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Renewed interest in transcranial electrical stimulation has

been accompanied by a general modernization of the tech-

nique including the use of computational models. This chap-

ter introduces the rationale behind modeling transcranial

direct current stimulation (tDCS) as well as the technical

development and limitations of models currently in use. This

chapter is intended to provide a broad introduction to both

clinical researchers and engineers interested in translational

work to develop and apply computational models of

customized tDCS. Transcranial electrical stimulation is a

promising tool in symptom management based on the grow-

ing evidence that delivery of current to specific brain regions

can promote desirable plastic changes [1, 2]. However,

stimulation should be applied using low intensity current in

a manner that is safe and well tolerated. In complement to

other brain stimulation approaches (Fig. 10.1), tDCS has

been gaining considerable interest because it is well

tolerated, and can be used as add-on therapy and has low

maintenance costs [3].

In contrast to pharmacotherapy, noninvasive electrother-

apy offers the potential for both anatomically specific brain

activation and complete temporal control. Temporal control

is achieved since electricity is delivered at the desired dose

instantly and there is no electrical “residue” as the generated

brain current disappears when stimulation is turned off.

Spatial control is based on from rational selection of elec-

trode number, shape, and position. As explained below,

using computational models, tDCS can be customized and

individualized to specific brain targets in ways not possible

with other interventions in order to optimize a particular

therapeutic or rehabilitative outcome. Specifically, the

“dose” of electrotherapy (see Peterchev et al. [4] for defini-

tion) is readily adjustable by determining the location of

electrodes (which determines spatial targeting) and selecting

the stimulation waveform (which determines the nature and

timing of neuromodulation). Indeed, a single programmable

electrotherapy device can be simply configured to provide a

diversity of dosages. Though this flexibly underpins the

utility of neuromodulation, the myriad of potential dosages

(stimulator settings and combinations of electrode

placements) makes the optimal choice very difficult to read-

ily ascertain. The essential issue in dose design is to relate

each externally controlled dose with the associated brain

regions targeted (and spared) by the resulting current

flow—and hence the desired clinical outcome. Computa-

tional forward models aim to provide precisely these

answers to the first part of this question (Fig. 10.2), and

thus need to be leveraged in the rational design, interpreta-

tion, and optimization of neuromodulation.

The precise pattern of current flow through the brain is

determined not only by the stimulation dose (e.g., the

positions of the electrodes) but also by the underlying ana-

tomy and tissue properties. In predicting brain current flow

using computational models, it is thus important to precisely

model both the stimulation itself and the relevant anatomy

upon which it is delivered on an individual basis. The latter

issue remains an area of ongoing technical development and

is critical to establishing the clinical utility of these models.

For example, cerebral spinal fluid (CSF) is highly conduc-

tive (a preferred “super highway” for current flow) such that

details of CSF architecture profoundly shape current flow

through adjacent brain regions (see later discussion).
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Fig. 10.1 Comparable stimulation techniques: Deep Brain Stimula-

tion, Motor Cortex Stimulation, Transcranial Magnetic Stimulation,

and Spinal Cord Stimulation (top row); classic transcranial Direct

Current Stimulation (tDCS) via sponge pads, optimized High

Definition-tDCS (HD-tDCS), and 4 � 1 HD-tDCS (bottom row).
Transcranial Direct Current Stimulation is an increasingly popular

investigational form of brain stimulation, in part, due to its low cost,

portability, usability, and safety. However, there are still many of

unanswered questions. The number of potential stimulation doses is

practically limitless. Stimulation can be varied by simply changing the

electric current waveform and electrode shape, size, and position.

These variations can thus be analyzed through computational modeling

studies that have resulted in montages such as HD-tDCS and 4 � 1

HD-tDCS

Fig. 10.2 Role of computational models in rational electrotherapy:

(left) Neuromodulation is a promising therapeutic modality as it affects

the brain in a way not possible with other techniques with a high degree

of individualized optimization. The goal of computational models is to

assist clinicians in leveraging the power and flexibility of

neuromodulation (right). Computational forward models are used to

predict brain current flow during transcranial stimulation to guide

clinical practice. As with pharmacotherapy, electrotherapy dose is

controlled by the operator and leads a complex pattern of internal

current flow that is described by the model. In this way, clinicians

can apply computational models to determine which dose will activate

(or avoid) brain regions of interest

114 D. Truong et al.



Especially relevant for rehabilitative applications is the

recognition that individual anatomical idiosyncrasies can

result in significant distortions in current flow. This is par-

ticularly apparent when skull defects and brain lesions

occur. The final section of this review highlights the nature

and degree of distortions in brain current flow produced by

defects and lesions, as well as dose considerations for sus-

ceptible populations such as children.

Methods and Protocols in the Generation
of Computational Forward Models of tDCS

During tDCS, current is generated in the brain. Because

different electrode montages result in distinct brain current

flow, researchers and clinicians can adjust the montage to

target or avoid specific brain regions in an application spe-

cific manner. Though tDCS montage design often follows

basic rules-of-thumb (e.g., increased/decreased excitability

under the anode/cathode electrode), computational forward

models of brain current flow provide more accurate insight

into detailed current flow patterns and in some cases, can

even challenge simplified electrode-placement assumptions

[5–8]. For example, clinical studies are often designed by

placing the anode electrode directly over the target region

desired to be excited, while the cathode electrode is placed

over a far removed region from the target to avoid unwanted

reverse effects. This region could be the contralateral hemi-

sphere or in some cases even extra cephalic locations like the

neck, shoulder or the arm. Researchers have used smaller

stimulation electrode sizes and bigger reference electrode

sizes to offset the focality limitations of tDCS. With the

increased recognized value of computational forward

models in informing tDCS montage design and interpreta-

tion of results, there have been recent advances in modeling

tools and a greater proliferation of publications [9–22].

Initial models of transcranial current flow assumed

simplified geometries such as concentric spheres that could

be solved analytically as well as numerically. Miranda et al.

[15] was the first numerical modeling effort specifically

looking at tDCS montages and intensities. In another spheri-

cal head paper, focality of cortical electrical fields was

compared across various small electrode configurations and

configurations proposed to achieve targeted modulation

[10]. Wagner et al. [22] was the first computer-aided design

(CAD) rendered head model where current density

distributions were analyzed for various montages including

healthy versus cortical stroke conditions. The more recent

efforts have been mostly MRI derived. Oostendorp et al. [16]

was the first to consider anisotropy in the skull and the white

matter. Datta et al. [11] built the first high-resolution head

model with gyri/sulci specificity. Using diffusion tensor

imaging (DTI), Suh et al. [20] concluded that skull

anisotropy causes a large shunting effect and may shift the

stimulated areas. Fine resolution of gyri/sulci leads to cur-

rent “hotspots” in the sulci, thereby reinforcing the need for

high-resolution modeling [19]. Sadleir et al. [18] compared

modeling predictions of frontal tDCS montages to clinical

outcomes. Datta et al. [9] studied the effect of tDCS

montages on TBI and skull defects. Parazzini et al. [17]

was the first to analyze current flow patterns across subcorti-

cal structures. Dmochowski et al. [23] showed how a multi-

electrode stimulation can be optimized for focality and

intensity at the target.

Recent efforts have focused to build patient-specific

models and compare modeling predictions to experimental

outcomes. In considering new electrode montages, and espe-

cially in potentially vulnerable populations (e.g., in patients

with skull damage or in children), forward models are the

main tool used to relate the externally controllable dose

parameters (e.g., electrode number, position, size, shape,

current) with resulting brain current flow. While the specific

software applications can vary across groups, in general, the

approach and workflow for model generation follow a simi-

lar pattern (Fig. 10.3).

The steps for generating high-resolution (anatomically

specific) forward models of noninvasive neuromodulation

are adapted from extensive prior work on computational

modeling. These involve: (1) Demarcation of individual

tissue types (masks) from high-resolution anatomical data

(e.g., magnetic resonance imaging slices obtained at 1 mm

slice thickness) using a combination of automated and man-

ual segmentation tools. Specifically, from the perspective of

stimulating current flow, it is necessary to distinguish tissues

by their resistivity. A majority of effort in the development

and implementation of models has involved this step (see

also next section) [18]. The number and precision of the

individual masks obtained is pivotal for the generation of

accurate 3D models in order to capture critical anatomical

details that may influence current flow. (2) Modeling of the

exact physical properties of the electrodes (e.g., shape and

size) and precise placement within the segmented image

data (i.e., along the skin mask outer surface). (3) Generation

of accurate meshes (with a high-quality factor) from the

tissue/electrode masks whilst preserving resolution of sub-

ject anatomical data. The generation of meshes is a process

where each mask is divided into small contiguous

“elements” which allow the current flow to then be numeri-

cally computed—hence the term “Finite Element Method”
stimulations. (4) Resulting volumetric meshes are then

imported into a commercial finite element (FE) solver. (5)

At this step, resistivity is assigned to each mask (every

element in each mask) and the boundary conditions are

imposed including the current applied to the electrodes. (6)

The standard Laplacian equation is solved using the appro-

priate numerical solver and tolerance settings. (7) Data is
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plotted as induced cortical electric field or current density

maps (Fig. 10.3).

Though each of the above steps is required for high-

resolution modeling, there remains technical expertise and

hence variation in protocols across groups and publications

[22]. These variations are relevant to clinical practice only in

the sense that they change predictions in current flow that

meaningfully effect dose decisions. The sources and impact

of these variations is addressed in the next section.

Only a few studies have attempted to more directly link

clinical outcomes and model predictions—and thus validate

model utility. Clinical evaluation was combined with model

predictions to investigate the effects of different montages in

clinical conditions such as fibromyalgia [13]. Patient-

specific models have been used to retrospectively analyze

the therapeutic success of a given experimental stimulation

montage [7] and compare model predictions with patterns of

activation revealed by functional magnetic resonance imag-

ing (fMRI) [12]. Postmortem “current flow imaging” was

also used to validate general model prediction [24]. A

focalized form of tDCS called 4 � 1 high-definition tDCS

was developed through computational models and then

validated in a clinical neurophysiology trial [25]. These

example applications open the door for potentially

customizing tDCS on a subject to subject basis within

the clinical setting [26]. Table 10.1 summarizes the

various tDCS montages explored in computational modeling

studies.

For clinicians interested in using computational forward

models to inform study design or interpretation several

options are available. (1) A collaboration with a modeling

group [21] or a company can allow for customized explora-

tion of montage options; (2) referencing existing published

reports or databases (Table 10.1) for comparable montages

(with careful consideration of the role of individual variation

and other caveats presented in the next section); (3) using a

novel process where a desired brain region can be selected

and the optimized electrode montage is proposed within a

single step has been developed [23]; (4) a graphical user

interface (GUI)-based program to stimulate arbitrary elec-

trode montages in a spherical model is now available (www.

neuralengr.com/spheres). This last solution illustrates an

important trend: even as increasingly complex and resource

expensive modeling tools are developed, parallel efforts to

simplify and automate (high-throughput) model workflow

are needed to facilitate clinical translation. If tDCS

continues to emerge as an effective tool in clinical treatment

and cognitive neuroscience, and concurrent modeling stud-

ies emphasize the need for rational (and in cases

individualized) dose decisions, then it will become incum-

bent for tDCS researchers to understand the applications

(and limitations) of computational forward models [27].

Fig. 10.3 Imaging and computational work-flow for the generation of

high-resolution individualized models: Though the specific processes

and software packages will vary across technical groups and

applications, in each case high-resolution modeling initiated with pre-

cise anatomical scans that allow demarcation of key tissues. Tissues

with distinct resistivity are used to form “masks.” These masks along

with the representation of the physical electrodes are “meshed” to allow

FEM calculations. The boundary conditions (generally simply

reflecting how the electrodes are energized) and the governing

equations (related to Ohms law) are well established. The reproduction

of the stimulation dose and the underlying anatomy thus allow for the

prediction of resulting brain current. These current flow patterns are

represented in false-color map and analyzed through various post-

processing tools
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Table 10.1 Synopsis of numerical tDCS computer modelsa

Study Masks Electrode montage Additional methods

Concentric sphere

Miranda et al. (2006)

[15]

4 4 montages

Datta et al. (2008) [10] 4 6 montages

Dmochowski et al.

(2012) [23]

Neuralengr.com/

spheres

4 Arbitrary, user specific, optimized montages

CAD rendered

Wagner (2007) [22] 5 Healthy and stroke models with varied montages

MRI derived

Oostendorp et al.

(2008) [16]

5 C3–SO montage Anisotropic conductivities for skull and white matter.

Model derived from Wolters et al. (2006) [49]

Datta et al. (2009b)

[11]

4 C3–SO and HD High-resolution with gyrisulci topography

Suh et al. (2009) [8] 5 C3–SO montage using point source stimulation

electrodes

Anisotropic conductivity for white matter

Datta et al. (2009b)

[10]

4 Tissue temperature increases of C3–SO montage and

HD montage

Sadleir [10, 18] 11 F3–SO and F4–SO montage and comparison to reported

clinical outcomes in literature

Datta et al. (2010) [9] 4 Effect of skull defects and skull plates for C3–SO and

01–SO montages

Bikson et al. (2010)

[5]

7 C3–SO and C3-contralateral montages Effect of “return electrode” position and size

Salvador et al. (2010)

[19]

5 C3–SO montage High-resolution gyrisulci model

Parazzini et al. (2011)

[17]

26

unique

tissue

types

Analysis of current flow through cortical, subcortical,

and brain stem regions for C3–SO montage

Model derived from virtual family open source

database

Mendonca et al.

(2011) [13]

8 C3-extracephalic, SO-extracephalic and C3–SO

montages

Correlation of clinical effects in a fibromyalgia study

with model predictions

Halko et al. (2011)

[12]

7 Oz–Cz montage Patient-specific visual stroke model of a hemianopia

patient undergoing tDCS. Correlation of high-

resolution current flow model

Datta et al. (2011) [7] 8 Retrospective analysis comparing experimental

outcome with model predictions. LFC-RS, LFC-

contralateral mastoid, LFC-SO, RFC-LS

Patient-specific left hemisphere stroke model of a

tDCS responder.

DaSilva et al. (2012)

[6]

15 C3–SO montage analysis of current flow through

subcortical structures

High-resolution individualized model

Turkeltaub et al.

(2011) [21]

8 Analysis of left pTC and right pTC montage in dyslexia

study

Bonsai—model

solution analyzer

6–8 Healthy and stroke model with varied montages Online database of solved patient-specific head

models. Overlaid views of 2D MRI scans and model

solutions

Dmochowski et al.

(2011) [23]

6 Healthy Head models with need-specific montages Two distinct selections, focality based or intensity

based

Wagner et al. (2011)

[50]

3 Conventional tDCS montages Inclusion of multicompartment/tissue layer

anisotropy

Minhas et al. (2012)

[48]

2 Conventional tDCS montages Pediatric brain modeling

aThis table summarizes tDCS forward head models using FEM techniques. Head models have progressed from being spherical based to being MRI

derived. The most recent ones have employed patient-specific models. The second, third, and fourth columns list number of tissue types, the

montage used, and particular model specifics, respectively

C3, C4, F3, F4, O1, Oz, Cz correspond to 10/20 EEG system

LFC left frontal cortex, LS left shoulder, pTC posterior temporal cortex, RFC right frontal cortex, RS right shoulder, SO contralateral supra-orbital

10 A Role of Computational Modeling in Customization of Transcranial Direct Current. . . 117



Pitfalls and Challenges in the Application
and Interpretation of Computational Model
Predictions

Computational models of tDCS range in complexity from

concentric sphere models to high-resolution models based

on individuals MRIs (as described above). The appropriate

level of modeling detail depends on the clinical question

being asked, as well as the available computational

resources. Whereas simple geometries (e.g., spheres) may

be solved analytically [28], realistic geometries employ

numerical solvers, namely, Finite Element Methods

(FEM). Regardless of complexity, all forward models share

the goal of correctly predicting brain current flow during

transcranial stimulation to guide clinical therapeutic deliv-

ery. Special effort has been recently directed towards

increasing the precision of tDCS models. However, it is

important to note that increased model complexity does not

necessarily equate with greater accuracy or clinical value.

To meaningfully guide clinical utility, attempts to

enhance model precision must rationally balance detail

(i.e., complexity) and accuracy. (1) Beginning with high-

resolution anatomical scans, the entire model workflow

should preserve precision. Any human head model is limited

by the precision and accuracy of tissue segmentation (i.e.,

“masks”) and of the assigned conductivity values. One hall-

mark of precision is that the cortical surface used in the final

FEM solver should capture realistic sulci and gyri anatomy.

(2) Simultaneously, a priori knowledge of tissue anatomy

and factors known to influence current flow should be

applied to further refine segmentation. Particularly critical

are discontinuities not present in nature that result from

limited scan resolution; notably both unnatural perforations

in planar tissues (e.g., ventricular architecture,

discontinuities in CSF where brain contacts skull,

misrepresented skull fissures,) and microstructures (e.g.,

incomplete or voxelized vessels) can produce significant

deviations in predicted current flow. Moreover, because of

the sensitivity of current flow to any conductivity boundary,

increasingly detailed segmentation (e.g., globe of the eye

and related structures, glands, and deeper midbrain

structures) without reliable reported human conductivity

values in literature (especially at static frequency) may also

lead to errors. It is worth noting that the respective contribu-

tion of the automated/manual interventions also depends on:

(a) sophistication of the particular database or automated

algorithm employed since they are usually not optimized

for forward transcranial modeling [7] and (b) the need for

identification of anomalies in suspect populations like skull

defects, lesions, shunts, etc. Thus, addition of complexity

without proper parameterization can evidently decrease

prediction accuracy. An improper balance between these

factors can introduce distortions in predicted brain current

flow.

Divergent modeling methods illustrate existing outstand-

ing issues including: (1) detail in physically representing the

stimulation electrodes and leads, including shape and mate-

rial [8], and energy source boundary conditions; (2)

differences between conductivity values derived from static

resistivity measures and those extrapolated from 10 Hz data;

(3) sufficient caudal head volume representation (such that

the caudal boundary condition does not affect relevant

model prediction), including potential use of synthetic

volumes [7, 13]; (4) optimal imaging modalities/sequences

to differentiate amongst tissue types; (5) appropriate

incorporation of anisotropy (from DTI); (6) suitability of

existing image segmentation algorithms (generally devel-

oped for other applications) [29]; (7) the degree and nature

of manual correction; (8) the adequacy of the numerical

solver (especially when making detailed predictions at tissue

boundaries); (9) detail in segmenting true lesion borders [7]

versus idealized defects; and (10) the need for parametric

and interindividual analysis (see below). The optimization of

the above issues remains open questions and inevitably

reflects available resources (e.g., imaging, computational,

anatomical expertise) and the specific clinical question

addressed in each modeling effort. Even as computational

and engineering groups continue developing more modeling

sophistication, clinicians must be aware of the limitations in

any modeling approach and the inevitability of technical

methodology effecting the predictions made.

Having mentioned the importance of balancing increased

complexity with clinical access to modeling, it is also impor-

tant to emphasize a difference between the “value” of adding
precision (complexity) as it is evaluated in engineering

papers versus clinical translation. Increasingly detailed

computational approaches have been proposed in recent

years of varying anatomical and physiological details [16,

30, 17]. At the same time, computational models indicate

subject specific variability in susceptibility to the same dose

[26, 31, 32], indicating the value of individualized modeling,

or at least modeling across a set of archetypes. Real clinical

translational utility must therefore balance the value of

increased sophistication with the cost associated with clini-

cal scanning, computational time, and human resources/

intervention (e.g., manual correction/pre and post-processing

etc.). Thus the question is not if “different models will yield

different predictions” (as must be posed in an engineering

paper) but rather does increased complexity change model

predictions in a way that is clinically meaningful—will

complexity influence clinical decisions in study design.

While this is a complex and application specific question, a

first step toward systematizing value, across a myriad of
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groups and efforts, is to develop a metric of change versus a

simpler approach, and then applying a threshold based on

perceived clinical value and added cost versus the simpler

approach.

A priori, it is assumed that added detail/complexity will

enhance model precision and, if done rationally, model

accuracy [33]. Though an engineering group can devote

extended resources and time to a “case” modeling study,

the myriad of potential electrode combinations (dose) and

variation across normal head [26] and pathological heads,

means that in clinical trial design the particular models will

likely now be solved (e.g., 4 � 1 over FP3 in a female head).

Moreover, while “different models will yield different”
predictions; practical dose decision is based on clinical

study specific criterion “a meaningful clinical difference.”
Thus, two clinical applications of modeling are considered

(1) Deciding across montages—namely, which montage is

expected to achieve the optimal clinical outcomes in a given

subject or on average across subjects; (2) Deciding on dose

variation across subjects—namely, if and how to vary dose

based on subject specific anatomy. It is further necessary to

consider if the clinician is concerned with optimizing (a)

intensity at the target (maximum current at the target regard-

less of overall brain current flow) or/and (b) focality at the

target (intensity at the target relative to other brain regions);

consideration of intensity of focality may lead to fundamen-

tally different “best” dose [23]. In the first application, the

clinician will compare different montages for their intensity

and/or targeting of a brain region. Therefore, additional

complexity and detail is only clinical meaningful if it results

in a different selection of optimal montage based on either

intensity or focality criterion.

Assuming accurate and precise representation of all tissue

compartments (anatomy, resistivity, anisotropy) relevant to

brain current flow, it is broadly assumed that using modern

numerical solvers that the resulting prediction is indepen-

dent of the numerical technique used. Our own experience

across various commercial solvers confirms this implicit

assumption when meshes are of sufficient detail—precise

description in methods (use of publically available

programs) and representation of resulting mesh density and

quality (in figures or methods) as well as tests using various

solvers provides explicit control for errors generated by the

computation itself.

Literature regarding forward modeling—or more broadly

the dissemination of modeling analysis to the clinical

hands—introduces still further issues in regards to (1) inter-

pretability, reproducibility, and accuracy (tissue masks) and

(2) graphical representation of regions of influence (degree

of “activation”). As there is no standard protocol for tissue

imaging or segmentation, diversity in the nature of resulting

tissue masks will invariably influence predicted current flow.

As such, it is valuable to illustrate each 3D tissue mask in

publication methods and/or classified serial sections. In

regards to representation of relative activation, studies

employ either maps of current density (unit of A/m2) or

electric field (unit of V/m). Because the two are related

linearly by local tissue resistivity, when plotting activation

in a region with uniform resistivity (for example the cortical

surface), the spatial profile is identical. When plotting acti-

vation across tissues (e.g., coronal section), current density

may be advantageous to illustrate overall brain current flow.

However, the electric field in the brain is directly related to

neuronal activation (e.g., for varied resistivity, the electric

field, but not current density, provides sufficient information

to predict activation). Despite best efforts, figure preparation

invariably restricts tissue mask perspectives and comprehen-

sive display of volumetric current flow, which can be

supplemented with online data publication (http://www.

neuralengr.com/bonsai).

When interpreting simulation predictions, it is important

to recognize that the intensity of current flow in any specific

brain region does not translate in any simple (linear) manner

to the degree of brain activation or modulation (even when

considering current direction). Moreover, recent neurophys-

iological studies indicate changes in “excitability” may not

be monotonic with stimulation [34]. For example increasing

stimulation amplitude or duration can invert the direction of

modulation, as can the level of neuronal background activity

[35]. However, to a first approximation, it seems reasonable

to predict that regions with more current flow are more likely

to be “effected” by stimulation while regions with little or no

current flow will be spared the direct effects of stimulation.

As the first step to understand mechanism of action of tDCS,

a relationship between model predicted regional current flow

and changes in functional activation was recently

demonstrated [12]. The “quasi-uniform” assumption

considers that if the electric field (current density) is uniform

on the scale of a region/neuron of interest, then “excitability”
may be modulated with local electric field intensity [36] (see

discussion in [10] and [37]). Though efforts to develop

suitable biophysical detailed models considering myriad of

neurons with distinct positions and morphologies or “contin-
uum” approximations [38] of modulation are pending, the

current state-of-the-art requires (implicit) application of the

“quasi-uniform” assumption.

Much of the theoretical and technical foundations for

modeling brain stimulation were established through

modeling studies on peripheral nerve stimulation (“Func-
tional Electrical Stimulation,” FES) and then Spinal Cord

Stimulation (SCS) and Deep Brain Stimulation (DBS)

(reviewed in[39–41]). In light of the challenges to tDCS

modeling cited above, we note that FES and DBS use

electrodes implanted in the body such that relatively small

volume of brain is needed to be modeled, and with none of

the complication associated with precisely representing
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gross anatomy (e.g., skull, fat, or CSF). From the perspective

of computational burden, the volume, number of masks, and

mask complexity results in tDCS models with >5 million

elements, compared to<200,000 elements for FES and DBS

models. In addition, FES and DBS are suprathreshold

allowing modeling studies to represent simply demarcated

“regions of influence,” inside which action potentials

are triggered. tDCS affects large areas of superficial

and deep brain structures (many types of cells and processes)

and is subthreshold interacting with ongoing activity

rather than driving action potentials, making it

challenging to simply delineate “black-and-white” regions

of influence.

Forward modeling studies and analysis are often

published as “case reports” with predictions only on a single
head [13, 17, 19, 21]. The suitability of single subject analy-

sis reflects available (limited) resources and the clinical

question being addressed. For a given electrode montage

and stimulation dose, the sensitivity of global brain current

to normal variation in anatomy (including across ages, gen-

der) is unknown; however high-resolution modeling suggest

gyri-specific dispersion of current flow, which could poten-

tially account for individual variability. More generally,

gross differences in tissue dimensions, notably skull thick-

ness and CSF architecture, are expected to influence current

flow. In some cases, modeling efforts specifically address

the role of individual anatomical pathology, such as skull

defects [9] or brain lesions [7]; it is precisely because these

studies have shown the importance of specific defect/lesion

details, that findings cannot be arbitrarily generalized. This

in turn stresses the importance of individualized modeling as

illustrated in the next section.

Though this section focused on the technical features of

modeling, there is a broader concern in promoting effective

collaboration between engineers and clinicians. For analogy,

clinicians are generally aware of the challenges and pitfalls

in post-processing and feature selection of fMRI data—and

indeed, are thus intimately involved in data analysis rather

than blindly relying on a technician. For computational

“forward” models of neuromodulation, where results may

inform study design and patient treatment, it is evidently as

important to consider the uses and technical limitations of

modeling approaches—and vigilance and skepticism on the

part of clinicians will only enhance model rigor. Critically,

for this reason, clinician/investigator experience and “judg-
ment” supersedes all model predictions, even as these

models form one important tool in dose design.

Example Results of Computational Analysis
in Susceptible Populations

Case 1: Skull Defects

There is interest in the application of tDCS during rehabili-

tation of patients with brain lesions or skull defects (i.e., with

or without skull plates); for example subjects with traumatic

brain injury (TBI) or patients undergoing neurosurgery. As

some of the neurological sequelae are presumably

consequences of disrupted cortical activity following the

traumatic event, the use of tDCS to deliver current to both

damaged and compensatory regions in such circumstances

can be a useful tool to reactivate and restore activity in

essential neural networks associated with cognitive or

motor processing. In addition, because of the reported

antiseizure effects of tDCS [42], this technique might be

useful for patients with refractory epilepsy who underwent

surgery and have skull plates or decompressive craniectomy

for trauma and cerebrovascular disease.

Despite rational incentives for investigation of tDCS in

TBI or patients with other major neurological deficits and

skull defects, one perceived limitation for the use of tDCS in

these patients is the resulting modification of current flow by

the skull defects and presence of surgical skull plates.

Modeling studies can provide insight into how skull defects

and skull plates would affect current flow through the brain

and how to modify tDCS dose and/or electrode locations in

such cases (Fig. 10.4). For example, a skull defect (craniot-

omy) that is filled with relatively highly conductive fluid or

tissue represents a “shunt” pathway for current entering the

brain but in a manner highly dependent on defect position

relative to electrode montage. In such cases, the underlying

cortex would then be exposed to a higher intensity of

focused current flow. This in turn might be either beneficial

in targeting the underlying brain region or hazardous if the

increased current levels resulted in undesired neurophy-

siologic or pathological changes. Our modeling results con-

firm the notion that skull defects and skull plates can change

the distribution of the current flow induced in cortical areas

by tDCS. However, the details of current modulation depend

entirely on the combination of electrode configuration and

nature of the defect/plate, thus indicating the importance of

individual analysis. Based on model predictions, application

of tDCS without accounting for skull defects can lead to

suboptimal and undesired brain current.
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Case 2: Brain Lesions (Stroke)

tDCS has been shown to modulate cognitive, linguistic, and

motor performance in both healthy and neurologically

impaired individuals with results supporting the feasibility

of leveraging interactions between stimulation-induced

neuromodulation and task execution [3]. As emphasized

throughout this review, electrode montage (i.e., the position

and size of electrodes) determines the resulting brain current

flow and, as a result, neurophysiological effects. The ability

to customize tDCS treatment through electrode montage

provides clinical flexibility and the potential to individualize

therapies. However, while numerous reports have been

published in recent years demonstrating the effects of

tDCS upon task performance, there remain fundamental

questions about the optimal design of electrode configura-

tion, especially around lesioned tissue [43]. Several

modeling studies have predicted a profound influence of

stroke related brain lesions on resulting brain current pro-

duced by tDCS [7, 12, 22].

Figure 10.5 illustrates an example of predicted current

flow during tDCS from two subjects with a lesion due to

stroke located with motor-frontal cortex (a) and occipital

cortex (b) (adapted from [7] and [12]). Computational

modeling suggests that current flow pattern during tDCS

may be significantly altered by the presence of the lesion

as compared to intact neurological tissue. Importantly, sig-

nificant changes in the resulting cortical electric fields were

observed not just around peri-lesional regions but also

within wider cortical regions beyond the location of the

electrodes. In a sense, the lesion itself acts as a “virtual”
electrode modulating the overall current flow pattern [7].

Case 3: Pediatric Populations

There is increasing interest in the use of neuromodulation in

pediatric populations for a range of indications including

rehabilitation, cognitive performance, and epilepsy treat-

ment [44–46]. However, a rational protocol/guideline for

the use of tDCS on children has not been formally

established. Previous modeling studies have shown that cur-

rent flow behavior is dependent on both the tDCS dose

(montage and current intensity) and the underlying brain

anatomy. Because of anatomical differences (skull thick-

ness, CSF volume, and gray/white matter volume) between

a growing child and an adult it is expected that the resulting

brain current intensity in a child would be different as

compared to that in an adult. Evidently, it would not be

prudent to adjust stimulation dose for children through an

arbitrary rule of thumb (e.g., reduce electrode size and cur-

rent intensity by the ratio of head diameter). Again, compu-

tational forward models provide direct insight into the

relation between external tDCS dose and resulting brain

current and thus can inform dose design in children.

Figure 10.6 shows an example of a model of tDCS in a

12-year old compared to that of a standard adult model.

Both the peak and spatial distribution of current in the

Fig. 10.4 Computational model of current flow in subjects with skull

defects/plates. A defect in skull tissue which is the most resistive tissue

in the head would hypothetically effect current flow in the underlying

brain regions. Furthermore, the exact location of the defect (under/

between the stimulation pads) in combination with the “material”
filling up the defect with the stimulation montage employed will

influence induced current flow. Sample segmentation masks are

shown on the left. A small defect under the anode pad (top right)
leads to current flow in the cortex restricted to directly under the defect

(avoiding the intermediate regions). A similar sized defect placed

between the pads (bottom right) does not significantly alter current

flow patterns in comparison with a healthy head with no defect.

(Adapted from Datta et al. [9])
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brain is altered compared to the typical adult case. In fact, for

this particular case, the peak electric fields, at a given inten-

sity, were nearly double in the 12-year-old as compared to

the adult. Though questions remain about the impact of gross

anatomical differences in altering generated brain current

flow during neuromodulation, computational “forward”
models provide direct insight into this question, and may

ultimately be used to rationally adjust stimulation dose.

Case 4: Obesity

The wide range of uses for tDCS makes it applicable to a

diverse population that can include obese subjects.

Montages that have been evaluated for pain, depression, or

appetite suppression have been modeled in average adults,

but unique challenges exist in the obese model (Fig. 10.7).

The additional subcutaneous fat present in the obese model

warranted an additional layer of complexity beyond the

commonly used five tissue model (skin, skull, CSF, gray

matter, white matter). Including fat in the model of a

super-obese subject led to an increase in cortical electric

field magnitude of approximately 60 % compared to the

model without fat (Fig. 10.7, a.1–a.3). A shift was also

seen in the spatial distribution of the cortical electric field,

most noticeable on the orbitofrontal cortex.

To gain an intuition for how subcutaneous fat influences

cortical electric field and current density, additional models

Fig. 10.5 Computational models

predict current flow during tDCS

in subjects with lesions. Brain

lesions, as occur during stroke,

are considered to be largely

cannibalized and replaced by

CSF, which is significantly more

conductive than brain. For this

reason, brain current flow during

tDCS is expected to be altered. (a)
Patient-specific left hemisphere

stroke model. Two stimulation

montages are illustrated, a

conventional sponge montage

(top right) and a high-definition

montage (bottom right). (b)
Patient-specific visual stroke

model. Segmentation masks (left)
and induced current flow using

the experimental montage (right).
(Adapted from Datta et al. [7] and

Halko et al. [12])
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examined a range of conductivity values from the conduc-

tivity of skull (0.010 S/m, Fig. 10.7 b.1) to the conductivity

of skin (0.465 S/m, Fig. 10.7 b.8). Coincidentally, the con-

ductivity commonly used for fat (0.025 S/m, Fig. 10.7 b.4)

was in the range that causes a peak increase in cortical

electric field magnitude. It was postulated that more current

was blocked by subcutaneous fat at an extremely low

conductivity (b.1), while more current was redirected at an

extremely high conductivity. This, in effect, led to an “opti-
mum” range of influence where the conductivity of fat is

believed to reside.

Ultimately, the need to precisely parameterize models

rests hand-in-hand with the intended use of the model.

From an engineering perspective, the increased complexity

Fig. 10.6 Individualized head model of a two adolescents as compared to an adult: Induced current flow for motor cortex tDCS at different

intensities 1 mA of stimulation in the adolescent is comparable to 2 mA of stimulation in an adult

Fig. 10.7 Predicted cortical electric field during inferior prefrontal

cortex stimulation via 500 � 700 pads. Two conditions, homogenous skin

(a.1) and heterogeneous skin (a.2), are contrasted on the same scale

(0.364 V/m/mA peak). The homogeneous skin condition is displayed

(a.3) at a lowered scale (0.228 V/m/mA peak) to compare the spatial

distribution to the heterogeneous condition (a.2). The effect due to a

range of varying fat conductivities (b.1–8) is compared on a fixed scale

(0.364 V/m/mA peak). The conductivity of fat (0.025 S/m) is within an

“optimum” range of influence that causes an increase in peak cortical

electric field when included (Adapted from [47])
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of this model caused a noteworthy change within the subject

modeled, but this change would not be clinically noteworthy

if stimulation dose does not change from subject to subject.

This clinical analysis requires an additional comparison

between subjects and consideration of the wide variation

already inherent in “typical” subjects [26]. What can be

concluded, however, is that a comparison between models

would require consistent parameterization of subcutaneous

fat.

Case 5: Skin Properties

Computational models can vary in detail to accommodate

various amounts of layers and other features such as blood

vessels or sweat pores. Skin in particular can be rendered in

varying levels of detail due its natural division into different

layers, although even personalized models often simply

make it a single layer.

In the model used to create Fig. 10.8, skin is portrayed as

two layers one constituting the dermis and the other the

epidermis and there are five layers in total. The model was

solved for Electric-Field Peak for two separate

characteristics, the ratio between tissue resistivity (The

ratios between the various tissues being kept fixed, but

scaled to see how the scale affected Electric Field), and for

the scale of the area of the electrode sponges (The electrodes

keeping their dimensional ratios but having their surface

area scaled to determine the relationship between surface

area and Electric field). Both models showed visible trends

which are displayed in the graphs of Fig. 10.8 respectively.

While MRI-derived models are the standard for subject

specific modeling, generalized models can be used to deduce

trends applicable across populations. This is especially ben-

eficial in cases where personalized cranial models are not

necessary or not available. These simplified models allow

for the observation and prediction of data in more complex

personalized models.

These cases demonstrate the potentially profound influ-

ence of lesions and skull defects on resulting current flow, as

well as the need to customize tDCS montages to gross

individual head dimensions. If tDCS continues to become a

viable option for treatment in cases such as chronic stroke,

the consideration of tDCS-induced current flow through the

brain is of fundamental importance for the identification of

candidates, optimization of electrotherapies for specific

brain targets, and interpretation of patient-specific results.

Thus, the ability and value of individualized tDCS therapy

must be leveraged. Whereas, tDCS electrode montages are

commonly designed using “gross” intuitive general rules

(eg, anode electrode positioned “over” the target region),

the value of applying predictive modeling as one tool in

the rational design of safe and effective electrotherapies is

becoming increasingly recognized.

Electrode montage (i.e., the position and size of

electrodes) determines the resulting brain current flow and,

as a result, neurophysiological effects. The ability to cus-

tomize tDCS treatment through electrode montage provides

clinical flexibility and the potential to individualize therapies

[5, 7, 13]. However, while numerous reports have been

published in recent years demonstrating the effects of

tDCS upon task performance, there remain fundamental

questions about the optimal design of electrode

configurations with computational “forward” models

playing a pivotal role.

Conclusion

While numerous published reports have demonstrated the

beneficial effects of tDCS upon task performance, funda-

mental questions remain regarding the optimal electrode
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configuration on the scalp. Moreover, it is expected that

individual anatomical differences in the extreme case

manifest as skull defects and lesioned brain tissue which

consequently will influence current flow and should

therefore be considered (and perhaps leveraged) in the

optimization of neuromodulation therapies. Heterogene-

ity in clinical responses may result from many sources,

but the role of altered bran current flow due to both

normal and pathological is tractable using computational

“forward” models, which can then be leveraged to indi-

vidualize therapy. Increasing emphasis on high-

resolution (subject specific) modeling, provides motiva-

tion for individual analysis leading to optimized and

customized therapy.
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