
Chapter 9
Probit Models for Ranking Data

In 1980, the American Psychological Association (APA) conducted an election
in which five candidates (A; B; C; D, and E) were running for president and
voters were asked to rank order all of the candidates. Candidates A and B are
research psychologists, C is a community psychologist, and D and E are clinical
psychologists. Among those voters, 5738 gave complete rankings. These complete
rankings are considered here (Diaconis (1988)). Note that lower rank implies more
favorable. Then the average ranks received by candidates A; B; C; D, and E are
2.84, 3.16, 2.92, 3.09, and 2.99, respectively. This means that voters generally prefer
candidate A the most, candidate C the second, etc. However, in order to make
inferences on the preferences of the candidates, modeling of the ranking data is
needed. In Sect. 9.1 we consider a model for this data which takes into account
covariates.

In Sect. 9.2 we consider the following example for which factor analysis would
be appropriate. In 1997, a mainland marketing research firm conducted a survey on
people’s attitude toward career and living style in three major cities in Mainland
China – Beijing, Shanghai, and Guangzhou. Five hundred responses from each city
were obtained. A question regarding the behavior, conditions, and criteria for job
selection of the 500 respondents in Guangzhou will be discussed here. In the survey,
respondents were asked to rank the three most important criteria on choosing a
job among 13 criteria: (1) favorable company reputation, (2) large company scale,
(3) more promotion opportunities, (4) more training opportunities, (5) comfortable
working environment, (6) high income, (7) stable working hours, (8) fringe benefits,
(9) well matched with employees’ profession or talent, (10) short distance between
working place and home, (11) challenging, (12) corporate structure of the company,
and (13) low working pressure.
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172 9 Probit Models for Ranking Data

9.1 Multivariate Normal Order Statistics Models

In light of the Thurstone order statistics model mentioned in Sect. 8.1, the
multivariate normal order statistics (MVNOS) model assumes that the ranking
of t objects given by a judge is determined by ordering t latent utilities for the
objects assigned by the judge. However, unlike the Thurstone order statistics model
that assumes independent utilities, the MVNOS model assumes that the utilities
are possibly correlated and the ranking �j given by judge j has the following
probability:

P.�j / D P.yŒ1�j ;j > yŒ2�j ;j > � � � > yŒt�j ;j /; i D 1; � � � ; t; (9.1)

where < Œ1�j ; � � � ; Œt �j > is the ordering of the t objects corresponding to the
ranking �j and the latent utility vector yj D .y1j ; � � � ; ytj /0 of judge j is
assumed to follow multivariate normal distribution with mean utility vector �j D
.�1j ; � � � ; �tj /0 and a general covariance matrix V , i.e.,

yj D �j C ej (9.2)

ej
iid� N.0; V /: (9.3)

The MVNOS model is sometimes termed the multinomial probit model for ranking
data.

9.1.1 The MVNOS Model with Covariates

When there are some covariates associated with the judges and objects, it is natural
to impose the following linear model for �j :

�j D Z j ˇ; (9.4)

where Z j is a t � p matrix of covariates associated with judge j and ˇ is a p � 1

vector of unknown parameters. For example, in a marketing survey, respondents are
asked to rank products according to their preference. Usually, apart from the ranking
given by the respondents, some socioeconomic variables (sj ) about the respondents
and the attributes (ai ) of the products are also available. Then one may study the
heterogeneity of the preference due to these variables by assuming the following
model:

�ij D a0
i � C s0

j ıi ; i D 1; � � � ; t: (9.5)
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The parameter vector � represents the attribute effect common to all the respondents
while the vector ıi represents the respondents’ socioeconomic background which
may affect their preference of product i . It is easily seen that equation (9.5) is a
particular case of the model in (9.4) when

Z j D

0
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a0
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:::
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: : :
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In what follows, we shall consider the MVNOS model with the mean given in
equation (9.4).

9.1.2 Parameter Identifiability of the MVNOS Model

Note that one can add an arbitrary constant (location shift) or multiply a positive
constant (scale shift) to both sides of (9.2) while leaving the ranking probability
unchanged. The location-shift problem is commonly dealt with by subtracting the
first t � 1 rows by the last row leading to the model

wj D X j ˇ C "j (9.6)

"j
iid� N.0; †/; (9.7)

where wij D yij � ytj , X j D ŒI t�1; �1t�1�Z j , "ij D eij � etj , and

† D ŒI t�1; �1t�1�V ŒI t�1; �1t�1�0:

Here, I denotes an identity matrix and 1 denotes a vector of 1’s. Then the ranking
�j with respective ordering < Œ1�j ; � � � ; Œt �j > corresponds to the event

Ej D fwj W wŒ1�j ;j > � � � > wŒr�1�j ;j > 0 > wŒrC1�j ;j > � � � > wŒt �;j g
whenever Œr�j D t: (9.8)

For the sake of simplicity, we use the convention wŒ0�j ;j DC1 and wŒtC1�j ;j D �1.
Notice that the scale-shift problem still exists in the model given by (9.6) and it can
be easily resolved by adding a constraint on † such as �11 D 1.

Since rankings of objects only depend on utility differences, ˇ and † (with �11

fixed) are estimable, but the original parameters �j and V still cannot be fully
identified. For example, suppose t D 3 and �j D �. Then the following three
sets of parameters under the MVNOS model lead to the same ranking probabilities:
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Set A: Set B: Set C:
�A D .1; 0; �1/0 �B D .�1; �2; �3/0 �C D .1; 0; �1/0

V A D
0
@
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This is because they all have the same utility differences y1 � y3 and y2 � y3 whose
joint distribution is

N

��
2

1

�
;

�
1:6 0

0 0:4
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:

Generally speaking, the parameter ˇ can be identified in the presence of covari-
ates X j . However, when there are no covariates, i.e., �j D �, the values of the
�i ’s will be determined only within a location shift. This indeterminacy can be
eliminated by imposing one constraint on the �i ’s, say, �t D 0.

The major identification problem is due to indeterminacy of the covariance
matrix V of the utilities. Owing to the fact that the utilities yij ; i D 1; � � � ; t; are
invariant under any scale shift of V and any transformation of V of the form:

V �! V C c10
t C 1t c

0; (9.9)

for any constant vector c (Arbuckle and Nugent 1973), V can never be identified
unless it is structured. In the previous example, it can be seen that V A can be
transformed to V B and V C by setting c D .�0:3; 0:3; 0:5/0 and c D .�0:122;

�0:322; �0:389/0, respectively. This identification problem is well known in
the context of Thurstone order statistics models and multinomial probit models
(Arbuckle and Nugent 1973; Dansie 1985; Bunch 1991; Yai et al. 1997; Train
2003).

Various solutions which impose constraints on the covariance matrix V have
been proposed in the literature. Among them, the methods proposed by Chintagunta
(1992) and Yu (2000) provide the most flexible form for V which does not require
fixing any cell. Chintagunta’s method restricts each column sum of V to zero (and
�11 D 1), resulting in V D B�†.B 0/�, with B D ŒI t�1; �1t�1� while Yu’s method
restricts each column sum of V to 1 (and �11 D 1), leading to

V D A�1

�
† 0
0 t

�
.A0/�1 with A D

�
I t�1 �1t�1

10
t�1 1

�
:

Note that the V identified by Chintagunta’s method is singular and the associated
utilities must be correlated whereas Yu’s method always produces a non-singular
matrix V and includes the identity matrix (or its scale shift) as a special case.
In addition, it is easy to show that this non-singular matrix is an invariant trans-
formation of the matrix used by Chintagunta (1992) under the transformation (9.9)
with c D 1

2t
1t .
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9.1.3 Bayesian Analysis of the MVNOS Model

Given a sample of n judges, the likelihood function of .ˇ; †/ is given by

L.ˇ; †/ D
nY

j D1

P.Ej /; (9.10)

where the event Ej is given in (9.8). Note that the evaluation of the above likelihood
function requires the numerical approximation of the .t � 1/-dimensional integral
(e.g., Genz 1992) which can be done relatively accurately provided that the number
of objects (t ) is small, say less than 15. To avoid a high-dimensional numerical
integration, limited information methods using the induced paired/triple-wise com-
parisons from the ranking data (e.g., structural equation models by Maydeu-Olivares
and Bockenholt (2005) fitted using Mplus) have been proposed. Another approach
is to use a Monte Carlo Expectation-Maximization (MCEM) algorithm (e.g., Yu
et al. 2005; see also Sect. 9.2) which can avoid the direct maximization of the above
likelihood function.

In this section we will consider a simulation-based Bayesian approach which
can also avoid the evaluation and maximization of the above likelihood function.
Recently, a number of R packages have become available for the Bayesian
estimation of the MVNOS models for ranking data, including MNP (Imai and
van Dyk 2005), rJAGS (Johnson and Kuhn 2013) as well as our own package
StatMethRank.

9.1.3.1 Bayesian Estimation and Prior Distribution

In a Bayesian approach, the first step is to specify the prior distribution of the
identified parameters. As mentioned previously one constraint on † could be
added in order to fix the scale and hence to identify all the parameters. Under this
condition, the usual Wishart prior distribution for the constrained † could not be
used. In the context of multinomial probit model studied by McCulloch and Rossi
(1994), instead of imposing the scale constraint on †, we may compute the full
posterior distribution of ˇ and † and obtain the marginal posterior distribution of
the identified parameters such as ˇ=

p
�11; �i i =�11 and �ij D �ij =

p
�ii �jj .

Let f .ˇ; †/ denote the joint prior distribution of .ˇ; †/. Then the posterior
density of .ˇ; †/ is

f .ˇ; †j…/ / L.ˇ; †/f .ˇ; †/; (9.11)

where … D f�1; � � � ; �ng is the data set of all n observed rankings. It is convenient
to use a normal prior on ˇ,

ˇ � N.ˇ0; A�1
0 /;
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and an independent Wishart prior on G � †�1,

G � †�1 � Wt�1.˛; P/:

Note that our parametrization of the Wishart distribution is such that E.†�1/ D
˛P�1.

Although (9.11) is intractable for Bayesian calculations, we may use the method
of Gibbs sampling with data augmentation. We augment the parameter .ˇ; †/ by the
latent variable W D .w1; � � � ; wn/. Now, the joint posterior density of .ˇ; †; W / is

f .ˇ; †; W j�/ / f .…jW /f .W jˇ; †/f .ˇ; †/; (9.12)

which allows us to sample from the full conditional posterior distributions. The
details are provided in the next section.

9.1.3.2 Gibbs Sampling Algorithm for the MVNOS Model

The Gibbs sampling algorithm for the MVNOS model consists of drawing samples
consecutively from the full conditional posterior distributions, as follows:

1. Draw wj from f .wj jˇ; †; …/, for j D 1; � � � ; n.
2. Draw ˇ from f .ˇj†; W ; …/ / f .ˇj†; W /.
3. Draw † from f .†jˇ; W ; …/ / f .†jˇ; W /:

In step (1), it can be shown that given ˇ, †, and …, the wj ’s are independent and wj

follows a truncated multivariate normal distribution, N.X j ˇ; †/I.wj 2 Ej /. One
may simulate wj by using the acceptance-rejection technique, but this may lead to
a high rejection rate when the number of objects is fairly large. Instead of drawing
the whole vector wj at one time, we successively simulate each entry of wj by
conditioning on the other t � 2 entries. More specifically, we replace step (1) by

1. draw wij from f .wij jw�i;j ; ˇ; †; …/, for i D 1; � � � ; t � 1; j D 1; � � � ; n, where
w�i;j is wj with wij deleted.

Let x0
ij be the i th row of X j , X�i;j be X j with the i th row deleted, and g�i;i be

the i th column of G with gii deleted. Suppose < Œ1�j ; � � � ; Œt �j > is the ordering of
objects corresponding to their ranks �j D .�1j ; � � � ; �tj /. Then �ij D r if and only
if Œr�j D i . Now we have

wij jw�i;j ; ˇ; †; … � N.mij ; �2
ij /

subject to wŒrC1�j j < wij < wŒr�1�j j whenever �ij D r;
(9.13)

where

mij D x0
ij ˇ � g�1

i i g0�i;i .w�i;j � X�i;j ˇ/

and �2
ij D g�1

i i .
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Although it still involves simulation from a truncated univariate normal distribu-
tion, we can adopt the inverse method to sample from this distribution without using
the acceptance-rejection technique which may not be efficient (Devroye 1986).

Returning to steps (2) and (3), since we are conditioning on W , the MVNOS
model is simply a standard Bayesian linear model setup. Therefore, the full
conditional distribution of ˇ is

ˇj†; W � Np.ˇ1; A�1
1 /; (9.14)

where

A1 D A0 C
nX

j D1

X 0
j †�1X j and ˇ1 D A�1

1 .A0ˇ0 C
nX

j D1

X 0
j †�1wj /:

Finally, the full conditional distribution of † is such that † D G �1 with

G jˇ; W � Wt�1

0
@˛ C n; P C

nX
j D1

.wj � X 0
j ˇ/.wj � X 0

j ˇ/0
1
A : (9.15)

With a starting value for .ˇ; †; W /, we draw in turn from each of the full
conditional distributions given by (9.13), (9.14), and (9.15). When this process is
repeated many times, the draws obtained will converge to a single draw from the
full joint posterior distribution of ˇ, †, and W . In practice, we iterate the process
M C N times. The first M burn-in iterations are discarded. Because the iterates in
the Gibbs sample are autocorrelated, we keep every sth draw in the last N iterates so
that the resulting sample contains approximately independent draws from the joint
posterior distribution. The value s here can be determined based on the graph of the
sample autocorrelation of the Gibbs iterates.

A natural choice for a starting value for .ˇ; †/ is to use .0; I/. However, it is
nonstandard to find a starting value for W . We adopt an approach motivated by the
fact that the ranking of fw1j ; � � � ; wt�1;j ; 0g must be consistent with the observed
ranking f�1j ; � � � ; �tj g. Using this fact, a simple choice for the starting value of the
w’s is to use wij D .�ij � �tj /=

p
.t2 � 1/=12, a type of standardized rank score.

It should be remarked that since Thurstone’s normal order statistics model is a
MVNOS model with V D I t , its parameters can be estimated by fixing V to I t , or
equivalently, fixing † to I t�1 C 1t�110

t�1 and skipping the step of generating † in
the above Gibbs sampling algorithm.

Remark. Although the MVNOS model discussed here considered the case of the
complete ranking of t objects, it is not difficult to extend it to incorporate incomplete
or partial ranking by modifying the event Ej in (9.8) and the corresponding
truncation rule in (9.13) used to sample wij in the Gibbs sampling. For instance
a partial ordering of 4 objects A; B; C , and D given by judge j is B � C � A; D.
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The event Ej will then be modified to fwj W maxfwAj ; 0g < wCj < wBj g, and hence
wAj , wBj , and wCj will be separately simulated from truncated normal over intervals
.�1; wCj /, .wCj ; C1/, and .maxfwAj ; 0g; wBj /, respectively. So far, we assume
that the data does not contain tied ranks or, equivalently, the observed ordering of
the objects that are tied is unknown. For example we will treat the tied ranking
B � C � A D D as if the partial ranking B � C � A; D. See Sect. 9.2.1 for
similar treatments of incomplete rankings in the context of factor analysis.

9.1.4 Adequacy of the Model Fit

To test for the adequacy of the model, we may group the t Š rankings into a
small number of meaningful subgroups and examine the fit for each subgroup. In
particular, let ni be the observed frequency that object i is ranked as the top object.
Also let

Opi D P.Yi > Y1; � � � ; Yi�1; YiC1; � � � ; Yt j Ǒ ; O†/

be the estimated partial probability of ranking object i as first under the fitted
MVNOS model with posterior mean estimates Ǒ and O†. The fit can be examined
by comparing the observed frequency ni with the expected frequency n Opi , i D
1; 2; � � � ; t , or by calculating the standardized residuals:

ri D ni � n Opip
n Opi .1 � Opi /

; j D 1; 2; � � � ; t:

If the expected frequencies match the observed frequencies well or the absolute
values of the residuals are small enough, say, < 2, the MVNOS model adequately
fits the data. The same argument can be applied to other ranking models.

In performing these calculations, it is necessary to evaluate numerically the
estimated probability Opi which may be expressed as

ˆ 0

�1
� � �
ˆ 0

�1
�.vjˇ�; †�/dv;

where v D .Y1 � Yi ; � � � ; Yi�1 � Yi ; YiC1 � Yi ; � � � ; Yt � Yi /
0 � N.ˇ�; †�/ and

ˇ� and †� can be obtained from Ǒ and O†, respectively. We employ the Geweke-
Hajivassiliou-Keane (GHK) method (see Geweke 1991; Hajivassiliou 1993; Keane
1994). Let L D .`ij / be the unique lower triangular matrix obtained from the
Cholesky decomposition of †� (i.e., †� D LL0). The GHK simulator for the
estimated partial probability Opi is constructed via the following steps:
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1. Compute

P.v1 < 0jˇ�; †�/ D ˆ.� ˇ�
1

`11

/;

and draw a 	1 � N.0; 1/ with 	1 < � ˇ�

1

`11
.

2. For s D 2; � � � ; t � 1, compute P.vs < 0j	1; 	2; � � � ; 	s�1; ˇ�; †�/ D
ˆ.� ˇ�

s CPs�1
j D1 `sj 	j

`ss
/, and draw a 	s � N.0; 1/ with 	s < � ˇ�

s CPs�1
j D1 `sj 	j

`ss
.

3. Estimate Opi by P.v1 < 0jˇ�; †�/…t�1
sD2P.vs < 0j	1; 	2; � � � ; 	s�1; ˇ�; †�/.

4. Repeat steps 1–3 a large number of times to obtain independent estimates of Opi ,
and finally by taking the average of these estimates, the GHK simulator for Opi is
obtained. In a later application, we will use 10,000 replications.

9.1.5 Analysis of the APA Election Data

We now consider the APA election data. Let Yij be the j th voter’s utility of
selecting candidate i , i D A; B; C; D; E. We apply the MVNOS model in which
(i) the j th voter’s ranking is assumed to be formed by the relative ordering of
YAj ; YBj ; YCj ; YDj ; YEj ; and (ii) the Y ’s satisfy the following model:

Yij D �i C eij ; i D A; B; C; D; E; j D 1; � � � ; 5738;

.eAj ; eBj ; eCj ; eDj ; eEj /0 iid� N.0; V /;

or equivalently, the model could be formed by the relative ordering of
wAj ; wBj ; wCj ; wDj ; 0, and the w’s satisfy

wij D ˇi C "ij ; i D A; B; C; D; j D 1; � � � ; 5738;

."Aj ; "Bj ; "Cj ; "Dj /0 iid� N.0; †/;

where ˇi D �i � �E and † D .�ij / with �ij D vij C vEE � viE � vjE .
Using the proper priors, ˇ � N.ˇ0 D 0; A�1

0 D 100/ and †�1 � Wt�1.˛ D
t C 1; P D .t C 1I/, 11,000 Gibbs iterations are generated. The first 1000 burn-
in iterations were discarded. As evidenced from the sample autocorrelation of
the Gibbs samples (not shown here), keeping every 20th draw in the last 10,000
Gibbs iterations gives approximately independent draws from the joint posterior
distribution of the parameters ˇ and † of the MVNOS model. By imposing the
constraint �E D 0 and our constraint for V to the Gibbs sequences, we obtain
estimates for �i .i D A; B; C; D; E/ and vij ; .i � j /.
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Table 9.1 Observed proportions and estimated probabilities that a candidate is ranked as first
under various models for the APA election data (the value in bracket is the residual, ri )

Estimated probabilities, Opi , under the following models
Stern’s mixture model

Candidate

Observed
proportion,
ni =n

MVNOS
model

Thurstone’s
model 2 components 3 components

A 0.184 0.193 (�1:87) 0.170 (2.78) 0.199 (�2:89) 0.189 (�1:16)

B 0.135 0.130 (1.17) 0.231 (�17:24) 0.153 (�3:84) 0.155 (�4:27)

C 0.280 0.276 (0.70) 0.179 (20.12) 0.276 (0.80) 0.272 (1.19)

D 0.204 0.198 (1.25) 0.220 (�2:93) 0.186 (3.47) 0.192 (2.28)

E 0.197 0.200 (�0:58) 0.200 (�0:65) 0.186 (2.12) 0.189 (1.41)

9.1.5.1 Adequacy of Model Fit and Model Comparison

To examine the goodness of fit of the MVNOS model, Table 9.1 shows the observed
proportions and estimated partial probabilities under the MVNOS model. The two
statistics for Thurstone’s normal order statistics model and Stern’s mixture of Luce
(called BTL in his/her paper) models are also listed in Table 9.1 as alternatives to
the MVNOS model. Thurstone’s model is fitted by repeating the Gibbs sampling
with V fixed at I t , while Stern’s mixture models were fitted by Stern (1993). Stern
found that the data seem to be a mixture of 2 or 3 groups of voters. This feature
is also supported by Diaconis’s (1989) spectral analysis and McCullagh’s (1993b)
model of inversions.

As seen from Table 9.1, the estimated partial probabilities for the MVNOS model
match the observed proportions very well. Also the magnitudes of the standardized
residuals ri for the MVNOS model only are all very small (< 2), indicating that
among the four models considered in Table 9.1, the MVNOS model gives the best
fit to the APA election data.

9.1.5.2 Interpretation of the Fitted MVNOS Model

Table 9.2 shows the posterior means, standard deviations, and 90 % posterior
intervals for the parameters of the MVNOS model. It is not surprising to see that
the ordering of the posterior means of the �i ’s is the same as that of the average
ranks. Apart from the posterior means, the Gibbs samples can also provide estimates
of the probability that candidate i is more favorable than candidate j . For instance,
the probability that candidate A is more favorable than candidate C is estimated by
the sample mean of ˆ.

�A��Cp
vAACvCC �2vAC

/ in the Gibbs samples, which is found to be
0.509 (posterior standard deviation D 0.006).

According to the boxplots of �i , vi i , and rij D vij =
p

vi i vjj .i ¤ j / shown in
Fig. 9.1, distributions of some parameters are fairly symmetric. In addition, a large
estimate of vCC indicates that voters have fairly large variation of the preference
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Table 9.2 Parameter estimates of the MVNOS
model for the APA election data

Posterior moments
Parameter Mean SD 90% interval

�A 0.086 0.015 (0.062, 0.111)

�B �0:071 0.014 (�0:097, �0:048)

�C 0.067 0.018 (0.037, 0.095)

�D �0:048 0.014 (�0:071, �0:026)

vAA 0.524 0.008 (0.511, 0.537)

vAB 0.116 0.006 (0.106, 0.126)

vAC 0.246 0.008 (0.233, 0.257)

vAD 0.041 0.008 (0.027, 0.053)

vAE 0.074 0.004 (0.067, 0.081)

vBB 0.498 0.011 (0.479, 0.516)

vBC 0.087 0.009 (0.072, 0.100)

vBD 0.178 0.007 (0.166, 0.191)

vBE 0.121 0.007 (0.109, 0.132)

vCC 0.833 0.024 (0.795, 0.870)

vCD �0:123 0.014 (�0:146, �0:101)

vCE �0:043 0.010 (�0:060, �0:026)

vDD 0.679 0.018 (0.651, 0.708)

vDE 0.224 0.008 (0.212, 0.239)

vEE 0.624 0.008 (0.610, 0.638)

on candidate C. To further investigate the structure of the covariance matrix V , a
principal components analysis of the posterior mean estimate for V is performed
and the result is presented in Table 9.3.

A principal components analysis of the posterior mean estimate for V produces
the utilities of the five candidates fA; B; C; D; Eg as

2
666664

yA

yB

yC

yD

yE

3
777775

D

2
666664

0.086
-0.071
0.067

-0.048
0

3
777775

C p
1:015a1z1 C p

0:215z2 C p
0:440a3z3

Cp
0:357a4z4 C p

0:346a5z5 (9.16)

where the z’s are independently and identically distributed as N.0; 1/ and the
principal components a’s are given in Table 9.3. Since rankings of objects only
depend on utility differences, the term

p
0:215z2 does not affect the rankings and

hence, interpretation is based on the remaining four components.
Component 1 separates two groups of candidates, {A, C} and {D, E}, implying

that there are two groups of voters: voters who prefer candidates A and C more and
those who prefer candidates D and E more. Component 3 contrasts candidate E with
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Fig. 9.1 Boxplots of �i , vi i , and rij D vij =
p

vi i vjj .i ¤ j / for the APA election data

candidates B and D, indicating that voters either prefer B and D to E or prefer E to B
and D. For instance, if voters like B, they prefer D to E. Finally, components 4 and
5 indicate a contrast between A and C and a contrast between B and D, respectively.
Based on the variances of the components, we can see that component 1 dominates
and hence it plays a major role on ranking the five candidates.
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Table 9.3 Principal components analysis of the posterior mean
estimate for V

Principal component, ai

Candidate 1 2 3 4 5

A 0.245 0.447 0.046 0.789 �0:340

B �0:087 0.447 �0:412 0.133 0.778

C 0.726 0.447 0.012 �0:515 �0:081

D �0:524 0.447 �0:442 �0:281 �0:502

E �0:361 0.447 0.796 �0:125 0.145

Variance 1.015 1.000 0.440 0.357 0.346

9.2 Factor Analysis

It was mentioned in Sect. 9.1.2 that the parameters of a MVNOS model cannot
be fully identified unless the covariance matrix V is structured. One possibility to
resolve this problem is to impose a factor covariance structure used in factor analysis
onto V .

Factor analysis is widely used in social sciences and marketing research to
identify the common characteristics among a set of variables. The classical d -factor
model for a set of continuous variables y1; y2; � � � ; yt is defined as

yij D z0
j ai C "ij ; i D 1; : : : ; t I � j D 1; : : : ; n (9.17)

where yj D .y1j ; : : : ; ytj /0 is a t -dimensional vector of response variables from
individual j , zj D .z1j ; : : : ; zdj /0 is a vector of unobserved common factors associ-
ated with individual j , ai D .ai1; : : : ; aid /0 is a vector of factor loadings associated
with object i on the d factors, and "ij represents the error of the factor model. By
adopting the MVNOS framework with the latent utilities satisfying the above factor
model, we can generalize the classical factor model to analyze ranking data. In what
follows, we shall assume that the reader has a basic familiarity with the statistical
concepts of factor scores, factor loadings, and varimax rotation as can be found in
most textbooks on multivariate analysis.

9.2.1 The Factor Model

Suppose we have a random sample of n individuals from the population and each
individual is asked to rank t objects under study according to their own preferences.
Within the framework of the MVNOS model, the ranking of the t objects given by
individual j in the factor model is determined by the ordering of t latent utilities
y1j ; : : : ; ytj which satisfies a more general d -factor model:

yij D z0
j ai C bi C "ij j D 1; : : : ; nI i D 1; : : : ; t .> d/ (9.18)
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where b D .b1; : : : ; bt /
0

is the mean utility vector reflecting the relative importance
of the t objects and ai D .ai1; : : : ; aid /

0

represents the factor loadings. It is assumed
that the latent common factors z1; : : : ; zn are independent and identically distributed
according to the standard d -variate normal distribution, Nd .0; I/. The error term,
"ij , is the unique factor which is assumed to follow a N.0; �2

i / distribution,
independent of the zi ’s.

Denote a complete ranking by �j D .�1j ; : : : ; �tj /
0

where �ij is the rank of
object i from individual j . Smaller ranks refer to the more preferred objects and
hence higher utilities. For example, if �j D .2; 3; 1/

0

is recorded, it corresponds to
the unobservable utilities yj D .y1j ; y2j ; y3j /

0

with y2j < y1j < y3j . Note that the
only observable quantities are the �ij ’s but not the yij ’s.

Remark. Extension of the above factor model to incorporate incomplete ranking
data is quite straightforward. In the case of the top q partial rankings with the
top q objects being Œ1�j ; : : : ; Œq�j for individual j , it is natural to assign objects
Œ1�j ; : : : ; Œq�j with ranks 1; : : : ; q, respectively, and the rest of objects with midrank,
i.e., Œ.q C 1/ C � � � C t �=.t � q/. The factor model can be extended to restrict the
utilities y1j ; � � � ; ytj to satisfy yŒ1�j j > yŒ2�j j > � � � > yŒq�j j > yŒqC1gj j ; � � � ; yŒt �j j .
For subset rankings, individuals are asked to rank a subset of the t objects only.
Ranking of the set of remaining objects is unknown and we can simply restrict the
ordering of the utilities of objects in the subset consistent to the ranking of these
objects. Generally speaking, a ranking �, complete or incomplete, corresponds to
an event fy W C y < 0g, for some contrast matrix C . For instance in the case of
ranking t D 4 objects, the complete ranking �1 D .2; 3; 1; 4/0, top 2 partial ranking
�2 D .2; 3:5; 1; 3:5/0, and the subset ranking �3 D .2; _; 1; _/0 refer to the events
with their respective matrices C being

0
@

1 0 �1 0

�1 1 0 0

0 �1 0 1

1
A ;

0
@

1 0 �1 0

�1 1 0 0

�1 0 0 1

1
A ; and

�
1 0 �1 0

�
:

Notationally, let

Ad�t D Œa1 � � � at �;

‰ t�t be the diagonal matrix with diag.‰/ D .�2
1 ; : : : ; �2

t /, and all other entries
equal to zero, and

� D fA; b; ‰g

the set of parameters of interest. We shall discuss the maximum likelihood
estimation of � based on various types of ranking data via the Monte Carlo
Expectation-Maximization (MCEM) algorithm in the next section.
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9.2.2 Monte Carlo Expectation-Maximization Algorithm

In order to deal with missing data, the EM algorithm is a broadly applica-
ble approach for the computation of maximum likelihood estimates having the
advantages of simplicity and stability. It requires one to compute the conditional
expectation of the complete-data log-likelihood function given the observed data
(E-step) and then to maximize the likelihood function with respect to the parameters
of interest (M-step).

Let Y n�t ; Z n�d be the matrices of the unobservable response utilities and latent
common factors, respectively, with their j th rows corresponding to individual j .
Denote by …n�t D Œ�1; : : : ; �n�

0

the matrix of the observed ranked data. Under an
EM setting, we denote by {Y; Z} the missing data and by … the observed data.

9.2.2.1 Implementing the E-step via the Gibbs Sampler

Since the complete-data log-likelihood function, apart from a constant, is given by

`.�jY ; Z / D �n

2

tX
iD1

log �2
i � 1

2

tX
iD1

nX
j D1

.yij � z0
j ai � bi /

2

�2
i

; (9.19)

the E-step here only involves computation of the conditional expectations of the
complete-data sufficient statistics fY 0Y ; Z 0Z ; Z 0Y ; Y 01; Z 01g given … and � . This
can be done by using the Gibbs sampling algorithm which consists of drawing
samples consecutively from the full conditional posterior distributions, as shown
below:

1. Draw zj from f .zj jyj ; �j ; �/.
2. Draw yj from f .yj jzj ; �j ; �/ for j D 1; : : : ; n.

For step 1, making draws from f
�
zj jyj ; �j ; �

�
is simple because

f .zj jyj ; �j ; �/ D f .zj jyj ; �/;

which is independent of �j . Draws of Z can be made from the conditional
distribution

zj jyj ; � � Nd .A.A0A C ‰/�1.yj � b/; I � A.A0A C ‰/�1A0/: (9.20)

For step 2, yj requires to have consistent orderings with the observed ranking �j .
Suppose that < Œ1�j ; � � � ; Œt �j > represents the ordering of the t objects with respect
to the complete ranking �j such that Œ1�j is the most preferred object, Œ2�j is the
second most preferred object, and so on. Define yŒ0�j j D C1 and yŒtC1�j j D �1.
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Complete Rankings

For the cases with complete rankings, we can draw yij sequentially for i D 1; � � � ; t

from

yij jy1j ; : : : ; yi�1;j ; yiC1;j ; : : : ; ytj ; �j ; zj ; � � N.z0
j ai ; �2

i / (9.21)

with the constraint yŒr�1�j j > yij > yŒrC1�j j for �ij D r (or Œr�j D i ).

Top q Partial Rankings

For top q partial rankings, we draw the top q objects (i.e., fxŒ1�j j ; : : : ; xŒq�j j g) as in
the complete case and simulate the other objects by

yij � N.z0
j ai ; �2

i / (9.22)

with the constraint �1 < yij < yŒq�j j for �ij D r (or Œr�j D i ).

Subset Rankings

For subset rankings, individuals are asked to rank a subset of the t objects only.
Rankings of the set of remaining objects, fyi 0j g, are unknown and we can simulate
fyi 0j g from

fyi 0j ji 0 … franked objectsgg � N.z0
j ai ; �2

i /: (9.23)

The conditional expectation of Y 01 and Y 0Y can be approximated by taking
the average of the random draws of

P
j yj and the average of their product sumP

j yj y 0
j , respectively. Finally, conditional expectations of Z 01, Z 0Z , and Z 0Y

can be obtained by

EŒZ 01j…; �� D A.A0A C ‰/�1.EŒY 01j…; �� � nb/;

EŒZ 0Z j…; �� D nŒI � A.A0A C ‰/�1A0�
CA.A0A C ‰/�1EŒ.Y � 1b0/0.Y � 1b0/j…; ��.A0A C ‰/�1A0

EŒZ 0Y j…; �� D A.A0A C ‰/�1EŒ.Y 0 � b10/Y j…; ��:

9.2.2.2 M-Step

By replacing the complete-data sufficient statistics fY 0Y ; Z 0Z ; Z 0Y ; Y 01; Z 01g
with their corresponding conditional expectations obtained in E-step, we can
compute the maximum likelihood estimate of � by
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 OA
Ob0

!
D �

.Z 1/0.Z 1/
	�1

.Z 1/0Y D
�

Z 0Z Z 01
10Z 101

��1 �
Z 0Y
10Y

�

and

O‰ D 1

n
diag



.Y � Z OA � 1 Ob0

/0.Y � Z OA � 1 Ob0
/
�

D 1

n
diag



Y 0Y � 2 OA0Z 0Y � 2 Ob10Y C OA0Z 0Z OA C 2 Ob10Z OA C n Ob Ob0�

:

The new set of � is then used for calculation of the conditional expectation of the
sufficient statistics in the E-step and the algorithm is iterated until convergence is
attained.

9.2.2.3 Determining Convergence of MCEM via Bridge Sampling

To determine convergence of the EM algorithm we propose to use the bridge
sampling criterion discussed by Meng and Wong (1996). The bridge sampling
estimate for the likelihood ratio associated with the individual j is given by

L.� .sC1/jyj ; zj /

L.� .s/jyj ; zj /
D

PM
mD1

�
L.�.sC1/jy.s;m/

j ;z.s;m/
j /

L.�.s/jy.s;m/
j ;z.s;m/

j /

�1=2

PM
mD1

�
L.�.s/jy.sC1;m/

j ;z.sC1;m/
j /

L.�.sC1/jy.sC1;m/
j ;z.sC1;m/

j /

�1=2
;

where fy .s;m/
j ; z.s;m/

j ; m D 1; : : : ; M g denote the M Gibbs samples from

f .yj jzj ; �j ; � .s// and f .zj jyj ; �j ; � .s// with � .s/ being the sth iterate of � .
The estimate for the log-likelihood ratio of two consecutive iterates is then given by

Oh.� .sC1/; � .s// D
nX

j D1

log
L.� .sC1/jyj ; zj /

L.� .s/jyj ; zj /
:

We plot Oh.� .sC1/; � .s// against s to determine the convergence of the MCEM
algorithm. A curve converging to zero indicates a convergence because the EM
algorithm should increase the likelihood at each step.

9.2.3 Simulation

We adopt the parameter values listed in Table 9.4 used by Brady (1989) to study the
MCEM algorithm for complete and incomplete rankings. Using the factor model
and these parameter values, thirty sets of data with n D 1; 000 and utility vectors
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Table 9.4 The Parameter
values of a 2-factor model for
seven objects

Object a1 a2 b � j

1 6.0 7.0 30.0 8.49

2 �3.0 5.0 32.0 6.00

3 9.0 �8.0 34.0 4.24

4 �7.2 �4.0 36.0 4.24

5 12.0 10.0 38.0 8.49

6 �2.0 �9.0 40.0 5.00

7 �8.0 6.0 42.0 8.00

Table 9.5 Incomplete block
design for subset rankings

1 2 4

2 3 5

3 4 6

4 5 7

1 5 6

2 6 7

1 3 7

of t D 7 objects were simulated. Three types of ranked data were observed from
each data set. The first type corresponds to the complete rankings for seven objects
by ranking the utilities of the 7 objects. The second type corresponds to the top 3
partial rankings constructed from the rankings of the three largest utilities while the
third type corresponds to the subset rankings of 3 out the 7 objects chosen according
to the incomplete block design as shown in Table 9.5.

In our simulation studies, the Gibbs sampler and the MCEM algorithm both
converge fairly fast. Computation time required for each MC E-step in the case
of subset rankings is shorter than that in complete rankings because the number of
truncated normal variates to be drawn is smaller. For each E step, we discarded the
first 100 burn-in cycles and selected one xi systematically from every fifth cycle
afterward until a total of 40 draws was reached. The MCEM algorithm converged
within 10 iterations for all simulation data sets. The means of the 30 sets of estimates
for the complete rankings, top 3 partial rankings and 3 out of 7 subset rankings,
together with their biases and standard errors are shown in Table 9.6. Small values of
biases and standard errors show that the estimation method for incomplete rankings
is extremely efficient and reliable with high accuracy.

Intuitively, since more information is provided when complete rankings are
observed, the estimation of the factor model should perform better than with partial
or subset rankings. This is indeed the case as can be seen from Table 9.6. Larger
biases and standard errors are obtained for the case of 3 out of 7 subset rankings.
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Table 9.6 Simulation results of MCEM algorithm

a1 a2 b � j

Object Mean Bias SE� Mean Bias SE� Mean Bias SE� Mean Bias SE�

Complete rankings

1 6.03 0.03 0.08 6.81 �0.19 0.06 30.09 0.09 0.07 8.38 �0.11 0.07

2 �3.12 �0.12 0.06 4.99 �0.01 0.06 32.16 0.16 0.05 6.00 0.00 0.06

3 9.14 0.14 0.04 �7.95 0.05 0.05 33.87 �0.13 0.06 4.18 �0.06 0.06

4 �7.21 �0.01 0.05 �3.89 0.11 0.04 35.88 �0.12 0.06 4.17 �0.07 0.04

5 12.02 0.02 0.10 9.90 �0.10 0.08 38.08 0.08 0.14 8.53 0.04 0.09

6 �2.01 �0.01 0.05 �8.96 0.04 0.05 39.76 �0.24 0.05 4.94 �0.06 0.05

7 �8.07 �0.07 0.09 6.11 0.11 0.08 42.16 0.16 0.10 8.02 0.02 0.07

Top 3 partial rankings

1 5.96 �0.04 0.12 6.87 �0.13 0.12 29.98 �0.02 0.13 8.62 0.13 0.12

2 �2.92 0.08 0.10 4.96 �0.04 0.09 32.06 0.06 0.08 5.97 �0.03 0.11

3 8.97 �0.03 0.07 �8.01 �0.01 0.08 33.94 �0.06 0.09 4.29 0.05 0.04

4 �7.19 0.01 0.06 �4.03 �0.03 0.05 36.08 0.08 0.06 4.20 �0.04 0.07

5 11.81 �0.19 0.16 10.05 0.05 0.15 37.88 �0.12 0.11 8.53 0.04 0.15

6 �1.97 0.03 0.07 �8.89 0.11 0.08 40.03 0.03 0.07 5.07 0.07 0.09

7 �7.88 0.12 0.10 6.07 0.07 0.10 42.05 0.05 0.10 7.84 �0.16 0.09

3 out of 7 subset rankings

1 6.16 0.16 0.17 7.09 0.09 0.20 30.06 0.06 0.16 8.52 0.03 0.16

2 �3.21 �0.21 0.11 4.93 �0.07 0.14 32.03 0.03 0.10 6.09 0.09 0.10

3 8.98 �0.02 0.08 �7.86 0.14 0.06 34.03 0.03 0.09 4.23 �0.01 0.01

4 �7.09 0.11 0.07 �3.98 0.02 0.06 35.96 �0.04 0.09 4.21 �0.03 0.02

5 12.26 0.26 0.18 9.81 �0.19 0.19 37.84 �0.16 0.15 8.46 �0.03 0.08

6 �2.18 �0.18 0.08 �8.84 0.16 0.11 40.12 0.12 0.11 4.94 �0.06 0.05

7 �8.15 �0.15 0.14 5.83 �0.17 0.12 41.94 0.06 0.13 7.98 �0.02 0.08
� The standard errors are obtained empirically based on the 30 estimates

9.2.4 Factor Score Estimation

So far we have been interested mainly in problems concerning the parameters in
factor models and their estimation. Indeed, this frequently represents the main
objective of factor analysis since the loading coefficients, to a large extent, determine
the reduction of observed variables into a small number of common factors in
terms of meaningful phenomena. While these problems constitute the primary
interest of factor analysis, it is sometimes desirable to go one step further and
to estimate the scores of an individual on the common factors in terms of the
realizations of the variates for that individual. Factor scores provide information
concerning the relative position of each individual corresponding to each factor
whereas the loadings generally remain constant for all individuals. We therefore
turn our attention to the problem of factor score estimation.
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With the normality assumption, estimates of the factor score can be obtained
via the regression approach and the generalized least squares approach that, respec-
tively, minimize the variation of the estimator and the sum of squared standardized
residuals (see Lawley and Maxwell 1971). However, these two approaches can
only be used when the utility Y can be observed. Recently, Shi and Lee (1997a)
developed a Bayesian approach for estimating the factor scores in factor models
with polytomous data. By constructing appropriate posterior distribution, they
proposed using the posterior mean as a factor score estimate. Their method involves
computation of some multiple integrals which is handled by some Monte Carlo
methods. To avoid tedious computation, Shi and Lee (1997b) applied the EM
algorithm to obtain a Bayesian estimate of the factor score with polytomous
variables. In this section, we will estimate the factor scores with ranked data via
the MCEM algorithm discussed in Sect. 9.2.2.

9.2.4.1 Factor Score Estimation Using the MCEM Algorithm

The factor score zj can be estimated by the posterior mode of the posterior
distribution zj j�j ; � . Hence, the MCEM algorithm can be used to find the estimate
by viewing the zj ’s as parameters in the complete-data log-likelihood function `

in (9.19) and the resulting maximum likelihood estimate of zj will then be the
posterior mode estimate. The MCEM iteration can be simplified as follows: given
an initial value z.0/

j and the estimate � , at the .s C 1/th MCEM iteration,

E-step: Find E.yj j�j ; z.s/
j ; �/ via Gibbs sampler.

M-step: Update z.s/
j to z.sC1/

j by

z.sC1/
j D A.A0A C ‰/�1ŒE.yj j�j ; z.s/

j ; �/ � b/�: (9.24)

The Monte Carlo E-step is exactly the same as finding the conditional expectation of
yj while the M-step improves the estimate of zj in a single step only. This iterative
procedure will converge to the appropriate posterior mode which will be taken as
an estimate of zj . We propose to stop the MCEM iteration when the likelihood

function of z.s/
j and z.sC1/

j is very close to each other. A simple stopping criterion is
to consider the following expression:

l.z.s/; z.sC1// D log
exp

P
i z.s/

j

0

z.s/
j

2

exp
P

i z.sC1/
j

0

z.sC1/
j

2

D 1

2

X
i

�
z.s/
j

0

z.s/
j � z.sC1/

j

0

z.sC1/
j

�
:

(9.25)

Convergence of the MCEM iteration is attained when l.z.s/; z.sC1// becomes
stationary at zero level.
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Note that it is possible to estimate the factor scores using the posterior mean
based on the samples generated from the Gibbs sampler. We note that the posterior
mode and the posterior mean are usually very close and, moreover, the covariance
matrix of the posterior mode can be obtained as a by-product of the MCEM factor
score estimation.

9.2.4.2 The Covariance Matrix of the Factor Score Estimates

To provide more insight about the estimates and the impact of lost information from
continuous to ranking measurements, it is desirable to derive the covariance matrix
of the posterior distribution f .zj j�j ; �/, which is given by the negative inverse of
the Hessian matrix of logŒf .zj j�j ; �/�. A convenient way to evaluate the Hessian
matrix is via the following expression:

� @2 logŒf .zj j�j ; �/�

@zj @z0
j

D �
ˆ

@2 logŒf .zj jyj ; �/�

@zj @z0
j

f .yj jzj ; �j ; �/dyj

�Var

�
�@ logŒf .zj jyj ; �/�

@zj



(9.26)

where the variance is with respect to f .yj jzj ; �j ; �/ (Tanner (1997)).
It can be shown that the covariance matrix of the factor score estimate Ozj is

equal to

�
.I � A.A0A C ‰/�1A0/�1 � W Var.yj jzj ; �j ; �/W 0	�1 j zj DOzj

; (9.27)

where W D .I �A.A0A C‰/�1A0/�1A.A0A C‰/�1 and Var.yj jzj ; �j ; �/ can
be approximated by the Gibbs sample variance, a by-product of the MCEM factor
score estimation.

9.2.5 Application to the Job Selection Ranking Data

We now consider the marketing survey on people’s attitude toward career and living
style in three main cities in Mainland China – Beijing, Shanghai, and Guangzhou.
Five hundred responses from each city were obtained. A question regarding the
behavior, conditions, and criteria for job selection of the 500 respondents in
Guangzhou will be discussed here. Respondents were asked to rank the three most
important criteria on choosing a job among the following 13 criteria: 1. favorable
company reputation; 2. large company scale; 3. more promotion opportunities; 4.
more training opportunities; 5. comfortable working environment; 6. high income;
7. stable working hours; 8. fringe benefits; 9. well matched with employees’
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Table 9.7 Summary statistics of job selection ranking data

Criteria
Sample
mean

Sample
variance

1. Favorable company reputation 8.16 2.18

2. Large company scale 7.01 6.27

3. More promotion opportunities 7.43 5.69

4. More training opportunities 8.12 2.43

5. Comfortable working environment 6.89 7.68

6. High income 6.03 11.14

7. Stable working hours 7.64 4.72

8. Fringe benefits 6.68 8.59

9. Well matched with employees’ profession or talent 8.14 2.18

10. Short distance between working place and home 8.30 1.13

11. Challenging 8.19 1.92

12. Corporate structure of the company 8.40 0.63

13. Low working pressure 8.22 1.43

profession or talent; 10. short distance between working place and home; 11.
challenging; 12. corporate structure of the company; and 13. low working pressure.

This is a typical top 3 out of 13 objects partial ranking problem. The values “1”,
“2,” and “3” were assigned to the most, second, and third important criteria for job
selection, respectively. Regarding the other less important items, it is common to
define the midrank, i.e., 1

t�q
Œ.q C1/C� � �C t �, as their rank. In this case the midrank

is 1
10

Œ4 C � � � C 13� D 8:5. Table 9.7 provides some preliminary statistics, including
sample mean and sample variance for each of the 13 criteria based on these 500
incomplete rankings with the midrank imputations.

The factor model is assumed and the analysis is made possible by the MCEM
algorithm. Initial values of � were obtained by principal factor analysis and a
standardized rank score, �ijp

.t2�1/=12
� 1pP

i 1=�2
i

, was used as starting value of yij

in the Gibbs sampler. The choice of standardized rank score was motivated by the
fact that the rankings of yij

0s must be consistent with the observed ranking �j .

9.2.5.1 Model Estimation

Factor models with the number of factors ranging from zero to five were estimated.
The Gibbs sampler (in the MC E-step) converged quite rapidly. We discarded the
first 100 burn-in cycles and selected one yj systematically from every fifth cycle
afterward until a total of 40 draws was reached.

We used the bridge sampling criterion discussed in Sect. 9.2.2.3 to detect
the convergence of the MCEM algorithm. Figure 9.2 shows the plot of the log-
likelihood ratio against the number of iterations of the 3-factor model. The MCEM
algorithm converged after 20 iterations.
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Fig. 9.2 Bridge sampling criteria

Table 9.8 AIC values and proportions of variance explained
by the d -factor model with d D 0; 1; 2; 3; 4; 5

Number of
factors (d )

Number of free
parameters

AIC
value

Proportion of
variance explained

0 24 6086.2 –

1 36 5909.0 0.1933

2 47 5894.6 0.2745

3 57 5892.8 0.4125

4 66 5896.7 0.4861

5 74 5903.8 0.5385

The Akaike information criterion (AIC) was used to determine the appropriate
number of factors. The observed likelihood function which can be written as
a product of multivariate normal probabilities over the rectangular region was
approximated by the Geweke-Hajivassiliou-Keane (GHK) method shown to be
unbiased and most reliable. Table 9.8 exhibits the values of AIC approximated by
GHK methods and the proportions of variation explained by the d -factor models
with d D 0; 1; 2; 3; 4; 5. It can be seen that the “best" model according to AIC is
the 3-factor model and the proportion of variation explained by the 3-factor model
is 41 %.

To examine the goodness of fit of the 3-factor model, we compare the top-
choice probability for each of the 13 objects based on the fitted model with its
corresponding observed proportions. Here, the top-choice probabilities is estimated
using the GHK method. Figure 9.3 provides a plot of the estimated top-choice
probabilities vs the respective observed proportions. The points appear to lie on
the straight line, indicating the 3-factor model fits the data reasonably well.
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Fig. 9.3 Estimated top-choice probabilities vs observed proportions

Table 9.9 Parameter estimates of the 3-factor model

Criteria Factor 1 Factor 2 Factor 3 b � 2

1 �0:58 �0:41 0:25 �0:79 0:73

2 �0:02 �0:21 0:79 �0:46 0:29

3 0:29 �0:65 �0:04 0:30 0:40

4 0:44 �0:38 0:24 �0:74 1:10

5 �0:10 0:09 �0:14 0:75 0:47

6 �0:05 0:07 �0:73 1:31 0:35

7 �0:09 0:69 �0:17 0:42 0:27

8 �0:22 0:36 �0:34 0:94 0:31

9 0:58 0:03 0:21 �0:26 0:53

10 0:14 0:70 �0:15 �0:05 0:19

11 0:39 �0:07 0:09 �0:46 0:88

12 �0:50 0:21 0:08 �1:10 0:82

13 �0:07 0:52 �0:23 �0:17 0:47

Cumul. prop. exp. 0:15 0:30 0:41

Estimated values of the factor loadings were obtained by varimax rotation. The
values of factor loadings expressed as the correlation between factors and utilities
together with the estimated values of b and � 2 are summarized in Table 9.9. The
first factor can be regarded as a measure of career prospect. Utilization of one’s
talent and job aspiration are major concerns in this factor. The second dimension
represents the undemanding job nature. Short distance between working place and
home, stable working hours, and low working pressure all score high loadings in
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Fig. 9.4 Stopping criterion

this factor. The third factor represents a contrast between the scale of the company
and the salary. A large company offering lower income can be more attractive than
a small company offering higher income.

Also, the mean vector b reflects the overall importance of the 13 criteria. Note
that the ordering of Ob1; : : : ; Obt is consistent with the average of the 500 rankings.
Criterion 6 has the largest mean value which implies salary is their major concern
on choosing a job while factors regarding the company itself are least important
because Ob1, Ob4, and Ob12 get large negative values.

9.2.5.2 Factor Score Estimation

To estimate the factor scores of the fitted 3-factor model, we applied the MCEM
method. It is found that the Gibbs sampler in the E-step converged quite rapidly. We
discarded the first 100 burn-in cycles and selected one yj systematically from every
fifth cycle afterward until 40 draws were reached. We simulated a total of 300 cycles
for each E-step. Also, we applied the stopping criterion to detect the convergence
of the MCEM algorithm. Figure 9.4 gives the plot of l.z.s/; z.sC1// against the
number of iterations. According to the plot, the MCEM algorithm converged after
20 iterations.

It is often of interest to study the relationship between the factor scores and the
covariates of each individual. In this survey, age group was collected in nine 5-year
bands covering the ages from 15 to 59 ((1) 15–19, (2) 20–24, : : :., (9) 55–59),
while education level was recorded in five categories: primary (1), junior secondary
(2), senior secondary (3), postsecondary (4), and university degree or above (5).
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Fig. 9.5 Factor scores vs age and education level

Figure 9.5 provides plots of the means of the factor score estimates of individuals
of different age groups and education levels. From the plot of factor scores by age,
a decreasing trend for factor 1 scores and an increasing trend for factor 2 scores are
observed whereas from the plot of factor scores by education, an increasing trend for
factor 1 scores and a decreasing trend for factor 2 scores are observed. For factor 3
scores, only a slightly increasing trend in education is observed. These observations
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Table 9.10 Standard error of
factor scores

S11 S22 S33 S12 S13 S23

Mean 0.1727 0.3279 0.3275 0.0119 0.0483 0.0174

SD 0.0052 0.0064 0.0140 0.0040 0.0064 0.0077

Min. 0.1606 0.3135 0.2993 0.0014 0.0354 0.0000

Max. 0.1903 0.3509 0.3825 0.0243 0.0699 0.0428

imply a young, well-educated person acquires more on career prospect while an
old, less educated person may seek for a job with undemanding job nature. Finally,
a better educated person is more willing to work in a large company offering lower
salary.

To demonstrate the performance of our estimation on factor scores, Table 9.10
provides descriptive statistics on the covariance matrix S of Ozj ; i D 1; : : : ; 500:

Small values of the standard error show that the estimation method is good and
reliable. Also, it seems that the impact of unobservable information for this case is
not serious.

Chapter Notes

To address the robustness of the MVNOS model, Yu (2000) considered two
approaches. The first one is to study the sensitivity of the parameter estimates if
an outlying ranking is added to the data while the second one is to consider a more
general distribution and look at the differences between the 2 sets of estimates.

In Sect. 9.1, we discussed that the parameters of a MVNOS model cannot be
fully identified unless the variance-covariance matrix V is structured. Of course,
factor analysis mentioned in Sect. 9.2 provides a solution for the simplified but yet
flexible dependency structure for V . Other choices of dependency structure include
wandering vector models (Yu and Chan 2001) and wandering ideal point models
(Leung 2003).

In the factor analysis for ranking data, Yu et al. (2005) commented that apart from
studying the relationship between the factors and individual’s covariate via factor
score estimation, we can incorporate the effect of covariates directly into the factor
model: yij D z

0

j ai Cbi Cw
0

j ci C"ij , where wj is a vector of covariates of individual
j such as sex and age and ci is a vector of regression parameters. The procedures of
the MCEM algorithm can be implemented easily for this model but the details are
omitted here. However, the number of parameters to be estimated would increase
accordingly. Recently, Yu et al. (2013) further extended factor analysis to a data set
of paired rankings such as rankings given by couples and identified the common
factors between the individuals in each pair.
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So far, we treated the ranking with ties as if the ordering of tied objects is
unknown. Poon and Xu (2009) extended the MVNOS model to allow for tied objects
by assuming that any two objects a and b have different ranks if and only if their
utilities differ by more than a small value, i.e., jya � ybj 	 ı. For example, the
ranking B � A D C has utilities satisfying yB � yA 	 ı; yB � yC 	 ı, and
jyA � yC j < ı. However, the parameter ı in Poon and Xu (2009) must be fixed at a
prespecified value because of the parameter identifiability problem.
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