
Chapter 4
Testing for Randomness, Agreement,
and Interaction

Suppose that n judges are asked to rank t contestants in accordance with some
predetermined criterion. One immediate question that comes to mind is: are
the judges ranking the contestants by selecting a ranking at random or is
there some specific pattern for their choices? Placing this problem in a geometric
setting, we may represent each ranking as a point in a t -dimensional space. If indeed
the judges act in accordance with some specific nonrandom manner, the points
would tend to cluster close together in one or more groups. Intuitively then, a test of
randomness could be based on the average pairwise distance between points with
large values of that statistic displaying evidence of the random pattern of the points.

In the literature, the Kendall W has been a widely used statistic whose asymptotic
distribution was derived by Friedman (1937). Treating each judge as a block, it
consists of calculating for each object the average of the ranks assigned by the
judges and computing the variance of the averages. Small values of the test statistic
are considered consistent with the null hypothesis of randomness. This test statistic
is not always sensitive to patterns that may exist in the data. For example, if half
the judges assign rankings in the natural order, 1; 2; : : : ; t and the other half assign
rankings in the reverse order, t; t �1; : : : ; 1, then the value of the Kendall W statistic
will be small and the null hypothesis will not be rejected. Such considerations
lead one to inquire as to whether or not there are other test statistics with better
performance.

4.1 Tests for Randomness

We begin with some notation. Let P D ˚
�j

�
be the set of t Š possible rankings of t

objects and denote the rankings by

�j D �
�j .1/ ; : : : ; �j .t/

�0
; j D 1; : : : ; t Š
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56 4 Testing for Randomness, Agreement, and Interaction

Suppose that we have a random sample of n rankings denoted by R; : : : ; Rn

observed from some population of rankers and suppose that each judge chooses
a ranking in accordance with some distribution p,

p D .p1; : : : ; ptŠ/
0

where

pj D P
�
R D �j

�
:

Our interest is in developing a test of the null hypothesis of randomness, namely

H0 W p D p0 D 1=tŠ

against the alternative

H1 W p ¤ p0:

The null hypothesis indicates that each judge chooses a ranking at random from the
population of possible rankings. Select a distance function, d .Rk; Rl/, between two
rankings, Rk; Rl . A possible test statistic for testing the null hypothesis consists of
computing the average pairwise distance between all the observed rankings

Ndn D 1

n .n � 1/
††k;ld .Rk; Rl/ : (4.1)

Under the null hypothesis, one would expect the average pairwise distance to be
large or, equivalently from (4.1), the average pairwise correlation

N̨n D 1 � 2 Ndn

M
(4.2)

to be small. Equivalently, one should reject the null hypothesis whenever N̨n is large.
Note that we may write

d .Rk; Rl/ D †i †j d
�
�i ; �j

�
I ŒRk D �i � I ŒRl D �i �

where I ŒB� is the indicator function taking value 1 if the event B is true and 0

otherwise. It follows that

n .n � 1/ Ndn D †k†ld .Rk; Rl/ (4.3)

D †k†l†i †j d
�
�i ; �j

�
I ŒRk D �i � I

�
Rl D �j

�
(4.4)

D †i †j .†kI ŒRk D �i �/
�
†lI

�
Rl D �j

��
d
�
�i ; �j

�
(4.5)

D †i †j Ni Nj d
�
�i ; �j

�
(4.6)

D N 0�N (4.7)
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where � D �
d
�
�i ; �j

��
is the matrix of pairwise distances and N 0 D .N1; : : : ; NtŠ/

is the vector of frequencies with

Ni D †kI ŒRk D �i � :

We recognize that (4.7) is a quadratic form and that N is a multinomial random
variable with mean and covariance respectively given by

EN D np; Cov .N / D n
X

;

where
P D .d iag .p/ � pp0/ and diag .p/ is a t Š � t Š diagonal matrix having

entries pi along the diagonal. Let Opn D N=n and recall from (3.13)

Q D J �
�

2

M

�
�:

Theorem 4.1. (a) Under H0, for n! 1, and Qp0 D c�1, we have that

.n � 1/
� N̨n � c�� )L Z0

0QZ0 � 1 C c�

where Z has a t!-variate normal distribution with mean 0 and covariance
matrix †0 D .t Š/�2 ..t ŠI � J /. Here I is the identity matrix and J is a t Š � t Š

matrix of ones.
(b) Under H1; for n! 1,

p
n
�
˛n � p0Qp

� )L 2Z0Qp

where Z has a t!-variate normal distribution with mean 0 and covariance
matrix

X
D �

diag .p/ � pp0� :

Proof. (a) Define

Zn D n�1=2 .N � np/ :

A Taylor series expansion around Opn D p reveals the identity

Op0
nQ Opn � p0Qp D 2 . Opn � p/0 Qp C . Opn � p/0 Q . Opn � p/ (4.8)

D 2p
n

Z0
nQp C 1

n
Z0

nQZn:
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Under the null hypothesis p D p0 and Qp0 D c�1, so that p0
0Qp0 D c�: Now

the relationships

Q D J � 2

M
�

˛n D 1 � �
n
2

��1 �
N 0�N

�
=M

imply

.n � 1/ N̨n C 1 D �
n Op0

nQ Opn

�

On using the multivariate central limit theorem for multinomial random vari-
ables (Timm 1975), it follows from (4.8)

.n � 1/
�
˛n � c�� C1 � c� D n

� Op0
nQ Opn � p0

0Qp0

�

D Z0
nQZn

) LZ0QZ:

(b) On the other hand if p ¤ p0 we have from (4.8)

p
n
� Op0

nQ Opn � p0Qp
� )L 2Z0Qp

.n � 1/ ˛n D �1 C n Op0
nQ Opn

and it follows that

p
n
�
˛n � p0Qp

� )L 2Z0Qp:

ut
The distribution of Z0QZ under the null hypothesis is that of a weighted chi

square where the weights are given by the eigenvalues of the matrix

Q†0 D .t Š/�1
�
Q � c�J

�
:

In what follows, we shall obtain properties of that matrix for both the Spearman and
Kendall cases. For these cases, the constant c� D 0 and hence

Q†0 D .t Š/�1 Q:

Before dealing with the specific distributions of the Spearman and Kendall
statistics, we will need the following lemmas which are useful in their own right.
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Lemma 4.1. Let A .s; s0; t; t 0/ D †�sgn .� .s/ � � .t// sgn .� .s0/ � � .t 0//. Then,
under H0

A
�
s; s0; t; t 0� D

8
ˆ̂
ˆ̂<

ˆ̂̂
:̂

0 s ¤ s0; t ¤ t 0;
t Š s D s0; t D t 0;
t Š
3

s D s0; t ¤ t 0;
� t Š

3
s D t 0; s0 ¤ t:

(4.9)

Proof. Let R be a random ranking of t objects. Note that in distribution

sgn ŒR .s/ � R .t/� Dd sgn ŒU � V �

where U; V are independent uniform random variables on .0; 1/ :

Let Z D sgn ŒU1 � V1� sgn ŒU2 � V2� where U1; U2; V1; V2 are independent
uniform random variables on .0; 1/. It follows that

P .Z > 0/ D P .U1�V1 > 0; U2�V2 > 0/ CP .U1�V1 < 0; U2 � V2 < 0/

D P .U1�V1 > 0/ P .U2�V2 > 0/ CP .U1�V1 < 0/ P .U2�V2 < 0/

D
�

1

2

�2

C
�

1

2

�2

D 1

2
:

Similarly, P .Z < 0/ D 1
2
: Also, if Z1 D sgn ŒU1 � V1� sgn ŒU1 � V2�, then

P .Z1 > 0/ D P .U1 � V1 > 0; U1 � V2 > 0/ C P .U1 � V1 < 0; U1 � V2 < 0/

D
1ˆ

0

P .x � V1 > 0; x � V2 > 0/ dx C
1ˆ

0

P .x � V1 < 0; x � V2 < 0/ dx

D
1ˆ

0

P .x � V1 > 0/ P .x � V2 > 0/ dx C
1ˆ

0

P .x � V1 < 0/ P .x � V2 < 0/ dx

D
1ˆ

0

x2dx C
1ˆ

0

.1 � x/2
dx D 2

3
:

It now follows that

1

tŠ
†�sgn .� .s/ � � .t// sgn .� .s/ � � .t 0// D E Œsgn .R .s/ � R .t// sgn .R .s/ � R .t 0//�

D P .Z1 > 0/ � P .Z1 < 0/ D 1

3
:

The other cases follow in a similar way. ut
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Lemma 4.2. The matrices QS ; QK satisfy

(i) Q2
S D t Š

t�1
QS and hence, t�1

tŠ
QS is idempotent.

(ii) QKQS D 2tŠ.tC1/

3t.t�1/
QS .

(iii) QK D 2.tC1/

3t
QS C A; QS A D 0.

(iv) Q2
K D 4tŠ.tC1/2

9t2.t�1/
QS C 2tŠ

3t.t�1/
A.

Proof. Setting cS D t.t2�1/
12

the matrix

cS QS D T0
S TS D .t � 2/ŠcS ŒtI � J � :

In fact, the diagonal elements are equal to

.t � 1/Š
X�

i � t C 1

2

�2

D .t � 1/ŠcS ;

whereas the off-diagonal elements are equal to

.t � 2/Š
X

i¤j

�
i � t C 1

2

��
j � t C 1

2

�
D � .t � 2/ŠcS :

The matrix QS is singular since the rows sum to 0. A generalized inverse of cS QS

is given by 1
.t�2/ŠtcS

ŒI C J �.
Now to show idempotency in (i), we see that

.QS /2 D 1

c2
S

T0
S TS T0

S TS

D 1

cS

.t � 2/ŠT0
S ŒtIt � J � TS

D 1

cS

.t � 2/Š
�
tT0

S TS

�

D t Š

t � 1
.QS / :

Next we prove (ii). We first note that the i th rank can be represented in terms of the
remaining .t � 1/ ranks as

	
� .i/ � t C 1

2



D 1

2
†lsgn Œ� .i/ � � .l/� : (4.10)

Part (ii) is equivalent to showing

�
T0

KTK

� �
T0

S TS

� D 1

cK

tŠ .t C 1/

3

�
T0

S TS

�

where cK D t.t�1/

2
.
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For simplicity, note that the first row and column entry in the matrix
�
T0

KTK

�
T0

S

is given by

†tŠ
hD1†i<j sgn Œ�1 .j / � �1 .i/� sgn Œ�h .j / � �h .i/�

	
�h .1/ � t C 1

2



D

1

2
†t

lD2†i<j sgn Œ�1 .j / � �1 .i/� †tŠ
hD1sgn Œ�h .j / � �h .i/� sgn Œ�h .1/ � �h .l/� :

There are two cases to consider, namely .i D 1; j D l/ and .i ¤ 1; j D l/.
It follows that

�1

2

�
t Š†t

lD2sgn Œ�1 .l/ � �1 .1/� C t Š

3
†i¤1;j †l¤j sgn Œ�h .j / � �h .l/�

�
D

�	
t Š

�
�1 .1/ � t C 1

2

�

� t Š

3
.t � 2/ †j ¤1

�
�1 .l/ � t C 1

2

��
D

�
t Š

�
�1 .1/ � t C 1

2

�
C t Š

3
.t � 2/

�
�1 .1/ � t C 1

2

��
D

.t C 1/

3
tŠ

�
�1 .1/ � t C 1

2

�
:

Other entries are treated similarly. Part (iii) follows directly from (ii).
To show part (iv) it suffices to show

�
T0

KTK

�2 D t Š

3

�
T0

KTK

�C 4tŠ

3

�
T0

S TS

�
: (4.11)

In fact, this follows since the rs term of the left-hand side of (4.11) is equal to

X

k<l

X

k0<l 0

sgn Œ�r .k/ � �r .l/� sgn
�
�s

�
k0� � �s

�
l 0��

�
t ŠX

hD1

sgn Œ�h .k/ � �h .l/� sgn
�
�h

�
k0� � �h

�
l 0�� D

t Š

3

X

k<l

X

k0<l 0

sgn Œ�r .k/ � �r .l/� sgn
�
�s

�
k0� � �s

�
l 0��

C t Š

3

X

k<l

X

k<l 0

sgn Œ�r .k/ � �r .l/� sgn
�
�s .k/ � �s

�
l 0��

D t Š

3

X

k<l

X

k0<l 0

sgn Œ�r .k/ � �r .l/� sgn
�
�s

�
k0� � �s

�
l 0��

C 4
tŠ

3

X

k

�
�r .k/ � t C 1

2

��
�s .k/ � t C 1

2

�
: ut
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Theorem 4.2. The asymptotic distribution of the Spearman statistic under the null
hypothesis of randomness is given by

.t � 1/ f.n � 1/ �n C 1g )L �2
t�1: (4.12)

The left-hand side of (4.12) can also be expressed as

12n

t .t C 1/

tX

iD1

�
NRi � t C 1

2

�2

which is the usual Friedman statistic.

Proof. The asymptotic distribution of .t � 1/ f.n � 1/ �n C 1g is that of a weighted
�2 where the weights are determined by the eigenvalues of the idempotent matrix
.t�1/

tŠ
QS . Hence its eigenvalues are 0 or 1: Moreover, the rank of the matrix is

.t � 1/.
The left-hand side of (4.12) is equal to

.t � 1/ Z0QZ D t � 1

cS

n k T Opn k2

D 12n .t � 1/

t .t2 � 1/

tX

iD1

�
NRi � t C 1

2

�2

:

ut
Theorem 4.3. The asymptotic distribution of the Kendall statistic under the null
hypothesis of randomness is given by

.n � 1/ N�n C 1 )L

2

3t .t � 1/

n
.t C 1/ �2

t�1 C �2

.t�1
2 /

o
� 1: (4.13)

The left-hand side of (4.13) can also be expressed as

P
.2xi � n/2

n
�

t
2

�

where the summation is taken over all
�

t
2

�
pairs of objects and xi is the number of

judges whose ranking of the pair i of objects agrees with the ordering of the same
pair in a criterion ranking such as the natural ordering.

Proof. From Lemma 4.2,

A D QK � 2 .t C 1/

3t
QS
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and it follows that

A2 D 2tŠ

3t .t � 1/
A:

This implies 3t.t�1/

2tŠ
A is an idempotent matrix. Noting that

T race .A/ D t Š .t � 2/

3t
D rank .A/ ;

we see that QK has two distinct nonzero eigenvalues,

�1 D 2tŠ .t C 1/

3t .t � 1/
; �2 D 2tŠ

3t .t � 1/

and (4.13) follows.
Now, let aij D 1; if judge j agrees with the ranking in pair i and D �1 if he

disagrees. Then, setting ai D P
j aij and noting that if xi Dnumber of judges who

agree with the ranking in pair i and yi Dnumber who disagree, we have

xi C yi D n; xi � yi D ai ;

then ai D 2xi � n. The left-hand side of (4.13) is equal to

P
.ai /

2

n
�

t
2

�

and the result follows. ut
The preceding theorems did not consider the situation where ties are possible

in the rankings. This situation was considered in the literature for the case of the
Spearman statistic (Lehmann 1975) wherein the asymptotic distribution is obtained
by conditioning on the observed ties. Consider the following example where it
may not be desirable to condition on the observed ties only. Suppose that tasters
are asked to rank in order of preference each of three varieties of tea. If ties are
permitted, the sample space would consist of all possible permutations, including
those where either two or all three varieties are tied. Alvo and Cabilio (1985) derived
the correction for ties under precisely such situations. This correction for ties is
made once and for all. This approach allows for comparisons to be made when the
same experiment is repeated. We recall for completeness the definition of a tied
ordering, previously given in Chapter 3.

Definition 4.1. A tied ordering of n objects is a partition into e sets, 1 � e � t , each
of which contains di objects, d1Cd2C: : :Cde D t; so that the di objects in each set
share the rank i , 1 � i � e: Such a tie pattern is denoted by ı D .d1; d2; : : : ; de/ :

The ranking denoted by �ı D .�ı .1/; �ı .2/; : : : ; �ı .t//, resulting from such an
ordering, is a tied ranking and is one of t Š=.d1Šd2Š : : : deŠ/ possible permutations.
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Let ki D t Š
d1Š:::de Š

. Then the total number of possible permutations is given by

k D P2t�1

iD1 ki . Define ti D 1
12

Pe
j D1


d 3

ij � dij

�
, 	i D 1� 12ti

t.t2�1/
, 	 D P2t�1

iD1 ki 	i .

Theorem 4.4. (a) The asymptotic distribution of the Spearman statistic under the
null hypothesis H0 W pi D 1

k
is as n ! 1 given by

.t � 1/
k

	

�
.n � 1/ �n C 	

k

�
!L �2

t�1:

(b) The asymptotic distribution of the Kendall statistic under the null hypothesis
H0 W pi D 1

k
is given by

n N�n )L

2

3t .t � 1/

�
	

k
.t C 1/ �2

t�1 C 3 .ˇ � 2
/

k
�2

.t�1
2 /

�
� ˇ

k

where the two �2 variates are independent and

ˇ D
2t�1X

iD1

ki ˇi ; ˇi D
0

@t 2 �
X

j

d 2
ij

1

A = .t .t � 1//


 D
2t�1X

iD1

ki 
i ; 
i D 1

t � 2

�
	i

t C 1

3
� ˇi

�
:

Proof. See Alvo and Cabilio (1985) for the proof. ut
When ties are not allowed, 	i D ˇi D 1, 	 D ˇ D k D t Š, 
i D 1

3
, 
 D k

3
.

4.2 Tests for Agreement Among Groups

We may wish to compare two groups of patients with respect to how they perceive
their hospitalization, those who require bed rest and those who are mobile in their
recovery. Each patient is presented with a set of situations and asked to rank them in
order of severity of stress. The result is that two sets of rankings are obtained and it is
necessary to determine if the groups are responding in a similar manner. In another
example Hollander and Sethuraman (1978) considered data of C. Sutton in his/her
1976 thesis on leisure preferences and attitudes on retirement of the elderly for
14 white and 13 black females in the age group 70–79 years. Each individual was
asked: with which sex do you wish to spend your leisure? Each female was asked to
rank the three responses: male(s), female(s) or both, assigning rank 1 for the most
desired and 3 for the least desired. The first object in the ranking corresponds to
“male,” the second to “female,” and the third to “both.” It was desired to compare
these two groups. The data is reproduced in Table 4.1.
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Table 4.1 Sutton data on leisure preferences

Rankings .123/ .132/ .213/ .231/ .312/ .321/

Frequencies for white females 0 0 1 0 7 6

Frequencies for black females 1 1 0 5 0 6

We begin with a general introduction to the concepts of diversity and dissimi-
larity. These concepts provide a generalization of the classical analysis of variance
and are particularly applicable to data in the form of rankings. Consider a set of
g populations where the individuals are characterized by a set of rankings chosen
from the set of all possible rankings P in accordance with some distribution.

Definition 4.2. The diversity coefficient of the population whose distribution on the
set of possible rankings is pi is defined to be

Hi D p0
i �pi

where � is the matrix of pairwise distances between rankings. The diversity
coefficient is the average difference between two randomly chosen individuals from
the i th population.

Similarly, we may define the similarity coefficient when one individual is drawn
from the i th and another from the j th population

Hij D p0
i �pj : (4.14)

The dissimilarity coefficient or between population diversity is then defined to be
the difference

Hij � 1

2

�
Hi C Hj

� D �1

2

�
pi � pj

�0
�
�
pi � pj

�
: (4.15)

Suppose now that the individuals are mixed together in accordance with the
proportions �1; : : : ; �g such that

Pg
iD1 �i D 1: The convex set generated by

the mixture leads to a new population with probability vector p D Pg
iD1 �i pi . The

notions of diversity and between population diversity can now be formally defined.

Definition 4.3. The total diversity, the within population diversity, and the between
population diversity are defined respectively to be

(i) H .p/ D p0�p,
(ii) HW D P

i �i p0
i �pi ,

(iii) HB D �Pi<j �i �j

�
pi � pj

�0
�
�
pi � pj

�
.

It can be seen that

H .p/ D HB C HW :
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The requirement that the between population diversity HB be positive demands that

a0�a � 0 whenever
t ŠX

iD1

a .i/ D 0:

It can be seen from (4.15) that this condition is equivalent to requiring that H

be a concave function. The concavity requirement imposes certain conditions on
the distance function which must be verified for each potential distance measure.
It does not follow from the right-invariance property. The following lemma makes
this requirement more precise.

Lemma 4.3. If the distance measure d .�; �/ is right invariant on the set of
permutations, then there exists a constant c > 0 such that

�1 D .ct Š/ 1

and H .p/ is concave if and only if

Q� D cJ � �

is positive semidefinite. Moreover, in this case H .p/ has the maximum value c at
u D 1

tŠ
1.

Proof. The existence of the eigenvalue ctŠ follows from the right-invariance prop-
erty of the distance measure. We note that whenever a01 D 0; for any x D a C b1,
which includes all points in RtŠ

x0Q�x D cb0J b � x0�x � 0:

Writing p D u C .p � u/ we note that since u is an eigenvector of � orthogonal to
.p � u/ we have

H .p/ D u0�u C .p � u/0 � .p � u/ � c

showing that for right-invariant measures, the uniform distribution over the set of all
permutations is most diverse among diversity measures. ut

Specializing to the Spearman and Kendall distances, we saw earlier in Chap. 3
that the matrix cQ can be expressed as

cKQK D T0
KTK; cS QS D T0

S TS :

In the next result we establish the link between the characteristic T� and the
between population diversity, thus showing that it is this characteristic which forms
the basis for inference when comparing populations.
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Lemma 4.4. For a right-invariant metric on the set of permutations, the between
population diversity is given by

X

i<j

�i �j

��Tpi � Tpj

��2

s
D t r fvar .TpI /g

where k:ks is the Euclidean norm in Rsand I has the distribution P.I D i/ D �i :

Proof. We note that since � D cJ � T0T;

�
X

i<j

�i �j

h�
pi � pj

�0
�
�
pi � pj

�i D

X

i<j

�i �j

h�
pi � pj

�0
T0T

�
pi � pj

�i D
X

i<j

�i �j

�
�Tpi � Tpj

�
�2

s
:

ut
Suppose that we have a random sample of ni judges from population i each of

whom chooses a ranking in accordance with some distribution pi . Set N D P
ni :

Given that the basis for inference for comparing two or more groups are the
characteristics Tp, consider therefore a test of the null hypothesis

H0 W Tp1 D Tp2 D : : : D Tpg (4.16)

against the alternative that at least two among the T pi are not equal. We observe for
each group i , the relative frequency of occurrence of each ranking �l ; l D 1; : : : ; t Š

denoted by Opi .l/,i D 1; : : : ; g: Set Opi D . Opi .1/ ; : : : ; Opi .t Š//
0. A central limit

theorem exists for each of the statistics T Opi .

Theorem 4.5. Suppose that ni =N ! �i > 0 as N ! 1: Then

(a)

p
ni T . Opi � pi / ) Zi

where

Zi � Ns

�
0; T†i T0�

and the Zi are independent with

†i D …i � pi p0
i ; …i D diag .pi .1/ ; : : : ; pi .t Š// :

(b) Under H0;

p
N T

� Opi � Opj

� ) Ns

�
0; T†T0�
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where

† D †i

�i

C †j

�j

:

Moreover, for a consistent estimator O† of † and if OD is the Moore–Penrose
inverse of T O†T0, then

N
� Opi � Opj

�0
T0 ODT

� Opi � Opj

� ) �2
r

where r = rank.T†T0/.

Proof. (a) The multivariate central limit theorem applies to multinomial vectors

p
ni . Opi � pi / ) NtŠ .0; †i / :

The result follows.
(b) Using standard multivariate normal theory (Timm 1975), this part follows from

the independence of the Z0
i s and the null hypothesis.

ut
We note that the use of the Moore–Penrose inverse may be circumvented by

choosing the matrix T so that T†T0 is of full rank. Hence, in the case of the
Spearman distance, we may reduce the matrix TS by using only the ranks of the
first (t-1) objects. This problem does not immediately arise for the Kendall distance
since there is no singularity in TK:

An unbiased estimate of the covariance matrix †i is given by

O†i D ni

ni � 1

 O…i � Opi Op0
i

�

where

O…i D diag . Opi .1/ ; : : : ; Opi .t Š// :

Suppose now that we are interested in the two-sample problem and that we wish
to test the null hypothesis that

Ho .1/ W Tp1 D Tp2:

Under Ho .1/, it follows that an estimate of the covariance matrix † in
Theorem 4.5 is given by

O†Separate D N

 O†1

n1

C
O†2

n2

!

:



4.2 Tests for Agreement Among Groups 69

The separate estimation of the covariances is appropriate in this case since the
covariances are not assumed to be equal. In the situation when the null hypothesis
is given by

Ho .2/ W p1 D p2;

we may pool the separate estimates as

O†Pooled D N

�
1

n1

C 1

n2

� 
.n1 � 1/ O†1 C .n2 � 1/ O†2

N � 2

!

:

Hollander and Sethuraman (1978) actually used the combined estimate

O†combined D
�

N � 2

N � 1

�
O†pooled C

�
N

N � 1

�
.f1 � f2/ .f1 � f2/0

where f1; f2 are the frequency vectors. It should be noted that the estimates of the
.s � s/ covariance matrices are based on the observed score vectors

˚
t
�
Xij

��
; that

is,

T O†i T0 D
Pni

j D1

�
t
�
Rij

� � t i:

� �
t
�
Rij

� � t i:

�0

ni � 1

where Rij is the observed ranking of judge j in group i and

Nti D 1

ni

niX

j D1

t
�
Rij

�
:

Consequently, the calculations do not require computation of the individual covari-
ance matrices O†i .We may apply the methodology to the following example on
leisure time preferences.

Example 4.1. Sutton data was analyzed in Feigin and Alvo (1986) using both
the Spearman and Kendall test statistics. The total diversity was apportioned as
indicated in Table 4.2. It can be seen that there is strong evidence that the two groups
of females differ significantly.

The hypothesis expressed in (4.16) can alternatively be tested by using general
multivariate analysis of variance methods. We do not pursue this further but instead
refer the reader to Timm (1975).



70 4 Testing for Randomness, Agreement, and Interaction

Table 4.2 Analysis of the Sutton
data

Spearman Kendall

Within 0.88 1.51

Between 0.41 0.54

Total 1.29 2.05
�2

2 �2
3

Separate 28.0 28.1

Pooled 28.5 28.5

4.3 Test for Interaction in a Two-Way Layout

In this section, we consider the general two-factor design with equal numbers of
replications in each cell. Such designs are utilized in statistics to test for main
effects and for interactions in a variety of experiments. In more recent times, they
have been applied in a genetics environment in order to understand the underlying
biological mechanisms. See Gao and Alvo (2005b) for an application in a more
general situation. In the gene expression data of Drosoplila melanogaster (Jin et al.
2001) for example, there are 24 cDNA microarrays, 6 for each combination of
two genotypes (Oregon R and Samarkand) and two sexes. As each array used
two different dyes, there were in total 48 separate labeling reactions. Focusing on
the individual expression level of a gene and its relationship with genotypes and
sexes, the objective of the study was to identify genes whose expression levels are
affected by the interaction between the two factors. For such data, the assumption
of normality for the error terms is not warranted and consequently, nonparametric
procedures are needed. We shall consider a nonparametric test for interaction based
on the row ranks and column ranks of the data.

We consider the following general two-way layout with interaction

Xijn D � C ˛i C ˇj C 
ij C ijn; i D 1; : : : ; I; j D 1; : : : ; J; n D 1; : : : ; N

where Xijin is the response, f˛i g and
˚
ˇj

�
are main effects,

˚

ij

�
are interaction

effects, and
˚
ijn

�
are independent and identically distributed according to a

continuous cumulative distribution Fij : We wish to test the null hypothesis of no
interaction effects

H0 W 
ij D 0 for all i; j

against the alternative

H1 W 
ij ¤ 0 for some i; j:
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We propose a test statistic based on both row and column ranks. This statistic is
invariant under monotone transformations and therefore can be applied directly on
the original data. In order to motivate the test, let Rijn be the rank of Xijn with
respect to the entries in the i th row. Similarly, let C ijnbe the rank of Xijn with
respect to the entries in the j th column. Define the score

aijn D Rijn

NJ C 1
C Cijn

NI C 1
: (4.17)

Set the indicator function

u .x/ D
(

1 x � 0;

0 x < 0:

It then follows that

E
�
aijn

� D 1

NJ C 1

JX

bD1

NX

n0D1

Eu
�
Xijn � Xibn0

�C 1

NI C 1

IX

aD1

NX

n0D1

Eu
�
Xijn � Xajn0

�

D 1

NJ C 1

 

N

JX

bD1

ˆ
FibdFij C 1

2

!

C 1

NI C 1

 

N

IX

aD1

ˆ
Faj dFij C 1

2

!

:

Under the null hypothesis of no interaction effects

X

b

ˆ
FibdFij D

ˆ
F .x � ˛i � ˇ0/ dF

�
x � ˛i � ˇj

� D
ˆ

F
�
x C ˇj � ˇ0

�

which does not depend on i. Similarly,
P

a

´
Faj dFij does not depend on j. Setting

aij: D 1

N

X

n

aijn; ai: D 1

NJ

X

n

aijn; a:j: D 1

NI

X

n

aijn; a::: D 1

NIJ

X

n

aijn

it follows that

E
�
aij: � ai:: � a:j: C a:::

� D 0:

The quantity aij: � ai:: � a:j: C a::: serves as the nonparametric analogue of Xij: �
Xi:: � X:j: C X::: which is the measure of the interaction effect appearing in the F
statistic in the usual normal theory test for interaction.
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4.3.1 Proposed Row–Column Test Statistic

In light of the motivation for the test statistic, define the sum of the row ranks in the
.i; j / cell

SN .i; j / D 1

NJ C 1

NX

nD1

Rijn

and set

SN D .SN .1; 1/ ; : : : ; SN .I; J //0 :

Similarly, define the sum of the column ranks in the .i; j / cell

TN .i; j / D 1

NI C 1

NX

nD1

Cijn

and set

TN D .TN .1; 1/ ; : : : ; TN .I; J //0 :

Let II and IJ represent the I � I and J � J identity matrices, respectively, and let
JI and JJ represent the I � I and J � J matrices with all elements equal to one,
respectively. Set

A D JI ˝
�

� 1

I
IJ

�
C II ˝ IJ ;

B D IJ ˝
�

IJ � 1

J
JJ

�
:

We note that the .i; j / term of 1
N

.ASN C BTN / is
�
aij: � ai:: � a:j: C a:::

�
. The

proposed test statistic is then given by

W D 1

N
.ASN C BTN /0

� OX��
.ASN C BTN / (4.18)

where
 OP��

is the generalized inverse of the estimate of the variance-covariance

matrix of ASN C BTN . The covariance matrix is not of full rank since there exist
I+J-1 linear combinations of ASN C BTN which are constants. We may obtain a
formal expression for the estimate of the covariance matrix. Let

P
1 D lim

1

N
Var .SN/ ;

P
2 D lim

1

N
Var .TN/ ;

P
12 D lim

1

N
cov .SN; TN / :
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Then

OX D A
OX

1
A0 C B

OX
2
B0 C 2A

OX
12

B0

where estimates of the covariances denoted by hats will be given in the next section.

4.3.2 Asymptotic Distribution of the Test Statistic
Under the Null Hypothesis

The asymptotic distribution of the test statistic W in (4.18) is a consequence of the
general theory for linear rank statistics. We begin by recalling some theorems of
Hajek.

Let X1; : : : ; XN be independent random variables with continuous distribution
functions F1; : : : ; FN , respectively. Let Ri be the rank of Xi among X1; : : : ; XN

and let ci ; i D 1; : : : ; N be regression coefficients. Let ˛N .x/ be generated by a
real values function � .x/ having a second derivative as

˛N .i/ D �

�
i

N C 1

�
:

A simple linear rank statistic takes the form

S D
NX

iD1

ci ˛N .Ri / :

Let

c D 1

N

X
ci ;

� D
ˆ 1

0

� .x/ dx;

H .x/ D 1

N

X
Fi .x/ ;

� D
X

ci

ˆ
� .H .x// dFi .x/ :

We quote the following two theorems from Hajek (1968).

Theorem 4.6. Let

Li .x/ D 1

N

NX

j D1

�
cj � ci

�ˆ
Œu .y � x/ � Fi .x/� �0 .H .x// dFj .x/
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and

�2 D
X

var .Li .Xi // :

If for every " > 0; there exists K such that

Var .S/ > K max
1�i�N

.ci � c/2 ;

then

max1<x<1jP


S � ES < x .varS/½
�

� ˆ .x/ j < 

where ˆ denotes the standard normal distribution function. The conclusion still
holds if var.S/ is replaced by �2. If

P
c2

i is bounded by a multiple of
P

.ci � c/2,
ES can be replaced by � in the conclusion.

We note that an integration by parts yields

ˆ
Œu .y � x/ � Fi .x/� �0 .H .x// dFi .x/ D

ˆ 1

x

�0 .H .y// dFj .y/ C constant:

Moreover, ELi .Xi / D 0.
The proof of Theorem 4.6 makes use of a projection argument. It is shown that

the statistic S � ES can be approximated best in the mean square sense by the
statistic

OS D
NX

iD1

Li .Xi /

which is the projection onto the Hilbert space generated by sums of independent
square integrable linear functions of the Xi . The next result from Hajek makes this
notion more precise.

Theorem 4.7. Let Zi D Li .Xi /. There exists a constant M independent of N such
that

E

 

S � ES �
NX

iD1

Zi

!2

� M

N

NX

iD1

.ci � c/2

and

E .S � �/2 � M

N

NX

iD1

c2
i :
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The proof of the asymptotic normality of our test statistic rests on extending
Hajek’s result to the study of composite linear rank statistics. We illustrate this
result in the following simple situation whereby X1; : : : ; Xn1 ; : : : ; Xn1Cn2 ; : : : ; XN

are independent random variables. Consider the two simple linear rank statistics

S1 D
n1Cn2X

iD1

c
.1/
i a


R

.1/
i

�
;

S2 D
NX

iDn1C1

c
.2/
i a


R

.2/
i

�
;

where R
.1/
i is the rank of Xi among fX1; : : : ; Xn1Cn2g and R

.2/
i is the rank of Xi

among fXn1C1; : : : ; XN g : We are interested in the asymptotic normality of the
composite linear rank statistic formed by the sum

S D S1 C S2:

This is done by adapting the projection argument. First, S1 is projected onto the
space spanned by linear combinations of fX1; : : : ; Xn1Cn2g. Next, S2 is projected
onto the space spanned by linear combinations of fXn1C1; : : : ; XN g. Then the sum
is projected onto the combined space fX1; : : : ; XN g. Let

Wi D

8
ˆ̂<

ˆ̂:

Zi i D 1; : : : ; n1;

Zi C Z�
i i D n1 C 1; : : : ; n1 C n2;

Z�
i i D n1 C n2 C 1; : : : ; N;

where Zi D Li .Xi / and Z�
i D L�

i .Xi / are the respective projections. Here,

Li .x/ D 1

n1 C n2

n1Cn2X

j D1


c

.1/
j � c

.1/
i

� ˆ
Œu .y � x/ � Fi .x/� �0 .H1 .x// dFj .x/ ;

L�
i .x/ D 1

n2 C n3

n2Cn3X

j D1


c

.2/
j � c

.2/
i

� ˆ
Œu .y � x/ � Fi .x/� �0 .H2 .x// dFj .x/ ;

with

H1 .x/ D 1

n1 C n2

n1Cn2X

iD1

Fi .x/ ; H2 .x/ D 1

n2 C n3

n2Cn3X

iD1

Fi .x/ :

We note that EWi D 0:



76 4 Testing for Randomness, Agreement, and Interaction

Theorem 4.8. Let S1; S2 be defined as above. Also let

LN D max

�
sup


c

.1/
j � c.1/

�2

; sup

c

.2/
j � c.2/

�2
�

and

�2
N D Var

 
NX

iD1

Wi

!

:

If the following condition holds

lim
LN

�2
N

D 0; as min .n1 C n2; n2 C n3/ ! 1;

then

S1 C S2 � E .S1 C S2/

�N

)L N .0; 1/ :

Proof. From (4.7), there exist constants M1; M2 such that

E

 

S1 � ES1 �
n1Cn2X

iD1

Zi

!2

� M1

n1 C n2

n1Cn2X

iD1


c

.1/
i � c.1/

�2

;

E

0

@S2 � ES2 �
NX

iDn1C1

Z�
i

1

A

2

� M2

n2 C n3

NX

iDn1C1


c

.2/
i � c.2/

�2

:

Hence,

E

 

S1 C S2 � E .S1 C S2/ �
NX

iD1

Wi

!2

� 2 .M1 C M2/ LM :

It remains to show that
PN

iD1 Wi �N is asymptotically normally distributed with
mean 0 and variance 1. This follows from the Lindeberg theorem. ut

We state the general limiting distribution of the vector .SN ; TN /.

Theorem 4.9. Under the assumption that the errors
˚
ijn

�
are independent identi-

cally distributed in the two-way layout, we have that as N ! 1
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(i) 1p
N

�
SN � E .SN /

TN � E .TN /

�
H) N2IJ .0;

P
/

(ii) W H) �2
.I�1/.J �1/ under H0

(iii) W H) �2
.I�1/.J �1/ .ı/ under H1 where ı is the noncentrality parameter under

Pitman alternatives

Proof. The proof makes use of projection arguments and Theorems 4.7 and 4.8
above. We refer the reader to Gao and Alvo (2005a) for details of the proof. ut

To estimate the covariance of the test statistics define the following variables
involving the empirical distribution functions:

C
.i;j /

abn D

8
ˆ̂<

ˆ̂
:

� 1
NJ

PN
n0D1 u

�
Xabn � Xajn0

�
a D i; b ¤ j;

1
NJ

P
j ¤j 0

PN
n0D1 u

�
Xabn � Xaj 0n0

�
a D i; b D j;

0 a ¤ i:

The fact that C
.i;j /

abn � W
.i;j /

abn ! 0 almost surely leads to the following consistent
estimator

O�2
1

�
i; j; i 0; j 0� D

X

a;b

1

N

NX

nD1

�
C

.i;j /

abn � C
.i;j /

ab:

��
C

.i 0;j 0/

abn � C
.i 0;j 0/

ab:

�
:

Similarly, defining

G
.i;j /

abn D

8
ˆ̂<

ˆ̂:

� 1
NI

PN
n0D1 u

�
Xabn � Xajn0

�
a ¤ i; b D j;

1
NI

P
i¤i 0

PN
n0D1 u

�
Xabn � Xaj 0n0

�
a D i; b D j;

0 b ¤ j;

we may construct consistent estimators for †2 and †12, respectively,

O�2
2

�
i; j; i 0; j 0� D

X

a;b

1

N

NX

nD1

�
G

.i;j /

abn � G
.i;j /

ab:

��
G

.i 0;j 0/

abn � G
.i 0;j 0/

ab:

�
;

O�2
12

�
i; j; i 0; j 0� D

X

a;b

1

N

NX

nD1

�
C

.i;j /

abn � C
.i;j /

ab:

��
G

.i 0;j 0/

abn � G
.i 0;j 0/

ab:

�
:

Gao and Alvo (2005a) report the result of some simulation studies which
compare the proposed row–column statistic with the aligned test as well as the rank
transform test. It is shown that the row–column test performs very well under a
variety of underlying distributions including the normal, contaminated normal, and
Cauchy. The following example was also considered.
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Example 4.2. Consider the gene expression data of D. melanogaster of Jin et al.
(2001). The gene fs.1/ k10 is known to be expressed in reproductive systems and
its expression level was reportedly affected by the gender and genotype interaction.
The row–column statistic was applied to this data to account for the genotype, the
gender, and the genotype-gender interaction. It was found that the interaction effect
was statistically significant with a p-value equal to 0:004: The parametric F statistic
and the aligned rank transform using the residuals yielded similar results. In order to
illustrate the robustness of the nonparametric procedures, the analyses were redone
with the first observation changed to an arbitrarily large number. The performance of
the F statistic was severely affected and yielded a nonsignificant result. On the other
hand, the nonparametric procedures were unaffected.

Next, we recall that in an example of a 3 � 4 factorial design considered by Box
and Cox (1964) it was claimed that only after application of a nonlinear transfor-
mation can the error term be stabilized and the data made suitable for standard
statistical analysis. We applied the row–column procedure to the untransformed
data and obtained a p-value of 0:44. Thus the hypothesis of no interaction was not
rejected, a finding that concurs with Box and Cox. The aligned test on the other hand
yielded a p-value of 0:02 which indicates the presence of interaction. However, for
the transformed data, the aligned test with a p-value of 0:45 did not reject the null
hypothesis.

Chapter Notes

Alvo et al. (1982) developed a new approach to test for randomness. This allowed
the consideration of various distance functions including Kendall’s distance.
Theorems 4.2 and 4.3 provide the asymptotic distributions of the Spearman and
Kendall test statistics in the complete randomized block design. Iman and Davenport
(1980) describe the F distribution approximation to the Friedman statistic which is
used later in Chap. 10.

One question of interest in connection with the asymptotic results is how
accurate are the asymptotic distributions. Alvo and Cabilio (1984) considered the
accuracy of the asymptotic distribution of Kendall’s test statistic and compared it
to other approximations for small values of t and n: In addition, tables of the exact
distribution were computed for t D 3; n D 3; : : : ; 19I t D 4; n D 3; : : : ; 9; and
t D 5; n D 3; 4; 5. Some exact calculations are made of the Bahadur efficiency
where it is demonstrated that the Kendall tau is more efficient.

Feigin and Alvo (1986) considered the two-group problem by placing it in
the context of diversity and described an extensive discussion of the literature on
the subject. Bu et al. (2009) developed an extension of the two-sample situation to
the case where there are missing data. Although not discussed in this book, it may
be of interest to consider the problem of paired comparisons whereby a judge ranks
a set of objects before and after a treatment.
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Gao and Alvo (2005b) provide a brief historical look at the analysis of unbal-
anced two-way layout with interaction effects. Using the notion of a weighted rank,
they present tests for both main effects as well as for interaction effects. In addition,
there is a discussion of the asymptotic relative efficiency of the proposed tests
relative to the parametric F test. Various simulations further exemplify the power
of the proposed tests. In a specific application, it is shown that the test statistic is the
most robust in the presence of extreme outliers compared to other procedures.

Gao et al. (2008) also consider nonparametric multiple comparison procedures
for unbalanced one-way factorial designs whereas Gao and Alvo (2008) treat
nonparametric multiple comparison procedures for unbalanced two-way layouts.
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