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    Chapter 7   
 Developmental Neuronal Elimination 

             José     L.     Marín-Teva      ,     Julio     Navascués      ,     Ana     Sierra     , and     Michel     Mallat     

    Abstract     Microglia, the brain’s innate immune cell type, are cells of mesodermal 
origin that populate the central nervous system (CNS) during early development. 
Their functions which are best characterized in the developing CNS are related to 
programmed cell death (PCD), a physiological process that massively affects neural 
cell lineages and contributes to brain morphogenesis and neuronal network matura-
tion. Although relatively scarce before advanced developmental stages, microglia 
can remove dead cells in an effective manner due to their migratory and phagocytic 
behavior. Recent studies indicate that microglia do not only scavenge cell corpses, 
but also eliminate neural progenitors cells and trigger or induce PCD in different 
types of developing neurons. Conversely, microglia were also found to promote the 
neuronal survival by their release of trophic factors. In this chapter we shall discuss 
the functional involvement of microglia in the loss of neural cells during normal 
development and review the mechanisms and cell signalling that underlie microglial 
regulation of PCD and elimination of dead cells.  

  Keywords     Microglia   •   Neural progenitors   •   Apoptotic neural cells   •   Programmed 
cell death   •   Survival   •   Physiology   •   Development   •   Phagocytosis   •   Trophic factors  

      Bullet Points  

•      Microglial cells remove apoptotic neural cells by phagocytosis in different cen-
tral nervous system (CNS) regions from early to advanced development stages.  

•   The contribution of microglia to the elimination of apoptotic neural cells varies 
depending on the species, developmental stage, and CNS region.  
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•   Secreted “fi nd-me” and exposed “eat-me” signals comprise the central elements 
of apoptotic cell removal by microglial cells.  

•   Microglia not only scavenge cell corpses, but also eliminate neural progenitors 
and trigger or induce programmed cell death in different types of developing 
neurons.  

•   Microglia can also promote the survival of some neurons during development 
through the release of trophic factors.     

7.1     Introduction 

 Microglia are the resident macrophages of the central nervous system (CNS). Since 
the fi rst studies by del Rio-Hortega, it has generally been accepted that ramifi ed 
microglia are differentiated cells in the CNS that arise from precursor cells of meso-
dermal origin with ameboid morphology, which are called ameboid microglia and are 
present in the developing CNS (Cuadros et al.  1992 ; del Rio-Hortega  1932 ; Cuadros 
and Navascués  1998 ; Chan et al.  2007 ; Prinz and Mildner  2011 ; Prinz et al.  2011 ). 
It is now established that most if not all microglia originate from yolk sac- derived 
primitive myeloid progenitors that seed the CNS during early developmental stages 
(Alliot et al.  1999 ; Herbomel et al.  2001 ; Chan et al.  2007 ; Ginhoux et al.  2010 ,  2013 ; 
Mizutani et al.  2012 ; Prinz et al.  2011 ; Schulz et al.  2012 ; Kierdorf et al.  2013 ). 
During development, microglia infi ltrate all CNS regions through extensive cell 
migration and proliferation. They progressively differentiate into mature ramifi ed 
cells and become spread throughout the adult CNS. Ramifi ed microglia appear to 
continuously scan the extracellular environment by extending and retracting their cell 
processes. Contact inhibition between microglial cells leads to a characteristic spatial 
arrangement in which microglial cells occupy non-overlapping territories (Davalos 
et al.  2005 ; Nimmerjahn et al.  2005 ). Microglia are highly plastic cells that strongly 
react to any lesion or pathologies affecting the CNS, and they play key roles in neu-
roinfl ammatory reactions (Hanisch and Kettenmann  2007 ; Saijo and Glass  2011 ). 

 Since the discovery of microglial cells, their biology has been widely considered 
with relation to programmed cell death (PCD) taking place in the CNS during nor-
mal development. Histological studies have addressed temporal and spatial relation-
ships between the spread of microglial cells and PCD in the CNS of developing 
vertebrates (Perry et al.  1985 ; Ferrer et al.  1990 ; Ashwell  1990 ,  1991 ; Perry and 
Gordon  1991 ; Marín-Teva et al.  1999 ; Peri and Nusslein-Volhard  2008 ; Calderó 
et al.  2009 ; Rigato et al.  2011 ). Microglial phagocytosis of dying cells has been 
described in various regions of the developing CNS (Ferrer et al.  1990 ; Marín-Teva 
et al.  1999 ; Dalmau et al.  2003 ; Peri and Nusslein-Volhard  2008 ). Besides their 
debris clearance function, microglial cells actively contribute to cell–cell interac-
tions that trigger or ensure the execution of PCD (Mallat et al.  2005 ; Bessis et al. 
 2007 ; Marín-Teva et al.  2011 ). Lately, microglial cells were also shown to promote 
neuronal survival in the developing CNS (Ueno et al.  2013 ). 

 In this chapter, we shall review current knowledge on the role of microglial cells 
in neuronal elimination/survival during normal development.  

J.L. Marín-Teva et al.
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7.2     Programmed Cell Death of Neurons in the Developing 
CNS: Where, When, and Which 

 The large-scale loss of neural cells occurs as a normal and essential stage in CNS 
maturation during the embryonic and postnatal development of many vertebrate 
species (Oppenheim  1991 ; Kuan et al.  2000 ; Yuan and Yankner  2000 ; Buss et al. 
 2006 ). Cell death affects neuronal and glial cell lineages at different stages of devel-
opment. The loss of neural cells contributes to the morphological sculpting of the 
developing CNS and is one of the regressive events involved in the remodelling and 
functional adaptation of neuronal networks (Oppenheim  1991 ; Roth and D’Sa 
 2001 ). Although a variety of forms of cell death have been reported depending on 
morphological and biochemical criteria (Edinger and Thompson  2004 ; Lockshin 
and Zakeri  2002 ), this physiological PCD appears to occur by two major pathways: 
apoptosis, recognized by cell rounding, DNA fragmentation, externalization of 
phosphatidyl serine (PS), caspase activation, and the absence of infl ammatory reac-
tion; and autophagy, characterized by the presence of large vacuoles and the fact 
that cells can be rescued from death until very late in the process. The boundary 
between apoptosis and autophagy is not sharply defi ned, and a complex interplay 
between the two forms of cell death has been described (reviewed in Booth et al. 
 2013 ). However, apoptosis is the dominant type of PCD during normal CNS devel-
opment (Clarke  1990 ). The major effect of PCD on projecting neurons during 
development is well-documented. Thus, during the period in which neuronal con-
nections are established, up to 50 % of numerous types of differentiated neurons 
undergo cell death (Oppenheim  1991 ; Raff et al.  1993 ). This neuronal death is 
thought to be in part triggered by the shortage of neurotrophic factors (neural growth 
factor, NGF; brain-derived neurotrophic factor, BDNF; etc.) released by the target 
cells innervated by these neurons (Barde  1989 ; Oppenheim  1989 ; Raff et al.  1993 ; 
Snider  1994 ). Even though less documented, PCD is also observed earlier in devel-
opment, before synaptogenesis, in populations of undifferentiated cells such as the 
proliferating neuroepithelial cells and newly postmitotic neuroblasts, where it par-
ticipates to specifi c functions (e.g., morphogenic sculpting of the early CNS) and 
involves various regulatory mechanisms (Kuan et al.  2000 ; de la Rosa and de Pablo 
 2000 ; Yeo and Gautier  2004 ; Valenciano et al.  2009 ). It is generally considered that 
the PCD of neural cells during development requires relatively conserved molecular 
pathways. These include “proapoptotic” genes of the Bcl-2 family, the apoptosome 
(cytochrome c, Apaf-1, caspase-9) and downstream caspases (e.g., caspase-3), 
which lead to the formation of apoptotic bodies that are rapidly phagocytosed and 
digested by different types of “professional” and “non-professional” phagocytes. 
Some studies on the in vivo role of caspases in the normal PCD of developing neu-
rons have shown that caspase activation is involved in most cases of neuronal PCD, 
but is only necessary for the PCD of immature neurons or neuronal precursors at 
early developmental stages, when neurogenesis is ongoing (Kuan et al.  2000 ; 
Oppenheim et al.  2008 ). Genetic deletion or pharmacological inhibition of caspases 
was shown to prevent this early type of PCD in the CNS, while being ineffective at 
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preventing the normal PCD of postmitotic neurons at later developmental stages 
during the establishment of synaptic connections (Oppenheim et al.  2001 ,  2008 ; 
Yaginuma et al.  2001 ; Boya et al.  2008 ). In the absence of caspases, these postmi-
totic neurons undergo quantitatively normal amounts of PCD by a different caspase- 
independent pathway that exhibits signs of autophagy (Oppenheim et al.  2008 ). 
Recent studies have also reported that the authophagic machinery provides the 
energy required for proper cell corpse removal and further degradation of apoptotic 
cells during the neurogenesis period (Mellén et al.  2008 ; Boya et al.  2008 ; Aburto 
et al.  2012 ).  

7.3     Scavenger Role of Microglia in Different CNS 
Regions from Early to Advanced Development 

 Cell apoptosis is marked by DNA fragmentation and caspase-triggered cleavage of 
the cellular proteome (Nicholson  1999 ), which lead to cell shrinkage but spare the 
integrity of the plasma membrane up to an advanced stage of the death process. 
Swift elimination of apoptotic cells by tissue phagocytes is important to prevent 
secondary cell necrosis involving plasma membrane disruption and leakage of intra-
cellular compounds in the extracellular space, which may be responsible for infl am-
matory reactions or autoimmune diseases (Nagata et al.  2010 ). Microglial cells 
remove apoptotic neural cells by phagocytosis in different CNS regions from early 
(Sorokin et al.  1992 ; Cuadros et al.  1991 ,  1993 ; Herbomel et al.  1999 ,  2001 ; 
Lichanska and Hume  2000 ) to more advanced development stages (Hume et al. 
 1983 ; Ashwell et al.  1989 ; Ashwell  1990 ,  1991 ; Pearson et al.  1993 ; Perry et al.  1985 ; 
Ferrer et al.  1990 ; Perry and Gordon  1991 ; Thanos  1991 ; Moujahid et al.  1996 ; 
Egensperger et al.  1996 ; Marín-Teva et al.  1999 ; Upender and Naegele  1999 ; Rakic 
and Zecevic  2000 ; Dalmau et al.  2003 ; Peri and Nusslein-Volhard  2008 ; Calderó 
et al.  2009 ). In the adult mouse CNS, phagocytic microglia ensure the elimination 
of dying neuroblasts that derive from neural stem cells in the hippocampal neuro-
genic niche (Sierra et al.  2010 ) (see Chap.   10    ). 

 The contribution of microglia to the elimination of apoptotic neural cells appears 
to vary depending on the species, developmental stage, and CNS region studied 
(Dalmau et al.  2003 ; Calderó et al.  2009 ; Sierra et al.  2013 ). For example, in the 
cerebral cortex, subcortical white matter, and hippocampus of the in vivo perinatal 
rat brain, microglial cells engulf virtually all cells undergoing PCD (Dalmau et al. 
 2003 ). However, low microglial cell density may be limiting for scavenging activity, 
especially at the earliest stages of CNS development, when microglial cells remain 
scarce. During early development of the CNS, in which the phagocytic capacities of 
microglia appear to be overwhelmed by the number of dying cells, other non-
professional phagocytes, such as neighboring neuroepithelial cells, neuroblasts, reti-
nal Müller cells, cerebellar Bergmann glia, and spinal cord astrocytes also contribute 
to the elimination of apoptotic cells or bodies (O’Connor and Wyttenbach  1974 ; 
García-Porrero and Ojeda  1979 ; Kálmán  1989 ; Cuadros et al.  1991 ; Egensperger 
et al.  1996 ; Marín-Teva et al.  1999 ; Parnaik et al.  2000 ; Mellén et al.  2008 ).  
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7.4     How Do Microglia Find and Selectively Engulf 
Dead Cells in the Developing CNS? 

 The molecular signalling that triggers microglial phagocytosis during normal 
 development remains a key question to be solved, but this issue clearly benefi ts 
from the recent discovery of signals that are generated by apoptotic cells and sensed 
by phagocytes. 

 Secreted “fi nd-me,” exposed “eat-me,” and disabled “don’t-eat-me” signals 
comprise the central elements of apoptotic cell removal by professional phagocytes 
(Savill and Fadok  2000 ; Lauber et al.  2004 ; Ravichandran  2010 ). Soluble forms of 
lysophosphatidylcholine (LPC), as well as the chemokine and adhesion molecule 
CX3CL1 (also known as fractalkine) and the nucleotides ATP and UTP, are known 
to act as “fi nd-me” signals that are released by apoptotic cells and attract phago-
cytes (Lauber et al.  2004 ; Ravichandran  2010 ). LPC has an attractive chemotactic 
effect on human monocytic cells and macrophages (Lauber et al.  2003 ). Moreover, 
it is released from apoptotic cells through the caspase-3-mediated activation of 
calcium- independent phospholipase A 2  and is recognized by the phagocyte 
G-protein- coupled receptor G2A (Lauber et al.  2003 ; Peter et al.  2008 ). On the 
other hand, fractalkine was found to be released before the loss of plasma mem-
brane integrity by apoptotic lymphocytes via a caspase-regulated mechanism and to 
have an attractive effect on macrophages expressing the fractalkine receptor 
CX3CR1, as inferred from in vitro and in vivo studies carried out in humans and 
mice (Truman et al.  2008 ). Microglial cells are known to be the only CNS cells that 
express CX3CR1 (Jung et al.  2000 ). Interestingly, fractalkine released from cul-
tured neurons damaged by glutamatergic excitotoxicity promotes the phagocytosis 
of cell debris by microglial cells (Noda et al.  2011 ). However, the actual role of 
G2A or CX3CR1 in the elimination of neural cell corpses during development has 
not yet been established. Finally, it was reported that the caspase-dependent release 
of ATP and UTP during the early stages of apoptosis in thymocytes acts as a 
 “fi nd-me” signal to promote phagocytic clearance by human monocytes (Elliott 
et al.  2009 ). Nucleotides could possibly act as “fi nd-me” signals in the normal 
developing CNS, but this hypothesis needs to be experimentally tested. In particu-
lar, extracellular ATP/ADP has chemotactic effects on microglial cells by binding to 
P2Y 12  purinergic receptors (Davalos et al.  2005 ; Nimmerjahn et al.  2005 ; Haynes 
et al.  2006 ; Ohsawa and Kohsaka  2011 ). Costimulation of microglial P2Y receptors 
and adenosine (A1 type) receptors appears to be required for microglial chemotaxis 
towards ATP. This cell response is prevented in purifi ed microglia, obtained by 
shaking mixed glial cell cultures, which are derived from the brain of newborn mice 
defi cient in the expression of CD39, an ectonucleotidase that degrades nucleotides 
to nucleosides (Farber et al.  2008 ). 

 Once recruited in the vicinity of apoptotic cells, phagocytes can selectively rec-
ognize the dead cells as prey to be engulfed due to their expression of “eat-me” 
signals. In mammals, the best-characterized “eat-me” signal is PS, a cell membrane 
component that translocates from the inner to outer leafl et of the plasma membrane 
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during the apoptotic process (Fadok et al.  2000 ). Externalized PS can stimulate 
phagocytosis of apoptotic cells through direct binding to phagocyte receptors such 
as T cell immunoglobulin- and mucin-domain containing molecule 4 (Tim-4) 
(Miyanishi et al.  2007 ), brain-specifi c angiogenesis inhibitor-1 (BAI1) (Park et al. 
 2007 ) or stabilin-2 (Park et al.  2008 ). PS recognition by phagocytes can also 
involve several “bridging” molecules, binding to both PS and phagocyte receptors, 
which are released in extracellular fl uid (Erwig and Henson  2008 ). Among these, 
milk fat globule epidermal growth factor-8 (MFG-E8) and C3bi can bind to PS and 
are then recognized by integrins expressed by macrophages/microglia such as vit-
ronectin receptor (αvβ3) and complement-receptor-3 (CR3/CD11b), respectively 
(Hanayama et al.  2002 ; Mevorach et al.  1998 ; Savill and Fadok  2000 ). The bridg-
ing molecules and receptors responsible for PS-mediated clearance of dead cells 
(see Sierra et al.  2013  for a review) are not yet clearly defi ned in the developing 
CNS, but the capacity of purifi ed microglial cells to engulf PS-coated cells or par-
ticles is well- documented (Witting et al.  2000 ; Konduru et al.  2009 ; Neher et al. 
 2011 ; Liu et al.  2013 ). 

 Another possible “eat-me” signal is the endogenous cellular ligand for the trig-
gering receptor expressed on myeloid cells 2 (TREM2). TREM2 is specifi cally 
expressed by microglial cells, as demonstrated by in vivo immunocytochemical 
studies in different regions of the mouse brain (Hsieh et al.  2009 ). Its ligand is up- 
regulated on apoptotic neurons, mediates signal transduction by association with 
DNAX adaptor protein-12 (DAP12) on microglia, and promotes the phagocytosis of 
dying neurons in cell cultures (Takahashi et al.  2005 ; Hsieh et al.  2009 ; Neumann 
et al.  2009 ). Finally, another in vivo and in vitro study demonstrated that activation 
of P2Y 6  receptors in microglial cells by UTP/UDP released from damaged neurons 
triggers the clearance of dying cells by phagocytosis (Koizumi et al.  2007 ). Hence, 
in addition to PS, the ligands for TREM2 and UTP/UDP may be considered as puta-
tive “eat-me” signals promoting microglial phagocytosis during development.  

7.5     PCD and Microglial Cell Distribution 
in the Developing CNS 

 Besides its role in the elimination of dead cells, apoptotic cell-to-phagocyte signal-
ling clearly fulfi lls the expected criteria for a mechanism that underlies microglia 
distribution in the developing CNS. Consistent with the recent demonstration 
that dying cells release chemotactic “fi nd-me” signals, the codetection of microglia 
and dying cells provided evidence that local PCD may account for the entry, local 
spread, or transient clustering of macrophages/microglia in different CNS regions 
of embryonic vertebrates, including the retina (Santos et al.  2008 ), spinal cord 
(Rigato et al.  2011 ), choroid plexus (Swinnen et al.  2013 ), cerebellum, or cerebral 
cortex (Ashwell  1990 ,  1991 ). However, microglia infi ltration in cell layers of the 
developing CNS is not always correlated with the occurrence of PCD (Marín-Teva 
et al.  1999 ), and it involves different molecular cues unrelated to the signalling 
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generated by dying cells. In particular, developing neural cells can produce 
 chemoattractants that target macrophages/microglia, such as chemokines (Ransohoff 
 2009 ), macrophage colony-stimulating factor 1 (M-CSF), or vascular endothelial 
growth factor A (VEGF-A) (Breier et al.  1992 ; Nandi et al.  2012 ; Lelli et al.  2013 ). 
In zebra fi sh embryos, M-CSF receptor expressed by mononuclear phagocytes is 
required for the early infi ltration of yolk-sac-derived phagocytes in the CNS 
(Herbomel et al.  2001 ), whereas VEGF receptor 1 signalling promotes early postna-
tal infi ltration of microglia in deep layers of the mouse cerebral cortex (Lelli et al. 
 2013 ). Furthermore, microglia appear to use radially oriented processes of glial or 
neural progenitors cells as a substrate for cell migration in the retina (Sánchez-
López et al.  2004 ), spinal cord (Rigato et al.  2011 ), and cerebral cortex (Swinnen 
et al.  2013 ). Strikingly, ameboid microglial cells migrate in embryonic quail retina 
following well-defi ned routes that are not altered when they pass close to regions of 
abundant cell death, and they only engulf apoptotic bodies encountered along these 
routes (Marín-Teva et al.  1999 ). This observation suggests that cell guiding cues 
unrelated to PCD may outcompete “fi nd-me” signals emitted by dead cells. 
Alternatively, the capacity of microglial cells to sense “fi nd-me” (and/or “eat-me”)
signals may vary according to their localization in the developing CNS. In connec-
tion with this possibility, the heterogeneity of microglial cell phenotypes during 
normal development is well- documented (Hristova et al.  2010 ; Verney et al.  2010 ; 
Scheffel et al.  2012 ; Arnoux et al.  2013 ). Moreover, recent studies have emphasized 
that the functional implications of microglial recruitment are not limited to the scav-
enging of dead cells. Microglia fulfi ll other roles during development, including the 
remodelling of developing synapses (Hoshiko et al.  2012 ; Tremblay et al.  2010 ; 
Paolicelli et al.  2011 ; Schafer et al.  2012 ), homeostatic regulation of neuronal fi ring 
(Ji et al.  2013 ) (Chap.   9    ), stimulation of angiogenesis (Checchin et al.  2006 ; Fantin 
et al.  2010 ) (Chap.   8    ), and the induction or prevention of developmental cell death, 
which is discussed below.  

7.6     Switching Programmed Cell Death On and Off 
in the Developing CNS: A Dual Role for Microglia 

 Various studies have demonstrated that microglial cells not only have a scavenger 
role during development, but can also trigger or promote PCD in different types of 
developing neurons. The mechanisms involved in the induction of PCD by microg-
lial cells are diverse and can be classifi ed into two groups: phagocytosis-unrelated 
PCD induction; and PCD triggering/execution involving phagocytosis, designated 
as “engulfment-promoted PCD.” 

 The former group relies in part on the capacity of microglia to produce neuronal 
growth factors such as neurotrophins (Mallat et al.  1989 ; Elkabes et al.  1996 ). 
Frade and Barde ( 1998 ) showed that nerve growth factor (NGF) is produced 
in vivo during early chick embryo development by primitive macrophages and 
microglial cells, which are present in the vitreous body and scattered within the 
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retinal neuroepithelium between embryonic day 3 (E3) and E6. In addition, in vitro 
experiments in cultured eye cups demonstrated that macrophage/microglial pro-
duction of NGF triggers PCD in retinal progenitor cells expressing neurotrophin 
receptor p75 at E3 (Fig.  7.1a ). Another type of phagocytosis-independent involve-
ment of macrophages in PCD was observed in the embryonic rat spinal cord, in 
which motoneurons undergo PCD from E15. Experiments in cultured explants of 
ventral horns of rat embryo spinal cord showed that embryonic motoneurons 
acquire the competence to undergo PCD between E12 and E13, 2 days before the 
onset of cell death (Sedel et al.  2004 ). This neuronal commitment to a death fate 
appears to be driven by tumor necrosis factor α (TNF-α) released from primitive 
macrophages that invade the surrounding somitic mesenchyme at these develop-
mental stages (Fig.  7.1b ). Macrophage-derived TNF-α signals through the TNF-α 
receptor 1 expressed by embryonic motoneurons (Sedel et al.  2004 ). Subsequent 
in vivo studies provided evidence that these somitic macrophages eventually infi l-
trate the spinal cord and therefore contribute to microglial development (Rigato 
et al.  2011 ).

   Engulfment-promoted PCD was observed in postmitotic neurons in the cerebel-
lum of 3 day-old (P3) mice (Marín-Teva et al.  2004 ); at this developmental stage, 
Purkinje cells initiate a death program marked by caspase-3 activation. In vivo 
observations in the P3 mouse cerebellum and in vitro experimental studies in P3 
cerebellar slices showed that the majority of these neurons are engulfed by microg-
lial cells that actively prevent abortion of the death program in the engulfed cells 
(Marín-Teva et al.  2004 ). In the developing mouse CNS, microglia express all of the 
genes encoding multimeric Nox1- and Nox2-dependent NADPH oxidases that cata-
lyze the formation of superoxide ions (Bedard and Krause  2007 ; Chéret et al.  2008 ). 
Activation of microglial NADPH oxidases is detectable at early postnatal stages and 
is required for microglia-promoted Purkinje cell death (Fig.  7.1c  1 ) (Marín-Teva 
et al.  2004 ; Lelli et al.  2013 ). This mechanism is reminiscent of the innate immune 
response in which bacteria or fungi ingested by neutrophils or macrophages are 
neutralized by reactive oxygen species derived from the activation of phagocyte 
Nox2-dependent NADPH-oxidase (Bedard and Krause  2007 ; Lam et al.  2010 ). It is 
noteworthy that the involvement of engulfi ng cells in the execution of developmen-
tal cell death is not limited to vertebrates (Mallat et al.  2005 ). It is well documented 

Fig. 7.1 (continued) MiCs promote neuron death by the engulfment of differentiated neurons 
(DNs) undergoing early reversible steps of cell death ( c   1  ) and healthy neural progenitor cells ( c   2  ). 
( c   1  ). In the developing cerebellum (Marín-Teva et al.  2004 ) and hippocampus (Wakselman et al. 
 2008 ), DNs in early stages of cell death express activated caspase-3 and show putative “eat-me” 
signals on their surface. These signals are recognized by the β2-integrin CD11b and the immuno-
receptor DAP12 on the MiC surface, thereby triggering neuron engulfment and the progression of 
late stages of cell death, which are promoted by microglial-derived apoptotic effectors such as 
superoxide ions (O 2  •− ). ( c   2  ). MiCs colonize proliferative zones in the developing cerebral cortex 
and phagocytose postmitotic neural progenitors (NPs) that show no sign of cell death, thereby 
contributing to regulate the size of the NP pool (Cunningham et al.  2013 ). ( d ) In the developing 
cerebral cortex, MiCs recruited in the subcortical white matter limit the extent of PCD in DNs of 
the cortical layer V through production of insulin-like growth factor 1 (IGF-1) (Ueno et al.  2013 )       

J.L. Marín-Teva et al.
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  Fig. 7.1    Dual role of microglial cells in promoting either the death or survival of neurons and 
neural progenitor cells, as demonstrated by studies performed in different parts of the developing 
central nervous system (CNS). ( a ) In the early retina, ameboid microglial cells (MiCs) are involved 
in the death of some neuroepithelial cells (NCs) expressing the p75 neurotrophin receptor (p75 NTR ) 
by producing nerve growth factor (NGF). The NGF secreted by MiCs remains bound to the cell 
surface and promotes NC death after p75 NTR  stimulation (Frade and Barde  1998 ). ( b ) Primitive 
macrophages (MACs) have a role in committing differentiating motoneurons (MNs) in the devel-
oping spinal cord to death (Sedel et al.  2004 ). These MNs acquire competence to die through sig-
nalling via the tumor necrosis factor α (TNF-α) released from MACs in adjacent somites. Two 
days after TNF-α signalling, committed MNs undergo neurotrophic PCD, and cell debris is 
 phagocytosed by ameboid MiCs invading the spinal cord. ( c ) In other developing CNS regions,
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in the nematode  Caenorhabditis elegans , in which “death-committed” cells 
 expressing activated CED-3 (homologue to vertebrate caspase-3) can be rescued by 
inactivation of genes that control the engulfment of cell corpses (Hoeppner et al. 
 2001 ; Reddien et al.  2001 ). Therefore, it was suggested that live Purkinje cells com-
mitted to a death fate readily express “eat me” signals, which stimulate engulfi ng 
behavior and superoxide production in microglia (Marín-Teva et al.  2004 ). 

 Further insights into this issue came from an in vivo study in newborn mice, 
which showed that, similar to developing Purkinje cells, hippocampal neurons in 
contact with microglia undergo PCD through a mechanism requiring the microglial 
production of superoxide ions (Wakselman et al.  2008 ). Both microglial superoxide 
generation and neuronal death were found to be reduced in newborn mice bearing a 
mutation preventing expression of the CD11b integrin subunit or activity of the 
DAP12 signalling protein. CD11b/CD18 (αMβ2) functions as an engulfment recep-
tor of prey tagged with the C3bi complement component (Bohana-Kashtan et al. 
 2004 ). The involvement of complement components in developmental neuronal 
death has not yet been established, whereas a recent investigation shows that C3bi- 
CD11b signalling contributes to microglia-mediated synapse elimination during 
normal development (Schafer et al.  2012 ). DAP12 is a transmembrane-anchored 
signalling adaptor containing an immunoreceptor tyrosine-based activation motif 
that transmits signals from CD11b/CD18 and other immunoreceptors (Ivashkiv 
 2009 ). Among these, TREM2 and β3 integrins are expressed by microglia and can 
directly or indirectly bind to “eat-me” signals, including PS. Whether these recep-
tors contribute to the DAP12-dependent loss of hippocampal neurons (Wakselman 
et al.  2008 ) has not been addressed. However, recent in vitro studies show that a 
transient PS externalization can occur in neurons cultured in the presence of microg-
lial cells under proinfl ammatory conditions. Although these PS-tagged neurons 
remain viable, they are recognized and engulfed by microglia via mechanisms 
involving the cross-linking of neuronal PS and microglial αvβ3 integrin (vitronectin 
receptor) by the MFG-E8 bridging protein, and in fact, neuronal death is executed 
by microglial phagocytosis (Neher et al.  2011 ; Fricker et al.  2012 ). 

 In the developing CNS, the engulfment-mediated loss of cells is not restricted to 
postmitotic neurons. Thus, a study carried out in vivo, as well as in in vitro cultured 
slices, revealed that microglia limit the production of cells in the developing cere-
bral cortex of macaques and rats by phagocytosing neural progenitor cells, mostly 
during late stages of cortical neurogenesis (Cunningham et al.  2013 ). Interestingly, 
this study found that most neural progenitor cells contacted or engulfed by microg-
lial cells in the cortical proliferative zones show no signs of cell death or apoptosis 
as defi ned by the expression of cleaved caspase-3, TUNEL-labelling of fragmented 
DNA, PS exposure, or nuclear breakdown. The mechanisms by which microglia 
recognize these healthy progenitor cells as a prey to be engulfed have not been 
determined. Nevertheless, these fi ndings reveal a new type of engulfment-promoted 
cell elimination during development, with microglial cells eliminating viable neural 
progenitor cells through a process unrelated to apoptosis (Fig.  7.1c  2 ). 

 Besides engulfi ng behavior and the generation of prodeath signals, microglia 
can produce various neuronal growth factors that may directly support the survival 
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of neurons or the growth of their processes. These functional capacities were 
 documented in culture studies more than 20 years ago (Mallat and Chamak  1994 ), 
and their relevance to normal brain development was recently demonstrated in an 
in vivo and in vitro study of the mouse cerebral cortex (Fig.  7.1d ) (Ueno et al. 
 2013 ). It was observed that, during early postnatal stages (P3–P7), microglial cells 
recruited in the subcortical white matter limit the extent of PCD in corticospinal and 
callosal neurons, the cell bodies of which are localized in the cortical cell layer V. This 
neurotrophic infl uence is mediated by the microglial production of insulin-like 
growth factor 1 (IGF-1), as shown in vitro in cocultures of cortical neurons and 
microglia (Ueno et al.  2013 ). The apparently contradictory roles of microglia (elim-
ination of viable cells versus trophic effect on neuron survival) revealed by the two 
studies performed in the rat and mouse cerebral cortex (Cunningham et al.  2013 ; 
Ueno et al.  2013 , Fig.  7.1c  2 , d) are in agreement with the current view that microg-
lia have a dual role on cell death depending on the microenvironment and interac-
tions with other cell types (Hanisch and Kettenmann  2007 ; Mallat and Chamak 
 1994 ; Czeh et al.  2011 ). Microglia analyzed in the above studies act in different 
microenvironments and at different developmental periods. Thus, the study by 
Cunningham et al. ( 2013 ) reported that microglial phagocytosis of neural precursor 
cells occurs in the proliferative ventricular zone of E19-P2 rat embryo cerebral 
cortex, whereas Ueno et al. ( 2013 ) observed microglia-promoted survival of dif-
ferentiated corticospinal neurons, through IGF-1 signaling, in the cortical layer V 
of the P3–P5 mouse brain. These differences may refl ect functional heterogeneity 
of microglia driven by diverse environmental cues. They may also arise from the 
selective capacities of target cells to express compounds required for microglial 
phagocytic or neurotrophic activities, such as “eat-me” signals, the IGF-1 receptor 
or other signaling components.  

7.7     Concluding Remarks 

 Taken together, current evidence indicates that microglia not only eliminate dead 
cells, but also play an important role in cell–cell interactions that regulate PCD in 
the developing CNS. Notably, the signalling by which microglia can promote PCD 
is diversifi ed. Studies of the developing cerebral cortex have revealed that microglia 
exert a dual infl uence on local cell production, promoting the elimination of pro-
genitor cells but preventing the loss of differentiated neurons. It is now clear that the 
role of microglial phagocytosis extends beyond the elimination of dead cells, as it 
plays a part in the mechanisms that determine the death fate of neural cells during 
brain development. The engulfment of apoptotic cells was also shown to impact on 
the ability of the engulfi ng cells to produce cytokines or lipid mediators (Elliott and 
Ravichandran  2010 ). Therefore, microglial phagocytosis could additionally modu-
late microglial capacity to infl uence neural cell survival, growth, or differentiation 
during normal development. This issue warrants further investigation. The variety 
of mechanisms by which microglia regulate developmental neural cell death, as 
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reviewed here, is consistent with the high functional plasticity of microglia, whose 
behavioral repertoire appears to be location- and time-specifi c. The physiological 
effects of microglia on neural cell survival is most likely tuned by the local cell 
environment or by specifi c interactions between microglia and target cells, which 
may change according to the CNS region and developmental time.     
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