
Chapter 3
Correlation Analysis of Paired Ranking Data

3.1 Notion of Distance Between Two Rankings

A ranking represents the order of preference one has with respect to a set of t objects.
If we label the objects by the integers 1 to t , a ranking can then be thought of
as a permutation of the integers .1; 2; : : : ; t /. We may denote such a permutation
by � D .�.1/; �.2/; : : : ; �.t//0 which may also be conceptualized as a point in
t-dimensional space. It is natural to measure the spread between two individual
permutations �; � by means of a distance function. There are several examples of
distance functions that have been proposed in the literature. Here are a few:

Spearman

dS .�; �/ D 1

2

tX

iD1

.�.i/ � �.i//2 : (3.1)

Kendall

dK.�; �/ D
X

i<j

f1 � sgn .�.j / � �.i// sgn .�.j / � �.i//g ; (3.2)

where sgn.x/ is either 1 or �1 depending on whether x > 0 or x < 0:

Hamming

dH .�; �/ D t �
tX

iD1

tX

j D1

I .�.i/ D j / I .�.i/ D j / (3.3)

where I.:/ is the indicator function taking values 1 or 0 depending on whether the
statement in brackets holds or not.

© Springer Science+Business Media New York 2014
M. Alvo, P.L.H. Yu, Statistical Methods for Ranking Data, Frontiers in Probability
and the Statistical Sciences, DOI 10.1007/978-1-4939-1471-5__3

23



24 3 Correlation Analysis of Paired Ranking Data

Spearman Footrule

dF .�; �/ D
tX

iD1

j�.i/ � �.i/j: (3.4)

The Spearman measure is not a proper “distance” in that it does not obey the
triangular inequality property. We shall nonetheless refer to it as a distance function
in this book. It is based upon squared Euclidean distance whereas the Footrule is
based on the absolute deviations. The Kendall distance counts the number of “dis-
cordant” pairs whereas the Hamming distance counts the number of “mismatches.”
The Hamming distance has found uses in coding theory. These distances have the
property of being invariant under any permutation relabeling of the objects. That is,
for any permutations �; �; �;

d .�; �/ D d .� ı �; � ı �/

where � ı � .i/ D � .� .i// : This property is known as right invariance. Let
� D �

d
�
�i ; �j

��
denote the matrix of all pairwise distances. If d is right invariant,

then it follows that there exists a constant c > 0 for which

�1 D .ct Š/1

where 1 D .1; 1; : : : ; 1/0 is of dimension t Š. Hence, c is equal to the average
distance. It is straightforward to show that for the Spearman and Kendall distances

cS D t .t 2 � 1/

12
; cK D t .t � 1/

2
:

Turning attention to the Hamming distance, we note that if e D .1; 2; : : : ; t /0,
then

†�dH .�; e/ D †�t � †�†i †j I .� .i/ D j / I .e .i/ D j:/

D t .t Š/ � t Š

and hence cH D .t � 1/.

Example 3.1. Suppose that t D 3 and that the complete rankings are denoted by

�1 D .1; 2; 3/0 ; �2 D .1; 3; 2/0 ; �3 D .2; 1; 3/0 ; �4 D .2; 3; 1/0 ; �5 D .3; 1; 2/0 ;

�6 D .3; 2; 1/0 :

Using the above order of the permutations, we may write the matrix � of pairwise
Spearman, Kendall, Hamming, and Footrule distances respectively as
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�S D

0

BBBBBBB@

0 1 1 3 3 4

1 0 3 1 4 3

1 3 0 4 1 3

3 1 4 0 3 1

3 4 1 3 0 1

4 3 3 1 1 0

1

CCCCCCCA

�K D

0

BBBBBBB@

0 2 2 4 4 6

2 0 4 2 6 4

2 4 0 6 2 4

4 2 6 0 4 2

4 6 2 4 0 2

6 4 4 2 2 0

1

CCCCCCCA

�H D

0

BBBBBBB@

0 2 2 3 3 2

2 0 3 2 2 3

2 3 0 2 2 3

3 2 2 0 3 2

3 2 2 3 0 2

2 3 3 2 2 0

1

CCCCCCCA

�F D

0

BBBBBBB@

0 2 2 4 4 4

2 0 4 2 4 4

2 4 0 4 2 4

4 2 4 0 4 2

4 4 2 4 0 2

4 4 4 2 2 0

1

CCCCCCCA

These distances may alternatively be written in terms of a similarity function in
the form

d.�; �/ D c � A.�; �/; (3.5)

Spearman:

AS D AS .�; �/ D
tX

iD1

�
�.i/ � t C 1

2

��
�.i/ � t C 1

2

�
: (3.6)

Kendall:

AK D AK.�; �/ D
X

i<j

sgn .�.j / � �.i// sgn .�.j / � �.i// : (3.7)
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Hamming:

AH .�; �/ D
tX

iD1

tX

j D1

I

�
Œ�.i/ D j � � 1

t

�
I

�
Œ�.i/ D j � � 1

t

�
: (3.8)

Footrule:

AF .�; �/ D
tX

iD1

tX

j D1

I

�
Œ�.i/ � j � � j

t

�
I

�
Œ�.i/ � j � � j

t

�
:

The similarity measures may be also interpreted geometrically as inner products
which sets the groundwork for defining correlation in the next section.

3.2 Correlation Between Two Rankings

The notion of correlation occurs frequently in statistics. For example, in regression
analysis, one is interested in the correlation between two variables such as height
and weight. Similarly, in nonparametric statistics, we shall be interested in the
correlation between two rankings. Let P be the space of all possible permutations of
the integers 1; 2; : : : ; t . We may define the correlation between two rankings �; � as

˛ .�; �/ D 1 � 2d .�; �/

M
(3.9)

where M is the maximum value of the distance d .�; �/ taken over all possible pairs
�; � in P (Diaconis and Graham 1977). In the case of the Spearman and Kendall
distance, the maximum values occur when

�
�.i/ � t C 1

2

�
D �

�
�.i/ � t C 1

2

�
for all i;

whereas the minimum occurs when
�

�.i/ � t C 1

2

�
D
�

�.i/ � t C 1

2

�

This is a consequence of the rearrangement inequality given as a lemma below.

Lemma 3.1. Let a1; : : : ; at and b1; : : : ; bt be real numbers, not necessarily positive
with

a1 � : : : � at ; b1 � : : : � bt
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and let � be a permutation of the integers 1; : : : ; t . Then

a1bt C : : : C at b1 � a1b�.1/ C : : : C at b�.t/ � a1b1 C : : : C at bt :

Proof. The proof follows by induction on t: ut
It can be shown that for the Spearman and Kendall distances, the maximum is

equal to twice the mean,

MS D 2cS ; MK D 2cK: (3.10)

In view of (3.10) we have

˛S .�; �/ D AS

cS

; ˛K .�; �/ D AK

cK

: (3.11)

Example 3.2 (Lehmann 1975, p. 298). Consider the test scores in Language and
Arithmetic for a group of 9 students as shown in Table 3.1. The right-invariance
property shared by the Spearman and Kendall distances enables us to rewrite the
table in a more convenient fashion with one of the rankings in natural order as in
Table 3.2. The Spearman and Kendall correlations are respectively 0:683 and 0:500.
Here cS D 60; cK D 36.

The correlation coefficients based on these distances are of the multiplicative
type (Kendall and Gibbons 1990); that is, there exists a function g such that

˛ .�; �/ D k�k�

X

i

X

j

g .� .i/ ; � .j // g .� .i/ ; � .j // (3.12)

Table 3.1 Language and Arithmetic scores

Student 1 2 3 4 5 6 7 8 9

Language 50 23 28 34 14 54 46 52 53

Arithmetic 38 28 14 26 18 40 23 30 27

Language ranks 6 2 3 4 1 9 5 7 8

Arithmetic ranks 8 6 1 4 2 9 3 7 5

Table 3.2 Language and Arithmetic scores rearranged

Student 5 2 3 4 7 1 8 9 6

Language 14 23 28 34 46 50 52 53 54

Arithmetic 18 28 14 26 23 38 30 27 40

Language ranks 1 2 3 4 5 6 7 8 9

Arithmetic ranks 2 6 1 4 3 8 7 5 9
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where k�; k� are normalizing constants. The constants may be different depending
on whether the coefficient is of type a or b. A type a correlation is used above. For
Spearman and Kendall, the functions are, respectively,

gS .� .i/ ; � .j // D .� .i/ � � .j //

gK .� .i/ ; � .j // D sgn Œ� .i/ � � .j /� :

For a type b correlation, the constants are given by

k� D
q

†i †j Œg .� .i/ ; � .j //�2:

We shall make use of a type b correlation when defining angular correlations in
Sect. 3.6.

For a multiplicative index, it can be shown that the correlation matrix is
necessarily positive semidefinite (Quade 1972). Setting

Q D
�

J � 2

M
�

�
(3.13)

where J D 110 and M
2

D c; this implies that there exists a matrix T for which

Q D 1

c

�
T0T

�
: (3.14)

It follows that the distance matrix for both Spearman and Kendall can be
expressed as

� D cJ � T0T: (3.15)

From the form of the Spearman and Kendall similarity measures (3.12), it can be
seen that the matrices T are respectively

TS D .tS .�1/ ; : : : ; tS .�tŠ//
0 (3.16)

where

tS .�/ D
�

� .1/ � t C 1

2
; : : : ; � .t/ � t C 1

2

�0

is the centered rank vector and

TK D .tK .�1/ ; : : : ; tK .�tŠ//
0 (3.17)
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is of dimension
�

t
2

��t Š where the qth element for q D .i � 1/
�
t � i

2

�C.j � i/ ; 1 �
i < j � t ,

.tK .�//q D sgn Œ� .j / � � .i/� :

For Hamming, we may write the t 2-dimensional vector where the .i; j /th
element is

.tH .�//ij D
�

I Œ� .i/ D j � � 1

t

�

for 1 � i; j � t:

For the Footrule we have the t 2-dimensional vector where the qth element for
q D .i � 1/ t C j; 1 � i < j � t

.tF .�//q D
�

I Œ� .i/ � j � � j

t

�
:

Example 3.3. Suppose that t D 3. Then, placing the rankings in the natural order
of Example 3.1, we have that

TS D
0

@
�1 �1 0 0 1 1

0 1 �1 1 �1 0

1 0 1 �1 0 �1

1

A

and

TK D
0

@
1 1 �1 1 �1 �1

1 1 1 �1 �1 �1

1 �1 1 �1 1 �1

1

A :

The notion of correlation is particularly useful in problems wherein one wishes
to test for the independence of two variables as in Example 3.2 or for the existence
of long-term monotone trend in the pH of a river. We will postpone a discussion of
these important topics later in this chapter where it will be addressed in the general
context of incomplete rankings.

3.3 Incomplete Rankings and the Notion of Compatibility

A judge may rank a complete set of candidates in accordance with some criterion.
On occasion, however, data may be missing either at random or by design. For
example, one or more candidates may not be ranked. In another example, the pH
data on a lake may not be available for certain months in a year, thereby making it
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impossible to test for a long-term trend using traditional nonparametric rank-based
statistics. The option to ignore the missing data is unsatisfactory because it distorts
the time scale. As we shall see later on, this option is always suboptimal when
testing for trend. We address the topic in this section by first introducing the notion
of compatibility.

Notation. Incomplete ranks will be denoted by “�” and corresponding incomplete
rankings will be written with an upper script “*”.

For example, the ranking �� D .2; �; 3; 4; 1/0 indicates that object 2 is unranked
among the five objects presented.

Definition 3.1. The complete ranking � of t objects is said to be compatible with
an incomplete ranking �� of a subset of k of these objects, 2 � k � t; if the relative
ranking of every pair of objects ranked in �� coincides with their relative ranking
in �.

An incomplete ranking gives rise to a class of order preserving complete
rankings. Denoting by C .��/ the set of complete permutations compatible with
�� D .2; �; 3; 4; 1/0, we have that

C
�
��
� D ˚

.2; 5; 3; 4; 1/0 ; .2; 4; 3; 5; 1/0 ; .2; 3; 4; 5; 1/0 ; .3; 2; 4; 5; 1/0 ; .3; 1; 4; 5; 2/0
�

:

The total number of complete rankings of t objects compatible with an incom-
plete ranking of a subset of k objects is given by t Š=kŠ. This follows from the fact
that there are

�
t
k

�
ways of choosing k integers for the ranked objects, one way

in placing them to preserve the order and then .t � k/Š ways of rearranging the
remaining integers. The product is thus

a D �
t
k

�
.t � k/Š D t Š=kŠ (3.18)

The notion of compatibility establishes a connection between an incomplete
ranking and the class of complete rankings from which the incomplete ranking
could have arisen. It seems natural as a result to extend the notion of distance to
incomplete rankings by referring to the corresponding compatibility classes.

Definition 3.2. The distance d � .��; ��/ between two incomplete rankings �� and
�� is defined to be the average of all values of the distances d.�i ; j / taken over all
pairs of complete rankings �i ; j compatible with �� and ��, respectively.

Example 3.4. Suppose that t D 3; k D 2: In that case, the possible incomplete
rankings are denoted by

��
11 D .1; 2; �/0 ; ��

12 D .2; 1; �/0 ; ��
21 D .1; �; 2/0 ; ��

22 D .2; �; 1/0 ;

��
31 D .�; 1; 2/0 ; ��

32 D .�; 2; 1/0
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We may associate with every incomplete ranking a (t Š x 1/ compatibility vector,
also denoted by C .��/, whose i th component is 1 or 0 according to whether �i

is compatible with ��: A summary can be provided by a compatibility matrix as
follows.

C D

�1

�2

�3

�4

�5

�6

��
11 ��

12 ��
21 ��

22 ��
31 ��

32

1 0 1 0 1 0

1 0 1 0 0 1

0 1 1 0 1 0

1 0 0 1 0 1

0 1 0 1 1 0

0 1 0 1 0 1

Consequently, the matrix of average pairwise Spearman distances for the incom-
plete rankings is given by the product C 0

S �CS =a2 where a D t Š= kŠ D 3 and

C 0
S �CS D

��
11 ��

12 ��
21 ��

22 ��
31 ��

32

��
11 10 26 14 22 22 14

��
12 26 10 22 14 14 22

��
21 14 22 10 26 14 22

��
22 22 14 26 10 22 14

��
31 22 14 14 22 10 26

��
32 14 22 22 14 26 10

We note from this example that the distance of an incomplete ranking to itself is 10

and not 0. In extending the notion of correlation to incomplete rankings, it will be
necessary to take this into account.

For the Spearman and Kendall distances, we may re-express the distance
d �.��; ��/ as

d ����; ��� D 1

a2

�
C
�
����0 �

�
C
�
���� (3.19)

D 1

a2

�
C
�
����0 �cJ � T0T

� �
C
�
���� (3.20)

D c � A����; ���

where

A����; ��� D 1

a2

�
C
�
����0 T0T

�
C
�
���� :

The latter may be viewed as the average of the A.�i ; �j / taken over all complete
rankings �i ; �j compatible with �� and ��, respectively.
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3.4 Correlation for Incomplete Rankings

At this point it is useful to derive an expression for an incomplete ranking ��
given knowledge of its compatibility class C .��/ : We shall assume that each
complete ranking has the same probability of being selected, i.e., they are uniformly
distributed over the t Š permutations of .1; 2; : : : ; t /.

Lemma 3.2. The conditional distribution of the rank � .i/ given the compatibility
class C .��/ generated by �� is given by

P
˚
� .i/ D j jC �

���� D
�

j �1

�� .i/ �1

��
t�j

k��� .i/

��
t

k

��1

ı .i/ C1

t
.1�ı .i//

where ı .i/ is either 1 or 0 depending on whether the object i is or is not ranked in
the incomplete ranking. Here �� .i/ � j � .t � k/ C �� .i/, if object i is ranked
whereas 1 � j � t; if object i is not ranked.

Proof. If an object i is ranked in an incomplete ranking �� of k objects, then the
number of complete rankings compatible with �� which assign rank j to object i is

�
j � 1

�� .i/ � 1

��
t � j

k � �� .i/

�
.t � k/Š

This consists of the number of ways of picking a set of .�� .i/ � 1/ from the
first .j � 1/ integers and a set of .k � �� .i// from the last .t � j / integers while
allowing all possible permutations of the .t � k/ integers not picked. On the other
hand, if object i is not ranked in �� then the number of such complete compatible
rankings is given by

�
t � 1

k

�
.t � k � 1/Š

the number of ways of picking k from the t � 1 integers not equal to j and allowing
all possible permutations of the remaining .t � k � 1/ integers. Dividing these by
t Š
kŠ

the number of complete rankings compatible with �� gives the result. ut
In the next lemma, we show that it is possible to compute the value of a

score function corresponding to an incomplete ranking from knowledge of the
compatibility class. To this end, we make use of the conditional distribution of
a complete ranking given its compatibility class and the fact that the conditional
expectation of the score function corresponds to its projection onto that class. We
apply this approach to compute the form of score functions for both the Spearman
and Kendall distances.
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Lemma 3.3. Suppose that we select a complete ranking � at random from the class
of compatible rankings C .��/. Suppose that object s is ranked. Then (a)

E

	�
�.s/ � t C 1

2

�
j C.��/



D t C 1

k C 1

�
��.s/ � k C 1

2

�
; (3.21)

and (b) for any pair of objects i < j;

E
�
sgn .�.j / � �.i// j C.��/

� D a.i; j /; (3.22)

where

a.i; j / D

8
ˆ̂̂
<

ˆ̂̂
:

sgn.��.j / � ��.i// if both objects i and j are ranked

1 � 2��.i/

.kC1/
if only object i is ranked

2��.j /

.kC1/
� 1 if only object j is ranked

0 otherwise

(3.23)

Proof. To prove (a), recall the identity

t�kClX

j Dl

�
j �1

l�1

� �
t�j

k�l

�
D �

t
l

�
: (3.24)

Consequently, we have that

E

	�
�.s/ � t C 1

2

�
j C.��/



D

t�kC��.s/X

j D��.s/

�
j � t C 1

2

� 
j � 1

�� .s/ � 1

! 
t � j

k � �� .s/

!. 
t

l

!

D t C 1

k C 1

�
��.s/ � k C 1

2

�
:

For the proof of (b), let

ı .s; j / D
(

1 if judge j ranks object s

0 otherwise

and define

$j .s/ D ��
j .s/ ı .s; j / C

�
k C 1

2

�
.1 � ı .s; j // (3.25)

so that the incomplete ranking takes value kC1
2

when an object is unranked. Note
that for any complete ranking,

� .j / D t C 1

2
C 1

2

tX

iD1

sgn .�.j / � �.i// : (3.26)
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It is clear that if objects i and j are both ranked, then a.i; j / is as stated. Suppose
now only object j is ranked. The adjusted score becomes on using (3.21)

E
�
� .j / j C.��/

� D t C 1

2
C 1

2
E

"
tX

iD1

sgn .�.j / � �.i// j C.��/

#

t C 1

k C 1
�� .j / D t C 1

2
C 1

2

kX

iD1

sgn
�
��.j / � ��.i/

�C .t � k/

2
a.i; j /

D t C 1

2
C
�

�� .j / � k C 1

2

�
C .t � k/

2
a.i; j /:

Hence, a .i; j / D
�

2��.j /

kC1
� 1

�
: The case where only object i is ranked is dealt

with similarly. ut
In describing visualization techniques for incomplete ranking data, Kidwell et al.

(2008) have noted the efficiency for computing the Kendall scores in (3.23). Next,
we proceed to find the maximum and minimum distances when only k objects are
ranked among the incomplete rankings.

Lemma 3.4. (a) For the Spearman distance,

m�
S D cS � .t C 1/2

12

k .k � 1/

.k C 1/
; M �

S D cS C .t C 1/2

12

k .k � 1/

.k C 1/

where cS D t.t2�1/
12

.
(b) For the Kendall distance,

m�
K D cK � .2t C k C 3/

6

k .k � 1/

.k C 1/
; M �

K D cK C .2t C k C 3/

6

k .k � 1/

.k C 1/

where cK D t.t�1/

2
. It follows that the correlation between the incomplete

rankings ��
1 ; ��

2 can be defined to be

˛
�
��

1 ; ��
2

� D 1 �
2
h
d �

K

�
��

i ; ��
j

�
� m�

i

M � � m� : (3.27)

Proof. The right-hand side of (3.21) provides a general expression for an incomplete
ranking. It follows that the Spearman distance between two incomplete rankings
with the same number of ranked objects is

d �
S

�
��

i ; ��
j

�
D t .t C 1/.2t C 1/

6
�
�

t C 1

k C 1

�2 tX

sD1

$i .s/ $j .s/
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and in the Kendall case, the distance may be written as

d �
K

�
��

i ; ��
j

�
D t .t � 1/

2
�
X

q1<q2

ai .q1; q2/ aj .q1; q2/

where ai .q1; q2/is defined as in (3.23) and $i .s/ is given in 3.25. An application
of the Cauchy–Schwarz inequality indicates that the upper bound of the Spearman

distance occurs when TS C
�
��

i

� D �TS C
�
��

j

�
whereas the lower bound is

achieved when TS C
�
��

i

� D TS C
�
��

j

�
. If we let ��

j be the inverted ranking, that

is, ��
j .s/ D kC1���

i .s/ when object s is ranked by i , then $j .s/ D kC1�$i .s/

and TS C
�
��

i

� D �TS C
�
��

j

�
. Furthermore, for the Kendall scores, aj .q1; q2/ D

�ai .q1; q2/ and thus TKC
�
��

i

� D �TKC
�
��

j

�
. A straightforward calculation

of these distances using the incomplete ranking .1; 2; : : : ; k; �; �; : : : ; �/0 and its
inversion yields the minimum and maximum for each distance. ut

We quote without proof a result in Alvo and Cabilio (1995a) which allows for
different numbers of observations missing at random.

Lemma 3.5. For fixed k1 � k2 suppose the pattern of missing observations is
randomly selected from the set of all possible patterns. Then, for the Spearman and
Kendall cases, the minimum and maximum values of the distance are of the form

m� D c � � .i/ ; M � D c C � .i/

where the � .i/ are given as

�S .1/ D .t C 1/2 .k1 � 1/ .3k2 � k1/

24 .k2 C 1/
; k1 odd

�S .2/ D .t C 1/2 k1 .k1 .3k2 � k1/ � 2/

24 .k1 C 1/ .k2 C 1/
; k1 even

�K .1/ D .k1 � 1/ .t .3k2 � k1/ C k2 .k1 C 3//

6 .k2 C 1/
; k1 odd

�K .2/ D k1

�
3k1k2 .t C 1/ � �

k2
1 C 2

�
.t � k2/ � 3 .k2 C 1/

�

6 .k1 C 1/ .k2 C 1/
; k1 even

Consider now two independent rankings of length k1; k2, respectively, with 2 �
k1 � k2 � t: It follows from (3.6) and Lemma 3.3 that

A�

S .��; ��/ D E ŒAS .�; �/ j C.��/; C.��/� (3.28)

D .t C 1/2

.k1 C 1/ .k2 C 1/

tX

sD1

�
�� .s/ � k2 C 1

2

��
�� .s/ � k1 C 1

2

�
ı .s; ��/ ı .s; ��/

D .t C 1/2

.k1 C 1/ .k2 C 1/

k�X

iD1

�
oi � k2 C 1

2

��
�� .oi / � k1 C 1

2

�
(3.29)
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Table 3.3 Language and arithmetic scores revisited

Student 1 2 3 4 5 6 7 8 9

Arithmetic (2) 14 18 23 26 27 30 40 – –

Language (1) 28 14 46 – 53 – 54 50 –

Ranking (2) 1 2 3 4 5 6 7 – –

Ranking (1) 2 1 3 – 5 – 6 4 –

where k� is the number of objects ranked in ranking 1 among the k2 objects ranked
in ranking 2 and oi is the label of the i th object ranked in ranking 1. Here, ı .s; ��/

takes value 1 if object s is ranked by �� and value 0 otherwise. Note that

oi D i C li ;

where li D number of objects unranked in ranking 1 which are to the left of the
object being ranked. Similarly from (3.7) we have that

A�
K.��; ��/ D E

�AK.�; �/ j C.��/; C.��/
�

(3.30)

D
X

i<j

a1 .i; j / a2 .i; j / : (3.31)

Example 3.5. Consider the test scores in Language (ranking 1) and Arithmetic
(ranking 2) of a group of nine students in Table 3.3. The original data was altered
by removing certain values, with the remaining observations reordered and ranked
as follows.

Here t D 9; k1 D 6; k2 D 7; k� D 5; o1 D 1; o2 D 2; o3 D 3; o4 D 5; o5 D 7;

o6 D 8; and l1 D l2 D l3 D 0; l4 D 1; l5 D l6 D 2: Further,

�� .o1/ D 2; �� .o2/ D 1; �� .o3/ D 3; �� .o4/ D 5; �� .o5/ D 6; �� .o6/ D 4:

Hence A�
S D 33:9286 and A�

K D 4.

3.4.1 Asymptotic Normality of the Spearman and Kendall Test
Statistics

The main objective of this section is to demonstrate the asymptotic normality of
the similarity measures due to Spearman and Kendall in the case of incomplete
rankings. Specifically, we shall be concerned with the asymptotic distributions of
both A�

S ,A�
K under each of two possible null hypotheses H1 and H2: For both

hypotheses we assume that k1; k2, the number of ranked observations, are fixed and
the rankings for which we have (possibly) incomplete data are uniformly distributed
over the t Š permutations of .1; 2; : : : ; t /.
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• Under hypothesis H1, we assume that the pattern of missing observations is fixed,
so that all inference in this case is conditional on such a pattern.

• Under H2, we assume that the patterns of missing observations are randomly
selected from the set of all possible patterns. The latter situation would arise in
practice if unranked objects occur by chance. An example would be testing for
trend in water quality data when the historical data is incomplete.

We begin with the definition of a linear rank statistic.

Definition 3.3. Let fa .i/g and fc .i/g be two sets of constants. A statistic of the
form

S D †N
iD1c .i/ a .Ri /

where R D .R1; : : : ; RN / is a vector of ranks is called a linear rank statistic. The
constants a .i/ are called scores whereas the c .i/ are called regression coefficients.

Many test statistics are of this form. For example, suppose that we have a
random sample of n observations from a population and N-n from another. We are
interested in testing the null hypothesis that the two populations are the same against
the alternative that they differ only in location. Rank all N observations together.
The Wilcoxon statistic then considers only the ranks of one of the populations by
choosing

c .i/ D
(

0 i D 1; : : : ; n

1 i D n C 1; : : : ; N:

Lemma 3.6. Suppose that R is uniformly distributed over the set of permutations
in P . Then

(i) for i D 1; : : : ; N; E.Ri / D N C1
2

; Var .Ri / D .N 2�1/
12

and for i ¤ j;

Cov
�
Ri ; Rj

� D � N C1
12

and
(ii)

ES D N Nc Na

and

Var S D 1

N � 1
† .c .i/ � Nc/2 † .a .i/ � Na/2

where Na and Nc represent the corresponding means.

Proof. The proof of this lemma is given in (Hájek and Sidak 1967). ut
The following theorem states that under certain conditions, linear rank statis-

tics are asymptotically normally distributed. We shall consider square integrable
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functions � defined on .0; 1/ which have the property that they can be written as the
difference of two nondecreasing functions and satisfy

0 <

ˆ 1

0

�
� .u/ � N��2 du < 1

where N� D ´ 1

0
� .u/ du:

Theorem 3.1. Suppose that R is uniformly distributed over the set of permutations
in P . Let the score function be given by a .i/ D �

�
i
N

�
where � ./ is a square

integrable score function. Then S is asymptotically normally distributed as N ! 1
with mean N Nc Na and variance

Var S D 1

N � 1
†N

iD1 .c .i/ � Nc/2 †N
iD1 .a .i/ � Na/2

provided

PN
iD1 .c .i/ � Nc/2

max1�i�N .c .i/ � Nc/2
! 1:

Proof. The proof of this important result is given in (Hájek and Sidak 1967). ut
We may now apply Theorem 3.1 to obtain the asymptotic normality of the

Spearman test statistic in the case of incomplete rankings under Hypothesis 1
wherein the pattern of missing data is fixed. Set

�2
S D 1

12

"
.t C 1/2

.k2 C 1/

#2 k1X

iD1

�
o�

i � o1

�2
; (3.32)

where

o�
i D

8
<

:

oi if 1 � i � k�

k2C1
2

if k� C 1 � i � k1

(3.33)

and o1 D
�Pk1

iD1 o�
i

�
=k1: Also set o� D

�Pk�

iD1 oi

�
=k�:

Theorem 3.2. Assume that k� ! 1 (and hence k1 ! 1; k2 ! 1; t ! 1) with
k�=t ! 	 > 0; where 	 is a finite constant. Then, under H1; whereby the pattern
of missing data is fixed, A�

S given in (3.28) is asymptotically normal with mean 0

and variance �2
S :

Proof. The proof hinges on the fact that A�
S is a linear rank statistic. In fact
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A�
S D .t C 1/2

.k1 C 1/ .k2 C 1/

k1X

iD1

�
o�

i � k2 C 1

2

��
�� .oi / � k1 C 1

2

�

D .t C 1/2

.k1 C 1/ .k2 C 1/

k1X

iD1

�
o�

i � o1

� �
�� .oi /

�
:

The normality follows provided

Pk1

iD1

�
o�

i � o1

�2

max
�
o�

i � o1

�2 ! 1:

Now

†
k1

iD1

�
o�

i � No1

�2 D †k�

iD1

�
o�

i � No1

�2 Ck� � No��No1

�2 C �
k1 � k��

�
k2 C 1

2
� No1

�2

� k� �k�2 � 1
�

=12:

Further,
�
o�

i � No1

�2 � .t � 1/2, so that the result follows on letting k� ! 1 with
k�=t ! 	. ut

The exact variance of A�
S under H1, which is recommended in applications of

Theorem 3.2, is related to �2
S by

Var.A�
S / D k1

k1 C 1
�2

S

(Lehmann 1975 (A. 49) p. 334). That is, the asymptotic variance given in the
theorem is essentially the actual variance of A�

S . In any application, the calculation
of the variance of A�

S is a straightforward computation. Next, we consider the
asymptotic distribution of A�

S and A�
K when the pattern of missing observations

is random.

Theorem 3.3. Let k1 ! 1 (and hence k2 ! 1; t ! 1/ with k1=t ! 	 > 0;

where 	 is a finite constant. Then, under H2; whereby the pattern of missing data is
random, A�

S is asymptotically normal with mean 0 and variance

Var
�A�

S

� D .t C 1/4

144 .t � 1/

1
2; (3.34)

with


i D ki .ki � 1/

.ki C 1/
; i D 1; 2:
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Proof. Define U D .U1;U2; : : : ; Ut / as the random vector uniformly distributed
over the permutations of .1; 2; : : : ; k1; k1C1

2
; : : : ; k1C1

2
/: In this case, the extended

Spearman distance may be written as

d �
S D t .t C 1/.2t C 1/

6
� A�

S (3.35)

D .t C 1/2

.k1 C 1/ .k2 C 1/

2

4
k2X

iD1

iUi C k2 C 1

2

tX

iDk2C1

Ui

3

5 : (3.36)

The result follows from the combinatorial central limit theorem of Hoeffding (see
Appendix B.1) applied to the quantity within square brackets above. ut
Theorem 3.4. A�

K is asymptotically equivalent to A�
S under both hypotheses

H1 and H2. Hence, A�
K is asymptotically normal with mean 0 and variance�

16
t2

�
Var

�A�
S

�
.

Proof. We know from (Hájek and Sidak 1967) that for the complete case

E

�
AK � 4

t
AS

�2

D .t � 1/ .t � 2/

18

and that, moreover,

12AS

t .t C 1/
p

t � 1
) N .0; 1/ as t ! 1:

Consequently, we have

6AKp
2t .t � 1/ .2t C 5/

) N .0; 1/ :

From Jensen’s inequality

E

�
A�

K � 4

t
A�

S

�2

D E

�
E2

��
AK � 4

t
AS

�
jC.��/; C.��/

��

� E

 
E

�
AK � 4

t
AS

�2

jC.��/; C.��/

!
D O

�
t 2
�

and consequently the asymptotic normality of A�
S will imply the asymptotic

normality of A�
K: ut

Example 3.6. We return to Example 3.2 wherein we wish to test the hypothesis
of independence against the alternative of a positive correlation. For the complete
data, the value of AS is 41, and from the tables, under the randomness hypothesis,
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P.AS � 41/ D 0:0252; whereas the use of the asymptotic result gives a p-value
of 1 � ˆ.1:9328/ D 0:0266, where ˆ is the cumulative distribution function of a
standard normal. For the data in Example 3.5, the value of A�

S for the reduced data
is calculated to be 33.9286. An application of the theorem yields that under H1, the
p-value is P

�A�
S � 33:9286

� D 0:0178. On the other hand, if all observations with
missing values are deleted, we obtain a reduced value of AS D 9 with t D 5, and
from the tables P.AS � 9/ D 0:0417:

3.4.2 Asymptotic Efficiency

We now turn to the question of the efficiency which is further discussed in
Appendix B.4. Let X1; X2; : : : ; Xt be independent random variables whose joint
density under the alternative is described by

qd D
tY

iD1

f0 .xi � di /

where f0 is a known density having finite Fisher information I .f0/ and d D
.d1; d2; : : : ; dt / is an arbitrary vector. In the notation of our tests, k2 D t; and write
k1 D k, the actual number of Xi ’s observed. Recalling that oi is the label of the i th
object ranked, the Spearman test which deletes all missing observations is based on
the Spearman correlation of the reduced sample of k pairs, and the test statistic may
be written as

ARS D .t C 1/

kX

iD1

�
i � k C 1

2

��
�� .oi /

t C 1

�
:

Since k D k1 D k� and consequently oi D o�
i ; the statistic A�

S may be written as

A�
S D .t C 1/

.k C 1/

kX

iD1

�
oi � t C 1

2

��
�� .oi / � k C 1

2

�
:

Hence,

A�
S D .t C 1/

.k C 1/

(
ARS C

kX

iD1

�
�� .oi / � k C 1

2

�
.oi � i/

)
:

The weight .oi � i/ represents the number of time points to the left of oi for which
there are no observations. Similarly,

A�
K D ARK C 4

k C 1

kX

iD1

�
�� .oi / � k C 1

2

�
.oi � i/
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where

ARK D
kX

i<j

sgn
�
�� �oj

� � �� .oi /
�

:

Set d �
i D doi and d D Pt

iD1 di =t: Under the alternative qd , provided

max
1�i�t

�
di � d

�2 ! 0 and I .f0/

tX

iD1

�
di � d

�2 ! b2; 0 < b2 < 1;

both ARS and A�
S are asymptotically normal with means and variances given

respectively by
�
�R; �2

RS

�
and

�
�S ; �2

S

�
, where

�RS D .t C 1/

kX

iD1

�
i � k C 1

2

��
d �

i � d
� ˆ 1

0

u � .u; f0/ du

�S D .t C 1/2

.k C 1/

kX

iD1

.oi � o/
�
d �

i � d
� ˆ 1

0

u � .u; f0/ du:

�2
RS D .t C 1/2

12

kX

iD1

�
i � k C 1

2

�2

; �2
S D .t C 1/4

12 .k C 1/2

kX

iD1

.oi � o/2 :

Here � .u; f / D
h
f

0
�
F �1 .u/

�i
=
�
f
�
F �1 .u/

��
; 0 < u < 1; and F is the

cumulative distribution of f .
Shifting now to the efficiencies, it is seen that the asymptotic efficiencies as

k ! 1, for ARS and A�
S are respectively given by

eRS D lim

hPk
iD1

�
i � kC1

2

� �
d �

i � d
�i2

Pk
iD1

�
i � kC1

2

�2Pt
iD1

�
di � d

�2
Q1

eS D lim

hPk
iD1 .oi � o/

�
d �

i � d
�i2

Pk
iD1 .oi � o/2Pt

iD1

�
di � d

�2
Q1;

where Q1 is a positive function of f0 and the limit is taken as t ! 1; k ! 1;

with k=t ! 	 > 0. The asymptotic relative efficiency of A�
S relative to ARS is then

given by the ratio eS =eRS (Appendix B.4).
Now consider the case where d �

i D oi ; Nd D No; i D 1; : : : ; k and the remaining
di are arbitrary, a situation which includes alternatives of the form EXi D ˇ0 C
ˇi; ˇ > 0: It can be shown that irrespective of the density f0; the asymptotic relative
efficiency of A�

S relative to ARS is given by

ARE
�A�

S ; ARS

� D lim
k!1 R .k; ok/ ;
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where okD .o1; : : : ; ok/ and

R .k; ok/ D
Pk

iD1

�
i � kC1

2

�2Pk
iD1 .oi � o/2

hPk
iD1

�
i � kC1

2

�
.oi � o/

i2
� 1:

Note that R .k; ok/ > 1 unless the oi ’s are equally spaced.
In order to illustrate the magnitude of this efficiency, suppose for example that

t D 19; k D 7; o1 D 1; o2 D 2; o3 D 3; o4 D 10; o5 D 17; o6 D 18; o7 D 19;

then the ratio of the efficacies of A�
S to ARS is 1:086. On the other hand, if o1 D 1;

o2 D 8; o3 D 9; o4 D 10; o5 D 11; o6 D 12; o7 D 19, then that ratio is 1:176.

3.5 Tied Rankings and the Notion of Compatibility

The notion of compatibility may also be extended to deal with tied rankings. As an
example, suppose that objects 1 and 2 are equally preferred whereas object 3 is
least preferred. Such a ranking would be compatible with the rankings .1; 2; 3/ and
.2; 1; 3/ in that both are plausible. The average of the rankings in the compatibility
class, which as we shall see results from the use of the Spearman distance, will then
be the ranking

1

2
Œ.1; 2; 3/ C .2; 1; 3/� D .1:5; 1:5; 3/

to be presented in this case. It is seen that the notion of compatibility serves to
justify the use of the midrank when ties exist. Formally we can define tied orderings
as follows.

Definition 3.4. A tied ordering of t objects is a partition into e sets, 1 � e � t ,
each containing di objects, d1 C d2 C : : : C de D t , so that the di objects in each set
share the rank i ,1 � i � e. Such a tie pattern is denoted by ı D .d1; d2; : : : ; de/.
The ranking denoted by �ı D .�ı .1/ ; : : : ; �ı .t// resulting from such an ordering
is a tied ranking and is one of t Š

d1Šd2Š:::deŠ
possible permutations.

Associated with every tied ranking we may define a t Š � ( t Š
d1Šd2Š:::deŠ

) matrix
of compatibility Dı . Yu et al. (2002) considered the problem of testing for
independence between two random variables when the tie patterns and the pattern
of missing observations are fixed. Specifically, let �� be an incomplete ranking of
k1 out of t objects with tie pattern ı1 D .d11; : : : ; d1e1/. Similarly, let �� be an
incomplete ranking of k2 out of t objects with tie pattern ı2 D .d21; : : : ; d2e2/. The
Spearman similarity measure between two incomplete rankings ��; �� is defined
to be

A�
S D .t C 1/2

.k1 C 1/ .k2 C 1/

tX

j D1

ı .j /

	
�� .j / � k1 C 1

2


 	
�� .j / � k2 C 1

2




where ı .j / D 1 if both rankings of object j are not missing and 0 otherwise.
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Table 3.4 Data from the public opinion survey

Education level
Response
1 2 3 4 5 Missing Subtotal

Primary or below 2 35 23 7 3 33 103

Secondary 2 72 129 37 6 53 299

Matriculated 0 9 9 7 0 3 28

Tertiary, nondegree 1 9 6 6 0 5 27

Tertiary, degree 0 22 28 7 6 6 69

Missing 0 2 3 0 0 1 6

Subtotal 5 149 198 64 15 101 532

Theorem 3.5. Let k� be the number of objects ranked in ranking 1 among the k2

objects ranked in ranking 2. Let 2 � k1 � k2 � t . Assume that

(i) k� ! 1, (and hence k1 ! 1; k2 ! 1; t ! 1) with k�=t ! 	 > 0:

(ii) max
j D1;��� ;e1

g1j

k�
is bounded away from 1.

(iii) max
j D1;��� ;e2

g2j

k�
is bounded away from 1.

Then, under the null hypothesis of independence whereby the pattern of ties and
missing data is fixed, A�

S is asymptotically normal with mean 0 and exact variance

Var
�
A�

S

� D
"

.t C 1/2 k1

.k1 C 1/ .k2 C 1/

#2
Pk1

j D1

�
o�

j � No
�2

12

8
<

:1 �
Pe1

j D1

�
g3

1j � g1j

�

k3
1 � k1

9
=

; :

Proof. See Yu et al. (2002). ut
Example 3.7. In a public opinion survey held in 1999 in Hong Kong, it was of
interest to determine whether the education level of the respondents is related to
the level of dissatisfaction of the Policy Address of the Chief Executive of the
Hong Kong Special Administrative Region. The response is an ordinal variable
having seven options as follows: (1), very satisfied; (2), satisfied; (3), neutral;
(4), unsatisfied; (5), very unsatisfied; (6), not sure; and (7), refuse to answer.
Options (6) and (7) were combined and listed as “missing.” Table 3.4 displays the
frequencies of the respondents listed by option and by education level.

It is noted that about 19.9 % of the respondents did not respond either to one
or to both questions. Moreover, since the education levels are grouped into a few
categories, the problem of ties cannot be ignored. One alternative approach for
analyzing this data is as a contingency table. In that case, however, the ordering
among the education levels and separately among the responses would not be taken
into account. The results of the analysis shown in Table 3.5 reveal that at the
5 % significance level, the test based on the reduced sample (which discards all
observations with at least one missing variable) cannot reject the hypothesis of
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Table 3.5 Results of the analyses

Test Statistic Standardized statistic p-value

Reduced sample 494,132.0 1.9075 0.0564

Complete sample 786,633.2 1.9690 0.0490

Table 3.6 Wind direction in degrees

6 a.m. 356 97 211 262 343 292 157 302 324 85 324

Noon 119 162 221 259 270 29 97 292 40 313 94

6 a.m. 85 324 340 157 238 254 146 232 122 329

Noon 45 47 108 221 248 270 45 23 270 119

Data replaced by their ranks

6 a.m. 21 3 8 12 20 13 6:5 14 16 1:5 16

Noon 10:5 12 13:5 16 18 2 8 20 3 21 7

6 a.m. 1:5 16 19 6:5 10 11 5 9 4 18

Noon 4:5 6 9 13:5 15 18 4:5 1 18 10:5

independence whereas the one based on the complete sample can. Since the test
statistic is positive, this implies that there is a positive association between education
level and level of dissatisfaction. More highly educated respondents tend to be less
satisfied with the Policy Address. The analysis by means of a contingency table
whereby the missing categories for education and response were dropped leads to a
chi-square statistic with a value of 35.2161 on 16 degrees of freedom and a p-value
of 0.0037.

3.6 Angular Correlations

There has been a great deal of interest in directional statistics in the literature.
Consider the following example on wind directions whereby we are interested in
testing for independence between the 6 a.m. and the noon readings. The data shown
in Table 3.6 can be viewed as points on the unit circle and cannot be dealt with by
simply computing the usual rank correlation. The reason is that the larger ranks are
close to the smaller ranks. Hence, for example, for the noon readings, angle 23 is
closer to angle 313 than to angle 248. Yet, the ranks imply an opposite interpretation.
In the table, tied ranks were replaced by their midranks.

Example 3.8 (Johnson and Wehrly 1977). Wind directions were recorded at 6 a.m.
and at 12 noon on each day at a weather station for 21 consecutive days. It is desired
to test for independence. Tied rankings were replaced by their midranks (Table 3.6).

Excellent review articles along with additional references are given by Mardia
(1975, 1976) and Jupp and Mardia (1989). Typically, data is provided in the form
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of directions either in two- or three-dimensional space or as rotations in such a
space. The data may take on a variety of forms. It may consist of a unit vector of
directions, pairs of such vectors, or a vector of directions along with a corresponding
random variable on the line. Examples of applications are to be found in the fields
of astronomy, biology, geology, medicine, and meteorology (Downs 1973; Johnson
and Wehrly 1977; Breckling 1989). A large number of the works presented deal
with the study of inference from parametric models. In this section, we define a
corresponding notion of angular correlation using the ranks of the data.

Let X and Y be random vectors with covariance matrix † partitioned as

† D
�

†11 †12

†21 †22

�

and suppose †11 and †22 are non-singular of ranks p and q, respectively.

Definition 3.5 (Jupp and Mardia 1989). The correlation coefficient �XY between
X and Y is defined to be the trace � of the matrix

�XY D T rŒ†�1
11 †12†�1

22 †21�:

It follows that, �XY D Ps
iD1 	2

i where the 	i are the canonical correlations and
s D min.p; q/. This coefficient satisfies the property of invariance under rotation
and reflection in addition to the usual properties of a correlation.

Suppose now that � and ' are circular variables with 0 � �; ' � 2� . Define the
directional vectors t

0

1.�/ D .cos �; sin �/, t
0

2.'/ D .cos '; sin '/; and let † be the
covariance matrix of t1 and t2: It is seen that

��' D Œ2
cc C 2

cs C 2
sc C 2

ss C 2.ccss � cssc/12 � 2.cccs (3.37)

Cscss/1 � 2.ccsc C csss/2�=Œ.1 � 2
1/.1 � 2

2/�:

where cc D corr.cos �; cos '/, cs D corr.cos �; sin '/, etc., and 1 D
corr.cos �; sin �/, 2 D corr.cos '; sin '/.

Let (�i ; 'i ) for i D 1; : : : ; n be a random sample of n pairs of angles which
define points on the unit circle. Without loss in generality assume that the ranks of
the � ’s are the natural integers 1,. . . ,n whereas the corresponding ranks of the '’s
are denoted by R1; : : : ; Rn: Let

�.1/ D .cos
2�

n
; cos

4�

n
; : : : ; cos 2�/0, �.2/ D .sin

2�

n
; sin

4�

n
; : : : ; sin 2�/0

�.1/D.cos
2�R1

n
; cos

2�R2

n
; : : : ; cos

2�Rn

n
/0; �.2/D.sin

2�R1

n
; sin

2�R2

n
; : : : ; sin

2�Rn

n
/0:
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We may formally construct on the basis of the sample the matrix of pairwise
correlations

‡12 D
�

.�.1/; �.1// .�.1/; �.2//

.�.2/; �.1// .�.2/; �.2//

�

where .�; �/ is a measure of correlation between � and �: We shall consider
correlations based on the Spearman and Kendall distance functions in subsequent
sections and we will determine the corresponding asymptotic distributions of the
correlation coefficients as n ! 1:

3.6.1 Spearman Distance

We shall consider the Kendall notion of a type b correlation (Kendall and Gibbons
1990) given by

S .�; �/ D
P

i¤j

�
�i � �j

� �
�i � �j

�
qP

i¤j

�
�i � �j

�2P
i¤j

�
�i � �j

�2

D 2

n
�0�:

It is straightforward to show

nX

iD1

cos
2�i

n
D

nX

iD1

sin
2�i

n
D

nX

iD1

cos
2�i

n
sin

2�i

n
D 0

and

nX

iD1

cos2 2�i

n
D

nX

iD1

sin2 2�i

n
D n

2
:

It follows that †11 D †22 D n
2
I . The sample estimate of †12 is given by

‡S
12 D 2

n

�
Tcc Tcs

Tsc Tss

�

where Tcc D �.1/0

�.1/; Tcs D �.1/0

�.2/; Tsc D �.2/0

�.1/; Tss D �.2/0

�.2/:

We recognize that the T0s are measures of correlation in the Spearman sense.
Consequently, the sample correlation using Spearman distance becomes

�S D 4

n2

�
T2

cc C T2
ss C T2

cs C T2
sc

�
:
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3.6.2 Kendall Distance

Recalling the Kendall measure of distance defined by

dK.�; �/ D
X

i<j

˚
1 � sgn.�i � �j /sgn.�i � �j /

�

where sgn indicates the sign function, we may define a corresponding type b
correlation as

K.�; �/ D
P

i¤j sgn.�i � �j /sgn.�i � �j /
qP

i¤j .sgn.�i � �j //2
qP

i¤j .sgn.�i � �j //2

D
P

i¤j sgn.�i � �j /sgn.�i � �j /
p

A.�/A.�/
;

where A.�/ D #
�
pairs .i; j /; i ¤ j j�i ¤ �j

�
: It is easy to see that †11 and †22 are

diagonal matrices. In fact, the off-diagonal terms are equal to

X

i¤j

sgn

�
cos

2�i

n
� cos

2�j

n

�
sgn

�
sin

2�i

n
� sin

2�j

n

�

D �4
X

i¤j

sgn

�
sin

�.i C j /

n
sin

�.i � j /

n

�
sgn

�
cos

�.i C j /

n
sin

�.i � j /

n

�

D �2
X

i¤j

sgn

�
sin

2�.i C j /

n

�
D 0:

The normalization in the Kendall case is somewhat delicate and depends in part
on the parity of n. For example, for n D 10; there are five pairs of equal values in the
set
˚
sin 2�i

n

�
whereas for n D 11; all the values are distinct. In general, the number

of equal pairs is at most O.n/: The sample estimate of ‡12 is given by

‡K
12 D

�
Kcc Kcs

Ksc Kss

�

where Kcc D K.�.1/; �.1//, Kcs D K.�.1/; �.2//, Ksc D K.�.2/; �.1//, Kss D
K.�.2/; �.2//.

It follows that the sample correlation coefficient in the Kendall case is given by

�K D �
K2

cc C K2
ss C K2

cs C K2
sc

�
:

In the following sections, we shall derive the asymptotic null distributions of the
test statistics induced by the Spearman and Kendall distances.
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3.6.3 Asymptotic Distributions

We are interested in testing the null hypothesis that the circular variables �; '

are independent. In terms of the ranks, assuming no ties, this translates into the
hypothesis H0 that all permutations of the integers 1; : : : ; n are equally likely.

Theorem 3.6. The asymptotic null distribution of n�S as n! 1 is �2
4.

Proof. The joint distribution of Tcc; Tss; Tcs; Tsc is asymptotically normal. In fact,
for arbitrary fai g, consider the linear combination

a1TccCa2TssCa3TcsCa4Tsc D
nX

iD1

Œcos
2�Ri

n
.a1 cos

2�i

n
C a2 sin

2�i

n
/C sin

2�Ri

n
.a3 cos

2�i

n
C a4 sin

2�i

n
/�:

Let

d.i; j / D cos
2�i

n
.a1 cos

2�j

n
Ca2 sin

2�j

n
/Csin

2�i

n
.a3 cos

2�j

n
Ca4 sin

2�j

n
/:

Since

maxd 2
n .i; j / � 4.a2

1 C a2
2 C a2

3 C a2
4/

and the variance

1

n

nX

iD1

nX

j D1

d 2
n .i; j / D n

4
.a2

1 C a2
2 C a2

3 C a2
4/

we have that

max d 2
n .i; j /

1
n

Pn
iD1

Pn
j D1 d 2

n .i; j /
! 0 as n ! 1:

The result follows on using Hoeffding’s combinatorial central limit theorem (see
Appendix B.1). Hence ‡S

12 is multivariate normal and the theorem follows. ut
A similar result holds for the Kendall tau statistic.

Theorem 3.7. The asymptotic null distribution of 9
4
n�K as n! 1 is �2

4.

Proof. See Alvo (1998) for the proof. A different proof can make use of the
asymptotic equivalence between the Kendall and Spearman coefficients in general.

ut
Example 3.9. We revisit the wind direction data. We calculate

‡S
12 D

��0:246 0:306

�0:376 �0:452

�
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and hence n�S D 21.0:50047/ D 10:51 with a p-value of 0:0327: Consequently,
we conclude that there is evidence that the 6 a.m. and noon wind directions are
significantly correlated.

It is interesting to compare this result with the usual product moment correlation
between the two angular measurements. The latter yields a value equal to �0:04,
thereby implying that the variables are independent. On the other hand, restricting
attention only to the pairs of measurements for which the 6 a.m. readings are below
180ı the value of the product moment correlation is 0:512 while for pairs for which
the 6 a.m. readings are above 180ı it is �0:475. These results taken separately imply
a fair degree of dependence. The test statistic �S takes into account the fact that very
small and very large angles (mod 2�) are close to one another.

For the Kendall statistic, we may also calculate

‡K
12 D

��0:1822 0:2097

�0:3106 �0:3637

�

and hence 9n
4

�K D 9.21/

4
.0:3056/ D 14:44 with a p-value of 0:006: It is clear that

with either the Spearman or the Kendall statistic, the hypothesis of independence is
in doubt.

3.7 Angle-Linear Correlation

Suppose that we are now interested in defining the correlation between an angle �

and a real valued random variable X . It can be shown that the correlation coefficient
in that case is given by

�L D Œ2
xc C 2

xs � 2xcxscs�=.1 � 2
cs/

where

xc D corr.X; cos �/; xs D corr.X; sin �/; cs D corr.cos �; sin �/:

In the nonparametric context, let .Xi ; �i / for i D 1; : : : ; n be a random sample
of linear-angular measurements. Let fRi g be the ranks of the fXi g and let fSi g be
the ranks of the f�i g. We may assume without loss in generality that the Si are in
natural order 1; 2; : : : ; n: Based on the Spearman measure of distance, the sample
angular-linear correlation is defined by

�LS D ŒT 2
xc C T 2

xs�

n
2

�
n.n2�1/

12

�
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where Txc D P
Ri cos

�
2�i
n

�
; Txs D P

Ri sin
�

2�i
n

�
: Similarly, for the Kendall

measure, the angular-linear correlation is then given by

�LK D ŒK2
xc C K2

xs�

where

Kxc D
P

i¤j Œsgn.Ri � Rj /sgn.cos
�

2�i
n

� � cos
�

2�j

n

�
/�

p
Œn.n � 1/�

qP
i¤j .sgn.�

.1/
i � �

.1/
j //2

Kxs D
P

i¤j Œsgn.Ri � Rj /sgn.sin
�

2�i
n

� � sin
�

2�j

n

�
/�

p
Œn.n � 1/�

qP
i¤j .sgn.�

.2/
i � �

.2/
j //2

:

We may now prove a theorem giving the asymptotic distributions of �LS and �LK

under the null hypothesis that all vectors of ranks .R1; : : : ; Rn/ are equally likely.

Theorem 3.8. The asymptotic null distribution of n�LS as n! 1 is �2
2.

Proof. The joint distribution of Txc; Txs is asymptotically normal. In fact, for
arbitrary constants a1; a2, consider the linear combination

a1Txc C a2Txs D
nX

iD1

ŒRi .a1 cos
2�i

n
C a2 sin

2�i

n
/:

This is a linear rank statistic for which the conditions in Hoeffding (1951) are
satisfied. In fact, let

dn.i; j / D .i � n C 1

2
/.a1 cos

2�i

n
C a2 sin

2�i

n
/:

The variance is then equal to

1

n

nX

iD1

nX

j D1

d 2
n .i; j / D 1

4
.a2

1 C a2
2/

n.n2 � 1/

12

and we have that

max d 2
n .i; j /

1
n

Pn
iD1

Pn
j D1 d 2

n .i; j /
! 0

as n ! 1. The result follows. ut
Theorem 3.9. The asymptotic null distribution of 9n

4
�LK as n! 1 is �2

2.
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Table 3.7 Wind direction and ozone concentration

Wind direction 327 91 88 305 344 270 67 21 281

Ozone concentration 28.0 85.2 80.5 4.7 45.9 12.7 72.5 56.6 31.5

Wind direction 8 204 86 333 18 57 6 11 27 84

Ozone concentration 112.0 20.0 72.5 16.0 45.9 32.6 56.6 52.6 91.8 55.2

Proof. For arbitrary constants a1; a2; consider the linear combination

nX

i¤j

sgn.Ri � Rj /bij

where

bij D Œ.a1sgn.cos
2�i

n
� cos

2�j

n
/ C a2sgn.sin

2�i

n
� sin

2�j

n
/�:

Using a result of Daniels (1950), the asymptotic normality of Kxc and Kxs follows.
ut

Example 3.10 (Johnson and Wehrly 1977). We consider data on wind direction and
ozone concentration collected at a weather station for 19 days at 4-day intervals.
The readings are given in Table 3.7.

The Spearman test statistic to be n�LS D 19 .0:3751/ D 7:13 which has a p-value
equal to 0:0283: On the other hand the Kendall statistic is given by 9n

4
�LK D

9.19/

4
.0:1595/ D 6:82 for a p-value of 0:033. Both statistics imply that there is a

fair degree of dependence between wind direction and ozone concentration.

Chapter Notes

In this chapter, the traditional rank correlation has been extended to include
incomplete rankings. This was made possible using the notion of compatibility
which was developed by Alvo and Cabilio in a series of papers. Cabilio and
Tilley (1999) report the results of a simulation study where they considered linear,
quadratic, and square root trends. They observed that when there were no missing
observations, the Spearman statistic was more powerful than Kendall’s. In the
incomplete case, however, the new Kendall statistic has superior power for more
patterns.

The calculation of the exact variance of A�
K under H2, in Theorem 3.4, is more

involved, and the reader is referred to Alvo and Cabilio (1992), where it is shown
that
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Var
�A�

K

� D 
1
2

9t .t � 1/

"
.2t C k1 C 3/ .2t C k2 C 3/

2
C
�
t2 � k1 � 2

� �
t2 � k2 � 2

�

.t � 2/

#
:

An important application of the results presented above which do not discard
missing data is in tests of trend where k2 D t and k1 < t: It is seen that in this
context, the superiority of the extended Spearman statistic is established through
the calculation of its asymptotic relative efficiency relative to the “naive” statistic.
(Alvo and Cabilio 1994) applied these methods to test for trend in precipitation
data for St John and Fredericton (NB) and showed that the extended statistic based
on Spearman distance is more sensitive in detecting trends than the statistic which
ignores the missing observations. Tables of selected critical values of A�

S and A�
K

for the trend case when k � t=2 have been developed for both hypotheses (Alvo
and Cabilio 1993). The results of this section have been extended to the case of ties
(Yu et al. 2002) and applied to deal with tests of independence in opinion surveys.
A further extension to assess trend in proportions appears in Chap. 7.

Alvo and Smrz (2005) proposed an arc model which serves as a good approxi-
mation to Kendall distance.

Although not considered in this book, Alvo and Park (2002) were concerned with
multivariate tests of trend when the data are partially incomplete. Such is the case
in environmental studies when pH data for one or more lakes are often recorded
over regular time intervals and examined for monotone increasing or decreasing
trends in order to test for trend in acidification. In monitoring recovering patients,
one looks for trends in their vital signs which are often multivariate data in nature.
There may be as many as 20–30 blood constituents measured weekly over a period
of several months or years. In those case, the use of separate tests on each constituent
is inefficient.


	3 Correlation Analysis of Paired Ranking Data
	3.1 Notion of Distance Between Two Rankings
	3.2 Correlation Between Two Rankings
	3.3 Incomplete Rankings and the Notion of Compatibility
	3.4 Correlation for Incomplete Rankings
	3.4.1 Asymptotic Normality of the Spearman and Kendall Test Statistics
	3.4.2 Asymptotic Efficiency

	3.5 Tied Rankings and the Notion of Compatibility
	3.6 Angular Correlations
	3.6.1 Spearman Distance
	3.6.2 Kendall Distance
	3.6.3 Asymptotic Distributions

	3.7 Angle-Linear Correlation
	Chapter Notes


