Chapter 10
Decision Tree Models for Ranking Data

A number of models for ranking data were introduced in Chaps. 8 and 9. However,
not all of these models are designed to incorporate individual/object-specific
covariates. Distance-based models discussed in Sect. 8.3 are typical examples of
ranking models that are not presently designed to incorporate covariates. As these
models generally assume a homogeneous population of individuals, they always
give the same predicted ranking. Order statistics models discussed in Sect. 8.3 and
Chap. 9 are typical examples of models that are able to incorporate covariates in a
“linear model” form. However, there are only a few diagnostic procedures available
to determine whether a satisfactory model is found. For instance, is it necessary to
transform some of the covariates? Which variables or interaction terms should be
included into the model?

For those ranking models that are able to incorporate covariates, it will be
difficult to interpret the coefficients of the fitted models if nonlinearity or higher-
order interactions are present. For example, Holland and Wessells (1998) applied a
rank-ordered logit model with more than 20 interaction terms to predict consumer
preferences for fresh salmon. They reported that the model performance has greatly
improved after including the interactions but at the same time they mentioned that
interpretation of the coefficients is less clear.

The use of decision trees can provide a powerful nonparametric model capable
of automatically detecting nonlinear and interaction effects. This could serve as a
complement to existing parametric models for ranking data. Decision trees are so
called because they can be constructed by a set of rules displayed in a treelike
structure. Figure 10.1 exhibits a decision tree with 3 leaf (or terminal) nodes.
Since the resulting trees are easy to interpret and provide insight into the data
structure, they have been popularly used for classification and regression problems
by statisticians, machine learning researchers, and many other data analysts.
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Fig. 10.1 A hypothetical decision tree

In the literature, there are many variants of tree-construction methods such as
CART (Breiman et al. 1984) and C4.5 (Quinlan 1992). Many of these decision
tree models are constructed in a top-down manner: starting at the root node (the
entire training data set) and recursively partitioning the data into two or more child
nodes in such a way that each new generation of nodes has better performance than
its parent node. The most important step in tree construction is to select the best
split for each internal node according to a certain splitting criterion. One approach
is to search for the best split based on an “impurity” function (impurity function
approach). An impurity function defined for each node measures the degree of
impurity of the node. The most frequently used impurity functions are the entropy
and the Gini index. An alternative approach to do splitting is to apply a statistical test
of homogeneity to test whether the split can make the child nodes with significant
different distributions of the data (statistical test approach). Common statistical
tests are the chi-square test and likelihood ratio test for independence in a two-way
contingency table. Generally speaking, construction of a decision tree comprises
two stages: tree growing and tree pruning. See Appendix C for a detailed review of
decision trees.

Many popular statistical and data mining software such as SAS/Enterprise Miner,
Salford Predictive Modeler, and R provide modeling tools for building decision trees
for discrete choice data but not for ranking data. In this chapter, we will introduce
recent works by Yu et al. (2010) and Wan (2011) which developed decision tree
models based on impurity function and statistical test approaches, respectively.
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10.1 Impurity Function Approach

In this section, we describe a methodology for constructing a decision tree for
ranking data based on the impurity function approach. First of all, the ranking data
is randomly partitioned into a training set and a testing set. Following the idea of the
CART method, Yu et al. (2010) developed a decision tree algorithm which consists
of two stages:

» Tree growing: starting from the root node (the training set), recursively partition
each node to identify the best split according to the impurity function until some
split-stopping criteria are met. Once tree growing is stopped, a tree is built.

* Tree pruning: using the tree found in the tree-growing stage, find the best subtree
by removing branches that does not show any significant improvement in a cost-
complexity measure based on a ten-fold cross-validation.

10.1.1 Building Decision Tree for Ranking Data
10.1.1.1 Tree Growing

In growing a tree, the most important step is to search for the best splitting rule
in each node based on an impurity function. Here, we will introduce four impurity
functions designed for ranking data. Suppose we are given an internal node t which
contains a data set of rankings of ¢ objects. We first define some notations.

Definition 10.1. Let 7' be a set of all possible rankings of m objects from

the ¢ objects. Let nt{:: o} be a set of all possible rankings of the m objects

{ai,az,--- ,a,} from the ¢t objects. Let Slfﬂ be a collection of all possible subsets
of m objects from the ¢ objects.

For example, we have ¢ = 4 objects: {1,2, 3,4}. Then we have

x*? ={(1,2),(2,1),(1,3), (3. 1), (1,4),(4,1),(2,3),(3.2), (2, 4), (4,2),
(3.4),(4,3)}
Ty = (1,2), 2, D}
Q5 = {{1,2},{1,3},{1,4},{2,3},{2,4}. {3, 4}}.

Definition 10.2 (Top g notion). For r = (a;,as,--- ,ay) € x"9, let pr(r| ) be
the proportion of individuals in node T who rank object a; the first, object a, the
second, and so on until object a, the gth. Ranks of the remaining ¢ — g objects are
not considered.
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Definition 10.3 (m-wise notion). For r = (a;,az, -+ ,a,) € ”2}’:’ where B,, €

Q! . let pw(r|t) be the proportion of individuals in node T who rank object a;
higher than object a,, object a, higher than object a3, and so on until object
a,— higher than object a,,. Objects other than ay,a,,...,a, are not taken into

consideration.

In Appendix C.2.1 impurity functions for unordered categorical responses are
described. We provide an extension of the Gini and entropy impurity functions to
deal with ranking data.

Given a ranking data set of ¢ objects, the extended Gini and entropy developed
using the top ¢ and m-wise notions are defined as follows:

Top-¢g Gini: i;q)(r) =1- Z [pr(r| )] (10.1)
remx’q
Top-q entropy: i;q)(f) =— Z pr(r|7) log, pr(r|t) (10.2)
renl.{]
o . 1
m-wise Gini: l&;")(r) =cr Z 1-— Z [pw (r| D)) (10.3)
" Bne ), rénté':l

. . —1
m-wise entropy: zé",”)(r) =i Z Z pw(r|7) log, pw(r|7)
m \ Bue®, rexty

(10.4)

The normalizing term 1/C/, is to bound ié{,") (7) in the range of 0 and 1.

Given an impurity function i(7) (one of the above measures), we define the
goodness of (binary) split s for node t, denoted by Ai(s, t), as

Ai(s,t) = i(r) — pri(tr) — pri(Tr)-

Ai(s, t) is the difference between the impurity measure for node t and the weighted
sum of the impurity measures for the left child and the right child nodes. The
weights, p; and pg, are the proportions of the samples in node t that go to the
left node t; and the right node 7, respectively.

By going through all the possible splits, the best split of node t is the one with
the largest goodness of split Ai(s, t). The node splitting will continue until the
node size is less than a prespecified minimum node size value. In our application,
the minimum node size is set to be one-tenth of the size of the training set.
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10.1.1.2 Tree Pruning

After the tree is fully constructed, we proceed to the tree pruning stage where the
optimal subtree is determined to improve the prediction accuracy. The basic idea is
to make use of the minimal cost-complexity algorithm described in Appendix C.2.2
with ten-fold cross-validation to obtain the final tree that minimizes the misclassi-
fication cost. See Yu et al. (2010) for details of the choice of misclassification cost
and the implementation procedure of tree pruning.

10.1.2 Leaf Assignment

Various approaches are proposed to make the assignment for every leaf node:

1. Calculate the mean rank of each object and deduce the predicted ranking by
ordering the mean ranks.
2. Calculate the top-choice frequency of each object and decide the predicted
ranking by ordering the frequency.
. Use the most frequently observed ranking to represent the predicted ranking.
4. Look at the paired comparison probabilities of each object pair or the top-5 most
frequently observed ranking responses.

O8]

The first three approaches reveal the predicted ranking of the objects. However,
in some situations, the predicted rankings are not of primary concern. Instead, it is of
interest to investigate the importance of the covariates to the rank order preference.
For this kind of exploration, method 4 provides a more general idea of how the
preference orders are distributed within a leaf node. In the following, we advocate
a nonparametric procedure to examine the differences among the mean ranks of
objects in each leaf node.

10.1.2.1 Nonparametric Inference of the Leaf Nodes

Given a fitted tree, the training data is partitioned into a number of relatively more
homogeneous leaf nodes. In this case, we would like to understand the preference
of the objects in each leaf node. It is thus of interest to examine the rank order
difference among the objects so that a clearer picture can be obtained in interpreting
each leaf node.

The first thing we should consider is to test for randomness on ranking of ¢
objects in each leaf node. This is equivalent to apply the Friedman test to the ranking
data in each leaf node. Under the null hypothesis H( of randomness in the Friedman
test, the Friedman test statistic O, corrected for the observed ties, in leaf node t
with n; individuals is given by
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(t=1) ¥ [ —nole + 1)/2
QX = ne tl=1 ’
>y ”1‘2/‘ —n.t(t +1)2/4

j=li=l

where r; is the sum of the ranks r;; for object i. When the data contains no ties, O,
becomes the test statistic used in Sect. 2.3.

Iman and Davenport (1980) argued that the chi-square approximation of Q,
may be undesirably conservative and suggested using the following F distribution
approximation:

(n‘L' - l)Q)(

e -0,

Under Hy, Qr follows asymptotically an F distribution with (t — 1) and (n, — 1)
(t — 1) degrees of freedom.

Upon rejection of Hj in the Friedman test, it is possible to identify the difference
between specific pairs of objects by the multiple comparison procedure (Conover
1999). Preferences on objects a and b are significantly different at the significance
level « if the following inequality is satisfied:

20, (Sie) e 78 = e )
(ne =Dt —1)

|ra _rb| > tl—a/2

where #;_q/> is the value from the student-¢ distribution with (1, —1)(# — 1) degrees
of freedom.

10.1.3 Performance Assessment of Decision Tree
Jor Ranking Data

Another important issue that should be addressed is the performance assessment
of the fitted decision tree. The most frequently used performance measure is mis-
classification rate. However, this is not a good performance measure for assessing
predictive accuracy of the fitted tree because a predicted ranking can only be
classified either correctly or incorrectly, overlooking the fact that the predicted
ranking can be partially agreed with the observed ranking. That means some objects
in the rank permutation, but not all, are in the correct ordered position.

A widely used single measure for evaluating the overall performance of a binary
classifier is the area under the receiver operating characteristic (ROC) curve. It is
simple and attractive because it is not susceptible to the threshold choice and it is
regardless of the costs of the different kinds of misclassification and class priors
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(Bradley 1997; Hand and Till 2001) . The value of AUC always falls within [0.5,
1.0] — it equals 0.5 when the instances are predicted at random and equals 1.0 for
perfect accuracy.

However, standard ROC curve can be used for binary data only. Hand and Till
(2001) extended it to discrete choice data and Yu et al. (2010) further generalized
it to ranking data. The general idea is to first convert the observed and predicted
rankings in a testing set into many binary choices with each comparing preference
between a pair of objects. Using the observed and predicted binary choice outcomes
for each pair of objects, an ROC curve can be drawn and the corresponding AUC can
be computed using the standard procedure. Finally, the AUC of the fitted decision
tree for ranking data can be obtained by taking the average of the AUCs for all pairs
of objects.

10.1.4 Analysis of 1993 European Value Priority Data

The ranking data set was obtained from the International Social Service Programme
(ISSP) in 1993 (Jowell et al. 1993), which is a continuing, annual program of
cross-national collaboration on surveys covering a wide spectrum of topics for
social science research. The survey was conducted using standardized questionnaire
in 1993 at 20 countries around the world, such as Great Britain, Australia, the
USA, Bulgaria, the Philippines, Israel, and Spain. It mainly focused on value
orientations, attitudes, beliefs, and knowledge concerning nature and environmental
issues and included the so-called Inglehart Index, a collection of four indicators
of materialism/post-materialism as well. Respondents were asked to pick the most
important (rank “1") and the second most important (rank ‘“2") goals for their
government from the following four alternatives:

1. Maintain order in nation (ORDER).

2. Give people more to say in government decisions (SAY).
3. Fight rising prices (PRICES).

4. Protect freedom of speech (SPEECH).

After removing those invalid responses, the survey gave a ranked data set of 5,737
observations with top choice and top two rankings. In addition, the data provide
some judge-specific characteristics and they are applied in tree partitioning. The
candidate splitting variables are summarized in Table 10.1.

Respondents can be classified into value priority groups on the basis of their top
two choices among the four goals. “Materialist” corresponds to an individual who
gives priority to ORDER and PRICES regardless of the ordering, whereas those
who choose SAY and SPEECH will be termed “post-materialist.” The last category
consists of judges giving all the other combinations of rankings, and they will be
classified as holding “mixed” value orientations.

Inglehart’s thesis of generational based values has been influential in political
science since the early 1970s. He has argued that value priorities were shifting
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Table 10.1 Description of 1993 EVP data

Covariate | Description/Code Type

Country West Germany = 1, East Germany =2, | Nominal
Great Britain = 3, Italy =4, Poland =5

Gender Male = 1, female =2 Binary

Education | 0-10 years =1, 11-13 years =2, Ordinal
14 or more years =3

Age Value ranges from 15 to 91 Interval

Religion Catholic and Greek Catholic=1, Nominal

Protestant = 2, others = 3, none =4

Table 10.2 Summary of the best pruned subtrees by four impurity measures

Method Avg. AUC |SE AUC No. of leaves | Depth
Top-2 entropy 0.61947 0.0056 | 0.62951 |12 5

Pairwise Gini 0.61896 0.0058 | 0.62902 | 12
Pairwise entropy | 0.61857 0.0056 | 0.62709 | 11
Top-2 Gini 0.61425 0.0063 |0.61931 | 9

EERV RV |

profoundly in economically developed Western countries, from concern over
sustenance and safety needs toward quality of life and freedom of self-expression,
thus from a materialist orientation to a post-materialist orientation. In this analysis,
we study the Inglehart hypothesis in five European countries by our decision tree
approach, which helps to identify the attributes that affect Europeans’ value priority.

The data are divided randomly into 2 sets, 70 % to the training set for growing the
initial tree and finding the best pruned subtree for each of the four splitting criteria;
and 30 % to the testing set for performance assessment and selection of the splitting
criterion to build the final tree.

As a decision tree is an unstable classifier, small changes in the training set can
cause major changes in the fitted tree structure; we therefore repeat this procedure
50 times and compare the four splitting criteria with their averaged AUC. The final
tree model is created using the entire data set for interpretation. Notice that the
testing set is not involved in the tree building process and pruned subtree selection.
The four splitting criteria for rankings include top-2 and pairwise measures of Gini
and entropy.

The second and third columns of Table 10.2 show the averaged AUC and their
standard error of the best pruned subtrees for each splitting criterion based on
50 repetitions. The tree structure and performance of the final models are also
presented. Figure 10.2 displays the six ROC curves of each object pairs that arise
from the top-2 entropy tree. The tree did a better job of predicting the object pair
“SAY vs PRICES”, but poor for “SAY vs SPEECH.” The performance of the four
trees is comparable and it is hard to distinguish them in the graph.

The four tree models are found to have similar node partitions. The root node
is split according to whether the judges came from Poland or not. At the second
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Fig. 10.2 ROC curves of top-2 entropy tree

Remark: The four value objects are coded as follows 1 =[ORDER], 2 =[SAY], 3 = [PRICES]
and 4 = [SPEECH]. The 45° diagonal line connecting (0,0) and (1,1) is the ROC curve correspond-
ing to random chance. Given next to the legends are the areas under the corresponding dashed ROC
curves

level, the splits are based on age. For Polish, the respondents are divided with the
rule “age<597”, while the remaining judges are split according to age < 53 or not.
Further partitions involve education level, country, and age. The factors religion and
gender do not seem to be influential. It is observed that in the learning phase, top-2
Gini tends to give a smaller tree, while top-2 entropy gives a more complicated tree
on average. Based on the assessment criterion, the top-2 entropy tree is chosen as
the best model and it is applied for further analysis.

The tree with 5 levels of depth and 12 leaves is sketched in Figure 10.3. For the
sake of brevity, we do not show the other three tree structures. A summary of the leaf
nodes of the final tree is reported in two tables. Table 10.3 shows the individuals’
value priority, the three most frequent top two rankings, together with the proportion
of six pairs of political goals in each leaf node whereas Table 10.4 lists the mean
rank of the four political goals. In order to determine if the observed rankings in the
leaf node imply statistically significant differences across alternatives, the Friedman
test is used, and highly significant results are obtained in all leaves, indicating that
the respondents had different priority to at least one political goal. The post hoc
multiple comparison procedures are thus further performed and based on the results,
the rankings of the four goals are deduced (see Table 10.4).

We now turn to examine the covariate and interaction effects based on the final
tree model. In Poland, individuals were more likely to favor materialistic objects
ORDER (in leaves 5, 8, and 9) and PRICES (in leaves 5 and 8) than the other two
post-materialistic objects. In East Germany, judges appeared to support ORDER and
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#19
241

country= 37

#20 #21 #22 #23
652 1009 340 530

Fig. 10.3 Fitted tree based on top-2 entropy
Remark: In each node, the node ID and the number of judges are shown. The splitting rule is given
under the node. The abbreviation “edu” stands for the variable education

SAY more; particularly those older generations gave higher priority to ORDER (in
leaf 12). Respondents of West Germany showed stronger emphasis on SAY. Those
better educated West Germans were more post-materialist than the lower educated
ones as they preferred SAY and SPEECH, rather than the other two materialist
objects (in leaf 15). Mixed value orientations were anchored in British because all
the related leaf nodes give us a preference prediction of ORDER > SAY or SAY >
ORDER.
Summarizing, we note that:

(1) Despite some cross-national differences, our findings do not deviate much
from Inglehart’s theory, which claimed that societies embrace post-materialistic
values as they move toward more economic security and affluence. The older
European generations experienced economic and social insecurity in their
preadult years during World War II. They thus attached more importance to
materialistic values compared to younger cohorts. Younger postwar generations
developed post-materialist values as they grew up during periods of relative
prosperity.

(ii)) There is a clear tendency in each country for the higher educated to be
the more post-materialistic groups. Duch and Taylor (1993) stated that the
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post-materialistic objects tap certain fundamental democratic values, such as
liberty and rights consciousness. The better educated would have had more
opportunity to learn to appreciate such principles, and thus they will prefer
post-materialistic objects more.

10.2 Statistical Test Approach Based on Intergroup
Concordance

In Sect. 10.1, a decision tree for ranking data was constructed in such a way that
the leaf nodes are as pure as possible according to a certain impurity measure. In
other words, the node splitting in the impurity function approach aims to find the
best split such that the two resulting child nodes are as homogeneous as possible.
However, this does not guarantee that the rankings of objects between the two child
nodes are significantly different.

As mentioned earlier, there is a statistical test approach which can provide an
alternative splitting measure based on a test for intergroup concordance on rankings
for the selection of the best split during the tree-growing stage. In Sect. 4.2, we have
seen several tests for testing for agreement or concordance between two or more
groups in ranking a set of objects. Therefore, it is possible to apply those tests in
constructing decision tree for ranking data.

10.2.1 Building Decision Tree Using Test for Intergroup
Concordance

To construct a decision tree based on the statistical test of intergroup concordance,
we follow the same methodology used in the impurity function approach in
Sect. 10.1 except for the choice of splitting criterion. For the splitting criterion,
the best splitting rule of a node is the one that maximizes the test statistic for testing
concordance between two child nodes.

Here, we will make use of two tests of concordance based on Spearman and
Kendall statistics described in Sect. 4.2. Note that the combined estimates of the
covariance function is used throughout. The notation SP refers to the Spearman
statistic and KW to the Kendall statistic.

The partitioning process stops when further splitting does not lead to a statisti-
cally significant result. The tree size can then be controlled by setting a threshold
significance level on the test procedures. Lower threshold values tend to produce
smaller trees.

After the tree is fully constructed, the cost-complexity pruning procedure is
executed to avoid the problem of overfitting the ranking data. Most steps are the
same as the one used in Sect. 10.1 except that an alternative cost function based on
Spearman Footrule distance is considered. For the details of this pruning procedure,
see Wan (2011).



212 10 Decision Tree Models for Ranking Data

10.2.2 Analysis of US General Social Survey Data on Job
Value Preference

The general social survey (GSS) has been conducted in US by the National Opinion
Research Center (NORC) of the University of Chicago annually since 1972 (except
for the years 1979 and 1981) and biennially since 1994 (Davis and Smith 2009).
Each year the GSS consisted of a 90-min in-person interview with a full-probability
sample of English- or Spanish-speaking persons aged 18 years or above who lived
in households. It is a multidimensional social survey that gathers sociodemographic
characteristics and replicated core measurements on social and political attitudes
and behaviors, plus topics of special interest. Many of the core questions have
remained unchanged since 1972 to facilitate time-trend studies as well as replication
of earlier findings. In relation to job value, the characteristics were measured by
the GSS in an ipsative approach. The respondents were asked to rank in order of
preference from (i) “most preferred,” (ii) “second most important,” to (v) “fifth most
important” five aspects about a job:

. High income (JINC)

. No danger of being fired (JSEC)

. Working hours are short, lots of free time (JHOUR)

. Chances for advancement (JPRO)

. Work important and gives a feeling of accomplishment (JMEAN)

W AW N =

Job values, as defined by Kalleberg (1977), are what individuals hold as desir-
able with respect to their work activity and the attitudes are central to the
social psychology of work. Under many other names (including work/occupational
value/attribute/characteristic), they refer to the importance people place on occupa-
tional rewards and play a key role in conditioning a range of work-related outcomes,
such as job satisfaction and commitment, work centrality, and occupational choice
and stability. Theoretically, the perceived job attributes have been conceptualized
into two value dimensions, either intrinsic or extrinsic. Intrinsic values concern the
rewards emanating directly from the work activity and experience itself (e.g., job
autonomy, challenge, use of abilities, expression of interest and creativity, work-
place cooperation, job useful to society). In contrast, extrinsic values involve the
rewards derived from the job but external to the work itself (e.g., job security, pay,
fringe benefit, prestige, promotional opportunities, pleasant working environment,
good hours, no excessive amount of works). Among the five work values listed in
the GSS, the first four attributes (i)—(iv) represent extrinsic factors of the job, while
the last value (v) is considered intrinsic.

An ongoing interest among researchers in work value preference has been
witnessed over the decades. Previous studies have shown that work values are not
externally given, but rather come as a result of socialization processes throughout an
individual’s life (Johnson 2002; Mortimer and Lorence 1979). They are developed
initially as a function of parents’ social origin and socioeconomic positions, during
schooling and the early years of work. Past research has consisted of comparing and
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explaining the differences in job value preferences between white and blue collar
workers (Weaver 1975), male and female (Lacy et al. 1983), older and younger
generations (Loscocco and Kalleberg 1988), as well as blacks and whites (Martin
and Tuch 1993). In the following section, we exploit the data from the General
Social Survey to revisit the priority of occupational values in the US using the
proposed tree model.

This study utilized data from three samples (N = 3744) collected in 1973, 1985,
and 2006, in order to examine the role of social class origins and socioeconomic
characteristics in shaping one’s job value orientation. Table 10.5 shows the eight
individual attributes (sex, race, birth cohort, highest educational degree attained,
family income, marital status, number of children that the respondent ever had,
and household size) and three properties of work conditions (working status,
employment status, and occupation) that are involved in the model building process.
The attribute “year,” referring to the year of survey, is also included to address the
question of changing work values over time.

Complete rankings of the five job characteristics were obtained from the entire
sample. Summarized results of their preferences by years are provided in Table 10.6.
The pattern is remarkably consistent over the 30-year period. Meaningful work
(JMEAN) was far more important than any other value, taking over 40 % of the top
rank order in each year of survey. The next two attributes, high income (JINC) and
having opportunities for advancement (JPROMO), were fairly close to each other
in importance. Less than 5 % of the respondents regarded short working hours and
more leisure time (JHOUR) as the most important value, while 51.3 % placed it as
the least important.

Next, the ranking data are analyzed using the decision tree model described
earlier. Following the methodology presented in Sect. 10.1.4, we randomly divide
the data into 2 parts: (1) the learning set constituting 70 % of the data to grow the
initial tree with a threshold significance level of 0.5 and search the best pruned
subtree for each of the test statistic and (2) the testing set containing the remaining
data to evaluate the tree performance and select the best splitting measure to build
the final tree. Note that the entire sample will be included to produce the final model.

Preliminary attempts at learning from the data are not promising because the
overall value placed on short working hours in all leaf nodes is found to be the
least important to people than meaningful work, high income, and advancement
opportunities. Given the limited significance of “JHOUR,” we removed it from
further analysis and reduced the number of ranked objects to four. The performance
of the best pruned subtree for each statistical measure is reported in columns 2
and 3 of Table 10.7. The averaged AUC and the standard error obtained over 50
replications do not differ much among the measures. Indeed, the trees developed
have similar structure; the splitting rules at the first, second, and third level are
found to be the same. For this reason, we restrict attention to the SP tree model
in the coming discussion.

Figure 10.4 depicts the ROC curves of six object pairs that arise from the SP tree.
The predictive performance of the classifier is found to be superior on the object
pairs “JMEAN vs JSEC” and “JMEAN vs JINC” and inferior on the object pairs
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Table 10.6 Importance of five job values in the US General Social Survey

215

Year |JMEAN | JINC |JPRO | JSEC JHOUR | Sample size
Top choice

1973 | 620 (53.7%) | 221 (18.4%) | 223 (192%) | 77 (6.4%) | 59 (4.9%) | 1,200

1985 | 643 (48.8%) | 255 (19.4%) | 287 (21.8%) | 91(6.9%) | 41 (3.1%) | 1317

2006 | 506 (41.2%) | 283 (23.1%) | 244 (19.9%) | 131 (10.7%) | 63 (6.4%) | 1,227

Total | 1769 (47.2%) | 759 (20.3%) | 754 (20.1%) | 299 (8.0%) | 163 (4.4%) | 3,744
Last choice

1973 | 90(7.5%) | 79 (6.6%) |115(9.6%) | 359 (29.9%) | 557 (46.4%) | 1,200

1985 | 67(5.1%) | 47(3.6%) | 77(5.8%) | 351(26.7%) 775 (58.8%) | 1,317

2006 | 85(6.9%) | 85(6.9%) |122(9.9%) | 345(28.1%) | 590 (48.1%) | 1,227

Total | 242 (6.5%) |211(5.6%) |314(8.4%) | 1055 (28.2%) | 1922 (51.3%) | 3,744

Table 10.7 Summary of the best pruned subtrees by two statistical
significance measures

Method Avg. AUC |SE AUC No. of leaves | Depth
Spearman | 0.65045 0.0056 | 0.64689 |28 9
Kendall 0.64844 0.0062 | 0.64229 |22 12
1.0 T ]
- %n >
0.8 %_"" //
> o
= P
>
o 1 vs 2 (0.683)
:} 1vs3(0.677)
1 vs 4 (0.692)
2 vs 3 (0.607)
2 vs 4 (0.599)
3 vs 4 (0.623)
0.0 02 0.4 0.6 0.8 1.0
1-Specificity

Fig. 10.4 ROC curves of SP tree
Remark: The four value objects are coded as follows: 1 = [JMEAN], 2 = [JINC], 3 = [JPRO], and
4 = [JSEC]. The 45° diagonal line connecting (0,0) and (1,1) is the ROC curve corresponding to
random chance. The areas under the corresponding dashed ROC curves appear in brackets

“JINC vs JSEC” and “JINC vs JPRO.” As displayed in Figure 10.5, the nine-level SP
tree has 28 leaf nodes (in square box). Inside each node, the node ID and the number
of judges are shown, whereas the splitting rule is given under the node. Race is
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found to be the most important factor, splitting the entire sample into white (race=1)
and black (race=2) Americans. At the second level, white Americans are separated
based on their occupation (occ=1 vs occ#1), while for black Americans, they are
divided according to their highest education level attained (educ=0 or not). Other
predictor variables appearing in the partitions in lower levels include birth cohort,
family income, number of children ever had, working status, and household size.
Surprisingly, the demographic variable sex has no contribution in the classification
problem, while marital status and employment status are found not to be influential
as well. In addition, the factor “year” does not appear in any splitting rule. This
suggests that after controlling for the personal and work-related characteristics, the
work value orientations have not varied over the past few decades.

Leaf statistics of the SP tree are given in Tables 10.8 and 10.9, which present
the mean rank, the three most frequent rankings and the pairwise probability of the
six object pairs. For every leaf node, the Friedman test is applied to examine if
the rank order differences are significant across four job values and the test results
are summarized in column 7 of Table 10.9. It is found that all tests performed are
statistically significant at 0.1 level, indicating that at least one value tends to be
ranked higher. We conducted multiple comparisons between all pairs of values to
determine differences in terms of preferences. The induced ranking in the 28 leaf
nodes is provided in the last column of Table 10.9.

It appears that black Americans placed more emphasis on the extrinsic rewards
than whites, especially among those less educated (in leaf 12) and with lower family
income (in leaf 22). These racial differences may be attributed to their persistent
disadvantaged economic status and wage gap in the labor market (Martin and
Tuch 1993). On the other hand, resulting from anti-discrimination legislation and
improvements in the economic and social conditions in the US since the 1980s, a
greater emphasis on intrinsic job value was found among the younger black cohort
(in leaf 13).

For white Americans, the occupation effect is important. The result indicates
that professional, technical, and related workers attach relatively higher importance
to the intrinsic value “JMEAN” than workers in other occupational groups (in leaves
8, 16, 35, and 42). Given their greater skills and credentials, they felt more secure
in their ability to seek alternative employment and, thus, showed less favor to the
value “JSEC.” Nevertheless, professionals with more children have less propensity
to take risk in the labor market (in leaf 43).

Consistent with a hierarchy of needs perspective, nonprofessional part-time
working white Americans who are less educated, earn less, and have a large
household size have higher valuation on extrinsic value of job security and high
income when compared to their counterparts (in leaf 7). Meanwhile, the younger
cohort in their early stages of working careers tended to desire a job with good
prospects for advancement (in leaves 13, 24, and 27).

In summary, the study reveals that significant racial disparities in extrinsic and
intrinsic job value preferences existed in US throughout the last three decades. The
race effect in conjunction with other variables including education level, family
income, age, household size, number of children, and working status explains
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preferences on work values among Americans. Individuals with advantaged aca-
demic experiences, more income, larger household size, less children, and full-time
work were more concerned with the intrinsic value of jobs. All these interaction
effects have a stronger relationship to job attribute priority than gender.

Although the data utilized in this study covers a 30-year span, the cross-sectional
nature of the data limits our work to an incomplete picture from individuals’
transition in occupational values over time. Of course, the use of panel data will help
to address the changing trajectories in a life course perspective. Another limitation
of this study stems from the unavailability of time-series data. With only three
time points, it is difficult to confirm whether our conclusion of social and work
influences on job value preferences is short term or evidence of longer trends in
society. Collecting such data will help to place the findings in a larger perspective
and hence should be a goal of subsequent research.
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