
Chapter 3
Stochastic Effects in Quorum Sensing

Marc Weber and Javier Buceta

3.1 Introduction

All of us have surely played the “broken telephone.” In that game a group of people
arrange in a circle and one participant passes a message to one of his/her neighbors.
The message is whispered/mumbled, such that it is difficult to understand, and
passed progressively along the participants until it reaches the original messenger.
The funny part of the game consists in comparing the original message and the
one that finally arrives (normally they have nothing to do with each other!).
The “broken telephone” nicely illustrates how noise interferes with the signal
in communication processes. Since quorum sensing (QS) is nothing but that, a
communication mechanism, one may wonder how noise interferes with it, how
bacteria cope with fluctuations, and how to provide a modeling framework for
addressing these questions.

Yet, what do we mean by noise? Over the past decade a number of studies
have shown that the level and activity of the species involved in gene regulatory
circuits fluctuate [1]. While extrinsic factors are in some cases the source of these
fluctuations (e.g., light fluctuations in circadian clocks [2]), in most situations they
are mainly due to the inherent randomness of biochemical reactions when the
number of molecules is very low [3]. Under these conditions, the value of the
mean and the variance are of the same order and consequently the deterministic
description fails. Notably, biochemical noise, either intrinsic or extrinsic, is not
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necessarily a nuisance but a biological component that is essential and has a
positive functional role in many situations [4]: for example, improving cellular
regulation [5].

In the particular case of QS, the detection of the freely diffusing signaling
molecule, the autoinducer, is subject to intense molecular noise [6]. Still, QS
bacteria cope with these fluctuations reliably. For example, the typical volume of
Vibrio fischeri bacteria is 0:35 �m3, and a concentration of 10 nM of autoinducer
already induces a QS response [7]. This means that just �2 signaling molecules
per cell are enough to be sensed by this small marine bacterium. The low number
of signaling molecules inside the cell, together with the other possible sources
of noise, indicates that the fluctuations at the autoinducer level must be taken
under consideration for a deep understanding of the QS pathway activation and
functioning. Moreover, the stochastic effects in QS pose the intriguing question
of how cells achieve a coordinated response in the presence of noise. Indeed, the
QS mechanism may produce a robust and synchronized behavior at the level of
the population [8]. However, how this behavior at the collective level arises from
the stochastic dynamics of individual cells is puzzling. At the end, a collective
response means a precise information exchange in the colony: the quantification
of the number of cells, the density, in the colony. Consequently, how can a bacterial
population estimate its number of constituents precisely if such information is fuzzy
at the single cell level?

At the most fundamental level, cell communication by QS relies on the diffusion
of a signaling molecule through the cell membrane. Recent studies have shown
that diffusion reduces the noise at the level of the autoinducer [9]; however, the
interplay between the diffusion process and some standard sources of stochasticity
(transcriptional and biochemical noise) has remained elusive until very recently
[10]. Moreover, while in eukaryotes the diffusion seems to contribute for enhancing
the precision of regulatory processes [11], similar effects have not been reported in
the context of QS. Thus, a first central question is to elucidate how the diffusion
process influences, and interplay with, the fluctuations in the signaling molecule.

Another relevant point refers to the relation between the QS signaling network
architecture and its ability to filter and/or enhance and/or suppress noise. While this
question is case dependent, general clues and answers can be obtained by studying
simple QS systems, e.g. the LuxI/LuxR system, as the underlying signaling motif
in most QS species is a positive feedback loop leading to phenotypic bistability
[12]. As a matter of fact, a number of studies have shown that noise plays an
important role in bistable systems [13–17]. In the context of QS, it has been recently
revealed how noise at different levels of the signaling network controls the precision
of the collective response [18] and, ultimately, how noise modifies the phenotypic
landscape that produces the observed heterogeneity in QS colonies.

Herein we shed light on these aspects of the stochasticity in QS communication
by reviewing recent advances in the field. Altogether, the results suggest that
bacteria have adapted their communication mechanisms in order to improve the
signal-to-noise ratio and to adjust the intensity of the fluctuations depending on the
environmental conditions. The chapter is organized as follows. We first illustrate by
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means of a toy model how, at the onset of the QS transition, the autoinducer diffusion
process conditions the QS dynamics and that the interplay between different sources
of noise establishes ranges of diffusion values that minimize the noise at the
autoinducer level. We then show by means of a detailed model of the LuxI/LuxR
system how fluctuations interfere with the synchronization of the cell activation
process and lead to a bimodal phenotypic distribution. In this context, we review the
concept of precision in order to characterize the reliability of the QS communication
process in the colony. In terms of the network architecture, we show that increasing
the noise in the expression of LuxR helps cells to get activated at lower autoinducer
concentrations but, at the same time, slows down the global response. Some of the
observed properties are rather counterintuitive, e.g. noise at the level of LuxR helps
cell to become activated at low autoinducer values but above a certain threshold of
the autoinducer concentration the fluctuations stabilize the cell at the unactivated
phenotype. As we will see, the latter can be explained by analyzing how noise
modifies the phenotypic landscape. Finally, we present the main conclusions and
discuss the applicability and relevance of these studies in the context of noise in QS
communication.

3.2 Diffusion and Noise

QS communication relies on the diffusion of the signaling molecule through the
cell membrane. On top of that, the autoinducer is subjected to different sources
of noise and the following question naturally arises: what is the interplay between
the diffusion process and the autoinducer stochastic dynamics? In this regard, a
recent study has shown that diffusion, together with a fast turnover of the QS
transcriptional regulator, attenuates low-frequency components of extrinsic noise
at the level of the autoinducer [9]. These authors have coined the term “diffusional
dissipation” that emphasizes the importance of fast signal turnover (or dissipation)
by diffusion in QS. Other studies have used some characteristics of the diffusion
process in Gram-negative bacteria (the permeability of the cell membrane to the
autoinducer and the symmetry of autoinducer diffusion) to demonstrate that the
extracellular noise is required for a stable synchronization in the colony [19].

These studies assume a constitutive expression of the QS master regulators.
However, QS communication also relies on situations when the levels of transcrip-
tion/translation are very low and the system lacks autoinduction. Thus, at low cell
density, luxI gene expression is either repressed by a high concentration of its
repressor or activated at a very low level by its activator. Under these conditions,
very few luxI transcripts are produced and the feedback regulation of the luxI
gene leading to autoinduction can be disregarded. Such infrequent transcription
events have been observed in many bacterial operons. For example, single molecule
experiments have shown that the infrequent dissociation of the lac repressor
produces rare transcription events leading to just one mRNA molecule [20, 21].
Importantly, when the transcription rate is very low, the so-called transcriptional
noise is a major source of stochasticity [3].
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In this section we focus on the interplay between the diffusion process and the
transcriptional and intrinsic noises. We aim at understanding how the communi-
cation mechanism and different sources of noise determine the dynamics of the
autoinducer. We restrict ourselves to the study of the aforementioned problems
below the QS activation threshold where we can assume that the transcription events
produce basal constitutive levels of mRNA of at most one molecule per cell at a time
and the regulatory feedback loop can be neglected.

3.2.1 Modeling the LuxI mRNA Leaky Dynamics

Below the activation (autoinduction) threshold, it can be assumed that rare (basal)
transcription events produce individual luxI transcripts. Under these conditions
the dynamics of the mRNA can be then described by means of a Markovian
dichotomous process [22],

(3.1)

where M i
0;1 D 0; 1 stands for the number of mRNA molecules at cell i and

˛ and ˇ for the transition rates between these states; i.e., ˛ and ˇ account for
the mRNA degradation rate and the transcription frequency, respectively. Notice
that the fluctuations of the mRNA dynamics are not memoryless, i.e. white. Once
an mRNA molecule is produced, and until it becomes degraded, the cell keeps
producing the autoinducer. That is, the transcriptional noise is a colored noise,
and its autocorrelation decays exponentially with a characteristic time scale �c D
.˛ C ˇ/�1 [22].

Once an mRNA molecule is produced it leads to the appearance of functional
LuxI synthetases. It has been shown that the amount of the synthetase substrate
is not a limiting factor for the production of the autoinducer [23, 24]. As a
consequence, the levels of the signaling molecule depend directly on the expression
levels of the synthetase. Ignoring intermediate biochemical steps in the autoinducer
synthesis reduces the number of noise sources and may even change, under some
circumstances, the observed dynamics [25]. Still, it is a valid approximation in most
cases and one can assume that the translation of the synthetase and the subsequent
synthesis of the autoinducer, A, can be effectively described by a single chemical
step with rate kC. In addition, the autoinducer becomes degraded at a rate k�, that is,

(3.2)

(3.3)

(3.4)
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Fig. 3.1 Scheme of a simplified biochemical QS network near the activation threshold. Schematic
representation of the biochemical processes considered for describing the dynamics of the signaling
molecule, A (diamonds), in cell i . The mRNA dynamics follow a dichotomous process with state
values M0;1 corresponding to zero and one molecule, respectively. Once the autoinducer has been
produced, it can diffuse into and out of the cell leading to cell communication

where Aext accounts for the number of signaling molecules in the extracellular
medium. Passive diffusion in and out the cell of the autoinducer can be implemented
by means of the reaction:

(3.5)

where D stands for the diffusion rate and r D V=Vext represents the ratio of
the volume of a cell to the total extracellular volume. Figure 3.1 schematically
represents the biochemical processes described by the set of reactions (3.1)–(3.5).

3.2.2 Null-intrinsic Noise Approximation

Two stochastic contributions drive the dynamics of A: the mRNA fluctuations
due to the random switching and the intrinsic noise due to low copy number of
the resulting autoinducer. As of the latter, it can be neglected if over the course
of time Ai =

�
Ai C 1

� ' 1 (“large” number of autoinducer molecules). While
such approximation is not justified (see parameters values below), it is useful
to implement it in order to discriminate between the effects caused by different
stochastic contributions and to obtain analytical expressions. In this case, it is
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straightforward to demonstrate that the dynamics of the autoinducer, (3.1)–(3.5),
can be described by the following coupled stochastic equations:

:
cAi D kCcM i

1
.t/ � k�cAi CD .cAext � cAi / (3.6)

:
cAext D �k�cAext C rD

NX

iD1

.cAi � cAext/

D �k�cAext C rDN .hcAi � cAext/ ; (3.7)

where cAi D Ai =V , cM i
1
.t/ D M i

1 =V , and cAext D Aext=Vext stand for the

concentration of species A and M i
1 at cell i and for species Aext at the extracellular

medium, respectively, N is the bacterial colony size, and h�i represents the popu-
lation average. In Eq. (3.6) the term cM i

1
.t/ accounts for a dichotomous stochastic

process characterized by the rates and states .˛; ˇ/ and .0; 1=V /, respectively, and
describes the fluctuating dynamics of the mRNA concentration.

By implementing a quasi-steady approximation for the dynamics of the external
autoinducer, i.e.

:
cAext D 0 we obtain that,

cAext D hcAi 1

1C k
�

NDr

: (3.8)

By substituting (3.8) into (3.6) we obtain a rate equation for the concentration of the
signaling molecule inside a given cell that depends on the average hcAi (the index i

has been dropped),

:
cA D kCcM1.t/ �D

�
1C k�

D

�
cA C hcAi D

1C k
�

NDr

: (3.9)

In the absence of diffusion, Eq. (3.9) reveals that the concentration of the signaling
molecule reaches a maximum value of cC

A D kC= .k�V / when cM1.t/ D V �1.
In terms of cC

A and the time scale tc D 1=k� (the typical lifetime of a signaling
molecule), the dimensionless version of (3.9) reads

:QcA D OcM1.Qt /C keffC .h QcAi/ � keff� QcA ; (3.10)

where

QD D D=k� (3.11)

keff� D 1C QD (3.12)

keffC .h QcAi/ D hQcAi QD
1C 1

N QDr

I (3.13)
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OcM1.Qt / being a Markovian dichotomous noise with states f OcM1g D 0; 1 and rates
Q̨ D ˛=k� and Q̌ D ˇ=k�. Equation (3.10) can be formally closed by invoking the
following self-consistency condition:

h QcAi D
Z

Q̋
QcA � . QcAI h QcAi/ d QcA; (3.14)

� . QcAI h QcAi/ being the probability density solving (3.10) and Q̋ its support (see
below) [22]:

� . QcAI h QcAi/ D N
�
keff� QcA � keffC .h QcAi/

� Qˇ

keff
�

�1
(3.15)

�
1C keffC .h QcAi/ � keff� QcA

� Q̨

keff
�

�1
; (3.16)

with

N D
.1C QD/ �

h Q̨C Q̌
1C QD

i

�
h

Q̨
1C QD

i
�

h Q̌
1C QD

i (3.17)

being the normalization constant. The condition (3.14) can be exactly solved and
leads to the following value for the average concentration of autoinducer:

h QcAi D 1C QDNr

1C QDNr C QD
Q̌
Q̨ C Q̌ D

1C QDNr

1C QDNr C QD h QcAij QDD0 (3.18)

where h QcAij QDD0 D Q̌=
�
Q̨ C Q̌

�
is the average concentration of the signaling

molecule in the absence of diffusion. For the sake of concision, on what follows
we drop in the notation of � . QcAI h QcAi/ the term h QcAi from the argument. Note that
� . QcA/ has two states (barriers) that define its support. That is, the minimum and
maximum values that the concentration of the autoinducer can reach as a function
of the diffusion are:

Qc�
A D

QD2Nr

.1C QD/.1C QD C QDNr/

Q̌
Q̨ C Q̌ (3.19)

QcC
A D Qc�

A C
1

1C QD : (3.20)

Moreover, it is easy to prove that the probability density � . QcA/ shows a single
extremum if

Q̨ ; Q̌ 7 keff� ; (3.21)
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Fig. 3.2 Probability densities of the signaling molecule and parameter space. (a) Sketch of the
different probability densities of the autoinducer concentration depending on the value of Q̨ and Q̌
with respect to QD. Given a set of values . Q̨; Q̌/ the dynamics of the autoinducer shows different
behaviors depending on the value of the diffusion parameter since the transition lines are located at
Q̨; Q̌ D 1 C QD. The constraints set by the approach (one mRNA at a time) make the region on the
top-left corner non-accessible. (b) Parameter space diagram . Q̨; Q̌/ indicating the sets of parameters
used in simulations (solid squares): �1 D .8; 2/, �2 D .15; 5/, �3 D .8; 0:5/, �4 D .15; 0:5/. The
experimental values reported for the degradation rate of the mRNA leads to a biological meaningful
range for Q̨ (rectangular region). The low constitutive expression assumption is prescribed by the
constraint Q̨ > 2 Q̌ (triangular region)

where the extremum is a maximum if Q̨ ; Q̌ > keff� and a minimum if Q̨ ; Q̌ < keff� .
In other cases the probability density does not display any extrema. Therefore,
as a function of Q̨ and Q̌, the probability density � . QcA/ may show four different
behaviors depending on the value of the diffusion coefficient as schematically
represented in Fig. 3.2a. However, given the constraints on the parameters of our
modeling not all regions, i.e. behaviors, are accessible to the autoinducer dynamics.
In particular, we have assumed a low constitutive expression such that only a single
mRNA molecule can be transcribed at a time. The latter implies that Q̌ < Q̨
(the degradation rate of the mRNA is larger than the transcription rate) in order to
assure that a maximum of one mRNA molecule is present in a cell at any given time.
As a consequence, and independently of the diffusion value, the dynamics leading
to the probability density shown at the top-left region of Fig. 3.2a (for which Q̌ > Q̨ )
cannot be considered as physical in the context of a luxI leaky mRNA dynamics.

Finally, the noise of the autoinducer concentration can be estimated by comput-
ing the ratio between the variance and the mean1:

�2
QcA
D �2

QcA

hQcAi2 D Q̨.1C QDC QDNr/
2

Q̌.1C QD/.1C QDNr/
2
.1C QDCQ̨C Q̌/ (3.22)

1Note that “noise” has been used with two different meanings: a stochastic contribution and, in this
case, a quantity that effectively measures the effects of that stochastic contribution.
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where �2
QcA
D hQc2

Ai � h QcAi2. Note that in a purely deterministic system �2
QcA
D 0. On

the other hand, in systems where fluctuations play a relevant role in the dynamics
�2

QcA
& 1.

3.2.3 QS Switch at the Onset: Parameter Values

Herein we are particularly interested in the role played by the fluctuations of the
signaling molecule, A, when its concentration is close, yet below, to the activation
threshold of the QS switch such that autoinduction doesn’t play a role and the basal
leaky dynamics of the luxI mRNA holds. Therefore, we fix the mean concentration
of the autoinducer and modulate the rest of the parameters in order to keep constant
this value. According to some recent experiments [6], a value of c 0

A D 25 nM is
reasonable for most of the bacterial species when the value of the so-called sensing
potential, 	 D .rN /�1, is 	� 103. In our simulations we choose N D 102 and
then Vext D 	N V D 105V (i.e., r D 10�5). Keeping 	 to a constant value
necessarily requires an external dilution protocol for maintaining constant the cell
density and compensate for cell growth at a rate, �2 � 10�2 min�1 (i.e., cell cycle
duration�50 min). In addition, we notice that most autoinducer molecules are rather
stable. For example, the degradation rate of the homoserine lactone 3-oxo-C6-AHL
has been measured in vitro: �3 � 10�4 min�1 [26]. The values in vivo has been
also estimated [6]: �5 � 10�3–2 � 10�2 min�1. Consequently, the dilution process
constitutes the main source of effective degradation of A, both inside and outside
the cell.

As for the luxI mRNA dynamics, the half-lives of all mRNAs of Staphylococcus
aureus have been recently measured during the mid-exponential phase. Most of the
transcripts (90 %) have half-lives shorter than 5 min [27, 28]. According to these
studies we restrict the mRNA degradation rate to the range ln.2/=5 min�1 < ˛ <

ln.2/=2 min�1 and consequently Q̨ > 1. As for the frequency of the transcription
events, ˇ is determined by particular characteristics of the gene regulatory process
under consideration, like the affinity of the regulatory proteins to the operator site
and the initiation rate of transcription. Due to the assumption of low constitutive
transcription, we choose values of parameter ˇ satisfying the relation ˛ > ˇ. In
particular in our simulations we implement the more restrictive condition ˛ > 2ˇ.
Figure 3.2b recapitulates the different sets of ˛ and ˇ values that we use in our
simulations and analytical calculations. Summarizing, N , r , and k� are kept fixed
and we explore the parameter space ˛, ˇ, and D within the ranges and constraints
mentioned above. In every particular situation we determine the value of kC, see
Eq. (3.18), in order to keep hcAi D 25 nM.
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3.2.4 Passive versus Active Transport in QS

The rate of passive diffusion has been estimated for the 3-oxo-C6-AHL autoinducer
[9]: �103 min�1. Under these conditions the typical value for the normalized
parameter QD is of the order of 104. Yet, active transport mechanisms for the
autoinducer lead to much smaller effective diffusion values. For example, in
the bacterial species Pseudomonas aeruginosa, C4-HSL can freely diffuse but
C12-HSL, a larger signaling molecule, is subjected to active influx and efflux
where its importation and exportation rates are of the order of �10�2 min�1 and
�10�1 min�1, respectively [29]. Other example corresponds to the AI-2 signaling
molecule. The latter is present in many Gram-positive and Gram-negative species
and it is believed to allow for interspecies communication [30]. In Escherichia
coli and Salmonella enterica extracellular AI-2 accumulates during the exponential
phase, but then decreases drastically upon entry into the stationary phase. This
reduction is due to the import and processing of AI-2 by the Lsr transporter [30,31].
Moreover, excretion from the cell of this autoinducer also appears to be an active
process involving the putative transport protein YdgG (or alternatively named TqsA)
[32]. In the case of E. coli these rates have been estimated by computational and
experimental means: Dout ' 10�1 min�1 and Din ' 10�3 � 10�2 min�1 [33].

In principle our model does not account for active diffusion processes, but
transport driven by concentration differences. Still, our simple model is valid when
the active transport mechanism can be described by two symmetric first-order
transport reactions. If we assume that the excretion and uptake systems follow
the Michaelis–Menten kinetics then, in the regime where the concentration of
autoinducer (substrate) is much smaller than the Km of the enzymatic reaction, the
transport rate can be approximated by a first-order reaction with rates DincAext and
Doutca. If, in addition, we assume that the transport rates are symmetric, Din D Dout,
the resulting dynamics are identical to the case of passive diffusion. Under these
conditions, the rates of active transport in the QS systems described above would fit
in our model with a normalized diffusion coefficient in the range QD 2 Œ10�1; 10
.
All in all, the transport rates when driven by active processes are four orders of
magnitude smaller than the diffusion rate of small molecules through the membrane.
Hence, transport rates in QS systems can be categorized into two main, well-
separated, classes: small transport rates due to active process, and large diffusion
rates due to passive mechanisms.

3.2.5 Dynamics and Population Heterogeneity driven
by Diffusion

According to the analytical results, as a function of QD one can expect a rich
phenomenology since the transition lines in the parameter space . Q̨ ; Q̌/ shift as
a function of the diffusion (see Fig. 3.2a). By taking as a reference the case
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�2, that is . Q̨ ; Q̌/ D .15; 5/, Fig. 3.3 shows the effect of the diffusion on the
distribution (left column) and dynamics (center column) of cA in a given cell.
The results were obtained by means of numerical simulations of the set of reac-
tions (3.1)–(3.5) using the Gillespie algorithm in an N -cells system [34]. The system
initially displays a single-peak distribution and by increasing the diffusion rate
we observe transitions to other behaviors (monotonically decreasing and double-
peak distributions). For QD D 10, the diffusion is already large enough to remove
signaling molecules between consecutive mRNA burst events, thus leading to a
monotonically decreasing distribution. Increasing the diffusion rate to QD D 100

leads to the situation where both Q̨ and Q̌ become smaller than 1C QD and a bistable
dynamics develops. Note that, counterintuitively, increasing the diffusion leads to
a population heterogeneity instead of homogenizing the colony. As the diffusion
further increases, e.g. QD D 2 � 103, the autoinducer molecules diffusing from the
external medium into the cell set a constitutive level of this species. The latter
explains the presence of A molecules in the cell even if no mRNA is produced.
Finally, at very large values of QD, e.g. QD D 5�104, the low constitutive concentration
of the autoinducer increases due to the influx of molecules when no mRNA is
present whereas the concentration of A that is internally produced decreases due
to the efflux of molecules. In this case, the whole N -cells system can be considered
as a single volume with no diffusive barriers between cells. Thus, the burst events
average out and, as a consequence, a single effective peak again develops for the
concentration of the autoinducer.

Figure 3.3 shows that the theoretical distribution captures the essential features
of the dynamics obtained in the numerical simulations. Note that the noticeable
deviations are due to the intrinsic noise (i.e., to the low number of molecules)
of the signaling molecule A that are not considered in the theoretical analysis.
Moreover, notice that as the diffusion increases those deviations seem to be larger.
Yet, we stress that as QD changes we modulate the production rate kC so that the
average number of autoinducer molecules per cell remains constant. Consequently,
the deviations between the simulations and the theoretical analysis cannot be
ascribed to a putative decrease of the number of A molecules (i.e., to an increase
of the intrinsic noise).

In order to ensure that the intrinsic fluctuations are not actually increasing due to
diffusion we first perform the following in silico control experiment. We consider
a modification of the system such that a single mRNA molecule transcript leads to
two autoinducer molecules that are considered to be distinguishable: Ai

1 and Ai
2.

Following [35], by plotting the distribution of cA1 as a function of cA2 we can then
discern a putative increase of the intrinsic fluctuations. Right column of Fig. 3.3
shows that the width of the distribution in a direction perpendicular to the diagonal
(a measure of the intrinsic fluctuations) does not vary and consequently so does
not the intrinsic noise. Thus, we must conclude that as the diffusion increases the
balance between the mRNA and the intrinsic fluctuations get modified. Indeed, as
shown in Eq. (3.22) the noise due to the mRNA dynamics behaves as�1= QD for large
values of QD. Therefore, the deviations between the theoretical and the numerical
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Fig. 3.3 Distributions and dynamics of the signaling molecule. Distributions (left column) and
dynamics (center column) of cA at steady-state for different values of QD. In all cases the parameters
set . Q̨; Q̌/ is �2 (see Fig. 3.2b). The production rate Qk

C

is modulated as a function of . Q̨; Q̌; QD/

in order to maintain constant the average hcAi D 25 nM. The histograms obtained in the
stochastic simulations (blue bars, left column) are in qualitative agreement with the probability
densities from the analytical calculations (blue line, left column). When increasing the diffusion
coefficient the system explores different dynamics as revealed by the trajectories shown in the
center column. The gray-shaded background shown in the trajectories of cA indicates the presence
of an mRNA molecule in the cell. In order to discern a putative increase in the molecular noise we
perform stochastic simulations of a modified system in which a single mRNA molecule produces
two distinguishable autoinducer molecules A1 and A2. The density plots (right column) of the
distribution of cA2 vs cA1 reveal that the diffusion does not contribute to an increase of the intrinsic
noise since the spreading of the distributions in a direction perpendicular to the diagonal does not
grow when increasing QD
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Fig. 3.4 Total noise in the signaling molecule as a function of the diffusion coefficient. Total
noise �2

cA
as a function of diffusion coefficient QD for the sets of parameters �1;2;3;4 (see Fig. 3.2b):

stochastic simulations (circles) and analytical expression (3.22) (solid line). The difference
between the computational and the theoretical distributions quantifies the amount of intrinsic noise
(squares). The latter remains constant and is the main contribution to the total noise only for
large diffusion values, QD > 104. The function is non-monotonic and has a maximum value above
�2

cA
> 1 for all parameter sets, showing that the variance is larger than the mean for intermediate

ranges of QD

approaches are due to a drop of the fluctuations related to the mRNA dynamics such
that for large enough diffusion rates, the intrinsic noise constitutes the main source
of stochasticity.

3.2.6 Total Noise in QS Communication Lacking
Autoinduction

It is interesting to place these results in the context of the total noise present in
the autoinducer concentration. Figure 3.4 reveals that �2

cA
shows a non-monotonic

behavior. As a function of QD the total noise first increases and reaches a maximum
at QD�102 and then decreases as the diffusion becomes larger. Note that for a large
range of QD values the analytical calculations, that just account for the transcriptional
noise, are in agreement with the numerical simulations, that account for both the
transcriptional and the intrinsic noise. This indicates that the main contribution to
the total fluctuations for a large range of diffusion values is the transcriptional noise.
Yet, as mentioned above, the latter diminishes as the diffusion increases while the
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intrinsic fluctuations remain constant. Consequently, the contribution of the intrinsic
noise must become more relevant than the mRNA stochasticity beyond some value
of QD. One can address the relative importance of the noisy sources by using the
decomposition �2

cA
D �2

cA;int C �2
cA;tran, where �2

cA;int and �2
cA;tran stand, respectively,

for the intrinsic and the transcriptional contributions to the total noise [36]. Thus, by
subtracting the analytical expression of the transcription noise given by Eq. (3.22)
to the total noise obtained in the numerical simulations we are able to compute the
intrinsic noise as a function of the diffusion (see Fig. 3.4). By performing a linear
regression of the points that corresponds to the intrinsic noise we obtain that the
slope of the curve is indeed zero in practical terms (2 � 10�7 for parameter set �2).
Therefore, in agreement with the results obtained in Fig. 3.3 (right column), the
intrinsic noise remains constant (�2

cA;int D 0:054˙0:003 for parameter set �2) as the

diffusion increases and is the main stochastic component if QD & 104.
The non-monotonic behavior of the total noise as a function of the diffusion rate

suggests a new interpretation of the role of noise regulation by the QS mechanism.
As mentioned above, the values of the diffusion rates in QS systems fall into
two distinctive categories: either large values corresponding to passive transport
mechanism, QD� 104, or small values when an active transport mechanism applies,
QD� 10�1 � 10. Surprisingly, these two QS classes avoid diffusion rates that

maximize the total noise, QD� 5 � 101 � 102. While the modeling presented herein
is certainly very simple and the derived consequences should be carefully taken,
the latter suggests that bacteria have developed mechanisms for coping with the
noise and keep their functional QS regime away from the region where �2

cA
> 1.

Notice that the maximum noise in the level of autoinducer means large fluctuations
that may perturb the activation of the QS pathway. When looking at the dynamics of
the autoinducer for QD D 100 (see Fig. 3.3) we observe the population heterogeneity
such that the autoinducer “jumps” between a low state with few molecules and a
high state around 100 nM. If the activation threshold lies in between these two
values (as it actually does), the QS pathway could get randomly activated due to
the fluctuations only in a subpopulation and the colony would lack a synchronous
behavior. Yet, our results point towards the direction that bacteria have adapted
their communication mechanisms in order to improve the signal-to-noise ratio and
produce a more reliable information exchange.

In the next section we further explore the relation between noise, network
architecture, and synchronous collective behavior by introducing the concept of
precision in a more detailed model.

3.3 Non-stationary Signaling, Network Structure, and Noise

The seminal work of Nealson and coworkers described the QS phenomenon as a
sudden activation of the bioluminescence in a culture of growing V. fischeri cells
[37]. It was not until recently that the behavior of individual cells has been shown
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to differ significantly from the bulk behavior, revealing large inter-cell variations
in the expression level of QS genes. Thus, Pérez and Hagen [38] were able to
measure the weak bioluminescence of a single bacterium and observed a large cell-
to-cell variability in the level of emission and in the onset time for the response.
Importantly, this heterogeneity seemed not to be related to the specificities of V.
fischeri and has been also reported in other QS bacterial species, as Vibrio harveyi
[39], P. aeruginosa [40], and synthetic E. coli luxI/luxR-GFP strains [41].

As shown above, noise plays an important role in the QS activation phenomenon
and the aforementioned cell-to-cell heterogeneity may be caused by the random
fluctuations that unavoidably affect cell regulation and signaling. Yet, answering
this question in deep requires a case-dependent approach since the underlying
network architecture conditions how noise is filtered, enhanced, and/or suppressed.
Moreover, many QS systems may sense and use different autoinducers and the
design principles of these multi-input systems remain puzzling particularly in the
framework of QS stochasticity. Recent advances include the study of V. fischeri
cells that is regulated by two HSL signals. The results show that at the single-cell
level the heterogeneity in the lux response depends only on the average degree of
activation, so that the noise in the output is not reduced by the presence of the second
signal [42]. Still, most QS systems share the same underlying network motif, a two
component positive feedback loop. Thus, by studying a canonical QS system one
can address questions and raise conclusions about the relation between network
architecture and noise regulation.

In V. fischeri cells, the canonical activation pathway is controlled by LuxR,
the receptor of the signaling molecule, and LuxI, the synthetase of the signaling
molecules. Therefore, fluctuations at the expression levels of these two proteins can
potentially influence the variability in the QS transition. Interestingly, experiments
have revealed the presence of additional regulatory interactions for controlling the
LuxR noise levels [44]. Yet, the regulatory interactions that control the wild-type lux
operon in V. fischeri are more complex than first thought [45,46]. Those include both
positive and negative regulation of the luxR gene depending on the concentration of
the autoinducer [47]. In this regard, simplified synthetic constructs in E. Coli, such
as lux01 and lux02 [43], retain the minimal LuxI/LuxR regulatory motif and lack the
structural genes responsible for light emission that may also play a regulatory role,
e.g. luxD [48]. These constructs reproduce the main features of the wild-type operon
as revealed by the GFP fluorescence assays reporting the promoter activity [43]. In
this section, we make use of the simplified network architecture of these synthetic
strains in order to study how the cell-to-cell variability changes when we modulate
independently the intensity of gene expression noise of LuxR and LuxI and raise
general conclusions about the relation between noise and network architecture.
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Fig. 3.5 Scheme of the LuxI/LuxR regulatory network in lux01 and lux02 strains. The LuxR (R)
protein activates the operon upon binding to autoinducer molecules (A). The lux01 operon lacks
the luxI gene and therefore cells cannot produce their own autoinducer and exogenous signaling
molecules, A�, are needed to activate the expression of luxR and GFP [43]. On the other hand,
the lux02 operon carries a luxI::gfp fusion and allows for the production of autoinducer and self-
induction

3.3.1 Synthetic Strains: A LuxR/LuxI System with No Frills

The lux01 operon is a truncated divergently transcribed lux operon, capable of
expressing LuxR but lacking the luxI gene. All the transcripts normally downstream
of the promoter are replaced with gfp. Thus, bacteria carrying the lux01 operon
cannot produce the autoinducer and an exogenous autoinducer is required for GFP
expression. On the other hand, the lux02 operon carries a luxI::gfp fusion and is
capable of expressing LuxI and synthesize the autoinducer [43]. Figure 3.5 shows
schematically the regulatory interactions present in these strains as well as the
control of the autoinducer levels by means of exogenous signaling molecules. These
interactions and the DNA duplication process can be formally written as a set of
chemical reactions:

DNA
˛RkR�! DNACmRNAluxR

DNA
˛I kI�! DNACmRNAluxIWWgfp

DNA � .luxR � A/2

kR�! DNA � .luxR � A/2 CmRNAluxR

DNA � .luxR � A/2

kI�! DNA � .luxR � A/2 CmRNAluxIWWgfp
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mRNAluxR
pR�! mRNAluxR C luxR

mRNAluxIWWgfp
pI�! mRNAluxIWWgfp C luxI WWgfp

luxI WWgfp
kA�! AC luxI WWgfp

luxRC A
k�

1 =Kd1 !
k�

1

luxR � A

2 .luxR � A/
k�

2 =Kd2 !
k�

2

.luxR � A/2 (3.23)

.luxR � A/2 CDNA
k�

lux=Kdlux !
k�

lux

DNA � .luxR � A/2

A
D !
rD

Aext

A
dA�! ¿

Aext
dA�! ¿

mRNAluxR
dmR�! ¿

mRNAluxIWWgfp
dmI�! ¿

luxR
dR�! ¿

luxI WWgfp
dI�! ¿

.luxR � A/2

dC2�! ¿

luxR � A dC�! ¿

DNA
ln.2/=��! DNACDNA

DNA � .luxR � A/2

ln.2/=��! DNA � .luxR � A/2 CDNA:

As revealed by the set of reactions (3.23) the regulatory complex .luxR � A/2

activates the transcription of both luxI and luxR upon binding to the DNA. Since
lux01 lacks the luxI gene, the autoinducer, A, cannot be synthesized, i.e. in that case
kA D 0. Note that in agreement with Sect. 3.2.1, we include basal transcriptional
rates, ˛RkR and ˛I kI , even though the regulatory complex .luxR � A/2 is not bound
to the promoter region of the DNA.
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Fig. 3.6 Scheme of the deterministic and stochastic modeling approaches. (a) In the deterministic
model, the population of cells is described by a unique volume with average and continuous
concentrations of all species, including the DNA carrying the QS network (small circles). Cellular
growth is also taken into account in this approach. (b) In the stochastic model, cells are modeled
as individual compartments that can grow and divide and all molecular species are represented as
discrete entities. In both cases we assume that all species are well stirred inside the cells and in the
medium. In order to maintain a constant cell density, as in the experiments we aim to model,
a dilution protocol is implemented (see text). In the deterministic model the dilution removes
continuously cytoplasmic material in order to compensate the cell growth. In the stochastic model
individual cells are removed every time a new cell is born

3.3.2 Bulk and Single-Cell Approaches: Cell Growth, Division,
and External Dilution Protocol

The set reactions (3.23) can be sampled exactly by means of the Gillespie algorithm
[34] (stochastic approach). The latter is suitable for the characterization of the
system at the single cell level. Complementary to this, if we consider the colony as
a whole and the number of molecules of the species is large enough, we can assume
that intrinsic fluctuations average out and the set of ordinary differential equations
(ODEs) that derive from reactions (3.23) describe the bulk behavior (deterministic
description). Still, as shown below in Sect. 3.3.6, the intrinsic fluctuations can
actually modify the behavior of the system in a more profound way. Herein we make
use of both deterministic and stochastic descriptions. The former is particularly
useful to fit the simulation results to experimental data in order to obtain values
of the parameters.

As for the deterministic model, we consider that all cells share their cytoplasm in
a single volume Vc;tot (see Fig. 3.6). Chemical species X inside the cell are described
by their concentration, cX , in Vc;tot and the chemical kinetics formalism leads to a
set of ODEs that describes the population average dynamics:

PcluxIWWgfp D pI cmRNAluxIWWgfp �
�

ln.2/

�
C dI

�
cluxIWWgfp (3.24)

PcluxR D � k�

1

Kd1

cAcluxR C k�

1 cluxR�A C pRcmRNAluxR �
�

ln.2/

�
C dR

�
cluxR (3.25)

PcmRNAluxIWWgfp D ˛I kI cDNA C kI cDNA�
.luxR�A/2

�
�

ln.2/

�
C dmI

�
cmRNAluxIWWgfp (3.26)
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PcmRNAluxR D ˛RkRcDNA C kRcDNA�
.luxR�A/2

�
�

ln.2/

�
C dmR

�
cmRNAluxR (3.27)

PcluxR�A D �k�

1 cluxR�A C k�

1

Kd1

cAcluxR � 2
k�

2

Kd2

ŒcluxR�A
2 C 2k�

2 c.luxR�A/2
(3.28)

�
�

ln.2/

�
C dC

�
cluxR�A (3.29)

Pc.luxR�A/2
D k�

2

Kd2

ŒcluxR�A
2 � k�

2 c.luxR�A/2
� k�

lux

Kdlux
c.luxR�A/2

cDNA (3.30)

Ck�

luxcDNA�
.luxR�A/2

�
�

ln.2/

�
C dC2

�
c.luxR�A/2

(3.31)

PcDNA D � k�

lux

Kdlux
c.luxR�A/2

cDNA C k�

luxcDNA�
.luxR�A/2

(3.32)

C ln.2/

�

�
cDNA C cDNA�

.luxR�A/2

� � ln.2/

�
cDNA (3.33)

PcDNA�
.luxR�A/2

D k�

lux

Kdlux
c.luxR�A/2

cDNA � k�

luxcDNA�
.luxR�A/2

� ln.2/

�
cDNA�

.luxR�A/2
(3.34)

PcA D k�

1 cluxR�A � k�

1

Kd1

cAcluxR C kAcluxIWWgfp C D
�
cAext � cA

�
(3.35)

�
�

ln.2/

�
C dA

�
cA (3.36)

PcAext D rD
�
cA � cAext

� C �
Vtot

Vext
cA� � .� C dA/cAext (3.37)

The experiments reveal that the temporal scale for reaching a steady-state is much
larger than the cell cycle duration (see, for instance, Figure S6 in [43]). Thus, we
need to take into account the cell growth. If cells are maintained in the exponential
phase with doubling time � , then the dynamics of the volume of the cell is
Vc;tot .t/ D V0;tot2

t=� , where V0;tot D N V0, N being the number of cells in the
colony and V0 the volume of a single cell at the beginning of the cell cycle. As a
consequence, the cellular growth introduces dilution terms, �cX

ln.2/

�
, in the r.h.s. of

the ODEs of all species, with the exception of the autoinducer in the medium Aext.
On the other hand, cell division events lead to the duplication of the genetic material.
The latter is taken into account by adding the termC ln.2/

�

�
cDNA C cDNA�.luxR�A/2

�
to

the ODE that describes the concentration of DNA. Note that this term compensates
for the dilution.

In the experiments that reported the properties of the lux01 and lux02 QS strains
the cell density is kept constant by means of an external dilution protocol that
compensates for cell proliferation [43]. In order to compare quantitatively with those
experiments, we keep the volume Vc;tot constant and define the external volume, Vext,
such that the total volume of the cell culture reads Vtot D Vext C Vc;tot. Accordingly,
the parameter r , see reactions (3.23), reads r D Vc;tot=Vext. Notice that the external
dilution protocol also removes from the medium autoinducer molecules [43]. This is
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compensated by an influx of exogenous autoinducer in the dilution buffer. The influx
of exogenous autoinducer molecules, together with the efflux of culture medium,
can be represented by the following reaction

Aext
� !

�cA�
Vtot

¿: (3.38)

where � D ln.2/=� . That is, an efflux removes autoinducer molecules from the
external volume at a rate � and an influx introduces signaling molecules in the
external volume at a rate �cA�Vtot. In the deterministic description, this reaction
leads to an additional term at the r.h.s. of the ODE for the concentration of Aext :

C�
�
cA�

Vtot
Vext
� cAext

�
. In the absence of synthesis (e.g., lux01 strain) and taking into

account that the degradation is slower than the diffusion and the influx rate, it is easy
to see that the concentration of autoinducer, both inside and outside the cell, tends
to cA� : the desired control value of the autoinducer concentration.

As for the single-cell, stochastic, description, each bacterium is described as
a single cell carrying a copy of the regulatory network. As in the deterministic
case, cell growth introduces a dilution of the molecules in a cell. Cell growth is
implemented by allowing the volume of cell i to change in time as

Vc;i .t/ D V02t=�i ; (3.39)

where V0 is the volume of a cell at the beginning of the cell cycle, �i is the duration
of the cell cycle of cell i , and t is referred to the precedent division event. When
t D �i the cell i has doubled its volume and a new division takes place. At this
time the internal clocks and volumes of daughter cells are reset to zero and V0,
respectively. The duration of the cell cycle, �i ; is different for each cell and is set
independently after a division according to the following stochastic rule [49],

�i D �� C .1 � �/ Q�; (3.40)

where � and Q� denote, respectively, the deterministic and stochastic components of
the cell cycle duration, and � 2 Œ0; 1
 is a parameter that weights their relative
importance. The stochastic component accounts for the period of time between
events driven by a Poissonian process and satisfies an exponential distribution,

� . Q�/ D e� Q�
�

�
: (3.41)

According to these definitions, the average duration and standard deviation of the
cell cycle are � and .1 � �/ � , respectively. When a cell divides, proteins, mRNAs,
and signaling molecules inside the cell are binomially distributed [50] between
daughter cells and one copy of the DNA is given to each cell (regulatory complexes
bound to the DNA are detached prior to the distribution between daughter cells).
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As in the case of the deterministic description, the cell density is kept constant
due to a compensating efflux that wash away cells in the culture: each time a division
takes place a cell is picked at random and “deleted.” In relation to the effect of the
cell volume of individual cells on the diffusion rate of the autoinducer, we note that
in this case

ri .t/ D Vc;i .t/

Vtot �PN
j D1 Vc;j .t/

: (3.42)

A model as comprehensive as the one introduced here requires to know the
value of a large number of parameters. Some of those have been characterized
and measured in previous experiments, e.g. the dissociation constant of LuxR to
A [51], while others have to be estimated or fitted. In the case of the synthetic
strains reviewed herein most of the parameters can be estimated by fitting the results
obtained in numerical simulations of the deterministic system to experimental data
reporting on the colony bulk behavior [43]. We refer the reader to [18] for the fitting
procedure and the list of estimated parameters.

3.3.3 Noise Intensity Regulation: Burst Size

In experiments there are two possible ways to regulate the intensity of the intrinsic
noise keeping the same average values of protein concentration. On the one hand,
one can scale up the number of molecules and the volume while keeping the same
ratio, i.e. the same concentration. This approach has been indeed implemented in
bacterial cultures by inhibiting the septation process [52]. The downside of this
method is than one cannot actually control the noise level since during the time
course of an experiment it diminishes progressively. On the other hand, one can
control the so-called burst size that quantifies the translational efficiency. During
translation mRNA molecules are translated into proteins following a bursting
dynamics [3, 20, 53]. The so-called burst size, bX , is defined as the ratio between
the protein X production rate and the mRNA X degradation rate. It has been shown
that bX is directly related to the intensity of gene expression noise [54]. Thus, for
the same average protein concentration, the larger bX , the more fluctuating is the
expression dynamics of X . Herein we use this approach and tune independently
the noise intensity of luxI and luxR in our simulations in order to elucidate the role
of fluctuations at the level of the main components of the QS switch architecture.
Unless explicitly indicated otherwise, the bursting size in the stochastic simulations
is bR D bI D 20 [44, 53].
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3.3.4 LuxR Noise Levels and the Induction Time Control
the Features of the QS Switch

In order to analyze the behavior of individual cells and reveal how noise affects
the QS switch, we perform stochastic simulations of a population of growing and
dividing cells. As described above, the in silico cell culture grows in a medium at
a (nearly) fixed autoinducer concentration. We measure the activation of the QS
network by reporting the concentration of GFP in single cells. The transition of an
individual cell between the low (no signal from the GFP reporter) and the high state
(signal from the GFP reporter) is intrinsically random and depends, among others,
on the levels of autoinducer. Thus, inside a population some cells will jump while
others remain in their current state leading to a bimodal phenotypic distribution.
We compute the proportion of cells that are below and above a threshold of GFP
equal to half-maximum GFP concentration; we consider the distribution of cells
to be bimodal when the proportion of cells in either the low or the high state is
below 90 %. According to this, we define the range of autoinducer concentration
ŒcA�

b1
; cA�

b2

 for which there is bimodality. For low concentrations of autoinducer,

cA� < cA�

b1
, the collective response of the cell population is unactivated, and

for high concentrations, cA� > cA�

b2
, most of the cells are activated leading to a

global response of the colony. On the other hand, within the bimodality range, the
response is distributed between two subpopulations, thus failing to achieve a global
coordination in the colony. In order to characterize this behavior, we introduce
the concept of precision in the QS switch as the inverse of the cA

�

concentration
range for which the cells response distribution (phenotypes) is bimodal. That is, the
larger the bimodal range, the less precise the switch is in order to generate a global
response in the colony. We point out that the precision of the switch in a noise-free
situation (deterministic case) is infinite since all cells achieve global coordination
simultaneously.

Figure 3.7 shows, by means of a color density plot, the probability of a cell
to have a particular GFP expression level after either 10 or 100 h of induction
as a function of cA� . For a large range of autoinducer concentrations, both lux01
and lux02, display a bimodal distribution after 10 h of induction. Some cells of
the colony are induced at a concentration lower than the critical concentration of
the deterministic model at the steady state (black line). Still, the concentration for
which more than 90 % of the cells are induced requires up to four times more
autoinducer than under deterministic conditions. Thus, on the one hand, noise
helps cells to get induced at lower autoinducer concentrations but, on the other
hand, amplifies the non-stationary effects for achieving global coordination. If the
same experiment is performed with a larger induction time (100 h), the situation
changes dramatically. In that case, the precision of the switch increases (tenfold
change) and cells achieve global coordination at (lux01) or before (lux02) the critical
deterministic concentration. In any case, the simulations reveal that the behavior
of the QS switch is highly dynamic and the precision of the switch is a transient
quantity that crucially depends on the duration of induction.
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Fig. 3.7 Cell response distribution. Cell response probability after 10 h (top: a, b) and 100 h
(middle: c, d) of induction at different autoinducer concentrations for the lux01 (left: a, c) and
lux02 (right: b, d) operons in the stochastic model. The distribution reveals the coexistence of
two subpopulations with low and high GFP expression when the cells are induced at intermediate
autoinducer concentrations. The region of bistability (precision) is defined by the range of cA� for
which the response is bimodal according to the following criterion: the lower/upper limit of the
bistable region (orange lines) is defined by the value of cA� for which 90 % of the cells are in the
low/high state. The black line stands for the concentration of GFP (normalized) as a function of cA�

in the deterministic model at the steady state. After 10 h of induction (top: a, b) most cells are still
in a transient state if cA� < 70 nM. After 100 h of induction (middle: c, d), the bimodality region
shrinks and the precision increases. The population average curves of the induction and dilution
experiments in the stochastic model (bottom: e, f, dashed lines) show that the intrinsic noise allows
cells to jump to the high state inside the deterministic bistable region. On the other hand, the
transition from high to low follows the deterministic path, thus indicating that the switching rate in
this case is close to zero

For the same concentration of the external autoinducer, the stochastic dynamics
of the regulatory network arises from the noise at the level of LuxI and LuxR. By
taking the lux02 operon as a reference case, we analyze the individual contribution
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Fig. 3.8 Cell response distribution in the transient regime for different burst size values. Cell
response distribution (jumping probability) after 10 h of induction (transient state) at different
autoinducer concentrations for the lux02 operon in the stochastic model and different burst sizes.
Burst size values (a) bR D bI D 20 (b) bR D 4; bI D 20 (c) bR D 20; bI D 4 (d) bR D bI D 4

(e) bR D bI D 0:01. Width of bistable region: (a) = 60 nM (b) 25 nM (c) 70 nM (d) 27.5 nM (e)
25 nM. The black line stands for the concentration of GFP (normalized) as a function of cA� in the
deterministic model at the steady state

of those network components by modulating the burst size of LuxR and LuxI
(bR and bI , respectively). Thus, in Fig. 3.8 we plot the GFP expression probability
for the lux02 operon after 10 h of induction and for different values of the burst size
bR and bI . Notice that the region of bimodality does not vary when changing the
burst size for LuxI. However, decreasing the burst size in LuxR reduces the region
of bimodality, thus increasing the precision of the switch. Furthermore, the noise at
the level of LuxR helps some cells to become activated at lower concentration levels
of the autoinducer. Once more, this phenomenon does not depend on the levels of
noise of LuxI. That is, while the global coordination increases as the noise of LuxR
decreases, more concentration of the autoinducer is required to start activating cells.
On the other hand, Fig. 3.9 shows that under long induction time conditions (100 h)
the precision of the switch remains constant regardless of the value of the burst size
of LuxR or LuxI.

3.3.5 Activation Time Statistics: QS Cells Jump
on the Bandwagon

Further insight about the role of noise of individual components and the induction
time in the activation process for regulating the precision of the QS switch can
be obtained by computing the so-called mean first passage time (MFPT). This
quantity evaluates the average time it takes to a cell to become activated (high state)
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Fig. 3.9 Cell response distribution at the steady-state for different burst size values. Cell response
distribution at the steady-state (100 h induction), at different autoinducer concentrations for the
lux02 operon in the stochastic model for different burst size values: (a) bR D bI D 20 (b) bR D
bI D 4 (c) bR D bI D 0:01. The probability density of getting a particular GFP expression
level is indicated by means of a density plot. The width of bistable region barely depends on the
stochasticity levels, � 7 nM. The black line stands for the concentration of GFP (normalized) as a
function of cA� in the deterministic model at the steady state

starting in an unactivated situation (low state) [55]. Taking again the lux02 case as a
reference, Fig. 3.10 shows the MFPT as a function of cA� and for different values of
the burst size of LuxR and LuxI. For the sake of comparison, we also compute the
MFPT for the deterministic solution. As for the latter, we note that the MFPT inside
the bistable region is infinite, since the deterministic system cannot spontaneously
jump from one stable state to the other without the help of noise. In agreement
with the results shown above, changing the burst size of LuxI does not modify the
mean first passage time whereas changing the noise at the level of LuxR clearly
modifies the jumping statistics. Moreover, the results reveal a nontrivial behavior of
the MFPT as a function of the concentration of the autoinducer. On the one hand,
with respect to the activation dynamics, when cA� is below � 25 nM, an increase
in LuxR noise decreases the mean time of the activation. That is, LuxR noise helps
cells to get activated quicker. On the other hand, above � 25 nM of autoinducer
concentration, the effect is the opposite: an increase in LuxR noise slows down the
cell activation. We also note that, surprisingly, when the autoinducer concentration
is above the critical concentration of the deterministic system, cA� � 25 nM, the
stochastic system always takes more time to get activated than the deterministic
case. That is, in that case the noise does not help cells to get activated but to remain
in the unactivated state.

By computing additional statistical properties of the first passage time we can
clarify the behavior of the precision depending on the induction time. In particular,
one can compute the times tlow and thigh for which, at a given cA� concentration, the
probabilities of finding an FPT< tlow and an FPT> thigh are 10 %, i.e. the 10 % and
90 % quantiles, respectively. The shadings in Fig. 3.10 delimit these regions for the
cases bR D bI D 20 and bR D bI D 0:01. Thus, the precision of the switch after n

hours of induction is directly related to the width of the shaded region at hFPTi D n

hours: at any given time, this width indicates which is the minimal concentration
of autoinducer for getting 10 % of cells already activated and also the concentration
beyond which more than 90 % of cells have been activated. Thus, in agreement
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Fig. 3.10 Mean first passage time of cell activation for different burst size values for the lux02
case. Mean first passage time of cell activation (lines) as a function of autoinducer concentration
for different values of the burst size for LuxR (bR) and LuxI (bI ) and for the deterministic solution.
The lower (upper) limit of the shaded regions is the 10 % (90 %) quantile curve of the distribution
of FPT for the cases bR D bI D 20 (blue shaded region) and bR D bI D 0:01 (green shaded
region). The distribution of the FPT for cA� D 100 nM; bR D bI D 20 is plotted on the side as an
example. The MFPT reveals a nontrivial behavior: for low autoinducer concentration noise helps
cells to jump quicker to the high state, while for high autoinducer concentration noise slows down
the cells activation. Intersections of the quantile 10 % and quantile 90 % curves with a horizontal
line at t D 10 h indicate the autoinducer concentration for which 10 % of cell trajectories have
jumped to the high state (left arrow) and the concentration for which 90 % of cell trajectories
have been activated (right arrow). The precision after 10 h of induction (inversely proportional to
the width of the region delimited by the arrows) increases when decreasing the noise in LuxR

with Fig. 3.7, the induction time clearly modifies the precision: it increases (the
width of the shading decreases) as the induction time becomes larger and becomes
independent of the noise intensity for large induction times. Note also that as the
LuxR noise weakens the precision increases.

3.3.6 Solving a Noisy Mystery: The Fluctuations Modify
the Phenotypic Landscape

The analysis of the FPT statistics poses an intriguing question about the role of noise
in the QS switch. Namely, below a “critical” concentration of autoinducer LuxR
noise helps cells to become activated and above LuxR noise helps cells to remain in
the unactivated state. The complexity of the detailed model presented above makes
very difficult to find the reasons for this counterintuitive behavior. However, the fact
that this effect is independent of the LuxI noise levels points towards the direction
that the underlying reason does not depend on the communication process but on
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Fig. 3.11 Scheme of the genetic auto-activating switch model. The expression of gene x leads to
protein X that after oligomerization binds to its own promoter acting as an self-activator

the network architecture. Therefore, we can analyze a “simple” system that shares
the network motif driven by LuxR and try to draw conclusions.

The basic motif underlying regulation in QS is a positive feedback loop. In
that regard, the simplest system that shares such network scheme is the so-called
auto-activating switch [56, 57]. In this genetic circuit, a protein forms an oligomer
that binds to the promoter region of its own gene and activates its expression (see
Fig. 3.11). As shown elsewhere [16], this regulatory process can be effectively
described by the Hill function formalism and leads to the following deterministic
equation for the concentration, x, of protein:

:
x D r C axn

Kd C xn
� k5x (3.43)

where r is the basal expression rate (due to promoter leakiness), a the maximum
production rate (efficiency of the auto-activation), n the cooperativity (oligomer-
ization index), Kd the concentration of protein yielding half-maximum activation,
and k5 the degradation rate. In this simple model x and a play the role of the GFP
expression levels and the external concentration of autoinducer in the QS switch,
respectively.

Alternatively, the dimensionless version of (3.43) reads

:Qx D Qr C Qa Qxn

1C Qxn
� Qx (3.44)

with Qx D x
n
p

Kd
, Qt D k5t , Qa D a

k5
n
p

Kd
, Qr D r

k5
n
p

Kd
.

If n > 2 and
�
3
p

3
��1

> Qr > 0, then the system exhibits a bistable behavior
(phenotypic variability) for a range of values of Qa. Here we choose n D 2 and Qr D
0:12 such that there is a bistable region as in the case of the QS switch. The points
.x0; a0/ that define the bistable region correspond to the solutions of the polynomial
equations [58],
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Fig. 3.12 Bifurcation diagram (phenotypic landscape) of the genetic auto-activating switch
model. Bifurcation diagram of the autoactivating switch under deterministic (blue line) and
stochastic conditions: red, green, and orange lines stand for the analytical location of the
probability extrema for different noise intensities (see legend). The open circles indicate the results
of numerical simulations of the case QV D 10. The probability density of that case is also depicted
by means of a density plot (logarithmic scale). The bistable region of the deterministic system gets
delimited by the points .x0; a0/ (squares). Note that noise stabilizes the low state and the bistable
region expands

0 D Qr C Qa0 Qx2
0

1C Qx2
0

� Qx0 (3.45)

0 D 2 Qa0 Qx0

.1C Qx2
0/2
� 1: (3.46)

Figure 3.12 shows the stationary solution, Qxst, as a function of Qa where set of
points .x0; a0/ are highlighted. Note that this bifurcation diagram reflects a situation
akin to that of the QS switch.

If we now consider the biochemical fluctuations, the stochastic description of the
system reads [16, 59]

:Qx D Qr C Qa Qx2

1C Qx2
� Qx C �.t/

s

Qr C Qa Qx2

1C Qx2
C Qx (3.47)

where the noise term must be interpreted according to Itō and the statistical
properties of the fluctuations are
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Fig. 3.13 First passage time and switching rate for the genetic switch. Mean first passage time
(MFPT) for the genetic switch from the low stable state to the high state for different volume sizes,
i.e. noise intensities (see legend). The solid lines correspond to the analytical solution and the
circles to the Gillespie simulations. The deterministic bifurcation curve (dashed line) is depicted
with an arbitrary y-scale in order to visualize the deterministic bistable region. Depending on the
value of Qa, the MFPT increases or decreases with the intrinsic noise intensity

h�.t/i D 0 (3.48)

h�.t/�.t 0/i D Q�2ı
�
t � t 0� : (3.49)

In this case, the intensity of the fluctuations is related with the cellular volume such
that Q�2 D 1= QV , where QV D V n

p
Kd is the dimensionless volume.

Interestingly, the location of the bifurcation points that define the bistable region
gets modified by the noise such that the low protein concentration state becomes
more stable. An effect referred to as the stochastic stabilization of a phenotypic
state [58]. Figure 3.12 shows this effect and reveals that the low state extends its
stability with respect to the deterministic system.

The FPT statistics is related to the structure of the bifurcation diagram since
the former evaluates the amount of time required to jump to a stable state. Thus,
Fig. 3.13 shows the MFPT as a function of the control parameter Qa for different
volumes, namely noise intensities. We can observe the same counterintuitive
behavior reported on the QS switch: depending on the value of Qa (equivalent to the
concentration of autoinducer in the QS switch), the MFPT increases or decreases
with the intrinsic noise intensity. This effect can be now easily explained in terms of
the modification of the bifurcation diagram due to noise that extends the stability
of the low state. Up to the value of the control parameter where there is the
bifurcation point of the deterministic system, the fluctuations help cells to jump
to the high state. Beyond that point, the deterministic system “immediately” jumps.
However, the stochastic system gets “trapped” in the low state. This causes the FPT
to increase with respect to the deterministic situation such that the larger the noise
the larger the FPT since the low state becomes more stable. In the context of the
QS switch these results reveal that LuxR noise controls the precision by modifying
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the phenotypic landscape and at the same time raises the following question: how
comes LuxI noise has no effect on the QS phenotypic landscape? Note that LuxI
fluctuations are transmitted to the autoinducer at the end. Yet, the diffusion process
effectively averages out the fluctuations of the signaling molecule (see Sect. 3.2.5).
That is, the effective cellular volume “perceived” by LuxI is the total volume of the
cells. This is not possible for LuxR which is not driven by diffusion and is kept
within the cell. As a result, the activation complex is susceptible to the fluctuations
of LuxR but not to those of LuxI.

3.4 Discussion

In this chapter we have reviewed some studies that reveal the importance of
stochasticity in QS. We first explored the role played by cell–cell communication
and transcriptional noise in QS systems near the activation threshold where luxI is
expressed at a low constitutive level such that the feedback regulation (autoactiva-
tion) can be disregarded. Under these conditions we have shown that the interplay
between the diffusion and the mRNA dynamics plays a crucial role for regulating the
total amount of noise. Thus, transcriptional noise is the main contribution to the total
noise for a large range of diffusion values and only for large values of the diffusion
the intrinsic noise is the major source of stochasticity. Importantly, we have shown
that the total noise shows a non-monotonic behavior as a function of the diffusion
rate that indicates a mechanism to reduce the signal to noise ratio.

Herein we have also introduced the concept of precision in the QS switch: a
meaningful measure of the synchronization of the cells based on the homogeneity
of the collective cell response. A small precision means a bimodal response over
a broad range of autoinducer concentrations, producing a graded response at the
population level. A high precision means a response that is mainly monomodal and
a bimodal response over a narrow range of autoinducer concentrations, providing a
steep response at the population level. The precision is highly dynamic and critically
depends on the induction time and, importantly, on the noise levels of LuxR that
influences the probability of a cell to jump from the deactivated to the activated
state (change of phenotype). In addition, we have revealed that the noise at the level
of LuxI does not modify the phenotypic landscape and consequently has no effect
on the precision of the QS switch.

Interestingly, recent experiments have revealed the presence of additional reg-
ulatory interactions for controlling the LuxR noise levels. For example, C8HSL
molecules, a secondary QS signal in V. fischeri, has been suggested to reduce the
noise in bioluminescence output of the cells at low autoinducer concentrations [42].
In the same direction, in V. harveyi, the number of LuxR dimers is tightly regulated
indicating a control over LuxR intrinsic noise [44]. In fact, wild-type V. harveyi
strains have two negative feedback loops that repress the production of LuxR [60]
and this kind of regulatory circuit is known to reduce noise levels [61]. In this
context, the results reviewed here provide a feasible explanation for the network
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structure in wild-type strains: since noise in LuxR controls the phenotypic variability
of LuxR/LuxI QS systems, bacteria may have evolved mechanisms to control its
noise levels. An additional argument in this regard arises from the simulation results
about the deactivation process: once cells are fully induced the reversibility of the
phenotype is a pretty rare event (FPT larger than 100 h). Thus, it makes sense that
wild-type strains have additional interactions that regulate negatively luxR [45–47].
Moreover, it indicates that synthetic strains as lux01 and lux02 may summarize most
features of the wild-type operon during the activation process but they fail to capture
aspects of the deactivation phenomenon.

In regards to the importance of non-stationary effects, most works assume steady
conditions. However, we have shown that the time for reaching a steady state of cell
response distribution is much larger than the duration of the cell cycle. This is in
agreement with experimental results [43] as well as with another stochastic model of
QS transition in Agrobacterium tumefaciens [62]. In our simulations, the population
of cells needs �30 h to reach a steady-state when induced at 50 nM of autoinducer
and that this time is even larger close to the critical concentration of activation [18].
In most laboratory experiments studying the QS transition, the typical experimental
run or time of culture growth before measurement rarely exceeds 20 h [43,44,57,63,
64], after which the expression of genes is assumed to reach a steady-state. While
a modeling approach is certainly a crude simplification of the real genetic network,
the results suggest that special care should be taken about transient effects when
studying the population-wide QS response. Indeed, bistable gene networks are often
associated with slow response time compared to graded-response gene networks
[65, 66].

While speculative, these results about the importance of non-stationary effects
can be extrapolated to growing colonies where the cell density is not kept constant
as in our simulations or in the experiments we reproduced [18,43]. A good supply of
nutrients implies short induction times since the concentration of autoinducer will
quickly grow (exponentially) as the population size does. According to our results,
this fast growing condition decreases the precision of the switch and, consequently,
promotes variability at the population level (see Fig. 3.14, fast growth line). In
addition, the full collective activation of the system would require a large population
size (i.e., more autoinducer).

On the other hand, if the colony grows in an environment poor in nutrients, the
concentration will increase slowly and the system will have time to reach the steady-
state response (see Fig. 3.14, slow growth line). In this case, the precision would
increase, the variability would be diminished, and full activation would require
smaller colony sizes. Most phenotypic changes induced by the QS mechanism refer
to bacterial strategies for survival and/or colonization. In this context, these results
suggest that both the QS activation threshold and the phenotypic variability might
depend on the growth rate of the colony and, as a consequence, on the environmental
conditions. This is in fact in agreement with recent studies that show that the
collective response of a population of cells depends not only on the underlying
genetic circuit and the environmental signals but also on the speed of variation of
these signals [67].
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Fig. 3.14 The growth rate conditions the phenotypic variability. In the context of a growing
colony, the autoinducer concentration increases as the colony does: arrow lines show schematically
two exponential growth conditions for the autoinducer concentration as a function of time. Our
results on the MFPT, valid at fixed autoinducer concentrations, can be extrapolated, qualitatively,
to the case of increasing autoinducer levels. Fast growth results in a large cell variability and
large critical colony size for achieving a global response, while slow growth produces reduced
cell variability and a smaller critical population size. Increasing fluctuations in LuxR have two
opposite effects: in the slow growth case, increasing the noise (dark circles/shading: bR D 20;
light squares/shading: bR D 0:01) decreases the critical population size while hardly changing
the variability, in the fast growth case, increasing noise increases the critical population size and
increases greatly the variability

Finally, we have observed a counterintuitive effect of LuxR gene expression noise
in the dynamics of the QS activation. For high concentration of autoinducer (above
�25 nM) an increase in the noise intensity slows down the mean activation time.
This effect is the opposite of what would be expected in the case of a bistable
autoactivating switch with additive noise or extrinsic fluctuations [68]. In order to
address this puzzling result, we have introduced a simple model that summarizes
the underlying LuxR/LuxI motif: the autoactivating switch with a positive feedback
loop. Thus, we have shown that intrinsic noise modifies the bifurcation diagram
(phenotypic landscape) and stabilizes the low state of the cells; an effect that we
call stochastic stabilization.

Our final comment refers to the possibility of considering other sources of
stochasticity that may play a crucial role in QS. Cell-to-cell variability and extrinsic
noise have been proved key in many cell processes [35, 49, 50, 69]. In the context
of the problems studied herein, the results suggest that variability, either at the
level of the mRNA dynamics or at the level of the diffusion rate, can effectively
lead to significant changes in the reported phenomenology. However, theoretical
studies [19, 70] suggest that the QS synchronization is robust to the variability in
the diffusion rate and extracellular noise. Thus, whether or not these additional
noise sources may generate new effects in the framework of QS is not clear yet
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and further research is needed. In any case, stochasticity in QS is key for describing
adequately the bacterial communication phenomena and therefore it is a promising
field of research that will continue flourishing in next years.
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