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     Abbreviations 

   AZF    Azoospermia factor   
  CGH    Comparative genomic hybridization   
  CNV    Copy number variation   
  HBPs    Heparin-binding proteins   
  NOA    Nonobstructive azoospermia   
  OA    Obstructive azoospermia   
  SNP    Single nucleotide polymorphisms   

          Introduction 

 Despite rapid growth in the understanding of the 
genetic basis for male infertility, much remains 
poorly defi ned. Current estimates indicate that 
genetic abnormalities contribute to 15–30 % of 
male infertility [ 1 ,  2 ]. Many men have their condi-
tions uncharacterized and are subsequently diag-
nosed as idiopathic infertility. It has been postulated 
that these men actually have  unrecognized genetic 
aberrations [ 1 ,  2 ]. Unfortunately, even with the cur-
rent genetic tools at a clinician’s disposal (i.e., 
karyotype, Y-chromosome microdeletion assay, 
cystic fi brosis testing), there are many genetic 
causes that remain unrecognized. 

 Men with oligospermia and non-obstructive 
azoospermia (NOA) have a known predisposition 
to genetic abnormalities and comprise 40–50 % of 
all infertile men [ 3 ]. Current guidelines recom-
mend genetic testing when either sperm density is 
<5 million/mL, NOA is present, or there are clini-
cal signs of an abnormality [ 4 ]. The limitations of 
contemporary testing are refl ected in the growth of 
recognized genomic and proteomic contributors 
towards male infertility [ 2 ]. Indeed, while much 
work needs to be done, it appears that future utili-
zation of genetic evaluations will be determined 
with more direct delineation. As such, the current 
chapter aims to provide a background regarding 
the genetic tests that are currently available to clini-
cians investigating male infertility. Furthermore, 
advanced methodologies are discussed with recent 
advances in genomics and proteomics highlighted.  
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    Genomics: Chromosomal 
Abnormalities 

    Karyotype 

 The advent of modern genetic techniques has led 
to a rapid proliferation of tests and technologies 
that have the potential to alter the treatment of 
male infertility. However, in spite of large numbers 
of individuals affected by male infertility, genetic 
analysis has been slow to identify causes. The abil-
ity to identify genetic causes of male infertility is 
benefi cial several reasons. First, by understanding 
the genetic basis of disease, one can hope to 
develop novel treatments for the future. Second, 
determination of signal transduction pathways 
underlying male infertility may yield better com-
prehension of mechanisms of disease. Importantly, 
investigators today believe that the majority of 
male infertility has a genetic basis [ 5 ]. Lastly, 
when using in vitro fertilization, natural selection 
is bypassed, thus opening up the possibility of 
transmitting unknown diseases to offspring. If cli-
nicians can identify and control for these changes, 
risks for transmission would be decreased. 

 With respect to genetic testing, the karyotype 
was one of the earliest techniques developed for 
assessing human chromosomes. Using light 
microscopy, the number and appearance of chro-
mosomes as well as variations in DNA composi-
tion of >4 megabases (Mb) in size became 
possible [ 6 ]. The technique documented the 
basics of human disease with the identifi cation of 
numerical defects such as Down’s syndrome 
(extra chromosome 21) and Turner’s syndrome 
(XO) identifi ed in the early 1950s [ 7 ,  8 ]. With 
regards to male subfertility, karyotypic chromo-
somal abnormalities was shown to occur at 5 
times greater rates compared to the normal popu-
lation [ 9 ]. In men with NOA, the prevalence 
numerical and structural chromosomal abnor-
malities is ~10–15 % [ 10 ] whereas in men with 
severe oligospermia (defi ned as <5 million 
sperm/mL), this rate correspondingly decreases 
and approaches ~5 % [ 11 ,  12 ]. Over the years, as 
the technology and accuracy has expanded, these 
numbers have increased. Most recently, Yatsenko 

and colleagues recorded that >11 % of men with 
NOA had abnormalities identifi ed on karyotype 
[ 10 ]. Interestingly, men with normal sperm con-
centrations demonstrated <1 % prevalence of 
karyotype-associated abnormalities [ 11 ,  12 ] 
while the frequency of karyotypic abnormalities 
amongst infertile men is ~12.6 % [ 13 ]. 

 Karyotype is currently recommended in men 
with NOA or severe oligospermia (<5 million/
mL) [ 4 ]. In azoospermic men, sex chromosome 
abnormalities predominate, whereas in oligo-
spermic men, autosomal anomalies (i.e., 
Robertsonian and reciprocal translocations) are 
more frequent [ 11 ]. Chromosomal inversions in 
autosomes 1, 3, 4, 6, 9, 10, and 21 are also more 
common in infertile men [ 14 ]. 

 Klinefelter’s syndrome (KS) represents the 
most common genetic cause and karyotypic 
abnormality found in infertile men (47, XXY). 
Present in 11 % of men with azoospermia, KS 
occurs in 1 of 500 live births [ 11 ,  15 ,  16 ]. The 
majority (95 %) of affected males present in 
adulthood with infertility [ 17 ]. Most will have 
normal libido and erectile function with only 
25 % demonstrating characteristic KS features of 
gynecomastia, tall stature, and small fi rm testes 
(8–10 cm 3 ) [ 18 ,  19 ]. 

 KS results from a meiotic nondisjunction 
event in most cases; however, up to 3 % of men 
with KS are mosaic 46,XX/47,XXY [ 15 ,  18 ]. 
Mosaic males tend to have less severe phenotypic 
changes and many may be fertile. Spermatogenesis 
is typically profoundly affected in non-mosaic 
KS resulting in azoospermia in most with ~8.4 % 
of men may having sperm in the ejaculate [ 20 –
 22 ]. In addition, follicle stimulating hormone 
(FSH) and luteinizing hormone (LH) levels are 
markedly increased. FSH is increased in response 
to abnormal spermatogenesis with an increase in 
LH refl ecting maximal simulation of Leydig cells 
to produce androgen [ 20 – 23 ]. 

 Karyotypic diagnosis is essential when KS is 
suspected since these patients are at increased 
risk for breast cancer, non-Hodgkin lymphoma, 
extragonadal germ cell tumors, and likely lung 
cancer [ 24 – 26 ]. Spermatogenic potential declines 
with advancing age in KS patients; however, the best 
approach to the adolescent with KS and adequate 
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virilization is currently unclear [ 19 ,  27 – 29 ]. 
Some have suggested testicular sperm extraction 
with cryopreservation of sperm or testicular tis-
sue [ 30 ] while others have argued in favor of 
waiting for extraction in coordination with IVF-
ICSI when paternity is desired [ 31 ]. Another con-
cern in men with KS is the high rates of sperm 
aneuploidy [ 27 ,  31 – 33 ]. Despite these issues, 
many 46, XX and 46, XY live births have been 
reported in the literature [ 34 – 36 ]. Micro- TESE, 
coupled with ICSI, has proven to be a successful 
strategy for the majority of patients with azo-
ospermia and KS [ 15 ]. 

 There are no universally agreed-upon clinical 
or laboratory fi ndings that predict successful 
sperm retrieval in KS; however, testis volume, 
testosterone level and age <35 are generally 
thought to be positive indices [ 19 ,  29 ,  37 ,  38 ]. 
Unfortunately, the primary diffi culty with karyo-
typic analysis is that baseline resolution of the 
technique is unable to detect small DNA aberra-
tions and as personalized medicine comes to the 
forefront, newer techniques are supplementing 
the karyotype.  

    Fluorescence In Situ Hybridization 

 A more advanced test compared to the karyotype 
focuses on fl uorescent probes that are able to 
detect and localize specifi c DNA sequences on 
chromosomes [ 39 ]. This technique, termed 
Fluorescence in situ Hybridization (FISH), was 
developed to detect sperm aneuploidy as well as 
to determine the presence/absence of specifi c 
DNA sequences [ 40 ]. Sperm FISH is unaffected 
by functional defi ciencies [ 39 ] and while it 
assesses defects in men with normal karyotypes 
(described above), it is limited by the cost of 
commercially available probes. Specifi cally, 
chromosomes X, Y, 13, 18, and 21 are the main 
probes used in sperm FISH since alterations in 
these chromosomes results in viable offspring 
[ 6 ]. The test is thus unable to detect aberrations in 
other chromosomes beyond these limited few, 
because of cost constraints. 

 As a method of further clarifying genetic 
abnormalities, FISH is used clinically as an 

adjunct to the karyotype. Some have proposed 
that FISH should be used to more accurately 
identify men with mosaic Klinefelter’s syndrome 
[ 41 ]. Indeed, retrospective and prospective stud-
ies have noted that elevated aneuploidy obtained 
via sperm FISH correlated to fetal aneuploidy 
and IVF failure [ 39 ,  42 ,  43 ]. At the present time, 
sperm FISH is used as a screening tool as well as 
for patient counseling and clinical decision mak-
ing. In certain situations and depending upon the 
clinical diagnosis, preimplantation genetic diag-
nosis and ICSI could be used to select genetically 
unaffected embryos.   

    Genomics: Gene Mutations 

    Cystic Fibrosis 

 Congenital bilateral absence of the vas deferens 
(CBAVD) is found in ~1 % of infertile males and 
up to 6 % of those with obstructive azoospermia 
[ 1 ,  19 ]. CBAVD is due to a mutation in the  CFTR  
(Cystic Fibrosis Transmembrane Conductance 
Regulator) gene located on chromosome 7 [ 44 , 
 45 ] and results from gene mutations that cause 
cystic fi brosis (CF) or alterations in the genetic 
mechanisms controlling mesonephric duct differ-
entiation [ 19 ]. CF is an autosomal recessive dis-
ease, affecting 1 in 1,600 people of Northern 
European background. It occurs with variable 
frequency in different geographic and ethnic 
populations. Genetic testing typically accounts 
for ethnicity and recognizes >850 genetic vari-
ants associated with CF [ 23 ,  46 – 50 ]. Most cases 
of CBAVD result from mutations in both the 
maternal and paternal copies of the genes that 
encode for the CFTR. Eighty percent of azo-
ospermic men with CBAVD and one-third of 
men with unexplained obstruction will have 
CFTR mutations [ 51 ,  52 ]. The prevalence of 
CFTR mutations is increased in men with azo-
ospermia related to congenital bilateral obstruc-
tion of the epididymis and those with unilateral 
vasal agenesis [ 4 ]. 

 CBAVD is reliably diagnosed on physical 
exam with vasa absent bilaterally and seminal 
vesicles classically absent or atrophic. 
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Occasionally, the seminal vesicles can be large 
and cystic [ 19 ]. Testis size is also preserved and 
correspondingly, spermatogenesis is unaltered. 
The efferent ductules and caput of the epididymis 
are present and full with fl uid from the testis. 
Transrectal ultrasound may reveal absence of the 
ampullae of the vas deferens or seminal vesicle 
abnormalities [ 53 ]. 

  CFTR  encodes an ion channel that maintains 
the viscosity of epithelial secretions via regula-
tion of the sodium/chloride balance [ 19 ]. Analysis 
of the ejaculate will reveal thin, watery, low vol-
ume (<1.5 mL), and acidic (pH 6.5–7.0) fl uid, as 
it is comprised primarily of prostatic secretions 
[ 19 ]. Pulmonary and pancreatic function in 
patients with CBAVD is unaltered [ 44 ]. Nearly 
all men with clinically detected CF demonstrate 
CBAVD [ 23 ,  54 ]. 

 Signifi cant genotypic differences are seen in 
CF and CBAVD. In males with CBAVD, the 
majority (~88 %) has a severe mutation resulting 
in absent CFTR function in combination with an 
allelic mutation that preserves some CFTR func-
tion [ 23 ,  55 – 57 ]. A three-base-pair deletion of 
CFTR, termed ΔF508, is the most common 
mutation found in both CF and CBAVD [ 19 ,  57 ]. 
When the patient is ΔF508 homozygous, clinical 
CF is apparent whereas CBAVD commonly 
results from a polymorphism within intron 8, 
sometimes termed the 5T allele, coupled with a 
ΔF508 mutation [ 19 ,  57 ,  58 ]. Several studies 
have demonstrated variable penetrance of the 5T 
allele, which results in a lowered effi ciency of 
splicing that subsequently lowers levels of CFTR 
mRNA and protein required for maintenance of 
normal function [ 23 ,  55 – 57 ]. 

 Failure of appropriate mesonephric duct dif-
ferentiation before week 7 of gestation may 
underlie a second genetic etiology of CBAVD 
[ 19 ,  59 ]. If an isolated, unilateral injury occurs to 
one of the developing mesonephric ducts, unilat-
eral renal and vasal agenesis may be present. In 
contrast, the presence of a genetic aberration that 
compromises mesonephric duct differentiation 
would affect both renal and reproductive ductal 
units, as in Potter’s syndrome [ 19 ,  59 ]. Indeed, 
some patients may have unilateral vasal agenesis 
due to a non-cystic-fi brosis mediated embryologic 

defect, which is associated with unilateral 
absence of the kidney. A renal ultrasound is 
therefore indicated in these patients [ 60 ]. 
Unilateral renal atrophy/dysgenesis can also be 
associated with ipsilateral hydroureter and ecto-
pic insertion into other genitourinary structures 
such as the seminal vesicles [ 61 ]. 

 In patients found to have an abnormality on 
CFTR testing, the partner should similarly be 
screened. Microsurgical or percutaneous sperm 
retrieval in coordination with in vitro fertilization 
and intracytoplasmic sperm injection (IVF-ICSI) 
remains an option for these couples. If the partner 
is a carrier of a CF mutation, preimplantation 
genetic diagnosis can be employed to prevent the 
transfer of any embryos that will be predicted to 
have CF or CBAVD. Failure to detect a CFTR 
mutation in either partner does not exclude the 
presence of a mutation, which is not identifi able 
by routine analysis performed by most clinical 
genetics laboratories for diagnosing CF and not 
CBAVD, and therefore the progeny of the couple 
remains at some risk unless the entire gene is 
sequenced. Patients demonstrating CFTR muta-
tions should therefore be referred for genetic 
counseling prior to IVF [ 62 ,  63 ].   

    Genomics: Y-Chromosome 
Microdeletions 

 The Y chromosome contains 60 million base pairs 
and is composed of a short arm (Yp) and a long 
arm (Yq). The  SRY  gene is located on Yp and is 
essential to sex-specifi c embryogenesis and deter-
mination of the bipotential gonad [ 19 ,  64 – 66 ]. 
The male-specifi c region of the Y-chromosome 
(MSY) is the chromosomal material bridging the 
two polar pseudoautosomal regions, located at the 
tips of Yp and Yq, and comprises 95 % of the 
entirety of the Y chromosome [ 64 ,  65 ]. Many of 
the genes in this MSY region are poorly charac-
terized but are involved in spermatogenesis. 
Included in the MSY region are three important 
zones that infl uence spermatogenesis. These 
Azoospermia Factor (AZF) regions are recog-
nized as AZFa, (proximal), AZFb (central), and 
AZFc (distal). Known spermatogenesis genes 
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within these confi nes include  USP9Y  and  DBY  in 
AZFa and  DAZ ,  RBMY1 , and  BPY2  in AZFb and 
AZFc [ 19 ,  64 – 66 ]. 

 There are eight palindromic sequences 
throughout the length of the Yq and, as the MSY 
region has no genetic partner sequence to pair or 
repair, it is postulated that this organization helps 
to maintain the genetic integrity of the Y chromo-
some [ 19 ,  64 – 67 ]. Sub-segments within these 
palindromic sequences, known as amplicons, can 
occasionally fuse resulting in loss of all interven-
ing chromosomal material [ 19 ,  64 ,  65 ,  67 ]. When 
this occurs, it is termed a microdeletion, as despite 
the loss of a large magnitude of genetic material, 
it is undetectable on a karyotypic analysis [ 19 , 
 67 ]. The subsequent genes within this sequence 
are lost, resulting in impaired spermatogenesis 
and possibly other undefi ned consequences. 

 The overall prevalence of Y chromosome 
microdeletions in patients with sperm counts 
greater than    5 × 10 6 /mL is low (~0.7 %) [ 68 ]. A rate 
that increases to 4 % in oligospermic men and 
11 % in azoospermic men [ 68 ]. Other studies 
have identifi ed microdeletions in 6–12 % of men 
with impaired spermatogenesis—a value that can 
increase to 16 % in men with azoospermia [ 69 ]. 
Within the AZF regions, AZFc deletions are the 
most common, being seen in 13 % of men with 
NOA and 6 % of severely oligospermic men [ 19 , 
 70 ,  71 ]. The  DAZ  (Deleted in Azoospermia) 
gene, which encodes a transcription factor pres-
ent in men with normal fertility, resides in the 
AZFc region. In contrast, microdeletions within 
the AZFa region occur in approximately 1 % of 
NOA men and do not involve any of the afore-
mentioned palindromic sequences [ 19 ]. 

 The location of AZF deletions impacts the 
likelihood of spermatogenesis and is prognostic 
in regards to the success of micro-TESE. Men 
with AZFc microdeletions have quantitatively 
impaired spermatogenesis with either severe oli-
gospermia or azoospermia. The quality of sperm 
produced is typically normal in terms of fertiliza-
tion, embryo development, and live birth [ 19 , 
 72 ]. The level of spermatogenesis is typically 
stable among individuals, and micro-TESE with 
ICSI remains a therapeutic option [ 4 ,  19 ,  73 ]. In 
contrast, deletions of the AZFa or AZFb regions 

portend a very poor prognosis for sperm retrieval 
[ 19 ,  74 ,  75 ]. In a study by Hopps et al. [ 76 ], a 
total of 78 men with AZF deletions were ana-
lyzed with respect to the ability to identify sperm 
following diagnostic testes biopsies or 
TESE. Men with an isolated AZFc deletion had 
sperm identifi ed in 56 % of cases [ 76 ]. 

 With regards to heredity, men with 
Y-chromosome microdeletions will pass the 
abnormality to their sons who consequently may 
also be infertile. Although limited data exists, 
microdeletions of the Y-chromosome are known 
to have minor somatic health consequences (i.e., 
permanent tooth size [ 77 ] and short stature [ 78 ]) 
or testicular abnormalities [ 19 ]. It is possible 
however, that transmission of AZF microdele-
tions may have unrecognized consequences to 
offspring. Couples may elect to forgo use of the 
partner’s sperm, utilize the ejaculated or testicu-
lar sperm for IVF-ICSI or elect for preimplanta-
tion genetic screening to transfer only female 
embryos. Therefore, men exhibiting NOA or 
severe oligospermia should be offered a 
Y-chromosome microdeletion assay and genetic 
counseling prior to pursuing micro-TESE for 
IVF-ICSI [ 19 ]. Indeed, molecular studies of 
patients with Y-chromosome microdeletions 
have shown previously unknown Y structural 
variations in NOA men [ 79 ]. 

 Infertile men can have other Y chromosome 
structural abnormalities including, ring Y, trun-
cated Y, isodicentric Y and various other mosaic 
states which may be present on karyotype analy-
sis [ 10 ,  11 ,  19 ,  80 ,  81 ]. Early work hypothesized 
that the Y-chromosome contained a region that 
was initially thought to contain no X-Y crossing 
over; however, it has recently been shown to have 
extensive recombination and is termed the male- 
specifi c region (MSY) [ 64 ]. This area is fl anked 
by pseudoautosomal regions (PAR) where X-Y 
crossing over is normal [ 64 ]. Indeed, 
Y-chromosome microdeletions can also include 
PAR defects causing genetic disorders such as 
SHOX [ 82 ]. The sequencing of the MSY region 
has been conducted [ 64 ] and further studies have 
found that high mutation rates resulting in struc-
tural polymorphisms in the human Y-chromosome 
exist with selective constraints possible [ 83 ]. 

17 Genomic and Proteomic Approaches in the Diagnosis of Male Infertility



172

In all cases, a Y-chromosome microdeletion assay 
is a necessary complementary test to determine 
the presence of the AFZ regions and direct coun-
seling [ 10 ,  11 ,  19 ,  80 ].  

    Genomics: Advanced Techniques 

 Given the limits of detection and resolution of the 
above-mentioned techniques (karyotype, FISH, 
etc.), new approaches are being developed that 
test the current limits of genomic resolution. One 
of these involves detection of Copy number varia-
tions (CNVs). CNVs are defi ned as small (~1 kb) 
pieces of DNA that vary between individuals. 
Affecting ~20 % of the human genome, CNVs are 
either additions/duplications or deletions within 
the genome [ 84 ] that are critical sources of genetic 
diversity. Given that they lie within regions that 
are potentially invisible to karyotype analysis, 
novel techniques were developed to assess the 
impact of CNVs on human disease. 

 Array comparative genomic hybridization 
(aCGH) is one approach that focuses on single 
nucleotides in the human genome. It has the 
capacity to identify both small and large-scale 
changes by examining the relative quantities of 
DNA between samples. Gene copy number are 
optimally analyzed and depicted as a function of 
chromosome location with fl uorescence identify-
ing copy number gain or loss [ 85 ]. In the context 
of the microarray platform, resolution of aCGH 
has improved to <1 kb [ 86 ] with the ability to 
scale the testing in order to perform thousands of 
experiments in a single run [ 6 ]. Indeed, genome- 
wide assays are gradually replacing karyotyping 
for prenatal genetic diagnoses [ 87 ]. 

 While aCGH has been applied to numerous 
malignancies including those of the breast, naso-
pharynx, ovary, stomach and bladder, others are 
using the technology to probe for alterations in 
infertile men [ 88 ]. Array CGH has already been 
used in the context of male infertility to identify 
Y-chromosome microdeletions in infertile males 
[ 82 ]. An earlier study ascertained whether CNVs 
were involved in patients with oligospermia/azo-
ospermia compared to controls [ 89 ]. Several 
genes and genomic regions were identifi ed on 

autosomes and sex-chromosomes that were theo-
rized to be involved in spermatogenesis [ 89 ]. 
While the authors could not identify any large 
CNV (>1 Mb) variants between men with infer-
tility; 11 CNVs in severe oligospermia and 4 
CNVs in men with azoospermia (i.e.,  EPHA3 , 
 PLES ,  DDX11 ,  ANKS1B ) were identifi ed in more 
than one patient suggesting that these regions 
were potential candidates for infertility genes 
[ 89 ]. Defects in the pseudoautosomal regions 
(PARs) of the Y-chromosome cause genomic dis-
orders such as SHOX that can be affi liated with 
infertility, mental and stature disorders and sub-
sequently transmitted to offspring [ 82 ]. 

 Another technique that has recently benefi tted 
from signifi cant technological improvement is 
gene-expression DNA microarray. The primary 
advantage of DNA microarray technology is the 
ability to perform simultaneous analysis of thou-
sands of genes at the same time [ 90 ]. By generat-
ing a large amount of data, DNA-microarrays 
require modern computational and statistical bio-
analytic and bioinformatics approaches. The power 
of the technique lies in the ability to provide a 
snapshot of all transcriptional activity in a sample. 

 Preliminary studies by Sha et al. [ 91 ] utilizing 
cDNA microarrays identifi ed 101 candidate fer-
tility genes. Lin et al. [ 92 ] expanded on these 
early fi ndings by pooling cDNA from testicular 
biopsy samples grouped by pathology. More 
recently, Malcher et al. [ 93 ] utilized testicular 
biopsy samples from controls and men with 
NOA. Gene expression found 4,946 differentially 
expressed genes with SPACA4 and CAPN11 sig-
nifi cantly downregulated in infertile patients 
[ 93 ]. Interestingly, SPACA4 (or SAMP14) has 
been found in the sperm acrosome and postulated 
to be involved with sperm–egg interactions [ 94 ] 
with CAPN11 potentially involved in cytoskele-
tal remodeling during spermatogenesis [ 93 ,  95 ]. 

 Unfortunately, previous studies examining 
gene expression have been mostly conducted in 
cellular homogenates obtained from testicular 
biopsy specimens. As such, the comparisons 
between patients with SCO and controls are 
essentially classifying cellular heterogeneity. 
Indeed, given that spermatocytes and spermatids 
have high rates of RNA synthesis [ 96 ], their 
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presence in the control population affects all 
genetic outputs analyzed [ 97 ]. Interestingly, 
Yatsenko et al. [ 98 ] previously assessed genes 
involved in meiosis for mutations using the long-
living residual RNA found in mature sperm from 
semen ejaculate. If examining whole-system 
alterations, an alternative approach would be to 
examine tissue fi broblasts. This method allows 
determination of conserved pathways to be more 
thoroughly examined while not being affected by 
the presence, or absence of germ cells [ 97 ]. 
Future studies using DNA microarrays are cur-
rently being conducted with results poised to 
highlight signal transduction pathways unique to 
human male infertility.  

    Genomics: Epigenetics 

 Epigenetics, the study of genetic alterations due 
to indirect modifi cations of the DNA sequence, is 
gaining prominence as a mechanism to regulate 
male fertility. Since it is crucial for sperm to be 
correctly arranged and programmed, epigenetic 
modifi cations have the potential to evoke system- 
wide changes. For example, DNA-binding pro-
teins as well as DNA methylation are just two of 
the epigenetic variations that have the potential to 
alter genetic code without directly affecting the 
DNA sequence. In this context, the regulation of 
transcription and gene expression can be appro-
priately, or inappropriately, modifi ed. 

 The most well described epigenetic factors in 
the realm of male infertility has so far focused on 
protamines and packaging of the sperm genome 
[ 99 – 101 ]. Indeed, a critical component of sper-
matogenesis involves chromatin packaging dur-
ing which ~85 % of the histones are replaced 
with protamines [ 102 ]. Alterations in protamine 
[ 103 ] may thus result in improper post- 
translational processing and subsequently 
decreased sperm counts, motility, morphology 
and increased DNA fragmentation [ 100 ,  101 , 
 103 ]. Two types of human protamines (PRM), 
PRM-1 and PRM-2, have been identifi ed [ 103 ] 
with alterations in the timing or ratio of  expression 
resulting in arrested spermatogenesis and infertil-
ity [ 100 ,  101 ]. Indeed, men with asthenospermia 

have been shown to have lower levels of PRM-1 
and PRM-2 messenger RNA [ 104 ] with altered 
protamination inversely associated functionally 
and fertilization ability [ 105 ]. Histones that are 
not replaced by protamine during chromatin 
packaging are termed “retained histones” and 
have been found to contain both activating and 
silencing epigenetic infl uences making them 
ready for rapid gene activation or inhibition. 
DNA to histone binding is also affected by the 
methylation of genomic DNA with several genes, 
including IGF2 and MEST affected in oligozoo-
spermic men [ 106 ]. 

 Maternal or paternal imprinting is the result of 
DNA methylation that subsequently regulates 
embryonic gene expression. Methylation is 
another important source of epigenetic modifi ca-
tion. Occurring by the addition of a methyl (–CH 3 ) 
group to a cytosine to a CpG site within DNA, the 
ability to alter genetic profi les with DNA meth-
ylation may hold the key to epigenetic control of 
male infertility [ 107 ]. Indeed, aberrant patterns 
of methylation in differentially methylated 
regions (DMRs) of DNA have been found in men 
with moderate to severe oligospermia [ 108 ]. 
Abnormal germ-line epigenetic reprogramming 
was proposed as a possible mechanism affecting 
spermatogenesis [ 109 ]. Wide-ranging erasure of 
DNA methylation followed by sex-specifi c pat-
terns of de-novo DNA methylation with subse-
quent incomplete reprogramming of male germ 
cells was found to alter sperm DNA methylation; 
thus worsening spermatogenesis outcomes [ 109 ]. 
More recently, DNA methylation profi ling using 
a Methylation array identifi ed 471 CpG sites 
encompassing 287 genes that were differentially 
methylated between men with infertility and fer-
tile controls [ 110 ]. The fact that sperm DNA 
methylation profi les are consistent over time and 
highly reproducible [ 111 ] makes this an interest-
ing and promising avenue of future research.  

    Proteomics 

 The study of the human proteome lies in the 
interface between genes and their protein prod-
ucts. By examining the function of proteins in the 
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context of the expressed complement of the 
human genome, an indication of active cellular 
protein content can be ascertained. This is impor-
tant in the context that while distinct genes are 
expressed in a cell-dependent manner, protein 
expression can vary under different times, physi-
ological states and environmental conditions [ 2 ]. 
Alternative splicing of a gene transcript can also 
yield unique isoforms of a given gene [ 112 ]. 
Moreover, given that messenger RNA is not 
always translated to protein, proteomic analysis 
of specifi c products in exact disease states has the 
potential to provide accurate biomarkers; espe-
cially in the realm of male infertility. 

 Currently, semen analysis is the best tool phy-
sicians have to assess male fertility potential; 
however, many cases of male infertility remain 
undiagnosed. Proteomics has made rapid prog-
ress over the years and by understanding the 
types and amounts of proteins as well as their 
modifi cations (i.e., acetylaction, glycosylation), 
the potential for the fi eld are enormous. While it 
is challenging to sort through the vast amounts of 
data collected in proteomic analyses to select the 
handful of genes, several novel biomarkers have 
already been proposed. 

 In the context of male fertility, the most diffi -
cult challenges lay in the composition of the bio-
logical fl uid itself and the variability of the 
possible changes. Semen is made up of sperm 
and seminal plasma and contains products from 
multiple different organs including the prostate, 
seminal vesicles, and bulbourethral glands [ 113 ]. 
The fact that variations in semen occur season-
ally and with age makes analysis diffi cult. Post- 
ejaculation, variable proteins are activated during 
coagulation and liquefaction making the genera-
tion of a proteomic profi le distinct to men with 
NOA exceptionally challenging. 

 Research on protein products contained in the 
seminal plasma began early in the 1940s. 
Advancements in the fi eld eventually came fol-
lowing the identifi cation of a germ cell binding, 
Sertoli cell secreted protein, transferrin [ 114 ]. 
Proteolytic breakdown of seminal plasma pro-
teins was examined by two-dimensional (2D) 
electrophoresis followed by silver staining and 
found to be accelerated in oligospermic men 
compared to azoospermic and normospermic 

cohorts [ 115 ]. The development and use of 
mass- spectrometric techniques allowed more 
thorough investigations of complex body fl uids. 
Using this technology, in combination with 2D 
gel electrophoresis, a more detailed character-
ization of the proteins involved in male infertil-
ity was conducted [ 116 ]. Differences were 
identifi ed between men with Sertoli Cell Only 
(SCO) Syndrome and vasectomized men [ 116 ]. 
Further studies on a single individual using this 
technology found 923 unique proteins in seminal 
plasma and provided an accurate and in-depth 
inventory of proteins in this biological substance 
[ 117 ]. While only 10 % of the reported proteins 
were known as originating from the male repro-
ductive tract, they encompassed nearly all the 
proteins identifi ed by two previous studies [ 118 , 
 119 ]. Investigators then assessed the seminal 
proteins of fertile men, and found ~919–1,487 
unique proteins in each individual with 83 com-
mon in all fertile men [ 120 ]. Of these, human 
cationic microbial protein (hCAP18) was pres-
ent in the human epididymis and the seminal 
plasma while spindlin1 was also implicated 
given its localization to the tails of murine sperm 
and previously known involvement with sper-
matogenesis [ 120 ,  121 ]. 

 Batruch [ 122 ] expanded this work by examin-
ing the constituents of seminal plasma from con-
trol men compared to those men who had 
vasectomies. In post-vasectomy (PV) men, the 
testicular and epididymal secretions were physi-
cally blocked from reaching the ejaculate and as 
such, the investigators were able to assess pro-
teins originating from different areas of the repro-
ductive tract. These authors identifi ed 32 proteins 
unique to controls and 4 unique to PV patients 
[ 122 ]. From these, TEX101, the “testis expressed 
101” gene located at chromosome 19q13.31 was 
noted to be one of the leading biomarker candi-
dates. TEX101, a glycosylphosphatidylinositol 
(GPI)-anchored protein is essential for the pro-
duction of fertile mouse spermatozoa [ 123 ]. 
Indeed, via interaction with ADAM3 (A disinteg-
rin and metallopeptidase domain 3), a sperm 
membrane protein critical for both sperm migra-
tion into the oviduct [ 124 ] and sperm binding to 
the zona pellucida [ 125 ] TEX101 has the poten-
tial to be a regulator of male fertility. 
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 Further work from the same authors compared 
the proteome of NOA men [ 126 ] to their previ-
ously published results [ 122 ] fi nding several pro-
teins that were elevated (Control vs. NOA,  n  = 34; 
NOA vs. PV,  n  = 59) and others that were 
decreased (Control vs. NOA,  n  = 18; NOA vs. PV, 
 n  = 16). Given that several of these proteins were 
from the male reproductive tract and have previ-
ously been linked to fertility, it is tempting to 
speculate that many of these proteins play impor-
tant roles in male infertility. 

 Several other proteins that are of interest as 
potential biomarkers of male fertility include 
Heparin binding proteins (HBPs) and prolactin 
inducible protein (PIP). HBPs are glycosamino-
glycans that are potent enhances of sperm capaci-
tation in animals [ 127 ]. Purifi cation of seven 
HBPs from human seminal plasma identifi ed 
them as semenogelin 1 and 2 as well as PSA and 
zinc fi nger protein. PIP, a 17-kDa glycoprotein, is 
also increased in azoospermic men and, as an 
abundant seminal plasma protein, it also has a 
role in capacitation and acts to improve sperm 
motility [ 128 ]. 

 In summary, proteomic analysis of seminal 
plasma, while at its infancy, is currently expanding 
the scope of potential male infertility biomarkers. 
While much work still needs to be conducted, the 
premise of the research is exciting.     
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