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18.1  Biological Clocks

The daily revolutions of the earth around its axis are responsi-
ble for day and night and its annual orbit around the sun for the 
seasons with their fluctuations in day length. Most organisms 
have adapted to these diurnal and annual cycles. The strategies 
and mechanisms used are quite delicate and complicated.

It came as a surprise that photosynthesis and many other 
processes are, however, additionally controlled by internal 
clocks. Thus, photosynthesis fluctuates not only during the 
daily light-dark cycle (=LD; see the List of Abbreviations and 
http://www.circadian.org/dictionary.html) but also when the 
plants are kept under LL and constant temperature (Hennessey 
and Field 1991). However, the period length (period for short) 
of this rhythmic event then deviates from exactly 24 h and is 
therefore called circadian (from Latin circa, about, and dies, 
day). If in the absence of LD and temperature cycles other 
24 h time cues (also called zeitgeber, German for time giver) 
would control the rhythm, it should show an exact 24 h 
rhythm. This is not the case, demonstrating the endogenous 
nature of a clock that is locked to light signals (see Fig. 18.1).

18.1.1  Spectrum of Rhythms

Endogenous rhythms of organisms are not only tuned to the 
daily cycle of 24 h. The range of rhythms found in organisms 

covers ultradian (with periods of several hours to very short 
ones), circadian, and annual (with periods of about a year) 
rhythms. Other rhythms such as tidal, 14-day, and monthly 
ones cope with influences of the moon on the earth, mainly on 
the water movements of the oceans, and they are therefore 
found in organisms at the coasts and in the sea. Annual 
rhythms interact with the day-length changes during the year 
(see below). There are furthermore rhythms with periods cov-
ering several years. The following discussion of a “biological 
clock” is restricted to circadian rhythms. Even they are often 
not just composed of one clock type but form a “circadian 
system” consisting of two or more clocks with different prop-
erties which are or are not coupled mutually (Rosbash 2009; 
Bell-Pedersen et al. 2005; Panda and Hogenesch 2004).

18.1.2  Function of Circadian Clocks

The term “clock” usually implies a time-measuring device or 
function. For instance, the day length (or night length) can be 
determined by an organism. Since day length is a function of 
the time of the year (long days in summer, short days in win-
ter), it can be used to time certain events such as flowering or 
tuber formation of a plant or breeding of birds and mammals 
during the most appropriate season. These processes are 
denoted photoperiodism (see Chap. 19).

However, a clock can also be used to set a certain tempo-
ral order. For instance, the circadian control of our sleep- 
wake cycle ensures that we rise in the morning and fall asleep 
in the evening at a preferred time. Food intake and digestion 
are likewise controlled by this clock and gated to certain 
times of the day (Silver et al. 2011; Duguay and Cermakian 
2009; Forsgren 1935). The circadian clock will time these 
events also under constant conditions.

Furthermore, circadian clocks can serve as alarm clocks. 
They tell the organism important times of the day. For instance, 
the alarm clocks of insects such as bees allow them to visit the 
flowers of a plant at the time they offer nectar and/or pollen. 
From the standpoint of the plant, attracting certain insects is 
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more efficient if timed to their active period. If flowers open at 
night, pollination by moths or bats is facilitated. Evolution has 
worked on the plant and the pollinator to bring about this deli-
cate interplay controlled by circadian clocks. This phenome-
non is often termed synchronization to the environment.

Alarm clocks might also exist in man. Some humans are able 
to wake up at a certain time of the night without external help by 
relying on a “head clock” (Clauser 1954). Although not tested 
yet, this alarm device might be based on a circadian clock.

Circadian clocks can also be used by insects (Heinze and 
Reppert 2012; Homberg et al. 2011; Merlin et al. 2011; 
Reppert et al. 2010; Collett 2008), birds (Muheim 2011), liz-
ards (Foà et al. 2009), fishes (Leis et al. 2011), bats (Holland 
et al. 2010), and other animals (Ugolini et al. 2007) for navi-
gation and orientation using the direction of the sun. These 
animals have to take the changing position of the sun or the 
polarization pattern of the sky during the day into account, 
and the circadian clock is used as an internal time reference 
for this sun compass orientation (Able 1995; Schmidt- 
Koenig 1975). Some birds fly at night and orient by using a 
star compass, whereby the changing night sky is compen-
sated for (Dacke et al. 2011; Ugolini et al. 2005).

18.1.3  Properties and Formal Structure 
of the Circadian System

Besides being found in almost all living beings, from pro-
karyotes to higher organisms, circadian clocks possess a 
number of formal properties. The clocks:
• Have a period of roughly 24 h (about 18 and 28 h in 

extreme cases) under constant conditions

• Are synchronized by time cues (mainly daily light and 
temperature changes) to 24 h function on the cellular level 
and are heritable

• Are of advantage to the clock bearer
• Have a period that is only slightly dependent on tempera-

ture (if constant)
If, for instance, the plant Kalanchoe blossfeldiana is kept 

under constant weak green light conditions, the period of the 
opening and closing of the four petals of the flowers amounts 
to 22 h at a temperature of 22 °C (Fig. 18.1). If exposed to an 
LD 12:12, the flowers open during the light period and close 
during the dark period. The period of the cycle is now exactly 
24 h. Under constant conditions the “free-run” period is 
21.9 h at 15 °C, 22.3 h at 20 °C, and 21.3 h at 25 °C (Oltmanns 
1960). The differences in period are quite small compared to 
the influence temperature normally has on chemical and bio-
chemical reactions.

Mutants of organisms are known which differ in clock 
properties. For instance, the locomotor activity rhythm of 
the Drosophila mutant pers has a period of 19.5 h com-
pared to 24.4 h for the wild type, and the period of the 
mutant perl amounts to 28.6 h. Another mutant (per0) is 
arrhythmic.

Any useful model of a circadian system has to take the 
general properties above into account and has to offer mech-
anisms which lead to the circadian period of about 24 h, to 
the low temperature dependence of period, to ways of syn-
chronizing the rhythms to the 24 h time cues, etc. We will 
first discuss modeling of a circadian system (see Sect. 18.1.4) 
and then focus on some features of the light action on the 
clocks (see Sect. 18.1.5). Clocks in different organisms will 
be treated in subsequent sections.
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Fig. 18.1 Top: petal movement of a single flower of Kalanchoe bloss-
feldiana released from 12:12 h LD cycles in DD for 7 days shows free 
run of 22 h (whereas in LD the period is 24 h, not shown). Maximal 
(short red arrows) and minimal (short blue arrows) opening of flowers, 
period length τ (red double-headed arrow), phase Φ and amplitude 
(vertical red line) are indicated. Second diagram: rhythm annihilating 

light pulse (1st LP, red arrow), which, if given at the proper time (in 
minimum) and strength, induces arrhythmicity. A second LP (2nd LP, 
red arrow) starts the oscillation again. Insets show open and closed pet-
als of flowers; see also a time-lapse movie (links: http://nbn-resolving.
de/urn:nbn:de:bsz:21-opus-66695 and http://nbnresolving.de/urn:nbn: 
de:bsz:21-opus-66709)
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18.1.4  Modeling Circadian Clocks

Published models of circadian systems are of different kinds. 
Some are purely mathematical ones, describing the variables in, 
usually, differential equations; others are presented as block dia-
grams based on concepts from control theory. They often use 
numerical methods to simulate the circadian behavior. A third 
form of models describes reactions in words and figures without 
deriving or attempting quantitative relations (see the selected 
examples in Sects. 18.2, 18.3, 18.4, 18.5, 18.6, and 18.7).

Ultimately, the models should give precise qualitative and 
quantitative descriptions and predictions at the molecular, 
the cellular, and the organism level.

It is important to model not only the circadian system 
proper but also the inputs particularly the light pathways – 
and also the outputs of the clock.

The Light Input to the Clock The detailed way in which light 
affects a circadian system is important for a model. Light signals 
from the environment are perceived in photoreceptor molecules 
and organs which might differ widely between organisms. 
These photoreceptors have to be identified for each system. 
After photons are absorbed, the excitation energy affects the 
clock via a signal chain. The details of these pathways have to 
be known and the way in which the transformed light signal 
enters the clock has to be determined. Modeling requires spe-
cific knowledge for each circadian system under study.

The Circadian System and the Feedback Concept In 
models for circadian systems, the concepts of positive and 
negative feedback and of time delay are frequently used. 
Feedback simply means that a signal in the system is fed 
back to one or several points in the system and affects the 
production or the destruction of the signal itself. Control 
theory tells that feedback in a system might lead to oscilla-
tions, in particular if the signal in the feedback loop is 
delayed in a suitable way.

In several relevant models the feedback links can easily 
be visualized: often this “circular process” is denoted TTFL 
(for transcription-translation feedback loop) in the present 
context. The time delays which exist in the system could be 
due to transcription, translation, transport, and production or 
decomposition of clock-related components (see Sects. 18.2, 
18.3, 18.4, 18.5, 18.6, and 18.7).

A simple description of a feedback oscillator is as fol-
lows: let c(t) represent the concentration of an oscillating 
central variable in the clock (e.g., the protein FRQ). In a 
feedback model the signal c(t) in the loop is delayed in a 
suitable way before feeding back to reinforce (amplify) 
an already existing signal and induce oscillations. If we 
assume that the substance is produced at time t according 
to the concentration of the same substance c(t) at a 
 certain earlier time c(t − t0), we have a simple 
 feedback  system with delay t0. The situation can be 
expressed as

Production of substance at time = concentration of substancet K( ) − × aat time 0t t−( )( )

Here K is a positive constant and the negative sign indi-
cates that production is decreased if the concentration was 
high t0 hours earlier, while it is increased if concentration 
was low t0 hours earlier (inhibition occurs if concentration 
was high, activation occurs if concentration was low at some 
time units earlier).

The approach can describe sustained oscillations in the 
variable c if the delay t0 and the feedback signal are large 
enough (i.e., if K is large enough). Furthermore, the period 
of the oscillations will be about four times the delay time 
introduced. Circadian oscillations would thus need a delay of 
about 6 h in the example in order to end up with a 24 h 
period. Interestingly, experimental results pointing at an 
explicit delay of about 6 h in a molecular feedback chain of 
the clock in Drosophila has recently been published (see 
page 39 and Meyer et al. 2006).

Simple models based on explicit feedback and time delay 
concepts (but using nonlinearities that are always present in 
biological systems and needed to create sustained and lim-
ited concentrations in the systems) have been used to simu-
late features of circadian rhythms (Kalanchoe petal rhythm, 

Johnsson et al. 1973; Karlsson and Johnsson 1972), photope-
riodic flowering in Chenopodium (Bollig et al. 1976), and 
activity rhythm in the New Zealand weta (Lewis 1999). The 
specifications of the TTFL began later with the mechanisms 
of interaction between mRNA and protein levels (Hardin 
et al. 1990), and several molecular models have been pub-
lished (Leloup and Goldbeter 2008; Dunlap et al. 2007; 
Loros et al. 2007; Mackey 2007; Lema and Auerbach 2006).

Many models of the circadian clockwork have been pub-
lished, emphasizing different aspects of the oscillating sys-
tem (Dalchau 2012; Beersma 2005) and different approaches 
such as used in systems biology (Hogenesch and Ueda 2011; 
Yamada and Forger 2010; Ukai and Ueda 2010; Hubbard 
et al. 2009). For the history see Tyson et al. (2008) and 
Roenneberg et al. (2008).

Output Signals from the Clock It is also important to 
model reaction sequences downstream of the clock. The 
period of the circadian system will be reflected in the reac-
tions driven by the clock. Amplitude and phase of the driven 
reactions might change, but the final reactions that are 
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observable – the hands of the clock – have the same period as 
the clock. This is stressed since environmental light signals 
might affect the downstream reactions directly, thereby 
changing, for instance, their amplitude. Such changes should 
not be mistakenly ascribed to light effects on the circadian 
system itself.

The photoreception can be clock controlled by feedback 
links that change the properties of light receptor systems (for 
instance, control of the iris muscle in mammals, Fig. 18.10, 
and leaf position in plants). In addition, light adaptation and 
other changes of sensitivity to light might increase the level 
of complexity in modeling the light-induced effects on the 
circadian clock. Detailed modeling of the light reactions 
relies of course on experimental investigations of the light 
perception and transduction of the various organisms.

Posttranscriptional feedback loops (PTFL) have acquired 
much interest in recent studies, e.g., with respect to KaiC 
phosphorylation, Sect. 18.2, and also protein oxidation pro-
cesses (Brown et al. 2012). In such a system the parameters 
of the overall system will then be dependent on the PTFL 
and more complex output signals can be found.

Single and Multi-oscillator Models Several important fea-
tures of circadian systems are modeled on the assumption 
that one single oscillator controls the clock. A one-oscillator 
model does not preclude the presence of many cellular oscil-
lators. It only assumes that they are so strongly coupled to 
each other that they (in most cases) behave as one single unit 
(a “lumped” model).

However, in multi-oscillator models the circadian system 
can have new features that are not explainable under the 
assumption that the system consists of one single oscillator. 
The circadian system of humans is an example which is often 
modeled by two interacting oscillators. One of them is then 
assumed to have its strongest influence on (among other 
rhythms) the activity rhythm and the other one on (among 
 others) the body temperature rhythm. Usually the two oscilla-
tors are coupled and oscillate in phase, but the dual nature of 
the system can show up in, for example, isolation experiments 
(without time cues) where the rhythms might display different 
periods (Oishi et al. 2001; Kronauer et al. 1982; Wever 1979).

Modeling often starts with a simple one-oscillator 
assumption, an approach that eventually turns out to be too 
simple. Many circadian systems should be modeled as multi- 
oscillatory systems, even on a single cell level (Daan et al. 
2001; Roenneberg and Mittag 1996). In the case of 
Drosophila, several oscillators are nowadays implicated in 
more detailed modeling (see Sect. 18.6.3).

It is interesting that after a period of intensive experimen-
tal studies of the molecular mechanisms that underlie circa-
dian rhythms, formal modeling of circadian rhythms and their 
light reactions has gained impact. Many models of the circa-
dian clockwork have been published, emphasizing different 

aspects of the oscillating system. Not all of them focus on the 
light perception and the light reactions. We, therefore, do not 
mention all models here but refer to some papers (Beersma 
2005; Ruoff and Rensing 2004; Leloup and Goldbeter 1999; 
Forger et al. 1999; Lakin-Thomas and Johnson 1999; Jewett 
et al. 1999a, b; Leloup and Goldbeter 1998; Deacon and 
Arendt 1996; Goldbeter 1995; Diez- Noguera 1994).

18.1.5  Comments on Light, Photoreceptors, 
and Circadian Models

As has been emphasized, light is the most important input 
signal to a circadian system, and there are several general 
features that must be handled by models such as:
• Entrainment: Repetitive light pulses entrain the circadian 

rhythm (“entrainment,” “synchonization,” “phase lock-
ing”). The external light cycle will function as a synchro-
nizer. This general property of circadian systems has also 
to be simulated by models of circadian systems. The 
range of entrainment can be used to test models. Besides 
light, temperature changes are also entraining circadian 
rhythms. At the same time, the speed of the circadian 
clock is only marginally affected by the environmental 
temperature, because they are “temperature compen-
sated.” Models should take care of both facts (see, e.g., 
Ruoff and Rensing 2004, 1996).

• Single light pulses: Single light pulses given to an organ-
ism during free-run phase shift, the rhythm and a phase 
response curve describes its time course. A model should 
handle this and the light signal pathway into the clock in 
detail.

• Acclimation: Photoreceptors function over a huge range 
of light intensities. As an example, the human eye covers 
nine orders of magnitude. Still, the eye senses a contrast 
ratio of only 1,000. The reason is that the eye adapts to a 
light level that is interpreted as darkness. It can shift 
across six orders of magnitude. It takes 20–30 min to 
adapt from bright sunlight to complete darkness and about 
5 min to adapt to bright sunlight from darkness.

• Masking: Masking is an immediate response to stimuli 
such as light and other environmental influences that 
overrides the influence of the circadian system on behav-
ior and physiology of an organism. Masking effects differ 
from entrainment of the clock, and techniques can be used 
to distinguish between both (Rietveld et al. 1993). 
Nocturnal animals respond to darkness by becoming 
more active (positive masking) and to light by becoming 
less active (negative masking). Diurnal animals show the 
opposite response (Pendergast and Yamazaki 2011). In 
fruit flies (Kempinger et al. 2009) and primates (Erkert 
et al. 2006), nocturnal light can shift the circadian clock 
and increase nocturnal activity independent of the clock.

A. Johnsson et al.
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• Damping: Circadian rhythms might damp out under cer-
tain environmental conditions such as LL and/or DD or at 
too high or too low temperatures. There is apparently a 
permissive range allowing circadian rhythms to occur.

• Stopping the clock by light pulses: In many models phase 
shifts and amplitude changes brought about by light 
pulses are concomitant features. Under certain conditions 
an external light pulse can reduce the amplitude com-
pletely, thus stopping the oscillation, and models must 
cope with this feature. Arrythmicity was indeed found 
(see Winfree 1970) for certain combinations of irradiance 
and pulse durations in Drosophila (Chandrashekaran and 
Engelmann 1973), modeled by Leloup and Goldbeter 
(2001), in Culex mosquito (Peterson 1981a, b), and in 
Kalanchoe (Engelmann et al. 1978). The phase at which 
such an arrhythmicity can be induced was fairly restricted 
(subjective midnight point; the strength of the pulse has to 
be such that it is just between evoking a strong or a weak 
phase response curve). A mathematically and biologically 
interesting question arises: will a circadian system start 
oscillating spontaneously again after having been sent 
into the nonoscillatory state or is it stable? The so-called 
singularities, limit cycles, etc., have attracted interest with 
respect to the mathematical structure of the circadian sys-
tems. An interesting case of arrhythmicity in the Siberian 
hamster was reported by Steinlechner et al. (2002) (see 
page 51).
The necessary synchronization of a circadian clock to the 

environmental cycle is most frequently achieved by using the 
LD cycle as time cue, but temperature rises or temperature 
drops can also function as zeitgeber. In animals non-photic 
zeitgeber such as feeding, social cues, and other signals can 
entrain (Silver et al. 2011; Honma and Honma 2009; Satoh 
et al. 2006; Mistlberger and Skene 2005; Stephan 2002).

If a Kalanchoe plant is kept for some days in an air- 
conditioned chamber with 12:12 h LD and after the last 12 h 
of light transferred to DD, the circadian opening and closing 
of the flowers will continue to run with its characteristic 
period going through subjective day and night cycles. A light 
pulse would shift this rhythm or not, depending on the phase 
of the clock at which the pulse is applied. If given before the 
subjective midnight point, the rhythm will be delayed, if 
given after this point, the rhythm will be advanced. During 
the subjective day period, there is normally a “dead zone” 
where a light pulse is without effect on the rhythm. These 
phase shifts can be plotted with respect to magnitude and 
direction by a phase response curve. They are based on 
experiments with light pulses administered at different 
phases (see Fig. 18.2).

The dominant role of light in this entrainment might be 
due to the high reliability of light as zeitgeber, whereas 
temperature changes during day and night are less reliable. 
However, the beginning of the light period and correspond-

ingly of the dark period does not occur at the same time of 
the day during the course of the year. During the summer 
the light period is longer than during the winter, which is 
quite obvious at higher latitudes. This fact has to be taken 
into account by the organisms if light is the entraining 
agent.

Photoperiodic Induction The Bünning hypothesis, accord-
ing to which the circadian clock is used by organisms to 
measure day (night) length and initiate photoperiodic events 
accordingly (Bünning 1936), has been modeled. LD condi-
tions in combination with variations of the circadian clock 
could be used to predict, e.g., flower induction and hiberna-
tion. The modeling thus involves the proper treatment of the 
light perception for the induction of the photoperiodic events 
and the light perception for the phasing and entrainment of 
the clock. The two perception mechanisms can of course be 
unified – only experiments can verify the models proposed. 
Even simple approaches can in some cases model photoperi-
odic events fairly precisely, e.g., flower induction in 
Chenopodium as described by Bollig et al. (1976).

Photoreceptors Depending on the organism the photopig-
ments and photoreceptors for resetting the clocks can be 
quite diverse (Collin et al. 2009; Cermakian and Boivin 
2009; Foster et al. 2007 and Table 18.1). In many unicellu-
lars, such as yeast or most algae such as Ostreococcus 
(Sect. 18.3), no special receptor structures have been found 
(Gotow and Nishi 2008). Instead pigment molecules in the 
cells are changed by light and a transduction chain finally 
resets the clock. In animals specialized light receptive organs 
are used such as the vertebrate eyes or the compound eyes in 
insects. But often extraretinal photoreceptors serve to per-
ceive the synchronizing light either in addition to or instead 
of the usual eyes. For instance, in birds the pineal organ is 
light sensitive and synchronizes the circadian rhythm if the 
eyes are obscured or denervated or removed. In Drosophila 
flies, the circadian clock neurons in the brain are light sensi-
tive on their own via the blue-light pigment cryptochrome. 
Furthermore the Hofbauer-Buchner eyelets are extraretinal 
structures in the brain and serve as additional devices for 
synchronization (Sect. 18.6).

There are several reasons why organisms use multiple 
photopigments and photoreceptors (Foster and Helfrich- 
Förster 2001; Roenneberg and Foster 1997); see also page 
39, among them:
• Natural LD cycles do not simply consist of light steps. 

Instead, light is increasing and decreasing slowly during 
the twilight of the day.

• If organisms use certain light intensities during twilight as 
the onset, respectively, end of the day, the day length can 
be measured accurately and reliably and independently of 
daily weather conditions.

18 How Light Resets Circadian Clocks
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Fig. 18.2 (a) Eclosion rhythm of Drosophila pseudoobscura. Pupae 
kept in LD 12:12 h and released in DD at time 0 on first day. Curves in 
upper part show eclosion rate of a control population, the phase-shifting 
effect of a 25 sec blue-light exposure at two different phases (2 and 6 h 
after onset of DD, marked by blue vertical arrow) leading to a delay (→) 
and an advance (←), respectively (differences between the time of maxi-
mal eclosions of control (blue vertical dashed lines) and eclosion peaks 
of light-treated groups (red arrows). (b) A phase response curve plots the 

magnitude and direction (−values, delay; +values, advance) of the phase 
shifts against the phase at which the pupae were illuminated. Left curve 
(blue) for weak phase responses, right curve (red) for strong responses. 
CT is circadian time, CT 0 is the time at which the light period would 
begin if the LD12:12 would have continued. Inset shows a fly eclosing 
from the puparium (see also the time-lapse movies, links: [http://nbn-
resolving.de/urn:nbn:de:bsz:21-opus-66660] and [http://nbn-resolving.
de/urn:nbn:de:bsz:21-opus-66676])

Table 18.1 Chromophores overview of photopigments in various groups in this chapter. See list of abbreviations

Group Genus Photopigment (spectral range) → effects See page

Cyanobacteria Synechococcus Chlorophyll → energy state of cell 15
Algae Ostreococcus LOV-HK, Rhod-HK, CRY- photolyase family CPF1, CPF2 20
Algae Chlamydomonas CRYs, phototropin NPH1 22
Plants Arabidopsis CRYs, ZTL, phototropins (UV-A) and UVR (UV-B), PHY 26
Fungi Neurospora WC-1 (FAD/LOV), flavin-binding VVD receptor 32
Insects Drosophila CRY (LNv), rhodopsin (compound eye, ocelli, HB eyelet) 39
Mammals Mammals Melanopsin (ipRGC), rhodopsins (rods, cones) 50
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• During twilight at dusk and dawn, not only the intensity 
of light changes but also its spectral composition. 
Different qualities of the environmental light can be used 
by a set of different photoreceptors.

• Entrainment by dawn and dusk is more effective than 
lights on/off programs in all animals tested so far includ-
ing man Fleissner and Fleissner (2001).

• The signal-to-noise ratio is reduced if several inputs are 
used. Photopigments like PHY (Auldridge and Forest 
2011), CRY (Chaves et al. 2011), opsins (Foster et al. 
2007), and others synchronize circadian rhythms. 
Properties and functions of relevant pigments are described 
under the examples for organisms with circadian rhythms 
(Sects. 18.2, 18.3, 18.4, 18.5, 18.6, and 18.7). Depending 
on the kind of photoreceptor, different spectral wave-
lengths are more or less effective in resetting the circadian 
clock. Using varying fluence rates of colored light, action 
spectra can be obtained (see Chap. 8) which tell us how 
many photons of the different wavelengths are needed in 
order to evoke the same effect (see page 35). The effect of 
light depends, however, not only on the wavelength and 
the fluence rate but also on the phase of the circadian clock 
at which the light was given (see Sect. 18.1.5) and on the 
duration and shape of the pulses.

18.1.6  Adaptive Significance and Evolutionary 
Aspects of Circadian Clocks

The adaptive significance of possessing a circadian clock 
(Johnson 2005) has been demonstrated in cyanobacteria by 
using mutants with different periods in competition with 
each other and with the wild strain (Woelfle et al. 2004; 
Gonze et al. 2002; Johnson and Golden 1999; Ouyang et al. 
1998): see also page 15, in Arabidopsis (Hut and Beersma 
2011; Yerushalmi et al. 2011; Michael et al. 2003; Green 
et al. 2002), in Drosophila (Xu et al. 2011; Rosato and 
Kyriacou 2011; Kumar et al. 2005; Beaver et al. 2002; Fleury 
2000; Klarsfeld and Rouyer 1998), and in mammals (Daan 
et al. 2011; Tauber et al. 2004; Sharma 2003; Hurd and Ralph 
1998; DeCoursey and Krulas 1998).

The different functions of circadian clocks just mentioned 
are surely not the only reasons why they evolved. Winfree 
(1986) and others have discussed that early in evolution cir-
cadian clocks might have served to protect organisms from 
adverse effects of light. Circadian timing and light reception 
might have coevolved and even preceded the evolution of 
specialized photoreceptors and eyes. Homologies between 
pacemaking molecules and ancient photopigments from 

fungi to mammals suggest an evolutionary link between 
modern clock proteins and ancient light sensing proteins 
(Tauber et al. 2004; Sharma 2003; Crosthwaite et al. 1997). 
However, this link is difficult to prove. An interesting exam-
ple is CRY, which is used as a clock protein in mammals but 
as a photopigment in Drosophila’s clock neurons in the 
brain. In peripheral clocks of Drosophila, CRY appears to 
fulfill both roles. Furthermore, in higher animals (verte-
brates, insects) the retina is not only a photoreceptor organ 
but harbors at the same time (peripheral) clocks (see 
Sect. 18.7.4). It would be interesting to know whether primi-
tive eyes (for instance, eye spots) contain circadian clock 
cells. Among vertebrates, retinal clocks seem to be quite 
ancient (lamprey Menaker et al. 1997).

Vertebrates show a wide evolutionary variety in their cir-
cadian system. They possess a so-called circadian axis (ret-
ina, pineal, suprachiasmatic nucleus) with circadian 
oscillators. In mammals, the pineal as part of this axis does 
not contain a circadian oscillator. Mammals also lack extra-
retinal circadian photoreceptors (in the pineal) in contrast to 
other vertebrates (Bertolucci and Foà 2004). A “nocturnal 
bottleneck” that could have led to the evolution of mammals 
and their exceptional circadian system is discussed by 
Menaker et al. (1997).

18.1.7  Current Concepts and Caveats

To understand how circadian clocks are synchronized by 
light and other time cues, the mechanisms of circadian oscil-
lators have to be known, as well as the photoreceptors and 
pigments involved in the entrainment. The clock mecha-
nisms are currently intensively studied (see Sect. 18.2 and 
the following ones). The prevailing opinion is that feedback 
loops (TTFLs) between clock gene products acting on the 
promoters of their genes are at the heart of these clocks 
(Hardin 2005). Transcription and translation are thus 
involved in modeling the clock.

However, the picture is probably more complicated, and 
cautions have been raised (Lakin-Thomas 2006). For 
instance, these TTFLs might not be the core clocks, but ele-
ments between the environmental inputs and the clock mech-
anism proper (Merrow et al. 1999). Other cases have been 
reported which make it difficult to accept the presently 
favored concept of a circadian clock mechanism as a general 
one. Enucleated Acetabularia still has a circadian rhythm of 
oxygen production (Karakashian and Schweiger 1976), dry 
seeds of bean plants show circadian rhythms in respiration 
(Bryant 1972), and some enzymes of human erythrocytes 
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fluctuate in a circadian way (O’Neill and Reddy 2011; 
Ashkenazi et al. 1975). What is common to the two last men-
tioned systems is the complete lack of nucleic acid metabo-
lism. This is an important issue, since several of the recently 
proposed models of circadian systems use feedback systems 
in transcriptional and translational events. It might therefore 
be wise to keep an open eye on alternative mechanisms 
underlying the circadian oscillators. Of course, there is no 
guarantee that all circadian clocks use the same mechanism, 
although their properties are often quite similar.

Proteins could, for instance, be involved in timing mecha-
nisms. We refer to the circadian clock mechanism in 
Synechococcus in Sect. 18.2, to Ostreococcus in Sect. 18.3, 
and to a report of Meyer et al. (2006) on the Drosophila 
clock (page 39). Another interesting case is the diapause of 
embryos in the eggs of silk moths (Bombyx mori), which is 
broken by exposure to low temperature. The duration of the 
chilling period is measured by esterase A4 complexing with 
another enzyme, PIN. After 14 days it dissociates from PIN, 
the conformation of the esterase A4 changes, and it becomes 
suddenly active. This enzyme is thus a kind of molecular 
timer (although here not on a 24 h basis, Kai et al. 1999).

Membranes and electrical activities might also be 
involved in the clock mechanism. Colwell suggested that 
neural activities in the suprachiasmatic nucleus (SCN) are 
required to generate rhythms in gene expression (Colwell 
2011); see also results of Nitabach et al. (2005) in Drosophila.

Even if TTFLs are not at the heart of all clock mecha-
nisms, it is still possible to build models on the general con-
cept of feedback as discussed on page 6 – the delays and the 
molecular mechanisms have then to be found among other 
cellular reactions.

Photic phase response curves are similar in all organisms 
and this is true for mammals, nocturnal as well as diurnal, 
including man. However, the amplitude and duration of the 
advance and delay portion and the presence and length of a 
dead zone (see page 10) might vary in different species 
(Rusak and Zucker 1979). This allows for adjustment of the 
phase and period of the circadian clock to the 24 h day.

We will now discuss the circadian clocks and 
 photoreceptors in selected examples.

18.2  Clocks and Light in Cyanobacteria

The simplest organisms known to possess a circadian clock 
are cyanobacteria. These prokaryotes are among the small-
est, albeit most abundant, organisms on earth and were for a 
long time not thought to possess a circadian clock. It was 
assumed that a cell dividing several times per day (e.g., 
Synechococcus elongatus once every 5–6 h, Mori et al. 1996) 
would have no use for a circadian timing mechanism and 
that a nucleus is needed.

However, Stal and Krumbein (1985a, b) observed in cya-
nobacteria a circadian nitrogenase activity in reducing atmo-
spheric nitrogen to ammonia. This enzyme is inhibited by 
oxygen and has therefore to be protected against oxygen pro-
duced during the day by photosynthesis. Evolution solved 
this dilemma in two ways, by either separating the processes 
in space or in time (Mitsui et al. 1986). Later it turned out 
that gene expression, metabolism, and cell division are all 
driven by a circadian clock (Johnson 2010). Besides 
Synechococcus (Mackey et al. 2011), the circadian rhythms 
of other cyanobacteria such as Synechocystis (Layana and 
Diambra 2011), Cyanothece (McDermott et al. 2011; 
Bradley and Reddy 1997), and Prochlorococcus (Mullineaux 
and Stanewsky 2009; Axmann et al. 2009; Zinser et al. 2009) 
were also studied. Synechococcus and Prochlorococcus 
dominate the picophytoplankton of the oceans, the latter 
being probably the most abundant photosynthetic organism 
on earth. In the following the main properties of the circa-
dian clock, clock-driven processes, and the present view of 
the molecular clockwork and its light resetting in cyanobac-
teria are presented. How circadian clocks in cyanobacteria 
might have evolved is discussed by Johnson et al. (2011), 
Hut and Beersma (2011), and Simons (2009).

The necessary temperature independence of the period 
length (Sect. 18.1.5) was indeed found, even in the thermo-
philic cyanobacterium Thermosynechococcus elongatus tested 
in a temperature range between 35 and 55 °C (Onai et al. 2004). 
Since chemical reactions are usually temperature dependent 
with a Q10 often around two to three, meaning that the reaction 
is twice or three times as fast at a temperature 10 °C higher, 
mechanisms are needed to compensate the temperature effects 
(proposals; see Hatakeyama and Kaneko 2012; Akiyama 2012; 
Murakami et al. 2008; Kotov et al. 2007).

The circadian clock should be accurate despite a noisy 
environment inside and outside the cell. The individual oscil-
lators in cyanobacteria are indeed quite stable. The stability 
in a population could be due to intercellular coupling, but 
this has been shown to be negligible theoretically and experi-
mentally (Amdaoud et al. 2007). The high stability of indi-
vidual oscillators in cyanobacteria must therefore be based 
on genetical and metabolic grounds.

In spite of the high precision of the clock, it has to be 
synchronized with the 24 h environment. The main environ-
mental time cues are light and temperature. Lin et al. (1999) 
showed for Synechococcus that temperature pulses in addi-
tion to light entrain the circadian clock, but light was the 
most efficient time cue under the experimental conditions 
chosen. The rhythm continues if the cultures are transferred 
to LL or DD conditions, but as in other diurnal (i.e., day 
active versus nocturnal) organisms, the circadian period is 
shorter at higher light intensities and longer under lower 
intensities (25 h in DD, 22.6 h in LL, Aoki et al. 1997; Kondo 
et al. 1993).
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Light phase shifts the rhythm (Golden et al. 2007), and a 
preliminary action spectrum has been determined (Inouye 
et al. 1998). It resembles the absorption spectrum of chloro-
phyll, indicating that photosynthesis in the thylakoids is 
responsible for the entrainment and phase shifting of the 
rhythm. At least, no other photoreceptor as an essential input 
pathway has been found in screens for phase-resetting mutants, 
although seven blue-light candidates have been predicted 
(Mackey et al. 2009). Instead, the phase of the clock seems to 
depend directly on the energy state of the cell, and the meta-
bolic changes (caused by light) synchronize the clock (Mackey 
et al. 2011). This was tested by changing the ATP/(ADP + 
ATP) ratio in an oscillating in vitro system consisting of KaiA, 
KaiB, and KaiC. The metabolic effects of darkness were simu-
lated by adding ADP to reduce the ratio of ATP/(ADP + ATP). 
To simulate the return to light, pyruvate kinase was added to 
convert the ADP to ATP. Phase shifts in the phosphorylation 
rhythm resulted, and the phase response curve obtained 
in vitro was similar to the one in vivo (Rust et al. 2011). A 
model by Rust et al. (2007) mimicked the phase response 
curve obtained from in vitro experiments. There seems to be a 
direct sensing of the electron flow by electron carriers of pho-
tosynthesis and respiration which synchronize the clock by 
affecting the ATP/ADP ratio and the oxidative state of the 
plastochinon pool (see Fig. 18.3 and its legend).

The clock mechanism has been studied intensively, and 
the results are reviewed in a number of papers, such as 
Johnson et al. (2011), Mackey et al. (2011), Dong et al. 
(2010a), Loza-Correa et al. (2010), Taniguchi et al. (2010), 
Brunner et al. (2008), and Iwasaki and Kondo (2004). In the 
following we will briefly sketch it and its properties and the 
inputs and outputs.

The circadian system of cyanobacteria was supposed to 
consist of a negative feedback loop where the products of a 
gene cluster of three open reading frames KaiA, KaiB, and 
KaiC influence the transcription of their genes (Ishiura et al. 
1998). It turned out, however, that these Kai proteins form a 
basic timing process of the circadian clock which, in contrast 
to the circadian clock mechanisms in eukaryotic organisms, 
persists even without transcription and translation (Nakajima 
et al. 2005).

The properties of the circadian rhythm are not ascribed to 
the Kai promoters, but to the Kai proteins. Specific regula-
tion of the KaiBC promoter is not essential for the oscilla-
tion; even an Escherichia coli-derived promoter could do, 
provided the promoter supports sufficient RNA polymerase 
activity. A functional clock can be assembled from the KaiA, 
KaiB, and KaiC proteins in the presence of ATP in a test tube 
and exhibit its regular circadian period without damping for 
at least three cycles autonomously. The in vitro rhythm is 
furthermore temperature compensated, and it reflects the 
period if proteins from mutations affecting period length are 
used. The in vivo phase-resetting effect of light can be mim-

icked in vitro by adding ATP. The KaiABC clock has been 
studied biochemically, biophysically, and structurally 
(Murayama et al. 2011; Johnson et al. 2011).

How this protein clockworks is depicted in Fig. 18.3, 
which has been simplified by concentrating on the mecha-
nisms which are used for the light entrainment of the clock 
(Kim et al. 2012). For details of the KaiC loop and its phos-
phorylation and dephosphorylation, see Qin et al. (2010). The 
players are the KaiC, KaiB, and KaiA proteins. KaiC consists 
of six monomers of two duplicated domains, CI (=N-terminal 
ring) and CII (=C-terminal ring). They form a homohexamer, 
which can be observed under the electron microscope (Mori 
et al. 2002). Twelve ATP molecules bound between its N- and 
C-terminal domains. Both domains possess ATPase activity, 
and the interfaces between CII domains are sites of phos-
photransferase activities (Egli et al. 2012). KaiA enhances 
phosphorylation of KaiC, and KaiB inhibits it. The histidine 
kinase SasA interacts with KaiC and is necessary for a robust 
circadian rhythm (Iwasaki et al. 2000). KaiC contains two 
ATP-/GTP-binding domains which play an important role in 
the rhythm generation (Nishiwaki et al. 2000).

KaiC phosphorylation is the molecular timer for the circa-
dian rhythm in Synechococcus. The energy consumed per 
day amounts to 15 ATPs only (net, the absolute numbers of 
ATP molecules hydrolyzed and synthesized over the daily 
cycle are unknown). The period is mainly determined by the 
KaiC, since period mutations (ranging from 14 to 60 h 
(Kondo et al. 1994)) consist of single amino acid substitu-
tions in the KaiC protein.

How this chemical clock could work has been discussed 
by Naef (2005), and models have been proposed by Kurosawa 
et al. (2006). Since no distinct phase element was found, the 
question is, how this timing mechanism enables global circa-
dian gene expression. Apparently, the clock regulates the 
compaction (condensation or super-coiling status) of the 
chromosome and in this way controls the access to promoter 
elements and expression of genes globally, leading to circa-
dian oscillation in many parts of metabolism and physiology 
(Woelfle and Johnson 2006; Cervený and Nedbal 2009; 
Nakahira et al. 2004; Smith and Williams 2006; Mackey et al. 
2011) and this has been modeled (e.g., Miyoshi et al. 2007). 
There are at least two classes of clock-regulated genes: about 
80 % of the assayed promoters are active during the day with 
a maximum near the end of day. In the smaller group expres-
sion has an opposite phase and is maximal at dawn and at 
night when the chromosome is compacted and minimal at 
dusk. These genes may encode, for instance, oxygen- sensitive 
enzymes, and they perform best at night, when photosynthe-
sis is absent. Chromosome dynamics or DNA topology may 
thus be phase determining (Min et al. 2004). The global mod-
ulation of promoter activity as a result of circadian changes in 
the topology of chromosomes was termed oscillating nucle-
oid or oscilloid model (Woelfle et al. 2004).
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This simple protein clock explains, also, why and how a 
circadian timing mechanism can function in cyanobacteria 
with generation times of 8 h or less (Kondo et al. 1997) and 
how division can still be gated by the circadian clock (Mori 
et al. 1996).

Using a bacterial luciferase gene as a reporter of clock- 
regulated promoter activity allowed continuous video 
recording of the amount of emitted light from many clones 
on a medium in Petri dishes (Kondo et al. 1993). First, the 
promoter for the psbAI gene (one of three psbA genes 
encoding a critical photosystem II reaction center protein, 
D1) was found to be controlled by the circadian clock. 

Then it was discovered that virtually all promoters in the 
genome are regulated by the circadian system. Most of 
them are activated during subjective day; some, such as 
the purF promoter (purF synthesis), are activated during 
the night. Division is also controlled by the circadian 
clock, even if occurring faster than 24 h (Johnson 2010; 
Dong et al. 2010b).

With low-light-level microscopy, the rhythm in single 
Synechococcus cells could be monitored (Mihalcescu et al. 
2004), and recently confocal fluorescence correlation spec-
troscopy was used to study the dynamics of underlying pro-
cesses (Goda et al. 2012).
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Fig. 18.3 Model of the circadian clock of the cyanobacterium 
Synechococcus elongatus (inset, kindly supplied by Kondo: A cell). 
The hexameric KaiC protein (KaiC6m, red) consists of 6 monomeric 
KaiC proteins (KaiC1m with N- and C-terminal domains at very right) 
and undergoes during the course of a day (thick green arrows, night and 
day indicated by N and D in black circle) conformational changes (top 
and right, condensed as indicated by small dashed ovals; bottom, 
relaxed with wider dashed ovals, both with double-headed arrow indi-
cating the width). The cycling of this loop is governed by Mg-ATP 
phosphorylation during the day due to the KaiA protein (green struc-
ture; genes in italics). Mg-ATP competes with the hexameric KaiB 
(KaiB4m, brown circles) for KaiC. Later the phosphorylated (P’s) KaiC 
becomes dephosphorylated, and the KaiB and KaiA are dissociated by 
mid-morning (relaxed conformation). Still later, under the influence of 
KaiA, assembly begins again and a new cycle starts. A rhythmic output 

(~bottom right, upper black arrow) pathway transduces temporal infor-
mation from the oscillator to the genome by switching the coiling struc-
ture of the chromosome DNA (blue waves) from supercoiled (top, day) 
to relaxed (bottom, night): this affects metabolism via high and low 
amplitude expressing genes. There is furthermore an increase (→) in 
transcription via SasA and RpaA (~bottom right, lower black arrows). 
Red and blue light (flashes, top left) is absorbed by chlorophyll a in the 
thylakoid membrane (as in the following figures light is an L in a yellow 
circle and its absorption indicated in yellow). The photosynthetic elec-
tron transport and the respiratory electrons determine the plastoquinone 
ratio between the reduced (blue circle Qred) and oxidized (red circle 
Qox) form. Oxidized plastoquinone binds to KaiA (green structure), 
which aggregate (not shown) and degrade (light green oval, broken bor-
der) (After Mutoh et al. (2013), Kim et al. (2012), Mackey et al. (2011), 
Johnson et al. (2011), Qin et al. (2010))
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How are all the outputs mentioned coupled to the circa-
dian clock? The temporal information is transmitted from 
the Kai oscillator to RpaA via the SasA-dependent positive 
pathway. A further pathway is the LabA-dependent negative 
pathway. It is responsible for feedback regulation of 
KaiC. However, the labA/sasA double mutant has still a cir-
cadian kaiBC expression rhythm. That indicates a third cir-
cadian output pathway, which is CikA dependent. It acts as a 
negative regulator of kaiBC expression independent of the 
LabA-dependent pathway. The labA/sasA/cikA triple mutant 
is almost arrhythmic, in spite of a preserved circadian KaiC 
phosphorylation rhythm. A model was proposed in which 
temporal information from the Kai oscillator is transmitted 
to gene expression through these three separate output path-
ways (Taniguchi et al. 2010).

18.3  Algal Clocks: From Simple to Complex

Circadian rhythms are also found in eukaryotic algae such as 
Euglena (Mittag 2001), Chlamydomonas (Schulze et al. 
2010), Acetabularia (Yang and de Groot 1992), and 
Lingulodinium (Wagner et al. 2005). As an example, we will 
select an extreme, the smallest known, eukaryote Ostreococcus 
tauri and mention additionally the more complicated and 30 
times larger Chlamydomonas.

Ostreococcus tauri belongs to the Chlorophyta (class 
Prasinophyceae) and was discovered in 1994 in the pico-
plankton of the Thau lagoon in Southern France by Courties 
and Chretiennot-Dinet (1994). The coccoid cells are hap-
lonts, only about 1 μm small, and the ultrastructure is very 
simple: they lack a cell wall and contain only a single chlo-
roplast, mitochondrion, and Golgi body besides the nucleus. 
Other Ostreococcus species live in many oceanic regions. 
High-light and low-light adapted ecotypes of Ostreococcus 
in the Pacific Ocean and the subtropical and tropical North 
Atlantic have been described by Demir-Hilton et al. (2011). 
In the marine environment the long wavelengths are absorbed 
within the first meters of the water. Therefore, specific blue- 
light receptors such as aureochromes are used to absorb the 
short wavelengths (Djouani-Tahri et al. 2011a).

The genome has been completely sequenced and anno-
tated (which means that after identification of the elements 
on the genome, biological information has attached to the 
sequences). For further information, see also link [http://
www.geneontology.org/GO.evidence.shtml||geneontology] 
and Corellou et al. (2009). It is tiny (13 Mb) and about 20 
chromosomes are densely packed (Grimsley et al. 2010; 
Keeling 2007) containing only ~8,000 genes. A genome- 
wide analysis of gene expression was conducted under LD 
conditions by Monnier et al. (2010) and showed that almost 

all were rhythmic. Transcriptional regulation of the main 
processes in the nucleus and the organelles, such as DNA 
replication, mitosis, and photosynthesis, was found to a high 
extent. Genes involved in handling oxidative stress and DNA 
repair allow Ostreococcus tauri to grow under a wide range 
of light intensities.

Ostreococcus can be manipulated and propagated easily. 
Transcriptional and translational luciferase reporter lines are 
available and allow to record the expression of individual 
clock genes in vivo and to differentiate between effects on 
transcriptional and posttranscriptional processes (Djouani- 
Tahri et al. 2011b; Corellou et al. 2009).

Work by Thommen et al. (2010) and Corellou et al. 
(2009) suggests that its circadian clock is a simplified 
Arabidopsis clock (see Sect. 18.4.1 and Fig. 18.5). Models 
with only one feedback loop were proposed by Pfeuty et al. 
(2012) and Troein et al. (2011) to describe the Ostreococcus 
clock (see Fig. 18.4). The reason for using such a simple 
model is the finding that this alga possesses only two of the 
clock genes known in land plants such as Arabidopsis thali-
ana (which expresses five homologues of TOC1 and eight 
of CCA1; see Fig. 18.5). The model is based on a negative 
transcriptional feedback loop between TOC1and CCA1. 
The time delay is brought about by the timing of the expres-
sion of TOC1 and CCA1. CCA1 represses TOC1 expres-
sion during most of the day except during a couple of h 
before dusk by binding to an evening element sequence 
(EE) in the TOC1 promoter (Morant et al. 2010). It after-
ward induces CCA1 transcription, so that CCA1 is 
expressed in the night and early morning (Corellou et al. 
2009; Harmer et al. 2000).

With this model light responses like those resulting from 
changing the light period from 2 to 22 h in a 24 h day, or 
skeleton photoperiods (a short light pulse at the beginning 
and at the end simulates the LD period; see Pittendrigh 
1964), have been successfully simulated (Troein et al. 2011; 
Thommen et al. 2012).

The Ostreococcus clock is insensitive to fluctuations in 
light intensities (clouds, different depths in the water). This 
is due to the phase response curve (see Sect. 18.1.5), which 
possesses a broad dead zone in which light does not shift the 
phase of the rhythm. Only when light hits the oscillator out-
side the dead zone, it is sensed and re-entrains the oscillator. 
While synchronized with the LD cycle, the oscillator is blind 
to light. The light intensities might fluctuate considerably 
without affecting the clock (Pfeuty et al. 2012).

In Ostreococcus tauri a histidine kinase LOV-HK was 
found as a new class of eukaryotic blue-light receptor 
(Djouani-Tahri et al. 2011a). It is related to the large family 
of LOV-histidine kinases found in prokaryotes. It senses blue 
light and is under circadian control. But it is also important 
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for the function of the circadian clock under blue light inde-
pendent of its blue-light-sensing property. Another histidine 
kinase, rhodopsin-HK (Rhod-HK), probably senses longer 
wavelengths than LOV-HK (Pfeuty et al. 2012). Using long- 
and short-wavelength photoreceptors (see Fig. 18.4) allows 
the cells to discriminate light variations due to depth changes 
from those due to the day/night cycling.

Cryptochromes are further blue-light receptors in 
Ostreococcus. Five genes of the Cry/photolyase family 
(CPF) were identified by Heijde et al. (2010). All five CPF 
members are regulated by light, and CPF1 and CPF2 display 
photolyase activity. CPF1 is furthermore involved in the 
maintenance of the Ostreococcus circadian clock.

The molecular basis of light-dependent control of cell 
division in Ostreococcus was studied by Moulager et al. 
(2010, 2007). They found that the clock regulates directly 
cell division independently of the metabolism. The transcrip-
tion of the main cell cycle genes such as cyclins and kinases 
was under circadian control.

Studies by van Ooijen et al. (2011) and O’Neill et al. 
(2011) in animals and plants revealed that posttranslational 
events such as rhythmic protein modifications are also 
involved in circadian timing. Non-transcriptional mecha-
nisms are able to sustain circadian timing in Ostreococcus, 
although normally it functions together with transcriptional 
components. Targeted protein degradation in the circadian 
mechanism seems to play a central role. It was proposed that 
the oldest oscillator components are non-transcriptional, as 

in cyanobacteria, and conserved across the plant and animal 
kingdoms.

Another much studied unicellular green alga is 
Chlamydomonas reinhardtii (Chlorophyta > Chlorophyceae 
> Volvocales > Chlamydomonadaceae). It is of 14–22 μm 
size and found worldwide in freshwater but also in the soil. It 
is used as a model organism for molecular biology; for stud-
ies of flagellar motility, chloroplast dynamics, biogenesis, 
and genetics; and also for its circadian clock. Phototactic 
movement (swimming towards light) is driven by the flagel-
lae and controlled by a circadian clock (Bruce 1972; Gaskill 
et al. 2010). This clock furthermore controls UV sensitivity 
(Nikaido and Johnson 2000), chemotaxis (Byrne et al. 1992), 
adherence to glass, cell division (Goto and Johnson 1995; 
Bruce 1970), and starch and nitrogen metabolism. The period 
length is temperature compensated, as in all circadian 
rhythms.

Light pulses with a certain fluence rate and wavelength at 
the breakpoint between delay shifts and advance shifts 
reduce the amplitude of the rhythm to such a degree that the 
clock stops its oscillation and reaches a “singularity.” The 
results are interpreted in the context of limit cycle models of 
circadian clocks and are used to suggest new strategies for 
measuring action spectra of light-induced clock resetting 
(Johnson et al. 1992).

The phase-shifting effect of light pulses was studied by 
Johnson et al. (1991) and Kondo et al. (1991). Blue and red 
light resets the circadian clock. PHY homologues of higher 
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Fig. 18.4 Ostreococcus tauri cell (inset) and molecular model of its 
circadian clock and light inputs. The clock consists of a negative tran-
scriptional/translational feedback loop (TTFL) between TOC1 and 
CCA1. Transcription and translation of TOC1 (green oval) activates 
(thick green arrows) transcription of the CCA1 protein which represses 
(thick red – I) TOC1 expression. CCA1 is degraded by proteasomes 
(red oval, broken border) with a maximum during the day. Degradation 
of TOC1 (green oval, broken border) by proteasomes peaks in the dark 
and is diurnally regulated. This transcription/translation feedback loop 
(TTFL, thick arrows/lines) drives a posttranslational circadian feedback 
loop (PTFL, ring of differently colored arrows, mechanism unknown) 

and an output of it is seen in the circadian rhythm of the redox state of 
peroxiredoxin (PRX, not shown). Normally the TTFL and PTFL are 
coupled, but in DD transcription ceases and the TTFL stops. However, 
the PRX rhythm persists, because it is driven by the PTFL. Long- (red 
flash) and short-wavelength (blue flash) light (L in yellow circle) are 
absorbed by a rhodopsin histidine kinase (Rhod-HK, oval), respec-
tively, LOV histidine kinase (LOV-HK, oval) and affect via histidine 
phosphotransfer (HPT) TOC1. There is furthermore a feedback (yellow 
arrows) from the TTFL to the photoreceptors (After Pfeuty et al. 
(2012), McClung (2011) and Troein et al. (2011). Inset courtesy of 
François-Yves Bouget and Marc Lefranc)
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plants are not present, but homologues of cyanobacterial 
PHY (CHLAMYOPSIN5 and MIXED LINEAGE PROTEIN 
KINASE) and the cyanobacterial kinase CikA and two CRYs 
with significant homology to the CRYs from plants and ani-
mals were found (Mittag et al. 2005). Whether photoreceptor 
proteins ChR-1 and ChR-2 in the eyespot of Chlamydomonas 
reinhardtii at the outer chloroplast envelope are involved in 
the phase shift is not known (Hegemann 2008).

The genome of Chlamydomonas reinhardtii is entirely 
sequenced (Matsuo and Ishiura 2011). Subproteome and 
phosphoproteome analysis were and are used for finding 
photoreceptors (Boesger et al. 2009). Much work is devoted 
to the clock network and to clarify how clock-related factors 
are interconnected. System biology approaches are used for 
this means, metabalance (May et al. 2009; Manichaikul et al. 
2009) and functional proteomics (Wagner and Mittag 2009). 
Based on elementary flux mode analysis, Schäuble et al. 
(2011) combined sequence information with metabolic path-
way analysis and included circadian regulation. They are 
able to predict changes in the metabolic state and hypothe-
size on the physiological role of circadian control in nitrogen 
metabolism. Review articles of the circadian rhythm of 
Chlamydomonas are by Schulze et al. (2010), Brunner et al. 
(2008), Mittag and Wagner (2003), Werner (2002), Suzuki 
and Johnson (2002), and Mittag (2001), and for modeling the 
Chlamydomonas clock, see Jacobshagen et al. (2008), 
Matsuo and Ishiura (2011), and Breton and Kay (2006).

The germination efficiency of zygospores of 
Chlamydomonas reinhardtii depends on the photoperiod and 
is higher in long days and lower in short days (Mittag et al. 
2005; Suzuki and Johnson 2002). A CO homologous gene 
(see Sect. 18.4.3) is influenced by day length and by the cir-
cadian clock, being more expressed in short photoperiods. 
Under these conditions algae accumulate more starch and 
express genes which coordinate cell growth and division 
(Romero and Valverde 2009). CO orthologs might represent 
ancient regulators of photoperiodic events. They arose early 
in the evolutionary lineage leading to flowering plants 
(Serrano et al. 2009).

18.4  Light Effects on Circadian Clocks 
in Plants: Arabidopsis

To grow and develop successfully, it is essential for plants to 
synchronize metabolism and physiology with the environ-
ment and the seasonal changes. Quite a number of plants can 
also synchronize the opening of their petals with the activity 
of visiting insects such as bees and butterflies, which in 1751 
led Linnaeus to construct a flower clock: various plants are 
planted as a kind of clock circle in a round garden bed in 
such a way that their flowers open or close at the correspond-
ing day- and nighttime. A circadian clock is often  responsible 

for it, and this clock allows also to measure day length to 
anticipate changes in the surrounding, be it daily or seasonal 
ones. In both cases, light signals are the main pathways to 
transfer these transitions to the plant.

Many processes in plants are directly affected by light 
such as photosynthesis (Chaps. 16 and 17), photomorpho-
genesis, and photoperiodism (Chap. 19) and stomatal move-
ments. The biological clock processes do not immediately 
show their light dependence but are synchronizing the plants 
to the external light program and its period (or rhythm). In 
general, multiple photoreceptors sense the quality and quan-
tity of light in the environment (Chaps. 12, 13, and 14). Red 
light is sensed by phytochromes (PHYs), blue light by cryp-
tochromes (CRYs) and ZTL of the ZTL family (ZTL and 
FKF1). Furthermore phototropins (absorbing in the UV- 
A/blue, Heijde and Ulm 2012) and UVR8 absorbing in UV-B 
(Rizzini et al. 2011) are used by plants. This system of differ-
ent photoreceptors with partially antagonistic functions and 
overlapping action spectra detects radiation of different 
wavelengths over a wide spectral range. The PHY and 
CRY photoreceptors interact with each other and respond at 
different expression levels and localizations, allowing a 
 simultaneous response to two or more environmental param-
eters (van Zanten et al. 2012; Kami et al. 2010).

Arabidopsis thaliana plants are well suited for studying 
the influence of light on circadian clocks, since many bio-
chemical, physiological, and developmental events are under 
their control. Furthermore, numerous mutants are known, 
among them quite a number which affect the clockwork, 
clock inputs, and clock outputs. Besides mutants in which 
the function of the photoreceptors is affected, others are 
known, in which the transfer of the light-induced signals is 
changed (Strasser et al. 2010; Yanovsky et al. 2001).

For continuous recording it has been of much advantage 
to use a construct of the firefly luciferase gene with a pro-
moter of the cab2 gene which is under control of the circa-
dian clock. The method allows monitoring of circadian 
rhythms in whole plants but also in different tissues of the 
plant by recording the bioluminescence with a sensitive cam-
era. It also makes screening of mutations in the clock easy by 
looking for aberrant temporal patterns of luciferase expres-
sion (Millar et al. 1995).

Plants contain circadian clocks in each cell. The clock 
components consist of interwoven feedback loops, outputs to 
the clock-controlled genes and driven processes, and inputs 
from the synchronizing time cues such as light (Fig. 18.5 and 
Sect. 18.4.1). In addition, posttranscriptional and posttrans-
lational events contribute to the generation and maintenance 
of the rhythms (McWatters and Devlin 2011; Harmer 2009). 
Multiple photoreceptors are used by the plants to synchro-
nize the circadian clock. The transduction pathways from 
light perception to the clock are apparently quite closely 
linked to the clock mechanism.
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Whereas in animals a hierarchy of clock units with 
 circadian centers is the rule, in plants cellular circadian 
clocks run autonomously in the different tissues and organs 
and are synchronized by the LD environment. Plant hor-
mones might coordinate these local clocks. More details will 
be presented in Sect. 18.4.2.

Temperature compensation and the mechanism, by which 
the circadian clock of Arabidopsis avoids changes in period 
length under different environmental temperatures, has been 
discussed by Troncoso-Ponce and Mas (2012), Salomé et al. 
(2010), and Portolés and Más (2010); see also Hatakeyama 
and Kaneko (2012), Bodenstein et al. (2011), and Eckardt 
(2010).

18.4.1  Clock Mechanism 
and Clock-Controlled Genes

The Arabidopsis clock is a multi-feedback system with vari-
ous coupled loops, which receives external inputs such as 
light and dark signals and possesses output pathways to con-
trol transcription, translation, and many physiological and 
metabolic processes in the plant. The interlocked loops are 
thought to make the clock more robust, more accurate, and 
less affected by disturbances of the environment but allow 
also more flexible inputs in different climates (Harmer 2009; 
Michael et al. 2003). Figure 18.5 shows a model of the clock 
(Pokhilko et al. 2012; Lu et al. 2011; Nakamichi 2011) 
including light inputs (Kolmos et al. 2011; Kim et al. 2007). 
From the various outputs of the clock (Kami et al. 2010), 
only the pathway to flowering and hypocotyl growth are 
indicated (Lu et al. 2012; Kunihiro et al. 2010).

The central loop consists of the clock genes CCA1 and 
LHY and their products CCA1 and LHY and the clock gene 
TOC1 and its product TOC1, a DNA-binding transcription 
factor. CCA1 and LHY are expressed with peaks shortly 
after dawn and repress TOC1 expression by binding to the 
evening element in its promoter. This is the morning oscilla-
tor. TOC1 is a DNA-binding transcription factor which peaks 
at dusk (Gendron et al. 2012). It represses (not activates, as 
shown by Pokhilko et al. 2012) CCA1 and LHY.

The ELF3, ELF4, and LUX genes and their products 
ELF3, ELF4, and LUX, forming the evening complex EC, 
regulate clock gene expression at night. LUX binds directly 
to the promoters of the target genes CCA1 and LHY, but 
ELF3 and ELF4 proteins are important for the function of 
the EC complex. The CCA1 and LHY proteins inhibit the 
expression of the ELF3, ELF4, and LUX genes thus closing 
the loop (Chow et al. 2012; Herrero et al. 2012; Nakamichi 
et al. 2012; Troncoso-Ponce and Mas 2012).

In a third loop, EC is also connected to the morning genes 
PRR7 and PRR9 by repressing them. PRR7 and PRR9 inhibit 
the expression of CCA1 and LHY by binding to their promot-

ers. CCA1 and LHY in turn regulate PRR7 and PRR9 
positively.

In a fourth loop, GI induces TOC1 in the evening and is 
negatively regulated by TOC1, CCA1, and LHY. TOC1 is 
rhythmically and light dependent degraded by combining 
with GI and ZTL, and ZTL serves as a light receptor. There 
is also a dark-dependent protein degradation (Adams and 
Carré 2011).

A fifth loop was proposed based on the finding that about 
90 % of the transcripts of Arabidopsis do cycle. This large 
number is supposed to be due to a dynamic chromatin remod-
eling by the circadian clock via jumonji C (JmjC), a domain- 
containing protein, acting as histone demethylase (Lu and 
Tobin 2011).

The various clock genes, their products, and their interac-
tions are studied intensively, and a final model has not yet 
been gained. Furthermore, the molecular composition of cir-
cadian clocks can differ between various cell and organ 
types. Thus, PRR3 modulates TOC1 stability in vasculature 
cell types, but not in others; CCA1 and LHY are not able to 
inhibit TOC1 expression in dark-grown roots (further exam-
ples in Harmer 2010; Hotta et al. 2008).

A circadian clock provides evolutionary advantage by 
increasing fitness and adaptation. This is shown in 
Arabidopsis thaliana plants which are arrhythmic (by over-
expressing CCA1) by a reduced viability under extreme 
short days (Green et al. 2002) and a higher susceptibility to 
pathogen infections (Wang et al. 2011). Furthermore, the ztl 
mutant with a longer period and the toc1 mutant with a 
shorter period than the wild type contain more chlorophyll 
and produce more carbohydrates and biomass when grown 
under LD matching the length of their circadian period 
(Dodd et al. 2005).

18.4.2  Light as the Main Time Cue 
of the Circadian Clock

Whereas photoreceptors and the light-regulated responses 
including gene expression have been intensively studied, the 
signal transduction components are much less known. A 
large number of signaling components must exist, which are 
affected by external and internal factors. Both genetical and 
biochemical approaches are used to clarify these transduc-
tion pathways and modes.

Light is the most important time cue for synchronizing the 
circadian clock of Arabidopsis with the environmental 24 h 
day. The phase of the clock can be shifted by applying short 
light pulses in plants kept under constant conditions. The 
rhythm is delayed, if the light is applied in the first part of the 
subjective night, and is advanced, if the light is applied in 
the second part. The phase shifts can be plotted as a phase 
response curve (Covington et al. 2001). In a similar way, LD 
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cycles synchronize the clock by phase shifting. Red and blue 
light are most effective, suggesting that PHY and CRY photo-
receptors are involved, as indicated by the flashes in Fig. 18.5.

In addition to resetting the phase, light modulates also the 
period of the clock. Under LL conditions, but not under DD, 
phy and cry mutants have a longer period. This indicates that 
they are within the light input pathway and not part of the 
central oscillator itself. Otherwise the longer period should 
also show up under DD. The same applies for mutations in 
PRR7 and PRR9, where only LL causes a long period, appar-
ently by affecting pathways. However, the ztl mutant has a 

longer period both under LL and DD, which suggests that 
ZTL plays a role within the central clock. Phototropin1 
mutants do not affect the circadian rhythm.

Light signals can also entrain or reset the circadian clock 
at several points at the transcriptional, posttranscriptional, 
and posttranslational levels in the various clock loops by 
affecting the expression, activity, stability, or localization of 
oscillator components (Kozma-Bognár and Káldi 2008). 
Transcription of the clock genes LHY, CCA1, PRR7, PRR9, 
and GI is upregulated by red, far-red, and blue light. However, 
the corresponding mRNAs of LHY and CCA1 are degraded 
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Fig. 18.5 Arabidopsis clock and light resetting: Red light (red flash) is 
absorbed by PHY, and PIF3 links the light signal to the transcription 
factors CCA1 (red oval) and LHY (red oval). Blue light (blue flash) is 
absorbed by CRY1 and CRY2, which interact with CCA1 and LHY. In 
the photoperiodic induction of flowering (right part of figure), blue light 
is absorbed by FKF1 which, together with GI, degrades CDF1 thereby 
releasing under long day conditions the inhibiting effect of CO. Long 
days are recognized by a coincidence mechanism based on clock regu-
lation and leads to the formation of the flower hormone FT and flower-
ing. Another clock output, the regulation of the hypocotyl growth via 
the evening complex EC and its inhibition of the PIF4 and 5 transcrip-
tion is shown at bottom right. Central loop (thick green arrows and thick 
red – I) consists of clock genes CCA1 and LHY (black boxes with 
dented arrows, TAIR nomenclature for Arabidopsis), their products 

CCA1 and LHY (red – I), and the clock gene TOC1 and its product 
TOC1 (green oval). TOC1 represses (thick red a) CCA1 and LHY. The 
products (small green ovals) of ELF3, ELF4, and LUX form the evening 
complex EC and are the major elements of the evening loop. In a third 
loop EC represses the morning genes PRR7 and PRR9 (red ovals). 
Their products PRR7 and PRR9 inhibit the expression of CCA1 and 
LHY, and they regulate PRR7 and PRR9 positively. In a fourth loop GI 
(small green oval) induces TOC1 in the evening and is negatively regu-
lated by TOC1, CCA1, and LHY. A fifth loop links the circadian clock 
to the dynamic chromatin remodeling via JMT30 (not shown). Inset 
shows an Arabidopsis thaliana plant exposed at two different times in a 
space experiment (Johnsson et al. 2009) (After Brown et al. (2012), 
Pokhilko et al. (2012), Sawa et al. (2007))

18 How Light Resets Circadian Clocks



258

by light. In this way timing and entrainment are improved 
(Jones 2009; Yakir et al. 2007). Translation of LHY is 
induced by light, and its level depends on the available 
mRNA, which peaks at dawn. Cyclic removal of clock pro-
teins is crucial for oscillator function, as mentioned before. 
Thus, proteolysis plays an important role and preferentially 
takes place in the dark. TOC1 degradation is controlled by 
the F-box protein ZTL, which binds to it light independent, 
but the degradation rate is increased in the dark. The mecha-
nism of GI degradation is still unclear.

Which intermediate factors link these photoreceptors 
with the circadian components and how they do it is not well 
understood. For instance, the TOC1 protein in the first FBL 
is stabilized by light and degraded in darkness by an ubiqui-
tin ligase complex, which is regulated by PRR3 and GI. The 
accumulation of ZTL over the day decreases TOC1 protein 
levels at the onset of night and increases the robustness of the 
transcriptional feedback loops of TOC1. Likewise, PRR5 
protein accumulates in the evening before it is degraded by 
ZTL. It is suggested that PRR5, TOC1, GI, and ZTL form a 
functional unit in the evening loop (see Fig. 18.5, Harmer 
2010; Jones 2009). Other candidates for light inputs are 
ELF3 and ELF4 in one of the feedback loops.

Many questions concerning the Arabidopsis clock and 
how it interacts with light are still open. For instance, most 
components of the clock act in the nucleus as transcriptional 
regulators and are together with light-signaling proteins co- 
localized in nuclear foci (figure 4 in Herrero and Davis 2012) 
generating rhythmic transcript accumulation. Further infor-
mation and references can be found in Jones (2009) and 
Harmer (2010).

Output of the circadian system affects gene expressions, 
but gene expression is also directly affected by light and not 
only via the clock (immediate light effects). The clock output 
can furthermore gate the light input according to the phase of 
the clock by, e.g., affecting the phy and cry genes at the level 
of transcription (Toth et al. 2001) or by other types of rhyth-
mic regulation such as the regulation of leaf position. This 
feature has been termed “Zeitnehmer” (German for time 
taker, in contrast to “zeitgeber,” time giver or time cue).

Under natural conditions the changing day lengths during 
the course of the year has to be taken into account. That is, 
neither dawn nor dusk drive the rhythm, but at least two sig-
nals must be used. For more information see Chap. 19 and 
Sect. 18.4.3.

Non-photic time cues are also used by the plant. 
Temperature cycles entrain the clock. Imbibition of 
Arabidopsis seeds sets a circadian clock which is insensitive 
to light during the first 60 h. From the 36th hour onward, light 
initiates a second rhythm which runs independently of the 
imbibition rhythm (i.e., the output, namely, CAB2 and CAT2, 
shows the two rhythms superimposed). Light applied after the 
60th hour synchronizes the two rhythms (Kolar et al. 1998).

18.4.3  Photoperiodism

Many plants use the seasonal change in day length as a signal 
for growth (Niwa et al. 2009) and flowering (Millar 1999). In 
contrast to the effect of light on the circadian clock of 
Arabidopsis, the mechanism of photoperiodic induction of 
flowering in this plant is known in considerable detail 
(Srikanth and Schmid 2011; Amasino 2010; Imaizumi 2010; 
de Montaigu et al. 2010; Michaels 2009).

Plants measure day length in the leaves by a circadian 
clock. Depending on the type (long-day, short-day, long-
short- day, short-long-day plant), the photoperiodic effect 
occurs under long days; short days; first long days, then short 
days; or first short day, then long days, respectively. In this 
way, a developmental switch from the vegetative to the 
reproductive stage is activated.

Day-length sensing in Arabidopsis occurs by an external 
coincidence mechanism, as predicted already in 1936 by 
Bünning (1936). It operates by the circadian and light regu-
lation of CO in the leaves, which under appropriate day 
length induces FT expression, the long-searched florigen 
(see Fig. 18.5). It is transported to the apical meristem in 
the shoot, where it promotes flowering. FT combines at the 
apex with FD, which is present there, but inactive without 
FT. The FT-FD complex initiates reproductive development 
(flower evocation). Flower meristem identity genes are 
activated and flowers are induced according to the ABC 
(DE) model (Litt and Kramer 2010). Both CO and FT 
expressions are  controlled by a group of transcription fac-
tors with overlapping functions (Lu et al. 2012; Imaizumi 
2010).

A further prerequisite for flowering of some plants is ver-
nalization, by which a prolonged cold period results in meri-
stem competence to flower through the epigenetic repression 
of the floral repressor FLOWERING LOCUS C (Michaels 
2009).

The CO-FT interaction is conserved among plants 
(Srikanth and Schmid 2011). The photoperiodic responses 
are conferred by the same genetic pathway in the long-day 
plant Arabidopsis thaliana and the short-day plant rice Oryza 
sativa. But the functions differ (Hayama and Coupland 
2003).

18.5  Fungal Clocks and Light Resetting: 
Neurospora

Neurospora crassa (fungi: Ascomycota, Ascomycetes, 
Sordariales, Sordariaceae) was originally thought to be a 
tropical fungus (see page 34) but is nowadays found all 
over the world. It is a model organism for genetic and phys-
iological studies, because it is easy to grow and has a hap-
loid life cycle, which facilitates analysis of genetic 
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recombination. The genome of the seven chromosomes is 
entirely sequenced (43 megabases long, includes approxi-
mately 10,000 genes), and strains of knockouts are avail-
able for most identified genes (see Colot et al. 2006 and 
link: [http://www.fgsc.net/]). A large collection of mutants 
is available and continuously updated (for further informa-
tion see link: [http://www.fgsc.net/2000compendium/
NewCompend.html||Collectionofmutants]). Transformation 
methods are routinely used, and molecular genetics meth-
ods such as the use of an inducible promoter for dosage 
control and RNAi for gene silencing are available (Ziv and 
Yarden 2010). Imaging techniques are applied (Larrondo 
et al. 2012; Castro-Longoria et al. 2010; Gooch et al. 2008) 
including the use of luciferase, GFP, and mCherry. For an 
overview of modern molecular biological approaches used 
in Neurospora studies, see Jinhu and Yi (2010) and Dunlap 
and Loros (2005).

Neurospora crassa was used already since the 1950s for 
studying circadian rhythms (Pittendrigh et al. 1959). The for-
mation of aerial hyphae and asexual macroconidia (genera-
tion cycle in Neurospora; see Springer 1993) is under 
circadian control but manifested in many other functions. 
Rhythmic conidiation shows up in bands which are formed 
while the mycelium grows over the agar surface in “running 
tubes” (see link: http://geiselmed.dartmouth.edu/dunlaplo-
ros/research/media.php). The period and phase shifts can be 
determined simply by using a ruler and time markings at the 
growth front, but more accurate and elaborate imaging meth-
ods are also applied (Hogenesch and Ueda 2011; Dunlap and 
Loros 2005; Morgan et al. 2003).

About 20 % of the genes of Neurospora are clock con-
trolled (Smith et al. 2010). This allows modulation of numer-
ous biochemical and physiological processes in a circadian 
fashion. Pharmacological and genetical approaches have 
been used in order to unravel the circadian system which 
underlies overt rhythms such as conidiation (Lakin-Thomas 
et al. 1990). By the way, in Neurospora cytoplasm and nuclei 
stream through the colony (called syncytium) and the circa-
dian rhythm stays in synchrony.

In the following the circadian system of Neurospora and 
its constituents will be described first (see Sect. 18.5.1 and 
Baker et al. 2012 for a recent review and a historical account, 
further reviews by Lakin-Thomas et al. 2011, Jinhu and Yi 
2010, Brunner and Káldi 2008, de Paula et al. 2007, Dunlap 
et al. 2007, Loros et al. 2007). Thereafter (Sect. 18.5.2) it is 
shown how the circadian system is entrained (Merrow and 
Roenneberg 2007) by temperature (Brunner and Schafmeier 
2006; Diernfellner et al. 2005) and light (Schafmeier and 
Diernfellner 2011; Price-Lloyd et al. 2005; Kozma-Bognár 
and Káldi 2008) and which photoreceptors are used (Chen 
et al. 2010). The outputs of the clock are described 
(Sect. 18.5.3) and finally a photoperiodic reaction of 
Neurospora is briefly mentioned (Sect. 18.5.4).

18.5.1  The Circadian System of Neurospora 
and Models

The circadian system of Neurospora consists of interwoven 
negative and positive feedback loops made up by a compli-
cated interplay of various factors which affect the expression 
and function of the core clock components transcriptionally 
and posttranscriptionally. Phosphorylations and dephosphor-
ylations of clock components ensure the robustness, preci-
sion, and entrainment of the circadian system and account 
for the complexities in rhythmic behavior (Baker et al. 2012; 
Schafmeier and Diernfellner 2011; Lakin-Thomas et al. 
2011), modeling: Tseng et al. (2012).

A transcription-translation oscillator (TTO) has been 
proposed which possesses all the formal properties of a true 
circadian oscillator with light entrainment and temperature 
compensation. The molecular mechanism has been studied 
intensively (review: Vitalini et al. 2010; Dunlap et al. 2007; 
Loros et al. 2007). The gene frq, its mRNA, and product 
FRQ are essential components and belong to a negative limb 
of a feedback loop. In this loop frq expression is inhibited by 
the transcription factor WCC (white color complex). Details 
are given in Fig. 18.6 and a time line of the clock events in 
figure 4 of Baker et al. (2012).

In addition to the FRQ-WCC oscillator, there might be a 
FRQ-less oscillator (FLO) which is independent of FRQ and 
WCC (Lakin-Thomas et al. 2011) and coupled to the feedback 
loop shown in Fig. 18.6. Strains lacking FRQ (frq0) or lacking 
WC-1 (wc0) still exhibit circadian rhythms in a choline- 
requiring strain depleted of choline. The same has been reported 
for nitrate reductase activity under DD or LL conditions. 
Apparently in both cases an FLO is the cause for this nutrition-
ally induced rhythm in the absence of an intact FRQ protein.

Furthermore, a FRQ-less oscillator which requires WC 
(WFLO) but is independent of FRQ was proposed by de 
Paula et al. (2006) and Correa and Bell-Pedersen (2002). 
This oscillator requires WC-1 and WC-2 for activity. The 
WC-1 level is rhythmic in the absence of FRQ, indicating 
that this WFLO generates the rhythm of WC-1. The rhythm 
can be observed under DD and LL conditions. In contrast to 
the FRQ-WCC oscillator, its rhythm is apparently not inhib-
ited by high or low light levels. This oscillator and the FRQ- 
WCC oscillator may interact with each other through their 
common WC proteins.

How to integrate these diverse oscillators that do not fit 
the TTO mechanism? This has been discussed in the context 
of the circadian system by Lakin-Thomas et al. (2011) (see 
their figure 3.2). FLOs might represent more than a dozen 
metabolic oscillators, which are not connected to the circa-
dian system. Or, according to de Paula et al. (2007), there are 
multiple FLOs, which together with the FRQ/WCC oscilla-
tor form a network of coupled oscillators. But individual 
FLOs may drive a particular output. The FLOs may also 
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function upstream or downstream of the FRQ/WCC oscilla-
tor. They need to bypass FRQ/WCC to drive the conidiation 
rhythm and biochemical rhythms when FRQ and WCC are 
disabled (Roenneberg and Merrow 1998). Or a single FLO is 
the central rhythm generator, which is mutually coupled to 
the FRQ/WCC, supplying stability, period control, and 
rhythmic input (Li and Lakin-Thomas 2010).

Brody et al. (2010) proposed that the many conditions and 
mutations leading to FLOs may converge on a pathway that 
includes ROS and the activation of a RAS-cAMP protein 
kinase. A cAMP pathway and metabolic regulation is 
involved also in other organisms (Bass and Takahashi 2010).

These findings suggest that the FRQ/WCC oscillation is 
not independent of the FLOs, which should be taken into 
account with respect to the TTO shown in Fig. 18.6, where 
FLO and WFLO are omitted.

Another question is how typical the molecular composition 
of the Neurospora clock is among the fungi. Whereas WC-1 
and WC-2 are conserved, FRQ is less so, and other proteins 
might replace it as a negative element but work in a similar 
manner (Salichos and Rokas 2010; Dunlap and Loros 2006).

18.5.2  Entrainment and Photoreceptors 
of the Circadian System

The clock components described above can explain the 
molecular bases of the inputs and outputs. Temperature 

changes and light pulses or LD cycles are able to entrain the 
clock. We will concentrate on light but mention briefly tem-
perature effects.

Moderate temperature changes of 1–2 °C are already suf-
ficient for entrainment (Liu et al. 1998). The amount of FRQ 
depends on the phase of the oscillator and on the environ-
mental temperature. Changing temperature corresponds to 
shifts in clock time, because the amount of FRQ is immedi-
ately changed within the clock mechanism.

As is usual in circadian rhythms, the period is only slightly 
dependent on a constant environmental temperature. This 
temperature compensation is valid in Neurospora between 
30 and 36 °C. Many different gene products influence tem-
perature compensation, but frq plays a major role: FRQ sta-
bility is involved, and CK2 by its phosphorylation of 
FRQ. Other kinases and phosphatases of the clockwork are 
not involved (Mehra et al. 2009). The temperature compen-
sation is seen at the posttranslational level and due to the 
ratio and abundance of a small and a large isoform of FRQ, 
which are expressed in a temperature-dependent fashion. At 
lower temperatures (20 °C) the small and large isoforms are 
equal, at higher temperatures (28 °C) more of the large iso-
form as well as more FRQ is present (Diernfellner et al. 
2007).

WC-1 is not only a clock component but also a blue-light 
photoreceptor: it is responsible for all light responses in 
Neurospora. There are three types of light-induced circadian 
responses observed: first, LL suppresses the circadian 

L–adaptation

L–activation

FRQ

FRQP

WC-1

VVD

WC-2

frq

WCI 2

vvd

FWD1

Fig. 18.6 Model of the biochemical and molecular processes of the 
Neurospora clock. The main feedback loop (thick lines) consists of frq 
(black box with dented arrow indicating transcription) which expresses 
FRQ (red oval) in the late night and early morning while activated by a 
WCC transcription factor (consisting of WC-1 and WC-2, yellow 
ovals). This is the positive arm in the feedback loop. In the negative arm 
FRQ dimerizes and forms a complex with FRH (a RNA helicase, not 
shown), which inhibits WCC (thick red – I). From noon to evening 
kinases phosphorylate WCC thereby inactivating it in the early night 

(not shown). In the late night FRQ interacts with ubiquitin ligase 
FWD- 1 (blue oval) and is degraded (light red oval with dashed border) 
in proteasomes. Now the frq promoter can transcribe again being reac-
tivated by newly synthesized WCC. In a second feedback loop (thin 
lines) VVD expressed by vvd inhibits (thin red – I) WCC. This feed-
back loop is responsible for adaptation under longer blue-light exposure 
(L-adaptation). Phase shifting of the circadian rhythm by light pulses 
and other light effects (e.g., carotenoid formation) occur via the blue- 
light receptor WCC (L-activation) (Modified from Brown et al. (2012))
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 modulation of conidiation. Instead, conidia are formed all the 
time. In DD or safelight such as red, conidiation occurs in a 
circadian pattern (period length 22 h). Second, a single brief 
pulse of light applied in DD phase shifts the conidiation 
rhythm either by advancing or by delaying it. An action spec-
trum of light which phase shifts the rhythm shows maximal 
effects at 465 nm (Dharmananda 1980). A light pulse applied 
at late subjective day and early subjective night delays the 
rhythm; a light pulse at late subjective night and early subjec-
tive morning advances the rhythm. Third, LD cycles (or peri-
odic light pulses) entrain the circadian clock. Below it will be 
shown how these effects of light – the rhythm annihilating 
one of LL, the phase shifting one of pulses, and the entraining 
one – are related in terms of molecular events. The light input 
pathways are also well understood.

In contrast to plants, Neurospora is sensitive to the blue 
range only and is blind to light beyond 520 nm. Light acti-
vates hundreds of genomic regions, about 20 % of all genes 
(Schafmeier and Diernfellner 2011; Smith et al. 2010). At 
least 3 % of the genes of Neurospora are light inducible, 
shown by microarray analysis (Lewis et al. 2002). WCC 
 controls the expression of 24 transcription factor genes 
including those of the circadian oscillator.

Blue light induces frq, and wc-1 and wc-2 are required for 
it (the double mutant white color wc-1 and wc-2 is blind for 
light). The light is received by the FAD-associated LOV 
domain of WC-1 and changes its conformation allowing WCC 
to bind to LREs in promoters of immediate light- induced 
genes, i.e., induction begins in no more than 5 min (Lewis 
et al. 2002). The WCC-LRE complex enhances the capacity of 
WCC to activate transcription. Two different WC-1/WC-2 
complexes are formed, a smaller one which binds to LREs in 
the dark and activates frq expression in the dark (and light 
exposure reduces its binding) and a larger one which replaces 
the smaller one after light exposure. The larger one is respon-
sible for the light-induced activation of frq transcription.

This light-induced WC/LRE binding corresponds to the 
light-induced entrainment of the clock and phase resetting 
(Baker et al. 2012; Crosthwaite et al. 1997). Since frq expres-
sion cycles, the effect of light on the oscillator depends on 
the phase: when FRQ levels are low or rising before subjec-
tive dawn, a light pulse increases frq mRNA and advances 
the clock phases with highest frq expression in the later 
morning. If FRQ levels decrease, light will again increase frq 
mRNA, which will now delay the phase.

The blue-light chromophore that mediates binding of the 
larger WCC to frq LREs is FAD (and not FMN, discussed in 
Liu 2003). A mutant in which the LOV domain is removed 
does not show light responses anymore (He et al. 2002) and 
is arrhythmic in LD cycles and in DD. The circadian clock of 
this mutant cannot be entrained by light, but temperature 
cycles do entrain it. Deleting the WC-1 LOV domain has 
thus separated the light and dark function of WC-1.

VVD is another photoreceptor in Neurospora 
(Belozerskaya et al. 2012; Zoltowski et al. 2007). It is not 
essential for clock function, but modulates all its light 
responses. In vvd mutants light-induced gene expression is 
elevated (leading to, e.g., higher carotenoid synthesis and 
giving the mutant a vivid orange color), the phase of the cir-
cadian clock altered, and light adaptation partially lost. 
Furthermore, circadian gating of light induction of gene 
expression is affected in vvd (induction is higher in the sub-
jective morning).

VVD is responsible for photoadaptation in Neurospora by 
reverting the elevated levels of light-induced gene transcrip-
tion within 2–4 h to preinduction levels. In this way 
Neurospora can detect changes in light intensity and not just 
lights on or lights off (Schwerdtfeger 2003). VVD interacts 
in the nucleus with the WC-1 in the WCC and reduces its 
ability to activate transcription. Increasing light yields more 
VVD and stronger inactivation of the newly activated WCC 
(Chen et al. 2010; Hunt et al. 2010). The expression of vvd is 
clock controlled and it gates the input to the clock 
(Zeitnehmer). VVD allows the clock to take phase cues from 
dusk (Elvin et al. 2005), to avoid any WCC induction by 
moonlight (Malzahn et al. 2010), and it contributes to 
 temperature compensation of the clock (Hunt et al. 2007).

There might be further photoreceptors as suggested by the 
genome sequence of Neurospora (Belozerskaya et al. 2012). 
It indicates a putative cry gene, two phy-like genes, and two 
genes of the Archean rhodopsin. Their functions are 
unknown. The finding of Dragovic (2002) that under certain 
circumstances (high light intensities) the conidiation of wc-2 
mutants is still driven by the LDcycle suggests the existence 
of a wc-independent photoreceptor.

18.5.3  Outputs of the Circadian System

How the time information of the clock is used to regulate the 
various metabolic, physiological, and developmental overt 
rhythms in the cell is not yet well understood at the molecu-
lar level (Vitalini et al. 2006). The central clock affects 
numerous genes, which are not part of the clock, but con-
trolled by it (clock-controlled genes, Loros et al. 2007). 
Primary clock-controlled genes are directly regulated by the 
WCC, and secondary clock-controlled genes are further 
downstream from the clock. An additional regulation can 
occur at the mRNA level through message stability rather 
than production (Guo et al. 2010). Chromatin remodeling, 
posttranscriptional, translational, and posttranslational 
mechanisms could provide further control of circadian 
rhythmicity.

Neurospora as a pioneer organism for biochemical inves-
tigations offers much information on metabolic pathways 
(Davis 2000), and chronobiologists take advantage of it by 
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studying the circadian influences (Bass and Takahashi 2010; 
Harrisingh and Nitabach 2008; Hastings et al. 2008). They 
are using a systems biology approach to monitor rhythmicity 
in RNA, proteins, and the metabolism (for transcriptome, 
proteome, and metabolome, see Dong et al. 2008) under dif-
ferent lighting conditions and under specific genetic back-
grounds. Further circadian outputs concern development 
(e.g., cell cycle and conidiation, Correa and Bell-Pedersen 
2002), organelles, transport and signaling pathways (Baker 
et al. 2012), and osmotic stress (Vitalini et al. 2007).

Screens for clock-controlled genes were performed in 
Neurospora crassa and so far over 400 (Dong and Golden 
2008; Correa et al. 2003; for functional categories see table 
1 in Dunlap and Loros 2004) have been found by using dif-
ferent methods (review Bell- Pedersen 2000). They are being 
characterized at the molecular level (Lakin-Thomas et al. 
2011). As much as 25 % of the Neurospora transcriptome is 
under clock control. Most of the ccg expression peaks just 
before dawn, but there are others which show maximal 
expression at other phases of the day (Correa et al. 2003).

If each of the 24 transcription factors regulates about 20 
downstream genes and if WCC directly binds to regulate 
rhythms in about 180 additional morning-specific targets, the 
various phases of all of the known clock-controlled genes 
would be taken care of.

The outputs of the clock can feed back to input pathways, 
as exemplified by the clock-controlled component VVD on 
light input (Elvin et al. 2005). Such output to input loops can 
provide certain time-of-day-specific gates.

18.5.4  Photoperiodism

The circadian system seems to control also photoperiodic prop-
agation and reproduction (conidiation, protoperithecia forma-
tion) of Neurospora crassa (Rémi et al. 2010; Tan et al. 2004; 
Roenneberg and Merrow 2001). Without FRQ photoperiod can-
not be measured, indicating the role of the circadian system in 
the photoperiodic time measurement. The strains of Neurospora 
crassa have been isolated mainly from tropical areas. The sur-
vival vale of photoperiodic reactions in such strains is doubtful. 
However, Jacobson et al. (2004) found strains as far north as 
Alaska. A temporal segregation of asexual and sexual reproduc-
tion with conidiation in March and perithecia in July was 
described by Pandit and Maheshwari (1994).

18.6  How Light Affects Drosophila’s 
Circadian System

We are now coming to animals, which differ fundamentally 
from the examples treated so far. They possess a central ner-
vous system that controls behavior and central circadian 

clocks brain. If light is going to synchronize these clocks, it 
either has to reach the clocks directly in translucent speci-
mens or indirectly via specialized photoreceptor organs or 
via both pathways.

The fruit fly Drosophila is an example of an insect using 
both pathways. It has many advantages as an experimental 
animal such as easy rearing and a short generation time. It is 
well known genetically and a large number of mutants is 
available. Drosophila is amenable to genetic and molecular 
methods. For these and other reasons, this insect was and is 
used also for studying circadian rhythms, especially eclosion 
of the flies out of the puparium (a case produced in the last 
larval stage, in which metamorphosis from the larva to the fly 
takes place) and locomotor activity of the adults. Many 
mutations affecting the circadian clock, the photoreceptors, 
and the photoreception are known. Therefore, the effects of 
light on the circadian system could be studied intensively 
and successfully.

General reviews on the circadian clocks of Drosophila 
(Allada and Chung 2010; Tomioka and Matsumoto 2010), 
their genetics (Hardin 2011), molecular mechanism (Duvall 
and Taghert 2011; Hardin 2011; Weber et al. 2011), and their 
location and neurobiology (Yoshii et al. 2010, 2012; 
Hermann et al. 2012; Rieger et al. 2009) are available. 
Special reviews on the effect of light on the circadian rhythm 
and the pathways to the circadian system are by Peschel and 
Helfrich-Förster (2011), Barth et al. (2010), and Choi and 
Nitabach (2010). The output pathways of Drosophila’s circa-
dian system are reviewed by Tomioka et al. (2012), Helfrich- 
Förster et al. (2011), and Frenkel and Ceriani (2011).

18.6.1  Circadian Eclosion

After completing several larval stages, Drosophila forms a 
puparium in which pupation and metamorphosis into the 
adult stage takes place. Eclosion from the puparium occurs 
under the daily LD cycles in a restricted time window (gate) 
only during the early morning hours. A fly which is not yet 
ready to eclose uses the next gate on the following day. If a 
culture of Drosophila flies is transferred into constant condi-
tions of darkness, eclosion occurs still rhythmically. This 
shows that eclosion in a population of flies is not just the 
response to the onset of light, but under control of a circadian 
clock.

The eclosion rhythm can be entrained by an LD cycle and 
phase shifted by a single light pulse. Therefore, photorecep-
tors must exist which transfer the signal evoked by light to 
the oscillator controlling eclosion. An action spectrum for 
phase shifting the eclosion rhythm with a single light pulse 
shows a broad maximum in the blue (457 nm) and further 
maxima at 375, 435, and 473 nm. Light of wavelengths 
above 540 nm is ineffective (Klemm and Ninnemann 1976). 
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The responsible photoreceptors for eclosion are (1) the larval 
eyes (a pair of Bolwig organs close to the mouth hook, each 
consisting of 12 light sensitive cells which are retained in the 
adult eyelet) using rhodopsin (Malpel et al. 2002) and (2) 
lateral neurons (LNs) using CRY (Kaneko et al. 2000). 
Eclosion of mutants which lack extraretinal photoreception 
but possess functional larval eyes is still entrained. Mutants 
lacking CRY and the visual system cannot be entrained by 
light, but temperature cycles do entrain, demonstrating a 
functional oscillator system (Malpel et al. 2004).

Whereas the visual sensitivity of the compound eyes of 
flies reared on a carotenoid-free diet is decreased by three 
orders of magnitude, the photosensitivity of the circadian 
eclosion rhythm is not affected. Furthermore, the eclosion 
rhythm of mutants lacking compound eyes was still synchro-
nized by light. The compound eyes in the metamorphosed fly 
in the puparium are thus not needed to phase shift and entrain 
the eclosion rhythm.

How the circadian signals which control eclosion arise 
and reach their targets is reviewed by Helfrich-Förster 
(2005a, b). Recently, experiments were performed which try 
to simulate more natural conditions such as an LD pattern 
with gradually changing light intensities and varying day 
lengths. Under these conditions the eclosion rhythm of 
Drosophila seems to be more robust and shows seasonal 
variations (De et al. 2012).

18.6.2  Locomotor Activity and Sleep 
Are Controlled by Several Circadian 
Oscillators

Drosophila flies, like other animals, possess a multi- 
oscillatory system to control different events in a circadian 
way (Stanewsky et al. 1997). Circadian oscillators seem to 
be widespread throughout the different tissues and cells: 
using a construct in which the luciferase gene luc is fused to 
the regulatory upstream region of per (which is under circa-
dian control), luminescence rhythms of the whole fly, of 
parts of the fly, and of cultured tissue can be monitored. Even 
the rhythms of cultured body parts are synchronized by LD 
cycles (Plautz et al. 1997), showing that the underlying 
peripheral oscillators are cell autonomous and photo respon-
sive. Light entrains these oscillators directly, probably via 
CRY (Ivanchenko et al. 2001; Ito et al. 2008) (see 
Sect. 18.6.4).

However, behavior such as eclosion of the flies out of the 
puparium, adult locomotor activity, and sleep is driven by 
circadian centers in the brain. Adult activity rhythms can 
already be entrained by light applied in the first larval stage. 
The clock is apparently running at that time and throughout 
larval and pupal development and is resettable by light 
(Sehgal et al. 1992).

In an LD cycle, the flies are mainly active during the light 
period and sleep during the night. Sleep is defined as a quies-
cent state with reduced responsiveness to external stimuli 
(Bushey and Cirelli 2011). In order to sleep flies retreat to a 
preferred location, become immobile for periods up to 2.5 h, 
and do hardly respond to stimuli. Sleep is more abundant in 
young flies than in old ones and can be modulated by stimu-
lants and hypnotics as in other animals (Hendricks et al. 
2000; Shaw et al. 2000). Preventing sleep experimentally 
leads to a sleep rebound on the following night or day. During 
the day flies usually take a nap during midday. As a conse-
quence, most activity occurs during the morning and eve-
ning. In DD the bimodal activity patterns are less pronounced, 
because morning and evening activity bouts come closer 
together and sometimes merge into one main activity bout. 
This is different under LL of low fluence rate, where both 
activity bouts are separated by a pronounced time of inactiv-
ity (nap) (Bachleitner et al. 2007; Yoshii et al. 2012). LL of 
low fluence rate does furthermore lengthen the free-running 
period of the flies in a dose-dependent manner (Konopka 
et al. 2007). At higher light intensities the flies become 
arrhythmic.

The clocks timing activity and sleep reside in about 150 
clock neurons in the brain consisting of seven major groups, 
namely, three groups of dorsal neurons DNs (DN1−3) and of 
four groups of LNs (LNd, l-LNv, s-LNv, LPN) expressing dif-
ferent peptides/proteins (see Peschel and Helfrich-Förster 
2011 and Fig. 18.7). Based on cell-specific ablation (Stoleru 
et al. 2004), respectively, targeted expression of PER (Grima 
et al. 2004), it was suggested that the ventral subset of the 
small LN cells (sLNs) is responsible for the morning activity, 
and the dorsal set of LNs (LNds) for the evening activity, 
thus providing a neuronal basis for morning and evening 
oscillators. The two oscillators were thought to be function-
ally coupled. Two oscillators could allow the fly to adapt to 
the seasonal changes of day length. A model of Pittendrigh 
and Daan (1976) predicts that the period of the morning 
oscillator M is shortened and that of the evening oscillator E 
is lengthened by light. As a consequence, M and E activity 
bouts are close together under short days and DD, but far 
apart under long days and under LL of low fluence rate. With 
increasing fluence rate of LL, the two activity bouts are pre-
dicted to free run with short and long periods, respectively, 
until the flies finally become arrhythmic (Daan et al. 2001).

This was indeed found (Rieger et al. 2006). However, it 
is more complicated than expected. First, the blue-light 
photopigment CRY has to be knocked out to clearly see the 
internal desynchronization into the two free-running com-
ponents. Second, the activity component with a short period 
did not only start from the M activity bout but in addition 
from the E activity bout, suggesting that the M cells may 
also control aspects of the E activity. The same is true for the 
E cells that can provoke M activity under certain conditions 
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(Rieger et al. 2009; Sheeba et al. 2010). Third, the original 
simple assumption that the s-LNv controls the M component 
and the LNd controls the E component had to be refined. The 
two activity components are most likely controlled by vari-
able subsets of DN and LN that interact in a complex man-
ner depending on the environmental light and temperature 
conditions (reviewed by Yoshii et al. 2012). In spite of this 
obvious complexity, it is quite convincing that the brain 
clock of Drosophila is composed of M and E clock neurons 
that respond differently to light (and temperature) and con-
trol different aspects of behavior. M and E components are 
also involved in the circadian system of mammals (see 
Sect. 18.7.1).

Sleep occurring during the midday nap and the night 
appears to be controlled by the s-LNv (that are neither M nor 
E oscillators) and by sleep centers in the midbrain of the fly 
(Shaw et al. 2000). During neuronal activity the l-LNv pro-
motes arousal. They are activated by the neuromodulators 
dopamine and octopamine and by light and inhibited by 

GABA. GABAergic inhibition of the l-LNv is important for 
sleep (McCarthy et al. 2011; Chung et al. 2009; Lear et al. 
2009; Agosto et al. 2008; Parisky et al. 2008).

18.6.3  Molecular Mechanisms  
of Circadian Clock

The circadian oscillators which control activity and eclosion 
are supposed to consist of one main molecular feedback loop 
plus additional ones (Tomioka et al. 2012; Duvall and Taghert 
2011; Hardin 2011). These are generated by interactions of 
several clock genes, the products of which activate or repress 
transcription, alter the stability of proteins or degrade them, 
and change subcellular localization. Transcription is activated 
by the transcription factors CLK, CYC, and PDP1#. 
Transcription is repressed by PER, TIM, and VRI. Protein 
stability and subcellular localization depends on the kinase 
DBT, CK2, SGG, and PP2a. SLIMB targets phosphorylated 
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Fig. 18.7 Photoreceptors and neuronal clockwork of Drosophila mela-
nogaster: looking toward the front of the brain from anterior, rhythm- 
relevant neurons and photoreceptors are shown. Light (L in yellow 
circle) for synchronization is received by the compound eye, the 
Hofbauer- Buchner (H-B) eyelets, ocelli, and via cryptochrome by some 
clock neurons themselves (each marked by a yellow point). The clock 
neurons consist of lateral neurons, LN (4 l-LNv, 4 s-LNv, one 5th s-LNv, 
6 LNd, and 3 LPN), and of dorsal Nneurons (~15 DN1, 2 DN2, 30 DN3). 
Clock neurons marked in red are located in the anterior brain, the ones 
marked in blue in the posterior brain. Lateral and dorsal neurons as well 
as the clock neurons of the two brain hemispheres are connected with 
each other (gray arrows) and the majority of them project into the acces-
sory medulla (aMe) – a small neuropil at the base of the medulla (pink 
area) that was first described in cockroaches as the site of the circadian 
clock (Homberg et al. 2003). The compound eyes express five different 
rhodopsins (see text) and are sensitive to blue, green, yellow, and red 

light (colored flashes). They transfer light information via the optic lobe 
(here visible: lamina and medulla) to the central brain (black arrow). 
The ocelli express only rhodopsin 2, which is blue-light sensitive. The 
H-B eyelets consist of four photoreceptor cells expressing rhodopsin 6, 
which has its absorption maximum in the green but responds also to red 
light. The H-B eyelets project toward the LNs. Direct synaptic contact 
was shown between the precursors of the H-B eyelets and the larval 
s-LNv (Wegener et al. 2004) but may exist also for the adult LNs and 
perhaps also for the DNs that project into the aMe. Cryptochrome in the 
clock neurons themselves is maximally responsive to blue light. The 
s-LNv (except the fifth) and l-LNv express the neuropeptide pigment-
dispersing factor, PDF, that seems to be released in a rhythmic manner 
and is an important communication signal within the clock network. The 
l-LNv appears to play a special role in the light input pathway to the 
clock as well as in arousal and sleep (details see text) (After Peschel and 
Helfrich-Förster (2011), and Helfrich-Förster (2005a, b))
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PER for degradation in the proteasome. Which role these 
components may play in each circadian oscillator cell of 
Drosophila is shown in Fig. 18.8.

Results (Meyer et al. 2006; Cyran et al. 2005) from exper-
iments in which the FRET signals of PER and TIM (tagged 
with two different fluorescent proteins) were measured in S2 
cells (Schneider 2 cells, derived from a culture of late stage 
of Drosophila melanogaster embryos) show that PER and 
TIM bind rapidly in the cytoplasm and accumulate in foci. 
After 6 h the complexes abruptly dissociate, PER and TIM 
move independently and rapidly into the nucleus. This 
speaks in favor of a timer in the foci, perhaps similar to the 
circadian timing in Cyanophyceae (Sect. 18.2).

In this connection, it should also be mentioned that in 
many insects PER is not found in the nucleus and thus cycling 
of per mRNA might not always be necessary for PER cycling. 
Instead posttranscriptional mechanisms might be involved 
and the negative feedback of clock proteins on their own 
expression could be optional (Helfrich-Förster 2005a, b).

18.6.4  Photoreceptors of the Clock

Drosophila uses multiple photoreceptors for entraining its 
circadian system (for reasons see page 10). The rhythm of 

activity in adult flies can be entrained by (1) the compound 
eyes and (2) ocelli as external photoreceptors and by the (3) 
Hofbauer-Buchner eyelets behind the compound eyes (Veleri 
et al. 2007; Helfrich-Förster et al. 2002) and (4) LNv and DN 
neurons in the brain as internal photoreceptors (see Fig. 18.7 
and reviews by Rieger et al. 2003; Helfrich-Förster et al. 
1998). Whereas in (1), (2), and (3), rhodopsins serve as phot-
opigments, in (4) this is CRY (Klarsfeld et al. 2004). Only 
when all photoreceptors are eliminated, fruit flies are unable 
to entrain their activity and sleep rhythm to LD cycles 
(Helfrich-Förster et al. 2001), suggesting that the multiple 
photoreceptors fulfill partially redundasnt roles and each 
single one is capable to reset the molecular feedback loop.

The following basic light effects must be explained:
 1. Phase shifting by light pulses
 2. Entrainment by LD cycles
 3. Attenuation of the rhythm by LL of high fluence rate
 4. Internal desynchronization (period lengthening/shorten-

ing in subpopulations) by LL of low fluence rate
 5. Adaptation of the activity pattern to different day lengths

According to the model (Fig. 18.8), all these effects are 
achieved through light-dependent degradation of 
TIM. Because TIM is not light sensitive by itself, the light 
signal must be transduced to TIM. As indicated in Fig. 18.7, 
this occurs via the blue-light-absorbing photopigment 
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Fig. 18.8 Model of the circadian Drosophila clock based on a feed-
back loop involving transcriptional and translational events in the clock 
cells. The feedback loop has the following structure: CLK and CYC are 
transcription factors. They form heterodimers and bind to an E-box in 
the promoters of per and tim (and clock-controlled genes ccg) in the 
nucleus activating the transcription of per and tim. mRNA levels 
increase until they reach high levels early in the evening. The proteins 
PER and TIM reach maximal levels with a lag in late evening. 
Degradation of PER by DBT is counteracted by rapid binding of PER 
and TIM in the cytoplasm and accumulation in foci. After 6 h the com-
plexes abruptly dissociate, PER and TIM move rapidly into the nucleus. 
DBT and SGG (not shown) in the cytoplasm interact with nuclear 
entrance or phosphorylate PER and destabilizes it. In the nucleus PER 

and TIM repress their own transcription by directly interacting with 
CLK-CYC transcriptional activators. TIM and PER are phosphorylated 
and degraded. This stops transcriptional repression at the end of the 
circadian cycle. Due to the lag between mRNAs and proteins, and due 
to a 6 h timer in the PER:TIM complex, this negative feedback results 
in a stable cycling in per and tim mRNA and protein levels. Entrainment 
of the clock by light (L in yellow circle) functions by affecting (blue 
flash) the blue-sensitive CRY. It stimulates CRY:TIM interaction, which 
triggers TIM degradation and prevents PER:TIM binding. TIM is phos-
phorylated, ubiquinated, and degraded in proteasomes. Other photore-
ceptors (rhodopsin, see text) and their interaction with the molecular 
gears of the clock are not shown (After Hardin (2005), Cyran et al. 
(2005). Insert by Dennis Pauls and ChristianWegener, Würzburg)
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CRY. Photochemical changes in its flavin chromophore 
allow CRY to interact with TIM in the cytoplasm and the 
nucleus. This leads to TIM phosphorylation and its subse-
quent degradation in the proteasome (Naidoo et al. 1999) 
preventing the PER/TIM complex from participating in the 
negative feedback loop (Ceriani et al. 1999).

If a light pulse hits during the phases of the rising TIM 
concentration, TIM is reduced before it enters the nucleus 
and builds up again after the end of the pulse. The following 
peaks in TIM concentration are thus delayed (see Fig. 18.8). 
Because cytoplasmic PER is degraded if not protected by 
TIM, the PER peak is also delayed. If the light pulse hits at 
peaking TIM concentrations or afterward, nuclear TIM 
(bound in the PER/TIM complex) is degraded earlier, fol-
lowed by PER degradation. As a consequence per and tim 
transcription starts earlier and the subsequent buildup of 
TIM and PER is also advanced. Thus, the following peaks in 
TIM and PER are advanced. This explains point 1.

The entrainment by LD cycles is the result of advancing 
and delaying phase shifts. These will keep the circadian 
oscillation in a certain phase relationship to the LD cycle. 
This explains point 2. LL of high fluence rate keeps the TIM 
level permanently extremely low (close to zero). As a conse-
quence also PER cannot accumulate, per and tim mRNA 
remain at an intermediate level, and finally the clock genes 
and proteins stop to oscillate. This explains point 3.

LL of low fluence rate slows down the accumulation of 
TIM, but does not prevent it. As a consequence TIM and 
PER accumulation is permanently delayed, and this results 
in a period lengthening. This explains the first part of point 4.

The period shortening of some clock neurons under dim 
LL is more difficult to explain by the model, and the same is 
true for adaptation of the activity pattern to different day 
lengths since this includes a phase advance (period shorten-
ing) of the M oscillators (see page 37).

Thus, the model can explain the first three light effects 
mentioned as well as period lengthening (point 4). There is 
also experimental evidence: TIM degradation induced by 
light pulses can be measured in the LNs (see Fig. 18.7). It 
correlates well with the amount of phase shifts of the activity 
rhythm elicited by light pulses. Furthermore, the spectral 
response curves for TIM degradation and for phase shifts of 
the activity rhythm display a maximum between 400 and 
450 nm, and this matches the absorption spectrum of CRY 
(Berndt et al. 2007), clearly indicating that these events are 
causally related.

Most interestingly, CRY levels are light controlled: CRY 
levels are maximal in the early morning and decrease over 
the course of the day reaching a minimum in the early night 
before they increase again during the night (Emery et al. 
1998). This fact explains why the circadian clock is most 
sensitive to light pulses of low fluence rate in the early morn-
ing (about 3 h before lights on), when CRY level is maximal 

(Emery et al. 1998). Nevertheless, CRY is not the only factor 
that mediates phase shifts and entrains the clock to LD 
cycles:
 (a) Not all clock neurons contain CRY (Yoshii et al. 2008; 

Benito et al. 2008)
 (b) Entrainment of the molecular feedback loop upon light 

does also occur in mutants without functional CRY, 
at least in some clock neurons (Helfrich-Förster et al. 
2001)

 (c) CRY-less flies can still entrain their sleep/wake rhythms 
to LD cycles and respond with phase shifts to light pulses, 
although with strongly reduced magnitude (Kistenpfennig 
et al. 2012)

 (d) Wild-type flies show a more pronounced phase-delay 
zone than advance zone in their PRC, although CRY is at 
its minimum during the early night when phase delays 
occur

 (e) The activity of wild-type flies can still be entrained by 
red light (600 nm), although CRY does not respond to 
light of wavelengths above 540 nm. The clock of eyeless 
flies lacks sensitivity to long wavelengths completely 
(Helfrich-Förster et al. 2002) and is much less sensitive 
to light of all wavelengths as compared to wild-type flies 
(1 by a magnitude of 1,000 (Hirsh et al. 2010) and not 
10, as wrongly stated in Helfrich-Förster et al. 2002 due 
to a calculation error of the wild-type sensitivity).

This all emphasizes that CRY-independent pathways con-
tribute to the light responses of the fruit fly’s clock.

Indeed, the still missing points of the basic light effects 
can only be explained by photoreception via the compound 
eyes and perhaps the H-B eyelets (point 4, period shortening 
during internal desynchronization under LL of low fluence 
rate; point 5, adaptation of the activity pattern to different 
day lengths). Only flies that lack these photoreceptor organs 
are unable to shorten period under LL and to adapt to differ-
ent photoperiods (Rieger et al. 2006, 2003).

The most difficult point to explain is the period shorten-
ing of some clock neurons in response to LL. According to 
the model in Fig. 18.8, permanent TIM degradation can only 
slow down the feedback loop and finally stop it but hardly 
accelerate it. This implies that the input via the photorecep-
tor organs to the clock neurons does not lead to TIM degra-
dation. This is in agreement with the fact that flies that retain 
the compound eyes and H-B eyelets but lack functional CRY 
do not become arrhythmic under LL, not even at high fluence 
rates (Stanewsky et al. 1998; Emery et al. 2000; Helfrich- 
Förster et al. 2001; Yoshii et al. 2004; Rieger et al. 2003). 
Moreover, the PER/TIM feedback loop runs with high 
amplitude in these flies under LL conditions without any 
sign for permanent TIM reduction (Rieger et al. 2006).

So far, it is completely unknown by which transduction 
cascade the light signal from the photoreceptor organs is 
transferred to the molecular clock and whether there are 
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 parallels to the mammalian system, where light input via the 
retinohypothalamic tract results in an increase of Ca2+ and 
cAMP in certain clock neurons finally leading to the activa-
tion of cAMP-responsive binding element (CREB). CREB 
binds to CREs in the promoters of per1 and per2 genes and 
activates their transcription. It is not yet established whether 
there are functional CRE sequences in the Drosophila per 
upstream region, but it was shown that mutations in the 
Drosophila CREB gene affect per expression (Belvin et al. 
1999). Alternatively, per expression may be affected indi-
rectly, for example, by the CREB-binding protein (CBP) that 
influences the transcriptional activity of the CLK/CYC het-
erodimer (Lim et al. 2007; Hung et al. 2007).

Although not yet proven, it is imaginable that activation 
of per transcription by light can provoke period shortening 
under LL conditions in some neurons as was observed by 
Rieger et al. (2006). Another possibility is that the period of 
some neurons is shortened via neuronal communication 
within the clock network.

The l-LNv neurons, which are responsible for arousal and 
sleep (see above), seem to play a crucial role in transferring 
the light information from the compound eyes to the network 
of clock neurons. Upon light the LNv increases neuronal 
activity (Sheeba et al. 2008b), releases the pigment- 
dispersing factor PDF, and increases arousal of the flies 
(Sheeba et al. 2008a; Shang et al. 2008).

But PDF acts also on the clock neurons themselves. Most 
clock neurons express the PDF receptor (Im and Taghert 
2010), and they respond to PDF either by shortening or 
lengthening the period of their molecular clock (Yoshii et al. 
2009). An increase of PDF in the dorsal brain does lead to 
internal desynchronization of the free-running activity 
rhythm into two components as does LL (Helfrich-Förster 
et al. 2000; Wülbeck et al. 2008). Furthermore, the same 
clock neurons seem to free run with a short and long periods, 
respectively, as observed under LL (Yoshii et al. 2009). This 
suggests that PDF is the factor that accelerates the speed of 
the M cells and decelerates the speed of the E cells.

Most interestingly, a recent study suggests that M and E 
clock cells express different adenylate cyclases, which may 
enable the two types to respond differentially to PDF (Duvall 
and Taghert 2012). In accordance with this, neither did pdf- 
null mutants show internal desynchronization upon light nor 
are they able to adapt M and E peaks to different photoperi-
ods – very similar to eyeless mutants (Yoshii et al. 2009, 
2012).

Several rhodopsins may be responsible for the observed 
light effects on the circadian clock: Rh1, Rh3, Rh4, and 
Rh5 which are expressed in the compound eyes, Rh6 which 
is expressed in the compound eyes and in the H-B eyelets, 
and Rh2 which is found in the ocelli (summarized in Szular 
et al. 2012). Among these Rh1 and Rh6 have been shown 
to be responsible for entraining fruit flies to red light 

(Hanai et al. 2008), whereas Rh1, Rh5, and Rh6 (plus CRY) 
are essential for entrainment to green and yellow light 
(Hanai and Ishida 2009).

In summary, the fly has at least two principle light-input 
pathways to the clock – one working via CRY on TIM deg-
radation directly in the clock neurons and the other working 
via the photoreceptor organs and the neuropeptide PDF. The 
CRY pathway enables the fly clock to respond quickly and 
strongly to light. The photoreceptor input pathway seems to 
be more subtle but necessary for adapting the flies activity to 
different day lengths.

18.7  Light and Circadian Clocks 
in Mammals

Among vertebrates, the circadian clocks of mammals are the 
best studied. For experimental reasons, rodents are favored 
and among these mice (Ripperger et al. 2011) and rats, 
because they can be reared easily, are small and have a short 
generation time. However, most rodents used are night 
active, which has to be taken into account, if connections to 
the human circadian system are made. Day-active rodents 
are, e.g., the sand rat Psammomys obesus and the Nile grass 
rat Arvicanthis niloticus.

During the night diurnal and nocturnal species are sensi-
tive to light at the same time. The molecular mechanisms of 
light resetting are also comparable. But animals in LL 
exposed to darkness would reset the SCN clock during their 
resting period, that is, at night in diurnal and during the day 
in nocturnal species. Arousal-independent cues (melatonin 
and GABA) shift the clock in day- and night-active animals 
at the same circadian time. Arousal-dependent zeitgeber 
(serotonin: its cerebral levels follow activity pattern) phase 
shift only during resting and have thus opposite effects in 
diurnal and nocturnal species (Challet 2007).

Several hands of the clock can be recorded such as loco-
motor activity, body temperature, melatonin secretion (see 
Sect. 18.7.6), or expression of clock genes or clock-driven 
genes. The locomotor activity is measured by running wheels 
or by infrared light beams (Jud et al. 2005). The records are 
used to construct actograms which allow to determine period 
and phase shifting of the rhythm.

Further advantages of using mice are that the genome was 
mapped and sequenced (see Müller and Grossniklaus 2010 
for historical aspects), that many mutants are available, and 
that genetic and molecular biological methods are applica-
ble. However, among the vertebrates mammals are special in 
several respects. Thus, peripheral clocks of mammals are not 
directly entrainable by light, and the pineal is not photore-
ceptive in contrast to most other vertebrates. In zebrafish, for 
instance, peripheral clocks are directly entrained by light, 
which resembles the situation in Drosophila, and the pineal 
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is photoreceptive and contains a circadian oscillator as the 
central clock (see Sect. 18.7.6). These pineal cells are spe-
cialized photoreceptor cells resembling structurally and 
functionally retinal photoreceptors. They synthesize rhyth-
mically the hormone melatonin with high levels at night and 
low levels during the day (Idda et al. 2012).

In the following we discuss the clock centers in the SCN 
and its network (Sect. 18.7.1), the clock mechanism driving 
these rhythms (Sect. 18.7.2), the circadian photoreceptors in 
the eye and the inputs to the SCN (Sect. 18.7.3), the circa-
dian clocks in the eyes (Sect. 18.7.4), peripheral clocks 
(Sect. 18.7.5), and the function of the pineal organ 
(Sect. 18.7.6).

18.7.1  SCN and Its Network

The paired SCN is a center of circadian timing in mammals. It 
is situated in the anterior part of the hypothalamus at the ven-
tral part of the third ventricle just above the optic chiasma 
(Fig. 18.10; Mohawk and Takahashi 2011; Welsh et al. 2010) 
and each SCN in a Rhesus monkey consists of about 10,000 
neuron cells and additionally 15,000 glia cells (Roberts et al. 
2012). Reorganization of neuron-astrocyte interactions and 
synaptic connectivity within the SCN is discussed by Jackson 
(2011), Marpegan et al. (2011), Ng et al. (2011), and Girardet 
et al. (2010). The SCN consists of a dorsomedial shell 
(dmSCN) and a ventrolateral core (vlSCN) with diverse affer-
ents and efferents. Their neurons use different neuropeptides: 
in the shell VIP, GRP, and GABA, in the core AVP and PK2 
(Mohawk and Takahashi 2011). For further details of structure 
and function of the SCN, see Tonsfeldt and Chappell (2012), 
Lowrey and Takahashi (2011), Dibner et al. (2010), Golombek 
and Rosenstein (2010), and Welsh et al. (2010); for the genet-
ics of the SCN oscillators, its transcriptional loops, and how 
epigenetic mechanisms contribute to the control of circadian 
gene expression, see, e.g., Lowrey and Takahashi (2011), 
Colwell (2011), Kwon et al. (2011), Ripperger and Merrow 
(2011), and Bellet and Sassone-Corsi (2010).

The SCN is a circadian center and not just a place that 
transfers information of the LD cycle from the eye to an 
oscillator situated somewhere else. If this were the case, the 
various circadian rhythms would not disappear upon destruc-
tion of the SCN, but would not be synchronized anymore and 
would free run. However, the animals became arrhythmic.

There is further evidence for the SCN being a master 
oscillator: in organotypic slice cultures, in which the dorsal/
ventral architecture is preserved (Silver and Schwartz 2005), 
metabolism, electrophysiological, and molecular events are 
still rhythmic. A particular strong evidence is that neural 
grafts of fetal SCN reestablish the circadian rhythms in SCN 
lesioned and thus arrhythmic recipients with the characteris-
tic circadian properties of the donor.

To work properly as coordinated clocks, the oscillations 
must be coupled and form a network. Coupling of the neu-
rons increases strength and precision of the rhythms, they 
resist better perturbations, and the range of entrainment is 
narrowed (Abraham et al. 2010). The overall period of the 
SCN is the average of the periods of the single cells. However, 
the intercellular coupling has to reach a certain strength, 
which is not present in dispersed SCN cell cultures.

The SCN oscillators must furthermore be synchronized 
with the 24 h environment. This occurs mainly by retinal 
inputs which generate action potentials. These travel along 
the retinohypothalamic tract (RHT) to the core of the 
SCN. There they activate the firing rate in the SCN neurons 
(see Sect. 18.7.3).

Since the core receives retinal inputs directly, the molecu-
lar oscillators respond immediately to the retinal inputs. The 
information from the core to the shell is transmitted in a so 
far unknown way and occurs delayed, so that the shell neu-
rons react more slowly.

About 60–70 % of the SCN neurons show a circadian 
rhythm in action potentials which can last in single neurons 
for 4–6 h. The neurons switch between a hyperpolarized 
downstate during the night when they are silent and a depo-
larized upstate during the day when they are active. In this 
active state they respond to synaptic inputs that reduce their 
firing, but are not responsive to excitatory signals. During 
the night they are silent but respond to stimulation. How the 
change from day to night states occurs is unknown. The 
molecular oscillators in the SCN neurons influence the mem-
branes and ion channels of the neuronal cells by a second 
messenger system which leads to circadian firing. It is high-
est during the day in diurnal as well as in nocturnal animals 
(Colwell 2011).

Under LL the rhythm of the locomotor activity of mam-
mals can occasionally show a bimodal rhythm with a phase 
difference between the two components (Watanabe et al. 
2007, 2006) or splitting with different periods (Butler et al. 
2012; Indic et al. 2008; Helfrich-Förster 2004). Splitting is 
caused by the left and right halves of the SCN which oscil-
late in antiphase to each other (Mendoza et al. 2009; 
Tavakoli-Nezhad and Schwartz 2005). Arrhythmicity results, 
if the neurons within the SCN decouple from each other. The 
rhythmicity of individual cells remains, however, intact.

Internal desynchronization by non-24 h LD cycles (e.g., 
11:11 h, called forced desynchrony protocol) can dissociate 
the molecular rhythms in the shell and core. The core stays 
entrained to the LD, but the shell is entrained for certain peri-
ods only. In between the rhythm free runs. As a result, two 
components of the locomotor activity, the body temperature 
and the slow-wave sleep, are displayed with different period 
lengths.

Splitting, internal desynchronization, and arrhythmicity are 
simulated by two groups of oscillators which are weakly 
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 coupled mutually but strongly coupled inside the group 
(Schroder et al. 2012). Light increases transcription of clock 
genes, which alters the circadian properties of individual cells. 
In DD weak coupling in the groups leads to oscillations with a 
single bout of activity per day. In LL, synchrony in a group 
occurs only under strong coupling. With increasing light inten-
sity the rhythms of the two groups are in antiphase, which 
shows up as bimodal activity. At high light intensity arrhyth-
micity is found (Butler et al. 2012). Another model based on 
the Goodwin oscillator describes also splitting (Gu et al. 2011).

Many core neurons terminate on shell cells and their 
interplay leads to the circadian output to other hypothalamic 
regions. VIP modulates light-induced phase shifting and 
shifts the locomotor activity. If applied to the SCN in vitro, it 
shifts also the phase. Loss of VIP signaling leads to desyn-
chrony among SCN neurons. Other neurotransmitters such 
as GRP and GABA phase shift the oscillations in SCN and 
the locomotor activity rhythm and synchronize asynchro-
nous SCN neurons. Ca2+ signaling and cAMP activation, and 
perhaps other neuropeptides, are involved in synchronization 
by VIP.

Even in the intact SCN, the oscillations are not completely 
in synchrony, but their phase shows wavelike gradients at the 
various axes (shown by imaging, figure 3 in Mohawk et al. 
2012), and the structure and synaptic connections of the 
SCN neurons and glia cells can change within a few hours. 
In order to find out how this occurs, various electrophysio-
logical techniques were applied to individual SCN neurons 
and to SCN slices (Schaap et al. 2003). They allow monitor-
ing of SCN neurons for longer periods. In organotypic slices 
from transgenic mice in which a luciferase reporter 
(Yamaguchi et al. 2003) or a fluorescent protein reporter 
(Quintero et al. 2003) drives a clock gene promoter, time- 
lapse imaging showed in horizontally cut slices two oscillat-
ing components, which might reflect the activity of morning 
and evening oscillators (de la Iglesia et al. 2004; Jagota et al. 
2000). They had been inferred already earlier from behav-
ioral studies (Pittendrigh and Daan 1976).

In photoperiodic reactions such evening and morning 
oscillators are supposed to measure day length (Jagota et al. 
2000) (see Sect. 18.7.6). The photoperiod (day length) 
changes the pattern of the clock gene expression: long days 
broaden the clock gene expression of the SCN and lengthen 
the time of its neuronal activity in the dmSCN and along the 
rostral-caudal axis of the SCN (see also Sect. 18.4.3).

Outputs of the SCN: Intercellular communications in the 
mammalian clock system are not restricted to the clock cells 
in the SCN. Primary targets of the SCN outputs are predomi-
nantly located in the hypothalamus and the thalamus (see 
Fig. 18.10 and references in Li et al. (2012)). How does the 
circadian information of the SCN reach the other brain areas?

The signals of the SCN are spread as synchronized nerve 
impulses to central parasympathetic nuclei (e.g., the dorsal 

motor nucleus of the vagus, which innervates gastrointestinal 
and respiratory organs) and central sympathetic nuclei (e.g., 
intermediolateral cell column of the spinal cord). Sympathetic 
signals to the adrenal gland are converted to hormonal (glu-
cocorticoid) signals. They are released into the bloodstream 
and bind to glucocorticoid receptors of peripheral organs, 
activate the mammalian Per1 gene in systemic cells, and 
reset clocks all over the body (Tonsfeldt and Chappell 2012; 
Okamura 2007).

Locomotor activity is driven by cyclic releasing factors 
acting on receptors in the hypothalamus at the wall of the 
third ventricle. Circadian signaling factors are PK2, AVP, 
and CLC. They influence also other behavioral and physio-
logical rhythms (Li et al. 2012; Dibner et al. 2010; Klein 
et al. 1991) such as thermal regulation (Kräuchi et al. 2006; 
Ruby et al. 2002), sleep-wake cycle, functions of the circula-
tory and gastrointestinal system (Bass and Takahashi 2010; 
Green et al. 2008; Gachon et al. 2004), and endocrine events 
(Vollrath 2002). The synthesis and secretion of melatonin is 
also controlled by the SCN (see Sect. 18.7.6 and Simonneaux 
and Ribelayga 2003).

If the SCNs are destroyed, the circadian control of these 
functions disappears. The close connection between SCN 
and metabolism shows how the circadian system is inte-
grated with physiology (Hardie et al. 2012; Froy 2011; Bellet 
and Sassone-Corsi 2010). AMP-activated protein kinase 
(AMPK) is an energy sensor of the cell. It is activated, if the 
energy status falls, promotes ATP production, and conserves 
ATP by switching off biosynthetic pathways. It furthermore 
regulates the energy balance of the body via the hypothala-
mus that promotes also metabolism and feeding behavior. 
Circadian rhythms and metabolism are closely linked via the 
activating (CLOCK-BMAL1) and repressive (REV-ERB-a- 
REV-ERB-b) transcriptional complexes, the coordinate 
actions of which generate rhythmic gene expression 
(Cho et al. 2012).

18.7.2  Mechanism of the Mammalian Clock

The molecular basis of the mammalian master clock in the 
SCN has been studied intensively using various methods, 
among them systems biology which is used to identify the 
circadian system and its components, to analyse and measure 
them, to control the system, and to put it together from its 
parts (Hogenesch and Ueda 2011; Ukai and Ueda 2010; 
Baggs and Hogenesch 2010). The clock mechanism pres-
ently known involves three basic helix-loop-helix transcrip-
tion factors (Clock, Npas2, and Bmal1), two period genes 
(Per1 and Per2), two cryptochrome genes (Cry1 and Cry2), 
CKIε and δ, and two orphan nuclear hormone receptors 
(RevErbα and Rorα). Gene expression is regulated by tran-
scriptional factors (Dbp, Tef, Hfl, and Nfl3; Bmal2, Bhlhb2, 
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and Bhlhb3; one period-related gene Per3; RevErbβ, Rorβ, 
and Rorγ Ukai and Ueda 2010).

How the clock genes and clock-related genes interact 
with each other is at least partly clarified (see Fig. 18.9 and 
18.10). CLOCK and BMAL1 dimerize and activate tran-
scription of Per and Cry through E-box elements. The PER 
and CRY proteins accumulate in the cytosol, are phosphory-
lated, and then are translocated into the nucleus. There they 
inhibit the activity of Clock and BMal1. After the turnover of 
PER and CRY, a new cycle of activation by CLOCK and 
BMAL1 begins. This clock oscillator influences physiologi-
cal and metabolic processes.

The rhythmic expression of Bmal1 mRNA is also clock 
regulated. The Bmal1 promoter contains RRE instead of an 
E-box, and its activities are controlled by the rhythmically 
expressed transcriptional repressor REVERBα and the acti-
vator RORα. CRY inhibits by feedback the CLOCK/BMAL1 
complex and is responsible for the functioning of the mam-
malian clock. Critical for the function is also the E-box- 
mediated transcriptional/posttranscriptional loop.

The circadian clock of mammals possesses also posttran-
scriptional regulation. Using newer technologies, several 
protein kinase, adenylate cyclase, and proteasome inhibitors 
were found which lengthen the period of the clock. The deci-
sive step seems to be the CKIε/δ-dependent phosphorylation 
of PER2.

Circadian clocks must be protected against fluctuations in 
the environment such as temperature and food. They are there-
fore temperature compensated. Theoretical studies of Isojima 
et al. (2009) show that the effect of CKIε and CKIδ activity on 
PER2 determines period and is temperature insensitive. 

Circadian oscillators of mammals are also resistant against 
fluctuations of the transcription rate (Dibner et al. 2009).

It was mentioned already on page 9 that a special light 
pulse at a critical phase of the circadian oscillator might lead 
to arrhythmicity. This feature has been used by Ukai and 
Ueda (2010) and Pulivarthy et al. (2007) to find out whether 
the arrhythmicity is due to a stop of the oscillators in a singu-
lar state or whether the oscillators continue to oscillate but 
desynchronized to each other. In mammalian cell cultures 
made photo responsive by coupling αρ protein to melanop-
sin, it was shown that desynchronization of the cellular 
clocks and not arrhythmicity was responsible (Ukai and 
Ueda 2010; Pulivarthy et al. 2007). In light-responsive 
immortalized fibroblasts of mice, such a critical light pulse 
reduces the amplitude of the rhythm by 40 % but desynchro-
nizes simultaneously the cells (Pulivarthy et al. 2007). In rats 
it was shown in vivo that desynchronization is responsible 
for the low amplitude of the locomotor activity after such a 
critical light pulse (Ukai et al. 2007).

Using a tunable oscillator (see Tigges et al. 2009) in 
mammalian cells, it could be clarified how the phases of 
expression of oscillating genes are determined by the three 
CCEs (E/E-box, D-box, and RRE). The transcriptional acti-
vator DBP activates gene expression via the D-box; the 
E4BP4 represses gene expression. Dbp is regulated by the 
E-box, the morning control element. E4bp4, however, is reg-
ulated by the RRE, the nighttime control element. RRE acti-
vators are expressed during the day phase through the D-box. 
The RRE repressors are influenced by a morning element 
(E-box). A daytime activator and a morning repressor 
 determine the nighttime transcription through the RRE 
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of the Per1, Per2, and Per3 genes and of the Cry1 and Cry2 genes 
inhibit (thick red – I) the expression of their genes (Per1–3 and Cry1–
2). A kinase (CK1ε) is responsible for the destruction of the PERs and 
CRYs (blue ovals with broken borders). Further feedback loops 
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(Ukai- Tadenuma et al. 2008). Rhythms did not have a strong 
amplitude, if only the morning activator or only the night 
repressor was expressed. Morning activation and night 
repression are responsible for the control during the day. 
Various combinations of transcriptional regulators with 
CCEs for the three basic circadian phases (morning, day, and 
night) result in other phases and show that transcriptional 
regulation of upstream transcription factors can determine 
the phase of the downstream output. The period length of the 
clock is largely determined by posttranscriptional circuits.

18.7.3  Circadian Photoreceptors in the Eye

As mentioned, the SCN of mammals is only synchronized by 
light perceived via the eyes: enucleated animals free run in 
LD cycles (Meijer et al. 1996).

Whereas the rods and cones of the outer retina are respon-
sible for normal vision and communicate with the brain via 
the optic nerve, a small subset of intrinsically photosensitive 
retinal ganglion cells (ipRGCs; see Fig. 18.9) in the inner 
nuclear layer of the retina controls the circadian rhythm in the 
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ipRGC (dark blobs in A) and in the rods (PRs, short structures) and 
cones (long structures) and reach via action potentials (AP, insert C) in 
the RHT the SCN (insert B). The APs (insert C) open Ca2+ channels (Ca) 
which leads to discharge of neurotransmitters VIP, GRP, and GABA 
from the presynaptic neurons into the synapse and clock gene activation 
in the postsynaptic neurons via receptors (only AC shown), cAMP, PKA, 
and CREB. The signals are received by clock neurons cells (circles with 
~, insert B) in the core of the SCN, which are entrained by them and by 
mutual interactions (⇌). They in turn synchronize clock cells in the shell 
of the SCN which interact with each other (⇌) and with other cells (cir-
cles with -). They communicate with target tissue/organs via neurotrans-
mitters like AVP, PK2, VIP. Signals from the SCN reach the pineal (PIN) 

via sympathetic innervation with synapses in the PVN, IML, and 
SCG. Insert D shows part of a pinealocyte where the signals trigger via 
norepinephrine (NE) the release of melatonin (Mel) into the blood ves-
sels (bl.v.) of the brain. The signal cascade involves Ca2+ and PKC which 
increase cAMP. PKA phosphorylates CREB in the nucleus, activating 
genes involved in melatonin synthesis. Melatonin reaches via the blood 
different targets, among them SCN cells and cells of the pars tuberalis 
(PT; main figure), both of which contain numerous melatonin receptors. 
The PT controls photoperiodic events. Another direct target of the 
ipRGC in the retina is the olivary pretectal nucleus (OPN) linking the 
pupillary light reflex via EW, CG, and the iris muscles (After Berson 
(2003), Hastings and Herzog (2004), Meijer and Schwartz (2003), 
Lincoln (2006), Pévet et al. (2006), Welsh et al. (2010), Dibner et al. 
(2010), and Schmidt et al. (2011))
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SCN. These cells regulate also masking effects of the light, 
the immediate melatonin suppression, and the pupil reflexes 
(Hughes et al. 2012; Lucas et al. 2012). They occur in small 
numbers only (in humans 0.2–0.8 % of all ganglion cells in 
the retina) but spread widely as a network across the entire 
retina (Moore et al. 1995) and are strongly arborized 
(Hannibal et al. 2002). They detect the average illuminance of 
the day and integrate it over long intervals (Do and Yau 2010; 
Pickard and Sollars 2010; Husain 2005; Warren et al. 2003). 
In addition they receive input from the rod/cone circuitry. 
Plachetzki et al. (2005) provide a historical overview.

There are five types of ipRGCs, M1–M5, which differ in 
connection and function. The Brn3b-negative M1 cells 
innervate the SCN and entrain the clock cells, and the Brn3b- 
positive M1 cells innervate the shell of the OPN. From there 
the pupillary light response is controlled. The other M cells 
innervate the core of the OPN, the SC, the dLGN, and other 
regions, but their specific functions are not yet known 
(Hughes et al. 2012).

The LD cycles of the environment are sensed by the 
Brn3b-negative M1 ipRGCs and transferred as electrical sig-
nals via their monosynaptic axons in the RHT to the 
SCN. Melanopsin serves as the photopigment. G protein is 
activated, thereafter PLC and finally an influx of Ca2+ leads 
to action potentials. As a result, Glu and PACAP are released 
postsynaptically at the SCN neurons. Ca2+ influx activates 
protein kinases and CREB is phosphorylated (Golombek and 
Rosenstein 2010). It binds to CREs in promoters of many 
clock genes such as the Per1 and Per2 genes and activates 
transcription. Depending on the time at night at which light 
occurred, the increased PER advances or delays the locomo-
tor activity rhythm.

The transduction cascade of the melanopsin-expressing 
ipRGCs differs fundamentally from the one of the rod and 
cone photoreceptors, since a different G protein is involved 
and melanopsin activation results in membrane depolariza-
tion rather than hyperpolarization as in rods and cones. It 
thus resembles more closely the phototransduction cascade 
of invertebrates (Palczewski 2012; Bailes and Lucas 2010). 
Whereas mammals have just one melanopsin (Opn4m), fish, 
birds, and amphibians possess two, Opn4m and Opn4x 
(Bellingham et al. 2006).

All inputs of the accessory light perception use the rod- 
cone and the melanopsin system (Hattar et al. 2003). 
However, the quality of the information differs. Cones signal 
rapid changes in light intensity, and rods and melanopsin 
gradual modulations during the day at dim and brighter 
intensities. Mice possess a small population of short-
wavelength- sensitive S-cones which could explain the UV 
sensitivity (Provencio and Foster 1995). The SCN is thus 
able to encode environmental light over a wide range of 
intensities and temporal frequencies (Lucas et al. 2012).

After the light has been absorbed in the retina and the 
signals have reached the SCN, immediate early genes for 
transcription regulator proteins and furthermore nitrogen 
monoxide come into action. The latter is required for light- 
induced phase shifts of behavioral rhythms (reviewed by Rea 
1998).

Under DD, circadian rhythms are maintained by the clock 
cells of the SCN. But the eyes, which also contain autono-
mous circadian clocks (see Sect. 18.7.4), can also modulate 
circadian rhythms in the SCN even in the absence of light. 
Removal of the eyes abolishes circadian rhythms in some 
cells of the SCN; they were apparently driven by inputs from 
the eyes. However, removal of the eyes can also amplify a 
normally dampened circadian rhythm in other cells of the 
SCN (Beaule and Amir 2003).

18.7.4  Retinal Clocks in the Eye

After presenting the circadian photoreceptors in the retina 
(Sect. 18.7.3), we have to point out that the retina of the eye 
contains circadian clocks itself. The retina, its cells and tis-
sues, and their interactions are well studied. It consists of 
several tissue layers with five classes of neurons (photore-
ceptors, horizontal cells, bipolar cells, amacrine cells, and 
ganglion cells) and glia (Guido et al. 2010; Tosini et al. 
2008). There are three nuclear layers (outer and inner nuclear 
layer, ganglion cell layer; see inset A in Fig. 18.9). Light has 
to pass through these layers and their neurons before reach-
ing the photoreceptors.

The outer segments of rods and cones absorb light with 
various opsin photopigments in stacked discs. The disks are 
shed at the tip of the segments, phagocytosed and digested in 
the retinal pigment epithelium (Bobu and Hicks 2009; 
Strauss 2005; Grace et al. 1999; Young 1976). At the base 
the segments are renewed by forming new disks. This inter-
nal renewal is important for the functional integrity of rods 
and cones, because they cannot be replaced by new cells. 
The shedding of the outer disks occurs in the rods in the 
morning and in the cones in the evening, that is, at times, 
when they are not used anymore.

Several photopigments with diverse functions are found 
in the various cell layers (Peirson et al. 2009). They synchro-
nize the circadian rhythms (Iuvone et al. 2005; Green and 
Besharse 2004; Devlin 2002).

Circadian clocks in the mammalian eye were predicted by 
Reme et al. (1991). They have later been found in the retinas 
of all classes of vertebrates. The retina contains besides the 
normal visual system a circadian system with receptors for 
synchronizing light and with many mutually coupled clocks 
(Ruan et al. 2006). Different aspects of retinal physiology 
such as sensitivity to light (differences of more than six orders 
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of magnitude), neurohormone synthesis, rod disk shedding, 
intracellular signaling, and gene expression are controlled by 
these clocks (Green and Besharse 2004; Tosini and Fukuhara 
2002; Tosini and Menaker 1996). The retinal clock cells con-
trol also the circadian melatonin expression in the eye and are 
partly responsible difference in the sensitivity to light.

There are indications that in the retina two or more oscil-
lator types control the local physiology. Melatonin and dopa-
mine in the ganglion cells of the inner retina and a part of the 
inner nuclear layer and/or the photoreceptors are regulated in 
antiphase (Thompson et al. 2003; Hattar et al. 2003).

This close connection between circadian clocks and pho-
toreceptors is known also from invertebrates and Neurospora.

The molecular components and genetic basis of the reti-
nal and other peripheral clocks of the body are the same as 
the one in the SCN cells (Yamazaki et al. 2000), and they 
possess the same properties such as shorter periods in 
 corresponding mutants. These shorter periods show up also 
in the output of the eye clocks (Grace et al. 1996). There are, 
however, variations in molecular detail (Steenhard and 
Besharse 2000).

The retinal clock cells control the local physiology and 
are responsible also for a circadian output of melatonin in the 
eye. This changes the sensitivity of the retina to light, cover-
ing a range of more than six orders of magnitude.

Similarities and differences in the molecular mechanisms 
of the retinal versus the SCN oscillators are discussed by 
Green and Besharse (2004). They also examined the interac-
tions between the retinal and the SCN clocks. Light and 
dopamine phase shift the retinal clock (Steenhard and 
Besharse 2000). The circadian release of melatonin in the 
eye is responsible for the rhythmic adaptation of phototrans-
duction, for the recycling of biochemical components in the 
retina, and for other aspects of the retinal physiology. Other 
rhythmic events in the eye such as visual resolution (Tassi 
et al. 2000), ERG, intraocular pressure (Nickla et al. 1998), 
cats: Sole et al. (2007), choroid thickening, and eye growth 
might be or are also under circadian control.

18.7.5  Peripheral Clocks and Their 
Entrainment

In the brain, clock genes are not only expressed in the SCN but 
also in other parts of the central nervous system (e.g., cerebel-
lum, hippocampus, arcuate nuclei, paraventricular hypotha-
lamic nuclei, piriform and cerebral cortices, olfactory bulbs, 
amygdala, retina Guilding and Piggins 2007). Furthermore, 
rhythms of clock gene and/or protein expression have been 
observed in peripheral tissues and organs such as liver, pan-
creas, fat tissue, gut, lung, and heart (references, also for the 
following, in Pévet and Challet 2011); Bass and Takahashi 

(2010). These rhythms persist in culture, that is, without the 
influence of the SCN cells. However, they dampen after a few 
cycles. Imaging has shown that individual cells continue to 
express rhythms, but are not synchronized anymore. In contrast 
to the SCN, they do not react to external time cues such as the 
LD cycle of the environment and cannot communicate with 
and entrain each other. Peripheral oscillators can be entrained 
by temperature cycles as exhibited in core body temperature. 
Thus, rhythmic gene expression can be driven by both local 
intracellular clocks and by extracellular systemic cues.

Metabolism is linked with the circadian system not only 
via the SCN but also via peripheral tissues, endocrine, and 
local signals. Feeding time and certain drug treatments can 
generate behavioral rhythms in the absence of the SCN 
(Honma and Honma 2009). The liver clock is reset by feed-
ing, and the clock genes and protein expression shift their 
phase accordingly (references in Mohawk et al. 2012).

18.7.6  Pineal Organ, Melatonin, 
and Photoperiodism

The pineal resembles a tiny pine cone and is an endocrine 
gland in the center of the vertebrate brain between the hemi-
spheres (see Fig. 18.9). It is a part of the “photoneuroendo-
crine system” (retina, suprachiasmatic nucleus, pineal) and 
consists mainly of pinealocytes, which produce and secrete 
melatonin. In lower vertebrates, they contain functional cir-
cadian oscillators, but in mammals they do not (Falcón et al. 
2009). Furthermore, mammals lack extraretinal circadian 
photoreceptors in the pineal (Bertolucci and Foà 2004). 
Instead, light is perceived in photoreceptors of the rods, 
cones, and melanopsin-expressing retinal ganglion cells (for 
the exceptional circadian system of mammals and its evolu-
tion, see Menaker et al. 1997; Heesy and Hall 2010; Davies 
et al. 2012). The light signals are converted to electric signals 
in this photoneuroendocrine system (Do and Yau 2010). The 
electric signals are propagated via the RHT neurons to the 
SCN. From the SCN the light signaling is conveyed to 
the pineal via the paraventricular nuclei (PVN) of the hypo-
thalamus, the sympathetic preganglionic neurons of the 
intermediolateral cell column of the spinal cord (IML), and 
noradrenergic sympathetic neurons to the superior cervical 
ganglion (SCG) (see Fig. 18.9 and Pévet and Challet 2011 
for the neurotransmitters involved). The SCN output stimu-
lating the PVN derives from two populations of SCN neu-
rons, one active during daytime and the other during 
nighttime.

The pinealocytes in the pineal synthesize melatonin 
(=N-acetyl-5-methoxytryptamine Reiter et al. 2010) during 
the night upon release of noradrenaline from sympathetic 
pineal nerve terminals (for the neurotransmitters used in the 
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pineal, see Stehle et al. 2011). Melatonin is immediately 
released into the blood circulation but also into the cerebro-
spinal fluid and rapidly degraded in the liver. Therefore, its 
plasma concentration precisely reflects its synthesis.

Central and local mechanisms regulate amplitude and 
rhythmic timing of melatonin synthesis from serotonin. 
Although the pinealocytes possess – like most cell types – 
the basic clock machinery, they are not able to produce a 
melatonin rhythm. Instead the rhythm is controlled by the 
SCN and without its sympathetic input there is no rhythm 
(Borjigin et al. 2012).

Melatonin transfers the temporal cues received from the 
SCN to the structures within the brain or the periphery that 
express melatonin receptors (Pévet and Challet 2011) (but 
note that circadian information can be sent from the SCN 
also via nervous or other hormonal signals). In some of them 
such as the pars tuberalis of the hypophysis, the melatonin 
signals drive rhythms; in other targets they synchronize 
peripheral oscillators, such as in the fetal adrenal gland. 
Some of these sites may not be involved in circadian control, 
but instead in photoperiodic responses (see page 56 and 
Chap. 19).

Besides melatonin, the pineal secretes also 
N-acetylserotonin (NAS) rhythmically. At night the levels 
are even higher than those of melatonin. NAS as an antioxi-
dant is even more effective than melatonin. It may thus not 
only serve as the precursor of melatonin (Jang et al. 2010).

The rhythm of pineal melatonin is a very reliable marker 
of the circadian clock. But the phase of melatonin secretion 
varies widely between individuals and strains, as shown in 
rats. This wide variation of melatonin onset in an animal 
model is paralleled by a wide range of circadian chronotypes 
in humans.

Light affects melatonin synthesis not only by its resetting 
effect on the circadian system but has also an immediate 
effect (“masking”) if applied at night. One lux is already suf-
ficient in golden hamster to inhibit melatonin synthesis 
(Brainard et al. 1983). For humans, a fluence response curve 
for immediate inhibition by blue light, which is most effec-
tive, was determined by Brainard et al. (2008).

Melatonin is produced not only in the pineal but also in 
the Harderian gland, the gastrointestinal tract, and the retina 
but is there only of local importance (see Sect. 18.7.4 and 
Hardeland et al. 2011). It is found not only in animals but 
also in bacteria, unicellular eukaryotes, and plants serving 
various tasks (Dibner et al. 2010).

Melatonin acts at the central level as well as at the periph-
ery: it does not only affect the gonads and other centrally 
controlled events but also other tissues of the body and the 
brain (Pévet et al. 2006). Being a small molecule, melatonin 
can pass the placenta and convey circadian and seasonal 
information to the fetus (Stehle et al. 2011).

Melatonin modulates sleep propensity (Cajochen et al. 
2010; Pandi-Perumal et al. 2006; Turek 2005; Gillette and 
Abbott 2005), vascular tone, immune function, controls sea-
sonal reproduction (Sellix and Menaker 2011; Reiter et al. 
2010; Revel et al. 2009), seasonal thermoregulation includ-
ing torpor and hibernation (Saarela and Reiter 1994; 
Heldmaier and Steinlechner 1981; Chap. 12 in Heldmaier 
and Werner 2004), metabolism, energy balance (body weight 
regulation!), and immune responses (references in Barrenetxe 
et al. 2004).

Phase shifting of the SCN clockwork is the central and 
best characterized effect of melatonin (Shimomura et al. 
2010). Treatment with exogenous melatonin can synchro-
nize the SCN (Pévet and Challet 2011). Orally or injected 
melatonin pulses advance or delay the circadian rhythm 
depending on the phase of application. The phase response 
curve to melatonin pulses is similar to that of light pulses but 
displaced by 180° (Lewy et al. 1996). Therefore, melatonin 
can be used in a similar way as light pulses – if properly 
phased, to shift the circadian system. Circadian phase disor-
ders can be treated in this way (Lewy and Sack 1997).

Melatonin shows connections to human diseases as dis-
cussed in Sects. 18.8.3, 18.8.4, and 18.8.5 and by Hardeland 
et al. (2012) and Pandi-Perumal et al. (2013). It is used to 
cure sleep disturbances and insomnia (for instance, in elderly 
people, Fiorentino and Martin 2010), depression, jet lag, and 
shift-work-related sleep cycle disorders (see Sect. 18.8). The 
antioxidant properties of melatonin (Reiter et al. 1999; 
Pandi-Perumal et al. 2012) might protect the skin against UV 
(Reiter et al. 2004).

In seasonally breeding mammals the melatonin produc-
tion in the pineal plays a decisive role (reviews Ikegami and 
Yoshimura 2012; Hut and Beersma 2011; Walton et al. 2011; 
Revel et al. 2009; Morgan and Hazlerigg 2008). The duration 
and magnitude of the melatonin secretion depends on the 
length of the night, which changes during the year especially 
in higher latitudes. In this way seasonal changes are sensed 
by photoperiodically responsive mammals and control repro-
duction (stimulating or inhibiting, depending on the species 
(Stehle et al. (2001), Hoffmann (1981)) and pelage color, 
among others. The length of the night is coded by the dura-
tion of the nocturnal peak of melatonin (Revel et al. 2009; 
Morgan and Hazlerigg 2008). Clock genes in calendar cells 
of the pars tuberalis of the hypophysis, where melatonin 
receptors are strongly expressed, regulate prolactin release 
(Johnston et al. 2006; Lincoln et al. 2003). These cells con-
tain circadian clocks, and the phase relationship between the 
expression of the clock genes Cry and Per1 is set by melato-
nin at dusk, respectively, dawn.

Whereas the photoperiodic timing in the SCN for the mel-
atonin secretion in the pineal uses external coincidence, the 
timing in the pars tuberalis seems to follow an internal coin-
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cidence (see Sect. 18.4.3). As a consequence the transcrip-
tion of downstream genes (prolactin releasing factor?) leads 
to either a long-day cell state or a short-day cell state (Lincoln 
et al. 2002).

Pinealectomy abolishes the photoperiodic response.

18.8  Light and the Human Circadian 
System

The effect of light on the circadian system of mammals has 
been discussed already in Sect. 18.7. A few peculiarities of 
the human circadian system and its responses to light are 
mentioned in the following.

The circadian system governs not only the sleep-wake 
cycle, body temperature, alertness, and efficiency but also 
many other metabolic, physiological, and behavioral events 
such as enzymatic activities in organs, hormonal secretion, 
and so on. There is a long list of circadian clock-driven 
events in man (Minors and Waterhouse 1981).

The sleep/wake cycle (Dijk and von Schantz 2005), body 
temperature, and urine amount and its composition can be 
monitored easily and have therefore often been used as hands 
of the circadian system. Melatonin concentration in the 
blood is a particularly useful measure because it is not much 
disturbed by activities, in contrast to the body temperature 
rhythm. Light has, however, an immediate suppressing effect 
on melatonin concentration (Pévet and Challet 2011; Reiter 
et al. 2010).

The circadian system shows up clearly under isolation 
from external time cues. In a cave or in an isolation facility, 
a person who has no information of the outside time will 
sleep and wake according to its internal circadian clock. By 
continuously measuring the body temperature, the sleep 
time, and the locomotor activity, the period length of these 
parameters can be determined under the light conditions 
given (see, e.g., Johnsson et al. 1979).

However, the design of the recording conditions has to be 
taken into account. Wever (1979) and others (e.g., Weitzman 
et al. 1981; Siffre 1975; Mills 1964) determined an average 
“free run” of about 25 h, but this estimate was too high, as 
discussed by Czeisler and Gooley (2007): the subjects were 
able to self-select their LD cycle. They exposed themselves 
to light during most of the delay portion of the phase 
response curve during wakefulness and to darkness during 
most of the phase-advance portion. As a result of this and 
due to the light intensities used, the free-running periods 
were overestimated (Khalsa et al. 2003; Honma et al. 2003; 
Klerman et al. 1996). Using other protocols such as “forced 
desynchrony,” which had been used already in 1938 by 
Kleitman (1963), period could be measured without the 
influence of the self-selected LD cycles (Duffy and Wright 

2005; Czeisler et al. 1999) and turned out to be much closer 
to 24 h, namely, 24.2 h as an average. To entrain the circa-
dian clock of a person with such a period to the 24 h day, the 
rhythm has to be advanced daily by about 0.2 h (12 min). 
The period of about 25 % of tested persons is less than 
24.0 h, requiring a daily delay, whereas in the remaining 
individuals period is longer, thus requiring a daily advance 
of the rhythm. The interindividual variation in period length 
in humans is much smaller than assumed before (0.55 % 
instead of 30 %, references in Czeisler and Gooley 2007) 
and corresponds now more to the values of other mammals 
such as hamster and mouse. Entrainment thus requires daily 
shifts of less than 1 h.

In the forced desynchrony protocols, the LD cycles used 
were outside of the range of entrainment (e.g., an LD cycle 
of 28 h). If non-24 h cycles inside the range of entrainment 
are used, the observed period length shows a so-called after-
effect, which depends on the imposed cycle length. Subjects 
after a 24.65 h cycle displayed a longer period than subjects 
after entrainment by a 23.5 h cycle and demonstrate the plas-
ticity of the human circadian system (Scheer et al. 2007). 
Blind individuals exhibit a free-run period closer to 24.5 h, 
and the shorter period in sighted subjects might represent an 
aftereffect of the entrained life to 24 h.

18.8.1  Light Synchronizes the Human 
Circadian System

Which time cues synchronize the human circadian system? 
The free-running rhythm of humans can be synchronized to 
the 24 h day by knowing the time of day and by external time 
cues such as light, temperature, noise, or social contact (for 
entrainment by non-photic signals, see Mistlberger and 
Skene 2005). Light plays a much more important role in 
humans than claimed by, e.g., Wever (1979) in earlier stud-
ies, and shorter exposures (Laakso et al. 1993) and lower 
intensities than assumed before are able to entrain the human 
circadian system (Wright et al. 2001).

In man, as in other mammals, the eyes seem to be the only 
places harboring photoreceptors which are able to synchro-
nize or phase shift the circadian rhythms in the SCN, the 
master clock in vertebrates. Findings of Campbell and 
Murphy (1998) that extraretinal photoreception can phase 
shift the circadian rhythm of body temperature and melato-
nin concentration by illuminating the backside of the knees 
could not be verified in later experiments; see Rüger et al. 
(2003) with further references. Recently, Timonen et al. 
(2012) claimed to have influenced the circadian clock by 
light administered via the ear. This needs to be confirmed. 
That the eyes are the only sites for the photoreception is sup-
ported by the following:
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All humans with bilateral enucleation and 20 % of the 
remaining blind people exhibit free-running circadian 
rhythms (“blind free runners,” Emens et al. 2005). In the rest 
either the blindness affects only normal vision of images, but 
not the circadian vision based on the ipRGCs, or other time 
cues are used for synchronization (Mistlberger and Skene 
2005). Occasionally, free run is observed even in people with 
intact vision living in a normal environment (Giedke et al. 
1983; Miles et al. 1977). It is not known why light (and other 
time cues) are ineffective in these people.

As in other mammals, single light pulses are able to phase 
shift circadian rhythms in humans. The phase response curve 
is of the strong or weak type (see page 10), depending on the 
strength and length of the light exposure (Khalsa et al. 2003; 
Minors et al. 1991) (questioned, however, by Duffy and 
Wright 2005 with further references). The human circadian 
system is responsive to light throughout the daytime (and of 
course much more during the nighttime, but under normal 
conditions the daytime light exposure synchronizes the 
human circadian system) without a “dead zone” (see page 10 
and Jewett et al. 1997). A dose-response curve for phase 
shifting the melatonin rhythm by white light exists. Exposure 
to a light intensity of 2,000 lx for 1–3 h increased the magni-
tude of light-induced delays, whereas shorter exposures with 
higher intensities (4,000 and 8,000 lx) do not increase the 
shift further (Dewan et al. 2011). Light exposures of as low 
as 1.5 lx are sufficient to keep the circadian rhythm entrained 
(Czeisler and Gooley 2007). Phase shifting the rhythm by 
intermittent light is more effective than is a continuously 
applied light pulse.

Besides phase the amplitude of the rhythm is an important 
parameter. A first light pulse has been claimed to reduce the 
amplitude of the circadian rhythm in man, which would ren-
der the system more sensitive toward the phase-shifting 
effect of a second light pulse (Czeisler et al. 1989). A light 
pulse of a critical strength applied at a critical phase point 
(subjective midnight) induces arrhythmicity by pushing the 
clock into a singular point (references in Czeisler and Gooley 
(2007); see also page 9).

In order to find out which wavelengths are effective in 
shifting the phase of the circadian rhythm in man, action 
spectra (see Chap. 8) were determined by using the suppres-
sion of plasma melatonin. The results of those experiments 
are compiled and discussed by Brainard and Hanifin (2005). 
Light in the short-wavelength range (459–484 nm) is most 
effective. This differs from the spectral sensitivity of the 
visual system and points to special circadian photoreceptors 
as discussed in Sect. 18.7.3. The circadian rhythms of some 
people completely blind for vision are still entrained, and 
this applies also for suppressing melatonin by light. 
Responsible are the retinal ganglion cells which project 
directly to the SCN. Rods and cones are apparently dispens-
able but serve additionally for entrainment. Longer wave-

lengths are effective in resetting especially at low light 
intensities. The issue of photoreception and circadian 
entrainment has been discussed in Sect. 18.7.4 (for humans 
see also Kronauer et al. 1999). A detailed action spectrum 
which could help to identify the photoreceptors is still miss-
ing. Spectral sensitivity of the retinal ganglion cells to light 
seems to change during the night (Figueiro et al. 2005). The 
background light and the history of previous illumination 
affect the resetting properties of light, but this issue needs 
more studies.

18.8.2  Significance of Light and the Circadian 
Clock in Shift Work and Jet Lag

The circadian rhythm of modern man is often delayed with 
respect to the natural LD cycle. He uses electric light and can 
therefore stay up during the winter time much longer than 
natural daylight would otherwise permit (Cardinali 1998). 
This independence or even insulation from the natural light 
easily leads to permanent sleep deprivation. In addition, 
modern society expects full range services throughout the 
24 h. Traffic, economy, health service, and security have to 
rely on shift work or night work by a considerable part of the 
workers (about 20 % in the industrialized nations, half of 
them on night or rotating shifts).

Normally the circadian clock is in synchrony with the 
daily cycling of external 24 h cycles, and the body can adapt 
to the cyclic demands. Night work and shift work clashes 
with our circadian clock and disrupts this synchrony. The 
internal coherence among oscillations is lost and problems 
may arise. Sleep disturbances and effects on health (Reed 
2011; Erren et al. 2010) and on safety of workers and drivers 
(Philip and Akerstedt 2006; Barger et al. 2005) are due to 
shift work (Kecklund et al. 2012; Saksvik et al. 2011; Arendt 
2010; Folkard 2008) and jet lag (Arendt 2009; Auger and 
Morgenthaler 2009; Coste and Lagarde 2009).

About 10 % of shift workers suffer from shift work disor-
der. The resulting internal desynchrony brings behavioral, 
hormonal, and metabolic rhythms out of phase and increases 
the risk of gastrointestinal problems, cancer, depression, 
heart disease, sleep disturbances, and accidents; it further-
more affects reproductive cycles, menstruation, and preg-
nancy (Mahoney 2010; Su et al. 2008) and decreases 
productivity (Roth 2012).

The synchronizing effect of light on the circadian system 
of man is one of the problems of shift work (Monk 2000). 
For instance, the high fluence rate of outdoor light in the 
morning after a night shift prevents the phase shift of the 
circadian system needed for optimal adjustment of the night 
workers clock (Horowitz et al. 2001). Wearing dark goggles 
is advisable in this case (Eastman et al. 1994). On the other 
hand, light can be used also for adjusting the clock to the 
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shift work schedule, if properly applied (Turek 2005; 
Crowley et al. 2003). Models are used successfully for con-
structing LD cycles which phase shift the rhythm in such a 
way that they align better with shift work and day sleep 
schedules (Jewett et al. 1999b; Martin and Eastman 1998). 
More empirical data from shift work effects on the circadian 
rhythms are, however, needed for detailed simulations of this 
kind (Åkerstedt 1998). Other counteractions consist of light 
exposures at certain times of the circadian cycle (Boivin and 
James 2005) and of using chronobiotics such as melatonin 
(see Sect. 18.7.6 and Arendt (2005)). In using combinations 
of light and melatonin, it should be taken into account that 
the phase-shifting effect of light pulses and melatonin pulses 
is 180° out of phase (Skene 2003).

Whether the internal desynchrony occurs at a peripheral or 
at a central level has been studied by Salgado-Delgado et al. 
(2008) in a rat model. Working and feeding during the sleep-
ing period uncouples metabolic functions from the biological 
clock which remains fixed to the LD cycle. The data suggest 
that in night workers the combination of work and eating dur-
ing working hours may cause internal desynchronization. In 
this connection the quality of sleep and the cognitive perfor-
mance of shift workers and workers with day shift only were 
studied in offshore fleet workers (Hansen et al. 2010). Morning 
types (for testing the chronobiological phase type, see link 
[http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-37910] 
||Chronobiological phase type, page 97) are under higher 
health risk even if treated with bright light (Griefahn and 
Robens 2010).

This internal desynchrony occurs already at the level of 
the first output from the SCN, namely, relaying nuclei of the 
hypothalamus such as the arcuate and dorsomedial nucleus, 
both associated with metabolism and regulation of the sleep/
wake cycle. They transmit temporal signals to other brain 
areas and to the periphery. The SCN itself and the paraven-
tricular nucleus stay, however, locked to the LD cycle 
(Salgado-Delgado et al. 2010). Desynchronization between 
clock and the LD cycle is thus unfavorable or even increases 
mortality (Park et al. 2012).

Jet lag is another problem. The circadian clock cannot 
rapidly adapt to a new LD cycle and this leads to desyn-
chrony. Overviews and practical considerations are provided 
by Kolla and Auger (2011), Arendt (2009), Auger and 
Morgenthaler (2009), Coste and Lagarde (2009), and Revell 
and Eastman (2005). Symptoms can be reduced by proper 
avoidance or exposure to light (Zee and Goldstein 2010). 
Based on the human phase response curve to light pulses, 
one should avoid morning light and expose oneself to eve-
ning light in flying westward but expose oneself to morning 
light and avoid evening light in flying eastward (however, 
flight time and duration influence also adaptation to the new 
time zone). Chronobiotics (melatonin) and behavioral thera-
pies are alternatives (Srinivasan et al. 2008; Touitou and 

Bogdan 2007). A discrepancy between biological and social 
timing leads to chronic sleep shortage and jet lag symptoms 
(social jet lag). It contributes to weight-related pathologies 
such as obesity (Roenneberg et al. 2012).

18.8.3  Light, Sleep, and Sleep Disorders

The sleep/wake cycle and its influence on performance is an 
interplay of the external LD and social cycles and of internal 
oscillators, namely, a circadian clock and a homeostatic 
oscillator. Sleep homeostasis implies that sleep deficit 
increases the intensity and duration of sleep and excessive 
sleep reduces sleep propensity. The circadian system deter-
mines sleep propensity, timing of sleep, and sleep structure 
and consolidates sleep and wakefulness, but the homeostatic 
oscillator contributes also to sleep timing and duration, to 
REM and slow-wave sleep, and furthermore to performance 
parameters such as attention and memory (Dijk and von 
Schantz 2005). The homeostatic oscillator interacts with the 
clock or its outputs according to the circadian principle the 
longer we are awake, the shorter we sleep and according to 
the homeostatic regulation of sleep the longer we are awake, 
the deeper our sleep (Bjorvatn and Pallesen 2009).

The circadian clock gates sleep and wakefulness in such a 
way, that it occurs in synchrony with the LD cycle of the 
environment. The clock stops the production of melatonin 
and increases cortisol secretion and heart rate 2–3 h prior to 
waking up (Cajochen et al. 2010).

The effects of light on sleep have been reviewed by 
Sadeghniiat-Haghighi et al. (2011), Zamanian et al. (2010), 
and Czeisler and Gooley (2007), and various treatments of 
sleep disorders are discussed by Thorpy (2011), Dodson and 
Zee (2010), Bjorvatn and Pallesen (2009), and Blythe et al. 
(2009).

Common sleep disorders are (Reid et al. 2011; Barion and 
Zee 2007; Fahey and Zee 2006):
• The rapid time zone change syndrome (jet lag) with 

excessive sleepiness and a reduced alertness during day-
time in people who travel across time zones (Auger and 
Morgenthaler 2009; Dean et al. 2009).

• The shift work sleep disorder in people who frequently 
rotate shifts or work at night (Kolla and Auger 2011).

• The delayed sleep phase syndrome; affected people (typi-
cally adults) fall asleep at very late times and have diffi-
culties in waking up in time (Rahman et al. 2009; Okawa 
and Uchiyama 2007).

• The advanced sleep phase syndrome, in which sleep is 
advanced (frequent in the elderly); affected people are 
sleepy in the evening; sleep onset and waking up is early 
(Caruso and Hitchcock 2010). This syndrome is associ-
ated with a mutation in Per2, a clock gene (Xu et al. 2005; 
Toh et al. 2001).
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• The non-24 h sleep-wake disorder, in which an individual 
has a normal sleep pattern but a period deviating from 24 h 
(Okawa and Uchiyama 2007). This syndrome might be 
caused by weakened or missing stimuli. In blind people, 
this disorder is more frequently found (Skene and Arendt 
2007; Das et al. 2006). Timed melatonin or Zopiclone 
treatment and/or bright light treatment was successful in 
this syndrome but is often not used (fewer than 15 % of the 
3,000 blind and visually impaired New Zealanders have 
been prescribed melatonin Warman et al. 2011).

• Irregular sleep-wake rhythm disorder, in which a circa-
dian pattern is lacking. It occurs in aging and with neuro-
degenerative diseases, such as Alzheimer’s disease, but 
also in traumatic brain injury and in mentally retarded 
persons (Zee and Vitiello 2009). Causes are degeneration 
or decreased neuronal activity of SCN neurons, decreased 
response of the clock to zeitgeber such as light and activ-
ity, too weak exposure to bright light, lack of social con-
tact and physical activity during the day. This disorder is 
treated by consolidating sleep during the night and wake-
fulness during the day mainly by restoring or enhancing 
SCN zeitgeber. Pharmacologic treatments were negative 
or inconsistent,

• Sleep disturbance in psychiatric disorders (Harvey et al. 
2011). Clock genes and dopamin/serotonin have been 
linked to a range of disorders.
Sleep protection and sleep hygiene are important for the 

well being of adults, children and babies including prema-
ture newborns. For the development of the latter and a 
relaxed condition and good clinical conditions, oral feeding 
and a close parent-infant relationship are important. A cor-
rect sleeping-awaking pattern is a key factor for the develop-
ment of the brain. To protect sleep of newborns, the 
environment has to be modified in such a way, that the noise 
level is reduced, a dark (or at least a semi-dark) period is 
offered and the face of the infant protected from direct light 
(Colombo and Bon 2011).

According to Bruni and Novelli (2010) about 20–30 % of 
young children are affected by sleep disorders (problems 
getting to sleep = dyssomnias, sleep terrors and sleepwalking 
= parasomnias). Besides medication such as melatonin, light 
therapy and scheduled waking is used as a safe and protec-
tive intervention for parasomnias (Montgomery and Dunne 
2007).

Gradisar et al. (2011) point to the high incidence of sleep 
disturbance in the youth and in adults (period 1999–2010 
reviewed). Sleep onset is delayed in school students, and this 
delay increases with age of students, which shortens night 
sleep and increases daytime sleepiness. Begin of weekend 
sleep is 2 h later and longer. A worldwide delayed sleep-
wake behavior pattern exists and delayed sleep phase disor-
der is wide spread. A fixed advanced sleep/wake schedule 

with morning blue-light exposure advances circadian phase 
(Sharkey et al. 2011). How important short-wavelength light 
in the morning is has been shown by Figueiro and Rea (2010) 
and is relevant to lighting practice in schools. Wolfson and 
Carskadon (2003) discuss the effects of advanced sleep dis-
order on performance and schoolwork. Kohyama (2011) 
reports that more than 50 % of interviewed Japanese children 
complained of daytime sleepiness, 25 % of insomnia, and 
some of both. It is due to asynchronization, brought about by 
a combination of nighttime light exposure disturbing the 
clock and decreased melatonin secretion, and a lack of morn-
ing light exposure, which prevents synchronization of the 
clock to the 24 h cycle and reduces the activity of the seroto-
nergic system. An early phase of asynchronization results 
from inadequate sleep hygiene. It can easily be resolved by a 
regular sleep-wake cycle. Without adequate intervention the 
symptoms worsen and become chronic.

Sleep disorders are common in millions of older adults, 
which might be partly due to the aging processes of the eye 
lens. As a result the transmission of blue light to the retina is 
reduced. The entrainment of the circadian clock is hampered 
and the risk of sleep disturbances increases. Kessel et al. 
(2011) showed a positive correlation between lens aging and 
sleep disorders and propose that this results from a disturbed 
entrainment.

Additionally, environmental and physiological conditions 
weaken synchronization in the aged. A regular 24 h LD cycle 
promotes synchronization. Evening light exposure benefits 
older adults with early evening sleepiness and does not influ-
ence the quality of the subsequent sleep (Münch et al. 2011); 
low irradiances and 90 min exposure are already sufficient 
(Figueiro et al. 2011). Further studies are needed (Schmoll 
et al. 2011; Figueiro et al. 2009; Gammack 2008).

In treating sleep disorders, shiftwork and jet lag, light 
therapy and melatonin administration are effectively used, 
whereby the timing of the light exposure are important 
(Gooley 2008; Lack and Wright 2007; Dagan and Borodkin 
2005); for practical advices see Dumont and Beaulieu 
(2007).

Subjects in polar regions, where suboptimal light condi-
tions prevail during the dark part of the year were studied 
by Arendt (2012). Their health is affected, and the same is 
true for people in temperate zones with insufficient light 
exposure. If the intensity of light exposure was increased, 
circadian phase advanced and sleep improved. Light rich in 
blue is more effective than white light. In polar regions at 
the south base personnel adapt their circadian system to 
night work within a week, whereas in temperate zones this 
rarely occurs. The same was found on high-latitude North 
Sea oil installations. In both cases conflicts with the envi-
ronmental light are absent, which could explain the faster 
adaptation.
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18.8.4  Shift Work and Cancer

Shift work has increased worldwide and was classified as a 
potential cancer risk by the International Agency for 
Research on Cancer in 2007; for background and practical 
information, see Erren et al. (2010) and Erren (2010). 
Sufficient evidence from animal experiments exist that light 
exposure during the biologic night increases tumor growth. 
There is some evidence that night-shift work causes breast 
cancer (Hansen and Stevens 2011), for which the light expo-
sure during the night could be responsible by reducing mela-
tonin production (Reed 2011).

If night-shift work should indeed increase breast cancer 
rate, blindness should lower the risk and nighttime illumina-
tion in communities should increase it. This was confirmed 
by studies (Stevens 2009b). Furthermore, clock genes have 
been related to breast cancer risk, particularly a Per3 muta-
tion. The same mutation predicts a chronobiological morn-
ing type and shorter sleep duration. Epigenetic influences on 
clock genes might be caused by night light (Stevens 2009a).

However, phase shift of the circadian rhythm, sleep dis-
ruption, lifestyle factors such as diet, less physical activity 
and a high BMI and lower vitamin D as well as endocrine 
influences due to a disturbed clock (Fritschi et al. 2011; 
Costa et al. 2010) could be additional factors increasing can-
cer risk (Humble 2010; Bertone-Johnson 2009). Independent 
of melatonin there is an interaction between sleep and the 
immune system: Sleep disturbances can suppress the immune 
system and increase cancer-stimulatory cytokines. However, 
the causes of cancer are complex and manyfold. An undis-
turbed and good sleep without light interruption could be a 
way of reducing the cancer risk (Blask 2009).

18.8.5  Affective Disorders, Endogenous 
Depressions

Circadian rhythms are not influenced by jet lag, shift work 
and sleep disorders only, but also by several psychiatric dis-
orders. They include affective disorders, in which the ampli-
tude and phase of several rhythms are altered. It has therefore 
been suggested that the clock is changed or its sensitivity to 
zeitgeber such as light or social cues. Non-pharmacological 
(light therapy, sleep deprivation) and pharmacological (lith-
ium, antidepressants, agomelatine, vitamin D) (Parker and 
Brotchie 2011, and Chapter 23) therapies of affective disor-
ders influence circadian rhythms, which might indicate that 
they play a role in these disorders (Schulz and Steimer 2009).

There are several connections between endogenous 
depression and circadian rhythms (Chellappa et al. 2009; 
Germain and Kupfer 2008; Lamont et al. 2007; McClung 
2007), the causes of which are not well understood. Animal 

models could help here (Kronfeld-Schor and Einat 2012; 
Workman and Nelson 2011; Ashkenazy et al. 2009a, b). In 
depressed patients the phase relationship of the circadian 
rhythm to the light sensitivity could be anomalous due to 
some defect in the retina (Steiner et al. 1987). Treatments 
which affect the circadian rhythms and the sensitivity of the 
retina to light have a therapeutic effect (Even et al. 2008; 
Terman and Terman 1999).

A number of disorders in humans are caused by circadian 
desynchrony as a result of improper light schedules. The 
physiological responses are discussed by Antle et al. (2009). 
Clinical aspects of human circadian rhythms are described 
by Klerman (2005) and practical aspects of chronotherapeu-
tics and chronopharmacological aspects by Wirz- Justice and 
Terman (2012), Ohdo et al. (2011), Levi and Schibler (2007), 
and Benedetti et al. (2007).

Four subtypes of depression can be self-treated using 
agents without prescription: neuroticism with Hypericum 
perforatum and antihistamines, malaise (fatigue, aching, 
etc.) in cases of an activated immune system with analgesics, 
demotivation with energizing agents, and SAD with bright 
morning light. Melancholia, however, cannot be self-treated 
and requires hospitalization, if severe (Charlton 2009).

18.8.5.1  SAD: A Recurrent Depression
A special type of depression is the seasonal affective disor-
der (SAD). It was described by Rosenthal et al. (1984), and 
his book (Rosenthal 2006) is a standard introduction. Patients 
show typical symptoms of major depressive disorder, but the 
depressive episodes occur at a characteristic time of the year. 
It affects 0.4–2.9 % of the US population. The figures vary 
between different studies (Howland 2009a; Westrin and Lam 
2007a; Winkler et al. 2006), countries, and cultures (Kasof 
2009). SAD is found also in children (Giedd et al. 1998), but 
not as commonly as in young adults, and is more frequent in 
women. SAD occurs at various latitudes (Kegel et al. 2009; 
Hansen et al. 2008; Mersch et al. 1999) and in both hemi-
spheres (Brancaleoni et al. 2009; Teng et al. 1995). In polar 
regions SAD is rare, but a milder form is reported (Magnusson 
and Partonen 2005).

SAD occurs usually during fall or winter (Madsen et al. 
2012). The cognitive and emotional symptoms are as in other 
types of depression, but the vegetative symptoms are 
reversed, namely, longer sleep and increased appetite. During 
spring the symptoms disappear due to the daylight or a light 
therapy. The latter is effective both in seasonal and in non-
seasonal depression (Fischer et al. 2012; Pail et al. 2011; 
Howland 2009b; Shirani and Louis 2009; Prasko 2008; Even 
et al. 2008; Terman 2007; Michalak et al. 2007; Levitan 2005 
and Golden et al. 2005), but it has, however, to be continued 
during the winter. It is recommended against SAD in 
Canadian, American, and international clinical guidelines.
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Bright light is more effective than dim light (Rastad et al. 
2011), although room light does work in mild cases (Rastad 
et al. 2008). An exposure of 10 min is already sufficient 
(Tanaka et al. 2011) and even the light of light-emitting 
diodes of a “litebook” screen (Desan et al. 2007). Effective 
doses depend on the individual and range from 10,000 lx for 
30 min/day for 8 weeks to 3,000 lx for 2 h/day for 5 weeks. 
Patients sit comfortably in front of the light box and glance 
occasionally at it. The amount of light and the wavelength 
was studied by Anderson et al. (2009). Blue light (Gordijn 
et al. 2012; Pail et al. 2011; Strong et al. 2009) or blue-light- 
enriched white light (Meesters et al. 2011) is more effective 
than standard treatment and red light (Gagné et al. 2011).

Light therapy works for 20–50 % of SAD patients only 
(Terman et al. 1996). Therefore, alternatives or additional 
methods are used such as cognitive-behavioral therapy 
(Rohan et al. 2009), negative air ions (Flory et al. 2010), and 
pharmacological treatments using antidepressants (Westrin 
and Lam 2007b; Winkler et al. 2006). Second-generation 
antidepressants (fluoxetine, escitalopram, duloxetine, rebox-
etine) are, however, not effective (Thaler et al. 2011). An 
alternative way of applying light for SAD treatment via the 
ear canal was used by Timonen et al. (2012). Predictors of 
response to light therapy were studied by Privitera et al. 
(2010). Light might exert its effect via the retina of SAD 
patients, but this has not been verified yet (Lavoie et al. 2009).

According to the phase shift hypothesis, SAD patients 
become depressed, because the circadian clock is delayed 
with respect to the sleep/wake cycle. The severity of symp-
toms does indeed correlate with the degree of misalignment. 
As a therapy, light exposure in the morning phase advances 
the clock and restores the correct phase relationship. An 
alternative treatment is afternoon/evening low-dose melato-
nin application.

A subgroup of SAD patients is phase advanced, and light 
should be administered in the evening and melatonin in the 
morning, but the other type is predominant (Lewy et al. 
2006a, b, 2007, 2009).

The duration of melatonin secretion may be influenced in 
SAD (Salva et al. 2011; Srinivasan et al. 2006), and there-
fore, melatonin might work as a therapy (Lewy 2007; Lewy 
et al. 2006a, b). The binding of monoaminergic ligands in the 
brain changes seasonally, and brain monoamine transmis-
sion is involved in many psychiatric disorders. Seen from a 
phylogenetic standpoint, monoamines adapt the organisms 
and cells to seasonal changes in the environment such as 
light, temperature, and energy resources (Praschak-Rieder 
and Willeit 2012; Ciarleglio et al. 2011; Willeit et al. 2008).

In this connection it has been discussed, whether SAD 
might reflect some kind of photoperiodic reaction in humans 
(Howland 2009b; Levitan 2007; Bronson 2004; Wehr 2001; 
Roenneberg and Aschoff 1990). Photoperiodism in primates 
is well known (Cayetanot et al. 2005; Oster et al. 2002; 

Wehr 2001; Di Bitetti and Janson 2000). Sleep, body weight, 
mood, and behavior in humans are under seasonal control 
(Cizza et al. 2011). However, the influence of temperature 
fluctuations and day length is nowadays much lower due to 
temperature control and the use of artificial light. Sleep has 
shortened, more food is consumed, and the long-term weight 
has increased. Especially in women, who are more predis-
posed to seasonality, SAD might be analogous to hiberna-
tion. It is characterized by depressed mood, hypersomnia, 
weight gain, and carbohydrate craving during the winter.

Hereditary factors seem also to be involved in SAD, as 
evidenced by family history, twin studies, and molecular 
genetics studies (Howland 2009a). The mutated gene 
expressing melanopsin is supposed to increase the risk of 
SAD (Roecklein et al. 2009), reactions of the hypothalamus 
to light might be abnormal (Vandewalle et al. 2011), and 
clock genes might be involved in mental disorders (Lamont 
et al. 2007; McClung 2007).

There are many questions unanswered, before the light/
SAD/clock relations are settled (Klerman 2005). General 
(Partonen and Magnusson 2001) and special literature on 
SAD are by Praschak-Rieder and Willeit (2012), Lewy et al. 
(2006a, b), and two articles in Touitou (1998), and for man-
agement of SAD, see Author (2009) and Lam and Levitan 
(2000).

18.9  Final Remarks 
and Acknowledgements

In this chapter, we tried to give an overview of circadian 
rhythms and their entrainment by light by selecting examples 
from various organisms. The choices are subjective but cover 
the widespread occurrence of these rhythms ranging from 
cyanobacteria to human beings.

The reader will have noticed that the field is a wide one 
and developing fast, for instance, by comparing the present 
edition of the book with the second (2008) and first one 
(2008). It is not easy to keep up with new results and some-
times difficult to judge in cases of controversial findings and 
opinions. We have tried to cover results published in a large 
number of papers (more than 700 cited). To restrict the num-
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We acknowledge help of many colleagues providing lit-
erature, information, and critique, especially Lars Olof 
Björn, Jonathan Emens, Susan Golden, Carl Johnson, 
Patricia Lakin-Thomas, Stephan Michel, Takao Kondo, Peter 
Ruoff, Ueli Schibler, Dorothea Staiger, Stephan Steinlechner, 
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