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    Chapter 16   
 Multiple Sclerosis 

             Yoshifumi     Sonobe       and     Akio     Suzumura     

    Abstract     Multiple sclerosis (MS) is an infl ammatory disease characterized by 
demyelination and axonal degeneration in the central nervous system (CNS). 
Although MS is considered an autoimmune disease against myelin antigens, its 
pathogenesis still remains unclear. Microglia are macrophage-like cells in the CNS 
which play a critical role in innate immunity, in addition to activating pathways 
associated with adaptive immunity. Microglia produce pro-infl ammatory and anti- 
infl ammatory mediators, including cytokines and chemokines, and phagocytose 
various types of cellular debris. In MS, microglia critically contribute to the infl am-
matory milieu, but also participate in disrupting the blood–brain barrier integrity, 
thus inducing the migration of various types of immune cells such as T and B lym-
phocytes, macrophages, and neutrophils into the CNS. In this disease, microglia 
may additionally behave as antigen-presenting cells and function as effector cells 
causing demyelination and axonal degeneration. However, recent evidence also 
indicates that microglia could play a benefi cial role in remyelination and neuropro-
tection in MS. In this chapter, we will discuss about microglial involvement in MS, 
with an emphasis on the experimental autoimmune encephalomyelitis (EAE) 
animal model and describe the cellular and molecular mechanisms which could be 
specifi cally implicated in the pathogenesis.  

  Keywords     Microglia   •   Infl ammation   •   Cytokine   •   Chemokine   •   Blood–brain barrier   
•   Antigen presentation   •   Demyelination   •   Neurodegeneration   •   Multiple sclerosis   • 
  Experimental autoimmune encephalomyelitis  

      Bullet Points  

•      Microglia, macrophage-like cells in the central nervous system (CNS), play a 
substantial role in the pathogenesis of multiple sclerosis (MS).  

•   In MS, microglia contribute to the development of neuroinfl ammation by pro-
ducing both pro-infl ammatory and anti-infl ammatory mediators.  
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•   Microglia also promote the migration of peripheral immune cells into the CNS 
and might additionally behave as antigen-presenting cells in MS.  

•   Microglia could lastly infl uence by their effector functions the demyelination 
and axonal degeneration observed in MS.     

16.1     Introduction 

 Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous 
system (CNS) resulting from an autoimmune response against myelin antigens. It 
affects approximately 2.5 million people worldwide, with a predominance in women 
(ratio of females to males, 2:1). The disease is characterized by a progressive loss of 
neurological functions caused by the destruction of axonal myelin sheaths through-
out the brain and spinal cord white matter. The loss of myelin translates into clinical 
symptoms ranging from paralysis, muscle spasms, and optic neuritis, to neuropathic 
pain. Pathological features of MS lesions include increased blood–brain barrier 
(BBB) permeability, axonal degeneration, glial scar formation, and the prevalence 
of peripheral immune cells such as T and B lymphocytes, macrophages, and neutro-
phils within the CNS (Williams et al.  2007 ; Jadidi-Niaragh and Mirshafi ey  2011 ). 
The etiology of MS is still unclear. Genetic factors like variations in the HLA- 
DRB1 gene coding for the major histocompatibility complex (MHC) class II com-
plex (DRB1-9 beta chain), and the IL-7R gene coding for the interleukin (IL)-7 
receptor, as well as environmental factors such as exposure to the Epstein-Barr 
virus, low levels of vitamin D, and smoking, have been associated with an increased 
risk of developing MS (Haines et al.  1996 ; Sawcer et al.  1996 ; Teutsch et al.  2003 ; 
Oreja-Guevara et al.  2014 ). Approximately 85 % of MS patients repeatedly undergo 
relapse followed by partial or complete recovery periods (or remissions), a form of 
the disease which is termed relapsing-remitting MS. In more than 50 % of the 
relapse-remitting MS patients, the disease progressively worsens with minor remis-
sions, reaching a stage of secondary progressive MS. In the remaining 10–15 % of 
MS patients, however, the disease only advances without remission, a form of the 
disease which is termed primary progressive MS (Thompson et al.  1997 ; Haines 
et al.  2011 ). 

16.1.1     Infl ammatory Mechanisms in MS/EAE 

 Experimental autoimmune encephalomyelitis (EAE) is commonly used as an animal 
model of MS, being similarly associated with axonal degeneration and chronic 
demyelination, primarily in the spinal cord, resulting in tail and hindlimb paralysis. 
However, similar to MS, the disease symptoms refl ect the anatomical location of the 
infl ammatory lesions and may also include emotional instability, sensory loss, 
ataxia, muscle weakness, and spasms. EAE is generally induced in rodents by 
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immunization with myelin peptides, such as myelin basic protein (MBP), myelin 
proteolipid protein (PLP), and myelin oligodendrocyte glycoprotein (MOG), emul-
sifi ed in an adjuvant (typically complete Freund’s adjuvant) to enhance the immune 
response. EAE is also produced by adoptive transfer of myelin-reactive T lympho-
cytes expressing CD4 glycoproteins on their surface (CD4 +  T cells), isolated from 
mice immunized with myelin peptides, and further stimulated in vitro with myelin 
peptides. Depending on the nature of the antigens, and on the background of the 
animals, an acute stretch of EAE, a relapsing-remitting form, or chronic EAE can 
be induced (Rangachari and Kuchroo  2013 ). 

 In both EAE and MS, the infi ltration of T and B lymphocytes, macrophages, and 
neutrophils is pronounced around the demyelinating lesions in situ, within the peri-
vascular space and/or parenchyma. In addition, oligoclonal IgGs are commonly 
detected in the cerebrospinal fl uid of EAE mice and MS patients (Mehta et al.  1985 ; 
Tomioka and Matsui  2014 ), thus suggesting the presence of an immune response in 
the CNS. Although the initiation mechanisms of EAE still remain unclear, they 
were shown to be mediated by Th effector T cells, a phenotype of CD4+ cells result-
ing from their activation by antigen-presenting cells (APCs) (Montero et al.  2004 ; 
reviewed in Kawakami et al.  2012 ) (see Chap.   5     for further reading on antigen 
presentation).  

16.1.2     Microglia in MS/EAE 

 It is usually diffi cult to discriminate microglia from infi ltrated macrophages in the 
postmortem brains of MS patients. However, several lines of evidence have sug-
gested that microglia could play a pivotal role in mediating neuroinfl ammation 
in MS. Microglia are macrophage-like cells that reside in the CNS and contribute in 
various manners to maintaining CNS integrity. In the infl amed CNS, microglia can 
also function as immunocompetent cells, particularly involved with the production of 
infl ammatory mediators and/or the presentation of antigens, depending on the 
 context (Ransohoff et al.  2003 ;    Tran and Miller  2003 ;    Raivich and Banati  2004 ; 
Chastain et al.  2011 ). 

 During the development of EAE and MS, microglia display several signs of ‘acti-
vation’ at the morphological and gene expression levels. For instance, microglia have 
larger cell bodies, accumulate around lesions sites, and show immunoreactivity for 
MHC class II and CD68, a lysosomal marker also named ‘macrosialin’ in mouse 
that is upregulated during infl ammation (Minagar et al.  2002 ; Jack et al.  2005 ; 
Marik et al.  2007 ; also see Chap.   10     for additional reading about CD68). In the 
postmortem brains of progressive MS patients, demyelination and neuronal damage 
reportedly correlate with an increased density and clustering of CD68 or MHC class 
II positive cells, a pathological feature commonly referred to as ‘microglial nodules’ 
(   Prineas et al.  2001 ; Singh et al.  2013 ). In addition, microglia have been proposed 
to behave as APCs in MS. They were shown to express MHC class II, display antigens 
on their cellular surface, and colocalize with CD4 +  cells before the onset of EAE, 
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and the infi ltration of myeloid cells in bone marrow chimera in vivo (Ponomarev 
et al.  2005 ). These observations suggest a possible role for microglia in the activa-
tion of T cells in MS, or in their reactivation following antigen presentation in the 
periphery (see Chap.   5     for more information on both processes), although direct 
evidence remains to be shown. In addition, microglia and macrophages contained 
phagocytosed myelin debris around the white matter  demyelinating lesions in MS 
postmortem samples, highlighting their possible involvement, whether detrimental 
or benefi cial, to the demyelination and axonal degeneration (Tanaka et al.  1975 ; 
Bauer et al.  1994 ; also see Napoli and Neumann  2010 ). 

 Moreover, it has been reported that preventing microglial activation could repress 
the development of EAE in vivo (Heppner et al.  2005 ). In particular, Heppner and 
colleagues have generated a mouse model expressing the herpes simplex virus thy-
midine kinase (HSVTK) specifi cally in microglia/macrophages, under the CD11b 
promoter, thus rendering these cells susceptible to ganciclovir cytotoxicity. 
Following transplantation of wild-type bone-marrow cells, to spare the peripheral 
myeloid cell population from ganciclovir treatment, and the subsequent peripheral 
injection of ganciclovir, microglial transformation to amoeboid morphologies was 
found to be arrested, a phenomenon referred to as “microglial paralysis”, which 
resulted in delayed EAE onset and reduced clinical score (Heppner et al.  2005 ). 
These fi ndings strongly suggested that microglia could play a signifi cant role in the 
pathogenesis of EAE and MS. The focus of this chapter is on microglial implication 
in multiple immunological aspects of the disease pathogenesis, including antigen 
presentation, infl ammation, demyelination, and neurotoxicity.   

16.2     Microglia as Antigen-Presenting Cells 

 Dendritic cells (DCs), which are monocyte-derived cells considered as ‘profes-
sional’ APCs, are often encountered in the leptomeninges and white matter 
lesions of MS patients (Ganguly et al.  2013 ; Nuyts et al.  2013 ). However, microg-
lial cells could also behave as APCs in MS as will be discussed below (Smith 
et al.  1998 ) (see Chap.   5     for further reading). After the phagocytosis of antigens, 
such as myelin peptides, APCs become engaged in antigen presentation through 
MHC class II signaling to CD4 +  cells, which express the cognate T cell receptor, 
leading to their activation (or reactivation) and differentiation into various Th 
effector T cell subsets, such as the pro-infl ammatory, encephalitogenic Th1 and 
Th17 cells. Costimulatory molecules such as CD80 and CD86 on APCs, or the 
CD40 ligand (CD40L) expressed on T cells further contribute to activating Th 
cells via CD28 (member of the B7 family), or to activating APCs via CD40, to 
promote cellular expansion and survival. Conversely, the costimulatory 
molecules- programmed cell death-ligand 1 (PD-L1) and PD-L2 suppress Th cell 
activation by acting on their programmed cell death 1 (PD-1) receptor (Keir et al. 
 2008 ; Elgueta et al.  2009 ). 
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 During normal physiological conditions, microglia express undetectable to low 
levels of MHC class II molecules (Wong et al.  1984 ; Suzumura et al.  1987 ) and 
constitutively express low levels of CD80 and high levels of CD86 (Satoh et al. 
 1995 ; Dangond et al.  1997 ). Over the course of EAE, however, the expression of 
MHC class II, CD80 and CD86, was found to be upregulated in CD11b + CD45 low  
microglial cells, isolated from the brains of EAE mice by fl ow cytometry (Ponomarev 
et al.  2005 ; Murphy et al.  2010 ). Expression of MHC class II is also induced in 
cultured microglia/macrophages upon stimulation with interferon (IFN)-γ 
(Suzumura et al.  1987 ). This pro-infl ammatory cytokine produced by Th1 cells, 
T cells expressing the CD8 glycoprotein (CD8 +  T cells), macrophages, DCs, and 
microglial cells in culture, is well known for promoting immune responses against 
viral and bacterial infection, as well as the development of tumors (Munder et al. 
 1998 ; Kawanokuchi et al.  2006 ; Vremec et al.  2007 ). Additionally, treatment of 
cultured microglial cells with the supernatant from IFNγ-producing Th1 cell lines, 
specifi c for MBP, particularly induced microglial expression of MHC class II, 
CD80, CD86, and CD40 in vitro (Seguin et al.  2003 ). The binding of CD40 to 
CD40L induces APCs to produce pro-infl ammatory mediators such as TNF-α, IL-6, 
and IL-12 in vitro (Aloisi et al.  1999 ; Rezai-Zadeh et al.  2008 ). When cultured in 
the presence of IFNγ-stimulated microglial cells, the proliferative capacity of Th 
cells is additionally increased and accompanied by an enhanced production of IL-2 
and IFNγ in vitro (Aloisi et al.  1998 ). On the other hand, IFNγ also induces the 
expression of PD-L1 on microglia, while suppressing Th cell activation and the pro-
duction of IFNγ in vitro (Magnus et al.  2005 ). Together, these fi ndings suggest that 
IFNγ-stimulated microglial cells may not only activate Th cells via the induction of 
CD80 and CD86, or CD40, but also suppress T cell activation via the induction 
of PD-L1 expression, at least in vitro. 

 The cytokine granulocyte macrophage colony-stimulating factor (GM-CSF), 
which is secreted by T cells, as well as astrocytes and macrophages in vitro (Ohno 
et al.  1990 ; Shi et al.  2006 ), may also play a critical role in the induction of APCs 
functions in microglia (Matyszak et al.  1999 ). During EAE, MHC class II expression 
is considerably reduced ex vivo in microglial cells derived from GM-CSF- defi cient 
mice, compared to wild-type mice (Ponomarev et al.  2007 ; Codarri et al.  2011 ), sug-
gesting that GM-CSF regulates microglial expression of MHC class II. Interestingly, 
GM-CSF also promotes DCs-like properties in microglia ex vivo and in vivo, enhanc-
ing their expression of the DCs marker CD11c, as well as MHC class II, CD80, and 
CD86 (Schermer and Humpel  2002 ; Li et al.  2011 ). GM-CSF- stimulated microglia 
also have the ability to induce the proliferation and reactivation of CD4 +  T cells 
in vitro (Fischer et al.  1993 ; Aloisi et al.  2000 ). In GM-CSF-stimulated microglia, 
however, the levels of MHC class II are lower than in DCs and associated with 
reduced Th cells proliferation (Lambert et al.  2008 ), in agreement with the view that 
microglia have limited antigen-presenting capacity (Ransohoff and Engelhardt 
 2012 ). Therefore, GM-CSF-stimulated microglia could be used for stimulating adap-
tive immune responses, such as antigen presentation, in EAE and MS, albeit with a 
limited capacity as compared to monocyte-derived DCs.  
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16.3     Microglia as Infl ammatory Cells 

 Activated microglial cells produce a variety of cytokines and monokines (i.e., cyto-
kines mainly produced by monocytes/macrophages) involved in mediating neuroin-
fl ammation. In particular, the secretion of IL-1β, IL-6, and tumour necrosis factor α 
(TNFα) (Fig.  16.1 ) is upregulated in cultured microglia upon direct contact with 
MBP-primed T cells (Dasgupta et al.  2005 ), while their production of TNFα, IL-6, 
and IL-12 is enhanced by antigen presentation to CD4 +  T cells via the CD40-CD40L 
signaling pathway in vitro (Rezai-Zadeh et al.  2008 ; Aloisi et al.  1998 ). These fi nd-
ings suggest that microglial interactions with T cells could infl uence their contribu-
tion to the neuroinfl ammatory milieu in EAE and MS, specifi cally by modulating 
their release of TNFα, IL-1β, IL-6, and IL-12 as discussed below.

     1.     TNFα  is produced in the MS/EAE brain by microglia as well as macrophages 
(Renno et al.  1995 ) and functions as a pro-infl ammatory mediator in the CNS, by 
inducing the production of chemokines (or  chemo tactic cyto kines ; mediating 
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  Fig. 16.1    The role of microglia in neuroinfl ammation. Microglia produce monokines including 
tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 when stimulated with CD40 ligand 
(CD40L) expressed on activated T cells and/or T cell-derived cytokines. In addition, activated 
microglia produce a variety of chemokines and induce infl ammatory cell infi ltration. Monokines 
activate microglia and astrocytes to induce the production of chemokines, leading to the infi ltration 
of infl ammatory cells including T cells, monocytes/macrophages, and neutrophils. IL-1β further 
disrupts blood–brain barrier (BBB) and induces the production of the chemokine monocyte che-
moattractant protein (MCP)-1, which contributes to the infi ltration of infl ammatory cells. However, 
TNF-α also induces microglial production of IL-10 via the TNF receptor (TNFR)2, thus exerting 
anti-infl ammatory responses as well       

 

Y. Sonobe and A. Suzumura



399

the attraction of their responsive cells) such as IL-8, macrophage infl ammatory 
protein (MIP)-1α and MIP-1β in cultured human microglia (Ehrlich et al.  1998 ; 
McManus et al.  1998 ), and the production of monocyte chemoattractant protein 
(MCP)-1 and regulated on activation, normal T cell expressed and secreted 
(RANTES) in cultured rat astrocytes (Guo et al.  1998 ). MIP-1α, MIP-1β, MCP- 1, 
and RANTES are chemotactic for T cells, macrophages, and microglia. 
Interestingly, in mice devoid of CNS expression of TNF receptor 1 (TNFR1), the 
recruitment of macrophages and granulocytes is reduced over the course of EAE, 
induced using MOG-reactive T cells. The levels of MCP-1 and MIP-2, i.e., a 
chemotactic factor for neutrophils produced by macrophages and microglia, 
were also found to be reduced in the CNS of these mice (Gimenez et al.  2006 ). 
These fi ndings suggest that TNFα could enhance neuroinfl ammation in EAE and 
MS by acting on the infi ltration of infl ammatory cells from the periphery, and the 
induction of additional chemokines in microglia or astrocytes. Consistently, 
transgenic mice over-expressing TNFα were shown to spontaneously develop an 
infl ammatory demyelinating disease characterized by the activation of astrocytes 
and microglial cells, together with the infi ltration of CD4 +  and CD8 +  T cells into 
the meninges and CNS parenchyma (Probert et al.  1995 ). TNFα-defi cient mice 
also displayed a delayed EAE onset, but similar to higher levels of EAE severity 
were observed in later phases of the disease (Kassiotis et al.  1999 ), thus suggest-
ing that TNFα could exert distinct roles, either detrimental or benefi cial, depend-
ing on the stage of disease progression.  

 The functions of TNFα are exerted via either TNFR1 or TNFR2 expressed on 
various types of cells (Dopp et al.  1997 ; Baker and Reddy  1998 ; Tracey et al. 
 2008 ; Martin et al.  2014 ). In the healthy CNS, these receptors are found on neu-
rons, astrocytes, and oligodendrocytes (Yang et al.  2002 ; Kuno et al.  2006 ; 
Faustman and Davis  2013 ). In EAE/MS, the infi ltrated lymphocytes, neutro-
phils, macrophages, and MHC class II positive cells additionally express TNFR1 
and TNFR2 around EAE lesions (Kahn et al.  1999 ), while oligodendrocytes 
express TNFR1 around MS lesions (Probert et al.  2000 ). TNFR1, but not TNFR2, 
contains a death domain. The affi nity of TNFα for TNFR1 is signifi cantly greater 
than for TNFR2 (Grell et al.  1998 ). In previous reports, TNFR1-defi cient mice 
were found to be resistant to MOG-induced EAE, whereas TNFR2-defi cient 
mice displayed enhanced CD4 +  and F4/80 +  cells infi ltration in vivo, together 
with an exacerbated EAE outcome (Eugster et al.  1999 ; Suvannavejh et al.  2000 ). 
In addition, TNFR2 stimulation promotes microglial expression of the anti- 
infl ammatory cytokine IL-10 in vitro (Veroni et al.  2010 ). The fi ndings suggest 
that TNFα could mediate neuroinfl ammation in MS and EAE, through the acti-
vation of TNFR1, and anti-infl ammatory responses via TNFR2.   

   2.     IL-1β  is also detected in microglial cells and macrophages during EAE (Bauer 
et al.  1993 ; Cash et al.  1994 ). MBP-primed T cells induce the production of 
IL-1β from murine microglial cells and macrophages in vitro (Dasgupta et al. 
 2005 ). Microinjection of IL-1β into the CNS reportedly increases BBB permea-
bility, accompanied by a pronounced recruitment of neutrophils (Ferrari et al. 
 2004 ). In addition, IL-1β induces the expression of genes favoring blood vessel 
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plasticity, such as the hypoxia-inducible factor 1α (HIF-1α) and its target, vascular 
endothelial growth factor (VEGF)-A, in cultured human astrocytes. This results 
in increased BBB permeability through downregulation of the tight junction pro-
teins claudin 5 and occludin in endothelial cells (Argaw et al.  2012 ). In a mouse 
model of traumatic brain injury, IL-1β similarly induces the invasion of neutro-
phils and T cells into the CNS (Clausen et al.  2009 ). In vitro studies also demon-
strate that IL-1β induces MCP-1, IL-8, MIP-1α, and MIP-1β expression in 
microglial cells (Calvo et al.  1996 ; Ehrlich et al.  1998 ; McManus et al.  1998 ), 
and that of MCP-1 and RANTES in astrocytes (Hayashi et al.  1995 ; Barnes et al. 
 1996 ). Thus, microglia-derived IL-1β could induce disruption of the BBB, 
release of chemoattractant mediators from microglia and astrocytes, and infi ltra-
tion of peripheral infl ammatory cells into the CNS. However, the particular 
involvement of microglia-derived IL-1β as a neuroinfl ammatory mediator in 
EAE and MS remains to be tested experimentally.   

   3.     IL-6  is also a potent inducer of microglia-mediated neuroinfl ammation. In EAE, 
IL-6 is produced by microglial cells as well as T cells and macrophages (Diab 
et al.  1997 ; Wlodarczyk et al.  2014 ). Many reports have suggested that IL-6 
plays an infl ammatory role in the pathogenesis of EAE (Erta et al.  2012 ). Neuron- 
targeted expression of IL-6 has been shown to induce reactive astrogliosis and 
microglial activation in transgenic mice in vivo (Fattori et al.  1995 ). Accordingly, 
IL-6 also induces MCP-1 mRNA expression by rat microglia in vitro (Calvo 
et al.  1996 ). In transgenic mice where the production of IL-6 is restricted to the 
cerebellum, MOG-induced EAE additionally resulted in the activation of infi l-
trated macrophages and microglia, accompanied by severe ataxia, enhanced 
 cerebellum infi ltration of neutrophils and B cells, and expression of RANTES 
(or CCL-5), MCP-5 (or CCL-12), and TNFα in situ (Quintana et al.  2009 ), sug-
gesting its involvement in EAE and MS.   

   4.     IL-12 : IFNγ induces the expression of CD40 on microglia (Aloisi et al.  1998 ), 
while binding of CD40 to its ligand CD40L induces microglial production of 
IL-12p70 in vitro (Aloisi et al.  1999 ). This heterodimeric cytokine, which is 
composed of the IL-12p35 and IL-12p40 subunits, is a crucial differentiation 
factor for pro-infl ammatory Th1 cells, which can trigger infl ammatory responses 
and activate APCs and cytotoxic T cells to attack their target cells (Knutson and 
Disis  2005 ). In addition, microglial cells stimulated with IFNγ in conjunction 
with the Toll-like receptor (TLR) 4 ligand, bacterial lipopolysaccharide (LPS), 
produced IL-12p70 and IL-23 in vitro (Suzumura et al.  1998 ; Sonobe et al. 
 2005 ). IL-23 is a heterodimer consisting of p19 and the IL-12p40 subunit. It 
induces the development of IL-17-producing Th17 cells, another type of pro- 
infl ammatory CD4 +  cells, which play a crucial role in the pathogenesis of EAE 
(Langrish et al.  2005 ). However, more recent studies have suggested that mice 
defi cient in the IL-12p35 subunit are fully susceptible to EAE (Becher et al. 
 2002 ), indicating that factors other than IL-12p70 might be crucial for the induc-
tion of EAE. In contrast, p19-defi cient mice are reportedly resistant to EAE (Cua 
et al.  2003 ), suggesting that IL-23 production is more critical than IL-12p70 
production in the CNS. It is important to note that mice in which the IL-23 
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 subunit IL-23p40 is devoid of CNS expression have decreased EAE severity, 
indicating that IL-23 produced by CNS-resident cells is important for the devel-
opment of EAE (Becher et al.  2003 ). Moreover, expression of the IL-23p19 sub-
unit was observed in APCs including microglia and macrophages localized 
around the lesion sites in MS postmortem brains (Li et al.  2007 ). Because IFNγ 
is also involved with the production of IL-23, IFNγ could regulate the differen-
tiation of both Th1 and Th17 cells.    

  Taken together, these fi ndings suggest that three main monokines secreted by 
microglia, namely TNF-α, IL-1β, and IL-6, could synergistically ‘activate’ glial 
cells and promote infi ltration of peripheral immune cells in the CNS, as observed in 
MS and EAE, while IL-12 and IL-23 could mediate differentiation of the encepha-
litogenic Th cells. Nonetheless, the specifi c contribution of microglial cells to the 
release of these monokines, at different stages of MS and EAE, and their ultimate 
impact on the disease pathogenesis remain unknown.  

16.4     Microglia in Demyelination 

 Microglial cells are recruited to areas of demyelination in MS/EAE, where they 
transform their morphology and actively proliferate. Activated phenotypes are also 
observed in rodents upon feeding with dietary cuprizone, a copper chelator which 
causes demyelination of the corpus callosum (Remington et al.  2007 ; Groebe et al. 
 2009 ). Recent fi ndings suggest that microglia could be directly involved in the 
mechanisms of demyelination, by their release of excitotoxic glutamate, reactive 
oxygen species, pro-infl ammatory cytokines, nitric oxide, and mediators of apopto-
sis as described below (see Fig.  16.2 ).

   The expression levels of glutaminase, an enzyme that converts glutamine into glu-
tamate, were shown to be increased in microglial cells localized within the active MS 
lesions in situ (Werner et al.  2001 ), suggesting a possible role of excitotoxic glutamate 
released from microglia in the demyelination process. LPS-activated microglia also 
increase the extracellular glutamate levels and induce the death of oligodendrocytes 
in vitro (Domercq et al.  2007 ). IL-1β reportedly induces apoptosis in cultures of oligo-
dendrocytes, astrocytes and microglia, and this effect is blocked pharmacologically by 
applying antagonists of the AMPA/kainate glutamate receptors (Takahashi et al.  2003 ). 
The combined fi ndings suggest that glutamate released from microglia could be 
directly involved in demyelination during EAE and MS, by inducing toxicity against 
oligodendrocytes, although this hypothesis remains to be tested. 

 In the brains of MS patients, DNA oxidation and lipid peroxidation are mainly 
observed in the nucleus and cytoplasm of oligodendrocytes, respectively, thus sug-
gesting an ongoing state of oxidative stress (Haider et al.  2011 ). Accordingly, the 
expression levels of several enzymes controlling the respiratory burst, including the 
nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) catalytic subunits 
p91phox, p22phox, and p47phox, were found to be upregulated in MS lesions 
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(Fischer et al.  2012 ). IFNγ- or GM-CSF-stimulated microglial cells reportedly 
 produce reactive oxygen species (ROS) in vitro (Hu et al.  1995 ; Smith et al.  1998 ), 
showing cytotoxicity against cultured oligodendrocytes (Schreibelt et al.  2007 ), thus 
suggesting a possible role for microglial production of ROS in demyelination. 

 Microglial release of TNFα and IL-1β could be specifi cally involved in this 
 process. It has been reported that microglia-secreted TNFα induces the death of 
oligodendrocytes and their progenitor cells in vitro (Zajicek et al.  1992 ; Pang et al. 
 2010 ). Oligodendrocyte-specifi c ablation of TNFR1 also attenuates the clinical 
signs of EAE, suggesting that oligodendrocytic TNFR1 could be involved in demy-
elination (Hovelmeyer et al.  2005 ). On the other hand, using the cuprizone-induced 
demyelinating model, Arnett and colleagues revealed that TNFR2, but not TNFR1, 
is critical for the regeneration of oligodendrocytes in vivo (Arnett et al.  2001 ). These 
observations suggest that microglia-derived TNFα could mediate the death of oligo-
dendrocytes via TNFR1, and their regeneration through TNFR2. 

 In previous reports, IL-1β was also reported to cause demyelination in vivo and 
in vitro, while IL-1β-stimulated microglia exerted an increased oxidative activity in 
vitro (Smith et al.  1998 ), suggesting that IL-1β could damage oligodendrocytes 
through the release of ROS. In addition, IL-1β degrades intracellular sphingomyelin 
to ceramide and induces the apoptosis of oligodendrocytes in vitro (Brogi et al. 
 1997 ). Sphingomyelin, which mainly consists of ceramide and phosphocholine, is a 
component of the myelin sheath. Accordingly, administration of the IL-1 receptor 
antagonist suppressed EAE in rats, while mice defi cient in the IL-1 receptor 1 (IL- 
1R1) showed ameliorated symptoms of EAE (Martin and Near  1995 ; Sutton et al.  2009 ). 
These fi ndings suggest that IL-1β could contribute to demyelination in MS and EAE 
via the induction of oligodendrocyte apoptosis. On the other hand, IL-1β- defi cient 
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Microglia

Activated
MicrogliaNO ROS

FasL

Fas

Glutamate

Glutamate
receptor

TRAILTNF-α

TNFR1

IL-1β

IL-1R1 TRAILR1

Oligodendrocyte death
(apoptosis and oxidative damage)

  Fig. 16.2    The role of microglia in demyelination. Activated microglia produce soluble factors includ-
ing TNF-α, IL-1β, TNF-related apoptosis-inducing ligand (TRAIL), glutamate, nitric oxide (NO), and 
reactive oxygen species (ROS), which damage oligodendrocytes via the induction of apoptosis and/or 
oxidative stress. Alternatively, Fas ligand (FasL) expressed on activated microglia interacts with Fas on 
oligodendrocytes and induces apoptosis of oligodendrocytes. Abbreviations as in Fig.  16.1        
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mice undergoing the cuprizone-induced demyelination failed to remyelinate, 
 following withdrawal of the dietary cuprizone, suggesting that IL-1β additionally 
contributes to remyelination (Mason et al.  2001 ). This failure of remyelination also 
appears to correlate with a lack of insulin-like growth factor-1 (IGF-1) production 
by microglia and astrocytes, as their mRNA levels were shown to be reduced in 
brain extracts from IL-1β-defi cient mice (Mason et al.  2001 ). Since IGF-1 is also 
required for the differentiation of precursor cells into mature oligodendrocytes, it 
has been speculated that IL-1β could play a crucial role in remyelination through the 
induction of microglial and/or astrocytic IGF-1 (Mason et al.  2001 ). Thus, it is pos-
sible that microglial IL-1β is similarly required in MS for remyelination. 

 Furthermore, in vitro studies have shown that microglia stimulated with IFNγ and/
or LPS produce nitric oxide (NO) and the TNF-related apoptosis-inducing ligand 
(TRAIL) (Chao et al.  1992 ; Zielasek et al.  1992 ; Genc et al.  2003 ). NO reportedly 
causes single-stranded DNA breaks and mitochondrial damage in oligodendrocytes 
in vitro (Mitrovic et al.  1994 ), suggesting another mechanism by which microglia 
could contribute to demyelination in MS and EAE. In addition, TRAIL, which is a 
member of the death-signaling molecule family, reportedly induces human oligoden-
drocyte apoptosis via TRAILR1 in vitro (Matysiak et al.  2002 ). Thus, IFNγ might also 
promote demyelination via the production of NO and TRAIL by microglia. 

 In MS lesions, microglia, infi ltrated macrophages, and T lymphocytes were 
lastly found to express the Fas ligand (FasL), which belongs to the TNF family and 
induces apoptosis upon binding to its receptor FasR (Dowling et al.  1996 ; D’Souza 
et al.  1996 ). Fas ligation with an anti-Fas antibody or the Fas ligand induced oligo-
dendrocyte cell membrane lysis and subsequent cellular death in vitro (D’Souza 
et al.  1996 ). In addition, mice lacking Fas in oligodendrocytes exclusively were 
reported to be partially resistant to EAE (Hovelmeyer et al.  2005 ). Further research 
will test the direct contribution of microglia-derived glutamate, ROS, TNFα, IL-1β, 
IGF-1, NO, TRAIL, and FasL in the processes of oligodendrocyte apoptosis and 
regeneration, as well as concomitant demyelination and remyelination in MS.  

16.5     Microglia in Neurodegeneration 

 MS has long been considered as a chronic infl ammatory demyelinating disease of 
the CNS. However, several lines of evidence also suggest that axonal degeneration 
in MS and EAE could occur independently from demyelination. Even though axonal 
degeneration is widespread in the corpus callosum in EAE (Mangiardi et al.  2011 ), 
the underlying molecular mechanisms still remain unclear. Howell and colleagues 
proposed that microglial cells could be involved, since neurodegeneration is accom-
panied by the presence of activated microglia in MS postmortem brains, showing 
thicker and shorter processes than observed in control microglia (Howell et al.  2010 ). 
The evidence from in vivo and in vitro studies that activated microglia could cause 
‘infl ammation-induced neurodegeneration’ in MS and EAE, via the release of NO, 
ROS, glutamate, and various pro-infl ammatory cytokines, will be reviewed in the 
following section. 
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 Neuronal degeneration is induced in cultures of microglia and neurons upon 
stimulation with LPS and IFNγ and reduced by the addition of NOS inhibitors 
(Chao et al.  1992 ). In addition, heat shock protein (HSP)60 induces microglial pro-
duction of NO via TLR4, in addition to causing extensive axonal loss and neuronal 
death in vitro (Lehnardt et al.  2008 ). Lipoteichoic acid (LPA), an agonist of TLR2 
derived from staphylococcus aureus, which is involved in pathogen recognition and 
has been reported to exacerbate both EAE and MS (Gambuzza et al.,  2011 ), also 
promotes the production of NO and superoxide by microglial cells. LPA addition-
ally induces neuronal death, and this process is blocked by an iNOS inhibitor and a 
peroxynitrite scavenger in vitro, suggesting a direct detrimental contribution of 
microglia-derived NO to neuronal death (Kinsner et al.,  2005 ). 

 In the EAE model, Nikić and colleagues revealed that ROS and reactive nitrogen 
species (RNS) released from activated macrophages/microglia induce focal axonal 
degeneration, using two-photon in vivo imaging (Nikić et al.  2011 ). Microglial 
expression of p47 phox, a cytosolic subunit of NADPH oxidase, was further shown 
to be upregulated in the active lesions of MS postmortem brains (Fischer et al.  2012 ). 
Microglia stimulated with the nucleotide ATP also released superoxides via P2X7 
receptor, a purinergic receptor for ATP, and elicited toxicity against cultured neurons 
(Mead et al.  2012 ). It has been shown that blockade of the P2X7 receptor ameliorates 
EAE (Matute et al.  2007 ). Interestingly, microglia activated with thrombin, which 
induces blood coagulation via converting fi brinogen to fi brin, induce oxidative stress 
resulting in hippocampal neuronal cell death (Choi et al.  2005 ). Prothrombin krin-
gle-2, a domain of prothrombin distinct from thrombin, also induces the loss of corti-
cal neurons and this effect is partially inhibited by a NADPH oxidase inhibitor (Won 
et al.  2009 ). In addition, the leakage of fi brinogen from blood vessels has been shown 
to activate microglia and further induce axonal damage in EAE, using two-photon 
in vivo imaging (Davalos et al.  2012 ) (see Chap.   4     for additional information on 
these observations). It is possible that these blood-derived proteins enter the CNS 
through damaged BBB, thus activating microglia and inducing neurodegeneration 
through the release of ROS. Furthermore, high mobility group box chromosomal 
protein 1 (HMGB1), a chromatin-associated nuclear protein, has been detected in 
active lesions of MS and EAE (Andersson et al.  2008 ). It reportedly induces p47 
phox membrane translocation and microglial production of ROS via MAC1, which 
consists of integrin alpha M and beta 2 (Gao et al.  2011 ). These fi ndings strongly 
suggest that ROS produced by microglia, possibly activated by ATP or thrombin, 
contribute to axonal and neurodegeneration in MS and EAE. 

 Moreover, microglial stimulation with Chromogranin A, a marker of neurodegen-
eration that is released from damaged neurons and elevated in the CSF of MS patients 
(Stoop et al.  2008 ), induced their production of NO and glutamate in vitro. The con-
ditioned medium from Chromogranin A-stimulated microglia also killed rat cerebel-
lar granule cells via caspase-3-dependent apoptosis, blocked with an ionotropic 
glutamate receptor antagonist, thus suggesting that microglia induce neuronal death 
via glutamate release (Kingham et al.  1999 ). In addition, in vitro studies have sug-
gested that LPS and TNFα could induce neurotoxicity through the release of gluta-
mate from activated microglia in vitro (Takeuchi et al.  2006 ; Yawata et al.  2008 ). 

Y. Sonobe and A. Suzumura

http://dx.doi.org/10.1007/978-1-4939-1429-6_4


405

Neuroinfl ammation, including microglial TNFα production, is associated with neu-
rodegeneration in EAE (Centonze et al.  2009 ). Thus, it is possible that microglia-
derived glutamate exerts toxicity against neurons in EAE and MS.  

16.6     Conclusion 

 In EAE and MS, microglial cells function as APCs, albeit possibly at lower levels 
than professional APCs such as DCs (Fig.  16.3 ). IFNγ and GM-CSF induce expres-
sion of MHC class II and costimulatory molecules of the B7 family in microglia, 

  Fig. 16.3    The role of microglia in neuroinfl ammatory diseases. Microglia are activated by CD4 +  
T cells via CD40L–CD40 interactions and/or soluble factors. In some cases, activated microglia 
express major histocompatibility complex (MHC) class II and costimulatory molecules including 
CD80 and CD86, and possibly behave as antigen presenting cells (APCs) that restimulate infi ltrating 
CD4 +  cells. In another cases, activated microglia produce monokines such as TNF-α, IL-1β, and IL-6, 
which contribute to the activation of astrocytes and bystander microglial cells. Astrocytes and 
microglia activated by the monokines produce chemokines including monocyte chemoattractant pro-
tein (MCP)-1, macrophage infl ammatory protein (MIP)-1α, MIP-1β, regulated on activation, normal 
T cell expressed and secreted (RANTES), and IL-8 which induce chemotaxis of various immune 
cells including monocytes/macrophages, neutrophils, CD4 + , and CD8 +  T cells. Activated microglial 
cells could also induce demyelination via FasL-Fas interactions, and the production of TNF-α, IL-1β, 
NO, glutamate, and ROS. Moreover, activated microglia could further induce neurodegeneration via 
the production of NO, glutamate, and ROS. Abbreviations as in Figs.  16.1  and  16.2        
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activate (or reactivate) myelin-specifi c T cells, and enhance neuroinfl ammation. 
In addition, microglia are activated by monokines such as TNFα, IL-1β, and IL-6 
early in disease. Activated microglia also produce monokines, which in turn act on 
microglia and astrocytes to further enhance neuroinfl ammation via the production 
of cytokines and chemokines. Microglia-derived infl ammatory monokines such as, 
IL-1β and TNFα, and degenerative factors such as ROS, NO, and glutamate could 
additionally induce demyelination. Furthermore, microglia-derived degenerative 
factors, such as ROS, NO, and glutamate, could cause infl ammation-induced neuro-
degeneration. Thus, microglial cells could be considered as conductors that orches-
trate a plethora of neuroinfl ammatory phenomena involved in the pathogenesis of 
EAE and MS. However, many of the discussed studies were performed in vitro. 
Further investigation is needed to clarify the direct contribution of microglia versus 
the other infl ammatory cells in this exciting fi eld.
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