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On the Equivalence

of Polygons (1924)

This chapter contains an English translation of Alfred Tarski’s paper O równowa�no�ci
wielok�tów, [1924] 2014b, written as he was completing his doctoral studies.  It appeared
in volume 24 of the journal Przegl�d matematyczno-fizyczny.  This is its first translation. 
A description of the journal, background for the paper, and a summary are provided in
sections 4.1–4.3.

The translation is meant to be as faithful as possible to the original.  Its only inten-
tional modernizations are punctuation and some changes in symbols, where Tarski’s con-
flict with others used throughout this book.  Bibliographic references and some personal
names have been adjusted to conform with the conventions used here.  The original paper
sometimes employed barely discernible  a u g m e n t e d  l e t t e r s p a c i n g   to emphasize
a phrase.1  In some cases the translation uses italics instead;  in others, this emphasis has
been suppressed.  As an aspect of adjusting punctuation, the editors greatly increased use
of white space to enhance visual organization of the paper.  All [square] brackets in the
translation enclose editorial comments.  Those are inserted, usually as footnotes, to
indicate changes in notation and explain passages that seem obscure.

1 In the letter translated in section 15.12, Tarski conveyed his dislike of that style.
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Journal Containing Alfred Tarski’s Paper
On the Equivalence of Polygons



ALFRED TARSKI

On the Equivalence of Polygons

In elementary geometry,2 we call two polygons equivalent if it is possible to divide them
into the same finite number of respectively congruent polygons not having common
interior points.  In the theory of the equivalence of polygons, the following statement,
usually accepted without proof in elementary geometry and sometimes called De Zolt’s
axiom, plays a fundamental role:

If polygon  V  is a part of polygon  W,  then these polygons are not equivalent.

As is well known, David Hilbert showed3 that the preceding statement can be proved with
the help of axioms usually cited in elementary geometry textbooks.  Because of the
difficulty of that proof, however, one does not make use of it in a secondary-school class.

Relying on De Zolt’s axiom, among others, it is possible in the theory of mensuration
to prove the following theorem, which provides a necessary and sufficient condition for
the equivalence of two polygons:

In order for polygons  V  and  W  to be equivalent, it is necessary and sufficient
that they have equal areas.

The question arises, do the [italicized] formulations of both statements above remain
true sentences if equivalence is understood in a broader sense than it usually is in elemen-
tary geometry:  that is to say, if two geometric figures (thus in particular, two polygons)
are called equivalent when it is possible to divide them into the same finite number of
respectively congruent arbitrary geometric figures not having any common points.

In the present article I show that this question ought to be given an affirmative answer. 
It is also interesting that the proofs of both of these very straightforward statements, the
first of which may seem almost obvious, rely on results obtained by Prof. Stefan Banach
with the aid of the entire apparatus of contemporary mathematical knowledge:  in par-
ticular, with the help of the so-called axiom of choice.4

2 The definitions and theorems of elementary geometry to which I refer in the present article can be found,
for instance, in the textbook Enriques and Amaldi [1903] 1916.

3 See Hilbert [1899] 1922.
4 Banach 1923 [discussed in section 4.2 of the present book].  All those notions and principles of set theory

to which I refer in the present article—just a few—are contained in the book Sierpi�ski 1923.
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Notation

By means of letters  p,q,s, ...  I denote points, while the letters  A,B,K,P,V, ...  [denote] geometric
figures—that is, point sets.

The symbol  A � B  denotes the union of sets  A  and  B:  that is, the set consisting of all those
points that belong either to set  A  or to  B.  The notion of the union of sets can be extended with
ease to an arbitrary finite number of components;  it is even possible to consider the union of all
sets that are terms of a certain infinite sequence.  We use the symbols

  and   ,
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k
k
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�
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�

�
respectively, as well.5

The symbol A – B  denotes the difference of sets  A  and  B:  that is, the set consisting of all those
points of the set  A  that do not belong to B.

As an expression that sets  A  and  B  are identical—that is, that they have all points in com-
mon—I write  A = B.  To express that the sets  A  and  B  are disjoint—that is, that they do not
have any points in common—I will write  A ][ B.  Finally, to express that the set  A  is a proper
part of set  B  —that is, that every point belonging to  A  also belongs to  B,  but not conversely
—I will write  A � B.6

In this article I do not distinguish a point  p  from the set consisting solely of that same point 
p.  In this way, for example, the symbol

1

n

k
k

p
�
�

denotes the set consisting of points  p1,p2, ... ,pn.

§1

I begin by recalling the familiar definition of the congruence of two arbitrary geometric
figures, based on the notion of equal distances between two pairs of points.  (This notion
should, of course, either be defined earlier or assumed as a primitive notion.)

Definition 1.  Point sets  A  and  B  are congruent—  A =~ B  —if between their points
a perfect (one-to-one) correspondence can be established that satisfies the following
condition:  if  p  and  q  are arbitrary points of set  A,  while  p�  and  q�  are their corre-
sponding points in set  B,  then the distances between the pairs of points  p  and  q,  and 
p�  and  q�,  are equal.

In my following discussions, I will assume familiarity with elementary properties of the
congruence relation.7

5 [For union Tarski used the Polish equivalent of the English term sum, and for  �  and  �  he used  +  and 
�,  respectively.]

6 [In the original, Tarski used the symbol  � for is a proper part of.  He employed it only once.] 
7 [The correspondence between  p, q, ...  and  p�, q�, ...  need not be a direct isometry;  it may reverse orienta-

tion.  Moreover, Tarski did not require that it be a restriction of an isometry of the entire plane.]  
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Definition 2.  Point sets  A  and  B  are equivalent—  A � B  —if there exist sets 
A1, A2, ... , An  and  B1,B2, ... ,Bn,  where  n  [is] a natural number, that satisfy the
conditions

(a) A =   and  B = ,
1
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k
k
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�
�
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n

k
k

B
�
�

(b) Ak =~ Bk  whenever  1 � k � n,

(c) Ak ][ Al  and  Bk ][ Bl  whenever 1 � k < l � n.

To express that the figures  A  and  B  are not equivalent I shall write  A �/  B.  In the
following five theorems, I shall present several elementary properties of the relation of
equivalence.

Theorem 1.  If  A =~ B,  then  A � B.  In particular, an arbitrary point set  A  satisfies
the condition  A � A.

Theorem 2.  If  A � B,  then  B � A.

Both of those theorems follow directly from definition 2.

Theorem 3.  If  A � B  and  B � C,  then  A � C.

Proof.  For the proof I shall apply a method similar to the one that we use in the proof
of an analogous theorem in elementary geometry, the so-called “method of double
networks.”

In view of the equivalence of sets  A  and  B  as well as of  B  and  C,  there exist point
sets  A1, A2, ... , An  and  B1,B2, ... ,Bn,  as well as  B1�,B2�, ... ,Bm�  and  C1,C2, ... ,Cm  that
satisfy all the conditions of definition 2.  Let us denote by  Bk,l  the set of all those points
that belong simultaneously8 to  Bk  and  Bl�.  Since every point in set  Bk  belongs to one
of the sets  Bl�,  [where]  1 � l � m,  and conversely, it is thus easy to check that

(1) Bk =  when 1 � k � n,,
1

m

k l
l

B
�
�

(2) Bl� =  when 1 � l � m.,
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n

k l
k

B
�
�

In addition, according to condition (c) of definition 2, we have

(3) ][  whenever  k /= k1,  or  k = k1  but  l /= l1.,k lB
1 1,k lB

In accordance with condition (b) of definition 2, figures  Ak  and  Bk  are congruent
[when]  1 � k � n.  From (1), (3), and the general properties of congruence, we thus infer

8 Of course, the possibility is not excluded that some of the sets  Bk,l  may be empty:  that is, that they should
not contain any points.  A small modification to the proof would permit removing such sets from our
consideration.
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with ease the possibility of dividing each of the sets  Ak  into parts  Ak,1, Ak,2, ... , Ak,n  that
satisfy the conditions

(4) Ak =  when 1 � k � n,,
1

m

k l
l

A
�
�

(5) Ak,l =~ Bk,l  when 1 � k � n  and 1 � l � m,

(6) ][  whenever  k /= k1,  or  k = k1  but  l /= l1.,k lA
1 1,k lA

Similarly, from the congruence of figures  Bl�  and  Cl  [when]  1 � l � m,  [and] from (2)
and (3), follows the possibility of analogous division of each of the sets  Cl  into parts
C1, l,C2, l, ... ,Cn,l :        

(7) Cl =  when 1 � l � m,,
1

n

k l
k

C
�
�

(8) Ck,l =~ Bk,l  when 1 � k � n  and 1 � l � m,

(9) ][  whenever  k /= k1,  or  k = k1  but  l /= l1.,k lC
1 1,k lC

Since according to condition (a) of definition 2 the set  A  is the union of sets 
A1, A2, ... , An,  and set  C  [is] the union of sets  C1,C2, ... ,Cm,  we may thus conclude from
(4) and (7),

(10) A = ,,
1 1

n m

k l
k l

A
� �
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(11) C = = .,
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Moreover, from (5) and (8) we immediately obtain

(12)  Ak,l =~ Ck,l  when 1 � k � n  and 1 � l � m.

Equations (10) and (11) show that each of the sets  A  and  C  can be divided into  n�m 
parts, which in view of (6) and (9) have no points in common, and in accordance with (12)
are respectively congruent to each other.  Therefore, according to definition 2,  A � C, 
Q.E.D.

Theorems 1–3 express that the relation of equivalence is reflexive, symmetric, and
transitive.

Theorem 4.  If

(1) Ak � Bk  (possibly  Ak =~ Bk  or  Ak = Bk)  whenever  1 � k � n,

(2) Ak ][ Al  and  Bk ][ Bl  whenever 1 � k < l � n,

then  � .
1�
�
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k
k
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Proof.  [To facilitate typesetting, those two unions will be denoted by  A  and  B, 
respectively.]  Taking theorem 1 into account, we can restrict ourselves in the proof to
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considering the hypothesis that  Ak � Bk  for each value of k  [such that]  1 � k � n.  Now
according to definition 2, for each pair of sets  Ak  and  Bk  there exist sets 

, , ... , and  , , ... , that satisfy the conditions,1kA ,2kA , kk mA ,1kB ,2kB , kk mB

(1) Ak =   and  Bk =  when  1 � k � n,,
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(2) Ak,l =~ Bk,l  when 1 � k � n  and 1 � l � mk ,

(3) ][  and  ][  whenever  k /= k1,  or  k = k1  but  l /= l1.,k lA
1 1,k lA ,k lB

1 1,k lB

From (1) we immediately obtain

(4) A = =  and  B = = .
1

n

k
k

A
�
� ,

1 1

kmn

k l
k l

A
� �
��

1

n

k
k

B
�
� ,

1 1

kmn

k l
k l

B
� �
��

From statements 2–4 it follows that the point sets  A  and  B  can be divided into the same
finite number of respectively congruent parts without common points.  From this, in
accordance with definition 2,  A � B,  Q.E.D.

The preceding theorem can be expressed in words in the following way:

If two given point sets can be divided into the same finite number of respectively
equivalent parts having no common points, then these sets are equivalent.

Theorem 5.  If sets  A  and  B  consist of the same finite number of points, then  A � B.

For the proof, it suffices to note that according to definition 1, two arbitrary points are
congruent figures, hence definition 2 can be applied directly.

§2

I turn now to the proof of theorem 6, which can be regarded as a generalization of De
Zolt’s axiom.  The proof will rely on the theorem of Banach mentioned already in the
introduction, which for our purposes can be adequately formulated in the following way.

Banach’s Theorem.  Each point set  A  that is part of any polygon can be assigned some
nonnegative real number  m(A),  called the measure of that set.  Moreover, the following
conditions are satisfied:

(1) if  A =~ B  then  m(A) = m(B),

(2) if  A ][ B  then  m(A � B) = m(A) + m(B),
(3) if  W  is a polygon then  m(W )  is its area.9

9 To the word area one ought to append throughout the words, in relation to some square, chosen as the unit
of area.  [Banach’s theorem and its proof are discussed in section 4.2.]
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Theorem 6.  If  V  and  W  are polygons and  V � W,  then  V �/  W.

Proof.  Suppose, contrary to the conclusion of the theorem, that

(1) V � W;

then there would exist point sets  A1, A2, ... , An  and  B1,B2, ... ,Bn  that satisfy all the
conditions of definition 2  [with point sets  V,W  in place of  A,B].

Further, in accordance with Banach’s theorem, let us assign to every bounded planar
set—that is, part of any polygon—its measure.  Condition 2 of the theorem mentioned
can be extended with ease, by applying the principle of mathematical induction, to a sum
of an arbitrary finite number of sets having no common points.  In view of conditions (a)
and (c) of definition 2, we infer from this that

(2) m(V ) = , m(W ) = .
1

( )
n

k
k

m A
�
�

1

( )
n

k
k

m B
�
�

From condition 1 of Banach’s theorem and condition (b) of definition 2 we obtain

(3) m(Ak) = m(Bk)  whenever 1 � k � n.

Equations (2) and (3) entail immediately

(4) m(V ) = m(W ).

Therefore, according to condition 3 of the cited theorem, polygons  V  and  W  must have
equal areas, which contradicts the assumption of our theorem, since  V  is a proper part
of  W.

Assumption (1) thus leads to a contradiction, and we must accept that  V �/  W,  Q.E.D. 

Reasoning in an analogous way, [we can] prove the more general

Theorem 7.  If  V  and  W  are polygons with different areas, then  V �/  W.

§3

We now take up the proof of the theorem converse to the one just presented.  First of all,
we note that despite what might at first glance be supposed, this theorem does not follow
directly from an analogous theorem of elementary geometry.  I will illustrate this circum-
stance with a straightforward example.

Let  V  be an arbitrary square and  W,  an isosceles right triangle with base twice as 
long as the edge of the square.  Having equal areas,  V  and  W  are thus equivalent in the
sense of elementary geometry.  In fact, each  of  these  polygons  can be  divided into two
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triangles without common interior points,
respectively congruent.  (See the figure.) 
From this subdivision, however, the sub-
division that would satisfy definition 2 can-
not be obtained via a direct route.  Although
the interiors of the [smaller] triangles are in

     

fact congruent, nevertheless the [parts] that stand out in the figure are broken lines, [and]
since these unions of the boundaries of the triangles have different length, it is not hard
to demonstrate that they are not equivalent in the sense that we established in the pres-
ent article.10

The proof of the theorem that interests us will rely on several lemmas.

Lemma I.  If  A  is a plane set having interior points,11 whereas set  B  consists of a finite
number of points, and  A ][ B,  then  A � A � B.

Proof.  Certainly there exists some disk  K  that is part of the set  A;  let us denote its
center by  s.  Let us choose some positive irrational number    and some point  p0  lying
on the circumference of the disk  K.  For each natural number  k  let us denote by  pk  the
point resulting from the rotation of point  p0  about point  s  through an angle whose
degree measure is the number  k �   (or a number differing from  k �  by a multiple of
360)  —and we always carry out the rotation in some specified direction.  From this, since
the angle of    degrees is incommensurate with a full angle, we infer with ease that no
two points  pk  and  pl  with different indices are identical.  

Let  n  be the number of points in the set  B.  Set

(1) B� = ,
1

0

n

k
k

p
�
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�

(2) C  = ,
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k
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�

�

(3) C� = ,k
k n

p
�

�

�
(4) D  = A – C.

From (1) to (4) and the definition of the points  pk  we immediately obtain

(5) A = C � D = B� � C� � D,

(6) A � B = B � C � D.

10 [If the correspondence of the interiors of the triangles were extended by somehow subdividing the
segments shown on the left and rearranging the parts to form those on the right, the total length of the
left-hand segments would equal that on the right.  But they differ:  4 + �2 /= 3 + 2 �2.]

11 We call point p  an interior point of a plane set  A  if there exists a disk with center  p  that is a part of the
set  A.
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According to theorem 5, since each of the sets  B  and  B� consists of  n  points, this
statement follows:

(7) B � B�.

With ease, we also convince ourselves that

(8) C =~ C�.

In fact, if the set  C  is rotated about an angle of  n �a  degrees, then it covers the set C�. 
In other words, if we assign to an arbitrary point  pk  of the set  C  the point  pk+n  of the
set  C�,  then we define a perfect correspondence between the points of these sets, that
satisfies the conditions of definition 1.

Statements 5 to 8 show that the sets  A  and  A � B  can be divided into the same finite
number of parts, respectively equivalent, or even congruent or identical.  It is also easy
to check, [by] relying on statements 1 to 4, by the way of specifying the points   pk ,  and
[by] the hypothesis of the theorem, that no two of the three parts into which we divide
each of these sets have common points.  From this, in accordance with theorem 4, we infer
that  A � A � B,  Q.E.D.

Lemma II.  If  A  is a plane set having interior points, while the set  B  consists of all
points of some segment except at most the end points, and  A ][ B,  then  A � A � B.

Proof.  The ideas behind the proofs of lemmas I and II are similar to each other.  Let
us denote by  �  the length of the segment from which  B  differs by at most the absence
of the end points.   Certainly there exists a natural number  n  large enough that some
disk  K  that has a radius of length equal to  �/n  is part of the set  A.

Clearly, the set  B  can be divided into  n  segments of length  �/n  without common
interior points, and two of these might have only one endpoint each.  Let us denote the
interiors of these segments by  C0,C1, ... ,Cn–1  and set

(1) C = ,
1

0

n

k
k

C
�

�
�

(2) D = B – C.

It is easy to see that  D  is a set consisting of a finite number of points.12

Let us choose some positive irrational number    [and] denote by  C0�  the interior of
some radial segment of the disk  K;  when  k  is an arbitrary natural number, [denote]
by  Ck�  the set formed by rotating the set  C0�  through an angle of  k �  degrees about the
center of the disk  K  in a certain specified direction.  As in the proof of lemma I, we
convince ourselves that no two of the sets  Ck�  and  Cl�  with different indices have
common points.  Set

12 [This number is] equal to  n + 1,  n,  or  n – 1,  depending on whether the set  B  has both endpoints, or
just one, or, lastly, does not have any.
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(3) C� = ,
1
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n

k
k
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(4) E  = ,
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k
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(5) E� = ,k
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(6) F  = A – E.

From (1) to (6), we immediately obtain

B = C � D,    E = C� � E�,    A= E � F = C� � E� � F,

from which [follow]

(7) A � D = C� � D � E� � F,

(8) A � B = C � D � E � F.

As the interiors of segments of the same length  �/n,  the sets  Ck  and  Ck�  are congruent. 
Therefore, from (1) and (3) we infer

(9) C � C�.

Furthermore, reasoning as in the proof of lemma I, we reach the conclusion that

(10) E =~ E�.

Finally, as it is not difficult to be convinced, no two of the sets  C�,D,E�,F  nor of 
C,D,E,F  have common points.  In view of this, we can apply theorem 4;  by virtue of
statements 7 to 10 we have

(11) A � D � A � B.

On the other hand, the set  D,  as we already noticed, consists of a finite number of points. 
Therefore, according to lemma I,

(12) A � A � D.

From (11) and (12) it follows, in accordance with theorem 3, that  A � A � B,  Q.E.D.

Lemma III.  If A is a plane set having interior points, while  B  [is] the union of a finite
number of segments, and  A ][ B,  then  A � A � B.

Proof.  It is nearly obvious that the set B can be regarded as a union of a finite number
of segments  B1,B2, ... ,Bn  without common interior points.  Let us set  B1� = B1,  and
when  2 � k � n  denote by  Bk�  the set differing from the segment  Bk  in at most the
absence of one or two endpoints and that of the points belonging to any of the segments 
B1,B2, ... ,Bk–1  [—that is,]              
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.13
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We obtain

(1) B = ,
1

n

k
k

B
�

��
(2) Bk� ][ Bl�  whenever  1 � k < l � n.

On the other hand, there certainly exist sets  A1, A2, ... , An  having interior points and
also satisfying the conditions

(3) A = ,
1

n

k
k

A
�
�

(4) Ak ][ Al  whenever  1 � k < l � n.

In fact, if we divide into  n  circular sectors some disk  K  that is part of the set  A,  denote
by  A1, A2, ... , An–1  the interiors of all but one of these sectors, and set

An = A – ,
1

1

n

k
k

A
�

�
�

then we will at that time obtain sets with the desired properties.

In view of (1), (3), and the condition  A ][ B  given in the hypothesis of the theorem,
we have

(5) Ak ][ Bl  whenever 1 � k � n  and  1 � l � n.

Thus, we can assert with ease that every pair of sets  Ak  and  Bk,  where  1 � k � n, 
satisfies the conditions of lemma II. Therefore,

(6) Ak � Ak � Bk�  when  1 � k � n.

From statements (2), (4), and (5) we conclude further that

(7) Ak � Bk� ][ Al � Bl�  whenever 1 � k < l � n.

Moreover, from (1) and (3) also follows

(8) A = , A � B = .
1

n

k
k

A
�
� � �

1
k

n

k
k

A B
�

	 ��
In accordance with (6) to (8) the sets  A1, A2, ... , An  and  A1 � B1�, A2 � B2�, ... , An � Bn�, 
[whose unions14 are] sets  A  and  A � B,  satisfy all the conditions of theorem 4.  Thus,
we finally obtain  A � A � B,  Q.E.D.

Lemma III now enables us [to give] a direct proof of the theorem converse to theorem 7.

13 [This sentence and the next might not fully explain the first sentence of the proof.  One can apply mathe-
matical induction as follows:  if  B  is the union of a finite number of segments without common interior
points, and  C  is a segment, then  C – B  is also such a union, and  B � C = B � (C – B).]        

14 [In the original, the phrase here in brackets was vague:  w stosunku do.]
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Theorem 8.  If  V  and  W  are polygons with the equal areas, then  V � W.

Proof.  As is well known, polygons  V  and  W  are equivalent in the sense of elementary
geometry.  Thus, they can be divided into the same number of polygons having no
common interior points.  Let  V1,V2, ... ,Vn  and  W1,W2, ... ,Wn  be the interiors of the
polygons obtained as a result of such a division.  Certainly we have

(1) Vk =~ Wk  when 1 � k � n,

(2) Vk ][ Vl,  and also  Wk ][ Wl,  whenever  1 � k < l � n.

According to definition 2 we infer from (1) and (2) that

(3) � .
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n

k
k

V
�
�

1

n

k
k

W
�
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Set

(4) A = V – , B = W – .
1
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k
k

V
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k
k

W
�
�

From this we immediately obtain
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In view of (4) it is easy to see that  A  and  B  are broken lines, the unions of the
boundaries of the polygons that we obtained by the subdivision of  V  and  W;  each is thus
the union of a finite number of segments.  Moreover, since the sets
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certainly have interior points, after applying lemma III [and] in accordance with (5) and
(6), we thus obtain
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From statements (3), (7), and (8), according to theorem 3, it follows that  V � W,  Q.E.D.

Theorems 7 and 8 immediately entail

Conclusion 9.  In order for polygons  V  and  W  to be equivalent, it is necessary and
sufficient that they have equal areas.

Theorem 6 and conclusion 9 settle the question posed at the beginning of the present
article.
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The question arises here whether the statements are true [that are] analogous to the
theorems proved in this article but relate to polyhedra instead of polygons.  As it happens,
such statements are false.  Specifically, the following theorem can be proved:

Two arbitrary polyhedra are equivalent.

The proof of this statement is complicated enough not to include it here:  it is contained
in a joint article by Banach and me, entitled On Decomposition of Point Sets into Respec-
tively Congruent Parts.15

We are easily made aware of how greatly the above theorem contradicts our intuitions,
if we consider so much as the following conclusion that flows from it:

An arbitrary cube can be divided into a finite number of parts without common
points, which then can be rearranged to form a cube with an edge twice as long.

The theorem becomes even more striking when we recall that, as Max Dehn showed,16

even two polyhedra with equal volumes may not be equivalent in the sense of elementary
geometry.

In conclusion, I pose here the following problem, which as far as is known, is to this
day not settled: 

Can theorem 8 be extended to arbitrary plane regions bounded by closed curves? 
Specifically, can a disk and a polygon with equal areas be equivalent in the
sense of definition 2?17

Summary18

On the Equivalence of Polygons

In elementary geometry two polygons (or polyhedra) are called equivalent by decomposition if they
can be decomposed into the same finite number of respectively congruent polygons (or polyhedra)
that have no common interior points.  In the theory of equivalence of polygons the following
theorem, sometimes called De Zolt’s axiom, plays an important role:

1. Two arbitrary polygons, one of which is [properly] contained in the other, are never
equivalent by decomposition.

15 [Banach and Tarski [1924] 2014, translated in chapter 6, with background and summary in section 4.4.]
16 Compare Amaldi [1900] 1914, §11, 161–172.  [Tarski failed to mention the author, Ugo Amaldi.  See also

Dehn 1901–1902.]
17 A disk and a polygon with equal areas are not equivalent in the sense of elementary geometry:  compare

Amaldi [1900] 1914, §§6–7, 151–157.  [See the previous footnote.  This problem, known as Tarski’s circle-
squaring problem, was published separately as Tarski 1925b.  It has since been solved, affirmatively:  see
the discussion in section 4.3 of the present book.  The wrong text was printed for Tarski 1925b in the
Collected Papers volume Tarski 1986a;  the original text is reproduced and translated in section 4.3.]

18 [In the original, the summary was in French.] 
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Starting from this principle, one establishes the following theorem, which presents a necessary
and sufficient condition for the equivalence of polygons:

2. In order that two polygons should be equivalent by decomposition, it is necessary
and sufficient that they should have equal areas.

In my note I envisage the notion of equivalence in a sense more general than that of elementary
geometry:  two point sets (thus, in particular, two polygons or polyhedra) are termed equivalent
by decomposition if they can be decomposed into the same finite number of respectively congruent
arbitrary point sets that have no common points.

I prove that, even admitting this definition of equivalence, theorems 1 and 2 remain valid.

In demonstrating the cited theorems I rely on results obtained by Banach in measure theory
(Banach 1923).  Establishing theorem 2, I also make use of the following lemma:

P  being the interior of a polygon and  Q  the point set obtained from  P  by adding a
finite number of segments, the sets  P  and  Q  are equivalent by decomposition.

It is interesting to remark that in attributing to equivalence the sense established in this note,
theorems 1 and 2 may not be extended to polyhedra.  This results from the following theorem,
which perhaps seems paradoxical:

Two arbitrary polyhedra (with equal volumes or not) are equivalent by decomposition.

This theorem is demonstrated in the note Banach and Tarski [1924] 2014.19

19 [Summarized in section 4.4 of the present book and translated in full in chapter 6.]
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