ1; 1� gives rise to Œ0; 0�.
Equivalently, the dominant weights of V Œr; s� are those of the form .k; l/ WD
.p � a; q � b/ where a, b 2 N, 0 � k � 2l and 0 � l � 2k.

(2) The Weyl group orbit of the dominant weight .k; l/ is

a. .k; l/, .l � k; l/, .k; k � l/, .l � k;�k/, .�l; k � l/, .�l;�k/ if k ¤ 2l and
l ¤ 2k,

b. .2l; l/, .�l; l/, .�l;�2l/ if k D 2l and
c. .k; 2k/, .k;�k/ and .�2k;�k/ if l D 2k.

(3) Let .p; q/ be dominant, p ¤ q, and let W � .p; q/ be the Weyl group orbit of
.p; q/. Then

max

� �k
`
j .k; `/ 2W � .p; q/

�

D min.p; q/

jp � qj ;

min

� �k
`
j .k; `/ 2W � .p; q/; �k

`
> 0

�

D jp � qj
min.p; q/

:

Suppose that �.V / is not contained in the root lattice. Then let �˛ denote the
weights .p; q/ of V where p > 0. We define �ˇ similarly. Note that �˛ is stable
under the simple reflection �ˇ and that �ˇ is stable under the simple reflection �˛ .

Example 11.2. Consider the module V D V Œ3; 1�. Then the dominant weights are
Œ3; 1�, Œ1; 2�, Œ2; 0� and Œ0; 1�. Thus the weights of V are

(1) .7=3; 5=3/, .�2=3; 5=3/, .7=3; 2=3/, .�2=3;�7=3/, .�5=3; 2=3/,
.�5=3;�7=3/ (the W-orbit of Œ3; 1�);

(2) .4=3; 5=3/, .1=3; 5=3/, .4=3;�1=3/, .1=3;�4=3/, .�5=3;�1=3/,
.�5=3;�4=3/ (the W-orbit of Œ1; 2�);

(3) .4=3; 2=3/, .�2=3; 2=3/, .�2=3;�4=3/ (the W-orbit of Œ2; 0�);
(4) .1=3; 2=3/, .1=3;�1=3/, .�2=3;�1=3/ (the W-orbit of Œ0; 1�).
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Let � 2 Y.T / ˝ Q be generic. We may assume that �.˛/ D 1 and, of course, we
have �.ˇ/ > 0. Then �.ˇ/ has to avoid the values 2=5, 5=2, 4, 1=4 and 1, so there
are six cases to consider.

Case 1: Let�1 correspond to 2=5 < �.ˇ/ < 1. It is easy to see that�1 is maximal.
Then �1 is dominant by Corollary 10.9 since .�2=3; 5=3/ and .1=3;�1=3/ are
�-positive.

Case 2: Let � correspond to 0 < �.ˇ/ < 1=4. Then � D �˛ is � WD �ˇ-stable so
that �.�.�// D �.� \ �1/. Now � \ �1 is � n f.1=3;�4=3/g, hence �.�/ is
� n f.1=3; 5=3/g where .1=3; 5=3/ has multiplicity one. Thus UZ.�/

� is dense in
Z� so that� < �1. (One can also see directly that U�Z1 hasZ� in its closure.)
Now it is easy to calculate that dimGZ� < dimGZ1, so that � D �˛ is not
dominant.

Case 3: Let � correspond to 1=4 < �.ˇ/ < 2=5. Then � � �1.
Case 4: Let �2 correspond to 5=2 < �.ˇ/ < 4. Then �2 is maximal and
.�5=3; 2=3/ and .4=3;�1=3/ are �-positive, so that �2 is dominant by
Corollary 10.9.

Case 5: Let � correspond to 1 < �.ˇ/ < 5=2. Then� � �1.
Case 6: Let � correspond to �.ˇ/ > 4. Then� D �ˇ and as in Case 2 we see that
� < �1 and that � is not dominant.

Thus there are only two components of the null cone,GZ�1 andGZ�2 correspond-
ing to cases 1 and 4. Note that neither �˛ nor �ˇ is dominant.

Lemma 11.1 does not tell us anything about multiplicities of weights, but the
following result gives us some lower bounds, which suffice for our uses. If Œr; s� is a
weight of V , then we denote by VŒr;s� � V the corresponding weight space.

Lemma 11.3. Let r D r0 C r 0 and s D s0 C s0 where r 0 � s0 mod 3. Then every
weight of V Œr0; s0� occurs in V Œr; s� with multiplicity at least the dimension of the
zero weight space V Œr 0; s0�Œ0;0�.

Proof. As in Lemma 5.18 this follows from the fact that O.G=U / is a domain and
that the product of the copies of V Œr0; s0� and V Œr 0; s0� in O.G=U / is just the copy
of V Œr; s� ut
Example 11.4. Consider V Œ3; 2�. Then the multiplicity of Œ1; 0� is at least the
multiplicity of the zero weight in V Œ2; 2�, which is 3. The multiplicity of Œ2; 1�
is similarly seen to be at least 2. Thus the multiplicities of the dominant weights
of V Œ3; 2� are at least as follows: Œ3; 2�, Œ4; 0�, Œ1; 3� and Œ0; 2� with multiplicity
one, Œ2; 1� with multiplicity two and Œ1; 0� with multiplicity three. In fact, these
multiplicities are correct, except that Œ0; 2� actually has multiplicity two.

In Example 11.2 we have seen that neither�˛ nor�ˇ is dominant. But this is an
exception as shown by the following result.

Lemma 11.5. Let V D V Œr; s� where r � s.
(1) If r � s � 1 mod 3, then�ˇ is dominant.
(2) If r � s � 2 mod 3 and Œr; s� ¤ Œ3; 1� or Œ5; 0�, then �˛ is dominant.
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Proof. For t > 0 define �t 2 Y.T / by �t .˛/ D 1 and �t .ˇ/ D t , and set�t WD ��t .
Define

T WD ft > 0 j �t .�/ D 0 for some � 2 �.V Œr; s�/; � ¤ 0g:

We have T D ft1; t2; : : : ; tmg where 0 < t1 < t2 < � � � < tm, so there are m C 1
admissible subsets �.i/, i D 0; : : : ; m, defined by �.i/ WD �t for ti < t < tiC1,
where t0 D 0; tmC1 D 1. Clearly,�.0/ D �˛ ,�.m/ D �ˇ, and�˛ (resp.�ˇ) is not
maximal if and only if �˛ � �.1/ (resp. �ˇ � �.m�1/). Note that if �t ..k; l// D 0,
then t D �k=l .

(1) First suppose that r � s � 1 mod 3 and let .p; q/ D Œr; s�. Then Œ1; 0� D
.2=3; 1=3/ is a weight of V , and the ˛-string through Œ1; 0� has the form

˙ D ..�q; 1=3/; .�q C 1; 1=3/; : : : ; .2=3; 1=3/; : : : ; .q C 1=3; 1=3//

where .�q; 1=3/ is in the W-orbit of .qC1=3; q/. Note that #˙ D 2qC4=3. Since
the case V D V Œ1; 0� is obvious we can assume that q � 4=3, hence #˙ � 4.

Claim 1: We have tm D 3q and tm�1 D 3q � 3, and these values are attained at
the first two weights .�q; 1=3/ and .�q C 1; 1=3/ of the ˛-string ˙ . In particular,
�ˇ 	 �.m�1/ and #.˙ \�.m0// � #˙ � 2 form0 � m � 2.

This implies that �ˇ is dominant. In fact, suppose that �ˇ < � for some

admissible�. SetZˇ WD Z�ˇ . There is a � 2W such thatBZ.�/

ˇ is dense inZˇ and

�.�
.�/

ˇ / � � (Lemma 10.6). Clearly�.�/

ˇ has to contain a subset˙ 0 of the ˛-string
˙ which omits at most one element and contains .�q; 1=3/ (see Lemma 10.7). Since
˙ 0 contains at least 3 elements it is easy to see that � D e and � D �˛ are the only
elements from W which send ˙ 0 to elements which have at least one positive ˛ or
ˇ coefficient. Thus �.˙ 0/ � �\˙ . By the claim above, this implies that� D �ˇ

or � D �.m�1/ and so � � �ˇ.

(2) Now suppose that r � s � 2 mod 3. Then Œ0; 1� D .1=3; 2=3/ is a weight of
V , and the ˇ-string through Œ0; 1� has the form

˙ D ..1=3;�q C 1=3/; .1=3;�qC 4=3/; : : : ; .1=3; 2=3/; : : : ; .1=3; q//

where .1=3;�qC1=3/ is in the W-orbit of .q�1=3; q/. Note that #˙ D 2qC4=3.

Claim 2: If #˙ � 6 (i.e., q � 8=3), then t1 D 1=.3q�1/ and t2 D 1=.3q�4/, and
these values are attained at the first two weights .1=3;�qC1=3/ and .1=3;�qC4=3/
of the ˇ-string ˙ . Moreover,�˛ 	 �.1/ and #.˙ \�.m0// � #˙ � 2 for m0 � 2.

Now the same argument as above implies that �˛ is dominant. Note that the
condition q � 8=3 is satisfied for Œr; s� ¤ Œ2; 0�, Œ3; 1� or Œ5; 0�. For V Œ2; 0� there are
only two admissible sets, �˛ and �ˇ, both are dominant and N D GZ˛ D GZˇ .
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(3) It remains to prove the two claims. Let r � s � 1 mod 3. We use the first
formula given in Lemma 11.1(3) for a dominant .p0; q0/:

�.p0 ;q0/ WD max

� �k
`
j .k; `/ 2W � .p0; q0/

�

D min.p0; q0/
jp0 � q0j

By assumption we have q � 4=3. If .p0; q0/ � .p; q/ is dominant, then jp0 � q0j �
1=3. Thus

tm D max.�.p0 ;q0/ j .p0; q0/ dominant; .p0; q0/ � .p; q// D �.qC1=3;q/ D 3q;
and this value is attained at a single weight of V; namely at the weight .�q; 1=3/ 2
W �.qC1=3; q/. It follows that tm�1 is either equal to�.q�2=3;q�1/ D 3.q�1/ or equal
to�.p0;q/ for a suitablep0 � p, p0 ¤ qC1=3. But thenp0 D q�2=3 orp0 D qC4=3
and in both cases we get�.p0 ;q/ � 3.q�1/, because q � 4=3. Hence tm�1 D 3.q�1/
and this value is attained at the weight .�q C 1; 1=3/ 2W � .q � 2=3; q � 1/. As a
consequence,�ˇ 	 �m�1 D �ˇnf.�q; 1=3/g, and .�q; 1=3/; .�qC1; 1=3/ … �m0

form0 � m � 2. This proves Claim 1.

For r � s � 2 mod 3 we use the second formula in Lemma 11.1(3) for a
dominant .p0; q0/:

�.p0q0/ WD min

� �k
`
j .k; `/ 2W � .p0; q0/; �k

`
> 0

�

D jp0 � q0j
min.p0; q0/

:

The minimal values of jp0�q0j are 1=3 and 2=3 and they are attained at .q0�1=3; q0/
and .q0C 2=3; q0/. Thus, for a fixed q0 the minimal values of �.p0;q0/ are 1=.3q0� 1/
and 2=.3q0/. Since q � 8=3 > 4=3 we get

t1 D min
�

�.p0;q0/ j .p0; q0/ � .p; q/ dominant
� D �.q�1=3;q/ D 1=.3q � 1/;

and this value is attained at a single weight, namely at .1=3;�q C 1=3/ 2 W �
.q � 1=3; q/. It follows that t2 is either equal to �.qC 2=3; q/ D 2=.3q/ or equal to
�.q�4=3; q�1/ D 1=.3q�4/. Since q � 8=3we get 3q�4 D .3=2/qC..3=2/q�
4/ � .3=2/q. Hence t2 D 1=.3q�4/ and this value is attained at .1=3;�qC4=3/ 2
W � .q � 4=3; q � 1/. Now Claim 2 follows as above. ut
Remark 11.6. Let � D �˛ or �ˇ . Then Z� is stabilized by a parabolic subgroup
of codimension 2, hence codimGZ� Z� � 2.

We need the following estimate on the dimension of S3.V /G :

Proposition 11.7. Let r � s � 0. Then

(1) The multiplicity of Œr � s; 0� in V Œr; 0�˝ V Œ0; s� is
�

sC2
2

�

.
(2) The multiplicity of Œr � s; 0� in V Œr; s� is s C 1.
(3) The multiplicity of V Œs; r� in V Œr; s�˝ V Œr; s� is at most s C 1.
(4) The dimension of S3.V Œr; s�/G is at most s C 1, hence there are at most s C 1

linearly independent cubic invariants of V Œr; s�.
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Proof. Let e1, e2 and e3 be the usual basis of C3 and let f1, f2, f3 be the dual basis.
Then the weight vectors of weight Œr�s; 0� in V Œr; 0�˝V Œ0; s� have basis the vectors
er�t1 m˝ f s�t

1 m�, where 0 � t � s and m is a monomial of degree t in e2 and e3
andm� is the same monomial in f2 and f3. Thus the dimension of this weight space
is 1C � � � C .s C 1/, giving (1).

Part (2) follows from the fact that

V Œr; 0�˝ V Œ0; s� D V Œr; s�˚ V Œr � 1; 0�˝ V Œ0; s � 1�:

This is an immediate consequence of Pieri’s formula (see [Pro07, formula (10.2.2)
in 9.10.2]).

The multiplicity of V Œs; r� in V Œr; s� ˝ V Œr; s� is bounded by the multiplicity
of the weight Œr; s� � .r; s/ in V Œr; s� since Œr; s� C .Œr; s� � .r; s// D Œs; r�. Now
Œr; s�� .r; s/ D 1=3.�rC s; r � s/ which is in the W-orbit of 1=3.2r�2s; r � s/ D
Œr � s; 0�. Thus (2) implies (3). Clearly (3) implies (4). ut
Example 11.8. Assume that r � s � 1 and that r � s � 2 mod 3. Then the
multiplicities of the weights of V Œ0; 1� and V Œ3; 1� in V Œr; s� are � s, and the
multiplicities of the weights of V Œ2; 0� are � s C 1 in case r � 5.

(In fact, for V Œ3; 1� the multiplicities are� dimV Œr�3; s�1�Œ0;0� by Lemma 11.3
and dimV Œr�3; s�1�Œ0;0� � dimV Œr�3; s�1�Œr�s�2;0� D s by Proposition 11.7(2).
The other cases follow by similar arguments.)

Proposition 11.9. Let V D V Œr; s� where r C s � 4 or .r; s/ D .2; 1/ or .r; s/ D
.1; 2/. Then there is an irreducible component N1 of N such that the rank of d
 is
less than the codimension of N1 in V on N1. In particular, N is not reduced.

An immediate consequence is

Theorem 11.10. Let V be an irreducible representation of G D SL3. Then V is
coreduced if and only if V is on the following list:

(1) V Œ1; 0�, V Œ2; 0�, V Œ3; 0�;
(2) V Œ0; 1�, V Œ0; 2�, V Œ0; 3�;
(3) V Œ1; 1�.

Equivalently, V is coreduced if and only if it is cofree.

Proof (of Proposition 11.9). We may assume that V D V Œr; s� where r � s and
V Œr; s� does not appear in (1), (2) or (3) of the theorem. Let .p; q/ D Œr; s�. We are
constantly applying Remarks 10.3 and 10.5.

Case 1: Assume that r�s � 1 mod 3 and consider� D �ˇ which is dominant by
Lemma 11.5. Recall that codimGZ� Z� � 2. First suppose that s � 1 and r > 2.
Then Œ1; 3� and Œ0; 2� are weights of V . Let � 2 Y.T / correspond to�ˇ . Then � is
negative on the weights .2=3;�2=3/ and .�4=3;�2=3/ in the W-orbit of Œ0; 2�,
on the weights .�7=3;�2=3/ and .5=3;�2=3/ in the W-orbit of Œ1; 3� and on
the weight .�1=3;�2=3/ in the W-orbit of Œ1; 0� which occurs with multiplicity
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at least s C 1 since Œr � s; 0� has multiplicity s C 1 by Proposition 11.7(2).
These negative weights can be paired with at most quadratic expressions in
the positive weights (just look at the coefficients of ˇ). Now there are at most
s C 1 cubic invariants (and no quadratic invariants), hence N is not reduced if
s � 1, r > 2.
If .r; s/ D .2; 1/, then we have the following negative weights: .2=3;�2=3/,
.�4=3;�2=3/ and .�1=3;�2=3/ (with multiplicity 2). There is only a one-
dimensional space of degree 3 invariants, and so N is not reduced.
If s D 0, then the cases to consider are V Œ4; 0�, V Œ7; 0�, etc. If r � 7, then
we have a dominant weight Œ1; 3� whose W-orbit contains .�7=3;�2=3/ and
.5=3;�2=3/. We still have .2=3;�2=3/, .�4=3;�2=3/ and .�1=3;�2=3/. Since
there is at most one degree 3 invariant, N is not reduced.
We are left with the case of V Œ4; 0�. Here we have negative weights .2=3;�2=3/,
.�4=3;�2=3/ and .�1=3;�2=3/ as well as .�1=3;�5=3/ and .�4=3;�5=3/ in
the W-orbit of Œ2; 1�. Thus N is not reduced since there are only two irreducible
invariants of degree � 6 (the Poincaré series of O.V /G is 1C t3 C 2t6 C : : : ).

Case 2: Assume that r � s � 2 mod 3. For the cases Œr; s� D Œ3; 1� or Œ5; 0� see
Example 11.11 below. So we may assume that � D �˛ is dominant. If s � 1

(and so r � 5), then among the dominant weights we have Œ3; 1�with multiplicity
at least s, Œ2; 0� with multiplicity at least sC 1 and Œ0; 1� with multiplicity at least
s (see Example 11.8). The W-orbit of Œ3; 1� contains the weights .�2=3; 5=3/
and .�2=3;�7=3/ with negative ˛-coefficient, the W-orbit of Œ2; 0� contains
.�2=3; 2=3/ and .�2=3;�7=3/ and the W-orbit of Œ0; 1� contains .�2=3;�1=3/.
Since there is at most an .s C 1/-dimensional space of degree 3 invariants, N is
not reduced. If s D 0 (and so r � 5), then we have the weights Œ3; 1�, Œ2; 0� and
Œ0; 1� with multiplicity one, and N is not reduced because dimS3.V /G � 1.

Case 3: If r � s � 0 mod 3, then we are in the adjoint case and the claim follows
from Proposition 7.5. ut

Example 11.11. Let V D V Œ3; 1�. Then from Example 11.2 we see that there
are two dominant �, one corresponding to �.˛/ D 1 and 2=5 < �.ˇ/ < 1

(choose �.ˇ/ D 1=2) and the other to �.˛/ D 1 and 5=2 < �.ˇ/ < 4 (choose
�.ˇ/ D 3). Neither �˛ nor �ˇ is dominant. Consider the case where �.ˇ/ D 1=2.
Then the minimal positive weights (in terms of their �-value) are .1=3;�1=3/ and
.�2=3; 5=3/, both having �-value 1=6. Now consider the covariants of type V Œ1; 0�.
The highest weight is .2=3; 1=3/where �.2=3; 1=3/ D 5=6. Thus the highest degree
in which the covariant could occur in S�.V / and not vanish on GZ� is 5. One gets
the same bound in case �.ˇ/ D 3. The Poincaré series of the invariants is 1Ct3C: : :
and for the V Œ1; 0� covariants it is 4t5 C 44t8 C : : : . Thus there are generating
covariants in degree 8, which vanish on N , so that N is not reduced.

If V D V Œ5; 0�, then the calculations of Example 11.2 show that the dominant
� again correspond to �.ˇ/ D 1=2 or 3. (The only new weights are (10/3,5/3),
.�5=3,5/3) and (�5=3;�10=3) and they give rise to no new ratios.) Hence the
highest degree in which the covariant V Œ1; 0� could occur in S�.V / and not vanish
on GZ� is again 5. The covariant V Œ1; 0� first occurs in degree 5, with multiplicity
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one. But since the principal isotropy group of V is trivial, the V Œ1; 0� covariants
have to have generators in higher degree, and these necessarily vanish on N . Thus
N is not reduced.

We now have the following result, which uses Theorem 11.10.

Theorem 11.12. Let G D SL3 and V be a nontrivial reducible coreduced G-
module with V G D 0. Then, up to isomorphism and taking duals, we have the
following list:

(1) kV Œ1; 0�C `V Œ0; 1�, k C ` � 2.
(2) V Œ2; 0�C V Œ0; 1�.
Proof. We already know that the representations in (1) and (2) are coreduced by
Theorem 9.1 and Example 4.5. We have to show that combinations not on the list
are not coreduced.

Consider V Œ1; 1� together with another irreducible. For V Œ1; 1� there is a closed
orbit with isotropy group double covered by SL2 �C�. The slice representation (as
representation of the double cover) is �1CR2. If we add V Œ1; 0�we get an additional
copy of R1 ˝ �1 C ��2 in the slice representation. Quotienting by C

� we get the
hypersurface in �1 C R2 C R2 where the quadratic invariant of the second copy of
R2 vanishes. The hypersurface is not coreduced (see Example 3.3), hence V Œ1; 1�C
V Œ1; 0� is not coreduced. For V Œ1; 1� C V Œ2; 0� one can easily see that the slice
representation of the maximal torus is not coreduced, and for V Œ3; 0� one uses the
slice representation at the zero weight vector to rule out a coreduced sum involving
V Œ3; 0�.

Next consider 2V Œ2; 0� which is cofree with generating invariants in bidegrees
.3; 0/; .2; 1/; .1; 2/; .0; 3/, and choose the 1-parameter subgroup � with weights
.1; 1;�2/. Then one can easily see that the codimensions of GZ� is 4 D codimN
and that the rank of the differentials of the invariants is 2 on GZ�. Hence the
representation is not coreduced.

The representation V Œ2; 0� C V Œ0; 2� is again cofree with generating invariants
in degrees (3,0), (1,1), (2,2), (0,3). For the same � one computes that the rank is 3,
while the codimension of GZ� is 4 D codimN , so this possibility is ruled out. We
cannot add V Œ1; 0� to V Œ2; 0� since the rank of the two generating invariants is only
1 on the null cone.

Finally, we have to show that V WD V Œ2; 0�C 2V Œ0; 1� (not cofree but coregular)
is not coreduced. Consider the 1-parameter subgroup with weights .2;�1;�1/.
This clearly gives a maximal dimensional component of the null cone and it
has codimension 3 D dimV==G � 1. The 1-parameter subgroup with weights
.1; 1;�2/ gives something of codimension 5, which is too small to be an irreducible
component of N since it is cut out by 4 functions. Hence N is irreducible. But V
has the slice representation 2R2C�1 of SL2 whose null cone is not reduced but also
has codimension three. Thus the associated cone to the fiber F ' G �SL2 N .2R2/
is N .V /. We know that F is not reduced (Example 3.3), hence by Remark 5.3, V is
not coreduced. ut
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Appendix A Computations for F4

Let G be a simple group of type F4 and let V D '4 be the 26-dimensional
representation of G. The main result of this appendix is the following proposition.

Proposition A.1. The representation .V ˚n; G/ is coreduced if and only if n � 2.
Moreover, V and V ˚ V are both cofree and contain a dense orbit in the null cone.

We will use the notation introduced in Section 10. The nonzero weights of V are
the short roots of F4. Hence Z� is the span of the positive short root spaces for
any generic � 2 Y.T / which implies that the null cone N .V ˚n/ is irreducible for
any n. We also know that V ˚ V is cofree with dim.V ˚ V /==G D 8 [Sch79],
hence dimN .V ˚ V / D 44. Let us look at the following statements which imply
the proposition.

(a) V ˚ V ˚ V is not coreduced.
(b) V ˚ V is coreduced.
(c) There is a dense orbit in the null cone of V ˚ V .

Although we know that (c) implies (b) (Corollary 4.7) we will present direct
proofs of all three claims. They are based on some explicit computations.

Proof (of statement (a)). There is a maximal subgroup of type B4 of F4 where
.'4.F4/;B4/ D '1 C '4 C �1. (For more see the discussion after Lemma A.2.)
The slice representation of B4 on '4.F4/ is '1.B4/ C �1. To prove that 3'4.F4/ is
not coreduced, it suffices to prove that V1 WD 3'1.B4/C 2'4.B4/ is not coreduced.
Now D4 is a maximal subgroup of B4 and V 0 WD 2'1.D4/C2'3.D4/C2'4.D4/ is a
slice representation of V1 at a zero weight vector. So we have to show that V 0 is not
coreduced. Since our representations are self-dual, we will deal with the symmetric
algebra S.V 0/ in place of O.V 0/.

Recall thatG is now D4 and V 0 is as above. We have
V2

'1 D V2
'3 DV2

'4 D
'2, the adjoint representation. In the tensor product of three copies of '2 we have 7
copies of '2, but only five of them are in the ideal generated by the invariants. (This
can be checked using LiE). We will show now that every covariant of type '2 in
V2

'1 ˝V2
'3 ˝V2

'4 � S.V 0/.2;2;2/ vanishes on the null cone, i.e., vanishes on
Z� for every generic � 2 Y.T /.

Recall that the weights of '1 are ˙"i , those of '3 are 1=2.˙"1 ˙ "2 ˙ "3 ˙ "4/
where the number of minus signs is even. The weights of '4 look similar, but have
an odd number of minus signs. We use the notation .˙˙˙˙/ for these weights.

There is an outer automorphism � of D4 of order 2 (coming from the Weyl group
of B4) which normalizes the maximal torus, fixes "1; "2; "3 and sends "4 to �"4. IfG
is of type D4 and if �i WG ! GL.Vi / denotes the i th fundamental representation 'i ,
then �1 ı � ' �1, �2 ı � ' �2, and �3 ı � ' �4. Thus there is a linear automorphism

�WV 0 ��! V 0 which is �-equivariant, i.e., �.gv/ D �.g/�.v/. It follows that � has
the following properties:
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(1) � sends G-orbits to G-orbits. In particular, �.N / D N .
(2) �.V 0�/ D V 0�.�/.
(3) If  WV 0 ! V 00 is a covariant of type '2 in

V2
'1 ˝V2

'3 ˝V2
'4, then so is

 ı �WV 0 ! V 00.

This implies that for every 1-PSG � we have �.Z�/ D Z�.�/ and that if all
 WV 0 ! V 00 as in (3) vanish on Z�, then they vanish on Z�.�/ too.

As a consequence, we can assume that "1 > "2 > "3 > "4 > 0. This implies that
the following weights are positive:

f"1; "2; "3; "4g � �.'1/;
f.CCCC/; .C �C�/; .CC��/g � �.'3/;
f.CCC�/; .CC�C/; .C�CC/g � �.'4/:

Since .� C C�/ < .� C CC/ we see that there are only three cases of maximal
positive weight spaces to be considered.

(1) f"1; "2; "3; "4g, f.CCCC/; .C �C�/; .CC��/; .�CC�/g and
f.CCC�/; .C�CC/; .CC�C/; .�CCC/g;

(2) f"1; "2; "3; "4g, f.CCCC/; .C �C�/; .CC��/; .C��C/g and
f.CCC�/; .C�CC/; .CC�C/; .C� ��/g;

(3) f"1; "2; "3; "4g, f.CCCC/; .C �C�/; .CC��/; .C��C/g and
f.CCC�/; .C�CC/; .CC�C/; .�CCC/g.

Now we have to calculate the positive weights in
V2

'1,
V2

'3 and
V2

'4 which
come from the positive weights in the two copies of '1; '3; and '4. For

V2
'1 we

get f"i C "j j i < j g in all three cases. For the two others we find the following
sets.

(1)
V2

'3: f"i C "j j i < j < 4g [ f"i � "4 j i < 4g;V2
'4: f"i C "j j i < j g.

(2)
V2

'3: f"1 ˙ "j j j > 1g; V2
'4: f"1 ˙ "j j j > 1g.

(3)
V2

'3: f"1 ˙ "j j j > 1g; V2
'4: f"i C "j j i < j g.

Now it is easy to see that in all three cases there is no way to write the highest weight
"1C "2 of '2 as a sum of three positive weights, one from each

V2. Hence .V 0;D4/

is not coreduced and we have proved (a). ut
Proof (of statement (b)). Since V ˚ V is cofree the null cone is (schematically) a
complete intersection. Therefore it suffices to find an element v 2 N .V ˚ V / such
that the differential d
v of the quotient morphism 
WV ˚V ! Y at v has maximal
rank 8 D dimY .

The nonzero weights of '4.F4/ are ˙"i , i D 1; : : : ; 4 (the nonzero weights of
'1.B4/) and .1=2/.˙"1˙ "2˙ "3˙ "4/ (the weights of '4.B4/). We will abbreviate
the latter weights as .˙˙˙˙/ from now on. The positive weights are the "i and the
weights of '4.B4/ where the coefficient of "1 is positive. Let v˙i denote a nonzero
vector in the weight space of˙"i , let v0 denote a zero weight vector and let vCCCC
denote a nonzero vector in the weight space .CC CC/ and similarly for vCCC�,
etc. We claim that d
 has rank 8 at the point v D .v2 C v3 C vC��C C vC���/ 2
2'1.B4/C 2'4.B4/.
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The invariants of 2'4.F4/ are the polarizations of the degree 2 invariant and the
degree 3 invariant of one copy of '4.F4/ together with an invariant of degree .2; 2/
[Sch78]. The restriction of the degree 2 invariant to '1.B4/ C '4.B4/ is the sum
of the degree two invariants there (see [Sch78] for descriptions of the invariants of
.2'1 C 2'4;B4/.). Clearly the differentials of the degree 2 invariants of 2'4.F4/ at
v have rank 3 when applied to the subspace spanned by the vectors v�2, v�3 in the
two copies of '1.B4/. There is only one degree 3 generator in .'1 C '4;B4/ and it
is the contraction of '1 with the copy of '1 in S2.'4/. Another way to think of the
invariant is as the contraction of '4 with the copy of '4 in '1˝ '4. Now the highest
weight vector of the copy of '4 in '1 ˝ '4 is (up to some nonzero coefficients)

v1 ˝ v�CCC C v2 ˝ vC�CC C v3 ˝ vCC�C C v4 ˝ vCCC� C v0 ˝ vCCCC:

From this one derives the form of the other weight vectors of '4 � '1 ˝ '4 and
restricting to v one gets contributions to the weights .CC�C/, .CC��/, .C�CC/
and .C�C�/. Thus the differential of the degree 3 invariant of '1.F4/ at v vanishes
on '4 except on v��C�, v��CC, v�C�� and v�C�C. Now polarizing it is easy to
see that the four generators of degree 3 have differential of rank 4 at v when applied
to vectors in 2'4.B4/.

There remains the generator of degree 4. Restricted to B4 one easily sees that the
invariant is a sum of two generators (modulo products of the generators of degree 2),
one of which is the invariant which contracts the copy of

V2
.'1/ � S2.2'1/ with

the copy in
V2
.'4/ � S2.2'4/ and the other which is of degree 4 in 2'4.B4/ (and

doesn’t involve 2'1). Now the highest weight vector of
V2
.'1/ � V2

.'4/ is (up to
nonzero scalars)

vCCCC ^ vCC�� C vCCC� ^ vCC�C
from which it follows that the weight vector of weight �"2 � "3 does not vanish on
vC��� C v���C. Now in

V2
.'1/ � S2.2'1/ we have v2 ^ v3 of weight "2 C "3.

Hence the differential of the degree 4 invariant evaluated at v does not vanish on
v���C and the rank of the differentials of the 8 invariants is indeed 8. Thus 2'4.F4/
is coreduced. ut
Proof (of statement (c)). Recall that the root system R of G has the following 3
parts A, B and C :

A D f˙"ig; B D f˙"i ˙ "j j i < j g; C D f1
2
.˙"1 ˙ "2 ˙ "3 ˙ "4/g

with cardinality #A D 8, #B D 24 and #C D 16. Thus

g D LieG D h˚
M

ˇ2A[B[C
gˇ
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where h D LieT is the Cartan subalgebra and T � G a maximal torus. The weights
� D �V of the representation V are the short roots A [ C together with the zero
weight 0. The nonzero weight spaces V� are 1-dimensional, and the zero weight
space V0 D V T has dimension 2. This implies the following.

Lemma A.2. Let ˇ 2 R be a root and � 2 � a weight of V . If ˇC� is a weight of
V , then gˇV� is a nontrivial subspace of VˇC�.

Note that gˇV0 D Vˇ and gˇV�ˇ � V0 is 1-dimensional for every short root
ˇ 2 A[ C .

The subspace g0 WD h˚Lˇ2A[B gˇ � g is the Lie algebra of a maximal
subgroup G0 � G of type B4, and the representation V decomposes under G0 into
V D �1 ˚ '1.B4/˚ '4.B4/ where '4.B4/ DL�2C V� , '1.B4/ D VA ˚L˛2A V˛ ,
and VA WD '1.B4/T � V0. It follows that g˛V�˛ D VA for ˛ 2 A, but g�V�� ª VA
for � 2 C , so that g˛V�˛ C g�V�� D V0.

The basic idea for the calculations is the following. To every vector v 2 V we
define its weight support !.v/ � A [ C [ f0A; 0C g in the following way. Write v
as a sum of weight vectors, v DPA v˛ C

P

C v� C v0. Then

!.v/ WD f˛ 2 A j v˛ ¤ 0g [ f� 2 C j v� ¤ 0g [

8

ˆ

ˆ

<

ˆ

ˆ

:

; if v0 D 0;
f0Ag if v0 2 VA n f0g;
f0C g if v0 2 V0 n VA:

This extends in an obvious way to the weight support of elements from V ˚V . Now
we look at a pair v D .v0; v00/ D .v˛0 C v� 0 ; v˛00 C v� 00/ 2 V ˚V where ˛0; ˛00 2 A
and � 0; � 00 2 C are distinct weights. Define

˝.v/ WD f!.xˇv/ j ˇ 2 A [ B [ C g [ f˛0; ˛00; � 0; � 00g;

where xˇ 2 gˇ is a (nonzero) root vector. This is the set of weight supports of
generators of gv where we use that hv D Cv˛0 ˚ Cv� 0 ˚ Cv˛00 ˚Cv� 00 .

Our problem can now be understood in the following way. We are given a matrix
M of column vectors from which we want to calculate the rank. We replace M by
the “support matrix” ˝.M/ which is obtained from M by replacing each nonzero
entry by 1. How can one find a lower bound for the rank of M from˝.M/?

There is an obvious procedure. We first look for a column of ˝.M/ which
contains a single 1, let us say in row i . Then we remove all other 1’s in row i and
repeat this procedure as often as possible to obtain a matrix ˝.M/0. It is clear that
this “reduced” matrix ˝.M/0 is again the support matrix of a matrix M 0 which is
obtained by column reduction fromM . This first step is called “column reduction.”

Now we apply row reduction toM 0 which amounts to looking at rows of˝.M/0
which contain a single 1. Then we delete all other 1’s in the corresponding column.
Again we repeat this procedure as often as possible and obtain a matrix˝.M/00. We
call this procedure “row reduction.” It is clear now that a lower bound for the rank
of M is given by the number of columns of ˝.M/00 containing a single 1.
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Now we choose v 2 V ˚ V as above with weights

.˛0; � 0; ˛00; � 00/ D ."3; 1=2."1 � "2 � "3 C "4/; "2; 1=2."1 � "2 � "3 � "4//:

We obtain a set ˝.v/ with 45 elements where each element’s weight support has
cardinality at most two. (We use Mathematicar to perform these and the following
calculations.) After applying the “column reduction” we obtain a new set˝.v/0 that
contains 44 elements where 34 of them contain a single weight. For the remaining
10 elements, the “row” reduction produces 10 sets with a single weight. Thus we
get dimGv D dim gv D 44 D 2 dimV � dimV==G, and we are done. ut
Remark A.3. We are grateful to Jan Draisma who did some independent calcula-
tions (using GAP) to show that there is a dense orbit in the null cone of V ˚ V .

Appendix B Computations for G2 � G2

The main result of this appendix is the following proposition. We will give two
proofs.

Proposition B.1. The representation .C7 ˝C
7;G2 �G2/ is not coreduced.

Proof (First Proof of Proposition B.1). The nontrivial part of the slice representation
at the zero weight vector is G WD SL3 �SL3 on the four possible versions of .W WD
C
3 or W �/ tensored with .W WD C3 or W

�
/. Set V1 WD W ˝W , V2 WD W ˝W �,

V3 WD W � ˝W and V4 WD W � ˝W �.
Lemma B.2. The G-module

V WD V1 C V2 C V3 C V4
is not coreduced.

We have a group N of order 8 that acts on V by interchanging W and W �, W
and W

�
as well as interchanging W , W � with W , W

�
. Then N normalizes the

action of G. Here are the steps in the proof of the proposition above.

(1) We show that there is a minimal generator f of the invariants of .V;G/ which
is multihomogeneous of degree (3,3,3,3) in the four irreducible subspaces of V .

(2) We show that, up to the action of the Weyl group and N , there are eight
1-parameter subgroups � of G such that the union of the GZ� is N .V /.

(3) We show that for each such �, the differential of f vanishes on Z�.

It then follows from Remark 3.2 that V is not coreduced.
Let R D CŒa1; : : : ; an� be a finitely generated N

d -graded ring where the ai are
homogeneous. Recall that a1; : : : ; am are a regular sequence in R if a1 is not a zero
divisor and ajC1 is not a zero divisor in R=.Ra1 C � � � C Raj /, 1 � j < m.
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We may write R as a quotient R D CŒx1; : : : ; xn�=I where the image of xi in
R is ai , i D 1; : : : ; n. Let Is denote the elements of I homogeneous of degree
s WD .s1; : : : ; sd /, sj 2 N and let NI denote I=.x1; : : : ; xm/. We leave the proof of
the following lemma to the reader.

Lemma B.3. Let R, etc. be as above. Then Is ! NIs is an isomorphism for all
s 2 N

d .

The lemma says that we can determine the dimension of the space of relations of
the ai in degree s by first setting a1; : : : ; am to zero.

Lemma B.4. There is a generator f of R WD O.V /G of multidegree .3; 3; 3; 3/.

We used LiE to compute a partial Poincaré series of R:

1C .ps C qr/C 2.p2s2 C q2r2/C .p3 C q3 C r3 C s3/
C 2.p3q3 C p3r3 C q3s3 C r3s3/C 3.p3s3 C q3r3/

C 2.q3ps C r3ps C p3qr C s3qr/
C 6.q3p2s2 C r3p2s2 C p3q2r2 C s3q2r2/
C 13.p3q3r3 C p3q3s3 C p3r3s3 C q3r3s3/

C 4pqrs C 10.pq2r2s C p2qrs2/C 18.pq3r3s C p3qrs3/
C 37p2q2r2s2 C 86.p2q3r3s2 C p3q2r2s3/C 265p3q3r3s3:

If there were no relations among the generators of R of degree at most .3; 3; 3; 3/,
then the Poincaré series would indicate that we have generators in degree .a; b; c; d /
of a certain multiplicity which we denote by gen.a; b; c; d /. We list the relevant
gen.a; b; c; d /, modulo symmetries given by the groupN .

(1) gen.0110/ D 1
(2) gen.0220/ D 1
(3) gen.3000/ D 1
(4) gen.3300/ D 1
(5) gen.0330/ D 0
(6) gen.1111/ D 3
(7) gen.3110/ D 1
(8) gen.3220/ D 3
(9) gen.3330/ D 3

(10) gen.1221/ D 5
(11) gen.1331/ D 2
(12) gen.2222/ D 14
(13) gen.3223/ D 13
(14) gen.3333/ D 11
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It is easy to see that the representations Vi C Vj , 1 � i < j � 4 are cofree. Now
V2 C V3 has generators in degrees (3,0), (0,3), (1,1) and (2,2) while V1 C V2 has
generators in degrees (3,0), (0,3) and (3,3). Thus it is easy to see that we have a
regular sequence in R consisting of the (determinant) invariants of degree 3 and
those of degree .0110/, .0220/, .1001/ and .2002/.

Lemma B.5. Suppose that we are in one of the cases above, except for .2222/,
.3223/ and .3333/. Then R has gen.abcd/ generators in degree .abcd/.

Proof. We set the invariants of our regular sequence equal to zero and see if we
have any relations. But then there are no nonlinear polynomials in the remaining
generators in the degrees we are worried about. ut
Proof (of Lemma B.4). As usual, we set the elements of our regular sequence equal
to zero. This does not change the number of minimal generators of degree .3333/.
Now how can we have fewer generators than gen.3333/ in degree .3333/? This
can only occur if there is a degree .abcd/ with an “unexpected” relation such that
.3333/� .abcd/ is the degree of a generator not in our regular sequence. Thus the
only problem could occur because of relations in degree .2222/multiplied by the 3
generators f1, f2 and f3 in degree .1111/. Moreover, modulo our regular sequence,
the unexpected relations in degree .2222/ have the form .r D P

ij cij fifj / D 0.
Thus there are unexpected relations r1; : : : rd , d � 6. For each relation rk we add
an additional generator yk in degree .2222/ and to get the correct count of non-
generators in degree .3333/ we have to adjust our formal count by adding 3d (from
the product of the yk by the fi ) and subtracting the dimension of the span of the
fi rk in the polynomial ring CŒf1; f2; f3�. But the correction is by less than 11:

Case 1. d � 5. Then we have a correction of at most 3d � d � 10.

Case 2. d D 6. Then the correction is 18 � dimS3.C3/ D 8. ut
We now have our generator f of degree (3333). Next we need to calculate the

irreducible components of the null cone, up to the action ofN .
Let � be a 1-parameter subgroup of G WD SL3 �SL3 whose weights for C3 are

a, b and c and whose weights for C
3

are a, b and c. We have that a � b � c and
similarly for a, etc. We also can assume that no weight of V is zero. Of course,
many choices of a, etc. will give the same subset Z� in V . We say that a particular
choice of a, etc. is a model if it gives the correct Z�.

The action of our group N does not change the weights that occur, just in which
of the four components they occur. Thus to show that df vanishes on N .V /, we
can always reduce to the case that a > a and that the other numbers are negative (or
zero). For every possibility we will give a model such that df vanishes on Z�.

Lemma B.6. We have that c � b � c � c � c C a � b C a � b � c � b � b.
Moreover, c � b < 0 and not both c � c and b � b are positive.

Proof. The string of inequalities is obvious. If c�b > 0, then b�c > 0 and adding
we get that �aCa > 0 which is a contradiction. Similarly, not both c� c and b�b
can be positive. ut
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Given the lemma, there are eight possibilities for the signs of c�b, c�c; : : : ; b�b
which we present in matrix form. In another matrix, we present the values a, b, c,
a, b and c of a 1-parameter subgroup � which is a model for the signs. Note that the
signs tell you exactly which vectors in V are in the positive weight space of �.

0

B

B

B

B

B

B

B

B

B

B

B

@

�1 �1 �1 �1 �1 �1
�1 �1 �1 1 �1 �1
�1 �1 �1 1 1 �1
�1 �1 �1 1 1 1

�1 �1 1 1 �1 �1
�1 �1 1 1 1 �1
�1 �1 1 1 1 1

�1 1 1 1 1 �1

1

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

@

4 �2 �2 1 0 �1
8 �3 �5 4 �2 �2
4 �1 �3 2 0 �2
3 0 �3 2 �1 �1
6 �3 �3 4 �2 �2
8 �3 �5 6 �2 �4
7 �2 �5 6 �3 �3
4 �2 �2 3 0 �3

1

C

C

C

C

C

C

C

C

C

C

C

A

Proof of Lemma B.2. Consider signs which have the 1-parameter subgroup � with
weights

�

8 �3 �5 6 �2 �4� as model. Then the largest negative weight occurring
in V is �14 while the positive weights occurring in V1; : : : ; V4 are

.1; 3; 4; 6; 14/; .1; 2; 10; 12/; .1; 1; 3; 9; 11/; .7; 7; 5; 9/:

Now consider a monomial m in the weight vectors which occurs in f . If df does
not vanish on Z� then there is a monomial with only one negative weight vector.
But the sum of the positive weights occurring inm is at least 3C3C3C2�5 D 19
which is greater than 14. Hence this is impossible and df vanishes on GZ�. One
similarly (and more easily) sees that df vanishes on GZ� in the other 7 cases.

This finishes the first proof of Proposition B.1. ut
Second Proof of Proposition B.1. The weights of V D C

7 are the short roots of
G WD G2 together with 0, and all weight spaces are 1-dimensional. We use the
notation� WD f˙˛;˙ˇ;˙.˛Cˇ/; 0g where ˛Cˇ is the highest weight. Thus the
weight spaces of V ˝ V are given by the tensor products V�˝ V� , .�; �/ 2 ���.

We first determine the maximal positive subspaces of W WD V ˝ V , up to the
action of the Weyl group. If � is a one-parameter subgroup of G �G we denote by
W� the sum of the �-positive weight spaces, i.e.,

V� WD
M

�.�;�/>0

W.�;�/:

The 1-PSG � is defined by the values a WD .�; .˛; 0//, b WD .�; .ˇ; 0//, a0 WD
.�; .0; ˛//, b0 WD .�; .0; ˇ//. Using the action of the Weyl group, we can assume
that

a; b; a0; b0 > 0; a � b; a0 � b0; fa; b; aC bg \ fa0; b0; a0 C b0g D ;:

We can also assume that a > a0; we will then get the other maximal positive
subspaces by the symmetry .�; �/ 7! .�; �/. Now V� depends only on the relative
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position of the values a C b > a � b and the values a0 C b0 > a0 � b0. It is not
difficult to see that there are eight cases.

(1) aC b > a > b > a0 C b0 > a0 � b0 represented by � D .5; 4; 2; 1/;
(2) aC b > a > a0 C b0 > b > a0 � b0 represented by � D .6; 4; 3; 2/;
(3) aC b > a0 C b0 > a � b > a0 � b0 represented by � D .6; 5; 4; 3/;
(4) aC b > a > a0 C b0 > a0 > b > b0 represented by � D .5; 2; 3; 1/;
(5) aC b > a0 C b0 > a > a0 > b > b0 represented by � D .6; 4; 5; 3/;
(6) aC b > a > a0 C b0 � a0 > b0 � b represented by � D .7; 1; 4; 2/;
(7) aC b > a0 C b0 > a > a0 > b > b0 represented by � D .6; 2; 4; 3/;
(8) a0 C b0 > aC b > a > a0 � b0 > b represented by � D .6; 2; 5; 4/.
To get the full set of maximal positive subspaces we have to add the 8 �’s obtained
from the list above by replacing .a; b; a0; b0/ with .a0; b0; a; b/.

Now we used LiE to look at the covariants of type �1 ˝ V . The multiplicities of
this covariant in degrees 1 to 9 are .0; 0; 1; 1; 3; 5; 12; 18; 41/, and the dimensions of
the invariants in these degrees are .0; 1; 1; 3; 2; 8; 7; 17; 19/. It follows that at most
37 D 1 � 12 C 1 � 5 C 3 � 3 C 2 � 1 C 8 � 1 covariants of degree 9 are in the ideal
generated by the invariants, hence there are generating covariants of this type in
degree 9. Now we have to show that for every positive weight space V� the highest
weight .0; ˛ C ˇ/ of � ˝ V cannot be expressed as a sum of 9 weights from V�.
Because of duality, each V� has dimension 24 D .7 � 7 � 1/=2. If we denote by ��

the set of weights of V�, this amounts to prove that the system

X

�2��
x�� D .0; ˛ C ˇ/;

X

�2��
x� D 9

has no solution in nonnegative integers x�. Note that the first condition consists in
4 linear equations in 24 variables. Now we used Mathematica to show that there are
no solutions for each one of the sixteen maximal positive weight spaces Z� given
above.
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1 (1952), 39–166.



474 Hanspeter Kraft and Gerald W. Schwarz

[Dyn52b] E. B. Dynkin, Semisimple subalgebras of semisimple Lie algebras, Mat. Sbornik N.S.
30(72) (1952), 349–462 (3 plates).

[GV78] V. Gatti and E. Viniberghi, Spinors of 13-dimensional space, Adv. in Math. 30 (1978),
no. 2, 137–155.

[Gro67] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des
morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. (1967), no. 32, 361.

[Hes80] Wim H. Hesselink, Characters of the nullcone, Math. Ann. 252 (1980), no. 3, 179–182.
[KPV76] Victor G. Kac, Vladimir L. Popov, and Ernest B. Vinberg, Sur les groupes linéaires

algébriques dont l’algèbre des invariants est libre, C. R. Acad. Sci. Paris Sér. A-B 283 (1976),
no. 12, Ai, A875–A878.

[Kno86] Friedrich Knop, Über die Glattheit von Quotientenabbildungen, Manuscripta Math. 56
(1986), no. 4, 419–427.

[Kos63] Bertram Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85
(1963), 327–404.

[KR71] Bertram Kostant and Stephen Rallis, Orbits and representations associated with symmetric
spaces, Amer. J. Math. 93 (1971), 753–809.

[Kra84] Hanspeter Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathe-
matics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984.

[KW06] Hanspeter Kraft and Nolan R. Wallach, On the null cone of representations of reductive
groups, Pacific J. Math. 224 (2006), no. 1, 119–139.

[Lun75] D. Luna, Adhérences d’orbite et invariants, Invent. Math. 29 (1975), no. 3, 231–238.
[Mat89] Hideyuki Matsumura, Commutative Ring Theory, second ed., Cambridge Studies in

Advanced Mathematics, Vol. 8, Cambridge University Press, Cambridge, 1989, Translated
from the Japanese by M. Reid.

[Pan85] D. I. Panyushev, Regular elements in spaces of linear representations. II, Izv. Akad. Nauk
SSSR Ser. Mat. 49 (1985), no. 5, 979–985, 1120.

[Pan99] Dmitri I. Panyushev, Actions of “nilpotent tori” on G-varieties, Indag. Math. (N.S.) 10
(1999), no. 4, 565–579.

[Pop76] V. L. Popov, Representations with a free module of covariants, Funkcional. Anal. i
Priložen. 10 (1976), no. 3, 91–92.

[Pro07] Claudio Procesi, Lie Groups, Universitext, Springer, New York, 2007, An approach
through invariants and representations.

[Ric89] R. W. Richardson, Irreducible components of the nullcone, Invariant theory (Denton, TX,
1986), Contemp. Math., Vol. 88, Amer. Math. Soc., Providence, RI, 1989, pp. 409–434.

[Sch68] Issai Schur, Vorlesungen über Invariantentheorie, Bearbeitet und herausgegeben von
Helmut Grunsky. Die Grundlehren der mathematischen Wissenschaften, Band 143, Springer-
Verlag, Berlin, 1968.

[Sch78] Gerald W. Schwarz, Representations of simple Lie groups with regular rings of invariants,
Invent. Math. 49 (1978), no. 2, 167–191.

[Sch87] Gerald W. Schwarz, On classical invariant theory and binary cubics, Ann. Inst. Fourier
(Grenoble) 37 (1987), no. 3, 191–216.

[Sch88] Gerald W. Schwarz, Invariant theory of G2 and Spin7, Comment. Math. Helv. 63 (1988),
no. 4, 624–663.

[Sch79] Gerald W. Schwarz, Representations of simple Lie groups with a free module of covari-
ants, Invent. Math. 50 (1978/79), no. 1, 1–12.

[Ste98] John R. Stembridge, The partial order of dominant weights, Adv. Math. 136 (1998), no. 2,
340–364.

[vLCL92] M. A. A. van Leeuwen, A. M. Cohen, and B. Lisser, LiE: A package for Lie Group
Computations, CAN, Computer Algebra Netherland, Amsterdam, 1992.

[Vin76] È. B. Vinberg, The Weyl group of a graded Lie algebra, Izv. Akad. Nauk SSSR Ser. Mat.
40 (1976), no. 3, 488–526, 709.



M-series and Kloosterman–Selberg zeta
functions for R-rank one groups

Roberto J. Miatello and Nolan R. Wallach

The first author wishes to congratulate Nolan Wallach
on this occasion and to thank him for his most generous
teaching and support.

R.J. Miatello

Abstract For an arbitrary Lie group G of real rank one, we give a formula
for the Fourier coefficient D�

�0

.	; �/ of the M-series (a type of Poincaré series)
defined in [17], in terms of Kloosterman–Selberg zeta functions  �;�0 ;	 .�/.
As a consequence we show that the meromorphic continuation of  �;�0 ;	 .�/ to
C follows from the meromorphic continuation of the M-series. We also give a
description of the pole set in the region Re � � 0.

Keywords: Kloosterman sum • Kloosterman–Selberg zeta function • Fourier
coefficient • Whittaker vector • rank one Lie group

Mathematics Subject Classification: 11F30, 11F70, 11L05, 11M36

Partially supported by CONICET, SecytUNC, MINCyT (Argentina) and NSF grant
DMS-0963036.

R.J. Miatello
FaMAF-CIEM, Facultad de Matemática, Astronomia y Fisica,
Universidad Nacional de Córdoba, Córdoba 5000, Argentina
e-mail: miatello@famaf.unc.edu.ar

N.R. Wallach
Department of Mathematics, University of California at San Diego,
La Jolla, CA 92093-0112, USA
e-mail: nwallach@ucsd.edu

© Springer Science+Business Media New York 2014
R. Howe et al. (eds.), Symmetry: Representation Theory and Its Applications,
Progress in Mathematics 257, DOI 10.1007/978-1-4939-1590-3__16

475

mailto:miatello@famaf.unc.edu.ar
mailto:nwallach@ucsd.edu


476 Roberto J. Miatello and Nolan R. Wallach

1 Introduction

The usual Kloosterman sum for c 2 Z>0; n;m 2 Z is given by the formula

S.m; n; c/ D
X

a; d 2 Z=cZ

ad D 1

e
2
i.amCdn/

c :

In 1965 Selberg defined a Dirichlet series

 m;n.s/ D
X

c�1

S.m; n; c/

c2s
:

Using Weil’s estimates on the Kloosterman sums, Selberg proved that the series
converges absolutely for Re s > 3

4
and also proved a meromorphic continuation

to Re s � 1
2
. One can show that if � is a discrete subgroup of SL.2;R/ such

that vol.� nSL.2;R// < 1 and if � is an eigenvalue of the (positive standardly
normalized) Laplacian on L2.� nSL.2;R/= SO.2//, then � D s.1 � s/ for some s
with Re s � 1

2
. Selberg proved that if 0 ¤ � D s.1�s/ is such an eigenvalue with �

a Hecke congruence subgroup, then there exist m; n such that s is a pole of  m;n.s/
with Re s � 1

2
. Thus s must, in fact, satisfy 1

2
� Re s � 3

4
which implies Selberg’s

famous spectral gap for congruence subgroups, that is, there are no eigenvalues of
the Laplacian with 0 < � < 3

16
:

To prove his results Selberg introduced the suitable Poincaré series Pm.z; s/ and
computed the inner product of two such series in two different ways, namely, first
by using the spectral expansion and secondly by using the Bruhat decomposition.
It is in this second way where Kloosterman sums come into play.

In [17] we studied a type of Poincaré series, we call them M-series, that give
� -invariant eigenfunctions of the Casimir operator for any R-rank one Lie group
G, � a lattice in G. Let P D MAN be a cuspidal parabolic subgroup of G with
MA the standard Levi factor and A the standard split component. The Poincaré
series, denoted by M�.	; �/ for 	 2cM;� 2 a�, with a the complexified Lie algebra
of A, forms a one-parameter family of � -invariant eigenfunctions similar to the
Eisenstein series, but they do not define automorphic forms since they do not satisfy
the condition of moderate growth. They are constructed from Whittaker vectors
associated to a generic character � of � \ NnN . They are initially given by a
convergent series for Re � > � and they can be meromorphically continued to all
of a�. An important property is that although they are exponentially increasing,
their residues at the poles in the half-plane Re � � 0 do define square-integrable
automorphic forms and, under some conditions, they generate all of L2disc.� nG/.

The goal of this paper is the study of the �0-Fourier coefficients D�

�0

.	; �/ of
M�.	; �/ in connection with the Kloosterman–Selberg zeta function  �;�0 ;	 .�/ for
an arbitrary real rank one groupG. The coefficientD�

�0

.	; �/ is naturally connected
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to  �;�0 ;	 .�/, since the expansion at infinity of M�.	; �/ yields a similar “expansion”
for D�

�0

.	; �/ and the first term of this expansion is a multiple of  �;�0 ;	 .�/. Using
this fact, we will prove that the meromorphic continuation of  �;�0 ;	 .�/ to a�
follows from the continuation of D�

�0

.	; �/ (see Theorem 4.2) and we will give
a result on the location of the poles of  �;�0 ;	 .�/ in the closed right half-plane
(see Theorem 5.2). The pole set of D�

�0

.	; �/ in the right half-plane is essentially
the set of spectral parameters associated to the M -type 	, while the pole set of
 �;�0 ;	 .�/will also involve translates of spectral parameters associated to many other
M -types � 2 cM . The more regular behavior of D�

�0

.	; �/ can be attributed to the
fact that the M�.	; �/ are Casimir eigenfunctions, while the Selberg-type Poincaré
series satisfies a shift equation. On the other hand, D�

�0

.	; �/ is a more complicated
function than  �;�0 ;	 .�/, since it is an infinite sum of translates of Kloosterman–
Selberg type zeta functions (see (6)).

In the last section, we give the explicit expression of D�

�0

.	; �/ in terms of
Kloosterman–Selberg zeta functions in the cases of G D SL.2;R/, G D SO.n C
1; 1/, n � 3 and G D SU.2; 1/.

The Kloosterman–Selberg zeta function has been studied by several authors.
Goldfeld and Sarnak ([7]) reobtained Kuznetsov’s estimate for averages of
Kloosterman sums and Cogdell and Piatetski-Shapiro ([4]) carried out by spectral
methods, the meromorphic continuation to C in the case of G D SL.2;R/.
Elstrodt–Grunewald–Menicke ([5]), Cogdell–Li–Piatetski-Shapiro–Sarnak ([2])
and Li ([14]) meromorphically continued the zeta function for discrete subgroups
acting on real hyperbolic n-space RHn and complex hyperbolic n-space CHn

respectively. These authors use a generalization of Selberg’s Poincaré series and,
by first proving adequate estimates for the associated Kloosterman sums, obtain an
analog of Selberg’s lower bound for �1. We note that in the case of [14] this bound
is valid only for generic cusp forms, that is, forms having at least one nonzero
Fourier coefficient.

2 The definition

Let G be a connected simple Lie group of real rank one, K a maximal compact
subgroup, � the corresponding Cartan involution, and let � be a discrete subgroup
of finite covolume. Let P D MAN be a cuspidal parabolic subgroup with given
Langlands decomposition. HereMA is the standard Levi factor (i.e.,M D K \P/
and A is the standard split component. Let s� 2 K such that s�a.s�/�1 D a�1. The
Bruhat lemma implies that

G D Ps�N [ P:

This union is disjoint and if g 2 Ps�N , then g D n1.g/m.g/ags
�n2.g/ with

ni .g/ 2 N; i D 1; 2, m.g/ 2 M , and ag 2 A uniquely determined. We will use the
notation m.g/ and mg interchangeably. Let �; �0 W N ! S1 be unitary characters
of N , trivial on �N WD � \N . We set �P WD � \ P .
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Let g, p, m, a, n be respectively the complexified Lie algebras of G, P , M , A,
N . Relative to A, n D n�˚ n2� with � and 2� the restricted roots with Œn; n� D n2�
(if G is locally SO.n; 1/ one has n2� D f0g). We set � D 1

2
.dim n� C 2 dim n2�/�.

If � 2 a�, then � D z� with z 2 C. We write Re � D .Re z/� and t� > u� if
t; u 2 R and t > u.

One can give a Lie-theoretic definition of Kloosterman sums and of the zeta
function introduced by Selberg.

Let .�;H� / be a unitary representation ofM . Fix S to be a set of representatives
of the double cosets in �Nn� \ Ps�N=�N .

The Kloosterman–Selberg zeta function is defined as the operator-valued series
for � 2 a�

 �;�0;� .�/ D
X

�2�N n.���P /=�N
�.n1.�//�

0.n2.�//a�C�� �.m.�// (1)

D
X

m�a�2SMA
S.�; �0Im�a�/a

�C�
� �.m�/:

Here, SMA is the set of m�a� with � running through � \ Ps�N and

S.�; �0Ima/ D
X

�

� .n1.�// �
0.n2.�// (2)

is a generalized Kloosterman sum, where, for each ma 2 SMA, � runs over the
� 2 S such that m�a� D ma. In Example 6.1 we show that if G D SL.2;R/,
� is a Hecke congruence subgroup, � is the trivial representation, P is the upper
triangular parabolic subgroup of G, and � and �0 are appropriate characters of N ,
then (2) defines the usual Kloosterman sum.

The series in (1) makes sense as a formal series since

�.n1.���//�
0.n2.���//a�C���� �.m.���// D �.n1.�//�0.n2.�//a�C�� �.m.�//

for �; � 2 �N and � 2 � X �P .

Lemma 2.1. Let ! be a compact subset of f� 2 a�jRe � > �g. Then the series in
(1) converges absolutely and uniformly on !. Furthermore, there exists a constant
C! <1, depending only on � and !, such that

�

� �;�;�0 .�/
�

� �  1;1;1.Re �/ � C!
for � 2 !.

Proof. We note that

�

� �;�;�0 .�/
�

� �
X

�2�N n.���P /=.�N /

�

�

��.n1.�//�
0.n2.�//a�C�� �.m.�//

�

�

�

D  1;1;1.Re �/:
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Let E� be the standard spherical Eisenstein series

E� .P; �; g/ D
X

�2�N n�
a.�g/�C�

with g D n.g/a.g/k.g/ for g 2 G, n.g/ 2 N; a.g/ 2 A and k.g/ 2 K . In the
proof of [17] Proposition 2.7 (iii) we observed that the constant term ofE� .P; �; g/
at g D 1 is (up to normalization of measures)

j�P=�N j C
X

�2�N n.���P /=�N

Z

N

a.�n/�C�dn

with the latter an absolutely convergent series of absolutely convergent integrals for
Re � > �. We note that if � 2 �Nn.� � �P /=�N , then

Z

N

a.�n/�C�dn D a�C�� c.�/:

with c.�/, the Harish-Chandra C-function. ut
Our next task is to carry out the meromorphic continuation when � is finite

dimensional and � is generic. To do this we need to recall several results from [17].

3 The �-constant term of the M-series

We retain the notation of the preceding section. Let .	;H	/ be an irreducible
continuous representation of M . Let for � 2 a�

C
, 
	;� be the principal series action

of G on IndKM .	/. For each generic � such that �j�N D f1g, a meromorphic family

of operators, M�.	; �/, from the space of K-analytic vectors in IndKM .	/, H
	
! , to

H	 was introduced, such that M�.	; �/ ı 
	;�.�/ D M�.	; �/ for all � 2 � . These

operators have the property that if u 2 H	
K (the K-finite vectors) and � 2 H�	 ,

then g 7! �.M�.	; �/
	;�.g/u/ satisfies all the conditions of an automorphic
function except for moderate growth. We will discuss the spectral properties of
this meromorphic family in L2.� nG/ later in this paper. Here we will confine
our attention to one result that is pertinent to the meromorphic continuation of the
Kloosterman–Selberg zeta function. We will now introduce the notation needed to
describe the result in [17] that we need.

We recall some material from the first appendix in [17]. Let n D �n. Let
B be the Killing form of Lie.G/ and let x 7�! x be complex conjugation of
g relative to Lie.G/. Set hx; yi D �B.�x; y/ for x; y 2 g. Then h ; i is a
positive definite K-invariant inner product on g. Thus h ; ijn is a positive definite
M -invariant inner product on n. Let Y1; : : : ; Yp be an orthonormal basis of n��.
Extend the orthonormal basis with YpC1; : : : ; YpCq an orthonormal basis of n�2�
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(here q D 0; 1; 3; 7/. Let Y I;J D Y
i1
1 � � �Y ipp Y j1pC1 � � �Y jqpCq , in the standard

multi-index notation. On U.n/ we put a Hermitian inner product also denoted h ; i
such that

˝

Y I;J ; Y L;M
˛ D 1

I ŠJ Š
ıI;LıJ:M . This form is Ad.M/-invariant. In [17], A.1

we defined entire functions a	;�I;J .�/ on a� with values in EndC.H	/ such that if ! is
a compact subset of a�, then

�

�

�a
	;�
I;J .�/

�

�

� �
C
jI jCjJ j
	;�;!

.jI j C jJ j/Š (3)

with C	:! a positive constant. These functions were part of the following expansion:

$�.	; �/.u/ D
X

I;J

a
	;�
I;J .�/p
I ŠJ Š

.
	;�.Y
I;J /u/.1/ (4)

of a Whittaker vector in the dual of H	
K relative to � and the action 
	;� . If � 2 P ,

then we set �� D � ı Ad.�/�1.
The following result is a combination of Proposition 2.7 (ii) in [17] and its proof.

Proposition 3.1. If �; �0 are nontrivial characters of N , u 2 H	
K , and if � 2 H�	 ,

then
Z

�N nN
�0.n/�1�.M�.	; �/
	;�.n/u/ dn D �.D�

�0

.P; 	; �/J
�0

	;�.u//

C�
0

@

0

@

X

�2�N n�P
ı�0;�� 	.m.�//�.n.�//

1

A$�0

.	; �/u

1

A ;

where D�

�0

.P; 	; �/ is meromorphic for � 2 a� with values in EndC.H	/ and, for
Re � > �, is given by the formula

D
�

�0

.P; 	; �/

D
X

�2�N n.���\P/=�N
�.n1.�//�

0.n2.�//a�C�� 	.m.�//�.�0; �;m.�/a� ; �/

with

�.�0; �;ma; �/ D
X

I;J

a
	;�
I;J .�/p
I ŠJ Š

d�0.Ad.mas�/�1Y I;J /:

Furthermore, J �
0

	;� is the Jacquet integral corresponding to 
	;� and �0.
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We note that since d�.n2�/ D 0 and Ad.a�1/Y I;J D ajI j�C2jJ j�Y I;J we have

�.�0; �;ma; �/ D
X

I

a
	;�
I;0 .�/p
I Š

ajI j�d�0.Ad.ms�/�1Y I;0/: (5)

We need the following fact about the Jacquet integral (c.f. [22]).

Theorem 3.2. If � is nontrivial, then � 7! J
�

	;� extends to a weakly holomorphic

family of maps, from the C1-vectors of H	 to H	 , that is never 0. Thus, for each

� 2 a� we can choose a compact neighborhood of � and u 2 H	
K such that

�

�

�J
�

	;�.u/
�

�

� � Cu > 0.

4 The meromorphic continuation

We retain the notation of the previous section. If � is a finite-dimensional represen-
tation of M that is equivalent with the direct sum 	1 ˚ � � � ˚ 	r with 	i irreducible,
then we define

D
�

�0

.P; �; �/ D D�

�0

.P; 	1; �/˚ � � � ˚D�

�0

.P; 	r ; �/;

and

a
�;�
I;J .�/ D a	1;�I;J .�/˚ � � � ˚ a	r ;�I;J .�/:

The formula in Prop. 2.7 [17] remains true for D�

�0

.P; �; �/ with 	 replaced by � .
For the purpose of the meromorphic continuation we will define some unitary
representations of M . Let, for j 2 Z�0, .�j ; Vj /, denote the representation of M
on the �j� weight space of A in U.n/=U.n/n�2�. We can think of the elements
Y I;0p
I Š

with jI j D j as an orthonormal basis of this space. We can also think of these

elements as an orthonormal basis of V �j .
For ! a compact subset of the half space Re � > � we have

D
�

�0

.P; �; �/

D
X

�2�N n.� X�P /=�N
�.n1.�//�

0.n2.�//a�C�� �.m.�//�.�0; �;m.�/a� ; �/

D
X

�2�N n.� X�P /=�N
�.n1.�//�

0.n2.�//a�C�� �.m.�//

�
X

I

a
�;�
I;0 .�/p
I Š

ajI j�d�0.Ad.m.�/s�/�1Y I;0/:
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The estimate in (3) in the previous section implies that if we take the term by term
norm of the individual terms (for � and I / we have

�

�

�

�

�

�.n1.�//�
0.n2.�//a�C�� �.m.�//

a
�;�
I;0 .�/p
I Š

ajI j�d�0
�

Ad.m.�/s�/�1Y I;0
�

�

�

�

�

�

� a
�Cj�C�
� kd�0kj .max.C�j ;�;!//

j

j Š
:

Now Lemma in Appendix A in [17] implies that the series definingD�

�0

.P; �; �/ for
Re � > � converges absolutely; we can thus interchange the order of summation.
Define �j to be the element of V �j given by d�0 ı Ad.s�/�1 restricted to Vj . We
have, after the obvious manipulations, for z 2 H	 ,

D
�

�0

.P; �; �/.z/ D
1
X

jD0

X

jI jDj
a
�;�
I;0 .�/.Id˝�j / �;�0;�˝��

j
.� C j�/.z˝ Y I;0/: (6)

For each r 2 N0 D N [ f0g we define

D
�

�0

.P; �; �/�r .z/ D
1
X

j�r

X

jI jDj
a
�;�
I;0 .�/.Id˝�j / �;�0;�˝��

j
.� C j�/.z˝ Y I;0/:

Then the same estimates as above imply

Lemma 4.1. D�

�0

.P; �; �/�r is holomorphic in � for Re � > � � r�.

We now relate this result to the Kloosterman–Selberg zeta functions.
Since we are only interested in the range Re � � 0 we can replaceD�

�.P; 	; �/.z/
with

I	.�/ 	;�;�.�/.z/C
r
X

jD1

X

jI jDj
a
	;�
I;0 .�/.Id˝�j / �;�;	˝��

j
.� C j�/.z˝ Y I;0/ (7)

where r is the smallest integer such that � < r� (i.e., r D pC2q
2
C 1 if p is even and

pC2q
2
C 1

2
if p is odd) and I	.�/ is an entire function.

Theorem 4.2. The Kloosterman–Selberg zeta function,  �;�;�0.�/, has a meromor-
phic continuation to all of a� for every unitary finite-dimensional representation �
of M .

Proof. We set

I� .�/ D I	1.�/˚ : : :˚ I	r .�/:
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Suppose that we have shown that D�

�0

.P; �; �/ has a meromorphic continuation to
the set Re � > � � r� for all finite-dimensional unitary representations � of M .
Then if � is a unitary irreducible representation ofM , we have for z 2 H	 if Re � >
� � j j�j

D
�

�0

.P; �; �/.z/ D I� .�/ �;�;�0.�/.z/ (8)

C
r
X

jD1

X

jI jDj
a
�;�
I;0 .�/.Id˝�j / �;�0 ;�˝��

j
.� C j�/.z˝ Y I;0/CD�

�0

.P; �; �/�rC1.z/:

The left-hand side of the equation is meromorphic for all � and every term other
than the first one is meromorphic for Re � > �� .j C1/�, by our assumption. Thus
the first term is also meromorphic for Re � > � � .j C 1/�. ut

5 Spectral properties

In this section we will study the relationship between the poles of the M�-series,
those of the D�

�0

and those of the  �;�0 with the discrete spectrum of L2.� nG/.
We retain the notation of the previous sections. We will study these meromorphic
functions in the half-plane Re � � 0. We will recall some material from Section 3
of [17].

Let .	:H	/ be an irreducible unitary representation of M . Let 	� be the
contragredient representation. Then for Re � > � we have

M�.	; �/.u/ D
X

�2�N n�
$�.	; �/.
	;�.�/u/

with (in the notation of (4))

$�.	; �/.u/ D
X

I;J

a
	;�
I;J .�/p
I ŠJ Š

.
	;�.Y
I;J /u/.1/:

In [17, A.1] the coefficients a	;�I;J .�/ are given as a product

a
	;�
I;J .�/ D I	.�/b	;�I;J .�/

with b	;�I;J rational in � with values in EndC.H	/ and I	.�/ an entire function such

that a	;�I;J .�/ is entire. We recall the definition of b	;�I;J .�/. Let M	�;�� be the Verma
module

M	�;�� D U.g/˝U.p/H	� ;��
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with H	�;�� , the p D m ˚ a ˚ n-module acting as follows: m acts by d	�; h 2 a
acts by .�� � �/.h/I and n acts by 0. Let pD m ˚ a ˚ n; then as a p-module
M	�;�� D U.n/˝H	� ;�� (here n acts by multiplication in the first factor and m˚a

acts by ad onU.n//. ThusM	�;�� DLI;J Y
I;J˝H	� ;�� . In [17, A.1] we observed

that ifM	�;�� is irreducible, then the formal completion ofM	�;�� relative to n (that
is, the formal series in the Y I;J ) is equivalent with

U.n/� ˝H	�;��

as an n-module with n acting only on the first factor by xf .n/ D f .nx/. In
particular, if � W n!C is a Lie algebra homomorphism, if � 2 H	� D H�	 and if

M	�;�� is irreducible, then there is a unique element of the completion

T	;� D
X

I;J

Y I;J ˝ c	;�I;J .�/.�/

such that c	;�I;J .�/ 2 End.H�	 / and

xT	;�.u/ D �.x/T	;�.u/ and c	;�0;0 .�/.�/ D �:

We now consider the g-module map

S	;� WM	�;� ! .H
	
K/
�

given by

S	;�.x ˝ �/.u/ D �..xı	;�/.u//
for u 2 .H

	
K/
�. Here ı	;�.u/ D v.u/. This leads us to a formal formula for

I	.�/
�1$�.	; �/ (with d� D �)

I	.�/
�1�.$�.	; �/.u// D

X

c
	;�
I;J .�/.�/.Y

I;J ı	;�/.u/:

If V is a finite-dimensional vector space and if L 2 End.V �/, then we define LT 2
End.V / by �.LT .u// D L.�/.u/. (� 2 V � and u 2 V ). Then

b
	;�
I;J .�/ D .c	;�I;J .�//T :

Arguing as in [17, A.1] (and also as in [8]) one can prove that b	;�I;J .�/ is
rational in � for fixed 	 with poles at the discrete set of rational multiples
of � such that M	�;�� is reducible. We set P.	/ equal to the (finite) set of
� with Re � � 0 such that M	�;�� is reducible. We replace M�.	; �/ with
I	.�/

�1M�.	; �/; D
�

�0

.P; 	; �/ by I	.�/
�1D�

�0

.P; 	; �/ and �.�0; �;ma; �/ with

I	.�/
�1P

I

a
	;�
I;0 .�/p
I Š
ajI j�d�0.Ad.ms�/�1Y I;0/.
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With this notation in place we can rephrase a combination of Theorem 3.2 and
Corollary 3.5 in [17] as follows:

Theorem 5.1. Suppose that �0 2 Spec.�; �/, that is, Re �0 � 0 and an irreducible
quotient, V , of 
	;�0 occurs in the discrete spectrum of L2.� nG/ and an automor-
phic form, f , corresponding to V is such that

Z

�N nN
f .ng/�.n/�1dn ¤ 0

with � nontrivial. Then �D�
�.P; 	; �/ has a pole at �0. If �0 … P.∼/ (or V is

spherical), then the converse is true.

Remark 1. In fact, we show (in the converse situation) that one can construct the
image of V from residues of �M�.	; �/ (here we identify � with z if � D z�).

We can now obtain information on the pole set P.�.�; �; �0// of  �;�;�0 .�/ by
using relation (6) together with Theorem 5.1.

Theorem 5.2. Let � be a finite-dimensional representation of M and let �; �0
be generic unitary characters of N mod �N . Denote by P.D.�; �; �0//,
P.�.�; �; �0// and P.$.�; �//, the pole sets of D�

�0

.P; �; �/,  �;�;�0 .�/ and
$�.�; �/, respectively.

Let Spec.�; �/ be as defined in Theorem 5.1 and for any ˝ � a�, let ˝C D
˝ \ f� 2 a� W Re � � 0g. Let, for each j 2 N , .�j ; Vj / denote the representation
of M on the �j� weight space of A on U.n/=U.n/n�2�.

Then we have

P.�.�; �; �0//C �
[

0�P kj�Œ��

(

Spec.� ˝ ��k1 ˝ : : :˝ ��kr ; �/ �
r
X

1

kj

)

[
[

0�Pkj�Œ��

(

P.$.� ˝ ��k1 ˝ : : :˝ ��kr ; �//�
r
X

1

kj

)

:

Proof. We know from Theorem 5.1 (see also [17], Thm 2.5 and Thm 3.2) that for
every �; �

P.D.�; �; �//C � Spec.�; �/ [ P.$.�; �//: (9)

Now if we apply (6) and (9) we see that

P.�.�; �; �0/C � Spec.�; �/ [ P.$.�; �//

[
Œ��
[

kD1

˚

P.�.� ˝ ��k ; �; �0// � k
�

:
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Similarly, for each k 2 N, P.�.� ˝ ��k ; �; �0//C is included in

Spec.� ˝ ��k ; �/ [ P.$.� ˝ ��k ; �//

[
Œ��
[

hD1

˚

P.�.� ˝ ��k ˝ ��h ; �; �0//� h
�

:

Thus

P.�.�; �; �0//C � Spec.�; �/ [
Œ��
[

k1D1

˚

Spec.� ˝ ��k1 ; �/ � k1
�

[ P.$.�; �// [
Œ��
[

k1D1

˚

P.$.� ˝ ��k1 ; �//� k1
�

[
[

k1Ck2�Œ��

˚

P. .� ˝ ��k1 ˝ ��k2 ; �// � .k1 C k2/
�

:

By iteration of this argument we arrive at

P.�.�; �; �0//C �
[

P

kj�Œ��

8

<

:

Spec.� ˝ ��k1 ˝ : : :˝ ��kr ; �/ �
r
X

jD1
kj W kj 2 N0; r � 0

9

=

;

[
[

P

kj�Œ��

8

<

:

P.$.� ˝ ��k1 ˝ : : :˝ ��kr ; �//�
r
X

jD1
kj W kj 2 N0; r � 0

9

=

;

as asserted. ut
Note. In [2] the authors carry out the meromorphic continuation of  .�; �; �0/ in the
case of G D SO.nC 1; 1/ and give a precise description of its poles in all of a. In
this paper, we have given a short uniform proof of the meromorphic continuation
of the zeta function for arbitrary rank one groups, based on the meromorphic
continuation of the M-series, by connecting the zeta function with the Fourier
coefficientD�

�.P; 	; �/ defined in [17]1.

1The contents of this paper were described by the second named author in a lecture in Marseille-
Luminy, in 2002, in honor of Jacques Carmona.
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6 Examples

In this section we exhibit explicitly the functionD�
�.1; �/ for Re.�/ > �, for P the

standard parabolic and 1 the trivial representation ofM , together with its expression
in terms of Kloosterman–Selberg zeta functions for the groupsG D SL.2;R/, G D
SO.nC 1; 1/, n � 3 and G D SU.2; 1/. The starting point is the expression

D
�

�0

.1; �/ D
X

ı2S.N;N/
� .n1.ı// �

0.n2.ı//a�C�ı �.�0; �;mıaı; �/

D
X

ı2S.N;N/
� .n1.ı// �

0.n2.ı//a�C�ı

�
X

i2Nn
aI .1; �/a

n˛
ı .d�/

�

Ad.mıs
�/�1Y.I /t

�

D
X

n2N

X

I2Nn
aI .1; �/

�
X

ı2S.N;N/
� .n1.ı// �

0.n2.ı//a�C�Cn˛ı .d�/
�

Ad.mıs
�/�1Y.I /t

�

:

6.1 G D SL.2 ;R/

Let first G D SL2.R/ and � D SL2.Z/. Then G D NAK with A D
n

at D
	

t
0
0
1=t




W t > 0
o

, K D SO.2/, N D
n	

1
0
�
1


o

. Let P D MAN D ˚��
0
�
�
��

,

M D f˙I g.
We have in this case a�t D

	

t
0
0
1=t


� D t2 and � D 1
2
�.

We fix unitary characters on N , �
	

1
0
x
1




D e2
im1x and �0
	

1
0
x
1




D e2
im2x with

m1;m2 2 Z X f0g.
For � D

	

a
c
b
d




2 � \ P
	

0
1
�1
0




N one computes that

n1.�/ D
	

1
0
a=c
1




; n2.�/ D
	

1
0
d=c
1




; m� D sign.c/
	

1
0
0
1




; a� D
	

1=jcj
0

0
jcj



:

(10)

Thus, if m�a� D ˙
	

1=k
0

0
k




with k 2 N, using (2) and (10), it is not hard to

check that S.�m1; �m2;m�a� / D S.m1;m2I k/, a classical Kloosterman sum.
We have that  �m1 ;�m2 ;1.�/ D 2

P

c�1 S.m1;m2I c/c�2��1 is a multiple of the
Selberg zeta function with � D s � 1

2
and � D 1.
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Note. We give the Kloosterman sums in another standard example, that of G D
SL2.C/, � D SL2.O/ where O is the ring of integers in some imaginary quadratic

field extension F of Q. Here N D
n	

1
0
�
1


o

, �
	

1
0
x
1




D e2
i Tr.m1x/, �0
	

1
0
x
1




D
e2
i Tr.m2x/ where Tr is the trace of F over Q and where m1;m2 2 F X f0g are
such that Tr.mjx/ 2 Z for all x 2 O. With a similar reasoning as before we find

that, for 	 D
	

1=u
0
0
u




2 MA with u 2 O X f0g, S.	/ D P

v e
2
i.Tr..m1evCm2v/=u//,

where v runs over representatives of O=uO for whichev 2 O can be found such that
evv 2 1C uO.

Going back to G D SL2.R/ let � D �r , �0 D �r 0 , with r; r 0 2 Z, in the notation
of [17, Section 4]. By using the explicit expression of �.�0; �;ma; �/, we get

D
�

�0

.	; �/ D
X

ı2S.N;N/
� .n1.ı// �.n2.ı//	.mı/a

�

ı �.�
0; �;mıaı; �/

D
1
X

nD0

.�1/n.4
rr 0=h/n
nŠ
Qn
sD1.2� C s/

X

ı2S.N;N/
� .n1.ı// �

0.n2.ı//a�C�Cn˛ı 	.mı/

D
1
X

nD0

.�1/n.4
rr 0=h/n
nŠ
Qn
sD1.2� C s/

 �;�0 ;	 .� C n˛/:

6.2 G D SO.n C 1; 1/, n � 3

From [18, Cor.A.2] we see that if Re � > �, then

D�
�.1; �/ D

X

ı2S.N;N/
� .n1.ı// �.n2.ı//a

�C�
ı

�
X

j;k�0

�2jC6ka.jC4k/˛ı hY1;Ad.mı/Y1ij
2kj ŠkŠ

Q2kCj�1
rD0 .� C n=2C r/Qk

rD1.� C 1=2C r/

D
X

j;k�0

�2jC6k
P

ı2S.N;N/ � .n1.ı// �.n2.ı//a
�C�C.jC4k/˛
ı hY1;Ad.mı/Y1ij

2kj ŠkŠ
Q2kCj�1
rD0 .� C n=2C r/Qk

rD1.� C 1=2C r/
:
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6.3 G D SU.2 ; 1/

In the notation of Proposition A.4 and Corollary A.5 in [18] we see that if Re � > �,
then

D�
�.1; �/ D

X

ı2S.N;N/
� .n1.ı// �.n2.ı//a

�C�
ı

�
X

j;k�0

QjCk
rD1 .� C r/a.jCk/˛ı e3i.j�k/�mı

j ŠkŠ
Qj
rD1.

�
2
C r/.� C r/Qk

rD1. �2 C r/.� C r/

D
X

j;k�0

QjCk
rDkC1.� C r/	�2j N	�

2k

j ŠkŠ
Qj
rD1.

�
2
C r/.� C r/Qk

rD1. �2 C r/

�
X

ı2S.N;N/
� .n1.ı// �.n2.ı//a

�C�C.jCk/˛
ı e3i.j�k/�mı :
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Ricci flow and manifolds with positive
curvature

Lei Ni

Dedicated to Nolan Wallach on his 70th birthday

Abstract This is an expository article based on the author’s lecture delivered at
the conference Lie Theory and Its Applications in March 2011, UCSD. We discuss
various notions of positivity and their relations with the study of the Ricci flow,
including a proof of the assertion, due to Wolfson and the author, that the Ricci
flow preserves the positivity of the complex sectional curvature. We discuss the
examples of Wallach of the manifolds with positive pinched sectional curvature and
the behavior of Ricci flow on some examples. Finally we discuss the recent joint
work with Wilking on the manifolds with pinched flag curvature and some open
problems.
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1 Introduction

This article is based on the author’s lecture delivered at the conference Lie Theory
and Its Applications in March 2011, UCSD.

Gauss curvature was defined for surfaces in three-dimensional Euclidean space
R
3 by the determinant of the second fundamental form of the embedding with

respect to the first fundamental form, namely the induced metric. The Theorem
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Egregium of Gauss [11] asserts that it is in fact an invariant depending only on
the first fundamental form, namely the metric of the given surface. Let .M; g/ be a
Riemannian manifold with metric g D gij dxi ˝ dxj . For any given point p 2 M ,
let TpM be the tangent space at p and let expp W TpM ! M be the exponential
map at p. The concept of the sectional curvature was introduced by Riemann [26],
which can be described via the Gauss curvature in the following way. For any two-
dimensional subspace � , say spanned by e1; e2 with feig being an orthonormal frame
of TpM , take an open neighborhood (of the origin) U � � , the sectional curvature
K.�/ is defined by the Gauss curvature of the surface expp U at p. It is the same as
R.e1; e2; e1; e2/, where R.�; �; �; �/ is the curvature tensor defined by

R.X; Y;Z;W / D h�rXrY Z CrYrXZ CrŒX;Y �Z;W i;

which measures the commutability of the second-order covariant differentiations.
Understanding the topology/differential topology of manifolds with positive

sectional curvature has been one of the central problems in the study of Riemannian
geometry. In this article we shall illustrate how Hamilton’s Ricci flow can be applied
to study manifolds with positive sectional curvature. In this regard we shall focus
on (1) Ricci flow and various notions of positivity; (2) Wilking’s general result on
the invariance of various positive cones; (3) examples of manifolds with positive
sectional curvature, particularly by Wallach and Aloff–Wallach, and on which the
Ricci flow does not preserve the positivity of the sectional curvature by the author
and by Böhm and Wilking; (4) the most recent classification result by Wilking
and the author on manifolds with so-called pinched flag curvature. The selection
of the topics is of course completely subjective. One should consult the excellent
survey articles [29, 32] on the subject of the manifolds with positive sectional
curvature, particularly on more comprehensive overviews about recent progress via
other techniques, e.g., the actions of the isometry groups. These articles also contain
many more open problems, some of which ambitious readers may find interesting.

Acknowledgment. The author would like to thank Ann Kostant for the careful
editing of the article.

2 Ricci flow and preserved positivities

Let Ric D rij dx
i ˝ dxj be the Ricci curvature tensor which is defined as

rij D gklRikjl . The Ricci flow is a parabolic PDE which deforms a Riemannian
metric by its Ricci curvature:

@

@t
gij D �2rij : (1)
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It is parabolic since under a “good coordinate” (precisely the harmonic coordinate),

rij D �1
2
gst

@2

@xs@xt
gij C o.1/:

Here o.1/ means terms involving at most the first-order derivatives. This also
explains the number “2” in the equation (1).

Since the “good coordinates” are not invariant under the flow, to prove the short
time existence, the most economic approach is via the De-Turck trick:

First solve the Ricci–DeTurck equation
(

@ gij .x;t/

@t
D �2Ricij .g/.x; t/CrjWi CriWj ;

g.x; 0/ D g0.x/: (2)

Here Wi D girg
st
�

� r
st � e� r

st

�

with � r
st ;
e� r
st being the Christoffel symbols for the

metric gij .x; t/ and a fixed background metricegij respectively. Computation under
the local coordinates shows that the Ricci–DeTurck equation is a quasilinear strictly
parabolic system, whose short time existence can be proved via, say, a modified
standard implicit function theorem argument. Denote its solution by Ng.x; t/. Now let

W be the vector field given by W D W i @
@xi

where W j D Ngst
	 N� j

st � e� j
st




. Let ˚t
be the diffeomorphism generated by the vector field �W.x; t/. Define g.x; t/ D
˚�t . Ng.x; t//. Direct calculation shows that

@

@t
g.x; t/ D ˚�t .�2Ric. Ng/C NriWj C NrjWi /

C @

@s
˚�tCs. Ng.x; t//

ˇ

ˇ

ˇ

ˇ

sD0
D �2Ric.g/.x; t/:

This approach avoids appealing to the Nash–Moser inverse function theorem which
is the original method adapted by Hamilton in his groundbreaking paper [15].

Tedious, but straightforward calculations show that the curvature tensor of
g.x; t/ satisfies

@

@t
Rijkl D Rijkl C gpqgstRijptRklqs C 2

�

Bikjl � Biljk
�

�gpq �Rpjkl rqi CRipkl rqj CRijpl rqk CRijkprql
�

:

Here Bijkl D gpsgqtRpiqjRsktl , rij being the Ricci curvature.
To make the computation easier, Hamilton in [16] introduced the gauge fixing

trick (due to Karen Uhlebeck) to get rid of the last four terms. Let E denote a
vector bundle which is isomorphic to TM . Then consider the map u W E ! TM

satisfying @u
@t
D Ric u. Here, by abusing notation, Ricji D rji D rikgjk is viewed as

a symmetric transformation of TM .
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If we pull back the changing metric on TM by u and call it h, it is easy to see that

@

@t
h.X; Y / D @

@t
g.u.X/; u.Y //

D �2Ric.u.X/; u.Y //C g.Ric u.X/; u.Y //

Cg.u.X/;Ric u.Y //
D 0:

As long as the flow exists, u is an isometry between the fixed metric h on E and the
changing metric g.t/ on TM . Again by possibly abusing notation, we pull back the
curvature tensor R at time t , and denote by eR,

eR.ea; eb; ec; ed / D R.u.ea/; u.eb/; u.ec/; u.ed //:

Using the previous convention we simply abbreviate it as eR.a; b; c; d / or eRabcd .
The connection (which shall be denoted by D) can also be pulled back through

u.Dia/ D riu.a/. Hence there exists a time-dependent metric connectionD on the
vector bundle E . It is easy to see that u is invariant, namelyDu D 0.

Direct calculation shows that

Di
eR.a; b; c; d / D .riR/.u.a/; u.b/; u.c/; u.d//:

On the other hand,

@

@t
eRabcd D @

@t
Ru.a/u.b/u.c/u.d/ CR.Ric u.a/; u.b/; u.c/; u.d//

CR.u.a/;Ric u.b/; c; d /

CR.u.a/; u.b/;Ric u.c//; u.d//

CR.u.a/; u.b/; u.c/;Ric u.d//:

Hence

@

@t
eRabcd D eRabcd C 2eRm2

abcd C 2eRm#
abcd : (3)

HereeRm2 andeRm# are the corresponding quadratic operations on eR with

eRm2
ijkl D gpqgsteRijpteRklqs

eRm#
ijkl D 2

�

Bikjl � Biljk
�

:

In [16], Hamilton also observed that there is a Lie algebraic interpretation
on the second reaction term in the diffusion reaction equation (3) satisfied by
the curvature tensor. First, there exists a natural identification between ^2Rn and
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so.n/, the Lie algebra of SO.n/. The identification can be done by first defining
X ˝ Y.Z/ D hY;ZiX . Then ei ^ ej can be identified with Eij � Eji , where Eij
is the matrix with 0 components, except 1 at the .i; j /-th position. The product on
so.n/ is taken to be hv;wi D 1

2
trace.vtrw/, so that the identification is an isometry.

The curvature tensor can be viewed as a symmetric transformation between^2Rn
via the equation

hRm.X ^ Y /;Z ^W i D R.X; Y;Z;W /:

We denote all such transformations by S2B.^2.Rn//, where B stands for the first
Bianchi identity. For any Rm1 and Rm2 2 S2.^2.Rn// we define hRm1;Rm2i D
PhRm1.b

˛/;Rm2.b
˛/i. Here fb˛g, with 1 � ˛ � n.n�1/

2
, is an orthonormal basis

of so.n/.

Lemma 2.1 (Hamilton). With the above notation, Rm# is given via the following
equation:

hRm#.v/;wi D 1

2

X

˛;ˇ

hŒRm.b˛/;Rm.bˇ/�; vihŒb˛; bˇ�;wi: (4)

This, together with Hamilton’s tensor maximum principle which, roughly put,
asserts that the “nonnegativity” condition is preserved by the diffusion reaction
equation as long as it is preserved by the ODE with the reaction term as the vector
fields. This fact immediately implies that the Ricci flow preserves the nonnegativity
of Rm, namely the nonnegativity of the curvature operator, since clearly Rm2 � 0,
and if Rm � 0, the above lemma asserts that Rm# � 0. Thus the reaction term

Rm2CRm# � 0

as long as Rm � 0. This was first obtained in [16].
The second preserved positivity is on the complex sectional curvature. To define

the terms we need to complexify the tangent bundle at any given point p and
denote it as T C

p M D TpM ˝ C. Now extend linearly the curvature tensor to
˝4T C

p M . Then we say that Rm has nonnegative complex sectional curvature if for
any X; Y 2 T C

p M ,

hRm.X ^ Y /;X ^ Y i D R.X; Y; NX; NY / � 0: (5)

It seems that the nonpositivity of complex sectional curvature was first introduced
in [24] (1985) for Riemannian manifolds. For a Kähler manifold, given any nonzero
X 2 T 0pM (holomorphic), Y 2 T 00p M (anti-holomorphic), then

hRm.X ^ Y /;X ^ Y i < 0
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is equivalent to Siu’s strong negativity [25] (the condition introduced a few years
earlier, under which Siu proved the holomorphicity of harmonic maps between
Kähler manifolds). The following proof first appeared in [22].

Proposition 2.2. Let .M; g0/ be a compact Riemannian manifold. Assume that g.t/
is a solution to (RF) onM �Œ0; T � with g.0/ D g0. Suppose that g0 has nonnegative
complex sectional curvature. Then g.t/; 0 � t � T; has nonnegative complex
sectional curvature.

Proof. View hRm.U ^ V /; U ^ V i as a linear functional `U^V .�/ on Rm 2 R
N

with N being the dimension of S2B.^2Rn/. The cone CPCS is defined as the set
fRm 2 R

N j `U^V .Rm/ � 0; for all U ^ V g. By Hamilton’s tensor maximum
principle, it suffices to check that the ODE

d Rm

dt
D Q.Rm/ WD Rm2CRm# (6)

preserves the cone. It is then sufficient to show the following. If Rm0 2 @CPCS ,
which amounts to `U0^V0.Rm0/ D 0 for some U0 ^ V0 and `U^V .Rm0/ � 0

for all U ^ V , then we need to check that Q.Rm0/ 2 TRm0CPCS . Let K be the
collection of all U0 ^ V0 satisfying `U0^V0.Rm0/ D 0. Then at Rm0, the tangent
cone is given by the intersection of halfplanes `U^V .Rm�Rm0/ � 0 for all
U ^ V 2 K . Hence in order to show that the ODE (6) preserves CPCS it suffices
to verify the null vector condition: If, for some Rm 2 CPCS , there exists U ^ V
satisfying hRm.U ^ V /; U ^ V i D 0, then hQ.Rm/.U ^ V /; U ^ V i � 0. Since
hRm2.U ^ V /; U ^ V i D hRm.U ^ V /;Rm.U ^ V /i � 0 always, it suffices to
show that hRm#.U ^ V /; U ^ V i � 0, which, via the definition, amounts to

RUpUqRVpV q �RUpV qRVpUq � 0; (7)

where fepg is a orthonormal basis of TpM (which is identified to R
n). Now for any

U1 and V1, consider the function

I.z/ WD hRm..U C zU1/ ^ .V C zV1//; .U C zU1/ ^ .V C zV1/i

which satisfies that I.z/ � 0 and I.0/ D 0. Hence @2

@z@NzI.z/j0 � 0, which implies
that

hRm.U ^ V1/; U ^ V1i C 2Re.hRm.U ^ V1/; U1 ^ V i/
ChRm.U1 ^ V /; U1 ^ V i � 0: (8)

Let Aij D RiVjV D RV iV j , Bik D RiV Uk , Ckl D RUkU l and A D .Aij /;

B D .Bik/; C D .Ckl /; then (7) asserts that
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M1 WD
 

A B

B
tr
C

!

� 0:

It is easy to check that (8) is equivalent to trace.AC � BB/ � 0, since M1 � 0

implies that

M2 WD
�

0 �I
I 0

�

 

A B

B
tr
C

!

�

0 I

�I 0
�

D
 

C �B tr

B A

!

� 0:

The theorem follows from 2 trace.AC � BB/ D trace.M1M2/ � 0, a simple fact
from the linear algebra. ut

This proof was discovered shortly after the proof on the invariance of nonnega-
tivity of isotropic curvature in [6] and [19], which seemed a bit mysterious at the
time. We were led to such a notion since at that time it was the only condition left in
a table of [14, page 18], whose invariance was not yet clear at the point before the
above proof (in 2007) and further development afterwards.

Recall that X ^ Y is called an isotropic plane if for any W 2 � where �
is the plane spanfX; Y g, hW;W i D 0. The curvature operator is said to have
nonnegative isotropic curvature if (5) holds for any isotropic plane X ^ Y . In [6],
it has been observed that M � R

2 has nonnegative isotropic curvature and is also
preserved under the Ricci flow. After we discovered the above presented proof, we
suspected that .M; g/ having nonnegative complex sectional curvature is equivalent
to M � R

2 nonnegative isotropic curvature. Our speculation was also motivated by
an observation of Brendle and Schoen at that time that .M; g/ having nonnegative
complex sectional curvature is equivalent to M � R

4 has nonnegative isotropic
curvature. When I discussed our speculation with Nolan, I got the confirmed answer
the same day! Interested readers are referred to [22] for Nolan’s simple proof of
this equivalence. In view of this equivalence, the first proof to the proposition was
obtained in [6] via the more involved isotropic curvature invariance. The above proof
provides a simple alternative.

The complex sectional curvature not only has a long root in the study of geometry
as pointed out above, but also motivated (according to [30]) the formulation of the
following general invariant cone result of Wilking, which provides so far the most
general result on invariant conditions, while with the simplest proof (at the same
time illuminating the possible previous mystery related to the isotropic curvature).

First we set up some notation. The complexified Lie algebra so.n;C/ can be
identified with ^2.Cn/. Its associated Lie group is SO.n;C/, namely all complex
matrices A satisfying A � Atr D Atr � A D id. Recall that there exists the natural
action of SO.n;C/ on ^2.Cn/ by extending the adjoint action g 2 SO.n/ on x˝y
(g.x ˝ y/ D gx ˝ gy). For any a 2 R, let ˙a � ^2.Cn/ be a subset which is
invariant under the adjoint action of SO.n;C/. Let eC˙a be the cone of curvature
operators satisfying that hRm.v/; Nvi � a for any v 2 ˙a. Here we view the space
of algebraic curvature operators as a subspace of S2.^2.Rn// satisfying the first
Bianchi identity. In [30], the following result is proved.
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Theorem 2.3 (Wilking). Assume that .M; g.t//, for 0 � t � T , is a solution of
Ricci flow on a compact manifold. Assume that Rm.g.0// 2eC˙a . Then Rm.g.t// 2
eC˙a for all t 2 Œ0; T �.

3 Manifolds with positive and nonnegative
sectional curvature

Unfortunately, the Ricci flow does not preserve the nonnegativity of the sectional
curvature when the dimension is greater than three. This fact may have been known
for the ODE (6) long before the concrete geometric example illustrated in [20]. But
nothing was written down explicitly before [20]. Moreover, the geometric example
says more than that the ODE (6) does not preserve such a condition. Compact
examples were constructed later in [7]. But before we present these examples we
recall the examples of Wallach [27] and Aloff–Wallach [2] on manifolds with
positive sectional curvature since this, together with the above mentioned examples
(about Ricci flow non-invariance), shows the subtlety of the sectional curvature.

We say that .M; g/ is ı-pinched if K.�/ > 0 for all � such two planes and if

inf� .K.�//

sup� .K.�//
D r > ı:

By compactness, it is easy to see that if .M; g/ has positive sectional curvature,
there must be some ı > 0 such that .M; g/ is ı-pinched.

Until the work of Marcel Berger ([4], 1961) the only known simply connected
manifolds that admitted a ı > 0 pinched structure were the spheres and projective
spaces overC andH (the quaternions) and the projective plane over the octonionsO.
Berger proved that two new examples have this property. One is of dimension 7 and
another of dimension 13.

In 1969, Wallach set out to classify the homogeneous, simply connected,
examples of positive pinching. In 1970, in the Bulletin of AMS he announced a
partial result, which, in particular, asserted that in even dimensions the spaces had
to be diffeomorphic with spheres and projective spaces over C;H and the projective
plane over the octonions or the full flag variety in C

3 or H3. A breakthrough came
when Wallach realized that he had overlooked one possible example: F4=Spin.8/,
the manifold of flags in the 2-dimensional octonion projective plane.

Theorem 3.1 (Wallach). The flag varieties in the 2-dimensional projective
plane over C;H and the octonions (dimensions 6, 12 and 24), namely
SU.3/=T 2;Sp.3/=.Sp.1/ � Sp.1/ � Sp.1//;F4=Spin.8/ admit a homogeneous
positive pinching metric.

He also considered SU.3/=T with T a circle group embedded in SU.3/. Up to
conjugacy these are of the form
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Tk;l D
8

<

:

�k;l .z/ D
0

@

zk 0 0

0 zl 0

0 0 z�.kCl/

1

A ; jzj D 1
9

=

;

where k; l 2 Z, gives rise to the spaces W 7
k;l D SU.3/=Tk;l . The following was the

main result of [2].

Theorem 3.2 (Aloff–Wallach). For each k, l such that k; l; k C l are not 0, there
exists a one parameter family of positively pinched metrics h�; �i with 0 < t < 1,
yieldingW 7

k;l;t . Moreover

H4.W
7
k;l ;Z/ D Z=.k2 C l2 C kl/Z:

This result asserting the infinite topological type of 7-dimensional manifolds with
positive sectional curvature shows that the subject is quite intricate since Gromov
[13] showed that there exists C.n/ such that the Betti numbers of any compact
Riemannian manifold with nonnegative sectional curvature is bounded by C.n/.

Now we explain the examples on Ricci flow invariance. After we told Nolan
about our noncompact example [20] and pointed out the question on possible
compact examples, he immediately suggested that we study some of the metrics on
SU.3/=T 2, which admit nonnegative sectional curvature and share a very similar
Lie algebraic structure as the compact examples in [7], which we state below.

Theorem 3.3 (Böhm–Wilking). On the 12-dimensional flag manifold

M D Sp.3/=.Sp.1/ � Sp.1/ � Sp.1//

there exists an Sp.3/-adjoint homogenous metric g with which, as the initial data
shows, the Ricci flow cannot preserve the positivity of the sectional curvature.

The metrics in [20], where the Ricci flow does not preserve the nonnegativity
of the sectional curvature, reside on noncompact manifolds. Precisely, they are
complete metrics on the total space of the tangent bundle over spheres. The fact that
the Ricci flow solution with bounded curvature does not preserve the nonnegativity
follows from the following structure result proved in [20].

Theorem 3.4. Let .M; gij .x; t// be a solution to the Ricci flow with nonnegative
sectional curvature. Assume also that M is simply-connected. Then M splits
isometrically as M D N �M1, where N is a compact manifold with nonnegative
sectional curvature. M1 is diffeomorphic to R

k and for the restriction of metric
gij .x; t/ on M1 with t > 0, there is a strictly convex exhaustion function on M1.
Moreover, the soul of M1 is a point and the soul of M is N � fog if o is the soul
of M1.

It was remarked in [7] that on the 6-dimensional manifold SU.3/=T 2, there
exists a metric of positive sectional curvature, which is not preserved by the Ricci
flow. It would be interesting to find out whether or not such a four-dimensional
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compact example exists. Due to a general convergence theorem in the next section,
one cannot expect that the ODE (6) preserves the nonnegativity of the sectional
curvature. The intricacy of the problem in dimension 4 is of course also related
to the celebrated Hopf conjecture on the existence of a positively curved metric
on S

2 � S
2. It is also interesting to find out if such a metric exists on the seven-

dimensional examples of [2].
It has been computed that the pinching constant ı on the nonsymmetric examples

with positive sectional curvature is rather small (considerably smaller than 1=4 for
example).

Recently, Cheung and Wallach [10] gave a detailed study on how the sectional
curvature evolves under the Ricci flow of homogenous metrics on flag varieties.

4 Flag curvature pinching

First, we start with a general Ricci flow convergence theorem, which first
appeared in [29], since this result and the above examples of Berger, Wallach
and Aloff–Wallach also illuminate the reason why the Ricci flow does not preserve
the sectional curvature.

Theorem 4.1 (Böhm–Wilking). Let C be an O.n/-invariant convex cone of full
dimension in the vector space of algebraic curvature operators S2B.so.n// with the
following properties:

(i) C is invariant under the ODE d Rm
dt
D Rm2CRm#.

(ii) C contains the cone of nonnegative curvature operators, or slightly weaker all
nonnegative curvature operators of rank 1.

(iii) C is contained in the cone of curvature operators with nonnegative sectional
curvature.

Then for any compact manifold .M; g/ whose curvature operator is contained in
the interior of C at every point p 2 M , the normalized Ricci flow evolves g to a
limit metric of constant sectional curvature.

Assume that the nonnegativity of the sectional curvature is preserved (in the sense
of ODE); then the above result would conclude that any manifold with positive
sectional curvature is a space form.

We should remark that the above result was first proved in [8] for C being the cone
of nonnegative curvature operators. Then, it was observed in [6] that the proof of [8]
for the case of C being the nonnegative curvature operator cone can be transplanted,
verbatim, to cover the case where C is the cone of nonnegative complex sectional
curvatures. It appeared first in [29] with the above generality. In [5], a slightly
different argument was adapted to prove the above result for the case of C being
the cone of the nonnegative complex sectional curvatures.
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Flag curvature pinching was first introduced by Andrews–Nguyen [3], who
proved a 1=4-flag pinching condition is invariant under the Ricci flow in dimension
four and obtained a classification result for such manifolds in dimension four. First
we introduce the definition.

Assume that .M; g/ has nonnegative sectional curvature. Fixing a point x 2 M ,
for any nonzero vector e 2 TxM , we define the flag curvature in the direction
e by the symmetric bilinear form Re.X;X/ D R.e;X; e;X/. Restricting Re.�; �/
to the subspace orthogonal to e, it is semi-positive definite. We say that .M; g/
has �-pinched flag curvature (1 > � � 0) if the eigenvalues of the symmetric
bilinear form Re.�; �/, restricted to the subspace orthogonal to e, are �-pinched for
all nonzero vectors e, namely

Re.X;X/ � �.x/Re.Y; Y / (9)

for any X; Y in the subspace orthogonal to e, with jX j D jY j.
The �-pinched flag curvature condition is equivalent to saying that K.�1/ �

�K.�2/ for a pair of planes �1 and �2 such that �1 \ �2 ¤ f0g.
It is easy to see that if an algebraic curvature operator has �-pinched flag

curvature, then its sectional curvature is �2-pinched. This estimate is indeed sharp.
Precisely, in [21] there exists an example of an algebraic curvature operator, such
that its 1=4-flag pinched and its sectional curvature are no better than 1=16-pinched.

The first result of [21] is a classification result.

Theorem 4.2. Let .Mn; g/ be a compact nonnegatively curved Riemannian mani-
fold with 1=4-pinched flag curvature and the scalar curvature Scal.x/ > 0 for some
x 2 M . Then .M; g/ is diffeomorphic to a spherical space form or isometric to a
finite quotient of a rank-one symmetric space.

In view of the convergence result Theorem 4.1, the key towards the above result
is the following.

Theorem 4.3. Let .Mn; g/ be a nonnegatively curved Riemannian manifold. If
.M; g/ has a quarter pinched flag curvature, then .M; g/ has nonnegative complex
sectional curvature.

If we assume the stronger assumption that the sectional curvature is 1=4-pinched,
the nonnegativity of the complex sectional curvature was essentially proved earlier
by Hernández [17] and Yau–Zheng [31] in the 1990s. (What was proved there
is that if a curvature operator has negative sectional curvature and 1=4-pinched
sectional curvature, then it must have nonpositive complex sectional curvature.
By flipping the sign, the argument can be transplanted to the case of nonnegative
sectional curvature.) An immediate consequence of this fact, together with Proposi-
tion 2.2, Theorem 4.1, is Brendle–Schoen’s sectional curvature 1=4-pinching sphere
theorem [6].

For the proof of Theorem 4.3, first observe the following lemma.

Lemma 4.4. Given any complex plane � � C
n D R

n ˝ C, where R
n is equipped

with an inner product h�; �i which is extended bilinearly to C
n, there must exist unit

vectors U; V 2 � such that
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hU;U i; hV; V i 2 R with 1 � hU;U i � hV; V i � 0; hU; V i D hU; NV i D 0:

Particularly, if U D X Cp�1Y , V D Z Cp�1W , it implies that

jX j � jY j; jZj � jW j and fX; Y;Z;W g
are mutually orthogonal.

Proof. Let f .eU / + Re
�heU ; eU i� be the functional defined on the unit sphere

(with respect to the norm jeU j D
q

heU ; NeU i ) inside � . Let U be the maximizing

vector, at which f attains the maximum N�, with N� 2 Œ0; 1�. Clearly for such U ,
f .U / D jhU;U ij. Let V be a unit vector such that it is perpendicular to U (namely
hU; NV i D 0). By the maximizing property of U , from the first variation, it is easy
to see that hU; V i D 0 for any V 2 � with hU; NV i D 0 and jV j D 1. To see this
let h.�/ D f .cos �U C sin �V /. Since h.0/ D N� � h.�/, we have h0.0/ D 0,
which, together with the same conclusion with V replaced by Ve

p�1
=2, implies
the claim. Among all possible choices of such V , which can be parametrized by S1,
there clearly exists one with hV; V i � 0. ut

It is clear from the proof that � is isotropic if and only if N�.�/ D 0. It also makes
sense to define �.�/ to be the minimum of jhU;U ij for any U 2 � with unit length.
Since the inner product induces one on the space of 2-planes � D U ^ V , similarly
one may define the �.�/ as jhU ^ V;U ^ V ij among all � D U ^ V of unit length.
We may call � weakly isotropic if �.�/ D 0. Clearly both � being isotropic and
� being weakly isotropic are invariant under the adjoint action of SO.n;C/. Hence
Theorem 2.3 implies the Ricci flow invariance on the complex sectional curvature
nonnegativity for all such 2-planes.

We may define for any a; b 2 Œ0; 1�,˙ N�a D f� j N�.�/ � ag,˙�

b D f� j�.�/ � bg
and ˙a;b D f� j N�.�/ � a; �.�/ � bg. It is a natural question to ask if the
nonnegativity on ˙ N�a ;˙

�

b ; or ˙a;b is invariant for any .a; b/ 2 Œ0; 1� � Œ0; 1� since
Theorem 2.3 implies that it is the case when .a; b/ D .0; 0/ and .a; b/ D .1; 1/.
Related to this, it is also interesting to ask whether or not the condition

hRm.U ^ V /; U ^ V i C �.�/kU ^ V k2 � 0 (10)

is preserved under the Ricci flow. Here � is the plane spanned by fU; V g.
The key to Theorem 4.3 is the following result generalizing a useful lemma of

Berger.

Proposition 4.5. Assume that .M; g/ has �-pinched flag curvature with dimension
n � 4. Assume that the sectional curvature is nonnegative at x and X; Y;Z;W 2
TxM are four vectors mutually orthogonal. Then

6
1C �
1� � jR.X; Y;Z;W /j � k.X;Z/C k.Y;Z/C k.X;W /C k.Y;W /

C2k.X; Y /C 2k.Z;W /:

If equality holds and Rm.x/ ¤ 0, then vectors X; Y;Z;W have the same norm.
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In [21], results were obtained for manifolds with flag-pinching constant below
1=4 (note that flag curvature pinching is always pointwise).

Theorem 4.6. For any dimension n � 4 and C > 0, there is an � > 0 such that
the following holds. Let .Mn; g/ be a nonnegatively curved Riemannian orbifold
of dimension n with 1��

4
pinched-flag curvature and scalar curvature satisfying

1 � Scal � C . Then the following holds.

(i) When n D 2mC 1, M admits a metric of constant curvature;
(ii) When n D 2m, eitherM is diffeomorphic to the quotient of rank one symmetric

space by a finite isometric group action or it is diffeomorphic to the quotient of
a weighted complex projective space by a finite group action.

If one replaces the flag pinching (pointwise) condition by a global sectional
curvature pinching, a similar result was obtained by Petersen and Tao [23] earlier.

Since here � is depending on n, we would like to point out a related result
and some open problems. A theorem of Abresch and Meyer [1] asserts that any
simply connected odd-dimensional manifold with sectional curvature K satisfying

1
4.1C10�6/2

� K � 1 is homeomorphic to a sphere. Note that here a global instead
of pointwise pinching is assumed. An obvious question arises whether or not one
can weaken the assumption to a pointwise one and improve the conclusion from the
homeomorphism to the diffeomorphism.

Since Micallef–Moore [18] proved (using harmonic spheres) that any simply-
connected manifold with positive isotropic curvature is a homotopy sphere (hence
homeomorphic), it is natural to ask if this can be improved to diffeomorphic.

In [28] Wilking obtained homotopic classification result for manifolds with
positive curvature and “large” enough symmetry. Can the method of using the
isometry group and the method of the Ricci flow be combined to get a better result?

Grove–Shiohama [12] (see also [9, Theorem 6.13]) proved a sphere theorem by
assuming that the sectional curvature is bounded from below by one (namelyK � 1)
and diam.M/ > 


2
. Can this be upgraded to a “diffeomorphism”?
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Abstract We derive a remainder formula for the coefficients of modular invariant
partition functions of extremal conformal field theories of central charge c D 24k,
where k is a positive integer. The formula encodes, in particular, asymptotics of
these coefficients and it provides for additional corrections to Bekenstein–Hawking
black hole entropy. We also relate these partition functions to a Patterson–Selberg
zeta function. More generally, when c is divisible by 8 we relate this zeta function
to vacuum characters of affine E8 and E8 � E8.
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1 Introduction

In the paper [1] G. Höhn considers holomorphic conformal field theories of central
charge c D 24k, for k D 1; 2; 3; : : : . Such a theory is called an extremal
conformal field theory (ECFT) and was proposed by E. Witten [2] to be dual to
3-dimensional pure gravity with a negative cosmological constant; also see [3–7].
Its construction in general remains an open question. For k D 1 one has of course
the classical construction of I. Frenkel, J. Lepowsky, and A. Meurman (FLM) [8].
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Their theory, moreover, possesses the deep property of monstrous symmetry: its
states transform as a representation of the Fischer–Griess groupM of order jM j D
246 � 320 � 59 � 76 � 112 � 132 � 17 � 19 � 23 � 29 � 31 � 41 � 47 � 59 � 71 ' 1054,M (called the
monster or friendly giant) being “secretly” the symmetry group of 3-dimensional
quantum gravity.

One can construct a well-defined partition functionZk.�/ on the upper 1=2-plane
˘C, (F.�/ > 0, � being a “temperature” variable) for any ECFT. Moreover,Zk.�/
is modular invariant: it is invariant under the standard linear fractional action of the
modular group SL.2;Z/ on ˘C; here Z denotes the set of integers. Zk.�/ has a

q-expansion in powers qn for q
defD exp.2
i�/, �k � n <1. Our interest here is in

the coefficients bk;n of qn for n � 1, since the subleading terms of their asymptotics,
as n!1, correspond to black hole entropy corrections.

Using some important, relatively new estimates of N. Brisebarre and G. Philibert
[9] we present in Section 3 a remainder formula for each bk;n, from which the
asymptotic behavior of bk;n (for every fixed k) is immediately read off. In particular,
one need not assume that k and n are large with n=k fixed as is assumed in [2].
We point out that apart from the remainder formula, the asymptotic behavior of bk;n
can actually be deduced, immediately, from a 50-year old result of M. Knopp [10];
here we consider Zk.�/ abstractly as a modular form of weight 0.

Similarly, from this abstract point of view, an exact formula for each bk;n (a for-
mula stated in[3]) immediately follows from a general result in [9]. An alternate
version of this exact formula is also presented in Section 5. Its proof is based
on an exact formula of H. Petersson and (independently) H. Rademacher [11, 12]
applied to the ECFT of FLM in case k D 1. In this alternate version slightly simpler
Kloosterman sums (than those in [3, 13]) are incorporated.

The bk;n, remarkably, are known to be positive integers. At the physical level they
are the number of states with Virasoro energyL0 D n and one obtains (as is known)

the Bekenstein–Cardy–Hawking black hole entropy S D 4

p
kn D 2


q

cL0
6

[14] by way of the logarithm of bk;n. In addition some careful (small) corrections
(especially for large n) are obtained by way of the remainder formula.

Section 2 is given to a brief review of the construction of Zk.�/ for the
convenience of the reader, especially as some definitions such as Eisenstein series,
Hecke operators, or the j -invariant might be less familiar to physicists. In fact, we
shall need some of the ingredients involved in that construction. A partition function,
zeta function connection is discussed in the final section, Section 6.

We conclude the paper with a personal reflection concerning Nolan Wallach.

2 Review of a construction of Zk.�/

The ECFT partition function Zk.�/ of level k 2 Z, k � 1, can be constructed from
the FLM partition functionZ1.�/ of level 1 and the holomorphic sector
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Zhol.�/
defD
1
Y

nD2

1

1 � qn (1)

of the one-loop gravity partition function [15, 16]

Z
1�loop
gravity .�/ D Zhol.�/Zhol.�/ (2)

with the help of Hecke operators T .r/, 1 � r � k. Again q
defD exp.2
i�/ for

� 2 ˘C. The bar “ ” in the factorization (2) denotes complex conjugation. Z1.�/
is given by

Z1.�/
defD J.�/

defD j.�/ � 744 (3)

for

j.�/
defD 1728.60G4.�//

3

.60G4.�//3 � 27.140G6.�//2 (4)

where

Gw.�/
defD

X

.m;n/2Z�Z�f.0;0/g

1

.mC n�/w (5)

is a holomorphic Eisenstein series of weight w, w D 4; 6; 8; 10; 12; : : : . The action
of T .r/ on Z1.�/ is given in terms of a sum over positive divisors d of r :

.T .r/Z1/.�/
defD 1

r

X

d>0; d jr

d�1
X

mD1
Z1

�

r� C dm
d2

�

: (6)

j.�/ has the Fourier q-expansion

j.�/ D q�1 C
1
X

nD0
cnq

n (7)

where, remarkably, every coefficient cn is an integer. For example,

c0 D 744; c1 D 196; 884; c2 D 21; 493; 760
c3 D 864; 299; 970; c4 D 20; 245; 856; 256
c5 D 333; 202; 640; 600; c6 D 4; 252; 023; 300; 096 (8)
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so that Z1.�/ D j.�/ � c0 in (3). An expository discussion of the modular
j -invariant j.�/, the Eisenstein seriesGw.�/, the action of Hecke operators on more
general modular forms than the action on J.�/ given in (6), and of other related
matters is given, for example, in [17]. Finally, let p.n/ be the partition function on
the set of positive integers ZC: p.n/ is the number of ways of writing n 2 ZC as a
sum of elements in ZC. For convenience we also define p.�1/ D 0.

All of the ingredients necessary for defining Zk.�/ are now in place. In fact,
define

Z0.�/
defD q�kZhol.�/ D

1
X

rD�k
ar .k/q

r ;

ar .k/
defD p.r C k/ � p.r C k � 1/; r � �kI (9)

see (1). The q-expansion here follows from Euler’s generating function for p.n/.
Then we set

Zk.�/
defD a0.k/C

1
X

rD1
a�r .k/r.T .r/J /.�/I (10)

see (6), [2]. For k D 1, the right-hand side of (10) reduces to .T .1/J /.�/ D J.�/,
which by (3) shows that (10) is an extension of the definition of the FLM partition
function from level 1 to an arbitrary level k.

Using the q-expansion (7) and a corresponding q-expansion of .T .r/J /.�/ one
obtains the q-expansion

Zk.�/ D a�k.k/q�k C � � � C a�1.k/q�1 C a0.k/C
1
X

nD1
bk;nq

n (11)

of Zk.�/, where (see (9))

a�k.k/ D 1; bk;n
defD

k
X

rD1
ra�r .k/c.r/n ; n � 1; (12)

for

c.r/n D
X

d>0; d jr; d jn

crn=d2

d
: (13)

Further details on the derivation of (11) are provided in [17], for example.
Using (8) and Table 1 one can compute
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Table 1. Values of a
�r .k/, 0 � r < k � 12

k a0.k/ a
�1.k/ a

�2.k/ a
�3.k/ a

�4.k/ a
�5.k/ a

�6.k/ a
�7.k/ a

�8.k/ a
�9.k/ a

�10.k/ a
�11.k/

1 0

2 1 0

3 1 1 0

4 2 1 1 0

5 2 2 1 1 0

6 4 2 2 1 1 0

7 4 4 2 2 1 1 0

8 7 4 4 2 2 1 1 0

9 8 7 4 4 2 2 1 1 0

10 12 8 7 4 4 2 2 1 1 0

11 14 12 8 7 4 4 2 2 1 1 0

12 21 14 12 8 7 4 4 2 2 1 1 0

Z1.�/ D q�1 C 196; 884qC 21; 493; 760q2C 864; 299; 970q3C � � � (14)

Z2.�/ D q�2 C 1C 42; 987; 520qC 40; 491; 909; 396q2C � � �
Z3.�/ D q�3 C q�1 C 1C 2; 593; 096; 794qC 12; 756; 091; 394; 048q2C � � �

for example. Zk.�/ automatically inherits the key property of modular invariance
by (10) since J.�/ is modular invariant.

3 A remainder formula

The remainder formula that we present in this section (formula 19), which encapsu-
lates a bit more than just the asymptotic behavior of the number of quantum states
bk;n in (12) (for large n), is based on the following result for the coefficients cn in
the q-expansion (7). Namely, by Theorem 1.3 of [9], for n; p 2 ZC

cn D c1.n/
 

p�1
X

kD0

.�1/k.1; k/
.8

p
n/k

C rp.n/

np=2

!

; (15)

where

c1.n/
defD e4


p
n

p
2n3=4

; .1; k/
defD

k�1
Y

jD0

Œ4 � .2j C 1/2�
4kkŠ

;

jrp.n/j � j.1; p/jp
2.4
/p

C 62p2e�2

p
nnp=2: (16)
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.1; k/ is a Hankel symbol .˛; k/
defD � .1

2
C ˛ C k/=kŠ� . 1

2
C ˛ � k/ (with ˛ D 1,

.˛; 0/
defD 1) employed of course in the expression of the asymptotic behavior of

Bessel functions. Also the upper bound result

cn � c1.n/; n � 1 (17)

is established in [9]. The idea now is to write (13) as c.r/n D crn C S.r; n/, where
S.r; n/ is the corresponding sum over divisors d � 2, apply (15) to crn use (17),
estimate S.r; n/ in terms of the Riemann zeta function value  .3=2/ and then to
apply these various steps to bk;n in (12). In the end one reaches the following
conclusion. For k; n; p 2 ZC, let

b1k;n
defD kc1.kn/

def.16/D ke4

p
kn

p
2.kn/3=4

: (18)

Then, in terms of some of the preceding notation,

bk;n D b1k;n

"

1C
p�1
X

mD1

.�1/m.1;m/
.8

p
kn/m

C rp.kn/

.kn/p=2
C S.k; n/

c1.kn/

C 1

k1=4

X

1�r<k

r1=4a�r .k/
e4

p
n.
p
k�pr/

 

1C
p�1
X

mD1

.�1/m.1;m/
.8

p
kn/m

C rp.kn/

.kn/p=2
C S.k; n/

c1.kn/

!#

(19)

where for 1 � r � k
ˇ

ˇ

ˇ

ˇ

rp.rn/

.rn/p=2

ˇ

ˇ

ˇ

ˇ

� j.1; p/jp
2.4
/p.rn/p=2

C 62p2e�2

p
rn;

0 <
S.r; n/

c1.kn/
� r3=2 .3=2/

2e2

p
rn

;
n3=2 .3=2/

2e2

p
rn

: (20)

If p D 1, for example, the terms in (19) with the summation from m D 1 to
m D p � 1 are interpreted to have the value 0.

In particular, from (19) and (20) one can immediately read off the asymptotic
result

bk;n � ke4

p
kn

p
2.kn/3=4

; n!1 (21)
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for every fixed k � 1, by definition (18). For k D 1 however, b1;n D cn
(by (12), (13)) and (21) reduces to the classical asymptotic formula

cn � ke4

p
n

p
2n3=2

; n!1 (22)

in [11, 12]. Of course (22) also follows from (15), (16).

4 Quantum corrections to black hole entropy

As indicated in the introduction one can derive corrections to black hole entropy
S D 4


p
kn by considering the logarithm of bk;n, especially for large n.

Off hand, (21) yields the logarithmic correction

log bk;n ' S C 1

4
log k � 3

4
logn � 1

2
log 2 (23)

to S , as in [3] of course. In the remainder formula (19) the sum over r < k involves
terms of exponential decay with regard to the growth of n, and the estimate for
S.k; n/=c1.kn/ in (20) involves a bound of exponential decay. If such terms are
disregarded and if the estimate log.1Cx/ ' x for small x is invoked, the refinement

log bk;n ' SC 1
4

log k� 3
4

logn� 1
2

log 2C
p�1
X

mD1

.�1/m.1;m/
.8

p
kn/m

C rp.kn/

.kn/p=2
; (24)

for any k; p � 1, of (23) is obtained. Here a bound for the remainder term
rp.kn/=.kn/

p=2 is given by (20) (taking r D k there). Also in (24) the following
table provides values of the Hankel symbols .1;m/ (and thus of j.1; p/j in (20)); see
definition (16).

For the choice p D 5, for example, (24) with Table 2 provides for the following
additional terms for (23):

log bk;n ' S C 1

4
log k � 3

4
logn � 1

2
log 2 � 0:75

8

p
kn
� 0:4688

.8

p
kn/2

� 0:8203

.8

p
kn/3

� 2:3071

.8

p
kn/4

C r5.kn/

.kn/5
: (25)

We have remarked that every coefficient cn in equation (7) is an integer. One
knows that every cn is also positive – as is suggested, for example, by the values
in (8). It follows that the c.r/n in (13) are positive, and hence the bk;n in (12) are
positive and they are integers. In particular the log bk;n in (23)–(25) are well-defined
real numbers.
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Table 2. Hankel symbols

k .1; k/

1 3=4 D 0:750000000

2 �15=32 D �0:468750000
3 105=128 D 0:820312500

4 �4725=2048 D �2:307128906
5 72765=8192 D 8:882446289

6 �2837835=65536 D �43:30192566
7 66891825=262144 D 255:1720619

8 �14783093325=8388608 D �1762:282053
9 468131288625=33554432 D 13951:39958

10 �50565381191325=268435456 D �188370:7240

5 An exact formula for bk;n

It is possible to give, in fact, an exact formula for the coefficients bk;n. This formula
is stated in [3]. We consider an alternate version. Its derivation is based on an exact
formula [11, 12] for the coefficients cn, n � 1, in (7):

cn D 2
p
n

1
X

mD1

Am.n/

m
I1

�

4

p
n

m

�

(26)

where

I1.x/ D
1
X

jD0

�

x
2

�2jC1

j Š.j C 1/Š (27)

is a modified Bessel function and where

Am.n/ D
X

h2Z=mZ

e� 2
im .nhCh0/ (28)

is a Kloosterman sum, with the sum taken over h that are relatively prime to m, and
with h0 chosen to satisfy hh0 � �1.modm/. Then by (13)

c.r/n D
2
p
rn

X

d>0

d jr; d jn

1
X

mD1

Am
�

rn
d2

�

m
I1

�

4

p
rn

md

�

; (29)
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and hence

bk;n D 2
p
n

k
X

rD1

p
ra�r .k/

X

d>0

d jr; d jn

1
X

mD1

Am
�

rn
d2

�

m
I1

�

4

p
rn

md

�

(30)

by (12), which is the desired formula.
It is of interest perhaps to point out that the original version of (30) in (5.18) of

[3] (where a�r .k/ correspond to F0 0 there) also follows from a general, abstract
result in [9], given that Zk.�/ is a modular form of weight 0. For this we use an
alternative version

rc.r/n D 2

r

r

n

1
X

mD1

Am.n; r/

m
I1

�

4

p
rn

m

�

(31)

of formula (29), where the Kloosterman sum

Am.n; r/
defD

X

h2Z=mZ

e�
2
i
m .nhCrh0/

h relatively prime to m

hh0 � �1.modm/ (32)

slightly generalizes the sum Am.n/ in (28). An application of Theorem 5.2 of [9] to
equation (5.13) on page 345 of [17], for example, leads immediately to formula (31).
Then by (12)

bk;n D 2

k
X

rD1
a�r .k/

r

r

n

1
X

mD1

Am.n; r/

m
I1

�

4

p
rn

md

�

(33)

for k; n � 1 where again a�r .k/
defD p.k � r/ � p.k � r � 1/ by (9); see Table 1

above. One can also obtain formula (33) by an application of Theorem 5.2 of [9]
to equation (11) directly. Note that formula (31), which is of independent interest,
coincides with formula (26) when r D 1. The Kloosterman sums in (30) are simpler
than those in (33), or in [13]. On the other hand, (30) also follows from (33) by a
general Selberg identity on Kloosterman sums.

Rademacher type formulas such as formula (33) appear initially in black hole
physics in the reference [13]. Compare also, for example, the reference [18] where
a Rademacher formula is employed in the discussion of an entropy bound within
the framework of two-dimensional conformal field theory.
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6 A zeta function connection

In the reference [19] the author attached to the three-dimensional BTZ black hole
with a conical singularity a natural zeta function, in terms of which one-loop quan-
tum corrections of R. Mann–S. Solodukhin [20] to Bekenstein–Hawking entropy
were expressed. That zeta function was constructed as a conical deformation of an
appropriate Patterson–Selberg zeta function Z� .s/. Details and further references
for that work appear in [17], where it is shown, moreover, that the holomorphic
sector Z� .s/ of the one-loop gravity partition function (see definitions (1), (2)) is
also expressed in terms of Z� .s/.

On the other hand the partition function Zk.�/ was constructed to satisfy the
“axiomatic” condition

Zk.�/ D Virasoro decendants C BTZ black holes

D q�kZhol.�/CO.q/ D q�k Zhol.�/CO.qkC1/
�

: (34)

Thus we have a zeta function connection (ofZk.�/ withZ� .s/) that (for the record)
we express more succinctly in this section.

Given real numbers a; b with a > 0, let

� D �.a;b/
defD
�

eaCib 0

0 e�.aCib/
�

;

� D �.a;b/
defD f�n j n 2 Zg;

Z� .s/
defD

1
Y

0�k1;k22Z

h

1 � �ei2b�k1 �e�i2b�k2 e�.k1Ck2Cs/2a
i

: (35)

� is the subgroup of SL.2;C/ generated by � , and Z� .s/ (which is an entire
function of s 2 C) is the Patterson–Selberg zeta function corresponding to � [21].

Since a > 0, �.a;b/
defD .b C ia/=
 2 ˘C, and by Theorem 3.26 of [17]

Zhol
�

�.a;b/
� D Z�

�

3 � i b
a

�

=Z�

�

2 � i 2b
a

�

;

Z
1�loop
gravity

�

�.a;b/
� D Z�

�

3 � i b
a

�

Z�
�

3C i b
a

�

Z�
�

2 � i 2b
a

�

Z�
�

2C i 2b
a

� : (36)

By equations (9) and (11)

Zk.�/ D q�kZhol.�/C
1
X

nD1
Œbk;n � an.k/�qn; (37)
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which is (34). Hence, by the first equation in (36), we see thatZk.�/ and Z� .s/ are
related by

Zk

�

b C ia



�

D q�k Z�
�

3 � i b
a

�

Z�
�

2 � i 2b
a

� C
1
X

nD1
Œbk;n � an.k/�qn; (38)

for real numbers a; b with a > 0. Again an.k/; bk;n are given by (9) and (12);
q�k D exp.�2ki.b C ia//.

A special choice, for example, is a D ˇ=2; b D �=2; i.e., � D .� C iˇ/=2

corresponds to the anti-de Sitter–Hawking temperature ˇ�1 and angular potential � .

ECFT partition functions have been constructed, more generally, for theories
with central charge divisible by 8: c D 8m. Explicit formulas for such functions
are derived in [6] for c up to 88, where the cases c D 48; 72 are already handled in
[2]; also see [1]. Here (34) is replaced by the requirement

Z8m.�/ D q�m=3


Zhol.�/CO
�

qŒm=3�C1
��

; (39)

(see definition (1)), which does reduce to (34) in the special case m D 3k. Similar
to (10), Z8m.�/ is known to assume the form (see definition (4))

Z8m.�/ D j.�/m=3
Œm=3�
X

rD0
ar j.�/

�r ; (40)

for computable coefficients ar [1]. Namely, the ar are found by comparing terms of
order qr�m=3 with terms in (39). Strictly speaking, we are considering only genus 1
(i.e., torus) partition functions in this paper. The authors in [6] consider also genus
2 partition functions.

In the simple cases m D 1; 2, for example, one has

Z8.�/ D j.�/1=3 D q�1=3


1C 248q C 4124q2 C 34752q3C � � � � ;
(41)

Z16.�/ D j.�/2=3 D q�2=3


1C 496q C 69752q2 C 2115008q3C � � � � :

Applying the first formula in (36) again, we obtain the corresponding generaliza-
tion (for a; b real, a > 0)

Z8m

�

b C ia



�

D q�m=3Z�
�

3 � i b
a

�

=Z�

�

2 � i 2b
a

�

CO
�

qŒm=3��m=3C1
�

(42)

of (38), by (39). Since j.�/1=3; j.�/2=3 are vacuum characters of OE8; OE8 � OE8 for
affine level 1 theories [22, 23], equations (41), (42) (in particular) provide for a
connection between these characters and the zeta function Z� .s/.
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As is well known, due to initial observations of J. McKay, J. Conway, S. Norton,
J. Thompson, and others, the initial Fourier coefficients cn in (7), (8) are integral
combinations of dimensions of irreducible representations of the monster group
M mentioned in Section 1. Some historic remarks on this, with references, are
presented in [8]. For example c3 D 2�1C2�.196; 833/C21; 296; 876; 842; 609; 326,
where 1; 196; 833; 21; 296; 876; 842; 609; 326 are dimensions of irreducible rep-
resentations, 1 being the dimension of the trivial representation. Of course this
observation is part of a much more general “moonshine” phenomenon/conjecture
that was eventually resolved/proved by R. Borcherds. The 1st bracket in (41)
(D q1=3 times an OE8 character) is a McKay–Thompson series for M , of class 3C .

It is a remarkable fact that the set of zeros of the Patterson–Selberg (P-S)
zeta function coincides with the set of “nontrivial” poles (called resonances) of a
scattering matrix defined by reflection coefficients in the asymptotics of a particular
solution of the Schrödinger’s equation for a Pöschel–Teller potential [24–26]. This
fact can be viewed as a mathematical type of AdS/CFT (or bulk/boundary) corre-
spondence, where the zeta zeros represent a bulk quantity and the scattering matrix
a boundary quantity. The original AdS/CFT correspondence (due to J. Maldacena)
referred to a (boldly) proposed duality between .d C 1/-dimensional gravity on
AdS space (i.e., on anti-deSitter space) and conformal field theory (CFT) on its
d -dimensional boundary.

Connections between 3-dimensional AdS gravity (where a negative cosmological
constant is present) and the P-S zeta function are explored in [17, 27], where
in the review article [27] a bulk-boundary correspondence is set up even for a
2-dimensional black hole vacuum with a parabolic generator of its holonomy.
The discussion in Section 6 here shows that a zeta function connection exists also on
the CFT side, and thus connections have life on both sides of the correspondence.

7 Acknowledgements

The author extends special thanks to Prof. Alex Maloney for his helpful remarks
that clarified a key point in the papers [2, 3].

A Personal Reflection

I first met Nolan Wallach in 1962 when I was a first year graduate student at
Washington University. Nolan was an advanced student at the time who was well
into the study of Lie groups and differential geometry, with Professors like William
Boothby and Jun-Ichi Hano. Prof. Hano later served as Nolan’s thesis advisor.
The title of the 1966 thesis was “A classification of real simple Lie algebras”.
I eventually developed an interest in a book by L. Pontrjagin entitled Topological
Groups, a book that became an initial part of the Princeton Mathematical Series,
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along with other classics such as those of H. Weyl and C. Chevalley. At some
point I came across a quotation of E. Cartan: “If an n-sphere is a topological
group, then n D 0; 1, or 3” – a statement that I found a bit fascinating and which
stirred my mathematical curiosity. With some help from Prof. Hano, I struggled
through the first four chapters of the book, the fourth chapter being my initial
exposure to representation theory (of compact groups). Evidently, Nolan was not
so impressed with my little success and he felt that it might be more important
if I tried to learn something about Lie groups, from a more modern text, namely
that I should study from Chevalley’s Princeton book Theory of Lie Groups. As a
young student with a somewhat modest background, I found the suggestion, and the
book, rather intimidating, although Chevalley’s writing seemed especially elegant,
careful, and scholarly. It was a hard book for me, indeed, but I kept in mind the
above mentioned quotation of E. Cartan which continued to stimulate me, and
most importantly it was Nolan’s kind assistance with the reading that made all the
difference in the end. I began to realize through that experience that he was teaching
me to reach toward higher standards, which was the value of having a wonderful
mentor, and friend as he was, and has always been. Thank you Nolan for your
mentorship and your inspiration that have markedly shaped my mathematical life.
And congratulations to you for your manifold, stellar mathematical achievements
that tower substantially over those of your former, fellow Washington University
students, and in fact over many of the great mathematical masters of the day. Always
with fondest recollections, Floyd.
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Abstract We study the structure of minimal parabolic subgroups of the classical
infinite-dimensional real simple Lie groups, corresponding to the classical simple
direct limit Lie algebras. This depends on the recently developed structure of
parabolic subgroups and subalgebras that are not necessarily direct limits of finite-
dimensional parabolics. We then discuss the use of that structure theory for the
infinite-dimensional analog of the classical principal series representations. We look
at the unitary representation theory of the classical lim-compact groups U.1/,
SO.1/ and Sp.1/ in order to construct the inducing representations, and we
indicate some of the analytic considerations in the actual construction of the induced
representations.
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subgroups, and that structure has recently been worked out for the classical direct
limit groups such as SL.1;R/ and Sp.1IR/. Here we explore the consequences
of that structure theory for the construction of the counterpart of various Harish-
Chandra series of representations, specifically the principal series.

The representation theory of finite-dimensional real semisimple Lie groups is
based on the now-classical constructions and Plancherel formula of Harish-Chandra.
Let G be a real semisimple Lie group, e.g., SL.nIR/, SU.p; q/, SO.p; q/, . . . .
Then one associates a series of representations to each conjugacy class of Cartan
subgroups. Roughly speaking, this goes as follows. Let Car.G/ denote the set of
conjugacy classes ŒH � of Cartan subgroups H of G. Choose ŒH � 2 Car.G/, H 2
ŒH �, and an irreducible unitary representation � of H . Then we have a “cuspidal”
parabolic subgroup P of G constructed from H , and a unitary representation 
� of
G constructed from � and P . Let �
� denote the distribution character of 
�. The
Plancherel Formula: if f 2 C.G/, the Harish-Chandra Schwartz space, then

f .x/ D
X

ŒH �2Car.G/

Z

OH
�
�.rxf /d�ŒH�.�/ (1.1)

where rx is right translation and �ŒH� is a Plancherel measure on the unitary dual OH .
In order to consider any elements of this theory in the context of real semisimple

direct limit groups, we have to look more closely at the construction of the Harish-
Chandra series that enter into (1.1).

Let H be a Cartan subgroup of G. It is stable under a Cartan involution � ,
an involutive automorphism of G whose fixed point set K D G� is a maximal
compactly embedded1 subgroup. Then H has a �-stable decomposition T � A
where T D H \ K is the compactly embedded part and (using lower case gothic
letters for Lie algebras) exp W a ! A is a bijection. Then a is commutative
and acts diagonalizably on g. Any choice of a positive a-root system defines a
parabolic subalgebra p D m C a C n in g and thus defines a parabolic subgroup
P DMAN inG. If � is an irreducible unitary representation ofM and � 2 a�, then
��;� W man 7! ei�.loga/�.m/ is a well defined irreducible unitary representation of
P . The equivalence class of the unitarily induced representation 
�;� D Ind GP .��;� /
is independent of the choice of a positive a-root system. The groupM has (relative)
discrete series representations, and f
�;� j � is a discrete series rep of M g is the
series of unitary representations associated to fAd.g/H j g 2 Gg.

One of the most difficult points here is dealing with the discrete series. In fact
the possibilities of direct limit representations of direct limit groups are somewhat
limited except in cases where one can pass cohomologies through direct limits
without change of cohomology degree. See [14] for limits of holomorphic discrete
series, [15] for Bott–Borel–Weil theory in the direct limit context, [11] for some

1A subgroup ofG is compactly embedded if it has compact image under the adjoint representation
of G.
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nonholomorphic discrete series cases, and [24] for principal series of classical type.
The principal series representations in (1.1) are those for which M is compactly
embedded in G, equivalently the ones for which P is a minimal parabolic subgroup
of G.

Here we work out the structure of the minimal parabolic subgroups of the finitary
simple real Lie groups and discuss construction of the associated principal series
representations. As in the finite-dimensional case, a minimal parabolic has structure
P DMAN . HereM D P\K is a (possibly infinite) direct product of torus groups,
compact classical groups such as Spin.n/, SU.n/, U.n/ and Sp.n/, and their
classical direct limits Spin.1/, SU.1/, U.1/ and Sp.1/ (modulo intersections
and discrete central subgroups).

Since this setting is not standard we start by sketching the background. In
Section 2 we recall the classical simple real direct limit Lie algebras and Lie groups.
There are no surprises. Section 3 sketches their relatively recent theory of complex
parabolic subalgebras. It is a little bit complicated and there are some surprises.
Section 4 carries those results over to real parabolic subalgebras. There are no new
surprises. Then in Sections 5 and 6 we deal with Levi components and Chevalley
decompositions. That completes the background.

In Section 7 we examine the real group structure of Levi components of real
parabolics. Then we specialize this to minimal self-normalizing parabolics in
Section 8. There the Levi components are locally isomorphic to direct sums in
an explicit way of subgroups that are either the compact classical groups SU.n/,
SO.n/ or Sp.n/, or their limits SU.1/, SO.1/ or Sp.1/. The Chevalley
(maximal reductive part) components are slightly more complicated, for example
involving extensions 1 ! SU.�/ ! U.�/ ! T 1 ! 1 as well as direct products
with tori and vector groups. The main result is Theorem 8.3, which gives the
structure of the minimal self-normalizing parabolics in terms similar to those of
the finite dimensional case. Proposition 8.12 then gives an explicit construction for
minimal parabolics with a given Levi factor.

In Section 9 we discuss the various possibilities for the inducing representation.
There are many good choices, for example tame representations or more generally
representations that are factors of type II . The theory is at such an early stage that
the best choice is not yet clear.

Finally, in Section 10 we indicate construction of the induced representations in
our infinite-dimensional setting. Smoothness conditions do not introduce surprises,
but unitarity is a problem, and we defer details of that construction to [26] and
applications to [27].

I thank Elizabeth Dan-Cohen and Ivan Penkov for many very helpful discussions
on parabolic subalgebras and Levi components.
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2 The classical simple real groups

In this section we recall the real simple countably infinite-dimensional locally finite
(“finitary”) Lie algebras and the corresponding Lie groups. This material follows
from results in [1], [2] and [6].

We start with the three classical simple locally finite countable-dimensional Lie
algebras gC D lim�! gn;C, and their real forms gR. The Lie algebras gC are the classical
direct limits,

sl.1;C/ D lim�! sl.nIC/;
so.1;C/ D lim�! so.2nIC/ D lim�! so.2nC 1IC/;
sp.1;C/ D lim�! sp.nIC/;

(2.1)

where the direct systems are given by the inclusions of the form A 7! . A 0
0 0 /. We

will also consider the locally reductive algebra gl.1IC/ D lim�! gl.nIC/ along with
sl.1IC/. The direct limit process of (2.1) defines the universal enveloping algebras

U.sl.1;C// D lim�!U.sl.nIC// and U.gl.1;C// D lim�!U.gl.nIC//;
U.so.1;C// D lim�!U.so.2nIC// D lim�!U.so.2nC 1IC//; and

U.sp.1;C// D lim�!U.sp.nIC//:
(2.2)

Of course each of these Lie algebras gC has the underlying structure of a real Lie
algebra. Besides that, their real forms are as follows ([1, 2, 6]).

If gC D sl.1IC/, then gR is one of sl.1IR/ D lim�! sl.nIR/, the real special
linear Lie algebra; sl.1IH/ D lim�! sl.nIH/, the quaternionic special linear Lie
algebra, given by sl.nIH/ WD gl.nIH/ \ sl.2nIC/; su.p;1/ D lim�! su.p; n/, the
complex special unitary Lie algebra of real rank p; or su.1;1/ D lim�! su.p; q/,
complex special unitary algebra of infinite real rank.

If gC D so.1IC/, then gR is one of so.p;1/ D lim�! so.p; n/, the real
orthogonal Lie algebra of finite real rank p; so.1;1/ D lim�! so.p; q/, the real
orthogonal Lie algebra of infinite real rank; or so�.21/ D lim�! so�.2n/

If gC D sp.1IC/, then gR is one of sp.1IR/ D lim�! sp.nIR/, the real
symplectic Lie algebra; sp.p;1/ D lim�! sp.p; n/, the quaternionic unitary Lie
algebra of real rank p; or sp.1;1/ D lim�! sp.p; q/, quaternionic unitary Lie
algebra of infinite real rank.

If gC D gl.1IC/, then gR is one gl.1IR/ D lim�! gl.nIR/, the real general linear
Lie algebra; gl.1IH/ D lim�! gl.nIH/, the quaternionic general linear Lie algebra;
u.p;1/ D lim�! u.p; n/, the complex unitary Lie algebra of finite real rank p; or
u.1;1/ D lim�! u.p; q/, the complex unitary Lie algebra of infinite real rank.
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As in (2.2), given one of these Lie algebras gR D lim�! gn;R we have the universal
enveloping algebra. We will need it for the induced representation process. As
in the finite-dimensional case, we use the universal enveloping algebra of the
complexification. Thus when we write U.gR/ it is understood that we mean U.gC/.
The reason for this is that we will want our representations of real Lie groups to be
representations on complex vector spaces.

The corresponding Lie groups are exactly what one expects. First, the complex
groups, viewed either as complex groups or as real groups,

SL.1IC/ D lim�!SL.nIC/ and GL.1IC/ D lim�!GL.nIC/;
SO.1IC/ D lim�!SO.nIC/ D lim�!SO.2nIC/ D lim�!SO.2nC 1IC/;
Sp.1IC/ D lim�!Sp.nIC/:

(2.3)

The real forms of the complex special and general linear groups SL.1IC/ and
GL.1IC/ are

SL.1IR/ and GL.1IR/ W real special/general linear groups,

SL.1IH/ W quaternionic special linear group,

.S/U.p;1/ W (special) unitary groups of real rank p <1;

.S/U.1;1/ W (special) unitary groups of infinite real rank.

(2.4)

The real forms of the complex orthogonal and spin groups SO.1IC/ and
Spin.1IC/ are

SO.p;1/, Spin.pI1/ W real orth./spin groups of real rank p <1;
SO.1;1/, Spin.1;1/ W real orthog./spin groups of real rank1;
SO�.21/ D lim�!SO�.2n/; which doesn’t have a standard name.

(2.5)

Here

SO�.2n/ D fg 2 SL.nIH/ j g preserves the form �.x; y/ WD
X

x`i Ny` D t xi Nyg:

Alternatively, SO�.2n/ D SO.2nIC/ \ U.n; n/ with

SO.2nIC/ defined by .u; v/ D
X

.uj vnCjr C vnCjwj /:

Finally, the real forms of the complex symplectic group Sp.1IC/ are
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Sp.1IR/ W real symplectic group,

Sp.p;1/ W quaternion unitary group of real rank p <1; and

Sp.1;1/ W quaternion unitary group of infinite real rank.

(2.6)

3 Complex parabolic subalgebras

In this section we recall the structure of parabolic subalgebras of gl.1IC/,
sl.1/IC/, so.1IC/ and sp.1IC/. We follow Dan-Cohen and Penkov ([3, 4]).

We first describe gC in terms of linear spaces. Let V and W be nondegenerately
paired countably infinite-dimensional complex vector spaces. Then gl.1;C/ D
gl.V;W / WD V ˝W consists of all finite linear combinations of the rank 1 operators
v ˝ w W x 7! hw; xiv. In the usual ordered basis of V D C

1, parameterized by
the positive integers, and with the dual basis of W D V � D .C1/�, we can view
gl.1;C/ as infinite matrices with only finitely many nonzero entries. However V
has more exotic ordered bases, for example parameterized by the rational numbers,
where the matrix picture is not intuitive.

The rank 1 operator v ˝ w has a well-defined trace, so trace is well defined on
gl.1;C/. Then sl.1;C/ is the traceless part, fg 2 gl.1IC/ j trace g D 0g.

In the orthogonal case we can take V D W using the symmetric bilinear form
that defines so.1IC/. Then

so.1IC/ D so.V; V / D �gl.1IC/ where�.v ˝ v0/ D v ˝ v0 � v0 ˝ v:

In other words, in an ordered orthonormal basis of V D C
1 parameterized by the

positive integers, so.1IC/ can be viewed as the infinite antisymmetric matrices
with only finitely many nonzero entries.

Similarly, in the symplectic case we can take V D W using the antisymmetric
bilinear form that defines sp.1IC/, and then

sp.1IC/ D sp.V; V / D Sgl.1IC/ where S.v ˝ v0/ D v ˝ v0 C v0 ˝ v:

In an appropriate ordered basis of V D C
1 parameterized by the positive integers,

sp.1IC/ can be viewed as the infinite symmetric matrices with only finitely many
nonzero entries.

In the finite-dimensional setting, Borel subalgebra means a maximal solvable
subalgebra, and parabolic subalgebra means one that contains a Borel. It is the same
here except that one must use locally solvable to avoid the prospect of an infinite
derived series.

Definition 3.1. A Borel subalgebra of gC is a maximal locally solvable subalgebra.
A parabolic subalgebra of gC is a subalgebra that contains a Borel subalgebra. }
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In the finite-dimensional setting a parabolic subalgebra is the stabilizer of an
appropriate nested sequence of subspaces (possibly with an orientation condition
in the orthogonal group case). In the infinite-dimensional setting here, one must be
very careful as to which nested sequences of subspaces are appropriate. If F is a
subspace of V , then F? denotes its annihilator in W . Similarly if 0F is a subspace
of W , then 0F? denotes its annihilator in V . We say that F (resp. 0F ) is closed if
F D F?? (resp. 0F D 0F??). This is the closure relation in the Mackey topology
[13], i.e., the weak topology for the functionals on V from W and on W from V .

In order to avoid repeating the following definitions later on, we make them in
somewhat greater generality than we need just now.

Definition 3.2. Let V and W be countable dimensional vector spaces over a real
division ring D D R;C or H, with a nondegenerate bilinear pairing h�; �i W V �W !
D. A chain or D-chain in V (resp. W ) is a set of D-subspaces totally ordered
by inclusion. An generalized D-flag in V (resp. W ) is a D-chain such that each
subspace has an immediate predecessor or an immediate successor in the inclusion
ordering, and every nonzero vector of V (or W ) is caught between an immediate
predecessor successor (IPS) pair. An generalized D-flag F in V (resp. 0F in W )
is semiclosed if F 2 F with F ¤ F?? implies fF;F??g is an IPS pair
(resp. 0F 2 0F with 0F ¤0 F?? implies f0F;0 F??g is an IPS pair). }
Definition 3.3. Let D, V and W be as above. Generalized D-flags F in V and 0F
in W form a taut couple when (i) if F 2 F then F? is invariant by the gl-stabilizer
of 0F and (ii) if 0F 2 0F , then its annihilator 0F? is invariant by the gl-stabilizer
of F . }

In the so and sp cases one can use the associated bilinear form to identify V
with W and F with 0F . Then we speak of a generalized flag F in V as self-taut. If
F is a self-taut generalized flag in V , then [6] every F 2 F is either isotropic or
coisotropic.

Example 3.4. Here is a quick peek at an obvious phenomenon introduced by
infinite dimensionality. Enumerate bases of V D C

1 and W D C
1 by .ZC/2,

say fvi D vi1;i2g and fwj D wj1;j2g, with hvi ;wj i D 1 if both i1 D j1 and i2 D j2
and hvi ;wj i D 0 otherwise. Define F D fFi g ordered by inclusion where one
builds up bases of the Fi first with the vi1;1; i1 = 1 and then the vi1;2; i1 = 1 and
then the vi1;3; i1 = 1, and so on. One does the same for 0F using the fwj g. Now
these form a taut couple of semiclosed generalized flags whose ordering involves an
infinite number of limit ordinals. That makes it hard to use matrix methods. }
Theorem 3.5. The self-normalizing parabolic subalgebras of the Lie algebras
sl.V;W / and gl.V;W / are the normalizers of taut couples of semiclosed gen-
eralized flags in V and W , and this is a one-to-one correspondence. The self-
normalizing parabolic subalgebras of sp.V / are the normalizers of self-taut
semiclosed generalized flags in V , and this too is a one-to-one correspondence.
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Theorem 3.6. The self-normalizing parabolic subalgebras of so.V / are the nor-
malizers of self-taut semiclosed generalized flags F in V , and there are two
possibilities:

(1) the flag F is uniquely determined by the parabolic, or
(2) there are exactly three self-taut generalized flags with the same stabilizer as F .

The latter case occurs precisely when there exists an isotropic subspaceL 2 F with
dimCL

?=L D 2. The three flags with the same stabilizer are then

fF 2 F j F � L or L? � F g,
fF 2 F j F � L or L? � F g [M1,
fF 2 F j F � L or L? � F g [M2,

where M1 andM2 are the two maximal isotropic subspaces containing L.

Example 3.7. Before proceeding we indicate an example which shows that not
all parabolics are equal to their normalizers. Enumerate bases of V D C

1 and
W D C

1 by rational numbers with pairing

hvq;wr i D 1 if q > r; D 0 if q 5 r:

Then Spanfvq ˝ wr j q 5 rg is a Borel subalgebra of gl.1/ contained in sl.1/.
This shows that sl.1/ is parabolic in gl.1/. }

One pinpoints this situation as follows. If p is a (real or complex) subalgebra
of gC and q is a quotient algebra isomorphic to gl.1IC/, say with quotient map
f W p! q, then we refer to the composition t race ı f W p! C as an infinite trace
on gC. If ffig is a finite set of infinite traces on gC and fci g are complex numbers,
then we refer to the condition

P

cifi D 0 as an infinite trace condition on p.
These quotients can exist. In Example 3.4 we can take Va to be the span of the

vi1;a and Wa the span of the dual wi1;a for a D 1; 2; : : : and then the normalizer of
the taut couple .F ; 0F/ has infinitely many quotients gl.Va;Wa/.

Theorem 3.8. The parabolic subalgebras p in gC are the algebras obtained from
self-normalizing parabolicsep by imposing infinite trace conditions.

As a general principle one tries to be explicit by constructing representations that
are as close to irreducible as feasible. For this reason we will construct principal
series representations by inducing from parabolic subgroups that are minimal
among the self-normalizing parabolic subgroups. Still, one should be aware of the
phenomenon of Example 3.7 and Theorem 3.8.

4 Real parabolic subalgebras and subgroups

In this section we discuss the structure of parabolic subalgebras of real forms of the
classical sl.1;C/, so.1;C/, sp.1;C/ and gl.1;C/. In this section gC will always
be one of them and GC will be the corresponding connected complex Lie group.
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Also, gR will be a real form of gC, and GR will be the corresponding connected real
subgroup of GC.

Definition 4.1. Let gR be a real form of gC. Then a subalgebra pR � gR
is a parabolic subalgebra if its complexification pC is a parabolic subalgebra
of gC. }

When gR has two inequivalent defining representations, in other words when

gR D sl.1IR/; gl.1IR/; su.�;1/; u.�;1/; or sl.1IH/;

we denote them by VR and WR, and when gR has only one defining representation,
in other words when

gR D so.�;1/; sp.�;1/; sp.1IR/; or so�.21/ as quaternion matrices,

we denote it by VR. The commuting algebra of gR on VR is a real division algebra D.
The main result of [6] is

Theorem 4.2. Suppose that gR has two inequivalent defining representations. Then
a subalgebra of gR (resp. subgroup of GR) is parabolic if and only if it is defined by
infinite trace conditions (resp. infinite determinant conditions) on the gR-stabilizer
(resp. GR-stabilizer) of a taut couple of generalized D-flags F in VR and 0F in WR.

Suppose that gR has only one defining representation. A subalgebra of gR (resp.
subgroup) of GR is parabolic if and only if it is defined by infinite trace conditions
(resp. infinite determinant conditions) on the gR-stabilizer (resp.GR-stabilizer) of a
self-taut generalized D-flag F in VR.

5 Levi components of complex parabolics

In this section we discuss Levi components of complex parabolic subalgebras,
recalling results from [4, 5, 8–10] and [25]. We start with the definition.

Definition 5.1. Let p be a locally finite Lie algebra and r its locally solvable
radical. A subalgebra l � p is a Levi component if Œp; p� is the semidirect sum
.r \ Œp; p�/ � l. }

Every finitary Lie algebra has a Levi component. Evidently, Levi components are
maximal semisimple subalgebras, but the converse fails for finitary Lie algebras.
In any case, parabolic subalgebras of our classical Lie algebras gC have maximal
semisimple subalgebras, and those are their Levi components.
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Definition 5.2. Let X � V and Y � W be paired subspaces, isotropic in the
orthogonal and symplectic cases. The subalgebras

gl.X; Y / � gl.V;W / and sl.X; Y / � sl.V;W /;

�gl.X; Y / � �gl.V; V / and Sgl.X; Y / � Sgl.V; V /

are called standard. }
Proposition 5.3. A subalgebra lC � gC is the Levi component of a parabolic
subalgebra of gC if and only if it is the direct sum of standard special linear
subalgebras and at most one subalgebra �gl.X; Y / in the orthogonal case, and
at most one subalgebra Sgl.X; Y / in the symplectic case.

The occurrence of “at most one subalgebra” in Proposition 5.3 is analogous to
the finite-dimensional case, where it is seen by deleting some simple root nodes
from a Dynkin diagram.

Let p be the parabolic subalgebra of sl.V;W / or gl.V;W / defined by the taut
couple .F ; 0F/ of semiclosed generalized flags.

Definition 5.4. Define two sets J and 0J by

J D f.F 0; F 00/ IPS pair in F j F 0 D .F 0/?? and dimF 00=F 0 > 1g;
0J D f.0F 0; 0F 00/ IPS pair in 0F j 0F 0 D .0F 0/??; dim 0F 00=0F 0 > 1g:

Since V � W ! C is nondegenerate, the sets J and 0J are in one-to-one
correspondence by .F 00=F 0/ � .0F 00=0F 0/ ! C is nondegenerate. We use this to
identify J with J 0, and we write .F 0j ; F 00j / and .0F 0j ; 0F 00j / treating J as an index set.

Theorem 5.5. Let p be the parabolic subalgebra of sl.V;W / or gl.V;W / defined
by the taut couple F and 0F of semiclosed generalized flags. For each j 2 J choose
a subspace Xj � V and a subspace Yj � W such that F 00j D Xj C F 0j and
0F 00j D Yj C 0Fj 0 Then

L

j2J sl.Xj ; Yj / is a Levi component of p. The inclusion
relations of F and 0F induce a total order on J .

Conversely, if l is a Levi component of p then there exist subspaces Xj � V and
Yj � W such that l DLj2J sl.Xj ; Yj /.

Now the idea of finite matrices with blocks down the diagonal suggests
the construction of p from the totally ordered set J and the direct sum
l DLj2J sl.Xj ; Yj / of standard special linear algebras. We outline the idea of the
construction; see [5]. First, hXj ; Yj 0i D 0 for j ¤ j 0 because the sj D sl.Xj ; Yj /
commute with each other. Define Uj WD ..

L

k5j Xk/
? ˚ Yj /?. Then one proves

Uj D ..Uj ˚Xj /?˚Yj /?. From that, one shows that there is a unique semiclosed
generalized flag Fmin in V with the same stabilizer as the set fUj ; Uj˚Xj j j 2 J g.
One constructs similar subspaces 0Uj � W and shows that there is a unique
semiclosed generalized flag 0Fmin in W with the same stabilizer as the set
f0Uj ; 0U j ˚ Yj j j 2 J g. In fact .Fmin;

0Fmin/ is the minimal taut couple with IPS



Principal series representations of infinite-dimensional Lie groups, I 529

pairsUj � .Uj˚Xj / in F0 and .Uj˚Xj /? � ..Uj˚Xj /?˚Yj / in 0F0 for j 2 J .
If .Fmax;

0Fmax/ is maximal among the taut couples of semiclosed generalized flags
with IPS pairs Uj � .Uj ˚ Xj / in Fmax and .Uj ˚ Xj /? � ..Uj ˚ Xj /? ˚ Yj /
in 0Fmax, then the corresponding parabolic p has Levi component l.

The situation is essentially the same for Levi components of parabolic subalge-
bras of gC D so.1IC/ or sp.1IC/, except that we modify Definition 5.4 of J to
add the condition that F 00 be isotropic, and we add the orientation aspect of the so
case.

Theorem 5.6. Let p be the parabolic subalgebra of gC D so.V / or sp.V /, defined
by the self-taut semiclosed generalized flag F . Let eF be the union of all subspaces
F 00 in IPS pairs .F 0; F 00/ ofF for which F 00 is isotropic. Letf0F be the intersection of
all subspacesF 0 in IPS pairs for whichF 0 is closed (F 0 D .F 0/??) and coisotropic.
Then l is a Levi component of p if and only if there are isotropic subspaces Xj ; Yj
in V such that

F 00j D F 0j CXj and 0F 00j D 0Fj C Yj for every j 2 J

and a subspace Z in V such that eF D Z Cf0F , where Z D 0 in case gC D so.V /
and dimeF=f0F 5 2, such that

l D sp.Z/˚
M

j2J sl.Xj ; Yj / if gC D sp.V /;

l D so.Z/˚
M

j2J sl.Xj ; Yj / if gC D so.V /:

Further, the inclusion relations of F induce a total order on J which leads to a
construction of p from l.

6 Chevalley decomposition

In this section we apply the extension [4] to our parabolic subalgebras, of the
Chevalley decomposition for a (finite-dimensional) algebraic Lie algebra.

Let p be a locally finite linear Lie algebra, in our case a subalgebra of gl.1/.
Every element 	 2 p has a Jordan canonical form, yielding a decomposition 	 D
	ssC	nil into semisimple and nilpotent parts. The algebra p is splittable if it contains
the semisimple and the nilpotent parts of each of its elements. Note that 	ss and 	nil

are polynomials in 	; this follows from the finite-dimensional fact. In particular, if
X is any 	-invariant subspace of V , then it is invariant under both 	ss and 	nil.

Conversely, parabolic subalgebras (and many others) of our classical Lie algebras
g are splittable.
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The linear nilradical of a subalgebra p � g is the set pnil of all nilpotent elements
of the locally solvable radical r of p. It is a locally nilpotent ideal in p and satisfies
pnil \ Œp; p� D r\ Œp; p�.

If p is splittable, then it has a well-defined maximal locally reductive subalgebra
pred. This means that pred is an increasing union of finite-dimensional reductive Lie
algebras, each reductive in the next. In particular pred maps isomorphically under the
projection p ! p=pnil. That gives a semidirect sum decomposition p D pnil � pred

analogous to the Chevalley decomposition mentioned above. Also, here,

pred D l � t and Œpred; pred� D l

where t is a toral subalgebra and l is the Levi component of p. A glance at u.1/ or
gl.1IC/ shows that the semidirect sum decomposition of pred need not be direct.

7 Levi and Chevalley components of real parabolics

Now we adapt the material of Sections 5 and 6 to study Levi and Chevalley
components of real parabolic subalgebras in the real classical Lie algebras.

Let gR be a real form of a classical locally finite complex simple Lie algebra
gC. Consider a real parabolic subalgebra pR. It has form pR D pC \ gR where its
complexification pC is parabolic in gC. Let � denote complex conjugation of gC
over gR. Then the locally solvable radical rC of pC is �-stable because rCC �rC is a
locally solvable ideal, so the locally solvable radical rR of pR is a real form of rC.

Let lR be a maximal semisimple subalgebra of pR. Its complexification lC is a
maximal semisimple subalgebra, hence a Levi component, of pC. Thus ŒpC; pC� is
the semidirect sum .rC \ ŒpC; pC�/ � lC. The elements of this formula all are �-
stable, so we have proved

Lemma 7.1. The Levi components of pR are real forms of the Levi components of
pC.

If gC is sl.V;W / or gl.V;W / as in Theorem 5.5, then lC D L

j2J sl.Xj ; Yj / as
indicated there. Initially the possibilities for the action of � are

• � preserves sl.Xj ; Yj / with fixed point set sl.Xj;R; Yj;R/ Š sl.�IR/,
• � preserves sl.Xj ; Yj / with fixed point set sl.Xj;H; Yj;H/ Š sl.�IH/,
• � preserves sl.Xj ; Yj / with f.p. set su.X 0j ; X 00j / Š su.�;�/,Xj D X 0j CX 00j , and
• � interchanges two summands sl.Xj ; Yj / and sl.Xj 0 ; Yj 0/ of lC, with fixed point

set the diagonal (Š sl.Xj ; Yj /) of their direct sum.
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If gC D so.V / as in Theorem 5.6, lC can also have a summand so.Z/, or if gC D
sp.V / it can also have a summand sp.Z/. Except when A4 D D3 occurs, these
additional summands must be �-stable, resulting in fixed point sets

• when gC D so.V /: so.Z/� is so.�;�/ or so�.21/,
• when gC D sp.V /: sp.Z/� is sp.�;�/ or sp.�IR/.

8 Minimal parabolic subgroups

We describe the structure of minimal parabolic subgroups of the classical real simple
Lie groupsGR.

Proposition 8.1. Let pR be a parabolic subalgebra of gR and lR a Levi component
of pR. If pR is a minimal parabolic subalgebra, then lR is a direct sum of
finite-dimensional compact algebras su.p/, so.p/ and sp.p/, and their infinite-
dimensional limits su.1/, so.1/ and sp.1/. If lR is a direct sum of finite-
dimensional compact algebras su.p/, so.p/ and sp.p/ and their limits su.1/,
so.1/ and sp.1/, then pR contains a minimal parabolic subalgebra of gR with
the same Levi component lR.

Proof. Suppose that pR is a minimal parabolic subalgebra of gR. If a direct
summand l0

R
of lR has a proper parabolic subalgebra qR, we replace l0

R
by qR in lR

and pR. In other words we refine the flag(s) that define pR. The refined flag defines
a parabolic qR ¤ pR. This contradicts minimality. Thus no summand of lR has
a proper parabolic subalgebra. Theorems 5.5 and 5.6 show that su.p/, so.p/ and
sp.p/, and their limits su.1/, so.1/ and sp.1/, are the only possibilities for the
simple summands of lR.

Conversely suppose that the summands of lR are su.p/, so.p/ and sp.p/ or
their limits su.1/, so.1/ and sp.1/. Let .F ; 0F/ or F be the flag(s) that define
pR. In the discussion between Theorems 5.5 and 5.6 we described a minimal
taut couple .Fmin;

0Fmin/ and a maximal taut couple .Fmax;
0Fmax/ (in the sl and

gl cases) of semiclosed generalized flags which define parabolics that have the
same Levi component lC as pC. By construction .F ; 0F/ refines .Fmin;

0Fmin/ and
.Fmax;

0Fmax/ refines .F ; 0F/. As .Fmin;
0Fmin/ is uniquely defined from .F ; 0F/

it is �-stable. Now the maximal �-stable taut couple .F�max;
0F�max/ of semiclosed

generalized flags defines a �-stable parabolic qC with the same Levi component
lC as pC, and qR WD qC \ gR is a minimal parabolic subalgebra of gR with Levi
component lR.

The argument is the same when gC is so or sp. ut
Proposition 8.1 says that the Levi components of the minimal parabolics are the

compact real forms, in the sense of [21], of the complex sl, so and sp. We extend
this notion.

The group GR has the natural Cartan involution � such that d�..pR/red/ D
.pR/red, defined as follows. Every element of lR is elliptic, and .pR/red D lR � tR
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where tR is toral, so every element of .pR/red is semisimple. (This is where we use
minimality of the parabolic pR.) Thus .pR/red \ gn;R is reductive in gm;R for every
m = n. Consequently we have Cartan involutions �n of the groups Gn;R such that
�nC1jGn;R D �n and d�n..pR/red \ gn;R/ D .pR/red \ gn;R. Now � D lim�! �n (in other
words � jGn;R D �n) is the desired Cartan involution of gR. Note that lR is contained
in the fixed point set of d� .

The Lie algebra gR D kR C sR where kR is the .C1/-eigenspace of d� and sR
is the .�1/-eigenspace. The fixed point set KR D G�

R
is the direct limit of the

maximal compact subgroups Kn;R D G
�n
n;R. We will refer to KR as a maximal lim-

compact subgroup of GR and to kR as a maximal lim-compact subalgebra of gR.
By construction lR � kR, as in the case of finite-dimensional minimal parabolics.
Also as in the finite-dimensional case (and using the same proof), ŒkR; kR� � kR,
ŒkR; sR� � sR and ŒsR; sR� � kR.

Lemma 8.1. Decompose .pR/red D mR C aR where mR D .pR/red \ kR and aR D
.pR/red\sR. ThenmR and aR are ideals in .pR/red with aR commutative. In particular
.pR/red D mR ˚ aR, direct sum of ideals.

Proof. Since lR D Œ.pR/red; .pR/red� we compute ŒmR; aR� � lR \ aR D 0. In
particular ŒŒaR; aR�; aR� D 0. So ŒaR; aR� is a commutative ideal in the semisimple
algebra lR, in other words aR is commutative. ut

The main result of this section is the following generalization of the standard
decomposition of a finite-dimensional real parabolic. We have formulated it to
emphasize the parallel with the finite-dimensional case. However some details of
the construction are rather different; see Proposition 8.12 and the discussion leading
up to it.

Theorem 8.3. The minimal parabolic subalgebra pR of gR decomposes as pR D
mR C aR C nR D nR � .mR ˚ aR/, where aR is commutative, the Levi component
lR is an ideal in mR , and nR is the linear nilradical .pR/nil. On the group level,
PR D MRARNR D NR Ë .MR � AR/ where NR D exp.nR/ is the linear unipotent
radical of PR, AR D exp.aR/ is isomorphic to a vector group, andMR D PR \KR

is limit–compact with Lie algebra mR.

Proof. The algebra level statements come out of Lemma 8.1 and the semidirect sum
decomposition pR D .pR/nil � .pR/red.

For the group level statements, we need only check that KR meets every
topological component ofPR. Even thoughPR\Gn;R need not be parabolic inGn;R,
the groupPR\�PR\Gn;R is reductive inGn;R and �n-stable, soKn;R meets each of
its components. NowKR meets every component of PR\�PR. The linear unipotent
radical of PR has Lie algebra nR and thus must be equal to exp.nR/, so it does not
effect components. Thus every component of Pred is represented by an element of
KR\PR\�PR D KR\PR DMR. That derivesPR DMRARNR D NRË.MR�AR/

from pR D mR C aR C nR D nR � .mR ˚ aR/. ut
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The reductive part of the algebra pR can be constructed explicitly. We do this for
the cases where gR is defined by a hermitian form f W VF � VF ! F where F is R,
C or H. The idea is the same for the other cases. See Proposition 8.12 below.

Write VF for VR, VC or VH, as appropriate, and similarly for WF. We use f for
an F-conjugate-linear identification of VF and WF. We are dealing with a minimal
Levi component lR D L

j2J lj;R where the lj;R are simple. Let XF denote the
sum of the corresponding subspaces .Xj /F � VF and YF the analogous sum of the
.Yj /F � WF. Then XF and YF are nondegenerately paired. Of course they may be
small, even zero. In any case,

VF D XF ˚ Y ?F ;WF D YF ˚X?F ; and

X?
F

and Y ?
F

are nondegenerately paired.
(8.4)

These direct sum decompositions (8.4) now become

VF D XF ˚X?F and f is nondegenerate on each summand. (8.5)

Let X 0 and X 00 be paired maximal isotropic subspaces of X?
F

. Then

VF D XF ˚ .X 0F ˚X 00F /˚QF where QF WD .XF ˚ .X 0F ˚X 00F //?: (8.6)

The subalgebra f	 2 gR j 	.XF˚QF/ D 0g of gR has a maximal toral subalgebra
a(R, contained in sR, in which every element has all eigenvalues real. One example,
which is diagonalizable (in fact diagonal) over R, is

a
(

R
D
M

`2C gl.x 0̀R; x00̀R/ where

fx 0̀ j ` 2 C g is a basis of X 0
F

and

fx00̀ j ` 2 C g is the dual basis of X 00
F
:

(8.7)

We interpolate the self-taut semiclosed generalized flag F defining p with the
subspaces x 0̀R ˚ x00̀R. Any such interpolation (and usually there will be infinitely
many) gives a self-taut semiclosed generalized flag F( and defines a minimal
self-normalizing parabolic subalgebra p

(

R
of gR with the same Levi component

as pR. The decompositions corresponding to (8.4), (8.5) and (8.6) are given by
X
(

F
D XF ˚ .X 0F ˚X 00F / andQ(

F
D QF.

In addition, the subalgebra f	 2 pR j 	.XF ˚ .X 0F ˚ X 00F // D 0g has a maximal
toral subalgebra t0

R
in which every eigenvalue is pure imaginary, because f is

definite on QF. It is unique because it has derived algebra zero and is given by
the action of the pR-stabilizer of QF on the definite subspace QF. This uniqueness
tell us that t0

R
is the same for pR and p

(

R
.
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Let t00
R

denote the maximal toral subalgebra in f	 2 pR j 	.XF ˚QF// D 0g. It

stabilizes each Span(x 0̀ ; x00̀) in (8.7) and centralizes a(
R

, so it vanishes if F ¤ C. The

p
(

R
analog of t00

R
is 0 because X(

F
˚QF D 0. In any case we have

tR D t
(

R
WD t0

R
˚ t00

R
: (8.8)

For each j 2 J we define an algebra that contains lj;R and acts on .Xj /F by: if
lj;R D su.�/, then flj;R D u.�/ (acting on .Xj /C); otherwise flj;R D lj;R. Define

elR D
M

j2J
flj;R and m

(

R
D elR C tR: (8.9)

Then, by construction, m(

R
D mR. Thus p(

R
satisfies

p
(
R
WD mR C a

(
R
C n

(
R
D n

(
R

� .mR ˚ a
(
R
/: (8.10)

Let zR denote the centralizer of mR ˚ aR in gR and let z(
R

denote the centralizer of

mR ˚ a
(
R

in gR. We claim

mR C aR D elR C zR and mR C a
(

R
D elR C z

(

R
; (8.11)

for by construction mR ˚ aR D elR C tR C aR � elR C zR. Conversely, if 	 2 zR
it preserves each Xj;F, each joint eigenspace of aR on X 0

F
˚ X 00

F
, and each joint

eigenspace of tR, so 	 � elR C tR C aR. Thus mR C aR D elR C zR. The same
argument shows that mR C a

(

R
D elR C z

(

R
.

If aR is diagonalizable as in the definition (8.7) of a(
R

, in other words if it is a sum

of standard gl.1IR/’s, then we could choose a(
R
D aR, hence we could construct F(

equal to F , resulting in pR D p
(
R

. In summary:

Proposition 8.12. Let gR be defined by a hermitian form and let pR be a minimal
self-normalizing parabolic subalgebra. In the notation above, p(

R
is a minimal self-

normalizing parabolic subalgebra of gR with m
(
R
D mR. In particular p(

R
and pR

have the same Levi component. Further we can take pR D p
(
R

if and only if aR is the
sum of commuting standard gl.1IR/’s.

Similar arguments give the construction behind Proposition 8.12 for the other
real simple direct limit Lie algebras.
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9 The inducing representation

In this section PR is a self-normalizing minimal parabolic subgroup of GR. We
discuss representations of PR and the induced representations of GR. The latter are
the principal series representations of GR associated to pR, or more precisely to the
pair .lR; J / where lR is the Levi component and J is the ordering on the simple
summands of lR.

We must first choose a class CMR
of representations of MR. Reasonable choices

include various classes of unitary representations (we will discuss this in a moment)
and continuous representations on nuclear Fréchet spaces, but “tame” (essentially
the same as II1) may be the best with which to start. In any case, given a
representation � in our chosen class and a linear functional � W aR ! R we
have the representation � ˝ ei� of MR � AR. Here ei�.a/ means ei�.loga/ where
log W AR ! aR inverts exp W aR ! AR. We write E� for the representation space of
�.

We discuss some possibilities for CMR
. Note that lR D Œ.pR/red; .pR/red� D ŒmRC

aR;mR C aR� D ŒmR;mR�. Define

LR D ŒMR;MR� and TR DMR=LR :

Then TR is a real toral group with all eigenvalues pure imaginary, and MR is an
extension 1 ! LR ! MR ! TR ! 1 : Examples indicate that MR is the
product of a closed subgroup T 0

R
of TR with factors of the group L0

R
indicated in

the previous section. That was where we replaced summands su.�/ of lR by slightly
larger algebras u.�/, hence subgroups SU.�/ of LR by slightly larger groups U.�/.
There is no need to discuss the representations of the classical finite-dimensional
U.n/, SO.n/ or Sp.n/, where we have the Cartan highest weight theory and other
classical combinatorial methods. So we look at U.1/.
Tensor Representations of U.1/. In the classical setting, one can use the action of
the symmetric group Sn, permuting factors of ˝n.Cp/. This gives a representation
of U.p/ � Sn. Then we have the action of U.p/ on tensors picked out by an
irreducible summand of that action of Sn. These summands occur with multiplicity
1. See Weyl’s book [23]. Segal [17], Kirillov [12], and Strătilă and Voiculescu
[18] developed and proved an analog of this for U.1/. However those “tensor
representations” form a small class of the continuous unitary representations of
U.1/. They are factor representations of type II1, but they are somewhat restricted
in that they do not even extend to the class of unitary operators of the form
1 C (compact). See [19, Section 2] for a summary of this topic. Because of this
limitation one may also wish to consider other classes of factor representations of
U.1/.
Type II1 Representations of U.1/. Let 
 be a continuous unitary finite-factor
representation of U.1/. It has a character �
.x/ D trace 
.x/ (normalized
trace). Voiculescu [22] worked out the parameter space for these finite-factor
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representations. It consists of all bilateral sequences fcng�1<n<1 such that (i)
det..cmiCj�i /15i;j5N = 0 for mi 2 Z and N = 0 and (ii)

P

cn D 1. The character
corresponding to fcng and 
 is �
.x/ D Q

i p.zi / where fzig is the multiset of
eigenvalues of x and p.z/ D P

cnzn. Here 
 extends to the group of all unitary
operators X on the Hilbert space completion of C

1 such that X � 1 is of trace
class. See [19, Section 3] for a more detailed summary. This may be the best choice
of class CMR

. It is closely tied to the Olshanskii–Vershik notion (see [16]) of tame
representation.

Other factor representations of U.1/. Let H be the Hilbert space completion
of lim�!Hn where Hn is the natural representation space of U.n/. Fix a bounded
hermitian operator B on H with 0 5 B 5 I . Then

 B W U.1/! C ; defined by  B.x/ D det..1 � B/C Bx/

is a continuous function of positive type on U.1/. Let 
B denote the
associated cyclic representation of U.1/. Then ([20, Theorem 3.1], or see
[19, Theorem 7.2]),

(1)  B is of type I if and only if B.I � B/ is of trace class. In that case 
B is a
direct sum of irreducible representations.

(2)  B is factorial and type I if and only if B is a projection. In that case 
B is
irreducible.

(3)  B is factorial but not of type I if and only if B.I � B/ is not of trace class.
In that case

(i)  B is of type II1 if and only if B � tI is Hilbert–Schmidt where
0 < t < 1; then 
B is a factor representation of type II1.

(ii)  B is of type II1 if and only if (a) B.I � B/.B � pI/2 is trace class
where 0 < t < 1 and (b) the essential spectrum of B contains 0 or 1; then

B is a factor representation of type II1.

(iii)  B is of type III if and only if B.I � B/.B � pI/2 is not of trace class
whenever 0 < t < 1; then 
B is a factor representation of type III .

Similar considerations hold for SU.1/, SO.1/ and Sp.1/. This gives an
indication of the delicacy in choice of type of representations of MR. Clearly factor
representations of type I and II1 will be the easiest to deal with.

It is worthwhile to consider the case where the inducing representation �˝ei� is
trivial onMR, in other words it is a unitary character onPR. In the finite-dimensional
case this leads to a KR-fixed vector, spherical functions on GR and functions on the
symmetric spaceGR=KR. In the infinite dimensional case it leads to open problems,
but there are a few examples ([7, 24]) that may give accurate indications.
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10 Parabolic induction

We view �˝ei� as a representationman 7! ei�.a/�.m/ of PR D MRARNR onE� .
It is well defined because NR is a closed normal subgroup of PR. Let U.gC/ denote
the universal enveloping algebra of gC. The algebraically induced representation
is given on the Lie algebra level as the left multiplication action of gC on
U.gC/˝pR E� ,

d
�;�;alg.	/ W U.gC/˝pR E� ! U.gC/˝pR E� by �˝ e 7! .	�/˝ e:

If 	 2 pR, then d
�;�;alg.	/.� ˝ e/ D Ad.	/� ˝ e C � ˝ d.� ˝ ei� /.	/e: To
obtain the associated representation 
�;� of GR we need a GR-invariant completion
of U.gC/˝pR E� so that the 
�;�;alg.exp.	// WD exp.d
�;�;alg.	// are well defined.
For example we could use a Ck completion, k 2 f0; 1; 2; : : : ;1; !g, representation
ofGR on Ck sections of the vector bundle e�˝ei� ! GR=PR associated to the action
� ˝ ei� of PR on E� . The representation space is

f' W GR ! E� j ' is Ck and '.xman/ D ei�.a/�1�.m/�1f .x/g

wherem 2MR , a 2 AR and n 2 NR, and the action of GR is

Œ
�;�;C k .x/.'/�.z/ D '.x�1z/:

In some cases one can unitarize d
�;�;alg by constructing a Hilbert space of sections
of e�˝ei� ! GR=PR. This has been worked out explicitly when PR is a direct limit
of minimal parabolic subgroups of theGn;R [24], and more generally it comes down
to transitivity ofKR onGR=PR [26]. In any case the resulting representations ofGR

depend on the choice of class CMR
of representations of MR.
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