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Chapter 1
Introduction

Stephen J. Hagen

Many bacterial species engage in the behavior known as quorum sensing (QS),
which can be described as the regulation of gene expression in response to changes
in the bacterial population density [1]. The bacteria synthesize and release diffusible
small molecules known as autoinducers, which accumulate in the environment.
When the concentration of autoinducer (AI) reaches a threshold level, indicating the
presence of a “quorum” of cells, the population responds as a whole by activating
certain gene regulatory networks, leading to colony-wide changes in phenotype.
A wide range of bacterial behaviors are now known to be regulated through
QS. These include biofilm production, genetic competence, bioluminescence, vari-
ous types of motility, and the production of exoenzymes, toxins, bacteriocins, and
other types of virulence factors and secreted products. As the collective production
and detection of the autoinducer signal allows the entire population to synchronize
gene regulation, quorum sensing (QS) is a form of chemical communication and a
social behavior. Accordingly it has attracted tremendous interest from researchers
in many fields.

QS gene regulatory networks respond not only to bacterial population as indi-
cated by autoinducer signals but also to a range of physiological and environmental
inputs [2, 3]. While a host of individual QS systems have been characterized in great
molecular and chemical detail, quorum communication raises many fundamental
quantitative problems. These problems are attracting the attention of physical
scientists and mathematicians: How does QS function in complex, spatially struc-
tured environments such as biofilms? What kinds of information can a bacterium
gather about its environment through QS? What physical principles ultimately
constrain the efficacy of diffusion-based communication? How do QS regulatory
networks maximize information throughput while minimizing undesirable noise
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2 S.J. Hagen

and crosstalk? What can we learn from computation and modeling of QS systems?
The chapters in this volume address these physical, quantitative questions. With
contributions by leading scientists working in the field of physical biology, it exam-
ines the interplay of diffusion and signaling, collective and coupled dynamics of
gene regulation, environmental manipulations, and spatiotemporal QS phenomena.

The chapter by Arnab Bandyopadhyay and coworkers introduces the topic with
a broad overview of QS regulation. It then presents a detailed case study of a
classic QS system, the lux genes that regulate the natural bioluminescence of
the marine bacterium Vibrio harveyi. As one of the best known and best studied
QS systems, the lux system of V. harvei has been the target of a wide array of
sophisticated experimental techniques as well as detailed theory and modeling
aimed at understanding the role of feedback, noise, robustness, kinetics, and other
phenomena in its signal transduction. The chapter summarizes some key approaches
in the modeling of QS at the population level as well as at the single-cell level. It
compares the V. harveyi system to the closely related QS system in Vibrio cholerae.
It also describes what can be learned by studying QS regulation at the single-cell
and single-molecule levels.

The dynamics of QS circuits have been a subject of particular interest for
theorists. The chapter by Marc Weber and Javier Buceta investigates the relation-
ship between diffusion, stochasticity, and switching in QS, with a focus on the
LuxI/LuxR system. Using a simplified model of a noisy LuxI/LuxR circuit, the
authors examine how the rate of diffusive or active transport into and out of the
cell affects fluctuations in the intracellular autoinducer concentration. They find
evidence that tuning the rate of diffusive transport could be one way for the cell
to optimize noise performance. They also introduce the concept of “precision” in
QS response in order to analyze the effect of bursting transcription on the range
or window of environmental conditions that permit a bistable response. Finally
they show how stochasticity in gene expression can either accelerate, or delay the
transition between the activated (on) and inactivated (off) states of the QS circuit.

It is important of course to consider the environmental context in which QS
circuits operate. The chapter by James Boedicker and coworkers examines the struc-
tured microbial communities and the physical factors influencing communication
and cooperation in these communities. The authors summarize the types of spatial
structures and environments in which bacterial communities are found, including
soils, aggregates, and surfaces in fresh and salt water, and in the human body. They
summarize the biophysical problem of signaling by diffusion, its length and time
scales as they apply to microbiology, and the activation time scales of the gene
regulatory systems that respond to diffusing signals. The authors then survey the
growing research interest in artificially engineering cell organization and spatial
arrangements, including microfabrication methods as well as schemes for single-
cell manipulation. Such approaches hold potential for greater understanding of
complicated microbial systems such as “unculturable” bacteria. The authors close
by considering future research directions in the investigation of how the structure of
microbial communities affects their composition and function.
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The chapter by Burkhard Hense goes into greater detail on such issues by
reviewing the interpretation of QS behavior and its physical function and capability.
It discusses the ecological function of autoinducer production and the ways that it
can permit the sensing of population as well as environment, efficiency sensing,
and how bacteria use QS to control not just specific targeted genes but larger
lifestyle transformations (activation of virulence factors, etc.). In a case study of QS
regulation of bioluminescence, Hense considers the hypothesis that QS regulated
bioluminescence may have first emerged as a mechanism for relieving oxidative
stress by removal of molecular oxygen from the environment. That is, QS does
not so much produce a public good but remove a negative from the environment.
The chapter also explores the role of nutrient in QS regulation. It presents an
argument that QS signals may provide useful means for cells to communicate about
nutrient deficiency in spatially structured environments. It then describes a model in
which AI production that is sensitive to nutrient concentration leads to spatially
nonuniform AI production in a bacterial colony. The chapter also discusses the
concept of “push” and “pull” modes of regulation in quorum sensing, through which
QS seems to permit a complex or contextual response of a cell not only to its own
local conditions but also to conditions faced by neighboring cells. Finally the chapter
discusses the possibility that AIs are not necessarily intended to signal population-
wide but may often be aimed at signaling only at the level of cell clusters.

In any communication system it is important to understand how the signal
interacts with the medium through which it travels. Very often autoinducer signals
must diffuse through a biofilm composed of extracellular polymeric substances
(EPS) secreted by the microorganisms. Quorum sensing signals encounter many
types of physical and chemical interactions and obstacles as they diffuse through
this matrix, with consequences for the physical range and time scales of bacterial
signaling. The chapter by Alan Decho reviews the complex physical and chemical
properties of AHL signals as well as those of the EPS matrix. It describes the
chemical and spatial composition, microstructure, and physical flexibility of the
matrix, as well as the ways that it interacts with the diffusion of signals and other
small molecules. The chapter also describes how experimental techniques such
as Raman spectroscopy and cryo-TEM tomography can be used to study biofilm
composition and structure at high spatial resolution.

The physical process of signal diffusion is clearly central to autoinducer signaling
in heterogeneous, structured environments such as biofilms. Many authors have
suggested that cells in such environments can use QS individually to gather
information about their surroundings [4, 5]. The chapter by Steve Hagen examines
quorum sensing from the perspective of a single cell. It asks what kinds of
information a cell can gather about its physical environment by producing and
detecting a diffusing signal, and what are some of the limitations on information
gathering. The chapter also describes how information theory can shed some light
on the evolutionary optimization of quorum sensing circuits.

The chapter by Avraham Be’er and coauthors steps away from the single-
cell level and investigates the social uses of bacterial signaling. It addresses the
question of how a colony of bacteria can detect—or inhibit the growth of—another
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nearby colony of the same species. The authors study an inhibitory behavior in the
bacterium Paenibacillus dendritiformis, where the close proximity of neighboring
sibling colonies induces the transition from a rod-shaped phenotype to a slower-
growing cocci phenotype. The authors show that the organism produces a species
specific bacteriocin protein (Slf) that promotes the transition to the cocci form.
Interestingly, the rods also produce a signal, designated Ris, that promotes the
transition from the cocci back to the rod phenotype. They performed mathematical
modeling that shows that autoregulation of the concentration of growth-promoting
subtilisin in the colony is the key. Diffusion of subtilisin from a neighboring colony
disturbs the carefully regulated subtilisin concentration, leading to production of Slf
and driving the transition to the cocci form with hindered growth.

One of the salient features of the architecture of many quorum sensing regulatory
circuits is the presence of feedback and nonlinearity. These can often give rise to
complex and important properties such as switching, bistability, or even multista-
bility. In their chapter, Sara Jabbari and John King provide a review of some of
the most important quorum sensing circuit architectures and the role of feedback
in those systems. They construct simple, deterministic models for several classic
quorum sensing systems and use these models to analyze the role and consequences
of feedback in those systems. They show how positive and negative feedback can
shape the overall character of the regulatory behavior (e.g., bistability) as well as the
tuning of signal and regulatory levels and the suppression of noise in the system.

Motility is one behavior in bacterial colonies that is often regulated through QS.
There are many mechanisms of bacterial motility in addition to planktonic swim-
ming; swarming behavior is a particularly interesting form of spreading on a moist
surface. It is quorum-regulated and is facilitated through the physical-chemical
properties of the colony biofilm. The chapter by Raf De Dier and coworkers
discusses how the production of surfactants and their concentration gradients give
rise to a Marangoni effect that aids in the physical spreading of the biofilm. They
present comparisons of simulations and experiments that show how depth profiles,
spreading patterns, and swarming speed in biofilms can be understood in physical
terms through modeling of such forces.

One innovative approach to studying the role of spatial organization in bacterial
signaling is to create synthetic assemblies of cells using micromanipulation and
tissue-engineering methods. The chapter by Edward Nelson and coauthors describes
how optical tweezers and photopolymerizable gels can be used to assemble and
immobilize engineered cells into synthetic, biofilm-like arrays. When such arrays
are constructed in a microfluidic environment, the overall physical geometry as
well as the chemical environment for the synthesis and diffusion of quorum
sensing signals can be kept under tight experimental control. The authors placed
autoinducer-synthesizing cells in fixed locations and positions with respect to AHL
receiving cells and studied the kinetics of the signaling and response via fluorescent
reporter proteins. Interestingly, they found that the amplitude of the response is
much more sensitive to physical location in the array than is the timing of that
response—an issue addressed also in the chapter by Hagen. They also measured
an interesting ‘blinking’ phenomenon in the output of the quorum sensing circuit at
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the level of individual cells. This phenomenon can be linked to a sort of epigenetic
memory in the regulation of the intracellular receptor of autoinducer; this memory
appears to permit some heritable training of the cells in a population, minimizing
the population-wide variability in the response to a given environmental condition.

Finally, one can also use QS as a tool for studying problems in evolution and ecol-
ogy. The article by Robert Smith and coworkers takes a synthetic biology approach
toward understanding how social behaviors of communication, cooperation, and
competition lead to costs and benefits in mixed-strain cultures. The authors have
engineered a variety of mixed-strain systems in which QS signals manipulate and
interact with predator–prey relationships, the costs and benefits of cheating versus
cooperation, antibiotic resistance, the production of public goods, and even altruistic
cell death. The article shows how designed synthetic systems can help us to test and
advance our ideas about the relationship between cell-to-cell communication and
important ecological and evolutionary phenomena.

The goal of this volume is to educate interested scientists in a range of fields on
the application of physical and mathematical ideas, together with appropriate mod-
eling and experimentation, toward the understanding and interpretation of microbial
quorum communication. It is hoped that the volume succeeds in conveying the
importance of microbial signaling and communication as well as the richness of
the signaling behaviors and systems that exist in nature. This author gratefully
acknowledges the efforts of the many contributors to this volume.
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Chapter 2
Modeling of Signal Transduction
by the Quorum-Sensing Pathway in the Vibrios

Arnab Bandyopadhyay$, Andrew T. Fenley$, Suman K. Banik,
and Rahul V. Kulkarni

2.1 Introduction

Bacterial survival under changing conditions is critically dependent on regulatory
networks that sense and respond to environmental fluctuations. A prominent exam-
ple is the global regulatory network responsible for quorum sensing, commonly
defined as the regulation of gene expression in response to cell density [1]

During the process of quorum sensing, each bacterium generates, secretes,
detects and responds to extracellular signaling molecules called autoinducers.
Changes in the concentration of autoinducers at any given time are directly related
to changes in the local cell density, and differential expression of quorum sensing
regulated genes occurs when the autoinducer concentration exceeds a critical thresh-
old. This observation suggests that bacteria undertake certain cellular activities
once a “quorum” is present, hence the name quorum sensing. Consistent with this
interpretation, it is observed that quorum sensing often leads to the regulation of
cooperative processes such as bioluminescence, secretion of virulence factors, and
biofilm formation [1–3].

$Authors contributed equally.

A. Bandyopadhyay • S.K. Banik
Department of Chemistry, Bose Institute, 93/1 A P C Road, Kolkata 700 009, India

A.T. Fenley
Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California
at San Diego, La Jolla, CA 92093-0736, USA

R.V. Kulkarni (�)
Department of Physics, University of Massachusetts, Boston, MA 02125, USA
e-mail: rahul.kulkarni@umb.edu

© Springer ScienceCBusiness Media New York 2015
S.J. Hagen (ed.), The Physical Basis of Bacterial Quorum Communication, Biological
and Medical Physics, Biomedical Engineering, DOI 10.1007/978-1-4939-1402-9__2

7

mailto:rahul.kulkarni@umb.edu


8 A. Bandyopadhyay et al.

In a given bacterial species, autoinducer molecules are produced and recognized
by specific synthases and sensors, respectively. Binding of a particular autoinducer
by its cognate sensor leads to changes in signal transduction via downstream
phosphorelay networks. These networks are typically composed of orthodox two
component systems (TCS) including a histidine based sensor kinase and an aspartate
based response regulator [4, 5] or more complex phosphorelay networks. The
combination of kinase/phosphatase activities of different sensors determines the
phosphorylation state of the regulator which, in turn, affects its activity as a
transcription factor and can lead to global changes in downstream gene expression.

While there are many bacteria capable of QS, this chapter will primarily focus
on theoretical modeling efforts aimed at understanding signal transduction within
one of most studied model organisms, Vibrio harveyi. V. harveyi is a gram-negative,
bioluminescent, free-living marine bacterium, which is also an important pathogen
for marine organisms. Experimental studies have led to a detailed characterization
of regulatory elements in the pathway [6–9]. The signal transduction network in V.
harveyi (shown in Fig. 2.1) includes multiple autoinducers and their cognate sensor
proteins acting together to control the phosphorylation of the response regulator
protein, LuxO. The phosphorylated form of LuxO then activates the production
of multiple small RNAs (sRNAs) that in turn post-transcriptionally repress the
QS master regulatory protein, LuxR. At low cell density, the sRNAs are activated
and act to effectively repress LuxR expression. In contrast, sRNA production is
significantly reduced at high cell density, thereby giving rise to increased levels
of LuxR which leads to the activation of luminescence genes. The corresponding
luminescence output per cell profile (i.e., colony luminescence/cell output as a
function of cell density) is frequently used as a reporter to characterize the state
of the QS pathway.

Although there has been considerable effort focused on experimentally charac-
terizing the V. harveyi QS signal transduction network (see [10]), the corresponding
theoretical efforts for modeling the QS network have been relatively limited
[11–15]. A detailed theoretical model of the QS network that agrees with known
experimental results can lead to a framework for making testable predictions and
provide fundamental quantitative insights into the process of quorum sensing. In
what follows, we describe key elements towards building such theoretical models
and discuss the current progress in the literature.

2.2 Signal Transduction Network

The key components of the QS network pathway in V. harveyi are shown in Fig. 2.1.
At the top of the pathway are the three sensors, LuxN, LuxPQ, and CqsSVh.
Their corresponding autoinducer synthases, LuxM, LuxS, and CqsAVh are respon-
sible for producing the three autoinducers: H-AI1, AI-2, and CAI-1, respectively.
Biochemically, H-AI1 belongs to acyl homoserine lactones, whereas AI-2 is a
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Fig. 2.1 The V. harveyi quorum sensing gene network. (Left) Low cell density state and (Right)
high cell density state. V. harveyi secretes and detects the concentrations of three different
autoinducers (CAI-1, HAI-1, and AI-2). At low cell density, phosphorelay networks transfer
phosphate groups to the protein LuxU. LuxU then transfers the phosphate groups to the protein
LuxO which, when phosphorylated, is responsible for promoting the production of sRNAs (Qrrs).
The sRNAs are responsible for post-transcriptional repression of LuxR. At high cell density, the net
flow of phosphate groups reverses direction which reduces the production of the sRNAs resulting
in higher LuxR concentrations and activation of bioluminescence

set of inter-converting molecules derived from the shared precursor 4,5-dihidroxy-
2,3-pentanedione, with its active form containing boron. Although originally, CAI-1
has been purified from a related bacteria, Vibrio cholerae, its presence and role in the
QS network of V. harveyi has been detected and identified as (S)-3-hydroxytridecan-
4-one [6].

The membrane bound histidine kinases are highly specific to the autoinducer they
bind. HAI-1 binds only to LuxN histidine kinase. AI-2 is detected by the periplasmic
protein LuxP which is in a complex with the LuxQ histidine kinase. And CAI-1
binds specifically to CqsSVh histidine kinase. All the three sensors, LuxN, LuxQ,
and CqsSVh are two-component enzymes of dual functionality, i.e., they can act as
kinases as well as phosphatases.
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2.2.1 Core Motifs

The signal transduction network in V. harveyi can be conveniently described in terms
of functional modules [11, 13]. The first (or input) module includes interactions
between autoinducers and the corresponding sensor proteins which, through a
phosphorelay mechanism, determines the overall phosphorylation state of the
response regulator LuxO. At low cell density, the sensors are primarily in kinase
mode leading to ATP driven autophosphorylation at the conserved histidine kinase
domain of the sensors. The phosphate group is next transferred to the conserved
aspartate receiver domain present at the C-terminus of each receptor. All the sensors
can then transfer their phosphate group to the intermediary phospho-transfer protein,
LuxU, which subsequently transfers the phosphate to the response regulator protein,
LuxO. LuxO, when phosphorylated, acts as transcriptional activator.

The second module focuses on the regulated production of quorum sensing small
RNAs (sRNAs) (depending on the phosphorylation state of LuxO) and the interac-
tion between the sRNAs and the master regulator protein, LuxR. Phosphorylated
LuxO in conjugation with �54-loaded RNA polymerase activates transcription of the
five sRNAs, known as Qrr1-5. At LCD, the transcribed Qrr sRNAs, with the help of
the RNA chaperone Hfq, destabilize LuxR by base pairing with luxR mRNA. The
sRNA-mRNA complex is then degraded by the system which effectively leads to
post-transcriptional repression of LuxR protein [9, 16].

At high cell density, the amount of autoinducers in the extracellular matrix
exceeds the critical autoinducer concentration. Consequently, the sensors function
primarily as phosphatases which reverses the direction of the phosphate group flow
in the network. The corresponding lowering of LuxO-P levels leads to reduced
transcription of the Qrr sRNAs. This, in turn, relieves sRNA-based repression of
LuxR leading to large-scale changes in gene expression.

The interaction between sRNAs and LuxR has been the focus of several attempts
to model the behavior of the QS transduction network [13, 16–21]. In these studies,
the luxR/LuxR concentration is determined as a function of the expression rate of the
sRNAs. The concentration of LuxR determines the level of activation or repression
of a multitude of genes including the genes involved in bioluminescence [8].
In particular, the phenotypic response of luminescence in V. harveyi is triggered
by the binding of LuxR to the promoter region of the luxCDABE operon. The
corresponding change in the luminescence per cell is frequently used to infer
network characteristics such as the relative rates of kinase/phosphatase activities
by the sensor proteins [6].

2.2.2 Feedback Loops

In V. harveyi, different feedback loops have been identified experimentally that
control the timing of QS transitions. For example, LuxR synthesis is controlled by
an auto-repression loop [22]. In the sRNA-luxR interaction, a different feedback
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loop is in operation. LuxR has been shown to activate Qrr production which in turn
leads to downregulation of luxR mRNA [9]. If the colony switches rapidly from
low cell density to high cell density, this feedback loop can extend the production
of Qrr sRNAs and thus delay entry into the high cell density mode. In the reverse
transition, i.e. rapidly changing from high cell density to low cell density, the same
feedback loop increases the production of Qrr sRNAs and enables cells to rapidly
switch to the low cell density state. Note that, of the five Qrr sRNAs, only qrr2,
qrr3, and qrr4 are known to participate in this feedback loop [9].

Another feedback loop arises from the location of the qrr1 and luxO genes in
the V. harveyi genome. The genes for qrr1 and luxO lie adjacent to one another and
are transcribed divergently. The LuxO binding site in the qrr1 promoter overlaps
with the �35 site of the luxO promoter. Therefore, whenever LuxO promotes
qrr1 expression, it simultaneously represses transcription of its own mRNA via
blocking access to RNA polymerase [3]. Furthermore, LuxO does not need to
be phosphorylated to repress the transcription of luxO. The Qrr sRNAs can also
accelerate the degradation of the luxO mRNA transcript. Finally, recent work has
also demonstrated that the expression of the luxMN operon, encoding the HAI-1
synthase and receptor, is repressed by the Qrr sRNAs [23]. The combination of
these various elements of feedback regulation allows for precise control over LuxO
concentration such that the production of QS sRNAs can be fine-tuned.

2.3 Modeling Approaches

From a modeling perspective, the QS signal transduction network has been explored
using two different approaches: population level models [11,13–15] and single-cell
analysis [12, 19, 23–25].

2.3.1 Population Level Models

The response of the QS network critically depends on the autoinducers and their
interaction with the cognate sensors. The presence of bound autoinducer to the
sensors biases the transition to phosphatase mode for the sensor. Thus, removal
of autoinducers or deletion of the sensors can dramatically alter phosphorelay
kinetics. Figure 2.2 shows the luminescence response of several mutant variants of
V. harveyi [6]. The difference in the luminescence profiles for different mutants can
be used to infer the relative kinase/phosphatase strengths of the different sensors.
These experimental results motivated the development of a minimal theoretical
model based on the input module of the QS network of V. harveyi [11]. The
theoretical formalism uses dimensionless parameters to model the phosphorelay
kinetics from the sensors to the response regulator (LuxO) and is able to explain
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Fig. 2.2 Luminescence profiles for a variety of sensor mutants of V. harveyi as a function of
colony forming units (cell density). Many of the mutants (cqsSVh, luxN cqsSVh, and luxN )
show a canonical luminescence profile similar to wild-type. However, the luxQ and luxQ cqsSVh

mutants show a significantly degraded response. The luxN luxQ double mutant shows almost no
dependence on the size of the colony and remains at maximum light production. The triple mutant
luxN luxQ cqsAVh shows a decay in light production as the colony grows in size

the behavior of different luminescence phenotypes for the WT strain and the mutant
strains.

Important insights into the QS network of V. harveyi have been obtained by
modeling efforts that compare the responses of QS networks of V. harveyi and
V. cholerae. The regulatory networks of these two Vibrios are nearly topologically
equivalent and homologous. However the master regulator of V. cholerae, HapR,
is experimentally characterized as being more robust than LuxR to changes in Qrr
concentrations. A detailed quantitative data driven modeling of the sRNA circuit
related to the QS network of V. harveyi and V. cholerae has recently been proposed
by Hunter et al [14, 15]. In their work, the authors explore the details and origin
of dosage compensation, a phenomenon seen in experiments [26], between the two
Vibrios. Their analysis also includes the proposal of new experiments, the results of
which would provide a better understanding of the QS regulatory networks in the
two Vibrios.

A study by Fenley et al. [13] also explored the different behaviors of the QS reg-
ulatory network between V. harveyi and V. cholerae. They primarily focused on the
equations governing the interactions between the Qrr sRNA and LuxR/HapR mRNA
using a minimal model with parameters based on experimental results. Furthermore,
they investigated how the distribution of the LuxR/HapR protein concentration
within the bacteria changes depending on whether the cells are at low cell density,
high cell density, or at stationary phase. The LuxR/HapR protein distribution across
the population of cells was modeled as a gamma distribution [27, 28] and their
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Fig. 2.3 Modeled luminescence profiles for a variety of sRNA mutants of V. harveyi as a function
of optical density at 600 nm

approach was able to reproduce phenotypic differences between the two Vibrios
for a variety of mutant phenotypes. Experiments have shown that the threshold of
light activation requires a larger cell density for V. cholerae than V. harveyi. The
theoretical model offered an explanation for this experimental observation. It was
postulated that luminescence activation within V. harveyi is entirely governed by
the QS regulatory network, whereas for V. cholerae, luminescence activation occurs
from the combination of the QS regulatory network and additional changes in the
HapR levels associated with entry into the stationary phase.

Fenley et al [13] also calculated the distribution of protein concentrations for dif-
ferent mutants containing only one of the active four Qrrs. The modeled phenotypic
responses of the various Qrr mutants are shown in Fig. 2.3. At low cell density,
all the distributions have regions extending past the threshold for light activation
in V. harveyi resulting in some light production. However, for V. cholerae all the
distributions are below the threshold for luminescence even at high cell density. The
transition into stationary phase moves the mean of the distributions past the thresh-
old and hence luminescence occurs V. cholerae. The authors are thus able to predict
the additive sRNA phenotype in V. harveyi and the redundant behavior in V. cholerae
by assigning different threshold values for light activation between the two Vibrios.

Recent work by Hunter and Keener took a different approach to modeling the
V. harveyi and V. cholerae QS networks in an effort to first explain dosage compen-
sation [15], a phenomenon originally proposed and demonstrated by Svenningsen
et al [26] which provides a way to explain the differences in sRNA behavior between
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the two Vibrios. Dosage compensation occurs when a given Qrr is absent from the
system. The absence of any of the Qrrs should result in the target mRNA rising
in concentration. However, due to a feedback loop, the increase in concentration
of the target mRNA leads to an increase in the production of the rest of the
available Qrrs and thus lowers the concentration of target mRNA to wild-type like
levels. The model proposed by Hunter and Keener [15] shows that Qrr feedback
is unnecessary and insufficient for Qrr redundancy in V. cholerae. They argue that
dosage compensation is not the required mechanism as proposed by Svenningsen
et al [26] behind the Qrr redundancy. Instead, they argue that sRNA additivity seen
in V. harveyi and sRNA redundancy seen in V. cholerae is the result of different
available concentrations of Hfq-Qrr complex needed to bind and degrade the mRNA
transcript of LuxR/HapR.

Hunter and Keener [15] investigate the sensitivity of LuxR/HapR with respect
to Qrr concentrations and find the sensitivity needs to be very small for Qrr
redundancy to occur. Their analysis of the QS network indicates that the network
architecture allows different approaches for maintaining such a low sensitivity. The
first approach involves limiting the available concentration of the Hfq-Qrr complex
which would lower the repression rate of LuxR/HapR by Qrr. This sets up a scenario
where the concentration of LuxR/HapR is high relative to the Hfq-Qrr complex. The
authors show that limitation of the concentration of the Hfq-Qrr complex can be
achieved via a few different network mechanisms: a strong LuxO-Qrr feedback loop,
a weak LuxR/HapR-Qrr feedback loop, a weak affinity of phosphorylated LuxO to
Qrr, a high expression of LuxO relative to LuxR/HapR, and/or by a high expression
of LuxR/HapR relative to Qrr. The other approach to maintaining low sensitivity
results in an opposite situation as the first approach. In this case redundancy is
achieved by saturating all available Hfq with Qrr and thus maximizing the Hfq-Qrr
complex concentration. The authors show that in this second scenario, the repression
of LuxR/HapR then becomes independent of the stoichiometry of Qrr and occurs
when there is: weak LuxO-Qrr feedback, strong LuxR/HapR-Qrr feedback, low
expression of LuxO relative to LuxR/HapR, and/or low expression of LuxR/HapR
relative to Qrr. Based on these results, the authors thus claim that differences in Qrr
feedback are neither necessary nor sufficient to explain Qrr redundancy [15].

2.3.2 Single Cell Analysis

In the QS regulatory network, multiple signals are integrated and funneled through
a single channel to produce the desired network output. To understand the process
of signal integration at the single cell level, Long et al [12] used single-cell
fluorescence microscopy to measure the level of Qrr4-GFP for different sensor
mutants. Their study revealed that in V. harveyi, the QS circuit allows for the
synchronized response of each of the colony forming units towards the change in
the level of the autoinducers. Furthermore, the results give insight into the additive
nature of signal integration in the circuit.
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Accurate measurement of the master regulatory protein within a QS regulatory
network provides valuable information for the determination of model parameters.
To determine the in vivo copy number of LuxR in V. harveyi, Teng et al [25]
employed time lapse fluorescence microscopy [29, 30] and a static snapshot
approach to measure the copy number of LuxR-mCherry. The static distribution
of LuxR over a large population (�3,000 cells) gives an estimate of the Fano factor
(ratio of the variance and the mean) of the protein distribution and the burst size
when LuxR is highly expressed. From the single cell experimental data, the burst
size was found to be �50 dimers when LuxR is highly expressed, i.e., in the high
cell density limit. This in turn gives a measure of the average number of mRNAs
(�11) during a cell cycle. The methodology employed by Teng et al [25] is a general
in vivo technique for measuring the protein copy number and burst size. In addition,
this is the first report of a quantitative measurement of LuxR transcription and
translation related to QS network in the high cell density limit.

In a subsequent study, Teng et al [23] further identified a negative feedback
loop from Qrr sRNA to LuxMN mRNA by employing single-cell fluorescence
microscopy. In addition, they created different mutants to study the input–output
relation in the QS regulatory network of V. harveyi. They were able to determine the
role of different feedback loops by varying the concentration of autoinducers and
measuring the LuxR output at the single cell level using the technique developed
earlier [25]. They also measured noise in LuxR protein levels for different mutants
with specific feedback loops in the network disrupted as a means to investigate the
role of noise in the behavior of the QS regulatory network.

Mehta et al [24] proposed a theoretical formalism for signal integration in the QS
regulatory network based on information theory. Signal transduction within the QS
regulatory network involves funneling multiple inputs into a single output. This type
of network architecture renders unclear the extent to which bacteria are processing
information from the individual inputs. Mehta et al [24] investigated why bacteria
use such a mechanism for signal transduction by calculating the corresponding
mutual information between the individual inputs and output. They then discuss
possibly strategies the bacteria can adopt to increase information transmission from
individual inputs.

In their work, receptor kinetics is modeled by a two state (on ! high kinase
and off! low kinase) system. Experimental results of Long et al [12] suggest that:
(1) kinase activity of HAI-1 and AI-2 are nearly equal; (2) standard deviation due
to cell-to-cell variations can be measured by single cell fluorescence microscopy;
(3) fluctuations can be well approximated by a Gaussian function and are much
smaller than mean signal. With the help of previous experimental results and
assuming three types of priors [(a) a flat prior where all inputs are equally
likely, (b) a bimodal prior which is symmetric for the two input signal and (c) a
nonsymmetric bimodal prior] they calculated the mutual information, between the
inputs (the probabilities that the LuxN and LuxPQ sensors are in their kinase mode)
and the outputs (the fraction of phospho-LuxO).

Next they investigated how the kinase rate of the two pathways, kX (HAI-1)
and kY (AI-2) and total phosphatase rate (p) affects information transmission by
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the pathway. The results show that information varies dramatically with the kinase
rates. However, when phosphatase activity is large compared to kinase activity and
the noise is small, the net phosphatase activity p affects information modestly. If
the kinase activity of one path is much larger than the other, the cell can only learn
about the stronger pathway. The cell can learn about both pathways only when both
pathways are roughly equal in activity. The authors argued that this might be the
reason why bacteria have almost equal kinase activity for HAI-1 and AI-2 as shown
experimentally by Long et al [12].

Interestingly, setting kX � kY poses a problem to the bacteria as they can no
longer distinguish the input (X; Y ) from (Y; X ). For example, the bacteria would
not be able to distinguish the two situations: saturating HAI-1 and no AI-2 from
saturating AI-2 and no HAI-1. For kX � kY , the mutual information is around
0.6–0.8, which is very low. Bacteria need to learn at least 1 bit of information
to differentiate the two concentration states of the autoinducers. So what are
the possible mechanisms by which bacteria can learn more about the inputs? To
answer this question, Mehta et al [24] discussed two possibilities: manipulation
of individual input signals and feedback on receptors. Bacteria can increase the
information gained by manipulating the relative autoinducer production rate. The
bacterial environment contains more AI-2 than HAI-1 because AI-2 is produced by
almost all bacteria whereas HAI-1 is produced only by V. harveyi. In this scenario
where kX � kY and x > y, bacteria could learn about 1.5 bits of information,
almost double of the previous scenario. The additional information gained by the
cells is due to loss of degeneracy between HAI-1 and AI-2.

2.4 Conclusion

While QS has been extensively studied in the Vibrios, there are still multiple
open questions that need to be addressed. For example, there continues to be
considerable focus on understanding the specific roles of each individual AIs during
QS [12, 25, 31, 32]. Future studies along these lines will provide greater insights
into the advantages and constraints relating to the QS network architecture which
integrates multiple inputs signals through a single channel.

The QS pathway contains multiple feedback loops whose precise roles are
still being elucidated [23]. The majority of feedback loops in the QS network
are negative feedback loops. The negative feedback loop is a common network
motif of gene regulatory networks, and is known to play important roles such as
reducing noise in the expression of key network proteins and decreasing response
times. However the precise functional roles of negative feedback loops in the QS
pathway have not yet been elucidated. For example, Tu et al. [33] focused on the
LuxO autorepression feedback loop and sRNA to LuxO negative feedback loop.
Surprisingly they found no apparent difference in relative noise (D S:D:

mean , 20%
at HCD) between the wild-type and mutant strains. They obtained similar results
for qrr response times during HCD to LCD transition: the presence or absence
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of feedback loops apparently made no difference in the response times. They also
showed that the slope of LuxR dose response curves is very similar for wild-type and
engineered mutant strains. Thus these negative feedback loops are not involved in
making the dose response curve more graded in response to AI concentration. These
results directed them to conclude that the role played by the different feedback loops
are beyond those that had already been recognized.

Finally, while the impact of other network components (not included in the
models discussed above) is currently being characterized experimentally, e.g.
AphaA [34, 35], their role has yet to be explored using theoretical models. As time
progresses, we anticipate that additional network components will be incorporated
into the theoretical models with the aim of further increasing agreement with
experiment and prediction power. Clearly there are several open questions that need
to be analyzed further using a combination of experiments and modeling approaches
for increased quantitative understanding of bacterial quorum sensing.
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Chapter 3
Stochastic Effects in Quorum Sensing

Marc Weber and Javier Buceta

3.1 Introduction

All of us have surely played the “broken telephone.” In that game a group of people
arrange in a circle and one participant passes a message to one of his/her neighbors.
The message is whispered/mumbled, such that it is difficult to understand, and
passed progressively along the participants until it reaches the original messenger.
The funny part of the game consists in comparing the original message and the
one that finally arrives (normally they have nothing to do with each other!).
The “broken telephone” nicely illustrates how noise interferes with the signal
in communication processes. Since quorum sensing (QS) is nothing but that, a
communication mechanism, one may wonder how noise interferes with it, how
bacteria cope with fluctuations, and how to provide a modeling framework for
addressing these questions.

Yet, what do we mean by noise? Over the past decade a number of studies
have shown that the level and activity of the species involved in gene regulatory
circuits fluctuate [1]. While extrinsic factors are in some cases the source of these
fluctuations (e.g., light fluctuations in circadian clocks [2]), in most situations they
are mainly due to the inherent randomness of biochemical reactions when the
number of molecules is very low [3]. Under these conditions, the value of the
mean and the variance are of the same order and consequently the deterministic
description fails. Notably, biochemical noise, either intrinsic or extrinsic, is not
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necessarily a nuisance but a biological component that is essential and has a
positive functional role in many situations [4]: for example, improving cellular
regulation [5].

In the particular case of QS, the detection of the freely diffusing signaling
molecule, the autoinducer, is subject to intense molecular noise [6]. Still, QS
bacteria cope with these fluctuations reliably. For example, the typical volume of
Vibrio fischeri bacteria is 0:35 �m3, and a concentration of 10 nM of autoinducer
already induces a QS response [7]. This means that just �2 signaling molecules
per cell are enough to be sensed by this small marine bacterium. The low number
of signaling molecules inside the cell, together with the other possible sources
of noise, indicates that the fluctuations at the autoinducer level must be taken
under consideration for a deep understanding of the QS pathway activation and
functioning. Moreover, the stochastic effects in QS pose the intriguing question
of how cells achieve a coordinated response in the presence of noise. Indeed, the
QS mechanism may produce a robust and synchronized behavior at the level of
the population [8]. However, how this behavior at the collective level arises from
the stochastic dynamics of individual cells is puzzling. At the end, a collective
response means a precise information exchange in the colony: the quantification
of the number of cells, the density, in the colony. Consequently, how can a bacterial
population estimate its number of constituents precisely if such information is fuzzy
at the single cell level?

At the most fundamental level, cell communication by QS relies on the diffusion
of a signaling molecule through the cell membrane. Recent studies have shown
that diffusion reduces the noise at the level of the autoinducer [9]; however, the
interplay between the diffusion process and some standard sources of stochasticity
(transcriptional and biochemical noise) has remained elusive until very recently
[10]. Moreover, while in eukaryotes the diffusion seems to contribute for enhancing
the precision of regulatory processes [11], similar effects have not been reported in
the context of QS. Thus, a first central question is to elucidate how the diffusion
process influences, and interplay with, the fluctuations in the signaling molecule.

Another relevant point refers to the relation between the QS signaling network
architecture and its ability to filter and/or enhance and/or suppress noise. While this
question is case dependent, general clues and answers can be obtained by studying
simple QS systems, e.g. the LuxI/LuxR system, as the underlying signaling motif
in most QS species is a positive feedback loop leading to phenotypic bistability
[12]. As a matter of fact, a number of studies have shown that noise plays an
important role in bistable systems [13–17]. In the context of QS, it has been recently
revealed how noise at different levels of the signaling network controls the precision
of the collective response [18] and, ultimately, how noise modifies the phenotypic
landscape that produces the observed heterogeneity in QS colonies.

Herein we shed light on these aspects of the stochasticity in QS communication
by reviewing recent advances in the field. Altogether, the results suggest that
bacteria have adapted their communication mechanisms in order to improve the
signal-to-noise ratio and to adjust the intensity of the fluctuations depending on the
environmental conditions. The chapter is organized as follows. We first illustrate by
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means of a toy model how, at the onset of the QS transition, the autoinducer diffusion
process conditions the QS dynamics and that the interplay between different sources
of noise establishes ranges of diffusion values that minimize the noise at the
autoinducer level. We then show by means of a detailed model of the LuxI/LuxR
system how fluctuations interfere with the synchronization of the cell activation
process and lead to a bimodal phenotypic distribution. In this context, we review the
concept of precision in order to characterize the reliability of the QS communication
process in the colony. In terms of the network architecture, we show that increasing
the noise in the expression of LuxR helps cells to get activated at lower autoinducer
concentrations but, at the same time, slows down the global response. Some of the
observed properties are rather counterintuitive, e.g. noise at the level of LuxR helps
cell to become activated at low autoinducer values but above a certain threshold of
the autoinducer concentration the fluctuations stabilize the cell at the unactivated
phenotype. As we will see, the latter can be explained by analyzing how noise
modifies the phenotypic landscape. Finally, we present the main conclusions and
discuss the applicability and relevance of these studies in the context of noise in QS
communication.

3.2 Diffusion and Noise

QS communication relies on the diffusion of the signaling molecule through the
cell membrane. On top of that, the autoinducer is subjected to different sources
of noise and the following question naturally arises: what is the interplay between
the diffusion process and the autoinducer stochastic dynamics? In this regard, a
recent study has shown that diffusion, together with a fast turnover of the QS
transcriptional regulator, attenuates low-frequency components of extrinsic noise
at the level of the autoinducer [9]. These authors have coined the term “diffusional
dissipation” that emphasizes the importance of fast signal turnover (or dissipation)
by diffusion in QS. Other studies have used some characteristics of the diffusion
process in Gram-negative bacteria (the permeability of the cell membrane to the
autoinducer and the symmetry of autoinducer diffusion) to demonstrate that the
extracellular noise is required for a stable synchronization in the colony [19].

These studies assume a constitutive expression of the QS master regulators.
However, QS communication also relies on situations when the levels of transcrip-
tion/translation are very low and the system lacks autoinduction. Thus, at low cell
density, luxI gene expression is either repressed by a high concentration of its
repressor or activated at a very low level by its activator. Under these conditions,
very few luxI transcripts are produced and the feedback regulation of the luxI
gene leading to autoinduction can be disregarded. Such infrequent transcription
events have been observed in many bacterial operons. For example, single molecule
experiments have shown that the infrequent dissociation of the lac repressor
produces rare transcription events leading to just one mRNA molecule [20, 21].
Importantly, when the transcription rate is very low, the so-called transcriptional
noise is a major source of stochasticity [3].
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In this section we focus on the interplay between the diffusion process and the
transcriptional and intrinsic noises. We aim at understanding how the communi-
cation mechanism and different sources of noise determine the dynamics of the
autoinducer. We restrict ourselves to the study of the aforementioned problems
below the QS activation threshold where we can assume that the transcription events
produce basal constitutive levels of mRNA of at most one molecule per cell at a time
and the regulatory feedback loop can be neglected.

3.2.1 Modeling the LuxI mRNA Leaky Dynamics

Below the activation (autoinduction) threshold, it can be assumed that rare (basal)
transcription events produce individual luxI transcripts. Under these conditions
the dynamics of the mRNA can be then described by means of a Markovian
dichotomous process [22],

(3.1)

where M i
0;1 D 0; 1 stands for the number of mRNA molecules at cell i and

˛ and ˇ for the transition rates between these states; i.e., ˛ and ˇ account for
the mRNA degradation rate and the transcription frequency, respectively. Notice
that the fluctuations of the mRNA dynamics are not memoryless, i.e. white. Once
an mRNA molecule is produced, and until it becomes degraded, the cell keeps
producing the autoinducer. That is, the transcriptional noise is a colored noise,
and its autocorrelation decays exponentially with a characteristic time scale �c D
.˛ C ˇ/�1 [22].

Once an mRNA molecule is produced it leads to the appearance of functional
LuxI synthetases. It has been shown that the amount of the synthetase substrate
is not a limiting factor for the production of the autoinducer [23, 24]. As a
consequence, the levels of the signaling molecule depend directly on the expression
levels of the synthetase. Ignoring intermediate biochemical steps in the autoinducer
synthesis reduces the number of noise sources and may even change, under some
circumstances, the observed dynamics [25]. Still, it is a valid approximation in most
cases and one can assume that the translation of the synthetase and the subsequent
synthesis of the autoinducer, A, can be effectively described by a single chemical
step with rate kC. In addition, the autoinducer becomes degraded at a rate k�, that is,

(3.2)

(3.3)

(3.4)
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Fig. 3.1 Scheme of a simplified biochemical QS network near the activation threshold. Schematic
representation of the biochemical processes considered for describing the dynamics of the signaling
molecule, A (diamonds), in cell i . The mRNA dynamics follow a dichotomous process with state
values M0;1 corresponding to zero and one molecule, respectively. Once the autoinducer has been
produced, it can diffuse into and out of the cell leading to cell communication

where Aext accounts for the number of signaling molecules in the extracellular
medium. Passive diffusion in and out the cell of the autoinducer can be implemented
by means of the reaction:

(3.5)

where D stands for the diffusion rate and r D V=Vext represents the ratio of
the volume of a cell to the total extracellular volume. Figure 3.1 schematically
represents the biochemical processes described by the set of reactions (3.1)–(3.5).

3.2.2 Null-intrinsic Noise Approximation

Two stochastic contributions drive the dynamics of A: the mRNA fluctuations
due to the random switching and the intrinsic noise due to low copy number of
the resulting autoinducer. As of the latter, it can be neglected if over the course
of time Ai =

�
Ai C 1

� ' 1 (“large” number of autoinducer molecules). While
such approximation is not justified (see parameters values below), it is useful
to implement it in order to discriminate between the effects caused by different
stochastic contributions and to obtain analytical expressions. In this case, it is
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straightforward to demonstrate that the dynamics of the autoinducer, (3.1)–(3.5),
can be described by the following coupled stochastic equations:

:
cAi D kCcM i

1
.t/ � k�cAi CD .cAext � cAi / (3.6)

:
cAext D �k�cAext C rD

NX

iD1

.cAi � cAext/

D �k�cAext C rDN .hcAi � cAext/ ; (3.7)

where cAi D Ai =V , cM i
1
.t/ D M i

1 =V , and cAext D Aext=Vext stand for the

concentration of species A and M i
1 at cell i and for species Aext at the extracellular

medium, respectively, N is the bacterial colony size, and h�i represents the popu-
lation average. In Eq. (3.6) the term cM i

1
.t/ accounts for a dichotomous stochastic

process characterized by the rates and states .˛; ˇ/ and .0; 1=V /, respectively, and
describes the fluctuating dynamics of the mRNA concentration.

By implementing a quasi-steady approximation for the dynamics of the external
autoinducer, i.e.

:
cAext D 0 we obtain that,

cAext D hcAi 1

1C k
�

NDr

: (3.8)

By substituting (3.8) into (3.6) we obtain a rate equation for the concentration of the
signaling molecule inside a given cell that depends on the average hcAi (the index i

has been dropped),

:
cA D kCcM1.t/ �D

�
1C k�

D

�
cA C hcAi D

1C k
�

NDr

: (3.9)

In the absence of diffusion, Eq. (3.9) reveals that the concentration of the signaling
molecule reaches a maximum value of cC

A D kC= .k�V / when cM1.t/ D V �1.
In terms of cC

A and the time scale tc D 1=k� (the typical lifetime of a signaling
molecule), the dimensionless version of (3.9) reads

:QcA D OcM1.Qt /C keffC .h QcAi/ � keff� QcA ; (3.10)

where

QD D D=k� (3.11)

keff� D 1C QD (3.12)

keffC .h QcAi/ D hQcAi QD
1C 1

N QDr

I (3.13)
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OcM1.Qt / being a Markovian dichotomous noise with states f OcM1g D 0; 1 and rates
Q̨ D ˛=k� and Q̌ D ˇ=k�. Equation (3.10) can be formally closed by invoking the
following self-consistency condition:

h QcAi D
Z

Q̋
QcA � . QcAI h QcAi/ d QcA; (3.14)

� . QcAI h QcAi/ being the probability density solving (3.10) and Q̋ its support (see
below) [22]:

� . QcAI h QcAi/ D N
�
keff� QcA � keffC .h QcAi/

� Qˇ

keff
�

�1
(3.15)

�
1C keffC .h QcAi/ � keff� QcA

� Q̨

keff
�

�1
; (3.16)

with

N D
.1C QD/ �

h Q̨C Q̌
1C QD

i

�
h

Q̨
1C QD

i
�
h Q̌

1C QD
i (3.17)

being the normalization constant. The condition (3.14) can be exactly solved and
leads to the following value for the average concentration of autoinducer:

h QcAi D 1C QDNr

1C QDNr C QD
Q̌
Q̨ C Q̌ D

1C QDNr

1C QDNr C QD h QcAij QDD0 (3.18)

where h QcAij QDD0 D Q̌=
�
Q̨ C Q̌

�
is the average concentration of the signaling

molecule in the absence of diffusion. For the sake of concision, on what follows
we drop in the notation of � . QcAI h QcAi/ the term h QcAi from the argument. Note that
� . QcA/ has two states (barriers) that define its support. That is, the minimum and
maximum values that the concentration of the autoinducer can reach as a function
of the diffusion are:

Qc�
A D

QD2Nr

.1C QD/.1C QD C QDNr/

Q̌
Q̨ C Q̌ (3.19)

QcC
A D Qc�

A C
1

1C QD : (3.20)

Moreover, it is easy to prove that the probability density � . QcA/ shows a single
extremum if

Q̨ ; Q̌ 7 keff� ; (3.21)



26 M. Weber and J. Buceta

a b

b

0 5 10 15 20
0

5

10

15

20

1+D
~ ~a

~a

b

g1
g3 g4

g2

1+D
~

~

~

Fig. 3.2 Probability densities of the signaling molecule and parameter space. (a) Sketch of the
different probability densities of the autoinducer concentration depending on the value of Q̨ and Q̌
with respect to QD. Given a set of values . Q̨; Q̌/ the dynamics of the autoinducer shows different
behaviors depending on the value of the diffusion parameter since the transition lines are located at
Q̨; Q̌ D 1 C QD. The constraints set by the approach (one mRNA at a time) make the region on the
top-left corner non-accessible. (b) Parameter space diagram . Q̨; Q̌/ indicating the sets of parameters
used in simulations (solid squares): �1 D .8; 2/, �2 D .15; 5/, �3 D .8; 0:5/, �4 D .15; 0:5/. The
experimental values reported for the degradation rate of the mRNA leads to a biological meaningful
range for Q̨ (rectangular region). The low constitutive expression assumption is prescribed by the
constraint Q̨ > 2 Q̌ (triangular region)

where the extremum is a maximum if Q̨ ; Q̌ > keff� and a minimum if Q̨ ; Q̌ < keff� .
In other cases the probability density does not display any extrema. Therefore,
as a function of Q̨ and Q̌, the probability density � . QcA/ may show four different
behaviors depending on the value of the diffusion coefficient as schematically
represented in Fig. 3.2a. However, given the constraints on the parameters of our
modeling not all regions, i.e. behaviors, are accessible to the autoinducer dynamics.
In particular, we have assumed a low constitutive expression such that only a single
mRNA molecule can be transcribed at a time. The latter implies that Q̌ < Q̨
(the degradation rate of the mRNA is larger than the transcription rate) in order to
assure that a maximum of one mRNA molecule is present in a cell at any given time.
As a consequence, and independently of the diffusion value, the dynamics leading
to the probability density shown at the top-left region of Fig. 3.2a (for which Q̌ > Q̨ )
cannot be considered as physical in the context of a luxI leaky mRNA dynamics.

Finally, the noise of the autoinducer concentration can be estimated by comput-
ing the ratio between the variance and the mean1:

�2
QcA
D �2

QcA

hQcAi2 D Q̨.1C QDC QDNr/
2

Q̌.1C QD/.1C QDNr/
2
.1C QDCQ̨C Q̌/ (3.22)

1Note that “noise” has been used with two different meanings: a stochastic contribution and, in this
case, a quantity that effectively measures the effects of that stochastic contribution.
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where �2
QcA
D hQc2

Ai � h QcAi2. Note that in a purely deterministic system �2
QcA
D 0. On

the other hand, in systems where fluctuations play a relevant role in the dynamics
�2

QcA
& 1.

3.2.3 QS Switch at the Onset: Parameter Values

Herein we are particularly interested in the role played by the fluctuations of the
signaling molecule, A, when its concentration is close, yet below, to the activation
threshold of the QS switch such that autoinduction doesn’t play a role and the basal
leaky dynamics of the luxI mRNA holds. Therefore, we fix the mean concentration
of the autoinducer and modulate the rest of the parameters in order to keep constant
this value. According to some recent experiments [6], a value of c 0

A D 25 nM is
reasonable for most of the bacterial species when the value of the so-called sensing
potential, 	 D .rN /�1, is 	� 103. In our simulations we choose N D 102 and
then Vext D 	N V D 105V (i.e., r D 10�5). Keeping 	 to a constant value
necessarily requires an external dilution protocol for maintaining constant the cell
density and compensate for cell growth at a rate, �2 � 10�2 min�1 (i.e., cell cycle
duration�50 min). In addition, we notice that most autoinducer molecules are rather
stable. For example, the degradation rate of the homoserine lactone 3-oxo-C6-AHL
has been measured in vitro: �3 � 10�4 min�1 [26]. The values in vivo has been
also estimated [6]: �5 � 10�3–2 � 10�2 min�1. Consequently, the dilution process
constitutes the main source of effective degradation of A, both inside and outside
the cell.

As for the luxI mRNA dynamics, the half-lives of all mRNAs of Staphylococcus
aureus have been recently measured during the mid-exponential phase. Most of the
transcripts (90 %) have half-lives shorter than 5 min [27, 28]. According to these
studies we restrict the mRNA degradation rate to the range ln.2/=5 min�1 < ˛ <

ln.2/=2 min�1 and consequently Q̨ > 1. As for the frequency of the transcription
events, ˇ is determined by particular characteristics of the gene regulatory process
under consideration, like the affinity of the regulatory proteins to the operator site
and the initiation rate of transcription. Due to the assumption of low constitutive
transcription, we choose values of parameter ˇ satisfying the relation ˛ > ˇ. In
particular in our simulations we implement the more restrictive condition ˛ > 2ˇ.
Figure 3.2b recapitulates the different sets of ˛ and ˇ values that we use in our
simulations and analytical calculations. Summarizing, N , r , and k� are kept fixed
and we explore the parameter space ˛, ˇ, and D within the ranges and constraints
mentioned above. In every particular situation we determine the value of kC, see
Eq. (3.18), in order to keep hcAi D 25 nM.



28 M. Weber and J. Buceta

3.2.4 Passive versus Active Transport in QS

The rate of passive diffusion has been estimated for the 3-oxo-C6-AHL autoinducer
[9]: �103 min�1. Under these conditions the typical value for the normalized
parameter QD is of the order of 104. Yet, active transport mechanisms for the
autoinducer lead to much smaller effective diffusion values. For example, in
the bacterial species Pseudomonas aeruginosa, C4-HSL can freely diffuse but
C12-HSL, a larger signaling molecule, is subjected to active influx and efflux
where its importation and exportation rates are of the order of �10�2 min�1 and
�10�1 min�1, respectively [29]. Other example corresponds to the AI-2 signaling
molecule. The latter is present in many Gram-positive and Gram-negative species
and it is believed to allow for interspecies communication [30]. In Escherichia
coli and Salmonella enterica extracellular AI-2 accumulates during the exponential
phase, but then decreases drastically upon entry into the stationary phase. This
reduction is due to the import and processing of AI-2 by the Lsr transporter [30,31].
Moreover, excretion from the cell of this autoinducer also appears to be an active
process involving the putative transport protein YdgG (or alternatively named TqsA)
[32]. In the case of E. coli these rates have been estimated by computational and
experimental means: Dout ' 10�1 min�1 and Din ' 10�3 � 10�2 min�1 [33].

In principle our model does not account for active diffusion processes, but
transport driven by concentration differences. Still, our simple model is valid when
the active transport mechanism can be described by two symmetric first-order
transport reactions. If we assume that the excretion and uptake systems follow
the Michaelis–Menten kinetics then, in the regime where the concentration of
autoinducer (substrate) is much smaller than the Km of the enzymatic reaction, the
transport rate can be approximated by a first-order reaction with rates DincAext and
Doutca. If, in addition, we assume that the transport rates are symmetric, Din D Dout,
the resulting dynamics are identical to the case of passive diffusion. Under these
conditions, the rates of active transport in the QS systems described above would fit
in our model with a normalized diffusion coefficient in the range QD 2 Œ10�1; 10
.
All in all, the transport rates when driven by active processes are four orders of
magnitude smaller than the diffusion rate of small molecules through the membrane.
Hence, transport rates in QS systems can be categorized into two main, well-
separated, classes: small transport rates due to active process, and large diffusion
rates due to passive mechanisms.

3.2.5 Dynamics and Population Heterogeneity driven
by Diffusion

According to the analytical results, as a function of QD one can expect a rich
phenomenology since the transition lines in the parameter space . Q̨ ; Q̌/ shift as
a function of the diffusion (see Fig. 3.2a). By taking as a reference the case
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�2, that is . Q̨ ; Q̌/ D .15; 5/, Fig. 3.3 shows the effect of the diffusion on the
distribution (left column) and dynamics (center column) of cA in a given cell.
The results were obtained by means of numerical simulations of the set of reac-
tions (3.1)–(3.5) using the Gillespie algorithm in an N -cells system [34]. The system
initially displays a single-peak distribution and by increasing the diffusion rate
we observe transitions to other behaviors (monotonically decreasing and double-
peak distributions). For QD D 10, the diffusion is already large enough to remove
signaling molecules between consecutive mRNA burst events, thus leading to a
monotonically decreasing distribution. Increasing the diffusion rate to QD D 100

leads to the situation where both Q̨ and Q̌ become smaller than 1C QD and a bistable
dynamics develops. Note that, counterintuitively, increasing the diffusion leads to
a population heterogeneity instead of homogenizing the colony. As the diffusion
further increases, e.g. QD D 2 � 103, the autoinducer molecules diffusing from the
external medium into the cell set a constitutive level of this species. The latter
explains the presence of A molecules in the cell even if no mRNA is produced.
Finally, at very large values of QD, e.g. QD D 5�104, the low constitutive concentration
of the autoinducer increases due to the influx of molecules when no mRNA is
present whereas the concentration of A that is internally produced decreases due
to the efflux of molecules. In this case, the whole N -cells system can be considered
as a single volume with no diffusive barriers between cells. Thus, the burst events
average out and, as a consequence, a single effective peak again develops for the
concentration of the autoinducer.

Figure 3.3 shows that the theoretical distribution captures the essential features
of the dynamics obtained in the numerical simulations. Note that the noticeable
deviations are due to the intrinsic noise (i.e., to the low number of molecules)
of the signaling molecule A that are not considered in the theoretical analysis.
Moreover, notice that as the diffusion increases those deviations seem to be larger.
Yet, we stress that as QD changes we modulate the production rate kC so that the
average number of autoinducer molecules per cell remains constant. Consequently,
the deviations between the simulations and the theoretical analysis cannot be
ascribed to a putative decrease of the number of A molecules (i.e., to an increase
of the intrinsic noise).

In order to ensure that the intrinsic fluctuations are not actually increasing due to
diffusion we first perform the following in silico control experiment. We consider
a modification of the system such that a single mRNA molecule transcript leads to
two autoinducer molecules that are considered to be distinguishable: Ai

1 and Ai
2.

Following [35], by plotting the distribution of cA1 as a function of cA2 we can then
discern a putative increase of the intrinsic fluctuations. Right column of Fig. 3.3
shows that the width of the distribution in a direction perpendicular to the diagonal
(a measure of the intrinsic fluctuations) does not vary and consequently so does
not the intrinsic noise. Thus, we must conclude that as the diffusion increases the
balance between the mRNA and the intrinsic fluctuations get modified. Indeed, as
shown in Eq. (3.22) the noise due to the mRNA dynamics behaves as�1= QD for large
values of QD. Therefore, the deviations between the theoretical and the numerical
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Fig. 3.3 Distributions and dynamics of the signaling molecule. Distributions (left column) and
dynamics (center column) of cA at steady-state for different values of QD. In all cases the parameters
set . Q̨; Q̌/ is �2 (see Fig. 3.2b). The production rate Qk

C

is modulated as a function of . Q̨; Q̌; QD/

in order to maintain constant the average hcAi D 25 nM. The histograms obtained in the
stochastic simulations (blue bars, left column) are in qualitative agreement with the probability
densities from the analytical calculations (blue line, left column). When increasing the diffusion
coefficient the system explores different dynamics as revealed by the trajectories shown in the
center column. The gray-shaded background shown in the trajectories of cA indicates the presence
of an mRNA molecule in the cell. In order to discern a putative increase in the molecular noise we
perform stochastic simulations of a modified system in which a single mRNA molecule produces
two distinguishable autoinducer molecules A1 and A2. The density plots (right column) of the
distribution of cA2 vs cA1 reveal that the diffusion does not contribute to an increase of the intrinsic
noise since the spreading of the distributions in a direction perpendicular to the diagonal does not
grow when increasing QD
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Fig. 3.4 Total noise in the signaling molecule as a function of the diffusion coefficient. Total
noise �2

cA
as a function of diffusion coefficient QD for the sets of parameters �1;2;3;4 (see Fig. 3.2b):

stochastic simulations (circles) and analytical expression (3.22) (solid line). The difference
between the computational and the theoretical distributions quantifies the amount of intrinsic noise
(squares). The latter remains constant and is the main contribution to the total noise only for
large diffusion values, QD > 104. The function is non-monotonic and has a maximum value above
�2

cA
> 1 for all parameter sets, showing that the variance is larger than the mean for intermediate

ranges of QD

approaches are due to a drop of the fluctuations related to the mRNA dynamics such
that for large enough diffusion rates, the intrinsic noise constitutes the main source
of stochasticity.

3.2.6 Total Noise in QS Communication Lacking
Autoinduction

It is interesting to place these results in the context of the total noise present in
the autoinducer concentration. Figure 3.4 reveals that �2

cA
shows a non-monotonic

behavior. As a function of QD the total noise first increases and reaches a maximum
at QD�102 and then decreases as the diffusion becomes larger. Note that for a large
range of QD values the analytical calculations, that just account for the transcriptional
noise, are in agreement with the numerical simulations, that account for both the
transcriptional and the intrinsic noise. This indicates that the main contribution to
the total fluctuations for a large range of diffusion values is the transcriptional noise.
Yet, as mentioned above, the latter diminishes as the diffusion increases while the
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intrinsic fluctuations remain constant. Consequently, the contribution of the intrinsic
noise must become more relevant than the mRNA stochasticity beyond some value
of QD. One can address the relative importance of the noisy sources by using the
decomposition �2

cA
D �2

cA;int C �2
cA;tran, where �2

cA;int and �2
cA;tran stand, respectively,

for the intrinsic and the transcriptional contributions to the total noise [36]. Thus, by
subtracting the analytical expression of the transcription noise given by Eq. (3.22)
to the total noise obtained in the numerical simulations we are able to compute the
intrinsic noise as a function of the diffusion (see Fig. 3.4). By performing a linear
regression of the points that corresponds to the intrinsic noise we obtain that the
slope of the curve is indeed zero in practical terms (2 � 10�7 for parameter set �2).
Therefore, in agreement with the results obtained in Fig. 3.3 (right column), the
intrinsic noise remains constant (�2

cA;int D 0:054˙0:003 for parameter set �2) as the

diffusion increases and is the main stochastic component if QD & 104.
The non-monotonic behavior of the total noise as a function of the diffusion rate

suggests a new interpretation of the role of noise regulation by the QS mechanism.
As mentioned above, the values of the diffusion rates in QS systems fall into
two distinctive categories: either large values corresponding to passive transport
mechanism, QD� 104, or small values when an active transport mechanism applies,
QD� 10�1 � 10. Surprisingly, these two QS classes avoid diffusion rates that

maximize the total noise, QD� 5 � 101 � 102. While the modeling presented herein
is certainly very simple and the derived consequences should be carefully taken,
the latter suggests that bacteria have developed mechanisms for coping with the
noise and keep their functional QS regime away from the region where �2

cA
> 1.

Notice that the maximum noise in the level of autoinducer means large fluctuations
that may perturb the activation of the QS pathway. When looking at the dynamics of
the autoinducer for QD D 100 (see Fig. 3.3) we observe the population heterogeneity
such that the autoinducer “jumps” between a low state with few molecules and a
high state around 100 nM. If the activation threshold lies in between these two
values (as it actually does), the QS pathway could get randomly activated due to
the fluctuations only in a subpopulation and the colony would lack a synchronous
behavior. Yet, our results point towards the direction that bacteria have adapted
their communication mechanisms in order to improve the signal-to-noise ratio and
produce a more reliable information exchange.

In the next section we further explore the relation between noise, network
architecture, and synchronous collective behavior by introducing the concept of
precision in a more detailed model.

3.3 Non-stationary Signaling, Network Structure, and Noise

The seminal work of Nealson and coworkers described the QS phenomenon as a
sudden activation of the bioluminescence in a culture of growing V. fischeri cells
[37]. It was not until recently that the behavior of individual cells has been shown
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to differ significantly from the bulk behavior, revealing large inter-cell variations
in the expression level of QS genes. Thus, Pérez and Hagen [38] were able to
measure the weak bioluminescence of a single bacterium and observed a large cell-
to-cell variability in the level of emission and in the onset time for the response.
Importantly, this heterogeneity seemed not to be related to the specificities of V.
fischeri and has been also reported in other QS bacterial species, as Vibrio harveyi
[39], P. aeruginosa [40], and synthetic E. coli luxI/luxR-GFP strains [41].

As shown above, noise plays an important role in the QS activation phenomenon
and the aforementioned cell-to-cell heterogeneity may be caused by the random
fluctuations that unavoidably affect cell regulation and signaling. Yet, answering
this question in deep requires a case-dependent approach since the underlying
network architecture conditions how noise is filtered, enhanced, and/or suppressed.
Moreover, many QS systems may sense and use different autoinducers and the
design principles of these multi-input systems remain puzzling particularly in the
framework of QS stochasticity. Recent advances include the study of V. fischeri
cells that is regulated by two HSL signals. The results show that at the single-cell
level the heterogeneity in the lux response depends only on the average degree of
activation, so that the noise in the output is not reduced by the presence of the second
signal [42]. Still, most QS systems share the same underlying network motif, a two
component positive feedback loop. Thus, by studying a canonical QS system one
can address questions and raise conclusions about the relation between network
architecture and noise regulation.

In V. fischeri cells, the canonical activation pathway is controlled by LuxR,
the receptor of the signaling molecule, and LuxI, the synthetase of the signaling
molecules. Therefore, fluctuations at the expression levels of these two proteins can
potentially influence the variability in the QS transition. Interestingly, experiments
have revealed the presence of additional regulatory interactions for controlling the
LuxR noise levels [44]. Yet, the regulatory interactions that control the wild-type lux
operon in V. fischeri are more complex than first thought [45,46]. Those include both
positive and negative regulation of the luxR gene depending on the concentration of
the autoinducer [47]. In this regard, simplified synthetic constructs in E. Coli, such
as lux01 and lux02 [43], retain the minimal LuxI/LuxR regulatory motif and lack the
structural genes responsible for light emission that may also play a regulatory role,
e.g. luxD [48]. These constructs reproduce the main features of the wild-type operon
as revealed by the GFP fluorescence assays reporting the promoter activity [43]. In
this section, we make use of the simplified network architecture of these synthetic
strains in order to study how the cell-to-cell variability changes when we modulate
independently the intensity of gene expression noise of LuxR and LuxI and raise
general conclusions about the relation between noise and network architecture.
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Fig. 3.5 Scheme of the LuxI/LuxR regulatory network in lux01 and lux02 strains. The LuxR (R)
protein activates the operon upon binding to autoinducer molecules (A). The lux01 operon lacks
the luxI gene and therefore cells cannot produce their own autoinducer and exogenous signaling
molecules, A�, are needed to activate the expression of luxR and GFP [43]. On the other hand,
the lux02 operon carries a luxI::gfp fusion and allows for the production of autoinducer and self-
induction

3.3.1 Synthetic Strains: A LuxR/LuxI System with No Frills

The lux01 operon is a truncated divergently transcribed lux operon, capable of
expressing LuxR but lacking the luxI gene. All the transcripts normally downstream
of the promoter are replaced with gfp. Thus, bacteria carrying the lux01 operon
cannot produce the autoinducer and an exogenous autoinducer is required for GFP
expression. On the other hand, the lux02 operon carries a luxI::gfp fusion and is
capable of expressing LuxI and synthesize the autoinducer [43]. Figure 3.5 shows
schematically the regulatory interactions present in these strains as well as the
control of the autoinducer levels by means of exogenous signaling molecules. These
interactions and the DNA duplication process can be formally written as a set of
chemical reactions:

DNA
˛RkR�! DNACmRNAluxR

DNA
˛I kI�! DNACmRNAluxIWWgfp

DNA � .luxR � A/2

kR�! DNA � .luxR � A/2 CmRNAluxR

DNA � .luxR � A/2

kI�! DNA � .luxR � A/2 CmRNAluxIWWgfp
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mRNAluxR
pR�! mRNAluxR C luxR

mRNAluxIWWgfp
pI�! mRNAluxIWWgfp C luxI WWgfp

luxI WWgfp
kA�! AC luxI WWgfp

luxRC A
k�

1 =Kd1 !
k�

1

luxR � A

2 .luxR � A/
k�

2 =Kd2 !
k�

2

.luxR � A/2 (3.23)

.luxR � A/2 CDNA
k�

lux=Kdlux !
k�

lux

DNA � .luxR � A/2

A
D !
rD

Aext

A
dA�! ¿

Aext
dA�! ¿

mRNAluxR
dmR�! ¿

mRNAluxIWWgfp
dmI�! ¿

luxR
dR�! ¿

luxI WWgfp
dI�! ¿

.luxR � A/2

dC2�! ¿

luxR � A dC�! ¿

DNA
ln.2/=��! DNACDNA

DNA � .luxR � A/2

ln.2/=��! DNA � .luxR � A/2 CDNA:

As revealed by the set of reactions (3.23) the regulatory complex .luxR � A/2

activates the transcription of both luxI and luxR upon binding to the DNA. Since
lux01 lacks the luxI gene, the autoinducer, A, cannot be synthesized, i.e. in that case
kA D 0. Note that in agreement with Sect. 3.2.1, we include basal transcriptional
rates, ˛RkR and ˛I kI , even though the regulatory complex .luxR � A/2 is not bound
to the promoter region of the DNA.
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Fig. 3.6 Scheme of the deterministic and stochastic modeling approaches. (a) In the deterministic
model, the population of cells is described by a unique volume with average and continuous
concentrations of all species, including the DNA carrying the QS network (small circles). Cellular
growth is also taken into account in this approach. (b) In the stochastic model, cells are modeled
as individual compartments that can grow and divide and all molecular species are represented as
discrete entities. In both cases we assume that all species are well stirred inside the cells and in the
medium. In order to maintain a constant cell density, as in the experiments we aim to model,
a dilution protocol is implemented (see text). In the deterministic model the dilution removes
continuously cytoplasmic material in order to compensate the cell growth. In the stochastic model
individual cells are removed every time a new cell is born

3.3.2 Bulk and Single-Cell Approaches: Cell Growth, Division,
and External Dilution Protocol

The set reactions (3.23) can be sampled exactly by means of the Gillespie algorithm
[34] (stochastic approach). The latter is suitable for the characterization of the
system at the single cell level. Complementary to this, if we consider the colony as
a whole and the number of molecules of the species is large enough, we can assume
that intrinsic fluctuations average out and the set of ordinary differential equations
(ODEs) that derive from reactions (3.23) describe the bulk behavior (deterministic
description). Still, as shown below in Sect. 3.3.6, the intrinsic fluctuations can
actually modify the behavior of the system in a more profound way. Herein we make
use of both deterministic and stochastic descriptions. The former is particularly
useful to fit the simulation results to experimental data in order to obtain values
of the parameters.

As for the deterministic model, we consider that all cells share their cytoplasm in
a single volume Vc;tot (see Fig. 3.6). Chemical species X inside the cell are described
by their concentration, cX , in Vc;tot and the chemical kinetics formalism leads to a
set of ODEs that describes the population average dynamics:

PcluxIWWgfp D pI cmRNAluxIWWgfp �
�

ln.2/

�
C dI

�
cluxIWWgfp (3.24)

PcluxR D � k�

1

Kd1

cAcluxR C k�

1 cluxR�A C pRcmRNAluxR �
�

ln.2/

�
C dR

�
cluxR (3.25)

PcmRNAluxIWWgfp D ˛I kI cDNA C kI cDNA�
.luxR�A/2

�
�

ln.2/

�
C dmI

�
cmRNAluxIWWgfp (3.26)
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PcmRNAluxR D ˛RkRcDNA C kRcDNA�
.luxR�A/2

�
�

ln.2/

�
C dmR

�
cmRNAluxR (3.27)

PcluxR�A D �k�

1 cluxR�A C k�

1

Kd1

cAcluxR � 2
k�

2

Kd2

ŒcluxR�A
2 C 2k�

2 c.luxR�A/2
(3.28)

�
�

ln.2/

�
C dC

�
cluxR�A (3.29)

Pc.luxR�A/2
D k�

2

Kd2

ŒcluxR�A
2 � k�

2 c.luxR�A/2
� k�

lux

Kdlux
c.luxR�A/2

cDNA (3.30)

Ck�

luxcDNA�
.luxR�A/2

�
�

ln.2/

�
C dC2

�
c.luxR�A/2

(3.31)

PcDNA D � k�

lux

Kdlux
c.luxR�A/2

cDNA C k�

luxcDNA�
.luxR�A/2

(3.32)

C ln.2/

�

�
cDNA C cDNA�

.luxR�A/2

�� ln.2/

�
cDNA (3.33)

PcDNA�
.luxR�A/2

D k�

lux

Kdlux
c.luxR�A/2

cDNA � k�

luxcDNA�
.luxR�A/2

� ln.2/

�
cDNA�

.luxR�A/2
(3.34)

PcA D k�

1 cluxR�A � k�

1

Kd1

cAcluxR C kAcluxIWWgfp C D
�
cAext � cA

�
(3.35)

�
�

ln.2/

�
C dA

�
cA (3.36)

PcAext D rD
�
cA � cAext

�C �
Vtot

Vext
cA� � .� C dA/cAext (3.37)

The experiments reveal that the temporal scale for reaching a steady-state is much
larger than the cell cycle duration (see, for instance, Figure S6 in [43]). Thus, we
need to take into account the cell growth. If cells are maintained in the exponential
phase with doubling time � , then the dynamics of the volume of the cell is
Vc;tot .t/ D V0;tot2

t=� , where V0;tot D N V0, N being the number of cells in the
colony and V0 the volume of a single cell at the beginning of the cell cycle. As a
consequence, the cellular growth introduces dilution terms, �cX

ln.2/

�
, in the r.h.s. of

the ODEs of all species, with the exception of the autoinducer in the medium Aext.
On the other hand, cell division events lead to the duplication of the genetic material.
The latter is taken into account by adding the termC ln.2/

�

�
cDNA C cDNA�.luxR�A/2

�
to

the ODE that describes the concentration of DNA. Note that this term compensates
for the dilution.

In the experiments that reported the properties of the lux01 and lux02 QS strains
the cell density is kept constant by means of an external dilution protocol that
compensates for cell proliferation [43]. In order to compare quantitatively with those
experiments, we keep the volume Vc;tot constant and define the external volume, Vext,
such that the total volume of the cell culture reads Vtot D Vext C Vc;tot. Accordingly,
the parameter r , see reactions (3.23), reads r D Vc;tot=Vext. Notice that the external
dilution protocol also removes from the medium autoinducer molecules [43]. This is
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compensated by an influx of exogenous autoinducer in the dilution buffer. The influx
of exogenous autoinducer molecules, together with the efflux of culture medium,
can be represented by the following reaction

Aext
� !

�cA�
Vtot

¿: (3.38)

where � D ln.2/=� . That is, an efflux removes autoinducer molecules from the
external volume at a rate � and an influx introduces signaling molecules in the
external volume at a rate �cA�Vtot. In the deterministic description, this reaction
leads to an additional term at the r.h.s. of the ODE for the concentration of Aext :

C�
�
cA�

Vtot
Vext
� cAext

�
. In the absence of synthesis (e.g., lux01 strain) and taking into

account that the degradation is slower than the diffusion and the influx rate, it is easy
to see that the concentration of autoinducer, both inside and outside the cell, tends
to cA� : the desired control value of the autoinducer concentration.

As for the single-cell, stochastic, description, each bacterium is described as
a single cell carrying a copy of the regulatory network. As in the deterministic
case, cell growth introduces a dilution of the molecules in a cell. Cell growth is
implemented by allowing the volume of cell i to change in time as

Vc;i .t/ D V02t=�i ; (3.39)

where V0 is the volume of a cell at the beginning of the cell cycle, �i is the duration
of the cell cycle of cell i , and t is referred to the precedent division event. When
t D �i the cell i has doubled its volume and a new division takes place. At this
time the internal clocks and volumes of daughter cells are reset to zero and V0,
respectively. The duration of the cell cycle, �i ; is different for each cell and is set
independently after a division according to the following stochastic rule [49],

�i D �� C .1 � �/ Q�; (3.40)

where � and Q� denote, respectively, the deterministic and stochastic components of
the cell cycle duration, and � 2 Œ0; 1
 is a parameter that weights their relative
importance. The stochastic component accounts for the period of time between
events driven by a Poissonian process and satisfies an exponential distribution,

� . Q�/ D e� Q�
�

�
: (3.41)

According to these definitions, the average duration and standard deviation of the
cell cycle are � and .1 � �/ � , respectively. When a cell divides, proteins, mRNAs,
and signaling molecules inside the cell are binomially distributed [50] between
daughter cells and one copy of the DNA is given to each cell (regulatory complexes
bound to the DNA are detached prior to the distribution between daughter cells).
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As in the case of the deterministic description, the cell density is kept constant
due to a compensating efflux that wash away cells in the culture: each time a division
takes place a cell is picked at random and “deleted.” In relation to the effect of the
cell volume of individual cells on the diffusion rate of the autoinducer, we note that
in this case

ri .t/ D Vc;i .t/

Vtot �PN
j D1 Vc;j .t/

: (3.42)

A model as comprehensive as the one introduced here requires to know the
value of a large number of parameters. Some of those have been characterized
and measured in previous experiments, e.g. the dissociation constant of LuxR to
A [51], while others have to be estimated or fitted. In the case of the synthetic
strains reviewed herein most of the parameters can be estimated by fitting the results
obtained in numerical simulations of the deterministic system to experimental data
reporting on the colony bulk behavior [43]. We refer the reader to [18] for the fitting
procedure and the list of estimated parameters.

3.3.3 Noise Intensity Regulation: Burst Size

In experiments there are two possible ways to regulate the intensity of the intrinsic
noise keeping the same average values of protein concentration. On the one hand,
one can scale up the number of molecules and the volume while keeping the same
ratio, i.e. the same concentration. This approach has been indeed implemented in
bacterial cultures by inhibiting the septation process [52]. The downside of this
method is than one cannot actually control the noise level since during the time
course of an experiment it diminishes progressively. On the other hand, one can
control the so-called burst size that quantifies the translational efficiency. During
translation mRNA molecules are translated into proteins following a bursting
dynamics [3, 20, 53]. The so-called burst size, bX , is defined as the ratio between
the protein X production rate and the mRNA X degradation rate. It has been shown
that bX is directly related to the intensity of gene expression noise [54]. Thus, for
the same average protein concentration, the larger bX , the more fluctuating is the
expression dynamics of X . Herein we use this approach and tune independently
the noise intensity of luxI and luxR in our simulations in order to elucidate the role
of fluctuations at the level of the main components of the QS switch architecture.
Unless explicitly indicated otherwise, the bursting size in the stochastic simulations
is bR D bI D 20 [44, 53].
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3.3.4 LuxR Noise Levels and the Induction Time Control
the Features of the QS Switch

In order to analyze the behavior of individual cells and reveal how noise affects
the QS switch, we perform stochastic simulations of a population of growing and
dividing cells. As described above, the in silico cell culture grows in a medium at
a (nearly) fixed autoinducer concentration. We measure the activation of the QS
network by reporting the concentration of GFP in single cells. The transition of an
individual cell between the low (no signal from the GFP reporter) and the high state
(signal from the GFP reporter) is intrinsically random and depends, among others,
on the levels of autoinducer. Thus, inside a population some cells will jump while
others remain in their current state leading to a bimodal phenotypic distribution.
We compute the proportion of cells that are below and above a threshold of GFP
equal to half-maximum GFP concentration; we consider the distribution of cells
to be bimodal when the proportion of cells in either the low or the high state is
below 90 %. According to this, we define the range of autoinducer concentration
ŒcA�

b1
; cA�

b2

 for which there is bimodality. For low concentrations of autoinducer,

cA� < cA�

b1
, the collective response of the cell population is unactivated, and

for high concentrations, cA� > cA�

b2
, most of the cells are activated leading to a

global response of the colony. On the other hand, within the bimodality range, the
response is distributed between two subpopulations, thus failing to achieve a global
coordination in the colony. In order to characterize this behavior, we introduce
the concept of precision in the QS switch as the inverse of the cA

�

concentration
range for which the cells response distribution (phenotypes) is bimodal. That is, the
larger the bimodal range, the less precise the switch is in order to generate a global
response in the colony. We point out that the precision of the switch in a noise-free
situation (deterministic case) is infinite since all cells achieve global coordination
simultaneously.

Figure 3.7 shows, by means of a color density plot, the probability of a cell
to have a particular GFP expression level after either 10 or 100 h of induction
as a function of cA� . For a large range of autoinducer concentrations, both lux01
and lux02, display a bimodal distribution after 10 h of induction. Some cells of
the colony are induced at a concentration lower than the critical concentration of
the deterministic model at the steady state (black line). Still, the concentration for
which more than 90 % of the cells are induced requires up to four times more
autoinducer than under deterministic conditions. Thus, on the one hand, noise
helps cells to get induced at lower autoinducer concentrations but, on the other
hand, amplifies the non-stationary effects for achieving global coordination. If the
same experiment is performed with a larger induction time (100 h), the situation
changes dramatically. In that case, the precision of the switch increases (tenfold
change) and cells achieve global coordination at (lux01) or before (lux02) the critical
deterministic concentration. In any case, the simulations reveal that the behavior
of the QS switch is highly dynamic and the precision of the switch is a transient
quantity that crucially depends on the duration of induction.
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Fig. 3.7 Cell response distribution. Cell response probability after 10 h (top: a, b) and 100 h
(middle: c, d) of induction at different autoinducer concentrations for the lux01 (left: a, c) and
lux02 (right: b, d) operons in the stochastic model. The distribution reveals the coexistence of
two subpopulations with low and high GFP expression when the cells are induced at intermediate
autoinducer concentrations. The region of bistability (precision) is defined by the range of cA� for
which the response is bimodal according to the following criterion: the lower/upper limit of the
bistable region (orange lines) is defined by the value of cA� for which 90 % of the cells are in the
low/high state. The black line stands for the concentration of GFP (normalized) as a function of cA�

in the deterministic model at the steady state. After 10 h of induction (top: a, b) most cells are still
in a transient state if cA� < 70 nM. After 100 h of induction (middle: c, d), the bimodality region
shrinks and the precision increases. The population average curves of the induction and dilution
experiments in the stochastic model (bottom: e, f, dashed lines) show that the intrinsic noise allows
cells to jump to the high state inside the deterministic bistable region. On the other hand, the
transition from high to low follows the deterministic path, thus indicating that the switching rate in
this case is close to zero

For the same concentration of the external autoinducer, the stochastic dynamics
of the regulatory network arises from the noise at the level of LuxI and LuxR. By
taking the lux02 operon as a reference case, we analyze the individual contribution
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Fig. 3.8 Cell response distribution in the transient regime for different burst size values. Cell
response distribution (jumping probability) after 10 h of induction (transient state) at different
autoinducer concentrations for the lux02 operon in the stochastic model and different burst sizes.
Burst size values (a) bR D bI D 20 (b) bR D 4; bI D 20 (c) bR D 20; bI D 4 (d) bR D bI D 4

(e) bR D bI D 0:01. Width of bistable region: (a) = 60 nM (b) 25 nM (c) 70 nM (d) 27.5 nM (e)
25 nM. The black line stands for the concentration of GFP (normalized) as a function of cA� in the
deterministic model at the steady state

of those network components by modulating the burst size of LuxR and LuxI
(bR and bI , respectively). Thus, in Fig. 3.8 we plot the GFP expression probability
for the lux02 operon after 10 h of induction and for different values of the burst size
bR and bI . Notice that the region of bimodality does not vary when changing the
burst size for LuxI. However, decreasing the burst size in LuxR reduces the region
of bimodality, thus increasing the precision of the switch. Furthermore, the noise at
the level of LuxR helps some cells to become activated at lower concentration levels
of the autoinducer. Once more, this phenomenon does not depend on the levels of
noise of LuxI. That is, while the global coordination increases as the noise of LuxR
decreases, more concentration of the autoinducer is required to start activating cells.
On the other hand, Fig. 3.9 shows that under long induction time conditions (100 h)
the precision of the switch remains constant regardless of the value of the burst size
of LuxR or LuxI.

3.3.5 Activation Time Statistics: QS Cells Jump
on the Bandwagon

Further insight about the role of noise of individual components and the induction
time in the activation process for regulating the precision of the QS switch can
be obtained by computing the so-called mean first passage time (MFPT). This
quantity evaluates the average time it takes to a cell to become activated (high state)
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Fig. 3.9 Cell response distribution at the steady-state for different burst size values. Cell response
distribution at the steady-state (100 h induction), at different autoinducer concentrations for the
lux02 operon in the stochastic model for different burst size values: (a) bR D bI D 20 (b) bR D
bI D 4 (c) bR D bI D 0:01. The probability density of getting a particular GFP expression
level is indicated by means of a density plot. The width of bistable region barely depends on the
stochasticity levels, � 7 nM. The black line stands for the concentration of GFP (normalized) as a
function of cA� in the deterministic model at the steady state

starting in an unactivated situation (low state) [55]. Taking again the lux02 case as a
reference, Fig. 3.10 shows the MFPT as a function of cA� and for different values of
the burst size of LuxR and LuxI. For the sake of comparison, we also compute the
MFPT for the deterministic solution. As for the latter, we note that the MFPT inside
the bistable region is infinite, since the deterministic system cannot spontaneously
jump from one stable state to the other without the help of noise. In agreement
with the results shown above, changing the burst size of LuxI does not modify the
mean first passage time whereas changing the noise at the level of LuxR clearly
modifies the jumping statistics. Moreover, the results reveal a nontrivial behavior of
the MFPT as a function of the concentration of the autoinducer. On the one hand,
with respect to the activation dynamics, when cA� is below � 25 nM, an increase
in LuxR noise decreases the mean time of the activation. That is, LuxR noise helps
cells to get activated quicker. On the other hand, above � 25 nM of autoinducer
concentration, the effect is the opposite: an increase in LuxR noise slows down the
cell activation. We also note that, surprisingly, when the autoinducer concentration
is above the critical concentration of the deterministic system, cA� � 25 nM, the
stochastic system always takes more time to get activated than the deterministic
case. That is, in that case the noise does not help cells to get activated but to remain
in the unactivated state.

By computing additional statistical properties of the first passage time we can
clarify the behavior of the precision depending on the induction time. In particular,
one can compute the times tlow and thigh for which, at a given cA� concentration, the
probabilities of finding an FPT< tlow and an FPT> thigh are 10 %, i.e. the 10 % and
90 % quantiles, respectively. The shadings in Fig. 3.10 delimit these regions for the
cases bR D bI D 20 and bR D bI D 0:01. Thus, the precision of the switch after n

hours of induction is directly related to the width of the shaded region at hFPTi D n

hours: at any given time, this width indicates which is the minimal concentration
of autoinducer for getting 10 % of cells already activated and also the concentration
beyond which more than 90 % of cells have been activated. Thus, in agreement
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Fig. 3.10 Mean first passage time of cell activation for different burst size values for the lux02
case. Mean first passage time of cell activation (lines) as a function of autoinducer concentration
for different values of the burst size for LuxR (bR) and LuxI (bI ) and for the deterministic solution.
The lower (upper) limit of the shaded regions is the 10 % (90 %) quantile curve of the distribution
of FPT for the cases bR D bI D 20 (blue shaded region) and bR D bI D 0:01 (green shaded
region). The distribution of the FPT for cA� D 100 nM; bR D bI D 20 is plotted on the side as an
example. The MFPT reveals a nontrivial behavior: for low autoinducer concentration noise helps
cells to jump quicker to the high state, while for high autoinducer concentration noise slows down
the cells activation. Intersections of the quantile 10 % and quantile 90 % curves with a horizontal
line at t D 10 h indicate the autoinducer concentration for which 10 % of cell trajectories have
jumped to the high state (left arrow) and the concentration for which 90 % of cell trajectories
have been activated (right arrow). The precision after 10 h of induction (inversely proportional to
the width of the region delimited by the arrows) increases when decreasing the noise in LuxR

with Fig. 3.7, the induction time clearly modifies the precision: it increases (the
width of the shading decreases) as the induction time becomes larger and becomes
independent of the noise intensity for large induction times. Note also that as the
LuxR noise weakens the precision increases.

3.3.6 Solving a Noisy Mystery: The Fluctuations Modify
the Phenotypic Landscape

The analysis of the FPT statistics poses an intriguing question about the role of noise
in the QS switch. Namely, below a “critical” concentration of autoinducer LuxR
noise helps cells to become activated and above LuxR noise helps cells to remain in
the unactivated state. The complexity of the detailed model presented above makes
very difficult to find the reasons for this counterintuitive behavior. However, the fact
that this effect is independent of the LuxI noise levels points towards the direction
that the underlying reason does not depend on the communication process but on
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Fig. 3.11 Scheme of the genetic auto-activating switch model. The expression of gene x leads to
protein X that after oligomerization binds to its own promoter acting as an self-activator

the network architecture. Therefore, we can analyze a “simple” system that shares
the network motif driven by LuxR and try to draw conclusions.

The basic motif underlying regulation in QS is a positive feedback loop. In
that regard, the simplest system that shares such network scheme is the so-called
auto-activating switch [56, 57]. In this genetic circuit, a protein forms an oligomer
that binds to the promoter region of its own gene and activates its expression (see
Fig. 3.11). As shown elsewhere [16], this regulatory process can be effectively
described by the Hill function formalism and leads to the following deterministic
equation for the concentration, x, of protein:

:
x D r C axn

Kd C xn
� k5x (3.43)

where r is the basal expression rate (due to promoter leakiness), a the maximum
production rate (efficiency of the auto-activation), n the cooperativity (oligomer-
ization index), Kd the concentration of protein yielding half-maximum activation,
and k5 the degradation rate. In this simple model x and a play the role of the GFP
expression levels and the external concentration of autoinducer in the QS switch,
respectively.

Alternatively, the dimensionless version of (3.43) reads

:Qx D Qr C Qa Qxn

1C Qxn
� Qx (3.44)

with Qx D x
n
p

Kd
, Qt D k5t , Qa D a

k5
n
p

Kd
, Qr D r

k5
n
p

Kd
.

If n > 2 and
�
3
p

3
��1

> Qr > 0, then the system exhibits a bistable behavior
(phenotypic variability) for a range of values of Qa. Here we choose n D 2 and Qr D
0:12 such that there is a bistable region as in the case of the QS switch. The points
.x0; a0/ that define the bistable region correspond to the solutions of the polynomial
equations [58],
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Fig. 3.12 Bifurcation diagram (phenotypic landscape) of the genetic auto-activating switch
model. Bifurcation diagram of the autoactivating switch under deterministic (blue line) and
stochastic conditions: red, green, and orange lines stand for the analytical location of the
probability extrema for different noise intensities (see legend). The open circles indicate the results
of numerical simulations of the case QV D 10. The probability density of that case is also depicted
by means of a density plot (logarithmic scale). The bistable region of the deterministic system gets
delimited by the points .x0; a0/ (squares). Note that noise stabilizes the low state and the bistable
region expands

0 D Qr C Qa0 Qx2
0

1C Qx2
0

� Qx0 (3.45)

0 D 2 Qa0 Qx0

.1C Qx2
0/2
� 1: (3.46)

Figure 3.12 shows the stationary solution, Qxst, as a function of Qa where set of
points .x0; a0/ are highlighted. Note that this bifurcation diagram reflects a situation
akin to that of the QS switch.

If we now consider the biochemical fluctuations, the stochastic description of the
system reads [16, 59]

:Qx D Qr C Qa Qx2

1C Qx2
� Qx C �.t/

s

Qr C Qa Qx2

1C Qx2
C Qx (3.47)

where the noise term must be interpreted according to Itō and the statistical
properties of the fluctuations are
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Fig. 3.13 First passage time and switching rate for the genetic switch. Mean first passage time
(MFPT) for the genetic switch from the low stable state to the high state for different volume sizes,
i.e. noise intensities (see legend). The solid lines correspond to the analytical solution and the
circles to the Gillespie simulations. The deterministic bifurcation curve (dashed line) is depicted
with an arbitrary y-scale in order to visualize the deterministic bistable region. Depending on the
value of Qa, the MFPT increases or decreases with the intrinsic noise intensity

h�.t/i D 0 (3.48)

h�.t/�.t 0/i D Q�2ı
�
t � t 0� : (3.49)

In this case, the intensity of the fluctuations is related with the cellular volume such
that Q�2 D 1= QV , where QV D V n

p
Kd is the dimensionless volume.

Interestingly, the location of the bifurcation points that define the bistable region
gets modified by the noise such that the low protein concentration state becomes
more stable. An effect referred to as the stochastic stabilization of a phenotypic
state [58]. Figure 3.12 shows this effect and reveals that the low state extends its
stability with respect to the deterministic system.

The FPT statistics is related to the structure of the bifurcation diagram since
the former evaluates the amount of time required to jump to a stable state. Thus,
Fig. 3.13 shows the MFPT as a function of the control parameter Qa for different
volumes, namely noise intensities. We can observe the same counterintuitive
behavior reported on the QS switch: depending on the value of Qa (equivalent to the
concentration of autoinducer in the QS switch), the MFPT increases or decreases
with the intrinsic noise intensity. This effect can be now easily explained in terms of
the modification of the bifurcation diagram due to noise that extends the stability
of the low state. Up to the value of the control parameter where there is the
bifurcation point of the deterministic system, the fluctuations help cells to jump
to the high state. Beyond that point, the deterministic system “immediately” jumps.
However, the stochastic system gets “trapped” in the low state. This causes the FPT
to increase with respect to the deterministic situation such that the larger the noise
the larger the FPT since the low state becomes more stable. In the context of the
QS switch these results reveal that LuxR noise controls the precision by modifying
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the phenotypic landscape and at the same time raises the following question: how
comes LuxI noise has no effect on the QS phenotypic landscape? Note that LuxI
fluctuations are transmitted to the autoinducer at the end. Yet, the diffusion process
effectively averages out the fluctuations of the signaling molecule (see Sect. 3.2.5).
That is, the effective cellular volume “perceived” by LuxI is the total volume of the
cells. This is not possible for LuxR which is not driven by diffusion and is kept
within the cell. As a result, the activation complex is susceptible to the fluctuations
of LuxR but not to those of LuxI.

3.4 Discussion

In this chapter we have reviewed some studies that reveal the importance of
stochasticity in QS. We first explored the role played by cell–cell communication
and transcriptional noise in QS systems near the activation threshold where luxI is
expressed at a low constitutive level such that the feedback regulation (autoactiva-
tion) can be disregarded. Under these conditions we have shown that the interplay
between the diffusion and the mRNA dynamics plays a crucial role for regulating the
total amount of noise. Thus, transcriptional noise is the main contribution to the total
noise for a large range of diffusion values and only for large values of the diffusion
the intrinsic noise is the major source of stochasticity. Importantly, we have shown
that the total noise shows a non-monotonic behavior as a function of the diffusion
rate that indicates a mechanism to reduce the signal to noise ratio.

Herein we have also introduced the concept of precision in the QS switch: a
meaningful measure of the synchronization of the cells based on the homogeneity
of the collective cell response. A small precision means a bimodal response over
a broad range of autoinducer concentrations, producing a graded response at the
population level. A high precision means a response that is mainly monomodal and
a bimodal response over a narrow range of autoinducer concentrations, providing a
steep response at the population level. The precision is highly dynamic and critically
depends on the induction time and, importantly, on the noise levels of LuxR that
influences the probability of a cell to jump from the deactivated to the activated
state (change of phenotype). In addition, we have revealed that the noise at the level
of LuxI does not modify the phenotypic landscape and consequently has no effect
on the precision of the QS switch.

Interestingly, recent experiments have revealed the presence of additional reg-
ulatory interactions for controlling the LuxR noise levels. For example, C8HSL
molecules, a secondary QS signal in V. fischeri, has been suggested to reduce the
noise in bioluminescence output of the cells at low autoinducer concentrations [42].
In the same direction, in V. harveyi, the number of LuxR dimers is tightly regulated
indicating a control over LuxR intrinsic noise [44]. In fact, wild-type V. harveyi
strains have two negative feedback loops that repress the production of LuxR [60]
and this kind of regulatory circuit is known to reduce noise levels [61]. In this
context, the results reviewed here provide a feasible explanation for the network
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structure in wild-type strains: since noise in LuxR controls the phenotypic variability
of LuxR/LuxI QS systems, bacteria may have evolved mechanisms to control its
noise levels. An additional argument in this regard arises from the simulation results
about the deactivation process: once cells are fully induced the reversibility of the
phenotype is a pretty rare event (FPT larger than 100 h). Thus, it makes sense that
wild-type strains have additional interactions that regulate negatively luxR [45–47].
Moreover, it indicates that synthetic strains as lux01 and lux02 may summarize most
features of the wild-type operon during the activation process but they fail to capture
aspects of the deactivation phenomenon.

In regards to the importance of non-stationary effects, most works assume steady
conditions. However, we have shown that the time for reaching a steady state of cell
response distribution is much larger than the duration of the cell cycle. This is in
agreement with experimental results [43] as well as with another stochastic model of
QS transition in Agrobacterium tumefaciens [62]. In our simulations, the population
of cells needs �30 h to reach a steady-state when induced at 50 nM of autoinducer
and that this time is even larger close to the critical concentration of activation [18].
In most laboratory experiments studying the QS transition, the typical experimental
run or time of culture growth before measurement rarely exceeds 20 h [43,44,57,63,
64], after which the expression of genes is assumed to reach a steady-state. While
a modeling approach is certainly a crude simplification of the real genetic network,
the results suggest that special care should be taken about transient effects when
studying the population-wide QS response. Indeed, bistable gene networks are often
associated with slow response time compared to graded-response gene networks
[65, 66].

While speculative, these results about the importance of non-stationary effects
can be extrapolated to growing colonies where the cell density is not kept constant
as in our simulations or in the experiments we reproduced [18,43]. A good supply of
nutrients implies short induction times since the concentration of autoinducer will
quickly grow (exponentially) as the population size does. According to our results,
this fast growing condition decreases the precision of the switch and, consequently,
promotes variability at the population level (see Fig. 3.14, fast growth line). In
addition, the full collective activation of the system would require a large population
size (i.e., more autoinducer).

On the other hand, if the colony grows in an environment poor in nutrients, the
concentration will increase slowly and the system will have time to reach the steady-
state response (see Fig. 3.14, slow growth line). In this case, the precision would
increase, the variability would be diminished, and full activation would require
smaller colony sizes. Most phenotypic changes induced by the QS mechanism refer
to bacterial strategies for survival and/or colonization. In this context, these results
suggest that both the QS activation threshold and the phenotypic variability might
depend on the growth rate of the colony and, as a consequence, on the environmental
conditions. This is in fact in agreement with recent studies that show that the
collective response of a population of cells depends not only on the underlying
genetic circuit and the environmental signals but also on the speed of variation of
these signals [67].
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Fig. 3.14 The growth rate conditions the phenotypic variability. In the context of a growing
colony, the autoinducer concentration increases as the colony does: arrow lines show schematically
two exponential growth conditions for the autoinducer concentration as a function of time. Our
results on the MFPT, valid at fixed autoinducer concentrations, can be extrapolated, qualitatively,
to the case of increasing autoinducer levels. Fast growth results in a large cell variability and
large critical colony size for achieving a global response, while slow growth produces reduced
cell variability and a smaller critical population size. Increasing fluctuations in LuxR have two
opposite effects: in the slow growth case, increasing the noise (dark circles/shading: bR D 20;
light squares/shading: bR D 0:01) decreases the critical population size while hardly changing
the variability, in the fast growth case, increasing noise increases the critical population size and
increases greatly the variability

Finally, we have observed a counterintuitive effect of LuxR gene expression noise
in the dynamics of the QS activation. For high concentration of autoinducer (above
�25 nM) an increase in the noise intensity slows down the mean activation time.
This effect is the opposite of what would be expected in the case of a bistable
autoactivating switch with additive noise or extrinsic fluctuations [68]. In order to
address this puzzling result, we have introduced a simple model that summarizes
the underlying LuxR/LuxI motif: the autoactivating switch with a positive feedback
loop. Thus, we have shown that intrinsic noise modifies the bifurcation diagram
(phenotypic landscape) and stabilizes the low state of the cells; an effect that we
call stochastic stabilization.

Our final comment refers to the possibility of considering other sources of
stochasticity that may play a crucial role in QS. Cell-to-cell variability and extrinsic
noise have been proved key in many cell processes [35, 49, 50, 69]. In the context
of the problems studied herein, the results suggest that variability, either at the
level of the mRNA dynamics or at the level of the diffusion rate, can effectively
lead to significant changes in the reported phenomenology. However, theoretical
studies [19, 70] suggest that the QS synchronization is robust to the variability in
the diffusion rate and extracellular noise. Thus, whether or not these additional
noise sources may generate new effects in the framework of QS is not clear yet
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and further research is needed. In any case, stochasticity in QS is key for describing
adequately the bacterial communication phenomena and therefore it is a promising
field of research that will continue flourishing in next years.
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Chapter 4
Spatial Structure of Microbes in Nature
and the Biophysics of Cell–Cell Communication

James Q. Boedicker, Katie Brenner, and Douglas B. Weibel

4.1 Introduction to Microbial Structure

Microbes are social organisms and their language is chemical. Microbial communi-
ties provide cells with structures that facilitate chemical communication and enable
them to adapt to environmental pressure. Fossil records demonstrate that microbial
communities existed several billion years ago [1] and a wide variety of observations
point to the importance of these structures today [2]. The spatial organization of
communities provides organisms with advantages for growth and adaptation in
fluctuating environmental conditions.

We are surrounded by visible examples of spatial and temporal organization in
macro-biological communities that confer growth advantages, including: structured
forest ecosystems [3], mussel beds [4], islands [5], and soils [6]. These examples
have informed evolutionary ecology for over a century; such ecosystems are
frequently highlighted in literature in the context of their disruption and resulting
collapse [7]. In contrast, studies of physical structure in microbial communities
have been limited until recently by a lack of experimental tools and by the
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century-old mindset that these organisms operate only as single cells and lack
community structure and organization. Yet there is strong evidence that concepts
from landscape ecology, for example, can inform our understanding and aid in
making predictions about microbial community structure [8] and provide insight
into the chemical language of microbes. The prevalence and importance of microbial
communities suggests that understanding their spatiotemporal structure may be
critical to maintaining terrestrial homeostasis [7, 9] and human health [10, 11], and
may also stimulate the development of new technologies in future decades [12].

Recent interest in microbial structures has largely focused on bacterial biofilms,
colonies, and aggregates. Microbes frequently form biofilms at interfaces between
different forms of matter (i.e., solid, liquid, and gas). Aggregates are produced
during biofilm growth as groups of cells break away from these communities or
in response to flow patterns that promote grouping and cell–cell adhesion [13, 14].
Micro-environments in biofilms and aggregates shelter cells from mechanical stress,
flow, and antimicrobial compounds [15, 16] including toxic metals [17], while
sequestering nutrients, signals, and DNA [18], and facilitating the exchange of
chemical signals between cells. Cells in biofilms and aggregates differentiate [19],
communicate [20], share resources [14, 21], and exchange genes [18]. Therefore,
studying the relationship between the physical structure of these communities, the
exchange of molecules, and cellular function will elucidate the role structure plays
in microbial behavior and evolution.

In this chapter, we discuss structured microbial communities—including biofilms
and aggregates—and the principles of chemical communication from a biophysical
perspective by: (1) providing examples of structured communities and mechanisms
by which their physical arrangement is formed and maintained; (2) highlighting
biophysical models that provide insight into the length and time scales of microbial
communication; (3) examining recent advances that will accelerate the study of
microbial community structure; and (4) exploring advances in engineering cell/cell
communication and community structure.

4.2 Microbial Structures in Nature

4.2.1 Structures in the Environment

Biofilm studies in the laboratory have yielded insight into the multitude of structures
that microbes form, and the surprisingly rapid transition from uni- to multi-cellular
behavior exhibited by microbes in the context of environmental stresses [2, 22].
Biofilms enable coordinated cellular activity by spatially sequestering signals and
metabolites and thereby elevating concentrations of molecules that regulate cell
behavior within the community. For example, the structure of Pseudomonas aerugi-
nosa biofilms makes it possible to retain important signaling factors and metabolites
inside the biofilm, leading to a chemical gradient that extends from the center of
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the biofilm to outside of the community [23]. Within these multi-cellular structures
microbes differentiate: that is, changes in transcription or biochemistry create
subpopulations of cells with altered behavior and physiology. The death of cells in
Bacillus subtilis biofilms creates structures that project spore-forming bodies [24].
Myxococcus xanthus differentiates into swarmer cells that “ripple” quickly over
surfaces consisting of prey cells that consume nutrients, thereby optimizing both
nutrient uptake and cell migration speed [25]. This behavior culminates in a pattern
of programmed cell death that leads to fruiting body formation and the release
of spores [26]. These intriguing examples of microbial structure studied in pure
culture in the laboratory inspire a closer examination of structures in natural settings,
where multiple species often grow together in close association and form symbiotic
relationships.

4.2.1.1 Water

A close look at slime-covered rocks in a stream or at the bottom of the ocean reveals
surprising cooperation between microbes. In stream biofilms and other benthic lay-
ers, fluid flow impacts the size and shape of biofilms. In areas of unidirectional flow,
biofilms form ripple-like patterns consistent with the prevailing flow direction while
in areas of isotropic flow, biofilms form star-shaped clusters [27]. Microorganisms
can also engineer ecosystems by actively changing surrounding flow patterns [28].
In some cases, for example, bacteria in microbial communities depend upon algae to
influence the flow of fluids. Algae grow in ridged, patterned biofilms under turbulent
conditions, and form filamentous structures and nets under laminar flow. Bacteria
co-habiting with algae experience predictable flow patterns created in proximity to
a mature algal population (Fig. 4.1a) [28]. This symbiosis is poorly understood,
and it is possible that algae benefit from the presence of bacteria by cross feeding
or that the relationship is commensal and only benefits bacteria. In either case, the
overall microbial structure clearly optimizes bacterial adhesion and persistence in
the environment.

In the ocean or sea, organic particles bind to inorganic materials to create
aggregates with millimeter length scales. Behavior of these aggregates can be
accurately modeled by agar particles that are �4 mm in diameter [29]. In oceans,
the density of the aggregates makes them sink and they provide a mechanism
for cells to transition from suspension to benthic environments. These aggregates
act as reservoirs for pathogenic bacterial species and harbor a higher density of
microbes that feed higher organisms than would be found suspended in fluids.
Microbes within the particles interact and may exhibit density-dependent behaviors
(e.g., quorum sensing). Growth of microbes in marine aggregates primarily benefits
bacteria and other microorganisms because the physical structure traps nutrients—
akin to the function of a filter feeding organism—and thereby enables bacteria to
access 60 % more nutrients than are typically available in planktonic growth [30].
Aggregation has a direct benefit on cell growth and replication.
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Fig. 4.1 Microbes exhibit structure in nature. (a) In streams, bacterial biofilms form streamers
which recruit diatoms (top panel, epifluorescence and middle panel, dark field). Over time, algae
overgrow the streamers to form a mat and eventually provide a predictable flow pattern for the
bacteria (bottom panel) [28]. (b) Three examples of methane-oxidizing microbial aggregates
that form near exposed methane-hydrate layers in the deep sea. DAPI staining (left panels)
and fluorescent probes (right panels) allow differentiation between archaea (red) and bacteria
(green) [31]. (c) FISH-stained bacteria in sandy forest soil (top panel) and sandy agricultural soil
(bottom panel) demonstrate that there are more bacteria that are metabolically active in forest
soil [33]. (d) Thermophilic methanogenic granules form with bacteria surrounding archaea in
anaerobic waste-water reactors that bear striking resemblance to those featured in (b) [35]

Near exposed methane hydrate layers in the deep sea, the aggregation of microor-
ganisms mediates anaerobic oxidation of methane (Fig. 4.1b). In their mature form,
aggregated consortia consist of archaea growing in clusters of approximately 100
cells surrounded by sulfate-reducing bacteria. However, early consortia containing
a nucleus of only 1–3 archaea surrounded by sulfate-reducers also exist and suggest
that new consortia grow out of these small aggregates [31]. In this case, a physical
organization of cells enables their mutualistic metabolism and directly benefits the
growth of both community members.

4.2.1.2 Soil

The structure of soil is often overlooked, and yet it is strikingly complex; the com-
position of soil includes aggregates or “continents” inhabited by particular residents
surrounded by “oceans” inhabited by other microbes, and its surface is divided
into layers of different life forms positioned at different depths, which suggests a
structure with a striking resemblance to an upside-down rainforest canopy. Much
can be learned about the earth’s ecosystem and its trajectory and resilience by
examining soil carefully [6]. Communities of bacteria co-exist with multi-cellular
eukaryotes in soil, including arthropods and plants. Relationships between soil
organisms are mediated by physical interactions and chemical signaling between
them.
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Microbial communities shape the chemical and physical properties of soil as well
as the structure of vegetation on land. Soil microbes that are symbionts of one plant
species may deter growth of other plant species. In some cases, seedlings of one
species in proximity to adults of the same species suffer because host-specific soil
pathogens which surround the adult plant make the region inhospitable to the plant’s
seeds (i.e., the Janzen Connell hypothesis) [32]. This effect benefits the overall
ecosystem as it promotes biodiversity. The evolutionary rise of such complexity is
still a fascinating puzzle for ecologists. It is also clear that different types of soil host
different sizes and species of microbial aggregates [33]. Sandy soils contain large,
abundant aggregates compared to loamy soils. Additionally, samples from forested
soils contain more metabolically active microbes than samples from farmland soils
[33] (Fig. 4.1c). On a local scale, the plant rhizosphere secretes flavonoids and other
signaling factors that cause closely associated fungi to transcribe nodulation genes.
In response, microbial populations living in the rhizosphere export signaling factors
that alter gene expression in their neighbors. It is not clear how far-reaching the
impact of a single plant’s signaling factors may be, however given the relay that
can accompany microbial signaling—based upon the signaling cascade they initiate
in neighboring microbe populations—it is possible that root signals can influence
biology at a distance that extends beyond the diffusion of chemical signals through
a granular medium such as soil [6, 32]. Effects such as these make clear that a
full understanding of microbial community structure requires spatial and temporal
studies across several orders of magnitude: from minutes to years and microns to
kilometers.

4.2.1.3 Bioremediation

Soils and bodies of water are sites of interest from the standpoint of studying
naturally occurring microbial consortia as highlighted above, and particularly to
identify consortia that have the ability to degrade pollutants and promote envi-
ronmental remediation. In a classic example of a soil-based microbial consortium,
Wolfaardt et al. [34] identified nine bacterial species and one alga that grow together
in a biofilm and cooperate to degrade the herbicide diclofop-methyl. Cells degrade
the compound in batch culture; however, degradation was more efficient when
glass beads were introduced into the environment to promote biofilm formation,
highlighting the impact community spatial structure can have on community
function.

Bioengineers are already harnessing the natural abilities of microbes to degrade
recalcitrant compounds that are pollutants. For example, in waste-water purification
reactors, thermophilic methanogenic sludge granules form in which bacteria grow
in an outer layer surrounding archaea (Fig. 4.1d) [35]. Scientists have repro-
duced similar structured communities in the lab. When grown together with a
specific spatial arrangement, Sphingobium chlorophenolicum, a pentachlorophenol
(PCP) degrader, surrounded by Ralstonia metallidurans, a mercuric ion (Hg(II))
reducer, degraded both PCP and Hg(II) from a mixture [36]. The particular spatial
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arrangement of the two species is paramount in this case; if R. metallidurans instead
surrounds S. chlorophenolicum the consortium no longer degrades PCP efficiently.
The physical arrangement of this consortium is organized over a distance of 200 �m
and degradation takes place over several days.

4.2.2 Structures in the Human Body

In recent years it has become increasingly evident that human health is modulated
not only by activities of human cells, but also by the behavior and physiology
of resident microorganisms. We often think about microbes in the context of
wound infections, oral plaques, and digestive difficulty, but we also have many
beneficial interactions with our microbiota. A closer examination of each niche
reveals intricate physical structures that govern symbioses among microbes and
between microbes and the human host. A better understanding of these structures,
the chemical communication that occurs within them, and the exchange of chem-
ical signals between microbiota and eukaryotic cells may be critical in guiding
therapeutic efforts.

4.2.2.1 Wounds

In wound infections, it is evident that physical structure arises due to the different
growth properties of species in the biofilm. For example, when colonizing a
wound together with other species, P. aeruginosa always inhabits the leading
edge of the wound infection and forms tendril-like projections that consist of
swarmer cells producing more virulence factors and exhibiting greater antibiotic
resistance than other cells in the wound [37]. P. aeruginosa usually outcompetes
other bacteria in close spatial proximity, however in wounds it grows in intimate
association with other species and this close physical association across length
scales on the order of millimeters reduces the susceptibility of P. aeruginosa to
antibiotics. Additionally, during co-infection, P. aeruginosa detects peptidoglycan
released from neighboring Gram-positive bacteria and up-regulates production of
lytic factors in response, which kill both prokaryotic and human cells [38]. The
cytotoxicity of P. aeruginosa—as occurs in the context of cystic fibrosis or a
wound—may therefore be a side effect of an evolved response to competition with
Gram-positive cells and might be mitigated by eradication of Gram-positive bacteria
that are physically proximate to P. aeruginosa.

4.2.2.2 Mouth

When the “wrong” bacteria thrive in the mouth, the outcome is gingivitis, caries,
and even dysfunction throughout the host gastrointestinal (GI) tract. Microbial
communities that form on the surfaces of teeth exhibit intricate spatial structure.
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In addition to structure at micron length scales, microbes in the mouth influence
microbial colonization throughout the human gut. In the mouth, the order in which
microbes colonize tooth surfaces can influence the subsequent composition of the
community. Microbes in the mouth form layered biofilms, and colonization of the
basement layer by particular species is required for other beneficial commensal
species to thrive [39]. These pioneer species inform the composition of the mature
biofilms by promoting the adherence of specific species to the subsequent biofilm
layers. For example, streptococci such as Streptococcus gordonii DL1 recognize
receptor polysaccharides (RPS) on the cell surface of streptococci such as Strepto-
coccus oralis 34 [40]. Recognition promotes intimate association between the two
strains, presumably facilitating a metabolic interaction in which small molecules are
exchanged. Pathogenic bacteria also organize spatially to promote tooth decay. Por-
phyromonas gingivalis (harbinger of gingivitis) grows faster when co-localized with
Treponema denticola because it can metabolize succinate produced by T. denticola
and the isobutyric acid excreted by T. denticola also stimulates its growth [41, 42].

4.2.2.3 Gut

The spatial structure of microbes in the gut is also associated with human health.
Crohn’s disease can be diagnosed by examining the physical location of gut
microbes within the feces of sick patients. Habitual bacterial species that are
distributed throughout the feces in healthy humans are found only on the surface of
feces from sick patients. Additionally, the physical form of bacterial communities
is very different between feces from the two groups: healthy individuals have a
higher proportion of bacterial mats and webs, whereas the feces of sick patients
exhibit spheroidal and striated colonies. These observations demonstrate that the
physical structure of commensal microbes in the gut differs between healthy and
sick individuals. The role that these structures play in disease progression is yet to
be elucidated [43].

It is also known that obesity affects the composition of the gut microbiome.
In the gut of obese mice, Bacteroidetes are reduced by 50 % compared to lean
mice, with a proportional increase in Firmicutes [10]. Community composition
influences transcriptional and metabolite profiles [44], although little is known about
the physical structure of these gut communities. Does composition vary because of
changes in the topology of the gut biofilm due to obesity? Do changes in the spatial
structure of the gut microflora enable more efficient caloric harvesting resulting in
obesity? A spatiotemporal understanding of microbial communities in the gut will
answer fundamental questions such as these, and yield insight into the influence of
the microbiome upon human health, development, and behavior.
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4.3 Biophysics of the Spatial Structure
of Microbial Communities

In the previous sections, we highlighted examples in which microbes develop
complex spatial structures, and discussed the effect that spatial structure has on
the physiology and behavior of microorganisms in these systems. Microbes have
evolved to form structures in response to biological and physical cues from their
environment (e.g., surface properties, nutrient availability, and the presence of other
species). The location of cells within these communities influences chemical com-
munication between cells and enables them to adapt to extracellular changes. In this
section we develop a framework for applying biophysical concepts to understand,
predict, and dissect the role of spatial structure in microbial communication and
physiology.

4.3.1 Diffusion Sets a Length and Time Scale of Signal
Exchange Between Microbes

Diffusion helps to define the scale over which spatial structure influences cellular
activity. Diffusion is the process by which molecules spread from areas of higher
concentration into areas of lower concentration. Individual cells use diffusion to
exchange signaling molecules with neighbors. For example, synthetase enzymes
inside cells produce molecular signals that are exported out of the cell and drift
away from the producing cell until they reach neighboring cells, thereby relaying
a chemical message, as depicted in Fig. 4.2. In this process, each individual
signaling molecule undergoes a random walk, bumping into other molecules in the
environment, and produces a characteristic pattern of molecular concentrations in
time and space that is described by Fick’s laws of diffusion [45].

Fick’s first law states that the flux of signals from one cell to another will be
proportional to the gradient of the concentration of the signal—that is, how sharply
the signal concentration changes with distance,

J D �D dC=dx: (4.1)

The constant D in this relationship is known as the diffusion coefficient. For
simplicity, consider the case of diffusion in one dimension. Fick’s second law
defines how the gradient of the signal will change over time,

dC=dt D D d2C=dx2: (4.2)

With knowledge of the geometry of the space in which cells are located,
the boundary conditions (e.g., how the production of the signal changes over time
and whether the signal accumulates or is consumed at the receiver cell), and the
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Fig. 4.2 Diffusion of signals between cells. (a) At t D 0 the green sender cell emits a burst of
1,000 signal molecules (small green circles). The signal molecules diffuse toward the blue receiver
cell. (b) The gradient of signal molecule after 1, 4, 10, and 100 s with a diffusion coefficient of
10 �m2/s. (c) The gradient of signal molecule after 10 s for diffusion coefficients of 1, 10, and
100 �m2/s

stability of the signaling molecule (i.e. whether it is degraded) during its journey
between cells, Fick’s laws can be used to predict how the exchange of signals
between two cells evolves over time. In many cases an exact solution to the diffusion
equations is not possible, although analytical approaches can be used to approximate
the formation and dynamics of diffusive gradients. As a concrete example, Fig. 4.2
shows the solution to the diffusion equation for the case in which a burst of signal is
created by a producing cell and diffuses in one dimension. For mathematical details
describing the derivations of such gradients from Fick’s laws, we refer the reader to
[45, 46].

As seen in Fig. 4.2, the gradient of signal molecules between two cells changes
over time. Signal molecules spread from the producing cell to the receiving cell.
A signal with a diffusion coefficient of 10 �m2/s (Fig. 4.2b), requires more than 10 s
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to reach a receiving cell 50 �m away. The time it takes a signal to reach the receiving
cell depends upon its distance from the producing cell, as shown in Fig. 4.2b, and
also upon the diffusion coefficient, D, of the signal in its medium, as shown in
Fig. 4.2c.

Often we want to know the approximate amount of time it will take for a signal to
reach a receiving cell at a set distance. A useful approximation for the relationship
between distance and time for a simple diffusion problem such as the one depicted
in Fig. 4.2 is:

x D .2Dt/0:5 (4.3)

This rule of thumb enables one to estimate how long it will take a signal to reach
a cell at a distance x or, conversely, how far a signal will diffuse in time t. Using this
approximation, Table 4.1 estimates how far typical signals will travel in 1 s, 1 min,
1 h, and 1 day.

Table 4.1 demonstrates that diffusion is effective for signal exchange over length
scales from �m to mm, however it will take more than 10 years for a small molecule
signal to travel 1 m. Based on Eq. (4.3), it will take signal molecules four times
as long to diffuse twice as far, limiting the ability to relay chemical signals over
long distances. Diffusion is typically only used to exchange signals between cells
separated by several millimeters or less.

The medium through which diffusion occurs also plays an important role in
modulating the time and length scales of signaling. As seen in Table 4.1, the
diffusion coefficient of methanol in air is a factor of 104 higher than it is in water.
Gels such as the extracellular polysaccharide matrix (EPS) of biofilms also slow
transport rates, although for proteins diffusing in 4 % agarose, diffusion coefficients
are reduced only by a factor of 2 or less. Larger molecules typically have smaller
diffusion coefficients than small molecules. The pore sizes of gel matrices such as
EPS can also produce non-linear behavior for diffusion of larger molecules such
as proteins. In the cellular cytoplasm, the diffusion coefficient of proteins scales
approximately as MW�0.7 [51]. For larger objects, such as phage particles or whole
cells, the diffusion coefficients are even smaller, such that these objects take two
to three orders of magnitude longer to diffuse 1 mm than a typical small molecule
signal.

4.3.2 The Temporal Scale of the Biochemical Processes
Involved in Cell–Cell Signaling

Diffusion is one process that sets the timescale of cell–cell signaling. How do
transport times compare with the other cellular processes involved in detecting
and responding to a signal? Cells use a variety of molecular mechanisms to detect
chemical signals, including two-component signaling systems, extracytoplasmic
function (ECF) sigma factors, and one-component signaling systems [52].
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Two-component signaling systems detect changes in the chemical environment
using histidine kinase sensors containing a periplasmic or extracellular domain.
Once activated by signal binding, the sensor donates a phosphate group to a
transcription factor known as a response regulator, changing its ability to bind to
the genome and influence gene expression [53]. Sensing a signal and activating
(or sometimes deactivating) a transcription factor enables the cell to relay chemical
messages at sub-second timescales [54]. The chemosensory system in bacterial cells
is the canonical example of a two-component signaling system and has been the
center of several decades of biochemical studies [55].

ECF sigma factors are another type of sensor and regulator system that controls
gene expression in response to external chemical stimuli. Sigma factors are proteins
that bind to the promoter regions of genes to facilitate binding between the RNA
polymerase and specific promoters. Typical ECF sigma factors are regulated by
external sensor proteins in the cell membrane, known as anti-sigma factors. Anti-
sigma factors bind and sequester ECF sigma factors, inhibiting gene regulation.
When a signal molecule binds to an anti-sigma factor it induces a conformational
change that releases the sigma factor [52, 56]. As in the case of signal transduction
for a two-component system, the ligand binding and conformational changes needed
to release an ECF sigma factor occur on a sub-second timescale.

In one-component signaling systems, a signal binds directly to a regulator
protein. In the canonical example of P. aeruginosa quorum sensing signaling,
homoserine lactones (HSLs) are exchanged between cells. Variants of HSL with
short acyl chains freely partition across the cell membrane, whereas some variants
are actively transported and require several minutes to reach steady-state [57]. In
the cytoplasm, signals bind and dimerize receptor proteins [58]. These activated
receptor proteins are transcription factors that increase expression of proteins asso-
ciated with community structure, including HSL synthases and receptor proteins.
Dimerization of the transcriptional regulator through binding of a ligand at �M
concentrations occurs on sub-second timescales [46].

After a signal has been received, a response is elicited through the production
of new proteins, which may take considerable time. Association between an active
transcription factor and the promoter region to which it binds is likely the rate-
determining step. A single Lac repressor can take 3–5 min to find a single
promoter region, although the response time is decreased when multiple copies
of Lac repressor are present [59]. The copy numbers of RNA polymerase with
common sigma factors have been measured to be >1,000 [60], suggesting that
binding between RNA polymerase and an activated promoter should not be rate
limiting. Because transcription produces mRNA at �50 nucleotides per second and
translation occurs at a rate of 20 residues per second [61], it takes �11 s to make
an unfolded peptide chain of 100 amino acids. Folding times can be as short as
hundreds of �s [62] and many proteins exhibit folding times of <1 s [63]. Protein
maturation can be slow—derivatives of green fluorescent protein require 5–30 min
to become functional [64]. Some proteins require cleavage to become activated,
which increases the response time. Overall, it takes between 10 s and 10 min, on
average, for protein to be produced in response to a signal.



4 Spatial Structure of Microbes in Nature and the Biophysics... 65

Table 4.2 Approximate timescales of the processes involved in cell–cell signaling

Process �Timescale

External signal activating response regulator in two-component system <1 s
External signal activating ECF sigma factor <1 s
Short chain HSL partitioning across membrane 30 s
Long chain HSL partitioning across membrane 5 min
Ligand binding to protein <1 s
Activated TF binding to target promoter 1–5 min
Transcription and translation of 100 amino acid peptide 10 s
Folding time of typical protein ms–min
Doubling time of most microbes 10 min–1 day
Enacting full response to “-galactosidase stimulation 30 min
Small molecule diffusing 1 mm 10 min

See text for more details and references

The approximations above suggest that cellular responses to incoming signals
occur on a timescale of seconds to minutes. However, enacting a full cellular
response to the signals can take significantly longer. Long-term responses to
chemical signals may require activating an entire gene network, increasing the
response time. The response may also involve accumulating high intercellular
concentrations of proteins, requiring many cycles of transcription, translation, and
folding. Beta-galactosidase can take a full cell cycle to reach steady-state levels
upon stimulation [65]. Although at some distances diffusion of signals may be a
rate limiting step in the ability of cells to communicate, protein expression may also
govern response times and several division cycles may elapse before cells mount
full responses to some chemical messages.

Having defined these timescales, see Table 4.2 for a summary, we can calculate
a length scale over which signal exchange by diffusion is effective. Given that
production of and response to a signal occur in minutes, Eq. (4.3) specifies that
communication by diffusion between cells at distances of 100 �m will not be limited
by transport rates. Another length scale to keep in mind is the doubling time. As cell
division consumes significant energy and resources, it may be beneficial to relay
chemical messages to neighboring cells within the division time. Microbial division
times typically range from 10 min to several hours. Within a few hours, signals may
travel several millimeters.

4.3.3 Biophysical Detection Limits

In addition to the rate of transport, another parameter that influences the spa-
tial scaling of signal exchange is signal sensitivity (i.e., the lowest detectable
concentration of a signal). In the previous section we assumed that a receiving
cell will detect any amount of signal, a suitable assumption for the estimates
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made using Eq. (4.3). However, the noise inherent in single molecule diffusion
and binding provides a limit to the concentration of signal that individual cells
can detect. Cells overcome this biophysical limit by, for example, time averaging
binding events [66, 67]. Above the limit of signal sensitivity, cells can control the
threshold concentration of signal to which they will respond. Cooperative binding of
ligands or multimerization of transcription factors can regulate the sharpness of the
threshold [68]. The value of the threshold concentration can also be tuned through
a combination of reactions that activate and repress the response, especially if the
activation is super-linear, as has been shown in the case of blood coagulation [69].
Together these features enable cells to tune their response function, and thereby the
timescale of the response. The range of signal concentration to which a cell responds
is an important feature that helps set the time and length scales of signaling.

4.3.4 Gradients Over Short Length Scales

Diffusion creates well-mixed conditions inside a 1-�m long cell within millisec-
onds. However, if signals are bound at timescales equivalent to or shorter than the
diffusion time, gradients of signaling molecules can be observed within a cell [70].
One example in which cells create and respond to gradients formed over micron
length scales occurs with the filamentous cyanobacteria Anabaena. Anabaena forms
chains of interconnected cells. These filaments are heterogeneous and consist of a
mixture of cell types that are formed when Anabaena differentiates. Under nitrogen
starvation, heterocyst cells capable of fixing nitrogen develop approximately every
ten cells [71]. The spatial pattern of cellular differentiation stems from production of
an inhibitory signal in heterocyst cells [72]. Current models suggest that diffusion
of this inhibitory signal within the chain creates a gradient of inhibition around
each heterocyst. New heterocysts only form at distances of several cell lengths from
an existing heterocyst, where the gradient of this diffusing inhibitor falls below a
threshold concentration [73]. This example demonstrates how cells can experience
steep signaling gradients over short length scales.

There is emerging evidence that intracellular structures exist to promote signaling
between neighboring cells. Nanotubes form between adjacent cells—even different
species of cells—and efficiently exchange molecules between cells, including
proteins and genetic material [74]. Transport mechanisms in these nanostructures
are not yet characterized. However, if the transport process is diffusive, signal
exchange between adjacent cells should be rapid. In addition to molecular exchange,
there is evidence that some species use direct cell-to-cell connections such as
nanotubes to transmit electrical signals [75]. These direct cytoplasmic connections
may facilitate signal exchange, catalyze formation of larger physical structures, and
coordinate group behavior in communities of cells.
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4.3.5 Gradients Over Long Length Scales

Long timescales are needed for signals to diffuse over long distances. Recall that
in Table 4.1 we estimated that a small molecule will take 10 years to diffuse a
distance of 1 m. It is not yet clear whether microbes in nature exchange signals
over long distances. As discussed in Sect. 4.2.1.2 on soil microorganisms, the
distribution of microbes is ordered across length scales ranging from microns to
kilometers. Large-scale patterns may emerge in microbial networks as diffusive
signaling leads to a local spatial structure that propagates to neighboring clusters of
cells, thus creating order over long distances [6, 32]. Volatile signals also play a role
in long distance communication. Because small molecules exhibit large diffusion
coefficients in air, volatile signals reach neighboring cells meters away in less than
a day. Many microbes produce volatile compounds that are thought to participate
in communication with insects [76] and volatile compounds produced in the
rhizosphere trigger plant growth [77]. The plant pathogen Ralstonia solanacearum
uses the volatile signal 3-hydroxpalmitic acid methyl ester to regulate virulence [78]
and microbes can be engineered to respond to airborne volatiles [79], yet it is not
yet clear to what extent volatile signals mediate microbe–microbe interactions.

Several additional mechanisms make it possible for microbes to overcome the
slow rate of long distance diffusion. First, transport is rarely purely diffusive. In
real environments, advection—or the directed bulk flow of materials—transports
released signals away from a sender cell rapidly. For example, directed transport has
an influence on signal exchange within P. aeruginosa biofilms [80], thus potentially
increasing the length scale over which signaling occurs. In systems such as the
gastrointestinal (GI) tract, there is directed flow of material over a length scale of
�10 m. This flow should transport signals, secondary metabolites, and metabolic
waste from cells in the upper GI tract to cells in the lower GI tract, however it is
yet unclear whether signal exchange occurs and how essential it is to the function of
this ecosystem.

Microbes also communicate over long distances using motility. Due to the low
diffusion coefficient of large objects—such as a micron-sized cells—dispersion
primarily by diffusion has significant limitations at short timescales. Many microbes
overcome diffusion limitations overcome diffusion limitations using motility mech-
anisms such as flagella that are coupled to chemosensory systems to direct cell
movement. Table 4.1 estimates that a cell takes �1 h to diffuse 60 �m. As
the effective swimming velocity of Escherichia coli cells—which use flagella for
propulsion in fluids—in a gradient of chemoattractant is �7 �m/s [81], they cover
the same distance (60 �m) in 9 s. Many microbes can detect chemical signals in the
environment using chemotactic systems that direct their motion. When motile cells
localize to similar areas, signaling by diffusion is much more efficient, reducing the
time required to coordinate group activities. The dispersal of signaling molecules in
dynamic, high-density communities of bacteria can be hyperdiffusive, which may
enhance long range communication between cells [82].



68 J.Q. Boedicker et al.

4.3.6 Efficient Signaling Can Sometimes Be Detrimental

We have discussed mechanisms that increase the rate of signal transmission;
however, in some cases it is beneficial for cells to prevent diffusion of signaling
molecules. For example, cells release enzymes to digest complex food sources and
it is detrimental if the enzymes diffuse too far away. To limit diffusive losses,
microbial cells are hypothesized to gauge the transport properties of their local
environment by sending out test signals in a process called “diffusion sensing” [83].
If the test signal accumulates to a high concentration around the cell, energetically
costly degradation enzymes are released. Cells actively reduce the rate of diffusion
by producing and secreting extracellular materials, including EPS, that effectively
decrease the diffusion coefficient of released molecules. Transport rates can be
further reduced if the matrix material has an affinity for the diffusing molecules,
for example through electrostatic or hydrophobic interactions [84].

4.4 Engineering the Spatial Structure of Microbes
in the Laboratory

In light of the critical role that the spatial arrangement of cells has on the activity
of cellular communities, many experimental approaches have been developed to
actively manipulate the spatial structure of microbes in the lab. In this section, we
organize these approaches into three classes based on the type of spatial parameter
that is varied: (1) arrangement of cells; (2) arrangement of chemical gradients and
activity; and (3) physical parameters. Manipulating these parameters has enabled
new studies of the role of “space” in regulating and coordinating the behavior of
microbial consortia. We present and discuss seminal work in each of these areas;
however, we do not provide a comprehensive overview of all of the research in this
area, and often a specific experiment implements a combination of several themes.

4.4.1 Controlling the Arrangement of Cells

To examine the effects of communication upon cellular activity, a variety of tech-
niques are available for manipulating the spatial arrangement of cells in laboratory
culture.

4.4.1.1 Engineering Cell Organization at the Macroscale

It is possible to study the effect of cellular communication that occurs over
macroscopic distances—that is thousands of cell lengths—by inoculating a pattern
of cells on agar media plates. Early uses of this approach included inoculating sister
colonies of microbes on opposite sides of a Petri dish to examine how chemical
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Fig. 4.3 Engineering spatial structure in the lab. (a) Interactions between colonies of Paenibacillus
dendritiformis shape the growth patterns observed on agar plates [85]. (b) Multiphoton lithography
traps a cluster of Staphylococcus aereus microns away from a dense colony of P. aeruginosa [96].
(c) Microfabrication techniques pattern an array of biofilms with controlled shape and position
[93]. (d) A microfluidic device creates microscale chemical gradients for microbial chemotaxis
experiments [99]. (e) Optogenetics controls the expression of reporter genes in response to either
red or green light, enabling the transfer of the red and green image of chili peppers onto a lawn of
bacteria [100]. (f) The movement of E. coli in a microscale maze depends on the local arrangement
of physical boundaries, resulting in non-uniform cell clustering, magnification 400X [101].
(g) A P. aeruginosa cell confined within a femtoliter droplet activates the high-density behavior
of quorum sensing in response to the accumulation of released autoinducer [102]

signals emanating from a colony influence growth patterns on the plate, such as
the repulsive growth pattern shown in Fig. 4.3a [85]. This pattern formation was
the result of a simple reaction diffusion system. To further explore these reaction–
diffusion patterns, E. coli cells harboring a synthetic quorum sensing system have
been embedded in thin strips of an agarose gel through which quorum sensing
signals freely diffuse [86, 87]. Such studies may elucidate tuning parameters
that are useful in engineering communication systems for synthetic microbial
communities [87].

Research in this area also focuses on the interaction between different cells
and cell types. Phenotypic assays place microbes in spatial proximity to screen
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for interactions mediated by diffusible signals [88]. Signal exchange between
colonies can be imaged by MALDI mass spectrometry to identify genes and gene
products involved in cell communication. The response of engineered microbes to
a diffusing signal may be dependent on the position in which the cells are sampling
a gradient [89]. These examples demonstrate that methods of patterning cells at
macroscale distances can provide great insight about how space shapes the dynamics
of multi-cellular systems. Next we will see that recent technologies enable precise
manipulation of microbial communities even at cellular—that is micrometer—
length scales.

4.4.1.2 Engineering Cell Organization at the Microscale

Several technologies enable control of microbial habitats at the micron length
scale, including: optical traps [90], microelectromechanical systems [91], and
microfluidics [92]. Microfluidics enables users to precisely manipulate individual
cells and small volumes of liquids (e.g., microliters, nanoliters, and femtoliters).
By incorporating microscale and nanoscale features into microfluidic channels,
researchers can direct the exchange of chemical information within spatially
patterned networks of cells. Figure 4.3c demonstrates microscale control of the
shape and position of biofilms [93], and similar techniques position different species
of microbes at fixed distances. Using this technique, it was shown that the spatial
arrangement of colonies of three soil microbes plays a critical role in balancing
interactions within this microbial community [94].

Another promising approach to positioning cells at the microscale is to trap them
in a material, for example by isolating individual cells in micron-sized particles or
droplets of liquid [95]. Particles can be partitioned such that each section of the
structure contains a different microbe [36]. Microbes can also be actively trapped in
gel microstructures. These “bacterial cages,” shown in Fig. 4.3b, enable researchers
to probe the influences of aggregation and of proximity to other species upon
gene regulation and phenotypic response [96]. Alternatively, light can be used
to hold cells in place. Optical traps grab and position individual cells within a
hydrogel, where they can be stimulated and monitored for many hours [90]. Cells
can also be positioned by printing them on agarose gels using inkjet printers or
fluorescence activated cell sorters [97, 98]. By programming patterns of cells with
varying complexity, it is possible to study how microbial spatial structures impact
physiology and behavior.

4.4.2 Spatially Controlling Cellular Activity

An alternative approach to positioning cells is to create spatial patterns of cellular
activity. One method for patterning activity is to control the location of chemical
gradients within a system. Early work by Winogradsky demonstrated that the
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formation of macroscale gradients of nutrients and oxygen led to striation of
cellular activity and influenced the overall activity within a complex ecosystem of
microorganisms. Microfluidic approaches, such as the device shown in Fig. 4.3d,
enable precise control over chemical gradients on micron length scales [99, 103]. In
one example, a nanofabricated ecosystem of E. coli cells was created by connecting
picoliter-volume chambers with micrometer and nanometer scale channels, and used
to explore the development of antibiotic resistance in a spatially heterogeneous
environment [104]. In another example, researchers injected plumes of nutrients
into a microchannel and tracked the rapid aggregation of marine microbes around
a food source [105]. These are just two of many examples in which microfluidic
systems can be used to control chemical gradients.

Optogenetics is a recently developed method of regulating cellular activity. In
optogenetics, cellular engineering controls gene regulation in response to light.
When cells are illuminated with a specific wavelength of light, an optically
controlled chemical transformation in a biomolecule occurs that leads to a change
in gene regulation. Although initially developed for neuroscience [106, 107], this
technique has been applied to control the activity of microbes with precise temporal
and spatial resolution. Figure 4.3e demonstrates cells programmed to change the
expression of multiple target genes in response to different wavelengths of light
[100, 108].

4.4.3 Manipulating Physical Parameters

The physical parameters of a microbial system are key regulators of the spatiotem-
poral patterns of signal exchange. Microbes sense physical barriers to transport
through the accumulation of released signals or metabolites, and these perturbations
to the chemical environment around each cell induce physiological changes. For
example, E. coli introduced into a microscale maze clustered in the “dead-ends,”
as shown in Fig. 4.3f. The distribution of chemotactic signals was patterned by the
maze itself, resulting in a cellular response dependent on the local structure of the
maze [101].

Microdroplets provide another method for introducing barriers to signal
exchange between cells. Encapsulating microbes or small groups of microbes
in microdroplets enable an examination of cellular physiology in physical
confinement. This technique has been used to monitor the activity of small groups
of isolated microbes [109, 110]. Cells in microdroplets can activate high-density
behaviors, such quorum sensing as shown in Fig. 4.3g. As droplets can contain
small numbers of individual cells, the stochastic, heterogeneous nature of single
cell activity becomes prominent [102]. Interactions among a mixture of microbial
strains can also be studied within and between microdroplets containing specified
species [111, 112].
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Experimental techniques have also been used to regulate the transport of
chemical signals between cells. For example, the flow rate of the bulk liquid nutrient
media above a dense cluster of cells influences the activation of quorum sensing
regulated genes [113]. In another study, the flow rate shifted the cell density required
to initiate quorum sensing [80]. Understanding the role of convection in signaling
is critical, as microbes in natural settings experience a wide range of transport
environments.

4.5 Next Steps in Understanding and Utilizing Spatial
Regulation Within Microbial Communities

The study of microbial spatial structure is an emerging field that is likely to play
a major role in microbiology, health, and biotechnology in the future. There are
many potential avenues of exploration and development. Here we discuss three key
areas: (1) quantifying spatial structure in natural systems; (2) manipulating spatial
structure in the lab to discover new biology; and (3) applying engineered spatial
structure to tackle real-world problems.

4.5.1 Exploring the Spatial Structure of Real-World Niches,
Environments, and Ecosystems

Our understanding of and appreciation for microbial spatial structure is still in its
infancy. Section 4.2 discussed several examples of natural systems exhibiting spatial
structure, however in many cases the relationship between structure, physiology,
and function is not yet clear. Understanding these relationships is an important step
forward in altering microbial community behavior to improve the environment and
human health.

New deep sequencing technologies make it possible to identify and catalog
microbial species found in the human gastrointestinal tract, and to identify trends
relating community composition to the development of gastrointestinal disorders,
including Crohn’s disease and irritable bowel syndrome [43]. However, the spatial
structure of gut microbial communities has yet to be closely examined due to the
challenges associated with accessing and imaging these structures. As discussed
in Sect. 4.2.2.2, the intricate processes that control the nucleation and maturation
of multispecies oral biofilms are relevant to human health and remain largely
unexplored beyond the identification of the organisms involved [11, 40]. An
important next step in this area is to connect genomic data revealing the identity of
microbes to their spatial organization in vivo. Extending this challenge to other areas
in the human body—beyond the gut and mouth and including wound infections
containing different organisms—will likely yield new biology and contribute to
health and disease.
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In addition to uncovering spatial structure in specific contexts, there are many
fundamental unanswered questions regarding the regulation and formation of
microbial spatial structures. Mechanisms that influence the nucleation and mat-
uration of multispecies aggregates such as those that form near methane vents
on the ocean floor or in waste-water treatment reactors are not fully understood
[114]. Understanding the mechanisms of aggregate formation may enable precise
manipulation of aggregate spatial structure and composition, and bring to light new
strategies to disrupt the formation of aggregates during biofouling.

Effort should also be focused on understanding how microbes regulate structure
over longer length scales. In many environments such as soils and in the ocean,
microbes exhibit spatial structure over kilometer length scales [32]. An unsolved
challenge is to predict how large-scale microbial patterns respond to global envi-
ronmental changes, as they may introduce important feedbacks into the processes
driving global climate change. A quantitative understanding of the mechanisms that
regulate large-scale community structure should bring us closer to the ability to
rationally and precisely manipulate microbial processes on a global scale.

Revealing mechanisms that regulate microbial structure at multiple scales will
inform studies of the adaption and evolution of these structures. Some of the
mechanisms underlying the formation of specific spatial structures are encoded in
the genome, yet is often unclear how spatial structure emerges from the interac-
tions of these components. Some structures are regulated by interactions between
multiple species, suggesting the processes that govern spatial structure would have
coevolved. Indeed, such coevolution of spatial structure has been observed in the
lab [115]. Elucidating the evolutionary changes that lead to the spatial structures
that exist today should give us clues as to how to create, alter, or evolve spatial
structure in microbial systems.

4.5.2 Manipulating Spatial Structure in the Lab

There is growing interest in manipulating and engineering microbial community
spatial structure in the lab. As new experimental tools become available and are
used to decipher the organization of microbial communities, a next step will be
to recreate these structures in the lab, and study how they evolve and adapt. As
discussed in Sect. 4.4, there are a growing number of techniques available to
specify patterns of cell placement and activity in laboratory experiments. We
can also manipulate cell function by adjusting physical parameters within these
systems (e.g., by varying signal diffusion and mass transport rates, and anisotropy).
Undoubtedly, developments in this area will continue.

An important motivation for the development of new approaches to manipulate
cell function is addressing key biological problems that remain unresolved. For
example, one scientific challenge that the study of spatial structure may solve is
the so called “culturability problem.” Over 99 % of the microbes that have been
identified by sequencing in nature cannot be cultured in the lab using the methods
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and techniques currently available. Although laboratory conditions are inherently
limited [116], still, adjusting the spatial structure of laboratory cultures may promote
cell growth. Several precedents have been reported. Positioning marine microbial
isolates in proximity to native communities using a nanoporous membrane enabled
the cultivation of new marine microbes [117]. Another approach confines cells
to induce growth. Physical confinement can lead to the accumulation of factors
necessary to induce cell growth [118]. Confining pairs of cells increases the strength
of interactions between species [111], and close proximity may be required to
cultivate species involved in syntrophic interactions, which involve obligate cross
feeding. Devices and microsystems that engineer and manipulate spatial structure
may prove to be a major component in discovering and cultivating the next
generation of laboratory strains.

One hurdle to quantifying multispecies interactions in any environment is the
inability to easily test predictions made using global measurements of community
composition and function. Analysis of “omics” data—that is large data sets from
techniques such as high throughput sequencing and metabolic profiling—reveals
patterns such as the association of specific species or metabolites with global
aspects of such systems [44, 119, 120], such as disease states. Testing these
correlations has been hindered by difficulties in designing laboratory experiments
that support the interactions required to reproduce target community functions.
One solution may be creating systems of intermediate complexity, consisting
of subsets of microbes from the original community. Some community subsets
may contain the minimal set of microbes and interaction pathways necessary to
test predictions based on correlations observed in the more complicated original
system. Recreating essential interactions within these intermediate communities
may require reproducing key aspects of the spatial structure of the initial community.
Building such laboratory experiments with simplified cellular networks should lead
to a more precise understanding of which interactions in large microbial ecosystems
shape community outputs.

4.5.3 Solving Problems with Engineered Microbial Systems

In addition to expanding the repertoire of techniques that can be used to study
communities in the lab, engineering the spatial structure of cells has applications
in health, biotechnology, and the environment. Advances in understanding the role
of microbial spatial structure throughout the body will be matched by incorporating
aspects of spatial structure into innovative therapies and more accurate diagnostic
tools. In ecosystems such as the microbiota of the gut, the composition of com-
munities is remarkably stable over time, yet as changes in composition occur, they
may have a dramatic impact on health [44]. Currently, it is unclear to what extent
community composition in these systems is malleable.

Relatively simple perturbations to the system—such as introducing a single new
species—do not always result in a permanent change within the community [121].
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Studying the role of spatial structure in compositional robustness may reveal new
opportunities for altering community composition. There are several far-reaching
questions in this area. Could introducing pre-structured microbial mixtures into
communities yield better control over community composition? Can physiology
be controlled by modulating the interactions within the community that maintain
spatial and community structure?

In biotechnology, microbial engineering has deeply influenced chemical produc-
tion and processing. What role will organized community structure and multispecies
communities play in these advances? It has been suggested that using “division of
labor” to distribute biological processes across species within a community could
have several advantages in design and modularity [12]. It is very likely that the
spatial structure of these synthetic communities will be essential to maintaining the
community composition and regulating functions.

In the environment, interactions within complex communities of microbes are
key regulators of global geochemical cycles. Can we apply our knowledge of the
influence of microbial spatial structure on community physiology to manipulate
these processes on a global scale? At smaller scales, there are many examples of
spatial structure influencing environmental processes such as toxin degradation, as
detailed in Sect. 4.2.1.3. Potential opportunities are present for engineered spatial
structure to modulate rates of these processes occurring in the environment.

4.5.4 Concluding Remarks

Ecosystems exhibit numerous examples of spatially and temporally organized
microbes. We have reviewed many examples of these structures in nature, and
discussed the theoretical and experimental approaches that can be used to quanti-
tatively understand how spatial structures form and influence microbial physiology.
As future research continues to create and explore spatially structured microbial
communities, new opportunities will arise for translating these efforts into advances
in ecology, human health, and biotechnology. The impact of this area of science on
technology is poised to be tremendous.
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Chapter 5
Functionality of Autoinducer Systems
in Complex Environments

B.A. Hense, C. Kuttler, and J. Müller

5.1 Introduction

Cell-to-cell signalling via small diffusible molecules, usually termed quorum
sensing (QS), represents a common behaviour in bacteria. This signalling regulates
life style switches in many, if not most symbiotic microbial species either beneficial
or pathogenic for their eukaryotic hosts, but is also involved in controlling envi-
ronmental processes such as biofouling, degradation processes in sewage plants or
environmental pollutions and N cycling [1–4]. Biochemically, the core of a generic
system comprises a cytoplasmatic signal synthase (or several involved enzymes),
a small, diffusible signal which is released into the environment, and a signal
receptor located in the cell membrane or in the cytoplasma. The signal-receptor
complex directly or indirectly controls the expression of target genes (Fig. 5.1).
The signal was termed autoinducer (AI), because the same cells produce and react
on the signal molecules. For an overview on the various chemical realizations of
AI systems see, e.g. Atkinson and Williams [5]. Originally, three main types of AI
molecules have been described: (a) Mainly gram-negative proteobacteria, but also

B.A. Hense (�)
Helmholtz Zentrum München, Institute of Computational Biology, Ingolstädter Landstr. 1,
85764 Neuherberg/Munich, Germany
e-mail: burkhard.hense@helmholtz-muenchen.de

C. Kuttler
Technical University München, Centre for Mathematical Sciences, Boltzmannstr. 3,
85747 Garching, Germany

J. Müller
Helmholtz Zentrum München, Institute of Computational Biology, Ingolstädter Landstr. 1,
85764 Neuherberg/Munich, Germany

Technical University München, Centre for Mathematical Sciences, Boltzmannstr. 3,
85747 Garching, Germany

© Springer ScienceCBusiness Media New York 2015
S.J. Hagen (ed.), The Physical Basis of Bacterial Quorum Communication, Biological
and Medical Physics, Biomedical Engineering, DOI 10.1007/978-1-4939-1402-9__5

83

mailto:burkhard.hense@helmholtz-muenchen.de


84 B.A. Hense et al.

Water

AHL diffusionAHL diffusion

LuxI

AHL LuxR

AHL|LuxR Polymer

Cytoplasm

DNA

+

+
+

+

AHL|LuxR Complex (Monomer)

Luminescence

Fig. 5.1 Sketch of the basics of a typical autoinducer system in a cell, exemplarily for the
LuxI/luxR.system of Vibrio fischeri, including an intracellular autoinducer synthase (LuxI), the
autoinducer AHL and an intracellular autoinducer receptor LuxR, which binds after polymerization
(often dimerization) of the LuxR–AHL complex to promoter regions of the DNA to control gene
expression. The controlled target genes include usually parts of the autoinducer system (here:
luxI expression is up-regulated), and a set of other target genes—in this examples involving those
responsible for bioluminescence

some cyanobacteria and archaebacteria employ molecules of the acylhomoserine
lactone (AHL) group as AIs, (b) oligopeptide AIs occur in gram-positive bacteria,
and (c) AI2 has been described as a universal signal for interspecies communication.
Recently, a still increasing number of AIs belonging to various chemical classes
have been discovered.

The generic system is adapted in various ways, specifically for each species.
For example, several oligopeptide AIs are post-translationally intra- or extracel-
lularly modified, and the AI transfer through the plasma membrane might be
passive (by diffusion) or active. Two properties relevant for the ecological function
have been described for most, but not all AI systems, introducing feedback and
non-linearity into the regulation architecture: (1) Autoregulation, i.e. AIs posi-
tively regulate their own activity on gene expression level, e.g. via expression of
their synthase, and (2) Cooperativity of the AI effect (Hill factor >1), e.g. via
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di(multi)merization of receptor/AI complexes. As a consequence, for an appropriate
parameter range bistability and hysteresis might occur. In fact, AI systems tend
to react in switch-like manner. This behaviour supports a synchronous all-or-none
behaviour of cells in a population. However, existence of bistability was reported to
depend on the stability of receptor/AI complexes, and thus may not exist in many
AI systems in vivo [6].

Another aspect that is poorly understood is the dependence of the AI-circuit on
other processes. AI activity at least often depends on the cell state. Ulitzur [7]
showed for example that starvation may enhance QS. The function of these
interdependencies of different regulation systems with respect to homoeostasis of
cells and ecological function deserves more intensive attention. The situation is even
more complex if several feedback loops are existent or more than one interconnected
AI systems co-exist in one species. The appropriate description of the interaction
between AI system and interconnected regulatory pathways forms a foundation
for interpretations and theories of the ecological function of AIs. The original
interpretation of AI regulation as a mechanism to control target gene expression
by cell density was quite narrow.

Mathematical modelling has been involved in the study of AI systems for a long
time. (For an overview see, e.g. [8].) They are employed for parameter estimation
from experiments, for predictions in a kind of virtual experiments, or for analysis of
the evolutionary stability of the systems. Furthermore, they play an important role
for the development of theories or concepts with respect to the in situ functionality
of AI regulation.

Mainly from the latter perspective, this chapter will focus on four aspects1:

(A) What is the ecological function of AI systems?
(B) Case study: QS and luminescence
(C) Integration of nutrients in AI regulation—Purpose?
(D) Relevance of locality for QS

Following the argumentation of, for example, Winzer et al. [9] and Diggle et al.
[10, 11] we apply a rather strict definition of these terms “signalling”, “signal
molecule” and “communication”. We limit them to systems, in which there are
direct or indirect evolutionary benefits for the receiver to response, and the response
of the receiver has to be beneficial for the sender. Thus we exclude coercion and
eavesdropping.

5.2 What Is the Ecological Function of AI Systems?

The original quorum sensing concept, which focussed on the relevance of cell
density (or quorum) for the gene expression regulation via AIs, was derived

1The book chapter partly bases on a recent journal article Hense and Schuster [77] (in preparation).
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from experimental observation in homogeneously mixed batch cultures [12, 13].
Its ecological purpose was interpreted as limiting certain joint activities to a
population size or cell density, which allows these activities to be effective. An
example was bioluminescence which might only be effective, i.e. visible, if pro-
duced by a sufficiently large number of cells. It was assumed that this was ensured
by an AI-controlled synchronous all-or-none behaviour of the cells. Consequently,
most mathematical models—especially the early ones—use cell density as input
variable to analyse, e.g. the induction dynamic of the system.

However, in situ most bacterial cells exist in spatially structured environ-
ments. They live in heterogeneous matrices like soils or eukaryotic hosts and in
colonies/biofilms. Recent interpretations acknowledge that other influences such
as spatial cell organization and diffusion rates also have an impact on the AI
concentration (for an overview see [14]). The resulting concepts have mainly
been developed on the basis of theoretical considerations, partly on modelling,
but the relevance of the additional factors for AI regulation has been confirmed
experimentally (e.g. [15–19]). Most of these interpretations identify cell density,
cell distribution (i.e. relative spatial location of cells with respect to each other)
and/or mass transfer properties of the environment (including space limitations,
diffusion rates and flow conditions) as the primary important factors influencing AI
systems. Note that the cell density and cell distribution are sometimes subsumed into
a term called “local cell density”, suggesting that both aspects are not independent
and may be transformed in each other [14]. A careful consideration of the term
cell density is necessary. The simple counting of cell numbers per volume will not
always work, as cells in clusters as well as homogeneously distributed cells may
yield similar cell densities, but behave differently with respect to AI induction of
the cells (Fig. 5.2). The spatial scale—a reference volume included in the term
“density”—plays a crucial role, but a reasonable reference volume is impossible
to be defined. Consequently, we prefer to differentiate between cell distribution
and cell density. Both can be calculated independently. Exemplarily, one method to
analyse clustering is the radial distribution function (RDF), which bases on the ratio
of the probability of finding a particle pair, separated by a distance r, normalized by
the same probability for a randomly distributed mixture.

As Platt and Fuqua [14] pointed out, the emerging multitude of concepts
and concept names, focussing specifically on different influencing factors, led to
unnecessary confusion. In reality, usually a mixture of these three aspects will
influence the AI concentration to which the cells are exposed. The relative relevance
or contribution of each influencing factor will spatio-temporally vary dependent
on the specific environmental conditions, and the cells usually will not be able to
distinguish between them [14, 20]. In fact, recent experimental studies support the
idea that a combination of the influencing factors is responsible for the induction
behaviour of AI systems [19, 21, 22]. It is to expect that the system yields reasonable
results over a wide range of parameters and in different geometries, i.e. largely
independent on the relative contribution of the factors.

Thus, different attempts have been made to unify the different concepts [20, 23].
The approach of Hense et al. [20], named efficiency sensing (ES), focuses on
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a b c

Fig. 5.2 Autoinducer pattern for a population of 70 cells in a volume of 50 � 50 � 10 �m3

on a solid surface. Induction threshold D 50 nM AI. Lines indicate identical AI concentrations.
Values given indicate AI concentration in % of threshold concentration. Cyan cells: not induced.
Red cells: induced. The 3D domain is viewed from the top, onto an impermeable surface at
the bottom. As the domain is otherwise infinite, the autoinducer can diffuse away. (a) cells
randomly distributed, (b) cells clustered, (c) cells clustered, but lacking the positive feedback via
AI dependent up-regulation of AI synthase. Clearly, clustering promotes induction by achieving
high local autoinducer concentrations, which is further strengthened by the positive feedback loop.
The figure was taken from [20]. For more details see there

understanding the regulation system from the perspective of its ecological or
evolutionary purpose instead from the perspective of which factors affect it.2 The
ES concept assumes that the ecologically relevant function of AI sensing is to
assess the efficiency of producing extracellular effectors (public goods) such as
exoenzymes, siderophores or antibiotica, whose extracellular concentration pattern
will be influenced by the same combination of influencing factors that affect
the concentration pattern of AIs. AI systems integrate the net-influence of these
factors into a single readout. AI can therefore function as a proxy to predict the
environmental pattern of the more expensive released effectors. As AIs consists of
small molecules and regulate multiple genes, they can act as significant cost savers

2Here, we will use the term “quorum sensing” in its original restricted way, i.e. as a strategy to the
control gene activity in dependency of cell density, although now a tendency exists to interpret it
in a wider way, comprehending other influencing aspects like cell distribution and mass transfer
properties. The wider concept we term more neutrally as “AI sensing”. We do this just for clarity
of terming within this text.

Note that the authors here which have been involved in the introduction of the ES concept,
did not intend to add an additional quagmire or substitute the term “quorum sensing” by the term
“efficiency sensing”, but to reshape thinking about what the ecological function of AIs might be.
The term “quorum sensing” gained wide acceptance in the scientific community. Thus, to our
opinion, it might be kept, but consistently be interpreted in a much broader sense than “cell density
dependent gene regulation”. Unfortunately, due to the fact that phrasing often determines thinking,
to our feeling still very often the function of AI regulation tends to be interpreted in the latter,
narrow sense.
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by limiting costly activity of AI regulated genes to conditions, where this activity
is cost-effective (D efficient). ES unifies the concepts of what cells sense, why
cells sense and the evolutionary hypotheses of the fitness benefits derived from AI
sensing. Other factors affecting the AI and regulated effectors in a non-correlated
way, e.g. degradation processes, are not defined as influence factors in our sense,
but simply as disturbances, which decrease the reliability of the system. If these
factors are independently recognizable by the cells (e.g. pH affecting the stability of
certain AI), their disturbance potential on the signalling may, at least theoretically,
be compensated.

In fact, most AI systems control genes connected with effector releases. Usually
AI systems do not control single targets genes, but rather life style switches, e.g.
from opportunistic to virulent in pathogens [24–27]. Thus, not each single gene, but
rather the life style switch itself may be connected with effector release, to make an
efficiency control via AIs beneficial.

5.3 Case Study: AI Regulation and Luminescence

The original interpretation of the ES concept described above, although thought to
explain most cases of QS, probably has been too strict (narrow). One aspect covered
only incompletely by ES is the AI control of intracellular, i.e. non-released enzymes,
which interfere with environmental properties respectively with substances that
are connected with cellular stress. Examples are intracellular enzymes controlling
oxidative stress or acidification [28–31].

The ecological and evolutionary benefit of the light-producing luciferase reaction
is usually assumed to be connected with visibility or camouflage. This, however,
has been questioned to be the sole purpose as there are bioluminescing species that
live in the gut of certain beetles or even the soil [32–36]. As the O2 consuming
luciferase reaction is able to reduce oxidative stress, an alternative hypothesis
proposes that detoxification of oxidative stress has been the original purpose of
the luciferase reaction evolutionarily, and light emission is only a secondary effect
[37–40]. Timmins et al. [38] suggested that, although detoxification has been the
original purpose during the evolution of the luciferase reaction in former times,
removing of O2 via ATP consuming luciferase reaction may be inefficient nowadays
due to the higher environmental O2 concentration. Thus, recently light emission,
resp. visibility may be the only benefit.

In a recent publication, Müller and Hense [41] (in preparation) investigated the
functionality of an AI regulated intracellular luciferase reaction, as it exists, e.g. in
Vibrio fischeri using an AHL as autoinducer.

The model for a hemispherical colony attached to an impermeable surface
consists of two equations:

At D DAAC �.x/
�
˛ C ˇAn=

�
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Fig. 5.3 Left panel: O2 concentration in the colony centre over colony size. Dashed-dotted line:
only aerobic respiration; dashed line: respiration plus constitutively induced luciferase reaction;
solid line: aerobic respiration plus autoinducer regulated luciferase reaction; vertical line: range
of induction. Right panel: Mean ATP consumption by luciferase reaction for varying colony sizes.
Solid line: autoinducer controlled luciferase production; dashed line: constitutively production of
luciferase at induced level; vertical lines: range of induction. The figure was taken from [41]. For
more details see there
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(with radius R, cell concentration �(jxj), AHL concentration A, AHL concentration
of half-maximal AHL production rate A� , Hill factor n, background concentration
of O2 (e.g. in the open sea) O0, O2 concentration O, O2 consumption described
by Km denoting the concentration with half-maximal reaction rate resp. Kcat the
maximal reaction rate, Kx,1 resp. Kx,2 denoting the O2 consumption via respiration
resp. luciferase reaction, diffusion coefficient DA and DO for AHL resp. O2).

The ATP consumption due to oxygen consumption by luciferase is assumed to
be proportional to
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As a proof of principle the model outcome indicated that by controlling luciferase
reaction via autoinducer the cells might be able to optimize efficiency of the reaction
for O2 removal even under current environmental O2 conditions (Fig. 5.3). This
optimization effect is also true under other conditions, e.g. in semi-confined space
(cave with limited access) where mass transfer limitations exists.

The concentrations of O2 and AHL depend in a similar way on colony size (i.e.
cell number), cell respectively colony distribution and mass transfer limitations.
Exemplarily, both the O2 depletion and the AHL accumulation towards the centre
of a colony become stronger in a correlated way with increasing colony size.
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Hence, AHL seems to be a rather reliable predictor for the achievable reduction
of the O2 concentration. It can be used as a control for the efficiency of luciferase
with respect to O2 removal. As an increasing AHL concentration is connected to
a larger achievable reduction of the O2 concentration, AHL acts here as an inverse
indicator (or proxy) for the reachable O2 concentration.

As shown by this example, the prediction of the efficiency of a target activity
is thus not limited to released public goods, but can also be employed for other
behaviours. As long as the efficiency of the target behaviour can be predicted by
the environmental pattern of the AI concentration, i.e. as long as AIs can be used as
proxies (or inverse proxies), employing them for target gene regulation enables the
cells to save costs.

5.4 Integration of Stress Responses in AI Regulation
and Its Purpose?

Most interpretations of AI systems base on the assumption that QS active cells
constitutively produce AIs at a constant low basic rate, and that in case of positive
feedbacks the induced cells produce AIs with a second, increased production rate.
It is assumed that this sufficiently reflects the scenario of homogeneously mixed
plankton population under constant environmental conditions, e.g. in a chemostat
which has reached its equilibrium state. Some biofilm models include terms for
the dependency of AI production on nutrient concentration, connecting a lower AI
production rate/cell to lower nutrient conditions [16, 42, 43].

However, there is increasing evidence that AI systems’ activities are under
direct or indirect control of a number of environmental and physiological factors.
Exemplarily, AI systems often regulate responses to starvation [44–47]. In the
present section, we try to understand the ecological benefit of that fact. We start
off with discussing some characteristics of the dependency of QS on nutrient
concentration. Then, we identify situation where this control rules central aspects of
bacterial communities, and situations where this nutrient-dependency may only play
a minor role. These considerations give an input for the discussion of the purpose of
this dependency in the third part of the section.

5.4.1 Characteristics of the Control

The still few existing quantitative experimental analyses suggest non-linear or
even non-monotonous relations between activity of AI systems and degree of
starvation [7, 48]. In V. fischeri, at least in certain nutrient concentration range,
nutrient deficiency promotes AI activity (Fig. 5.4). Only at severe starvation AI
production finally abolishes [7]. Such a regulation design reminds to the stress
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Fig. 5.4 Fit of modulation of the AHL system by nutrient availability. Dots are data from [7],
the solid line indicates the fit. Activation degree denotes the relative autoinducer production:
production rate with standard medium was set to 100 %. Nutrient availability: dilution of standard
medium. The figure was taken from [49]. For more details see there

gradient hypothesis developed mainly in plant ecology, which suggests that certain
facilitative interactions, at least under some environmental conditions, are promoted
by the presence of mild stress [50].

5.4.2 Nutrient Control in Different Situations

In homogeneously mixed plankton, all cells experience the same nutrient concen-
tration and the same AI concentration. That is, modifying the AI production rate
by nutrient does not add new information about the cells’ environment. (Note that
this does not rule out the possibility that other reasons support the utility of such
a regulation architecture under planktonic conditions). This is different in systems,
where physico-chemical gradients may evolve. In this case, some cells may starve
while others do not, and it may be useful for the total population to communicate
this situation to all bacteria. Typical scenarios for spatially structured populations
are microcolonies and biofilms. Most bacterial cells live under such conditions.

In order to investigate the consequences of spatial structure superimposed by
microcolonies, a model (similar to the model in the section before) has been
developed [49]. The parameters used are based on quantitative data for nutrient
concentration/AI production relationship in a QS system of V. fischeri [7]. Basically
it assumes that the AI production is not only influenced by AI itself, but additionally
by the nutrient concentration.



92 B.A. Hense et al.

The outcome of this model was that nutrient influence increases the spatial
complexity of AI activity within the colony. Especially, the area of maximum
AI activity, e.g. of the AI production rate, shifts between the centre of the colony
and its outer edge depending on the colony size, the nutrient concentration in
the bulk fluid, and the emerging nutrient gradient within the colony (Fig. 5.5). In
contrast, AI models without nutrient effects usually lead to an almost synchronous
up-regulation of the complete colony (or for certain rather artificial parameter sets
the colony is up-regulated in its centre first, depending on, for example, the strength
of the positive feedback). In extreme cases, not only small colonies consisting
of only non-induced cells, but also a very large colony size could result in a
down-regulation of the AI system (due to severe nutrient starvation). Note that the
maximum AI concentration itself is almost always found in the colony centre, also
with nutrient influence, although the AI production rate may be not due to too severe
starvation (see Fig. 5.4). Only scenarios with large AI degradation rates and/or low
diffusion rates could change this.
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Fig. 5.5 Profiles of autoinducer production (green curve), autoinducer concentration (magenta
curve) and nutrient concentration (black curve) in colonies of different sizes (vertical line); left:
without nutrient influence, right: with nutrient influence. The figure was taken from [49]. For more
details see there
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The reason for the increased spatial complexity is that the nutrient depletion
naturally starts at the centre of the colony, i.e. we have two overlying spatial
gradients of AHL and nutrients in the colony, both affecting AI activity.

Note that the spatial gradients of the chemical, e.g. nutrient conditions in colonies
may be reflected by temporal changes in batch culture experiments. The relative
relevance of cell density compared with the relevance of chemical conditions for
the observed induction under batch culture conditions is widely unknown, but the
necessarily artificial experimental setup in batch cultures most likely leads to effects
(as transition from rich nutrient to nutrient depletion) that mimic spatial gradients.
Probably, this effect affects interpretation of experimental results. Conversely, AI-
controlled temporal dynamics of gene expression patterns found in batch cultures
[24] may occur in nature rather at least partly as spatial patterns in colonies/biofilms,
which often represent more realistic growth scenarios.

Thus relation between AI signalling and outcome can be variable and counter-
intuitive. One example presents a dilution event such as a rainfall, which decreases
both cell density and nutrients concentration and thus could result in an induction
or de-induction of the AI system (depending on whether cell density or nutrient
effect dominates). The scenario is further complicated as nutrients are not the only
environmental aspects that have an impact on AI systems [51].

5.4.3 Ecological Rationale

The question emerges, what receiving cells can learn from such variable signalling,
i.e. what is the ecological benefit of it.

Referring to the terminology in industrial production processes, we have
proposed the term “hybrid push/pull control” for this kind of regulation [49, 52].
We can understand push and pull as follows.

AI systems are mainly considered to be sampling the local environment,
including the cells living there, for its suitability with respect to attainable effect
of the regulated phenotype, e.g. for the influencing factors cell density, distribution
and mass transfer properties. These external factors determine the potential strength
of the coordinated target activity and could be regarded as push factors (“Do it, when
your activity can reach a certain vigour” or “Do it, when you can do it”).

However, when environmental stress and hence, the physiological state of the
cell, directly controls the activity of AI systems, the amount of released AI can be
connected to the demand of the cell for the target activity. As an example, AIs,
which often control stress responses, are up-regulated by, e.g. nutritional stress
[53]. Indicators of opportunities can also upregulate AI production, e.g. the host
stress hormone epinephrine promotes AI-controlled virulence in the opportunistic
pathogen Pseudomonas aeruginosa [54]. Other examples are certain plant produced
flavonoids and opines, which affect AI systems in plant associated bacteria and
thereby seem to promote development of symbiosis [55, 56]. Interlinking the



94 B.A. Hense et al.

Local Environment
(e.g. nutrient, other 
stress factors, host 
signals)

Autoinducer
production/cell

Physiological
state of cell

Pull aspect

Autoinducer
accumulation

Cell
density

Cell
distribution

Mass transfer
limitation

Push aspect

Local signalling strength (Autoinducer concentration)
Hybrid push/pull information

Phenotype/activity

Potential 
feedback

Potential 
feedback

Fig. 5.6 Scheme of the push/pull regulation. Autoinducer regulation systems integrate informa-
tion affecting the cells demand (pull aspect) with those about the potential cooperative strength of
the regulated activity (push aspect; dependent on cell density, cell distribution and mass transfer
limitations) into local autoinducer concentration. The regulated phenotype can influence both the
pull aspect (e.g. if the availability of nutrients is increased by exoenzymes) and the push aspect
(e.g. if a changed migratory behaviour influences the cell density or distribution). The figure was
taken from [49]

cell’s need, its internal ability and/or the opportunity for the target phenotype with
the AI production rate adds an internal demand or pull aspect to AI system (“Do it,
when you want/need it—and ask others to give you a hand”.)

Thus, environmental AI concentration sensed by the receptor cell carries inte-
grated hybrid information about independent pull and push factors (Fig. 5.6). Note
that there is a difference between “push” and “pull”. While the push aspect works
effectively for isolated single cells as well as for populations as microcolonies
[20], this is not the case for the pull aspect. Here, in microcolonies some cells
(that do not starve in the example above) may be directed into the activation of a
phenotype that is not directly beneficial for themselves but for the population. In
the example of bioluminescing V. fischeri, this concerns the outer ring of cells, the
induction of which is promoted by the high AHL production of starving cells in the
centre of the colony, but which are themselves only to a limited degree protected
from toxic effects of oxygen, as there is still a certain oxygen concentration in their
environment, whereas towards the colony centre the substance depletes [49]. Such
self-sacrifice is not uncommon in cooperating groups and can be explained in terms
of kin or group selection [10, 11, 57, 58]. Thus, the pull aspect is strongly connected
to cooperation. To explain the same aspect from information perspective: for a
single cell in a confined space, integration of nutrient restriction resp. intracellular
starvation signals in the up-regulation of AI production does not supply the cell with
new information about its environment.

AI systems integrate pull and push information and transform them into the local
AI concentration. Which aspect dominates depends on the regulation architecture
and the actual environmental and cellular conditions. Consequently, interpreting the
function of AI systems allowing mainly for a cell density dependent gene regulation,
only modified/modulated by additional factors, seems inadequate.
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As all of these pull and push factors influence the cost-effectivity of the regulated
activity on the population level (and indirectly also for single cells—although some
of them may sacrifice themselves), we hypothesize that the “core” purpose of this
regulation systems is to promote a gene control based on pre-assessment of the
efficiency of the target gene resp. target behaviour.

The integrated information may be an explanation for the existence of multiple
AI systems in the same species: Assume that each AI system is responsive to a
different combination of environmental or physiological factors which may vary
over time. Then the environmental concentration of different AIs released and
sensed by each cell at a certain time carries different pull information, although
the push information may be largely identical. Multiple AI systems allow a
sophisticated regulation of different targets genes, whose efficiency and thus benefit
may depend on different pull aspects.

Regulating the AI system itself by an up-regulation, instead of directly the
target genes, allows each unit (cell) to send pull information, varying spatio-
temporally within the colony. Sensing the combined pull/push information carried
by the AIs enables each cell to a contextual interpretation of the state of the
neighbouring cells relative to its own state and of the push factors [59]. This
results in an adaptive behaviour of cells within the colony, highly dynamic in
space and time. Cooperativity and division of work can emerge, the flexibility of
which goes beyond those of real multicellular organisms, as depending, e.g. on
changing environmental conditions and colony size the function of each cell as well
as the spatial organization of the whole colony adaptively changes. This remarkable
phenotypic plasticity enables an adaptive life style optimization of the entire colony
under the actual current conditions with respect to the fitness.

Generally, the relation between the localization of a cell within a colony and
its AI activity is governed by several aspects, e.g. the target of nutrient influence
(i.e. the AI synthase or AI receptor), the shape of the correlation function between
different nutrients and the AI activity, flow and diffusion properties of the bulk
matrix, the nutrient concentration in the matrix and the colony size. Thus, it varies
between different AI systems, and even within one species if different culture
media are used. This may help to understand the variation of areas showing the
first/strongest AI activity between species as well as conflicting experimental results
for one species in different media (Pseudomonas aeruginosa) [60–62]. Indeed for
P. aeruginosa a nutrient influence on AI regulation was experimentally shown [48].

For V. fischeri, the system can result in spatial distinction between cells strongly
promoting cooperative activity (represented by high AI production) and those which
are asked to do it (exposed to high AI concentration).

Interestingly, in mixed planktonic populations, i.e. where spatial gradients of pull
aspect are absent pull aspects may be largely identical for all cells, thus from this
point of view sending pull information by increased AI production seems a waste
of costs. However, this argument does not hold if, e.g. multiple subpopulations with
different functions and thus potentially different pull strength exist.
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5.5 Relevance of Locality

Based on results from batch cultures it has been assumed that AIs are intended
for communication on the level of a whole population, i.e. all cells within the
population talk and listen simultaneously to each other. However, especially models
of spatially heterogeneously structured populations, i.e. microcolonies or biofilms
have challenged this view [20, 42, 49]. Communication seems to be stronger for
cells within rather than between cell clusters. The existence of flow in the bulk fluid
probably strengthens this restriction as shown in a modelling study [63]. Such a
(partial) restriction of AI regulated cooperation to colonies also supports the evolu-
tionary stability against cheater mutants, which do not contribute to cooperation and
thus safe resources, but benefit from the cooperation of the others [64]. Fluctuating
transitions through bottlenecks in transiently isolated subpopulations, as, e.g. in
new colonies emerging from single attached cells, can prevent an outcompeting of
the honest cells by cheaters [65]. Although to our knowledge not yet investigated
explicitly in laboratory experiments, some results indirectly support the idea that
AI based communication is in some cases at least partly restricted to subpopulations,
i.e. within colonies [19].

As direct chemical measurements of AI distribution patterns in such micro-
structured populations are difficult to conduct, we choose a model approach.

The model describes the situation of (small) bacterial colonies on a flat, non-
diffusible surface. The bacteria are assumed to live in a biofilm/mucus layer of a
certain thickness. We use a deterministic model which combines AI production in
the cells, abiotic degradation of AI and diffusion (in the cells and the extracellular
medium) in form of a reaction–diffusion equation. It is in some sense a simplified
version of a model approach first introduced in Müller et al. [66]. The variable u
(dependent on time t and spatial position x) describes the concentration of AI. The
reaction–diffusion equation is formulated as follows:

@u .x; t/

@t
D DAIu .x; t/ � �u .x; t/C

NX

iD1

fAI .u .x; t// �jx�xi j<R

for x2˝, where xi describes the position of cell i, R the radius of the cells, � the
abiotic degradation rate of AI and DAI the diffusion rate of AI.

The production only takes place where bacterial cells are localized, which is
modelled by the so-called characteristic function �jx�xi j<R. It assumes the value 1
inside the cells and 0 everywhere else. The strength of the production is described
by the function fAI and includes the typical positive feedback loop:

fAI .u .x; t// D ˛AI C ˇAIu.x; t/n

un
thresh C u.x; t/n :

˛AI denotes the non-induced and ˇAI the induced AI production rate; uthresh

describes the threshold AI concentration for induction. In general, we use n as the
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Table 5.1 Parameter values used for simulations in Fig. 5.7

Parameter Value Meaning Source

DAI 3,232,542 �m/h Diffusion rate AHL in water [76]

˛AI 2.3*10�19 mol/(cell*h) Non-induced production rate of AHL [67]

ˇAI 2.3*10�18 mol/(cell*h) Induced production rate of AHL [67]

�thresh 70*10�9 mol/L Threshold of AHL concentration
between low and increased activity
(or between non-induced and induced)

[67]

n 2.5 Hill factor; polymerization degree [67]

� 0.00427 Abiotic degradation rate of AHL [68]

degree of receptor multimerization; for the simulation it is usually used for dimers,
i.e. nD 2. We neglect cell division in order to keep the model as simple as possible.

Examplarily, we consider a squared region with edges of length 1,000 �m with
homogeneous Dirichlet boundary conditions, which means

u .x; t/ D 0 for x 2 @�

From a biological point of view, this means that all AI molecules arriving at
the boundary (e.g. via diffusion) are lost for the system. By using these boundary
conditions, we underestimate the accumulating AI, however, as the region is chosen
quite large compared to the size of a bacterium, it might play a minor role.

Parameter values used in the simulations are given in Table 5.1.
The simulations start with the initial condition

u .x; 0/ D 0 for x 2 �

i.e. with a newly colonized region without any already accumulated AI.
All simulations assume 100 cells on a flat square of 1,000� 1,000 �m2, located

(a) in just one central colony, (b) in four colonies, each of them containing
25 cells and (c) in 25 microcolonies, each consisting of only four cells, spread
on the given surface. The simulations run until the AI level has approximately
reached equilibrium level. The simulation showed strong spatial differences of AI
concentration (Fig. 5.7), which can be considered quantitatively with this simple
modelling and simulation approach. The strength of these differences depends on
the inhomogeneity of cell resp. colony distribution, but also on factors as diffusion
rates and flow conditions, and the strength of positive feedback loop. The same
factors influenced the maximum AI concentration, e.g. the more “colonised” the
cells are, the higher AI concentrations they can accumulate, even though the total
number of cells in the region of interest is kept constant.

Summarized, within spatially structured populations strong gradients of AI
can arise, promoting differences in activities of AI-controlled genes between
neighboured colonies. The degree of isolation of communication depends on the
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Fig. 5.7 Distribution pattern of AI concentration for a population of 25 cells growing in a single
colony (upper left graphics), 4 colonies of 25 cells each (upper right) and 25 colonies of 4 cells
each (lower). The colonies are located below the peaks

conditions in the cells environment. It is strengthened by, e.g. distance between
colonies, by flow conditions (washing AI between colonies away) or low diffusion
rates within the matrix between cells/colonies (keeping the AI next to the colonies
and thus promoting high local AI concentrations peaks). In fact, a limitation of
between-colony communication via AI was indicated by Meyer et al. [19], which
conducted a combined experimental and modelling study with Pseudomonas putida
IsoF. As the authors discussed, it could be evolutionary beneficial for colonies to
limit—or even interrupt—cooperation with neighbouring, potentially non-related
colonies competing, e.g. for nutrients, even if they belong to the same species/strain.
They speculate that AI degrading enzymes which are possibly released by an AI
active species might be connected with such a function.

The high localization of AI peaks in spatially structured populations (partly)
explains confusing results of AI relevance of bacteria associated with human (or
other) hosts. Many human pathogens are known to employ AI systems, usually
connected with virulence control [2]. Thus, understanding the functionality of AI
systems in these species is of high relevance, e.g. for the development of new anti-
pathogen treatment strategies [69]. A number of studies describe effects of certain
AHLs on cells of the human immune system or other tissues [70]. Surprisingly,
almost all of these effects occur at AHL concentrations in the micromolar range,
whereas most AHL systems become induced in nM range in the bacteria themselves.
AHL concentrations up to >600 �m have been reported in in vitro biofilms.
However, such high values are almost never measured in human or mouse samples,
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e.g. of lung or gastrointestinal tract, although AHL producing bacteria are known
to occur there, and AI regulated activities are of relevance in this habitat, e.g. often
such connected with virulence [71, 72]. AHLs are even hardly ever detected at all
in, e.g. gut samples [73]. How can these contradictions be solved?

AHL producing bacteria tend to live in colonies in their host, and often the
environment matrix has a lower diffusion rate compared to water (see, e.g. [28,
74, 75]). This applies, e.g. in mucus of gut or lung epithets, but also in the gut
lumen. Patients with cystic fibrosis, which produce mucus with significantly higher
viscosity, are especially prone to pathogenic infections with the AHL producing
P. aeruginosa.

The seemingly contradictory results are at least partly explainable by the fact that
mostly the samples for chemical analyses are taken in volume ranges of milliliters.
Furthermore, the original matrix often was mixed before sampling, which destroyed
the original spatial structure, e.g. in sputum. With respect to our model results, such
an averaging of spatial structures necessarily leads to a strong underestimation of
the achieved local AI concentration maxima. Furthermore, it also can lead to an
underestimation of the involved local amount of cells, e.g. in colonies. For a real
estimation of cell and AHL pattern and—connected with that—for the development
of treatment strategies, new analytical methods allowing high spatially resolution
on microscale are required.

5.6 Conclusions

Based on a combination of modelling and experimental data, we discussed that the
purpose of bacterial autoinducer systems is the cost-benefit optimization of the
efficiency of regulated target behaviour. We showed that this concept works for
releases of effectors, but also for intracellular enzymatic activities, as long as the
efficiency of the target behaviour can be predicted by the environmental pattern of
the AI concentration. Beyond pure cell density measurement, this efficiency is also
affected by cell distribution and mass transfer properties of the matrix,

Furthermore, environmental and cellular factors directly influence activity of AI
systems. This hybrid push/pull control ensures for each cell a contextual adaptation
to the conditions to which the cell itself and the neighbour cells are exposed. These
systems are able to integrate a range of environmental information into a consistent
picture that guides the decision for the optimal life style, where the word “optimal”
has to be interpreted with caution and only relates to a given situation.

The integration of push as well as of pull factors into AI-controlled decisions
impedes interpretations of experimental results. Exemplarily, in batch cultures not
only the cell density, but almost certainly (but usually not experimentally analysed)
relevant pull factors change over time. In other words, in batch cultures with
relatively low growth rate, but relevant shifts in the environmental conditions due
to bacterial metabolic activity, AI systems probably rather function as nutrient (or
chemical environment) sensing than as quorum sensing.
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We argue that cell-to-cell communication may often/usually rather occur on
local (micro-)scale than on global (macro-) scale level. This has impact on the
discussion about evolutionary stability of QS regulated cooperation. Furthermore,
the analytical methods for detection of, e.g. autoinducers or autoinducer regulated
gene products need to be adjusted adequately, e.g. by very high spatial resolution.
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Chapter 6
Localization of Quorum Sensing
by Extracellular Polymeric Substances (EPS):
Considerations of In Situ Signaling

Alan W. Decho

6.1 Overview

Attached bacteria exhibit remarkable capabilities to resist, persist, and adapt to
changing environments. A few examples range from the diverse commensal and
pathogenic flora exposed to the human immune system and antibiotics, to the chang-
ing environmental conditions of hypersaline lakes and oceans. These bacteria can
exist as single strains, but most often as multiple species/genera, and form complex
and diverse communities [1] having hundreds to thousands of OTUs (i.e., opera-
tional taxonomic units or in plainer terms, types of bacteria that can be distinguished
from each other using sequencing). Bacteria and other microorganisms release small
molecules to the extracellular environment, which under some conditions act as
signals, environmental sensors, agonists, or antagonists, and perhaps provide other
information to cells.

The process of quorum sensing (QS) is a form of chemical communication,
which allows cells in proximity to sense one another, and coordinate group
activities, and is used by bacteria in symbioses, infections and virulence, antibiotic
production, and biofilm formation [2–6]. It also used for other forms of chemical
sensing by cells [7, 8], and has been studied for over three decades since the initial
discovery and characterization of an autoinducer signal [9–11]. QS appears to be
conducted most efficiently over relatively short distances (e.g., micrometers to tens
of micrometers), and is often occur localized within a biofilm, where groups of cells
are spatially arranged in proximity in 3-dimensions and enclosed within a matrix
of extracellular polymeric substances (or secretions) (EPS) produced by the cells
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[12–15]. The EPS matrix can potentially influence the movement and efficiency of
signaling within a biofilm.

There are currently many different classes of signal molecules, which are
likely just a subset of those utilized by bacteria. Major signal classes include
acylhomoserine lactones (AHL), autoinducer-2 (AI2), diffusive signaling factors
(DSF), and autoinducing peptides (AIP), and p-coumaroyl homoserine lactones
and have been reviewed elsewhere [16–19]. Most recently photopyrones have been
found in association with insects [20]. In this review, AHLs and their interactions
with EPS will be the main focus since they have been the most extensively studied
bacterial signals.

6.2 Signal Properties and Diffusion

Diffusion is a critical process driving the movement of small, free molecules (and
ions) in water and is the primary process known to influence the movement of most
signal molecules between cells. Signaling molecules, such as AHL, occur in a range
of molecular sizes, which mostly reflects the number of carbons (e.g., C4–C18)
in their acyl chain. Passive or “simple” diffusion of relatively small molecules
(e.g., <500 g/mol) in a water medium is most strongly influenced by the spherical
diameter (i.e., hydrodynamic radius) of the molecule at a constant temperature in
pure water and is best described by Fick’s Law [21]. This predicts that in pure water
relatively small AHLs (e.g., C4- or C6-AHL) will diffuse more rapidly than a larger
AHLs (e.g., C14- or C18-AHL), all else being equal. It was noted by Decho and
colleagues [22] that while diffusivities in pure water remain predictable based on
molecular size, a complicating issue becomes the relative solubilities (in water) of
larger signals. Short-chained AHLs are easily water-soluble while relatively larger
signals consisting of longer acyl chains are more hydrophobic; a property that limits
their relative solubility. It becomes surprising that relatively long chain AHLs are
able to function effectively as signals between cells using a diffusion-mediated
transport simply due to solubility issues. However, being less soluble during
extracellular transit may offer an additional degree of protection against hydrolyses.
With an increase in molecular size, the AHLs present in water become more prone
to associate with hydrophobic moieties (e.g., particle surfaces) or organic phases
(e.g., during chemical extractions). One result is that as AHLs become larger, they
become more “sticky” and tend to partition (in a chromatographic sense) with the
stationary phase (e.g., sediment particles, extracellular polymers, or other organics)
rather than water (i.e., mobile-phase). Given their structure, a minimum of 99.9 %
of AHLs with log Koc > 3 would be expected to partition into the organic phase. In
practical terms, this suggests that the strictly diffusive movement of AHLs having a
mw > 350 g/mol (e.g., >C14-AHL) should become negligible.

Assuming simple Newtonian diffusion in water, how far can signals such as
AHLs travel and still elicit gene responses by a receptor cell? This was exper-
imentally examined on plant surfaces by Gantner and colleagues [23] using an
engineered reporter strain of Pseudomonas putida that produces fluorescence (i.e.,
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upon excitation by photons) when (i.e., C6–C12) AHL-mediated quorum sensing
was occurring. They determined that the majority of cell–cell signaling occurs over
relatively short distances, less than 10 micrometers (�m), which they termed the
cell–cell “calling distance.” They found, however, that AHL signals were able to
travel up to 78 �m and still induce quorum sensing as evidenced by fluorescence of
the reporter strain.

EPS is considered a highly hydrated matrix. The hydrated properties of many
EPS (see below) result from water that is localized in the spaces between individual
polymer molecules, rather than “bound” to polymers [24]. Therefore, within a
biofilm, solute diffusion occurs through the localized water within the matrix.
Interestingly, experimental and theoretical evidence by physicists suggest that free
water molecules exist in clusters of five, six, and eight molecules, held together by
transient hydrogen bonds, a process which contributes to the unusual temperature-
density dependence of water [25, 26]. It follows that in the localized water within
a biofilm, diffusion of signals such as AHLs will consist of random movements in
between water molecule clusters rather than between individual water molecules.

6.2.1 Measurements of Diffusion Within Biofilms

One assumes that during diffusion (in a biofilm) the solute does not interact with,
or sorb to, the matrix polymer molecules (i.e., EPS). Under these conditions, solute
molecules should exhibit diffusivities approximating those observed in pure water
(i.e., all else the same). However, the EPS consists of polymers that interact to a
high degree with each other, and with nearby molecules and ions. Diffusion rates,
therefore, will be guided (i.e., slowed) to some degree by interactions with the EPS
matrix.

Early speculation was raised in the study of biofilm-based infections, that the
EPS matrix prevented antibiotics from reaching pathogenic cells. A large number
of studies since have examined the diffusion of antibiotics, metal ions, fluorescent
probes, and other molecules into biofilms with varying results [27–37]. Studies
have utilized microprobes, fluorescent tracers coupled to confocal microscopy-
based measurements such as fluorescence recovery after photobleaching (FRAP),
fluorescence correlation spectroscopy (FCS), and fluorescence lifetime imaging
microscopy (FLIM). In general, this was found not to be the case. The biofilm matrix
does not exclude antibiotics, per se, from entering the matrix and reaching cells, but
rather shows differing degrees of diffusion-slowing properties.

A key assumption in all water-based diffusional studies is that the solute whose
penetration is being analyzed does not sorb or react with other molecules. In
the biofilm, this assumption does not appear to hold. Some results have shown
that diffusivities of molecules in biofilms are quite rapid, and in some cases
approach those of molecules in free water [28, 38]. For example, the fluorophore
Rhodamine B (479.02 Da) diffused into large cell clusters (200–600 �m dia)
within a few minutes [33]. Mean diffusion coefficients were calculated to be
3.7� 10�7 cm2 s�1 or just 11 % of the value in pure water. Fluorescein, a
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slightly smaller fluorophore (332.31 g/mol), diffused more rapidly, with a diffusion
coefficientD 1.6� 10�6 cm2 s�1, or 32 % of the value in water. Waharte and
colleagues [39] found differences in diffusion rates of (fluorescent) 150 kDa
FITC-dextrans into biofilms from Lactobacillus lactis (DD 10 �m2 s) and
Stenotrophomonas maltophila (DD 20 �m2 s), and attributed this to differences
in the spatial architectures of their respective EPS. These studies provided direct
confirmation that solutes the size of many antibiotics and biocides can diffuse
relatively rapidly into biofilms but are slowed compared to simple diffusion
rates calculated for pure water. When several different time-resolved fluorescent
approaches (FRAP, FCS, and FLIM) were used in combination [40, 41] additional
spatiotemporal resolution was achieved. During these studies it was concluded that a
significant portion of vancomycin (approx. 30–50 %) was “sorbed” to biofilm matrix
components, even though free vancomycin reached all depths (approx. 30 �m) of
the S. aureus biofilms. Using FCS in conjunction with fluorescent-nanobeads and
-dextrans, diffusion models were developed to show that diffusion-slowing of
solutes in biofilms is related to the molecular size and charges of the solute, and
its interaction with the EPS matrix [29]. Here, rates were found to be up to 50
times smaller than comparable rates measured in pure water. Together, these studies
began to suggest that the EPS matrix is acting as a “membrane” which slows, but
does not halt, diffusion of solutes. A complicating factor appears when the solutes
being measured are produced and released (from cells) more rapidly than diffusion
or other forms of mass transfer can remove them [42]. This results in localized
accumulations and sharp gradients of ions, such as O2, Ca2C and HC [38, 43–48].

6.2.2 Is There a Size Limit to Diffusion in a Biofilm?

To examine if diffusion of larger-sized molecules and particles could be stopped by
the EPS matrix, nanoparticles were used in conjunction with fluorescent dextrans
[49]. Diffusion coefficients of the smallest nanoparticles (<5 nm dia) were 60–80 %
of those found in water. For larger particles (>50 nm dia) diffusion was effectively
negligible. Diffusion coefficients decreased exponentially with the square of the
solute radius. From these and other studies, the model(s) developed to explain
diffusion of solutes (including signals) within a biofilm must encompass additional
factors, which include interactions of solute with extracellular polymeric substances
(EPS), and the sieve or membrane effects of the polymer network.

6.3 The EPS Matrix

The biofilm is a 3D structure of cells and EPS. What is poorly understood and
underappreciated at present is how the network of EPS molecules may potentially
reduce the 3-D volume for diffusion. Can EPS through its 3D architecture constrain
the directions of diffusion, to reduce diffusion to less than 3-dimensions and hasten
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the movement of signals? In contrast, can EPS also form “barriers” to diffusion
through interactions with the signal, and thus “localize” signal accumulation. This
will, in part, depend on the heterogeneity of EPS arrangements at molecular scales.

The EPS matrix that surrounds biofilm cells has been infrequently addressed
with regard to quorum sensing. Yet it constitutes the medium through which signal
exchange occurs between cells. The relationship between quorum sensing and
biofilm formation speaks to the interactive role(s) of both together in facilitating a
wide range of bacterial processes [4, 50]. Therefore, the EPS component is central to
understanding the physico-chemical movement of signal molecules within a biofilm,
yet it is highly diverse in chemical composition, properties, and structure, and likely
varies in all of these over the small spatial scales (e.g., micrometers). Information on
small-scale variations in EPS, however, is limited. Of importance to the movement
of signal molecules, is the ability of the signal (solute) to interact with the EPS
molecules.

The EPS matrix consists of polymeric molecules with water-filled pore spaces
in between adjacent molecules [51]. Polymers are embedded in a water solvent to
form a 3-dimensional hydrogel network, which has microenvironments that are in
thermodynamic equilibrium with the surrounding medium [52]. The extracellular
matrix is composed of a vast, and sometime very dense, network of interact-
ing molecules, which include polysaccharides, proteins, peptides, extracellular
DNA (called eDNA), and lipids, but additionally proteoglycans, glycoproteins,
lipopolysaccharides, and perhaps even RNA [15, 53, 54] (Fig. 6.1). The matrix
results from both active secretion and cellular lysates. The secretions can be
metabolic excess by-products (i.e., overabundance of C relative to limiting N, or P).
In laboratory cultures this occurs due to excess glucose or some other carbon source
being present during stationary phase. It also occurs in natural cells during the later
stages of plankton blooms, as a metabolic excess product, where it facilitates the
vertical movement of cells to deeper and more nutrient-rich, reaches of the water
column. EPS is also secreted purposefully by cells to buffer and even manipulate
their immediate extracellular microenvironment. Specific polysaccharides have
been isolated from bacteria such as P. aeruginosa, which are associated with the
structural stability of the greater mucoid colony [55–58].

While extractions and analyses of bulk EPS can contribute important composi-
tional information, these data do not offer insight into the microspatial arrangements
of EPS, and hence their physico-chemical functioning at molecular scales. A vast
literature exists on the monomeric compositions of bacterial EPS polysaccharides
grown under different conditions, and will not be addressed here (for reviews, see
[12, 42, 59]). When extracted and dry, EPS consist of long polymeric fibrils that can
reach greater than 300 kDa. When in a hydrated state, these same polymers link to
form an intricate network. The linkages between adjacent polymers can be the result
of covalent bonds, cation (e.g., divalent Ca2C, Mg2C ions) bridges, resulting from
dehydration reactions, hydrogen bonds and hydrophobic, electrostatic and Van der
waals interactions, London forces, peptide linkages with many of these transient in
nature [15, 60].
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Fig. 6.1 Bacteria in natural environments such as microbial mats exhibit much microspatial
heterogeneity in their cell distributions. Confocal scanning laser microscopy (CSLM) image
showing microspatial clustering of cells within a natural microbial mat. Clusters of sulfate reducing
bacteria (stained with a dsrA probe green fluor) are shown in proximity to photosynthetic cells
(red autofluorescence) and highlighted with dashed yellow circles. Here quorum sensing is likely
occurring among cells within a cluster, and possibly between clusters. Do different clusters talk to
each other? (Scale bar is 10 �m)

The presence of eDNA in biofilms was detected long ago, but was thought to
result from lysed cells. During analyses of activated sludge, however, DNA was
abundantly found within EPS [61] and later in pure cultures of the bacterium
Pseudomonas putida. Since that time, eDNA has been found in P. aeruginosa
biofilms [62] and those of other bacteria [63]. It is now realized to play significant
roles as a structuring agent of some EPS [64, 65]. In Staphylococcus aureus
biofilms, the cidA gene has been shown to control cell-lysis and subsequent release
of genomic DNA, which then results in important structural property changes in the
biofilms [66]. As an interesting aside, inhalants containing the enzyme DNAse have
been found to be helpful (to patients) in dissolving dense aggregations during lung
infections, further suggesting a role of eDNA in the structural rigidity of EPS [67].
Here, quorum sensing using AHLs is known to occur under these conditions, and
has been an additional target for therapies [68].

A signal molecule, released by a cell, has potential to be photochemically
or geochemically modified to different molecular forms before being received
by a receiver-cell, and potentially become environmental sensors. This has been
extensively discussed elsewhere [22]. A study by Ferry and colleagues [69]
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determined that a C6-AHL can be converted to an oxo-C6-AHL in the presence of
photo-generated oxidants. This suggests that environmental conditions can change
identity of a signal during transit between cells.

The environmental conditions in which biofilms exist, fluctuate on both short
(e.g., min.) and long (e.g., mo.) temporal scales. The EPS polymers provide a rela-
tively stable and non-dispersing network, which can exist as tangled, hydrophobic,
or ionic linkages, and can readily expand or contract [70]. Hence, certain portions
of gels (e.g., tangled networks) can change size and density rapidly, responding to
pH, ionic concentration, or temperature, while other portions (i.e., covalently linked
networks) can remain relatively stable.

6.3.1 Constraining Diffusion in EPS Gels

The density of EPS can vary over small spatial scales (e.g., micrometers) due to
changes in linkages between adjacent molecules. Purified EPS, especially certain
polysaccharides such as alginate, can be manipulated in bulk in the laboratory to
create hydrogels having varying viscosity and water-retention capacities [71]. Very
dense gels have also been observed during in the EPS of mucoid Pseudomonas
aeruginosa related to cystic fibrosis lung infections [56, 68].

Polysaccharide gels, owing to their inherent properties, are realized to consist of
local areas or “microdomains” where certain chemical properties can be different
from the bulk gel [72]. Microdomains have the potential to change the chemical
properties of EPS over small spatial scales (e.g., nm to �m) [73, 74]. EPS can
be carefully probed with fluorescent lectins, which bind to specific arrangements
of sugar monomers. The resulting patterns of lectin fluorescence indicate areas of
concentration (of lectins) within EPS, as noted by Neu and colleagues [75–77].
Other biofilm polysaccharides show similar trends [78].

Some microdomains result from areas of highly ordered H-bonding between
adjacent EPS molecules, which exclude water, and result in net hydrophobic
microzones. EPS acetylation, for example, has been associated with formation
of hydrophobic domains through London dispersion forces [79]. The functional
result of such microdomains in largely hydrophilic EPS is the occurrence of small
localized hydrophobic areas [74].

Under natural conditions, geochemical and photochemical transformations of
EPS occur, further modifying their composition. Natural EPS, therefore, will be
composed of a “continuum” of molecular sizes and compositions. From a signaling
standpoint, it is important to determine which specific molecules will contribute
to the binding of signal molecules. The functional relevance of EPS composi-
tions will relate to how specific monomers, or more specifically their functional
groups, interact with signals. Carbohydrate monomers that occur in EPS include
charged and uncharged forms such as D-glucose, D-galactose, D-mannose, L-fucose,
L-rhamnose; uronic acids such as D-glucuronate, D-galacturonate, L-glucuronate,
D-mannuronate; and N-acetyl-D-glucosamine, and N-acetyl-D-galactosamine [42].
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Functional groups such as carboxyls, hydroxyls, phosphates, amines, and sulfates,
which are present on charged EPS monomers, are especially significant in guiding
molecule–molecule interactions [80].

Certain sugar monomers on EPS are highly labile to heterotrophic bacteria,
and hence could be selectively removed during bacterial degradation of EPS.
Microbial mat bacteria rapidly utilize uronic acids and other monomers [81].
Removal of specific moieties can change the polymeric solubility, flexibility, and
steric conformations of EPS polysaccharide components [42]. Steric conformational
changes of an EPS molecule will affect which functional groups are unavailable (i.e.,
hidden) for interactions with signal molecules. Steric conformational changes in a
molecule, in part, reflect which portions (i.e., moieties) of the molecule are exposed
and available for complexation. These steric modifications have dramatic effects on
their physical properties. Small changes in pH, hydration, and partial degradation
can change the steric configuration of a molecule, and has the potential to make
available functional groups.

6.3.2 Packaging of Signals Within EPS

EPS can serve as a signal storage facility. Bacteria are known to utilize lipid vesicles
as packaging outposts. This allows signals, and other molecules (e.g., antibiotics,
enzymes) to be remotely located within the EPS matrix and assist the cells. The
vesicles originate from the outer cell membrane in Gram negative-bacteria and are
“blebbed” off into EPS [82]. Vesicles as facilitate the movement of larger and more
hydrophobic, signal molecules called P. aeruginosa quinolone signals (PQS) are
known to be packaged within such lipid vesicles. Under natural conditions, the lipid
vesicles can be quite abundant within EPS [83, 84] and could protect an AHL from
degradation during transit from one cell to another.

Signals, such as AHLs, can persist outside of the cell for extended periods of time
(e.g., months) under the right conditions. The water-retention properties of EPS are
well-documented and are known to enhance the resiliency of biofilms by slowing
water loss during desiccation [85–89]. However, certain saccharide components and
polysaccharides can protect signal molecules during desiccation and heat exposure,
which normally denatures the signal. These components of EPS can be used to
protect and preserve cells, and extracellular enzymes and chemical signals that are
localized in the EPS matrix during desiccation, and are currently under investigation
(Decho, unpublished). During the slow dehydration of hypersaline microbial mats,
signals released by cells may remain in-transit outside of cells for as long as several
months (during desiccation of the mat) before being received by another cell. Upon
rehydration, the signals (and extracellular enzymes) quickly become active again
(within 1 h) as cells are rehydrated, and signaling quickly resumes.

Hydrogen bonds can provide a major interaction in the overall binding forces
between EPS molecules. EPS is often observed to be very dense in its physical
texture and can become even dehydrated in places. How do EPS change their



6 Localization of Quorum Sensing by Extracellular Polymeric Substances. . . 113

density and conformations outside of the cell? An emerging possibility is that EPS
undergoes condensation, which results in dense, relatively water-poor areas of EPS
through the exclusion of water from the polymer. This process is called “syneresis,”
and is best illustrated in the formation of the curd and whey during cheese pro-
duction. Syneresis involves the spontaneous formation of abundant hydrogen bonds
among adjacent (EPS) molecules, and the squeezing out of water (i.e., whey) from
the aggregate (i.e. curd). The triggers for such a process, however, have remained
elusive to polymer chemists. An important point is that the condensation of EPS
during syneresis is not thought to be related to extracellular enzyme activities, but
rather the spontaneous formation of abundant H bonds between adjacent molecules,
which drives the exclusion of water.

6.4 Interactions of EPS and Signals

In natural biofilms, the water-filled spaces between EPS do not consist of pure
water but rather contain a wide range of dissolved organic carbon (DOC) molecules
and ions, which may interact with signal molecules. Therefore, the movement of
signals via diffusion will be slowed by their interactions with: (1) the EPS itself
and (2) molecules/ions contained in the water of EPS pore spaces. The spatial
and temporal patterns of signaling that can be seen in biofilms with bacteria using
reporter genes for quorum sensing [90] likely are the combined result of cell density
differences, localization of signals by EPS.

Sharp microspatial changes in gradients or chemical heterogeneity are a trade-
mark of conditions within the EPS of many biofilms. They are the combined result
of activities of microbial cells and diffusion-slowing properties of the surrounding
EPS [91]. Rather than physical exclusion entirely, the very rapid consumption of
solutes by certain microbes can result in low measurable concentrations. This has
been termed the reaction-diffusion theory [31], and the measured profiles of many
chemical species are consistent with this idea. Oxygen profiles are one such example
where the near surface of a biofilm may contain high O2 concentrations while areas
just a few tens of micrometers below this conditions may be anoxic [43, 44]. Stewart
[31] calculated that O2 and similar size solutes will diffuse through the EPS matrix
at a rate that is approx 60 % of the rate in pure water (i.e., absence of a matrix).
Similarly, there are likely to be sharp microspatial gradients in concentrations of
chemical signals such as AHLs within a biofilm, although such measurements over
the very small spatial scales (e.g., micrometers), required to be relevant, are not yet
possible [22]. Diffusion of AHLs may be slowed through interactions with other
molecules in areas simply due to high localized concentrations of DOC that is
similar in molecular size and properties to the AHLs. Diffusivities of AHLs will
be in contrast to those observed for pure water.

How might bacteria construct or modify the EPS matrix to enhance chemical
communication? One possibility is that a recently divided bacterial cell will move
away from its twin cell creating a tunnel through the EPS. This has been shown
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to occur in bacteria that colonize biofilms [92]. The tunneling efforts will create
conduits in dense EPS for diffusion to follow. This has the potential to create water
channels and reduce diffusion to less than a full 3 dimensions.

One of the most dramatic examples of QS in EPS is the bioluminescence of
aggregate-associated bacteria in plankton blooms in oceans. Coordinated signaling
by bacteria can appear to occur over very large scales during plankton blooms
containing bioluminescent bacteria. This has been footnoted (in history) in the logs
by ship captains as the “milky ocean” phenomenon at night. This was documented
more recently using satellite imagery, and occurred over an area of 15,400 km2 in
the northwest Indian Ocean over three consecutive nights [93, 94]. Bacteria in such
ocean plankton blooms tend to form suspended aggregates (i.e., flocs) consisting
cells plus EPS. This potentially allows cells to remain in proximity to one another
in order to conduct quorum sensing.

6.5 Emerging Approaches for Understanding In Situ
EPS/Signaling Interactions

The EPS matrix is proving to be considerably more-complex than initially con-
ceived. It is now realized that bacterial cells can sense, communicate, and exchange
molecules and perhaps energy over both short (i.e., �m) and long (i.e., cm) distances
using “nanowires” [95], which are postulated to extend over centimeter distances in
natural sediments. Nanotubes [96], which directly connect several bacterial cells
with each other, are known to allow exchange of cytoplasmic molecules. A key
to understanding the EPS matrix lies in chemically probing and imaging the very
small-scale structural detail of the matrix. Chemically probing the interactions
among molecules such as steric conformations, availability of functional groups,
spacing and types of linkages among adjacent EPS molecules will require non-
destructive methods. These properties, which contribute to the adaptive nature
and viscoelastic properties of EPS for microbial cells, can most effectively be
approached examining EPS in situ at molecular- to atomic-scales.

6.5.1 Raman/SERS/Raman-Confocal Microscopy

The use of photons to interrogate the complex EPS matrix of and provide detailed
chemical and/or biological information represents a potentially non-destructive
approach to investigating biofilms in situ. Such information is derived from the
simple principle that a photon (of a given energy) can cause predictable vibrational
changes in a molecule, due to chemical bonds or groups of bonds between atoms.
These changes can be measured and interpreted. This property, when can analyzed
properly can provide detailed chemical information in a rapid and non-destructive
manner for systems such as biofilms.
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Raman spectroscopy is a type of “vibrational” spectroscopy. It is especially suited
to being non-destructive because little or no preparation of samples is needed.
Raman spectral profiles are based on the scattering of photons and target the
backbone of a molecule. This is in contrast to infrared spectroscopy approaches,
whose spectra are based on the absorption of photons and target the outer functional
groups of a molecule. Infrared spectra are complicated by the presence of water.
However, water does not cause problems for interpreting Raman spectra, therefore,
fully hydrated and intact biofilms can be analyzed.

Raman can be adapted to microscopy to collect spectra pixel by pixel, and hence
can be used to probe for the presence/absence of specific molecules, and decipher
variations in molecular composition over very small xy plane spatial scales (e.g.,
1� 1 �m). Through adaptation to confocal changes in the z-axis (e.g., depth in a
biofilm) can also be differentiated [97]. A technical drawback to Raman is its com-
promised sensitivity. However, when certain types (e.g., Ag) of nanoparticles (i.e.,
1–100 nm dia) are added to a sample, sensitivities can be increased dramatically
and in some cases have made single molecule detection possible. This process is
referred to as surface-enhanced Raman scattering (SERS) and can be used with
Raman-confocal microscopy [98]. A number of other adaptations are now possible
such as combining Raman and atomic-force microscopy (AFM), where Raman
spectra correspond to the location of the cantilever tip of the AFM. Another Raman-
related approach is coherent anti-Stokes Raman scattering (CARS) microscopy; a
technique that has much greater sensitivity than conventional Raman and does not
require label [99]. Although technically challenging at this point, these approaches
provide information on chemical composition of a biofilm at unprecedented spatial
scales, and can be used to gain information on microspatial arrangements of EPS
and perhaps signaling molecules within a biofilm.

3-Dimensional Cryo-TEM Tomography is a unique form of transmission electron
microscopy that allows the sample to be frozen in a hydrated state, then sliced
into blocks (500 nm thick) then observed without the use of stains to enhance
electron density. Through imaging and successive reorientation of the block, a
high resolution 3-dimensional image of the specimen can be created. Intact cellular
structures (cell membranes, proteins, etc.) can be observed with high resolution.
This approach has been used to examine bacterial cells, capsules, and vesicles.
EPS is still difficult to image due to its high water content and light elemental
composition, but can be enhanced through binding of soluble electron dense metals
such as U(VI) or Mn(II)/(III) [100, 101]. This has the potential to provide the
first look at changes in the in situ arrangements of EPS polymers within biofilms
(Fig. 6.2).

Over the past two decades our understanding of the EPS matrix has evolved
considerably. The matrix is now realized to be a complex and spatially organized
milieu, especially with regard to chemical communication. In order to more fully
understand this matrix, which is laden with vesicles, nanotubes, nanowires, and
diffusible channels, future studies will require high-resolution and high-sensitivity
chemical mapping at nm spatial scales.
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Fig. 6.2 EPS forms a 3-dimensional arrangement of polymer molecules having vastly different
conformations over small spatial scales. Above is a confocal scanning laser micrograph (CSLM)
showing EPS stained with the fluorescent lectin concanavalin-A; cyanobacteria are long white/blue
structures within EPS. Although EPS may appear relatively homogeneous when viewed with light
microscopy, however, at molecular scales (diagramed at right) the individual polymers can range
from loosely interacting linear molecules to closely interacting branching combs to dense tangled
networks. Spaces in between polymer molecules contain pore-water water and contribute to the
highly hydrated nature of many EPS. It is through the water-filled pore spaces that diffusion of
chemical signals such as acylhomoserine lactones (AHLs) occurs during quorum sensing. (a) EPS
can be loosely arranged having much free water in between polymers. (b) When EPS are closely
linked together they form dense gels having relatively small water pores for diffusion. (c) They
can even form hydrophobic microdomains, where EPS are very closely linked, usually in linear
arrangements, and have very little free water. These changes in conformation and density likely
vary over small spatial scales (e.g., nanometers to micrometers) and will affect the diffusivities of
solutes (e.g., signal molecules) through the matrix
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Chapter 7
Swimming in Information? Physical Limits
to Learning by Quorum Sensing

Stephen J. Hagen

7.1 Physical Interpretation of QS Behavior

A standard description of bacterial quorum sensing is that it allows a colony of
bacteria to detect and respond to its own population density [1]. However, given the
diversity and complexity of bacterial quorum sensing mechanisms that have been
discovered and characterized, it is apparent that QS is much more than just a scheme
for population counting [2, 3]. QS networks often respond to many environmental
inputs in addition to population density. These include pH, temperature and nutrient,
as well as signals produced by other species. Many bacterial species employ
multiple autoinducer signals and they detect those signals using multiple sensing
networks [1]. The architecture of QS networks can be very complex [4], leading to
intriguing dynamics that can involve nonlinearity, hysteresis, bistability, stochastic
switching, and more. Such sophisticated systems allow QS populations to respond
in complex fashion to environmental stimuli.

Researchers have also suggested that, in addition to performing a social function,
QS behavior may also allow individual cells to gather information about purely
physical properties of their environment: geometrical parameters of confinement,
clustering, or rates of advective flow could in principle be accessible to a cell that
both secretes and detects a diffusible signal [5–8]. This perspective sets aside the
social context of QS and focuses on the physical problem of one individual cell (or a
few cells) swimming in a diffuse cloud of its own autoinducer. Is such a mechanism
effective for the cell? As a QS regulatory network is ultimately a detector, or at least
a device for translating an input signal into a regulatory output, we should attempt
to understand some of its physical capabilities and limitations at the microscopic
level. What are the physical limits on the information that a bacterium can acquire
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by sensing a diffusing signal? This chapter aims to give a general introduction to
some of the physical constraints. By focusing on QS at the microscopic level, rather
than in its social context, we hope to better understand how the benefits to the
individual—or the information available to one cell—differ from the group benefits
that accrue in a population-averaged sense to a bulk culture of QS bacteria.

Redfield took a provocative step in viewing the physical side of QS apart
from its social context by considering a solitary, isolated cell that synthesizes an
autoinducer and releases it into the environment [8]: The local concentration of
autoinducer measured by this single cell is not a measure of the cell population. It
does however measure the rate at which the autoinducer diffuses (or is otherwise
transported) away from the cell. If the cell is confined in a small volume, its
autoinducer should accumulate, signaling to the cell that it occupies a small volume,
and that any of its secreted enzymes or other products will tend to remain nearby.
This viewpoint reinterprets the social behavior of QS as an autonomous “diffusion
sensing” (DS) behavior aimed at probing the character of local diffusion in order
to establish whether to invest in the secretion of costly goods. Hense et al. [6]
subsequently pointed out that the signal concentration does not perfectly reveal
either the population or the local diffusion properties. Rather the concentration is
one measurable quantity that depends on a complex combination of environmental
factors: the local population density, the spatial distribution of other proximal cells,
and the rates of advection and diffusion [6, 9]. If the regulatory circuit is optimized
to measure this composite—the overall efficiency associated with production of a
diffusible product—then the behavior involves elements of both QS and DS and
could be referred to as “efficiency sensing” (ES).

The possibility that solitary cells or small clusters could benefit from deploying
their QS circuits inspired researchers to test whether QS circuits of individual cells
could be activated by confinement to microscopic volumes [10–12]. Boedicker et al.
[10] showed that as few as 1–3 cells of Pseudomonas aeruginosa confined to a
microfluidic chamber could activate their QS network. Similarly the LuxI/LuxR
system of Vibrio fischeri was also activated in individual cells that were confined
to picoliter volumes [12]. More generally, through the use of novel microfabrica-
tion techniques, researchers can manipulate the diffusive and advective coupling
between a few locally confined cells and the rest of the physical and chemical world,
and thus explore the full range of ES responses, in scenarios ranging from complete
isolation of a cell to high density living [13, 14].

Of course the fact that QS circuits can respond to purely physical parameters of
the environment does not mean that bacteria use them for this purpose. There are at
least two separate questions here: Are QS circuits “intended” to sense microscopic
properties of the environment? And if so are they good at it?

The first question is difficult to answer because the physical consequences of
one cell’s secreting and detecting the same molecule are the same, regardless of
the “intent” of the behavior: demonstrating a use for a tool does not necessarily
tell us how it is typically used. QS behavior develops in the context of the
organism’s social environment, which may span a range from highly social and
related (many closely related and potentially cooperating organisms) to solitary and



7 Swimming in Information? Physical Limits to Learning by Quorum Sensing 125

unrelated (non-cooperating organisms), with many environments lying somewhere
in between [7]. As discussed by West and Diggle [15], autoinducer production in
these intermediate cases offers benefits that do not lie purely within either a solitary
(DS) or social (QS) description. Those authors further point out that one cannot
argue that a particular QS circuit may have evolved to serve the individual rather
than its close relatives, as evolution does not make a distinction between these two
cases. Evolution is expected to maximize the “inclusive fitness” of the organism,
meaning the reproductive success of both the individual and its closest relatives.
Therefore it does not seem plausible that evolution could favor one benefit or
the other [15]. Just as the autoinducer sensing system cannot distinguish between
inefficient diffusion and high population density, the evolutionary scheme that
optimizes that system does not distinguish between individual and group benefits.
Consequently we should hesitate to name new subcategories of QS behaviors
according to different adaptive functions they may serve in different situations.
Platt and Fuqua [7] have argued that the term “quorum sensing” can continue to
refer generically to gene regulation through the secretion and detection of diffusible
autoinducers. It is not necessary to restrict its meaning to “a social behavior of
regulating gene expression in response to bacterial population density.”

However we must still ask the physical question of how well a QS circuit may
work in these different possible roles. What do the physics of diffusible signals
allow a QS bacterium to learn about its environment? We begin by considering
some basic properties of autoinducer diffusion and its consequences for diffusion
sensing behavior.

7.2 Possibilities and Limits in Diffusion Sensing

Different QS bacteria employ different autoinducers with a range of chemical and
physical properties. These include the acyl homoserine lactones (AHLs) that are
used by many Gram negative microbes, the peptides used by many Gram positives,
and a variety of other small molecules. Some of these are transported by complex
mechanisms. The quinolones of P. aeruginosa, for example, are packaged into
vesicles [16] for transport. However, we focus here on the AHLs, which are believed
generally to travel by diffusion and advection. In the absence of stirring or flow, gene
activation from a diffusing signal should then develop in a way that is governed by
the diffusion equation:

@C

@t
D Dr2C (7.1)

Here C(r, t) is the concentration of the autoinducer at location r and time t
and D is the diffusion coefficient. (Equation (7.1) can also be modified to account
for the synthesis and degradation of the autoinducer.) From this equation it is
straightforward to calculate the concentrations and gradients of autoinducer that will
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surround individual cells or small clusters in an open environment, and to find the
relationship between intercellular distances and quorum sensing activation in such
clusters [5]. Here we consider the DS or ES picture of a cell that is confined to a
finite volume. We can ask how well the autoinducer concentration reveals the size
of that volume.

The most straightforward method for detecting the boundaries of one’s environ-
ment would be to emit a signal that travels as a wave and reflects from the boundary:
As in echolocation, the round trip time for the emitted signal to reflect from the
boundary and return to the source provides all the information that is required.
This behavior is completely uncharacteristic of the diffusion equation, and so this
scenario may seem far fetched. Interestingly however, even fairly simple theoretical
models of QS circuits—in which the autoinducer travels solely by diffusion—may
permit wavelike excitations to travel through a spatially extended colony [17, 18].
For example, in a model of the LuxI/LuxR QS circuit of V. fischeri, the excitation
of the lux system was found to be capable of propagating as a wave: If cells at all
locations synthesize AHL at basal levels, any localized activation or excess AHL at
one location can produce a pulse of diffusing AHL that can push neighboring cells
over the threshold of activation, leading to a traveling wave [17]. Wave behavior
certainly can be designed into a synthetic QS system [19]. In fact, laboratory
studies of wild-type V. fischeri also showed wavelike excitations of the QS-regulated
bioluminescence traveling over centimeter distances in an extended colony [20].
However, as the biological significance of such mechanisms is still a matter of
speculation, we set aside traveling waves here. Instead we focus on the information
that a cell can extract simply by sensing the diffusional spreading of its autoinducer.

We imagine a cell that is located at the center of a spherical confining volume
that has radius R. The confining volume initially contains no autoinducer or other
sources of autoinducer. Starting at time tD 0, the cell begins secreting autoinducer
at a steady rate � (with units of concentration� volume). This autoinducer travels
radially outward by diffusion (diffusion coefficient D) and reaches the impermeable
wall of the container, which is located outside the cell, at R. Figure 7.1 shows
the growth of the autoinducer concentration C(a, t) at the location aD 1 �m,
obtained by solving the diffusion equation. Although the exact solution for the
time dependence of this concentration is somewhat complicated, it is fairly well
approximated by the sum of two simple terms:

C .a; t/ ' 3� t=
�
4�R3

�C �=4�Da (7.2)

The relative importance of the two terms depends on how t compares to a
characteristic time scale t*DR3/Da. At early times t < t* (i.e., for relatively large
R, or for slow diffusion D), the second term dominates and C is virtually a
constant, C' � /4�Da. This describes the time scale before the diffusing particles
have reached the confining wall (Fig. 7.2). The secreted particles are “lost” to
the cell after they have diffused a short distance. The cell detects only the local
concentration that is due to the flux of outwardly moving particles. However at
later times t > t* (i.e., for smaller R or faster diffusion D), the first term dominates
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Fig. 7.1 Accumulation of diffusible autoinducer in a spherical volume of radius R, due to a source
that is located at r D 0 and produces autoinducer at a rate � D 2 particles/s. The figures show the
accumulated concentration C(a, t) as measured at radius a D 1 �m after production for time t,
assuming that the autoinducer diffuses with D D 5 � 10�6 cm2/s. (a) At early times (Dt � R3/a),
for a single (non-dividing) cell producing autoinducer, C(a, t) ' � /(4�Da), independent of R. At
later times (Dt � R3/a), C(a, t) / 1/R3. (b) If C0 > � /4�Da, then the time required for C(a, t)
to reach threshold (here C0 D 100� /4�Da) scales as R3; (c) For a bacterium that divides with a
doubling time tD D 1,200 s, the concentration C(a, t) for large R steadily rises with time, owing to
increasing autoinducer production by daughter cells; (d) The time required for C(a, t) to reach the
threshold C0 D 100� /4�Da is sensitive to R only for small R

and C' 3� t/4�R3. Here the secreted molecules have time to diffuse and mix
reasonably well throughout the volume of the sphere. Only at these later times, or
equivalently in smaller volumes, is the signal concentration at the cell sensitive to
the size of the containing volume.

We can say that sensing may occur when C at the cell exceeds a threshold C0

that triggers activation of the QS circuit. In the case above, only a sufficiently large
threshold C0 > � /4�Da gives the cell any chance of diffusion sensing successfully:
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Fig. 7.2 For a bacterium growing at the center of a closed volume of radius R, the activation
time ta required for the autoinducer concentration C(a, t) to reach a threshold C0 exhibits different
sensitivity to R, depending on the diffusion time scale R3/Da and the population doubling time tD.
For a low threshold C0, slow diffusion or large R, such that the sensing time scale t � R3/Da, the
activation time ta is independent of R. For a higher threshold, faster diffusion or smaller R, such
that t � R3/Da, then ta / R3. If the sensing process occurs more slowly than the population growth
(ta � tD), then ta scales logarithmically in R, as in a well-stirred bulk culture

“Measuring” R requires that the time t needed to reach the threshold C0 be sensitive
to R. Equation (7.2) shows that at late times (or equivalently for small R3/Da) the
time to reach the threshold scales as R3 and diffusion sensing behavior is possible.
Moderate rates of degradation of the autoinducer do not significantly change this
picture, as autoinducer molecules will likely have diffused far from the source cell
by the time that they degrade.

The possibility of bacterial growth introduces some complications. Under favor-
able nutrient conditions a single bacterial cell may divide on a time scale of tens
of minutes, with each of its daughter cells producing additional autoinducer. In the
simplest description the number N of cells in the confining volume grows as

N ' 2t=tD D exp .�t/ :

Here tD is the population-doubling time, which is related to the growth rate �

by tDD log(2)/�. For a culture of cells growing exponentially in a finite volume,
the production of autoinducer will also grow exponentially. We can consider the
implications for the diffusion sensing scenario by considering a cell located at the
center of a confining spherical volume, where the cell divides at rate � into daughter
cells that also secrete autoinducer at the same rate � , from the same central location.
Again the concentration C at rD a and time t is well approximated by the sum of
two terms:

C .a; t/ ' 3� .exp .�t/ � 1/ =4 ��R3 C � exp .�t/ =4�Da (7.3)

Again the relative size of the two additive terms—and the sensitivity of C(a, t)
to R—depends on t and R. In particular it depends on how t compares to both the
doubling time tD and the characteristic diffusion time t*. During the earliest stages
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of growth (t� tD) the situation is not different from the non-growth case above:
In a large confining volume the concentration never reaches any threshold C0 that
is greater than � /4�Da, while in a small confining volume the activation time is
sensitive to R, scaling as t/R3.

Once exponential growth is well underway, with t� tD, then both terms in
Eq. (7.3) grow exponentially in time. Once this happens, the time required to reach
C0 is at best only weakly sensitive to R. For example, if R is “large” in the sense
that the second term in Eq. (7.3) dominates, then the time required for C(a, t) to
reach its threshold C0 is independent of R and the QS circuit is insensitive to R.
Instead the time to reach threshold is sensitive to the growth rate. On the other hand,
if R is “small” so that the first term dominates, then the time ta required for C(a,
t) to reach its threshold C0 is determined by C0� � exp(� ta)/�R3, which means
that ta/ log(R). That is, during exponential growth, the QS circuit’s sensitivity to
its confining volume is either poor (i.e., logarithmic in R) or nonexistent. In fact
the logarithmic case applies only to a small range of R; it requires the general time
scale t of sensing to be much larger than tD while the container volume is not too
large, R3 < Da/�. If D' 10�7 cm2/s, a� 1 �m, then this implies R must be less than
about 20 �m. As the scenario also requires t� tD� 1,000 s, it appears to describe
the case in which a cluster of cells inhabits a volume as large as �30,000 �m3,
which is sufficient to contain �10,000 cells.

This last case is not very different from the case of a well-stirred bulk culture,
in which many cells inhabit a much larger volume, and where again the time to
reach threshold C0 scales logarithmically with the volume of the container. The
only difference is that here the cell is detecting the autoinducer of nearby cells, as
opposed to that of distant cells in the bulk culture. Therefore, when the bacteria are
actively growing the time scale for their QS activation grows at best logarithmically
with the confining volume, the number of confined cells is large, and the overall
physical picture is not very different from that of a bulk culture.

In short, diffusion sensing appears plausible for a QS circuit that exhibits a
threshold response to its own signal. However the parameter regime in which it can
acquire some information about the volume of its container is limited. Specifically,
diffusion sensing is not physically dissimilar from bulk QS except in the narrow
regime where the concentration threshold C0, system size R, and growth rate
�/ 1/tD are such that t� tD and also t > R3/Da (Fig. 7.2).

7.3 Noise in Detection

A robust threshold response to autoinducer could allow an individual cell to gain
useful information about its environment. However the response of real QS networks
is not in general highly deterministic. Feedback and nonlinearity in the regulatory
network may lead to hysteresis, in which the prior activation history of the circuit
shapes its response to the present autoinducer signal level [9, 21]. The network is
also subject to noise, which may in principle arise both in the signal input and in
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the processing of that signal. We do not expect that the signal input will introduce
significant noise in the QS response, even at low concentrations. The Berg–Purcell
estimate [22] for the precision with which a concentration C of a diffusible signal in
a finite detection volume can be measured over an integration time t is

•C=C ' 1=
p

.DtaC /:

If the radius of the detection volume is a' 1 �m, the autoinducer diffusion
coefficient D' 10�7 cm2/s, and the concentration C of signal is �10 nM, then
by measuring for t� 100 s the cell can determine C to a precision •C/C� 1 %.
Therefore a QS circuit can in principle measure even a low concentration of signal
to rather good precision.

The obstacle to a consistent response by an individual cell is not the small
magnitude of the input signal, but rather noise in the QS regulatory pathway [23].
This noise arises from variability in the copy number of key regulatory molecules
[24] as well as the underlying stochasticity of the chemical processes associated
with transcription and translation [25–27]. Studies of QS activation in individual
cells show that even in the presence of a uniform concentration of autoinducer,
the QS networks that regulate the native bioluminescence of Vibrio harveyi [28,
29] and V. fischeri [30, 31] give a heterogeneous output. The LuxI/LuxR circuit
of V. fischeri, for example, responds to N-3-oxohexanoyl L-homoserine lactone
(3OC6HSL); Fig. 7.3 shows that even if this AHL is present at concentrations
that saturate the bioluminescence output of a bulk culture, the light output from
individual cells varies tenfold over a population. The distribution of responses
is similar to a gamma distribution [31, 32] and is no sharper as the population-
averaged activation level increases. Even in a brightly luminescing culture, many
individual cells show little if any sign of activation; some 20–30 % of the cells are
virtually dark, showing little if any bioluminescence. In addition the time scale of
the response to the autoinducer signal is also heterogeneous, varying by at least a
factor of ten across the population [30]. Similarly when autoinducer is supplied to V.
harveyi, roughly 25 % of live cells exhibit only a small fraction of the luminescence
of the brightest activated cells [28].

Given the noise in the QS circuit we cannot expect the individual cell to
gather much useful information by diffusion sensing. When small numbers of cells
carrying the LuxI/LuxR QS circuit were confined to a volume of a few picoliters,
the time scale for their activation of a gfp reporter varied by roughly a factor of two
[12]. Therefore, although a sixfold increase in the confining volume (3 pl! 18 pl)
increased the average activation time, the increase was smaller than the cell-to-cell
variation in any one volume. In this sense, the solitary cell confinement experiments
(above) that can be viewed as evidence for the viability of the DS mechanism are
more likely evidence against it: the time scale for activation of one cell’s QS circuit
is a very poor indicator of the cell’s physical environment. In the following section
we make this idea of information gathered (or lack thereof) by the QS network
quantitative, using some ideas of information theory.



7 Swimming in Information? Physical Limits to Learning by Quorum Sensing 131

10 μm10 μm

Dark fielda

b

Bioluminescence

50nM
100nM

200nM
1000nM

0 50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

[AI]

P
op

ul
at

io
n 

fr
ac

tio
n

Cell brightness

Fig. 7.3 Noise in the bioluminescence output of the LuxI/LuxR QS circuit of V. fischeri. The
light output by individual cells in the presence of the 3OC6HSL autoinducer is highly variable.
(a) Dark field and bioluminescence (false color) images of the same group of cells in saturating
autoinducer (500 nM 3OC6HSL), showing highly variable luminescence output; (b) Histogram
showing a broad distribution of luminescence output in a population of cells. Even at the highest
autoinducer concentration (AI) the coefficient of variation in output is close to 100 % [30]

Because the noise arises in the regulatory circuit itself, simply increasing the
signal concentration does not improve the information-gathering capacity of the QS
system. Doubling the concentration of 3OC6HSL signal certainly does not improve
the signal-to-noise ratio of the V. fischeri response. However, adding an additional
signal input—i.e., introducing a parallel receptor channel that senses an additional
autoinducer—is a potentially useful strategy, and many quorum sensing bacteria
(including Vibrio species) do employ multiple autoinducer species and detectors.
Further, since the average response of a group of cells is more reliable than the
response of one individual cell, one may construct theoretical models for effective
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quorum sensing communication based on the idea of clusters of cells interacting
collectively with other clusters via multiple, diffusing signal species [33]. In general
however, one key difference between QS networks and other chemical sensing
systems (e.g., chemotaxis) seems to be that only at the level of the population-
average is the output a very useful reporter of the input.

Nevertheless the QS circuit serves the microbe by gathering information about its
environment. To better understand the microscopic-level performance of QS circuits
in this task, we would like to quantify the information that they gather. Information
theory provides the basis for calculating the amount of information that the output
of a regulatory network provides about its inputs. Therefore in the following section
we provide a brief introduction to information theory in its applications to QS.

7.4 The Information Carried in a Signal

Information theory in the more general context of chemical signaling and other
types of biological communication has been reviewed elsewhere [34, 35]. Here we
review a few basic ideas from information theory that may provide insight into the
performance and optimization of QS circuits.

Suppose that X describes an environmental parameter that can take different
values: a measurement of X yields a particular value x with a probability PX(x).
How much information does the organism gain by measuring X? Information theory
finds that the average gain is equal to the entropy S(X) of the probability distribution
PX(x), where the entropy is defined as [34]

S.X/ D �
Z

dx PX .x/log2PX .x/ (7.4)

Here the integral extends over all observable values of x, and the appearance of
the base-2 logarithm means that the information is measured in units of bits. The
entropy S(X) is a property of the parameter X—or really a property of its probability
distribution PX(x)—and not the specific result x obtained in one measurement.
We note that S(X) is larger if PX(x) is a broader, flatter distribution than if PX(x)
is sharply peaked around a specific value of x. One gains little information by
measuring a variable whose probability distribution is so narrow that the outcome
of the measurement is highly predictable.

In QS, X could represent the concentration C of an autoinducer measured in
a finite volume that contains an emitting cell. If the cell releases a small, finite
quantity of autoinducer at tD 0, the concentration C is initially large near the cell
and is very small at distant locations. Therefore the range of observable values
for C is large. Consequently the probability distribution P(C) for measurement
of C is a broad distribution, and a measurement of C is capable of yielding
information; it can be used, for example, to calculate the distance between the
location where C was measured and the source of the signal. However, as time



7 Swimming in Information? Physical Limits to Learning by Quorum Sensing 133

passes, the autoinducer spreads diffusively and C becomes more uniform throughout
the volume. Eventually, only a narrow range of values for C is now observable, and
the probability distribution P(C) becomes more sharply peaked at a single value.
The measurement of C is now less informative. Diffusion of the signal reduces
the amount of information that is present in its concentration profile C(r, t). This
example illustrates a fundamental problem with using a diffusible signal (i.e., a
QS mechanism) to gather information: generally the diffusional spreading of the
autoinducer signal is accompanied by loss—not gain—of information. We should
be somewhat skeptical that a cell can learn much about its environment by secreting
a diffusible signal.

The bacterium uses a regulatory circuit to convert the environmental input X
to an output Y, such as production of an exoenzyme. Because Y is sensitive to X
and PX(x), and the regulatory circuit also introduces noise, Y is associated with a
probability distribution PY (y). Therefore the information gained in a measurement
of Y is determined by the entropy S(Y) that is calculated from Eq. (7.4) above.
Clearly the QS system is not useful unless the regulatory output Y provides some
information about X. The amount of information about X that is gained on average
from a measurement of Y (and vice versa) is known as the mutual information
I(X, Y). Its value depends on PX(x), PY (y) and the joint probability P(x, y) for the
measurement of X and Y together. It can be calculated from the expression [34]

I .X; Y / D
“

dx dy P .x; y/ log2

P .x; y/

PX .x/PY .y/
(7.5)

The integral extends over all observable values of x and y. If X and Y are statistically
independent, such that P(x, y)DPX(x) PY (y), then this mutual information is found
to be zero, because a measurement of Y yields no information about X.

If we make the plausible hypothesis that QS circuits are designed to optimize
the information that their output provides about the environment, then we can
hope that evaluating I(X, Y) for real QS networks will generate insight into how
those organisms use their QS networks to gather information. For many QS circuits
we have a good idea of the function that relates X to Y. Often the regulated output
can be represented as a Hill function of the autoinducer concentration x, with a
source of noise as well,

y D xn

xn CKn
C .noise/ (7.6)

Here n is a Hill coefficient and K is an equilibrium constant [36]. If we have
some information about the noise term, then we can in principle calculate the
mutual information between the input and output. If the QS circuit employs multiple
autoinducers (e.g., signals X1 and X2), we can also evaluate the mutual information
between different variables, such as I(X1, Y), I(X2, Y), or I((X1, X2), Y), etc. In the
following we discuss a few instances where experimental data on QS systems have
allowed researchers to pursue this approach.
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The QS network that regulates the bioluminescence of the marine bacterium
V. harveyi receives input from three autoinducers which are designated AI-1,
AI-2, and CAI-2 [1]. The signals are detected by three receptors LuxPQ, LuxN,
and CqsS. Signals from the three receptors are integrated through their kinase
activity in phosphorylating a single enzyme LuxU, which relays the collected signal
downstream by phosphorylating LuxO. Long et al. found the dose response to
AI-1 and AI-2 to be symmetric and additive, in the sense that both autoinducer
concentrations contribute equally and additively to the bioluminescence circuit
output Y [29, 37]. Given the measured noise in the output Y—which was actually the
activity of a gfp reporter—Mehta et al. [37] estimated the total mutual information
I((X1, X2), Y) between the output and the two (AI-1 and AI-2) inputs as roughly 1.5
bits. That is, the system exhibits almost three ('21.5) output states in responding
to the state of the two input AHL concentrations. However, if only one of the two
inputs (e.g., AI-1) is specified, while the other input is unknown, then the mutual
information between the one input and the overall output Y is significantly lower.
The authors estimated that this situation reduces the mutual information between X1

and Y to roughly 0.6–0.8 bits. That is, if the concentration of the second autoinducer
is not specified, then it can be known only probabilistically and it therefore becomes
a source of uncertainty or interference in the circuit. If the circuit output is used to
estimate just one input signal, the lack of knowledge of the other, unknown signal
reduces the information throughput.

Moreover, the sensitivity of the two channels needs to be balanced in order to
maximize the information throughput. If the kinase activity of one AHL receptor
is very different from that of the other, then the circuit has greater sensitivity to
the input with the stronger kinase, with accordingly more information transmitted
through that input at the expense of information transmission through the weaker
input. In order to extract the maximum information from dual inputs the circuit
needs to give equal weight (equal kinase strength) to both input channels [37]. This
QS system appears to use the parallel detection of chemically distinct autoinducers,
through independent channels, to increase the amount of information that it can
gather from the environment.

An interesting contrast is seen in the lux regulatory system that controls biolu-
minescence of V. fischeri. The LuxI/LuxR system of V. fischeri resembles that of V.
harveyi in the sense that it also integrates three different autoinducer signals. These
include two AHLs, i.e. the N-3-oxohexanoylL-homoserine lactone (3OC6HSL) that
is detected by the LuxR receptor and the N-octanoylL-homoserine lactone (C8HSL)
that interacts with the receptor AinR. The 3OC6HSL stimulates the lux operon while
the effect of C8HSL is more complex. C8HSL interacts not only with AinR but also
directly with LuxR, in competition with 3OC6HSL. In the absence of 3OC6HSL,
the C8HSL may weakly activate lux, while in the presence of 3OC6HSL the addition
of C8HSL may suppress lux. Therefore unlike the autoinducers of V. harveyi, the V.
fischeri autoinducers act antagonistically, rather than additively, in their activation
of lux.

Pérez et al. [31] studied the response of individual V. fischeri (containing a gfp
reporter for the lux operon) to combinations of the C8HSL and 3OC6HSL inputs.
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The study showed, first, that the use of two autoinducers does not reduce the noise
in lux regulation. In V. fischeri the noise in lux output is a function only of the total
activation level, and not the particular combination of signal inputs that produce
that activation. Consequently the mutual information between the input signal
combination ([C8HSL], [OC6HSL]) and the output (lux activation) was estimated at
only about 0.53 bits, significantly less than the roughly 1.5 bits estimated by Mehta
et al. for V. harveyi. As the bioluminescence is noisy with a coefficient of variation
(D standard deviation/mean) cv' 1, the lux system of V. fischeri is much noisier
than that of V. harveyi, for which cv' 0.15–0.4. In short, the mutual information in
the QS circuit of V. fischeri is not enhanced through its use of two autoinducers.

Given that the V. fischeri AHLs have opposite effects on the activation of
the circuit, these considerations of mutual information suggests that multiple
autoinducers play a different role in V. fischeri than in V. harveyi. Rather than
reducing noise in the circuit, the two signals may work antagonistically to minimize
noise-driven activation of the QS circuit early in growth, when population densities
are low [31]. Because even modest 3OC6HSL-induced activation of the lux circuit
causes a few individual cells to emit bright bioluminescence [30], the production of
small amounts of C8HSL may serve to suppress that energy-wasting response early
in colony growth. This has no negative consequence at the higher 3OC6HSL levels
that are found late in growth, as C8HSL has little effect on bioluminescence output
under these conditions.

Using equation Eq. (7.5) to calculate I(X, Y) from experimental data requires
knowledge of the “prior distribution,” or probability distribution PX(x) for the input
variable X. It is unlikely that PX(x) is actually known for the organism in its natural
environment(s). Therefore, the above calculations of I(X, Y) for real bacteria depend
on assumptions or estimates of the shape of PX(x). Both of the Vibrio analyses above
were based in part on an assumption of a flat prior distribution for the activating
inputs. Specifically, they assumed a flat distribution PX(x) such that all values
0	 x	 1 are equally likely, where X represents the saturation of an underlying
binding process involving the autoinducer concentration AI:

y D cx C .noise/ (7.7)

x D ŒAI
n

ŒAI
n CKn

However, if the QS circuit is optimized to gather information from its environ-
ment, we may expect that n, K are tuned to maximize I(X, Y) with respect to the
true PX(x). This suggests in turn that the true PX(x)—and also the true PY (y)—
is the one that maximizes I(X, Y), given the input–output relation and noise of
the QS circuit [34, 38]. If the QS circuit adds only small, gaussian noise, then
the optimal PY (y) is a flat distribution, independent of y, with PY (y)dyDPX(x)dx.
Then regardless of how the input X is defined mathematically (whether X represents
the autoinducer concentration as in Eq. (7.6) or the saturation of its binding as
in Eq. 7.7), then the mutual information is optimal for PX(x)DPY (y) jdy/dxj.
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Fig. 7.4 (a) Activation profile for the V. fischeri bioluminescence QS circuit in response to
3OC6HSL autoinducer (AI) concentration. The sketch is based on experimental data that indicate
a Hill function response with n D 2.7 and K D 120 nM [30]. The mutual information between the
3OC6HSL input and bioluminescence output can be calculated from this curve, the probability
distribution P(AI) for the signal input, and the experimental observation that the noise coefficient
of variation (standard deviation/mean) is roughly unity at all levels of activation; (b) Shifts in P(AI)
significantly affect the mutual information between the circuit response and the signal input [AI].
The distributions P(AI) have been scaled to same maximum for plotting

This hypothesis of optimal signal input has found experimental support in some
other chemical signaling problems in biology, such as in morphogenesis [38]. For
QS systems with Hill function response to autoinducers it sensibly implies that the
natural range of autoinducer concentrations is most likely near the middle of the
Hill function, where [AI]�K.

In the LuxR/LuxI circuit of V. fischeri the noise is neither small nor Gaussian and
so the true optimal probability distribution for the autoinducer signal concentration
is not readily found. However Fig. 7.4 shows how the mutual information for
that system would depend on different probability distributions for the signal
concentration. Even in the presence of significant noise (cv' 1.0) modest shifts
in the probability distribution P(AI) can induce large (e.g., twofold or greater)
shifts in the mutual information between input and output. It is interesting that
strain differences and single-residue mutations of LuxR are known that significantly
modulate the interaction between the two AHLs 3OC6HSL and C8HSL [39–
41] in their effect on the lux genes. One route toward interpreting such bacterial
strain differences in the sensitivity of QS networks may lie in interpreting the
sensitivity parameters (n, K) for the different strains and autoinducers as providing
the maximum information to the organism in the particular environments that those
strains inhabit.
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7.5 Spatial Range and Sensing

A lone microbe in solitary confinement represents one extreme scenario for studying
QS. A large population of microbes in a perfectly mixed culture represents an
opposite extreme. Between those two extremes are scenarios where many cells
are present, mixing is imperfect, and the diffusion of autoinducer is neither fast
nor slow on the time scale of gene expression. In biofilms or soils for example,
AHL may be transported primarily by diffusion, leading to slow signaling over long
distances. In such cases we anticipate that long range QS communication may face
significant physical and chemical obstacles. The response of a population of bacteria
is likely to be spatially and temporally heterogeneous. Studying these systems may
tell us how effectively quorum sensing can synchronize gene expression in such
environments. It may also tell us what kind of information a single cell can gather
about its location with respect to other cells by detecting the QS signals that move
through its environment.

In any environment the diffusive transport of autoinducer is limited at least by its
diffusion coefficient D, its solubility, and its chemical stability [42]. The diffusion
constants of AHLs are roughly estimated in the range of �5� 10�6 cm2/s [43].
However, typical bacterial environments such as biofilms, the plant root zone, and
flocculent materials have complex physical and chemical structure at micron length
scales. Flow or advection may be nonexistent, so that AHL signals must travel
almost entirely by diffusion. Physical diffusion may be restricted by poor spatial
connectivity (tortuosity). Chemical interference from signaling by other bacterial
and eukaryotic species is rampant [44]. AHL signals in such environments are also
subject to degradation by enzymes (e.g., lactonases and acylases), alkaline pH, or
high temperature [2, 42, 45, 46]. Clusters of confined bacteria may generate intense
local gradients in chemical variables such as pH or oxygen concentration [47, 48].
Furthermore, the longer chain AHLs are hydrophobic and therefore are anticipated
to have solubilities below 100 �M; they will therefore partition preferentially into
hydrophobic phases, possibly including the lipid membrane of the cells [42]. While
some smaller AHLs diffuse passively across the cell membrane, other long chain
AHLs are known to require active transport out of the cell [49].

In short, there are many reasons to be pessimistic about the possibility that
simple diffusion of an AHL can lead to effective communication over macroscopic
distances. The final hindrance, however, is usually expected to be the slow speed
of diffusive transport. If D� 5� 10�6 cm2/s, the signal requires t� 1 h to travel
roughly 2 mm. Therefore the microbiology literature often asserts that, given (e.g.)
soil/rhizosphere conditions and relevant time scales, true chemical communication
over distances beyond 10–100 �m is unlikely [2, 42, 43, 50].

Nevertheless there have been some experiments aimed at measuring the distance
or range over which a diffusing AHL signal can trigger gene expression. Gantner
et al. [51] explored this idea of “calling distance” in quorum sensing Pseudomonas
putida growing on plant root surfaces. They used a two-color fluorescent-protein
reporting scheme, in which AHL-synthesizing cells produced red fluorescent protein
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and AHL-sensing cells produced green fluorescent protein. They found that the
in situ distance between a green AHL-sensing cell and the nearest red AHL-
synthesizing cell was typically 2–20 �m in the root hair zone, although it was
occasionally as large as 40–78 �m, or roughly 40� the 1–2 �m dimension of the
cells themselves. While neither the amount of AHL synthesis nor the geometry of its
diffusion were controlled in that experiment, the maximum calling distances were
certainly larger than expected.

However a “large” distance of many microns corresponds to a brief time scale for
diffusion: An AHL can diffuse over a calling distance of LD 80 �m in a time of only
t'L2/2DD 6 s. Nevertheless the experiment does raise the question of whether
bacteria can respond to AHL signals that are diffusing over longer distances, over
periods of minutes or hours.

A subsequent study using a microfabricated array found a substantially greater
length scale for signaling [52]. Those authors found that simple diffusion of the
AHL secreted from a P. aeruginosa biofilm was sufficient to induce a response in
cells growing up to 8 mm away. This result corresponds to a diffusion time t
 10 h,
drastically longer than in the Gantner et al. study. It raises the question of whether we
can quantify the effectiveness of QS communication on longer, macroscopic scales.

Dilanji and coworkers [20] addressed this question by studying the spatial and
temporal patterns of gene regulation that are induced by the diffusion of a known
quantity of AHL through a colony of bacteria. The bacteria contained the LuxR
intracellular receptor of the V. fischeri LuxR/LuxI system, where LuxR activated a
gfp reporter in response to the 3OC6HSL autoinducer. (The LuxI synthase of the
autoinducer was absent.) The experiment imposes a near-ideal, one-dimensional
geometry by introducing a droplet of AHL (3OC6HSL) at one terminus of a long
agar lane. As the autoinducer slowly diffuses along the lane it activates the gfp
reporter in the bacteria embedded in the agar, producing spatial and temporal
patterns of fluorescence emission. Figure 7.5 shows the activation pattern as a
function of time t (from introduction of the AHL) and distance x (from the point
where the AHL was introduced). Remarkably, in both V. fischeri (luxI deficient)
and in E. coli harboring the LuxR receptor, a response is observed over distances
as large as '10 mm from the site of AHL introduction, roughly 10–12 h after the
AHL was introduced. The diffusible signal is capable of synchronizing regulation
over distances far greater than 100 �m.

We might have anticipated that the temporal profile of the QS circuit’s response
as a function of distance would have the simple diffusion property of t/L2/2D,
seen in Fig. 7.5a: i.e., the signal spreads quickly at early times, but much more
slowly as it moves farther away. If that were the case, the bacterium in a biofilm
could gain some information about its distance from an AHL source by the time
scale of its own QS activation. However the kinetics of the QS response in Fig. 7.5d
have different properties. First, at a distance of 10 mm the response time scale of
10–12 h is noticeably faster than the time scale t'L2/2DD 28 h that one would
estimate simply from diffusion of the AHL. Second, bacteria at all spatial locations
	10 mm from the AHL source respond at essentially the same time. They also
respond with an amplitude that is not especially sensitive to their distance from the
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Fig. 7.5 Spatial and temporal pattern resulting from (a–c) simple diffusion of a fluorescent dye
in one dimension, and (d–f) activation of a QS circuit by an autoinducer diffusing through a one-
dimensional colony. In (a–c) a droplet of fluorescent dye is deposited at x D 0 at t D 0, and diffuses
to larger x, leading to the resulting patterns of fluorescence in space and time (a), which are also
shown in temporal (b) and spatial (c) cross sections. In (d–f) a droplet of 3OC6HSL is introduced
at one terminus of a lane containing AHL-sensing bacteria (with LuxR controlling a gfp reporter,
and lacking LuxI AHL synthase). The resulting pattern of GFP fluorescence (d), which is also
shown in spatial and temporal sections (e and f), is qualitatively unlike the simple diffusion pattern
of (a) [20]

source. In fact, the response throughout the agar lane is so well synchronized in time
that it has an interesting mathematical property: If a droplet of AHL is introduced at
xD 0, tD 0 and begins diffusing outward, then we can say that F(x, t) is the degree
of subsequent activation of the lux reporter at location x and time t. Formally, F(x,
t) can be represented as a series of terms containing separate spatial and temporal
components

F .x; t/ ' u1.x/sv1.t/C u2.x/sv2.t/C � � �
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The experimental data of Fig. 7.5d–f shows that the first term completely
dominates this sum. All the spatial cross sections in Fig. 7.5e–f are similar (/u1(x))
except in scale, and all of the temporal cross sections (/sv1(t)) are similar except in
scale. The activation profile F(x, t) is primarily just the product of a spatial function
u1(x) and a temporal function sv1(t).

This curious property is uncharacteristic of the solutions C(x, t) of the diffusion
equation which are shown in Fig. 7.5a–c. It owes something to the nonlinear
character of the QS circuit’s response to AHL concentration, and also to one of the
less appreciated properties of simple diffusion. While a very long time is required
for the overall AHL concentration in a large volume to become fully equilibrated by
diffusion, a very small number of the particles that are introduced at one location
will travel a long distance within a short period of time. Shortly after the AHL is
introduced at one terminus of the lane, a few molecules have traveled a macroscopic
distance through the agar. Owing to the very nonlinear (Hill function), nearly all-
or-nothing character of the QS circuit’s AHL response, the quick arrival of a small
concentration of signal is sufficient to induce a fairly complete switching of the QS
circuit throughout a substantial part of the colony.

Therefore, from the perspective of control, Fig. 7.5 shows that a signal traveling
purely by diffusion can be surprisingly effective in synchronizing gene expression
over a macroscopic distance.

However, such effective synchrony represents a problem for spatial information
gathering by the population. The spatial profile of the maximum response (at t� 10–
12 h) is fairly independent of x up to about 5 mm, and then it drops off quickly at
larger x. Cells near (x	 5 mm) the source are maximally activated at the same time,
while more distant cells are never activated. The same temporal profile is observed
at all locations x, and the same (mostly flat) spatial profile u1(x) is observed at all
times t. Therefore the probability distribution for the activation time P(ta) is sharply
peaked at ta� 10 h, indicating that a cell gains little information about its physical
location by “measuring” its activation time ta: there is little or no mutual information
between the activation timescale and the cell’s physical location in the colony. More
broadly, because the individual cell responds to the AHL concentration in a mostly
binary on/off fashion, a sensing bacterium—or a cluster of bacteria—can at best
distinguish two locations—i.e., near and far—with respect to the source of the AHL.
It cannot use the AHL’s concentration profile C(x, t) to implement a complex,
spatial–temporal pattern of QS response. This is quite unlike the very precise
spatial sensing that is accomplished through chemical signaling in morphogenesis,
for example, where individual cells decode the concentration of a single diffusing
morphogen to high precision and respond by implementing a complex program of
gene activation [53, 54].
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7.6 Conclusions

Quorum sensing is a remarkable behavior that regulates many functions in different
types of bacterial populations inhabiting different social and physical environments.
In interpreting QS systems as information-gathering devices it is important to think
about what physically can and cannot be accomplished through the exchange of
diffusible signals. The physics of diffusion are somewhat limiting unfortunately,
and tend to suggest that detailed spatial information is difficult to gather with
diffusible probes. Experimental evidence further indicates that noise in QS sensing
circuits sharply limits the ability of an individual cell to gather and respond reliably
to information received from these signals. Although collectively a cluster or a
larger population of cells can benefit by averaging over the noise, there is little
evidence that QS circuits are optimized for the benefit of the individual cell. In
fact the observation that some quorum sensing regulated behaviors, such as genetic
competence, directly exploit stochasticity in gene expression suggests that poor
information throughput can be more a design feature than a shortcoming in quorum
sensing systems.

On the other hand, the prevalence of QS is proof of its usefulness at the group-
averaged level of clusters and cultures of cells. Despite the problems associated with
diffusing signals, QS can provide surprisingly good spatial synchronization of gene
regulation over macroscopic distances. Somewhat paradoxically, this is equivalent
to saying that the state of its gene activation provides the cell with virtually no
information about its spatial or temporal situation with respect to other cells.

It is perhaps surprising that the diffusing signal delivers so little spatial informa-
tion to the cell, as there are certainly environments where the cell could benefit from
information about its location with respect to the rest of the colony. The production
and detection of multiple autoinducers could help QS bacteria in these situations
gain spatial information. Additional spatial information may be available if the
different autoinducers diffuse with significantly different coefficients D. Another
interesting possibility arises if the autoinducer concentration provides regulatory
input to more than one QS system, activating or repressing different combinations
of independent genes to different extents as the autoinducer concentration evolves
in time. Thus, even if the state of each gene provides 	1 bit of information
about the signal, the state of all the genes together could allow a higher precision
readout of the local signal concentration, possibly permitting the organism to
interpret its physical location with respect to other AHL sources. The soil microbe
Sinorhizobium meliloti is an appealing candidate for such mechanism, as its
SinI/SinR/ExpR QS circuit produces and detects multiple distinct AHL species
with C12–C18 side chains [55, 56]. Many of these AHLs are poorly soluble
and presumably vary in their diffusive mobility. Further S. meliloti AHL receptor
ExpR was recently found to interact with multiple binding sites with different
AHL sensitivity [57]. Consequently multiple regulated genes have the capability
to respond at different AHL concentrations. We may anticipate that substantially
greater mutual information between the overall output state and the position is



142 S.J. Hagen

possible in such cases. Whether the organism can actually use such mechanisms
to extract more information from the diffusing signal is an intriguing question that
remains to be explored.
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Chapter 8
Interplay Between Sibling Bacterial Colonies

Avraham Be’er, Sivan Benisty, Gil Ariel, and Eshel Ben-Jacob

8.1 Introduction

8.1.1 Using Intelligence to Cope with Stress

Bacteria in the wild are frequently exposed to harsh conditions, the sources of which
include, but are not limited to, a lack of available nutrients, overcrowding and space
limitations, the presence of enemies, and extreme environmental conditions, such
as high temperatures and dryness. Their responses to stress can consist of radical
behaviors, such as the deadly competition often observed between individuals of
the same species [1–5].

The first and most fundamental of all organisms, bacteria have evolved mecha-
nisms to ensure their survivability when faced with harsh conditions [6, 13]. They
lead rich social lives in complex hierarchical communities, collectively sense the
environment to glean information, learn from past experience, and make decisions.
To engage in such complex, cooperative behavior, bacteria utilize highly sophis-
ticated chemical communication mechanisms whose chemical language includes
semantic and even pragmatic aspects [7].
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Fig. 8.1 The combined social IQ score as a function of genome size for 502 bacterial species.
The y-axis represents the relative combined score (relative to the averaged score divided by the
standard deviations). The social IQ scores of the “smart” P. dendritiformis are nearly three standard
deviations above normal. Image was taken from [8] with minor modifications

The bacterial capacity to cope with stress is based on each species’ distinctive
abilities. While some bacteria are “goofs,” others are “smart” and are able to
survive a large variety of complex situations. Bacterial survivability is correlated
with the microbial signal transduction system, which can be viewed as an infor-
mation processing network comprising multiple sensory and transduction/output
elements [8]. Comparative genomic studies revealed that, in general, microbial
signal transduction system size increases as genome size grows [8]. Moreover,
bacteria with elevated adaptability for survival in highly versatile and complex
environments were found to have significantly larger, more sophisticated, and more
diverse signal sensing and processing systems (Fig. 8.1). The relative numbers of
the genes behind these systems can give a sense of “bacterial IQ,” a measure that
was found to be remarkably high for the Paenibacilli spp. (Fig. 8.1).

8.1.2 Paenibacillus dendritiformis

First identified in 1993, Paenibacilli spp. have been detected in a wide range of
environments such as soil, water, the rhizosphere, vegetable matter, insect larvae,
and in clinical samples. Recent years have witnessed increased interest in Paeni-
bacillus spp., many of which were found to be important for industrial, agricultural,
and medical applications. These bacteria produce extracellular substances, such as
polysaccharide-degrading enzymes and proteases, which catalyze a wide variety
of synthetic reactions in fields ranging from cosmetics to biofuel production. In
addition, some Paenibacillus spp. also produce antimicrobial substances that affect
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a wide spectrum of micro-organisms such as fungi, soil bacteria, plant pathogenic
bacteria, and anaerobic pathogens such as Clostridium botulinum.

In line with the generally “high IQ” score obtained for members of Paenibacillus
spp., extensive work on P. dendritiformis has revealed that they possess a large array
of quorum communication mechanisms alternatingly capable of promoting fast
colonization under growth-favorable conditions or of supporting survival strategies
when confronted with a harsh environment. Five such mechanisms are listed below.

1. Differentiation: P. dendritiformis form and reshape large, intricately organized
colonies comprising billions of cells [9–14]. Colony formation is enabled by
differentiation, which confers on populations of otherwise identical, individual
bacteria the capacity for cooperative self-organization. Once part of a colony, the
bacteria can better compete for food resources and they enjoy greater protection
against antibacterial assaults.

2. Lubrication: On hard surfaces, P. dendritiformis have the ability to secrete
a lubricant that both reduces surface friction and that also facilitates rapid
migration [13]. Such materials are secreted by the bacteria only when their cell
count in a niche has become high enough, indicating that lubricant secretion is
dependent on a quorum mechanism.

3. Swarming: Robust swarmers [15, 16], P. dendritiformis can swarm on a large
variety of agar concentrations, including hard agar (2 %) and agar with limited
nutrient levels. In fact, unlike Escherichia coli (require glucose for swarming),
Bacillus subtilis (require high levels of moisture), and Serratia marcescens
(unable to swarm at 37 ºC, i.e., mammalian body temperatures), P. dendritiformis
swarm under most laboratory conditions. As in other species, however, the
bacteria must reach sufficient cell density to swarm.

4. Sporulation: As with many other Gram-positive species, P. dendritiformis may
enter sporulation mode if nutrient levels are insufficient for growth [2]. Depen-
dent on population density, sporulation is enhanced by the self-secretion of
subtilisin, which inhibits the growth of sibling P. dendritiformis colonies. Both
the sporulation and swarming circuits of P. dendritiformis resemble those of B.
subtilis and are dependent on the local bacteria concentrations.

5. Resistance: Another challenge bacteria often encounter is antibiotic stress. While
some species are naturally resistant to specific types of antibiotics, others use
persister cells [17] or small colony variants [18] to ensure their survival. These
cells, which typically constitute very small fractions of bacterial populations,
either do not reproduce or they reproduce very slowly. Phenotypically, however,
they are considerably more resistant to the antibiotic than are regular cells from
the same population, and as such, their survival ensures strain continuity. An
additional P. dendritiformis survival mechanism that assists in fighting antibiotic
attacks is the existence in this species of two well-characterized motile strains,
or morphotypes, which are known as the T [19] and C [20, 21] morphotypes and
which have the same 16S rRNA ribosome. While the two strains differ in terms
of the corresponding survival strategy associated with each [13, 22], in most
cases the two morphotypes will grow independently under the specific conditions
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Fig. 8.2 Two neighboring P. dendritiformis colonies growing on 1.6 % agar with 1.5 g/L peptone

(temperature, humidity, agar rigidity, and food level) that are suitable for it.
When subjected to antibiotic stress, however, a strain can switch to the other
morphotype if it is better suited to survival in the antibiotic-tainted environment.
Once favorable conditions return, cells can revert to the original morphotype.
The majority of the work in this chapter focuses on the T morphotype.

Mechanisms that support the collective behavior of bacteria change the pop-
ulation of a single colony into a multi-cellular organism. Under such collective
conditions, therefore, one expects that there may also be competition between
sibling colonies (taken from the same culture), as suggested by the growth inhibition
shown in Fig. 8.2.

8.2 Competition Between Sibling Colonies

8.2.1 Early Observations

In the early 1990s, Fujikawa and Matsushita [23] showed that sibling B. subtilis
colonies grown on nutrient-poor agar in the same Petri dish did not merge. Each
colony expanded in the direction of its neighboring colony but stopped short of
making physical contact, leaving a gap of a few millimeters between the two
colonies. Under rich growth conditions, however, the authors did not observe the
phenomenon [24], and the colonies spread in homogenous patterns. The reason
for the gap, they concluded, was nutrient depletion. Their observations illustrate
a phenomenon similar to diffusion limited aggregation (DLA) processes [25], in
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which the consumed nutrients diffuse through the medium, creating intricate branch
patterns with gaps where nutrients were depleted.

About two decades later, a study by Gibbs et al. [26] on the interaction
between Proteus mirabilis colonies showed that different P. mirabilis strains formed
boundaries between colonies while those of sibling colonies of the same strain did
not contain any boundaries. A fundamental requirement for boundary formation in
the Gibbs et al. study is that bacteria exhibit the ability to discriminate between
self and nonself. Swarms of mutants with deletions in the ids gene cluster did not
merge with their parent. Thus, although Gibbs et al. suggested that the ids genes are
involved in the ability of P. mirabilis to distinguish self from nonself, the specific
mechanism of inhibition and its evolutionary advantage are still unclear.

The first study to show some sort of competition between sibling colonies that
was not a result of food depletion focused on the T morphotype of P. dendritiformis
[27–29]. Although simulations suggested that colonies were repelled due to some
signaling factor secreted to the medium, the physical basis of that competition,
its mode of action, and the chemicals involved in the process have still not been
resolved.

8.2.2 Competition Between P. dendritiformis Colonies

Subsequent quantitative studies investigated the competition between P. dendriti-
formis colonies of the T morphotype [1–3]. In the first study [1], two sibling colonies
were inoculated simultaneously on an agar plate, and their time development was
monitored using an integrated incubation-imaging system to track bacterial colony
growth over a period of a week (Fig. 8.3a). The initial development of each colony
was virtually the same as that of a single, isolated colony: after a lag of 18 h, the
two colonies began to expand outward, in the process developing intricate, branched
patterns within well-defined, circular envelopes. The speed of envelope growth was
isotropic and constant (Fig. 8.3b, c).

However, after a well-defined time that depended on the initial separation
distance between the two colonies, the rates of growth of the colony growth fronts
facing each other began to decelerate until growth there stopped altogether, leaving
a gap between the pair of colonies (Fig. 8.3a). Other areas of the colonies, however,
continued to grow unhindered. Surprisingly, the deceleration observed in the colony
growth along the fronts that were opposite each other was independent of the initial
separation distance, indicating a threshold mechanism. This suggested the presence
of an inhibitory chemical. Indeed, colonies grown at different initial separation
distances are affected the same way when they sense an inhibiting level above a
threshold.

These results motivated us to investigate why the colonies stopped growing on
their adjacent growth fronts while other areas of the colonies seemed unaffected.
In contrast to what has been observed in studies of B. subtilis growth [23], food
depletion can be ruled out as the primary cause since, given the length and time
scales for colony growth, the diffusion constant of peptone in the agar was found to
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Fig. 8.3 Interaction between neighboring P. dendritiformis colonies growing on 1.5 % agar with
2 g/L peptone. (a) Images of adjacent growing colonies: 9 h after inoculation, no growth; 40 h, the
onset of inhibition; 72 h, inhibited growth; 96 h, growth has stopped in region b but continues in
regions a and a0. The labels on the x-axis (under panel a) indicate the initial distance d separating
the two colonies (here 12 mm); the position x� (d) is where growth begins to decelerate, and the
position xf (d) is where growth stops. (b) Position x of the growth front as a function of time
for initial colony separation distances d of 6–26 mm; blue symbols aligned on a straight line
correspond to the uninhibited growth in region a0, whereas red symbols, aligned on the curved
lines represent growth toward region b [see data for 72 h and for 96 h, (a)]. The yellow diamonds
(on the straight line) represent the growth of a single colony for the same conditions. For both
the single colony and for neighboring colonies with any separation d, there is the same lag time
(18 h), followed by growth with a speed of 0.11 mm/h. (c) A well-defined transition (at � D 36 h,
x� D 1.8 mm) from uninhibited to inhibited growth for the colony in (a). Growth speed decelerates,
and the growth front stops at xf . Image was taken from [1] with minor modifications
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Fig. 8.4 Switch from rods to cocci. (a and b) Low (a) and high (b) magnifications of a competing
colony. (c) Colonies formed from single bacteria taken from zone 9 (rods) and from zone 2 (cocci).
(d) Transmission electron microscopy of rod-shaped, motile P. dendritiformis cells (left). Cocci
(cross-section image) are shown at the same magnification as are the rods (middle panel) and at
a higher magnification, revealing incipient cell division (right). (e) Number of bacteria recovered
from each zone (250 � 250-�m area) are indicated in panels a and b. No bacteria were recovered
from zone 1, and only cocci grew from zone 2. The number of rod-shaped bacteria increased with
the distance from the inhibited interface, and only rods were recovered from zones 8 and 9. Image
was taken from [3] with minor modifications

be too large (1.6� 10�5 cm2/s). Therefore, it was not clear why the bacteria simply
stopped moving. Two possible explanations are that they entered the sporulation
stage or that they died.

8.2.3 The Inhibited Region

To discover what caused the pattern of inhibited growth, bacteria were isolated
from different regions of the two colonies and examined. These regions included
the uninhibited area (zones 8 and 9), the colonies’ centers (zone 7), and the area
from the center to the inhibited tips (zone 1) (Fig. 8.4a, b). In zones 8 and 9, only
rod-shaped motile bacteria were found, and in zone 8 some spores were also found,
in line with what is expected from a single colony. Cells collected from the edges of
the inhibited regions (zone 1) were dead, and no spores were found there, indicating
an unexpected killing zone. However, microscopic examinations of cells from the
inner regions within the zone of inhibition (zones 2–7) revealed small (0.7 �m in
diameter), immotile but vegetative cocci in those zones that were not detected in
zones 8 and 9 (Fig. 8.4c, d) [3]. The quantity of rods increased with increasing
distance from the zones of inhibition of the competing colonies (Fig. 8.4e), and
only cocci were recovered from the areas closest to the competing colonies (zone
2). No spores were found in zones 1–3.
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A comparison of the DNA sequences of the 16S rRNA genes of the cocci and
rods showed that they were identical, ruling out contamination. The cocci were
thus considered to be a new phenotype of the P. dendritiformis T morphotype, but
it was not clear what triggered their formation. To identify differences between
rods and cocci to possibly shed light on what determines the formation of each
form of P. dendritiformis, their growth and metabolism under different conditions
were compared. Re-streaked multiple times for isolation and maintained as separate
stocks, cocci and rods produced pure cultures in rich media and grew at the same
rates during exponential phase.

The discovery of the new phenotype in the inhibited zones could not explain
the deaths of cells at the tips (zone 1), but it suggested that cocci do not exist in a
normal, vegetative colony and that they are the result of the competition between
the colonies. Regardless of what the findings indicate about cocci, the zone of
killing identified at the tips of the colonies dictated that we test for the existence of
something more than a simple inhibitory element, i.e., for a killing factor. Material
from the agar between two competing colonies was therefore extracted and re-
introduced near a single, isolated, growing colony. The inhibitory influence of the
extract on the colony and the changes in the colony’s interior structure were found
to be highly similar to those observed during colony–colony interaction. Moreover,
bacteria collected from uninhibited regions grew normally in LB whereas that
collected from the inhibited tips showed no growth, observations that are identical
to those recorded with the two competing colonies.

8.2.4 The Role of Subtilisin

The extracted material was examined for its protein content [2]. Analyses by SDS-
polyacrylamide gel and by Edman degradation sequencing revealed protein bands at
32, 30, and 12 kDa. In contrast, extracts from the agar surrounding single growing
colonies showed only two protein bands, at 32 and 30 kDa.

BLASTP analysis revealed that the genes encoding the 32 and 30 kDa pro-
teins were annotated in the P. dendritiformis genome as flagellin and subtilisin,
respectively [2]. Flagellin had no effect on colony growth or morphology, but
large amounts of subtilisin inhibited growth, and only dead cells were found in
the inhibited area. Material extracted from agar near subtilisin-inhibited regions
was found to contain the same 12 kDa protein detected in the region between
two colonies. This suggested that high subtilisin levels trigger secretion of this
third protein, which is involved in the inhibition process and cell death. The
12 kDa protein corresponded to a gene predicted to encode a larger, 173-amino-acid
(20 kDa) protein that belongs to the DUF1706 family of conserved hypothetical
proteins. The 20 kDa gene was named dfsB (dendritiformis sibling bacteriocin) and
the 12 kDa protein was named Slf (sibling lethal factor).

To further characterize the effects of the proteins on P. dendritiformis colony
growth, single growing colonies were exposed to different concentrations of
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subtilisin. While low subtilisin levels promoted bacterial reproduction and colony
expansion, at higher levels it initially promoted expansion. As exposure times grew,
however, it eventually inhibited expansion. Moreover, very high subtilisin levels, as
mentioned earlier, resulted in the death of cells at the inhibited interface. For the
case of two competing colonies grown in a large Petri dish, the very early stages
of growth were characterized by faster expansion (than in later stages) along the
adjacent growth fronts, a finding that is likely because of the low levels of subtilisin
secreted by both colonies.

In addition to the effect of subtilisin on cell growth, colony expansion is
physically limited by surface tension—the colony cannot expand fast enough to
create enough new space to accommodate the reproducing bacteria. When space and
nutrients are in limited supply, therefore, increases in subtilisin help elevate bacterial
density, thereby leading to nutrient stress. Further experiments [2] showed, however,
that when space is not limited, subtilisin promotes reproduction independent of how
much is added. But under space constraints, increases in bacterial density cause
them to become overpopulated, which likely triggers their production of Slf to
reduce the overall number of bacteria.

8.2.5 The Slf Toxin

The introduction of extracted Slf near a single growing colony inhibited that
colony’s growth. In fact, it was found to be an exclusively inhibitory protein, even
at extremely low levels. In addition, when Slf was added to liquid cultures prior
to their inoculation, no growth was detected. For grown liquid cultures, high levels
of Slf lysed bacterial cells. More importantly, the evidence of cell lysis was visible
at the edge of inhibited colonies (Fig. 8.5). Colony branches exposed to the lethal
protein were destroyed within a few hours, indicating that Slf is the killing factor.

Based on its migration in polyacrylamide gels, Slf secreted into the medium has
an approximate molecular weight of 12 kDa, but the predicted protein sequence
of the gene dfsB is 173 amino acids, or 20 kDa (Fig. 8.6). The segment in amino
acid positions 5–169 (larger letters in Fig. 8.6) is associated with a conserved Pfam
family domain in many bacteria. The bold segment (Fig. 8.6), associated with the
isolated protein, starts with the sequenced part of the detected peptide (underlined)
and continues downstream to the end of the protein. The smaller size of the purified
protein (12 kDa) indicates that the protein is processed or cleaved during secretion.
The DNA encoding the 20 kDa DfsB protein was cloned into an expression vector,
and the protein was synthesized and purified. After purification, the 20 kDa protein
was treated with subtilisin, and the products were examined by SDS–PAGE gel
electrophoresis. The subtilisin treatment resulted in conversion of the 20 kDa protein
to a 12 kDa protein that comigrated with the 12 kDa protein isolated from the agar
medium. Colonies were exposed to both the uncleaved 20 kDa species and the
12 kDa processed protein. The 20 kDa protein had no effect on P. dendritiformis
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Fig. 8.5 Slf was introduced at the black dot near a single growing colony 4 days after inoculation.
The faint region (shown at higher magnification in the inset) corresponds to lysed cells; growing
branches were absent. Only a single band appeared in the gel electrophoresis results for the isolated
Slf. Image was taken from [2] with minor modifications

Fig. 8.6 List of the 173 amino acids of the DfsB protein corresponding to the dfsB gene. Large
letters indicate the segment at amino acid positions 5-169 that is associated with a conserved Pfam
family domain. Bold letters indicate the segment of the isolated protein Slf. The detected peptide
(Edman sequencing) is underlined. Image was taken from [2]

bacteria, but as was observed for the 12 kDa protein extracted from the area of
inhibition between colonies, the processed 12 kDa fragment lysed growing colonies.

Tests of the toxic protein Slf on the C morphotype of P. dendritiformis showed
that it is lethal, i.e., it lysed the cells. However, Slf had no effect on the closely
related species B. subtilis. This suggests that similar to other bacteriocins, Slf has a
narrow spectrum of activity.
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8.2.6 Reversible Phenotypic Switching Between Cocci
and Rods

The absence of cocci in areas of colonies not exposed to Slf suggested that the cocci
were not preexisting in the population but were instead induced by exposure of the
colony to Slf. Indeed, the addition of low levels of purified Slf to rod-like cultures
resulted in phenotypic switching from rods to cocci, with the latter resistant to
killing by Slf (Fig. 8.7). A more detailed metabolic profiling using Biolog Phenotype
MicroArrays showed differences in carbon, nitrogen, phosphorus, and sulfur source
utilization and in resistance to environmental stresses and antibiotics. In particular,
cocci were much more resistant than rods were to osmotic stress and penicillin,
indicating that there may be differences in the cell walls and membrane structures
of the two morphologies. Thus, the cocci and rods exhibited striking differences
in their abilities to survive and replicate under certain environmental and nutrient
conditions.

Because the switch from rods to cocci was found to be an adaptive response to
overcrowding [3], it seems likely that cocci could revert to the rod morphology under
conditions that favor motile rods. Individual cocci inoculated on LB swarm plates
(1 % agar) and monitored for the appearance of motile rods expanded slowly for
the first 48 h, during which time only cocci were detected. After 50 h, rod-shaped,
motile bacteria were observed at the colony edge. After an additional 6 h, rods
multiplied and began to swarm in multiple layers in behavior similar to that observed
in colonies initiated from single rods. At this stage cocci were not observed.

When multiple cocci colonies were present within a spot on the plate, the length
of time required for cocci in each colony to switch to rods was proportional to the
number of colonies initially present in the spot and to the proximity of those colonies
to each other. This suggests that the transition from cocci to rods is not random but
that it requires a secreted signal that is present in larger quantities when there are
more colonies and when those colonies are situated closer to each other.

Such a signaling molecule may also be present in culture supernatants. To test for
the presence of a secreted inducing signal, cocci were grown in LB broth for 18 h
at 30 ıC, and sterile supernatant from this culture was added to an equal volume of
fresh medium prior to inoculation with cocci. In this culture, the shift to rods began
at 18 h, whereas in culture without added supernatant, the transition did not occur
until 22 h. This supports the hypothesis that a secreted factor, designated Ris (rod
inducing signal), induces the switch from cocci to rods.

Rods grown in rich medium (LB) were also assessed for Ris production.
Similar to the procedure followed with the coccus supernatant, the addition of rod
supernatant to a culture of cocci also induced the shift from cocci to rods by 18 h.
In contrast, however, exposure of the cocci culture to rod supernatant triggered
the transition to the rod phenotype in more than 50 % of the cocci population by
18 h, compared to 3 % in the culture treated with coccus supernatant. The simplest
explanation for this finding is that Ris is secreted in greater amounts by the rods,
a scenario that may be part of a positive-feedback loop: cells that switch to the
rod phenotype subsequently secrete the inducer in larger amounts, accelerating the
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Fig. 8.7 Slf induces the switch from rods to cocci in a single growing colony. Purified Slf was
placed 1 cm from the edge of the colony 4 days after inoculation. (a) Coccus colonies (arrows)
in the inhibited regions 4 weeks after Slf introduction. (b) Higher magnification of the marked
rectangle in panel a. Dead bacteria are visible in the inhibited region near coccus colonies. Rods
are swarming from the edges of the coccus colonies. Image was taken from [3]
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process of switching among the remaining cocci and ensuring that the transition is
complete.

Ris was isolated from the culture supernatants of both rods and cocci by HPLC,
individual fractions of which were tested for their ability to induce the phenotypic
switch. Activity was associated with the fraction that eluted at 42 min from both
rod and coccus supernatants. The fraction contained a single peak with maximum
absorption at 214 nm. Placement of the isolated compound near a single coccus
caused it to shift to the rod phenotype in less than 2 h, thus verifying that a specific
secreted signal molecule induces the coccus to rod transition. However, Ris did not
produce ninhydrin-positive spots on thin-layer chromatography (TLC) plates and
did not absorb UV light at 280 nm, suggesting that it is not a peptide.

8.3 Mathematical Modeling: Self Regulation

The above results leave a key question unanswered: why is Slf produced by closely
situated, neighboring colonies (or when subtilisin is added near single colonies) but
not by single, isolated colonies?

To answer this question a mathematical model was developed. The model uses
an approach in which bacteria, nutrients, prespores, subtilisin, and Slf are modeled
as continuous fields, and the outer effective envelope of the colony is given by a
smooth, time-dependent curve. The advantage of this approach is that the system
is described as a free boundary problem, and the time evolutions of both the
continuous fields and of the envelope can be modeled and simulated consistently
and efficiently. This approach suits the problem at hand because it better describes
the coarse-grained behavior of the colony rather than the exact shape of the edge of
the lubrication layer. The envelope of growing neighboring colonies is depicted in
Fig. 8.8a.

The main contribution of the model is the identification of a negative feedback
loop that regulates the subtilisin concentration at the front of a growing colony.
Figure 8.8b shows the profiles of the bacteria, nutrient, subtilisin, and Slf concen-
trations immediately after Slf was produced. One of the key features of the profile is
that inside the colony, subtilisin concentration exceeds a critical threshold. However,
this does not trigger Slf production because the motile bacterial concentration
in this region is low. In line with the assumption that the exposure to subtilisin
increases bacterial reproduction, it was found that high subtilisin levels at the front
of a growing colony increase bacterial density. This, in turn, increases the colony
expansion rate, and the bacteria at the front move farther away from the point
of maximum subtilisin concentration. Subtilisin levels at the front subsequently
decrease. In contrast, at low subtilisin concentrations, the opposite occurs, namely,
decreases in bacterial reproduction and density and in colony expansion.

Combining the effects observed for high and low subtilisin concentrations, it
was found that the subtilisin levels for a single colony reach a steady state in
which the bacteria concentration is close to maximal, and therefore, the subtilisin
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Fig. 8.8 Numerical simulation of colony competition. (a) The positions of the edges of competing
colonies at 30, 50, 70, and 90 h. (b) Levels of motile bacteria (purple), subtilisin (blue), nutrients
(black), and Slf (red) measured along the horizontal dashed line in A, 50 h after inoculation. The
gray rectangle represents the initial inoculation droplet. For each panel, the model parameters and
the initial conditions were the same; the initial distance between the colonies was 1.2 cm and the
diameter of the dish was 8.8 cm, as in the experiments. (c) Subtilisin levels (in arbitrary units) at
the moving edge of a colony as a function of time, both for a single colony (green dots) and for the
inhibited interface in the case of two colonies (blue line). After 40 h, a competing colony senses its
neighbor, and after 50 h the subtilisin level crosses a prefixed threshold (horizontal dashed black
line). The red curve shows the level of Slf for the inhibited colony; no Slf is secreted in the single
colony case. The black line shows the position of the edge of a colony growing toward a neighbor.
The colony’s edge starts to move after a lag time of 20 h, and then begins slowing down just before
Slf is secreted. Image was taken from [2] with minor modifications

concentration at the front of the colony is regulated. This finding also accounts for
the constant expansion rate of the colony. Likewise, an external source of subtilisin,
such as a neighboring colony, can disrupt this regulatory mechanism (Fig. 8.8c).
Simulations show that the disruption can happen via two routes: (1) added subtilisin
from the neighboring colony and (2) nutrient depletion in the inhibited region
between colonies, which increases the sporulation rate. The additional prespores,
in turn, promote further increases in the subtilisin level. Another effect of nutrient
depletion is the deceleration of colony expansion at its growth front. As explained
previously, the bacteria at the front approach the area of maximum subtilisin
concentration, and as a result, they reproduce faster than the colony can expand.

Bacterial stress under such conditions cannot be resolved through sporulation,
as (1) sporulation requires additional nutrients, which may not be present, and
(2) sporulating bacteria are assumed to secrete high levels of subtilisin, which would
reduce the probability of colony survival. To ensure colony survival, therefore, it is
suggested that the bacterial colony quickly reduce its population level. Indeed, the
model predicts that the secretion of Slf will rapid lower the bacterial population, a
finding that is consistent with laboratory observations.
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8.4 Colonies of Closely Related Strains

The observations described so far summarize the results for the branching (T)
morphotype of P. dendritiformis. Although its other morphotype, the chiral (C)
morphotype [20, 21] has the same 16S rRNA ribosome, it differs in terms of
several physical properties such as cell length, colony structure, and mode of
migration [30]. We therefore decided to examine and compare the interactions
between two P. dendritiformis sibling colonies of the C morphotype and between
one each of the T and C morphotypes. In all cases the two colonies were inoculated
simultaneously on the same plates. Compared with our results for the analyses
of the interaction between two T morphotypes, our observations of interactions
involving C morphotype (C–C or T–C) colonies indicated greater complexity, a
finding rooted in the nature of the chiral morphotype and also due to the fact that we
investigated the behavior of two distinct sub types of C (CC and C�). Compared
to the C� genome, that of CC includes several additional segments. Bioinformatics
analyses indicate that the extra segments are associated with a viral origin. Likewise,
the T morphotype has TC and T� sub types that correspond roughly to the C/�
sub types of the C morphotype, and that undergo morphotype transitions to CC
and C�, respectively. Indeed, the sub types of the two morphotypes share many
characteristics, but it is easier to induce morphotype transitions between the T� and
C� sub types. Observations of colony–colony interactions described thus far (here,
and in [1–3]) were of the T� sub type, but we are also working on interaction
between TC sub type sibling colonies (some preliminary work has already been
done [27]).

Competition between two C� sub type colonies (Fig. 8.9a) showed results
similar to those observed for the competition between two T� sub type colonies as
well as between T� and C� sub type colonies. Also, Slf extracted from competing
T� sub type [1] colonies lysed cells of a single growing C� sub type colony (see
Fig. 8.5 in [2]). These competition results were, to an extent, expected because of
the biological similarity between the two morphotypes (the genomes of the T� and
C� morphotypes are very close).

CC sub types, however, behaved differently. On the one hand, two CC sub type
colonies grown in the same Petri dish merged (Fig. 8.9b), suggesting that CC/CC
competition does not occur either because the CC morphotype does not produce
enough subtilisin to trigger the secretion of Slf or because it somehow blocks the
regulation circuit. On the other hand, experiments in which CC sub type colonies
were grown near colonies of the T� sub type (Fig. 8.9c) or near C� sub type
colonies did show the deadly competition observed in the previous tests of the T
morphotype.

These results demonstrate that the regulatory process behind the competition
behavior of P. dendritiformis is highly intricate, mainly due to the extra segments
of viral origin present in the genome of the CC morphotype. Therefore, P. dendriti-
formis should be researched further for its potential to provide important clues about
the role of virus-mediated horizontal gene transfer between bacteria.
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Fig. 8.9 Interaction between neighboring P. dendritiformis colonies growing on a 1.0 % agar with
2 g/L peptone. (a) Two C� colonies. A gap between the colonies is formed. (b) Two CC colonies.
No gap is formed. (c) Two colonies, one CC and the other T, showing the gap that formed between
them

Fig. 8.10 A schematic diagram showing the different subtilisin-regulation stages of P. dendriti-
formis. At normal rich growth conditions, the cells are rods. The density at the tip of a growing
colony is regulated by a negative feedback loop between the local concentration of subtilisin and
the colony’s expansion rate. Starvation or a close sibling colony disrupts this steady state, and as
a result, bacteria either engage in sporulation or in the production of Slf. The presence of Slf in
the growth medium quickly reduces the cell population and promotes the phenotypic transition of
the bacteria into a more resilient cocci phenotype. When conditions are again favorable, cocci can
switch back to the typical rod-shaped bacteria

8.5 Summary

The results indicate that P. dendritiformis has at least two mechanisms to deal with
changing environmental conditions and to enable its long-term survival (Fig. 8.10).
First, it has the ability to form spores that are highly resistant to harsh conditions.



8 Interplay Between Sibling Bacterial Colonies 161

The second mechanism is the formation of cocci—less resistant than spores but able
to replicate even in the presence of Slf—which confers on cells near the leading edge
of the colony the ability to continuously monitor the level of competition and the
environment and to respond appropriately when sufficient nutrients are available for
colony expansion. The shift between rods and cocci performed by P. dendritiformis
requires the specific secreted bacterial signals Slf and Ris, which induce the relevant
transition (rods to cocci or cocci to rods) in response to environmental cues. Thus,
the population can be maintained as either rods or cocci under the appropriate
conditions. For example, a culture consisting of all rods should contain high levels of
Ris as the factor maintaining the population in the rod state. Under normal growth
conditions, no Slf would be secreted and no transition to cocci would occur. In
the event of sudden overcrowding, as in the case of encroaching colonies, Slf is
produced, killing most of the rods at the leading edge. This killing of rods is essential
to eliminate Ris production and enable the transition to cocci in response to low
levels of Slf, a scenario that is apparent at the edges of the colonies on solid media,
where cocci are found in areas that also contain dead rods (Fig. 8.7).

The ability to replicate and maintain the coccoid form in an inducible manner
distinguishes this phenotype switching from other phenotypic changes—such as
persistence cells, sporulation (which leads to a dormant state), or formation of
cocci in stationary phase—as it allows P. dendritiformis to adapt to changing
environmental conditions. Although this form of phenotypic switching has not
been described previously, genes of unknown functions with homology to the
P. dendritiformis Slf encoding gene are widespread in bacteria and yeast. Therefore,
the lethal response to competition and associated phenotypic switching that have
been observed in P. dendritiformis may be a common but previously unrecognized
mechanism for regulation of population growth in nature.
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Chapter 9
Mathematical Insights into the Role of Feedback
in Quorum-Sensing Architectures

Sara Jabbari and John R. King

9.1 Introduction

Cell-to-cell communication is now known to be a common phenomenon in the
bacterial kingdom. Whether this signalling mechanism serves to unify the response
of a population (from where the term quorum sensing first emerged), to detect
the population density in the bacteria’s immediate environment (diffusion sens-
ing [1]), to combine the two (efficiency sensing [2]) or even to detect (and inhibit
or promote) the presence of competitive or complementary species (cross-species
or cross-kingdom signalling [3]), it is clear that it plays a crucial role in the lives of
these organisms. Understanding these processes, therefore, is a key challenge in the
quest to unravel bacterial behaviour and exploit or modify it for our own benefit. The
applications for such understanding are far-reaching and include the development of
novel compounds that suppress bacterial pathogenicity, forced production of useful
chemicals and mimicry of existing (or creation of new) gene regulation networks in
the emergent field of synthetic biology.

Though the range of known quorum-sensing systems is ever-expanding, they
fall largely into two categories: homologues of the luxIR system in Gram-negative
bacteria and Gram-positive homologues of the agr system.

The luxIR system is well documented, having been the first quorum-sensing
system to be discovered [4]: it was shown to regulate bioluminescence by the
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a b

Fig. 9.1 The luxIR quorum sensing circuit is depicted in (a), with its reduced version in (b): in
the latter, LuxI and AHL together correspond to the signal while LuxR serves as the regulator. We
use (b) to build our generic (minimal) model of Gram-negative quorum sensing in Sect. 9.3.2.1.
Dashed lines illustrate processes which do not necessarily occur in all luxIR-type systems. Note
that auto-repression of the signal synthase LuxI occurs via an intermediary protein (RsaL) that we
neglect from the model. The shaded grey rectangle represents the cell membrane

marine bacterium Vibrio fischeri in accordance with population size—at low cell
density, light emission serves little purpose while at high cell density the bacteria
are capable of producing enough light to be of use to the squid on which they
live symbiotically. It is generally thought that the light, resembling moonlight on
the water’s surface, camouflages the squid, thus hiding it from potential predators.
The process works through the production of a signal molecule from the luxI
gene, see Fig. 9.1. For Gram-negative bacteria these are, more often than not,
N-acyl homoserine lactones (AHLs). The AHL can diffuse in and out of the cell,
through the cell wall, thus facilitating a means by which these signal molecules can
transfer (and therefore communicate) between cells of the same species. Internal
AHL activates the receptor protein, LuxR, through binding (in many cases this
requires oligomerisation of the receptor protein and this will be discussed further in
later sections). In addition to the target genes of the quorum-sensing system which
require activation or inactivation in response to population size, activated LuxR can
increase transcription of the luxI gene (resulting in more signal) and, in some cases,
of its own luxR gene. In short, therefore, the larger the population of bacteria, the
more signal molecule there will be and, in theory at least, the faster this process
will occur. Equivalently, the cells might achieve quorum-sensing upregulation as a
result of entering a particularly confined environment where signal molecules will
accumulate much faster due to the lack of diffusion away from the cells.

In Gram-positive bacteria the general concept is much the same, except the
difference in cell wall requires an alternative mechanism for signal secretion and
detection. In this case, the quorum-sensing signal is most often a cyclic peptide,
produced and secreted from the cell via the combined action of two proteins: AgrB
(the exporter protein) and AgrD (the signal itself, converted into a peptide upon
secretion), see Fig. 9.2. The externalised peptide, termed the autoinducing peptide
(AIP), is detected by a receptor protein, AgrC, on the cell membrane. Binding of AIP
to AgrC triggers a phosphorylation cascade between itself and the internal response
regulator, AgrA. In its thus activated form, AgrA acts on transcription of its target
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a b

Fig. 9.2 A schematic representation of the agr quorum-sensing system. In (a) we illustrate the full
network. Dashed lines illustrate processes which do not necessarily occur in all agr-type systems.
The reduced network used for model building in Sect. 9.3.1.1 is given in (b), wherein the signal
captures AgrB, AgrD and AIP and the regulator AgrA and AgrC. The shaded grey rectangle
represents the cell membrane. We note that the abstract (minimal) version of the network, shown
in (b), is a subcase of that in Fig. 9.1b, the negative feedback loop of which is missing

genes and on the agr genes themselves (in the case of Staphylococcus aureus, in
which this system was first identified [5], this applies to all four of the agr genes; in
other bacteria it can be fewer).

Homologues of these two systems form the majority of quorum-sensing mech-
anisms that have been discovered to this point (this widespread occurrence of the
same network topologies itself being noteworthy), many of these interacting with
additional gene regulation networks, including other quorum-sensing systems (as
we shall note later, some bacteria are known to contain multiple quorum-sensing
circuits). A small number of more complicated systems have also been uncovered,
for instance in V. harveyi and V. cholerae. These will be discussed in more detail
later in the chapter.

The target genes of the above quorum-sensing systems are widely varying in
nature, as are their reasons for being regulated in a density-dependent manner. Com-
mon examples include pathogenicity, sporulation, bioluminescence and swarming
motility [6,7]. What appears to be both common and central to all known systems is
feedback in the governing gene-regulation-network architecture. Perhaps somewhat
surprising, however, is the variety of feedback architectures employed, including a
role for both negative and positive feedback in different systems.

Mathematical modelling is an obvious route by which to study and investigate
these networks at a systems level, their complexity rendering their representation
in a computational manner particularly useful. We next provide an overview of
mathematical models of quorum sensing which have a focus on the role of feedback
in each network, categorising the discussion into the hypothesised roles (rather
than into the usual comparison of Gram-positive and Gram-negative systems). We
complement this with some simple (but in some sense generic) examples of such
models, based on the quorum-sensing architectures outlined in the biology review
of [8] and being of a form suggested in Figs. 9.1b and 9.2b.
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9.2 The Role of Feedback in Quorum Sensing

Since feedback plays such a central role in so many different gene regulation
networks, we seek here to summarise the findings of a range of mathematical investi-
gations into its function in relation to quorum sensing. The ever-expanding literature
on this subject is already vast and we cannot hope to provide a comprehensive
review. Instead, we have chosen a number of mathematical studies ranging across
types of bacteria (both Gram-negative and Gram-positive—though Gram-negative
models are far more prevalent in the literature—and both pathogenic and non-
pathogenic) and quorum-sensing systems (luxIR and agr homologues, including a
hybrid of these systems used by two particular Gram-negative bacteria). We divide
the discussion into hypothesised roles for feedback, a surprising number of which
overlap for both positive and negative loops.

9.2.1 Defining Response Shape

Generic models of feedback in gene regulation networks have often been used to
demonstrate how different feedback architectures can give rise to varying classes of
response. For instance in [9], a model of interacting gene regulation and metabolic
networks, it is demonstrated that rewiring the feedback can alter a system response
(typically in terms of the expression level of a particular gene to the level of a
signal) from monotonically increasing or decreasing, to bi- (or multi-) stable-steady
behaviour through to oscillations, illustrating the potential for the exploitation of
gene regulation networks in synthetic biology. From a similar viewpoint, [10]
provides a review of a number of papers (both theoretical and experimental) showing
that feedback in combination with nonlinearities in the system (for example,
co-operative binding of two proteins in the network or, similarly, dimerisation of
one type of protein) can enforce multistability in a system. The authors argue that
the ability to attain a given number of distinct stable steady states should allow a
population to divide into this number of subpopulations, each with their own niche in
a particular environment. Given that quorum sensing is generally assumed to enforce
unified behaviour amongst one population of cells, this may seem counter-intuitive
in the current context. However, we shall see in Sect. 9.2.2 that the simultaneous
existence of phenotypically different subpopulations could indeed have relevance to
quorum sensing.

In the most common cases, however, the goal of quorum sensing can be classified
more straightforwardly, namely to transition a population of cells between two
states, for example to switch on or off virulence-factor production (S. aureus) or
bioluminescence (V. fischeri). The ability of a quorum-sensing system to exhibit
bistability, therefore, could be extremely important and has been demonstrated in a
large number of cases (at least theoretically) to take place in both Gram-negative



9 Feedback in Quorum Sensing 167

population size

c

sy
st

em
 r

es
po

ns
e

population size

b

sy
st

em
 r

es
po

ns
e

population size

a
sy

st
em

 r
es

po
ns

e

Fig. 9.3 A schematic illustrating the range of transition types discussed in Sect. 9.2.1. In (a) the
system displays a bistable switch between responses (solid lines are stable, dotted lines unstable)
and hysteresis, in (b) a monostable softer switch and in (c) a gradual transition between inactive
and active (both (b) and (c) lacking hysteresis)

(for example, [11] and [12] concerning Pseudomonas aeruginosa) and Gram-
positive ([13] and [14] on S. aureus) systems, but instances are more numerous
than those listed here.

In general, low population numbers or density yield a quorum-sensing down-
regulated steady state, with high numbers giving up-regulated responses. At inter-
mediate levels three steady states may then exist: one stable and down-regulated, one
stable and up-regulated, separated by one intermediary unstable state, see Fig. 9.3a.
This facilitates a sharp and robust transition between the two states, alongside
hysteresis when going in the opposite direction. Distinct critical population sizes
switch the system from down- to up-regulated and vice versa. We shall see that this
bistability has been shown to be caused directly by the presence of positive feedback
onto the receptor protein (i.e., LuxR or its homologues) in Gram-negative systems,
something that is not certain to occur in all bacteria possessing luxIR homologues.

In [11, 15] and [16], the existence of this particular feedback loop is considered
explicitly. Haseltine and Arnold [16] compares three different versions of the
quorum-sensing system in V. fischeri: one contains positive feedback onto both
LuxR and LuxI, one onto LuxI alone and one with no feedback at all. It is
demonstrated that the transition between the two states becomes sharper and
stronger with the addition of each feedback loop: with both, bistability occurs
(as in Fig. 9.3a), with only LuxI feedback a rapid but monostable switch is seen
(Fig. 9.3b), while with no feedback at all the response is graded (Fig. 9.3c).
Feedback onto LuxR alone is not considered as it is not thought biologically
realistic. Through synthetic generation of each of these operons, the authors were
able to verify these results experimentally and predict that their particular strain of
V. fischeri is likely to contain feedback onto LuxI but little or none onto LuxR.

This lack of bistability is consistent with the model of [17] which, rather than
representing each gene in the network, considers only the signal and subpopulations
of down- and up-regulated P. aeruginosa cells, thus rendering the model more
amenable to parametrisation from their experimental data. Any positive feedback
therefore is included only implicitly and the model predicts a graded though fairly
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sharp response from the system to increasing signal. It is possible that the implicit
nature of the feedback in the model may be responsible for causing an intermediate
response, i.e. most similar to Fig. 9.3b (representative of feedback only onto the
signal in [16]).

Both [11] and [15] consider the lasIR quorum-sensing system of P. aeruginosa
with and without feedback onto LasR. In this bacterium, quorum sensing plays a
large role in the regulation of virulence and has accordingly been identified as a
potential target for novel therapeutics. Due to the uncertainty of the presence of the
LasR feedback loop, in these studies the effect of anti-quorum-sensing drugs on a
circuit both with and without this loop is considered. The fact that LasR positive
feedback induces bistability (as in [16]) has a knock-on effect on drug efficacy: the
graded upregulation arising with no LasR feedback is best treated with a low steady
dose of anti-LasR drug; conversely, the bistable switch implies one much larger dose
of LasR is appropriate for successful downregulation of the quorum-sensing system.

The regulation of quorum-sensing systems by proteins that are not part of the
quorum-sensing network itself is not uncommon: given that the purpose of the
former is to translate a signal through a single cell or a population of cells, it is
not surprising that its gene regulation network would be capable of interacting with
other subcellular signalling networks. In some cases, bacteria even possess multiple
interacting quorum-sensing networks. References [18] and [19] model the combined
action of two quorum-sensing systems in P. aeruginosa and V. fischeri, respectively,
the latter model having up to 21 steady states. Though not all of theses states will be
both stable and biologically attainable, it is a fair assumption that the interaction of
multiple feedback loops can cause a significant rise in the number of possible states
the system can hold, in agreement with [10]. As implied above, we shall consider
this further in Sect. 9.2.2.

In all of the above cases, mathematical bi- or multi-stability is caused by the
presence of positive feedback loops, ensuring the cells’ response is particularly
strong. Interestingly, in [20] it is a negative feedback loop which forces the quorum-
sensing system of Agrobacterium tumefaciens out of always (monotonically)
attaining an up-regulated state and into a bistable system. The negative feedback
occurs indirectly (via the TraM protein) on the receptor (TraR), in addition to the
standard positive feedback on both TraR and the signal molecule. In the presence
of the two positive loops, activation is too strong to prevent upregulation without
self-regulated inhibition of the receptor protein.

The results of [16] and [20], therefore, contrast: in the second, two positive
feedback loops give bistability, while in the first the result is monostability. Of
course, the two theoretical studies consider different bacteria (V. fischeri and
A. tumefaciens), meaning different mechanisms and parameters are used, but
nevertheless it is clear that the role of feedback in defining the type of switch is
not as clear-cut as one might expect. Indeed, bistability has been demonstrated in
the model of the agr system of S. aureus even when feedback in the system is not
considered [13]. Moreover, in a model of a generic Gram-negative system in [21],
it is demonstrated that a nonlinear interaction in the network (here, dimerisation of
LuxR being required for it to bind the signal) is sufficient to achieve bistability in
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the network (though see Sect. 9.2.3 for further detail on this result). Thus, while
feedback need not be the sole factor in determining the shape of the response-
transition curve, it can evidently play a large part. Given the extra roles outlined
below, perhaps it is the multi-tasking ability of feedback that has resulted in it being
so prominent in quorum-sensing systems, with cells not relying on mechanisms like
oligomerisation alone.

9.2.2 Tuning of Signal and Response Levels

We have discussed above how the presence of feedback loops can result in mixed
subpopulations with varying phenotypes [10]. Such differences in phenotype might
typically be explained by a difference in levels of the response regulator of a
gene regulation network (in agr-homologues this is AgrA; in luxIR-homologues
the response regulator is also the receptor protein, LuxR). In a model in [22]
of the involvement of an agr-type quorum-sensing system in sporulation and
solventogenesis by Clostridium acetobutylicum, it was shown that the absence of
positive feedback into the receptor and response regulator enables a cell to tune
its response more finely via response-regulator levels. Through comparisons with
a model of the agr system in S. aureus [14] (where positive feedback occurs onto
all elements of the agr system that controls virulence), it was clear that the reduced
number of feedback loops could lower the quorum-sensing response. This ties in
nicely with the purpose of quorum sensing in each of these organisms: sporulation
is a survival mechanism (required in an acidic environment that is likely to occur
when the population is dense) that is not needed by every cell in the population,
whereas S. aureus gains no benefit by only a portion of the population becoming
virulent. A population of sporulating cells can actually benefit from reserving
a subpopulation in a vegetative state in case environmental conditions suddenly
become more favourable to cell growth—the reversal of sporulation being both time
and energy consuming.

In [22] a number of mechanisms of interaction between a quorum-sensing
system and a sporulation-initiation gene regulation network were considered (either
by direct phosphorylation of the response regulator of the latter, Spo0A, or via
interference of the transcription of various different elements in the network). The
ability of the network to tune response levels in the absence of feedback into
agrA and agrC was seen only in the case of direct phosphorylation. For all other
network topologies, the response was equivalent with or without these particular
feedbacks, hence it was postulated that the feedback might be absent simply to
prevent unnecessary overproduction of relevant elements in the network, thus saving
the cells’ energy.

Similarly, [23] discusses a range of ways of inhibiting quorum sensing (back-
ground inhibition of signal production, negative feedback onto the signal and
the soaking up of signal molecules through competitive binding to some other
constitutively produced molecule) in a generic model of quorum sensing in Gram-
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negative bacteria (this work is an extension of [17], with the addition of repression
producing a better model fit to their experimental data), finding that the second
and third of these can result in a decreased proportion of up-regulated cells in the
overall population. Furthermore, it is shown that this can prevent over-production of
the signal molecule.

The level of signal molecule is a key focus of a number of studies of quorum
sensing and it is often found that when the system does display bistability,
moving between states unsurprisingly depends on the quantity of signal molecule.
In [18], the first model to tackle two quorum-sensing systems in P. aeruginosa
simultaneously, it is shown that the critical signal level required to induce this switch
is dependent on the amount of RsaL protein, the protein responsible for mediating
negative feedback on the LasI signal precursor: the more RsaL present, the more
signal is required to induce the transition to a quorum-sensing up-regulated state.
Thus feedback can be responsible for tuning both the level of response to quorum
sensing within a population of cells and the quantities of signal molecule that are
produced.

9.2.3 Noise Filtering

In modelling gene regulation networks, it is not uncommon to neglect certain aspects
of the network to reduce its complexity and reduce the number of parameters that
require estimating. In a number of quorum-sensing models this has been done by
ignoring the feedback within the system. For example, [24] reduces the somewhat
complicated quorum-sensing network of V. harveyi (which will be discussed further
in Sect. 9.3.3) by omitting the multiple feedback loops involved. Despite the
consequent lack of biological detail, the model fits luminescence data remarkably
well, suggesting that perhaps the feedback is present to filter out noise and constrain
the protein levels to those predicted by the model to give the observed experimental
output.

In [20], the study of quorum sensing in A. tumefaciens mentioned in Sect. 9.2.1,
it is postulated that the role of negative feedback in moving the system from being
monostable (and always achieving upregulation) to bistable is manifested in the
negative feedback dampening molecular noise in the system. Random fluctuations
in receptor/regulator levels would otherwise disguise the system response, trans-
forming the bistability into a smoother transition between states.

Interestingly, both negative and positive feedback loops appear capable of
diluting the effects of noise. While we remarked that dimerisation was sufficient
to induce bistability in a deterministic model of Gram-negative quorum sensing
in [21], the authors also showed that bistability could be replaced with a graded
response through the addition of noise, the same applying to positive feedback on
LuxR without dimerisation. In combination, however, the system was shown to be
able to produce bistability that was resistant to molecular noise.
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The authors of [25] investigated alternative ways of dampening out noise.
They hypothesised that the interaction of the lux and ain systems in V. fischeri
(via the ain signal competitively binding LuxR but not activating it) could be
responsible for controlling single cell variability (they had previously shown
experimentally that the luxIR system alone could only maintain a stable response
when averaged over the population [26]). However, even with ain in the model,
a degree of variability between single cells remains. Hence it was concluded that
the ain system may instead be involved in suppressing LuxR levels for as long
as possible during growth and colonisation and is perhaps more likely to have a
role in timing of the quorum-sensing response. Thus genetic feedback, rather than
interacting systems, could be a simpler and more effective means to reduce noise
within a quorum-sensing system.

9.2.4 Timing

Given that positive or negative feedback can adjust the levels of signal molecule in a
system, it is natural to assume that feedback can have a role in the timing of the onset
of quorum-sensing upregulation. Indeed, incorporating additional feedback into the
receptor and response regulator of the quorum sensing system of C. acetobutylicum
brings forward the onset of solventogenesis in [22]. However, surprisingly few
mathematical models discuss the possible role for feedback in timing. While in
some cases this is likely to be implicit (if feedback can, for instance, adjust the
critical signal level at which a switch occurs, this ought to have a causal effect on
timing of the switch in a given instance), in [23] it is actually found that, of the
three types of repression investigated in the model (background inhibition, negative
feedback and soaking up of signal molecule), negative feedback is the only one
which does not noticeably affect timing of the quorum-sensing response.

9.3 Investigating Feedback with Mathematical Models

In order to illustrate how the role of feedback can be investigated with the aid of
mathematical modelling, we now construct generic models of Gram-positive and
Gram-negative circuits. These are much simplified (indeed, as simple as possible)
and seek to capture, most importantly, the nature of the various feedback loops
postulated; we omit details specific to individual networks as these will require
more extensive work (as well as parameterisation), each being worthy of their own
investigations. In the interests of being as comprehensive as possible within such a
framework, we also consider the atypical quorum-sensing networks that have been
proposed for V. harveyi and V. cholerae: these can be considered to be a hybrid of
the generic Gram-positive and Gram-negative networks—more will be discussed
on this in Sect. 9.3.3. Our approach builds on the quorum-sensing review of [8]
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whereby we aim to mirror the biology-based characterisation of different quorum-
sensing architectures therein with our own modelling results.

In each case we build a nonlinear ordinary differential equation model where
variables represent the key components of the system and the kinetic terms
describe in a simple way the interactions between these components (in reality
these interactions may be indirect and governed in part by variables not considered
here for brevity). We subsequently demonstrate how the role of feedback can be
investigated by knocking out each loop from the models (either by setting a relevant
parameter to zero or by altering a particular term) and comparing the resulting time-
dependent solutions and steady-state curves to the wild-type model. This process is
relatively straightforward and has been used in many of the more detailed studies
discussed in Sect. 9.2; moreover, it illustrates the benefits of adopting a simple
modelling approach.

We restrict our study within this chapter to deterministic models and therefore
do not investigate the role of feedback in a noisy system explicitly. We do consider
the three remaining hypothesised roles for feedback: defining transition type, tuning
of key molecules and timing of the quorum-sensing response (though we shall see
that, even in the absence of noise in the system, we can also gain some insight into
the role of feedback in filtering noise).

9.3.1 Gram-Positive Quorum Sensing: The agr System

We begin with the less well-studied quorum-sensing system: agr homologues.
As mentioned previously, this circuitry was first discovered in the pathogenic
bacterium S. aureus (where it regulates virulence factor production) and has since
been discovered in a variety of other Gram-positive bacteria: in C. difficile [27],
C. botulinum [28, 29], Enterococcus faecalis [30] and S. epidermidis [31], agr-like
systems also have a role to play in pathogenesis, while in non-pathogenic bacteria
an agr system controls sporulation in C. acetobutylicum [32] and adherence in
Lactobacillus plantarum [33].

As alluded to earlier, the majority of these species appear to adopt the feedback
architecture of S. aureus, but some (notably C. acetobutylicum) have reduced levels
of feedback. The reasons for this were investigated in [22] and as such we do not go
into detail here. Instead we consider a simplified model and link the results to the
putative roles for feedback discussed in Sect. 9.2.

9.3.1.1 Model Formulation

The general agr system is depicted in Fig. 9.2a and a simplified version in Fig. 9.2b;
it is from Fig. 9.2b that we derive our model.

We assume the signal, s, and regulator, r , are each produced constitutively, at
rates cs and cr , respectively. Regulator is activated irreversibly in response to the
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Table 9.1 Descriptions of the variables and parameters used in the models for
the agr and luxIR systems

Variable Description

s Signal

r Regulator

r� Active regulator

Parameter Rate of Value

cs Basal signal production 0–1000

cr Basal regulator production 1

ch
s Increased signal production 10

ch
r Increased regulator production 10

˛ Regulator activation 1

ı Degradation 1

ˇ, ˇ1 Ratio of regulator separation to binding on the operon 10

ˇ2 Ratio of regulator separation to binding on the operon 10

presence of signal at rate ˛. Rates of production of signal (ch
s ) and regulator (ch

r )
above the basal levels are induced by activated regulator, r	. The ratio of separation
to binding of the active regulator to the relevant operons is given by ˇ; for simplicity
we assume that this ratio is the same for both the signal and regulator (this is valid
in S. aureus, where all the agr genes are contained within one operon, but may vary
for species where this is not the case). Similarly, all molecules degrade at some rate
ı (in reality this rate will vary between molecules).

The resulting (minimal) equations are

ds

dt
D cs C ch

s r	

r	 C ˇ
� ˛sr � ıs; (9.1)

dr

dt
D cr C ch

r r	

r	 C ˇ
� ˛sr � ır; (9.2)

dr	

dt
D ˛sr � ır	: (9.3)

Notice that the roles for s and r in this minimal model are symmetric when feedback
is present onto both. To investigate how a cell may move from quorum-sensing
down-regulated to up-regulated we use

s.0/ D r.0/ D r	.0/ D 0 (9.4)

for the initial conditions.
For clarity, variable and parameter descriptions (including the default values for

the latter) are given in Table 9.1. Note that we are using a specific parameter set
merely to illustrate the type of behaviour that the above system can display (so
that we do not even specify units). While biologically realistic parameter values are
of course desirable in more detailed models, they vary between bacteria (and even
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between strains of the same species); we seek here instead to examine qualitative
behaviour of the quorum-sensing networks.

9.3.1.2 Numerical Investigations

The system (9.1)–(9.4) can easily be solved numerically; we do so using the
ode23 Runge–Kutta solver in Matlab R2013a. We also derive steady-state curves
in XPPAUT Version 7.0. The simplified agr system modelled here contains two
positive feedback loops (one onto the signal and one onto the regulator) and no
negative feedback. The loops can be deleted from the model simply by setting
ch

s D 0 and/or ch
r D 0.

We investigate the effect that these deletions have on the quorum-sensing
behaviour by solving the system in response to various levels of signal: we can
consider (9.1)–(9.4) to be representative of the quorum-sensing machinery in a
single cell, hence varying cs can be seen to be equivalent to varying the amount
of signal molecule (produced also by neighbouring cells) in the environment
(or equivalently to increasing population size or density). Steady-state curves in
response to varying cs are displayed in Fig. 9.4 and time-dependent solutions in
Fig. 9.5.

In the wild-type model we see that the system is bistable, though much of the
solution for one of the stable states lies in a biologically infeasible regime (variables
should not be negative and we therefore do not plot these; we do, however, display
cs < 0 for visualisation of at least one of the bifurcation points). The inactive state
arising when cs D 0 is unstable and all positive values of cs inevitably result in
a quorum-sensing response being activated. We see from the results of removing
either or both feedback loops that this is a combined effect of both loops.

Removing feedback into signal production (ch
s D 0) alters the transition shape

from a sharp jump (into a quorum-sensing up-regulated state) to a gradual transition
as cs increases (relating to Sect. 9.2.1). Removing feedback into the regulator (ch

r )
greatly lowers the overall response of the system (but retains the jump in activity) by
lowering the amount of regulator which can be activated (see Sect. 9.2.2). We saw
in [22] that altering the basal rate of regulator production has been found to modify
(fine-tune) the response level appropriately, in agreement with results here.

Finally, if no feedback at all exists in the agr circuitry (ch
s D ch

r D 0), then the
system, with increasing cs , moves gradually to an active state but where the response
is much lower. These results are reflected in the time-dependent solutions of Fig. 9.5
where we notice also that the time it takes for the quorum-sensing system to respond
to signal is not noticeably affected by removal of either of the feedback loops.

9.3.1.3 Analytical Investigations

In addition to numerical solutions, we can also investigate the systems analytically
for more insight into the system in general, though here is not the place to undertake
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Fig. 9.4 Steady-state curves of the simplified agr circuitry (9.1)–(9.3) in response to changes in
signal influx, cs . Stable states are given with solid lines and unstable with dotted. The x-axis in
each case is cs . Column (a) represents the wild-type system, (b) when there is no feedback into
signal production, (c) when there is no feedback into regulator production, and finally (d) when
there is no feedback at all. The first, second and third rows represent active regulator, signal and
inactive regulator levels respectively

extensive such investigations (those very limited ones that we do outline are in
keeping with our goal of exploring models of minimal complexity). Here, we
examine the case where the rate of activation is large. As ˛ !1, two cases arise:

Case 1. s ! 0 (signal levels become negligible)
Case 2. r ! 0 (regulator levels become negligible)

Due to the symmetry in (9.1) and (9.2) noted above, we consider only Case 1. In
this limit the equations become

˛sr � cs C ch
s r	

r	 C ˇ
; (9.5)

dr

dt
� cr � cs C .ch

r � ch
s /

r	

r	 C ˇ
� ır; (9.6)

dr	

dt
� cs C ch

s r	

r	 C ˇ
� ır	: (9.7)
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Fig. 9.5 Time-dependent solutions for the agr system (9.1)–(9.4) with (a) wild-type circuitry, (b)
no positive feedback into signal production, (c) no positive feedback into regulator production
and (d) no feedback at all. Population size is represented indirectly via the basal rate of signal
production, cs

Note that (9.7) and (9.6) can then be solved sequentially. For Case 1 to apply we
require cr � cs > 0 to ensure the variables remain positive (else Case 2 arises).

In the limit as ˛ ! 1, therefore, r	 (activated regulator) increases monotoni-
cally to its equilibrium state.

Case 1a. (ch
r � ch

s > 0), here the production rate of r will increase with r	 (as a
natural result of the positive feedback loop).

Case 1b. (�.cr � cs/ < ch
r � ch

s < 0) (the first inequality is needed for Case 1).
This is unlikely since ch

r ; ch
s >> cr ; cs but if ch

r � ch
s we could have the counter

intuitive behaviour that the increase in r	 leads to a decreasing production rate
(and steady state value) of r .

9.3.2 Gram-Negative Quorum Sensing: The luxIR System

The luxIR system is the best characterised system and there is an abundance of
literature available on the subject. In Sect. 9.2 we have already drawn attention to a
number of examples of this system in a variety of bacteria and we do not echo this
information here. Instead we move directly to model formulation.

9.3.2.1 Model Formulation

Figure 9.1a,b, respectively, illustrate the luxIR system and the schematic (abstract)
version required for our model building in this study. Notice that when the systems
are simplified, the only difference between the Gram-positive agr architecture and
the luxIR one of Gram-negative species is the presence of negative feedback onto
the signal in the latter. In both systems, positive feedback onto the regulator may
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or may not occur depending upon the species (and strain) of interest. Note that
in the interests of space, we do not consider the negative feedback onto regulator
production as seen in A. tumefaciens since this seems not to be widely prevalent.

The model is built in the same manner as that in Sect. 9.3.1.1, but we now require
the increased signal production to be both activated and inhibited by the presence of
active regulator. The model becomes

ds

dt
D cs C ch

s ˇ2r	

.r	 C ˇ1/.r	 C ˇ2/
� ˛sr � ıs; (9.8)

dr

dt
D cr C ch

r r	

r	 C ˇ1

� ˛sr � ır; (9.9)

dr	

dt
D ˛sr � ır	: (9.10)

To represent inhibition of signal production being weaker than activation (since the
former occurs usually indirectly via homologues of the RsaL protein) we take ˇ2 >

ˇ1 (parameters and variables for this model are also provided in Table 9.1). As
before, we use

s.0/ D r.0/ D r	.0/ D 0: (9.11)

9.3.2.2 Numerical Investigations

Given that when we consider only the minimal versions of the agr and luxIR
networks the only difference between the two is negative feedback onto signal
production, many of the results of Sect. 9.3.1 are also applicable here, see Figs. 9.6
and 9.7. Positive feedback onto signal production changes the shape of the system
response from gradient to switch-like and positive feedback onto the regulator
induces a much greater quorum-sensing response (that is more likely to coordinate
behaviour of a whole population of cells than would a lower level of active
regulator). Thus, the presence of the negative feedback loop does not appear to alter
the roles of the two positive loops and the similarities between this and the agr
architecture suggest that, despite the differences in mechanism between the two,
any overall distinction between the two may be fairly subtle (though, naturally, a
far more extensive parameter analysis than that provided here would be required to
make more definitive statements).

Removal of the negative feedback onto signal production in fact makes little
noticeable difference in our parameter regime. At lower values of cs active regulator
levels are higher in the absence of the loop while at higher values of cs there is little
to distinguish between the response, meaning that this negative feedback could be in
place to prevent the cells from becoming quorum-sensing active prematurely. Thus
the luxIR system may adopt this negative feedback loop to play a role in filtering
noise from the system.
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While we have to bear in mind that these results are parameter-dependent (and
we have not sought a realistic parameter set), we again see no particular position for
feedback in controlling the timing of the onset of a quorum-sensing response.

9.3.2.3 Analytical Investigations

We again consider the analytical effect on the system of taking ˛ ! 1, i.e. a fast
activation rate. Two cases emerge, as follows, that need separate description since
the model is no longer symmetric between s and r .

Case 1. s ! 0 (signal level becomes negligible). The model becomes:

˛sr � cs C ch
s ˇ2r	

.r	 C ˇ1/.r	 C ˇ2/
; (9.12)

dr

dt
� cr � cs C

�
ch

r � ch
s

ˇ2

r	 C ˇ2

�
r	

r	 C ˇ1

� ır; (9.13)

dr	

dt
� cs C ch

s ˇ2r	

.r	 C ˇ1/.r	 C ˇ2/
� ır	: (9.14)

Hence r	 again increases monotonically and, since for O.1/ coefficients in (9.14)
it never attains the regime in which the second term on the right-hand side of
(9.14) � ch

s ˇ2=r	, the behaviour is not qualitatively different from the previous
case. If r	 does become sufficiently large, the ch

s term becomes negligible (i.e.
feedback onto the signal becomes insignificant) and the response of r becomes
stronger in (9.13) relative to (9.6).

Case 2. r ! 0 (regulator levels becomes negligible). Here

˛sr � cr C ch
r r	

r	 C ˇ1

; (9.15)

ds

dt
� cs � cr C

�
ch

s ˇ2

r	 C ˇ2

� ch
r

�
r	

r	 C ˇ
� ıs; (9.16)

dr	

dt
� cr C ch

r r	

r	 C ˇ
� ır	: (9.17)

In this case, the term in brackets in (9.16) becomes negative if r	 becomes
sufficiently large, implying that signal production could effectively be switched
off, giving a pulsed response rather than a sustained one.
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9.3.3 The V. harveyi and V. fischeri Quorum-Sensing Systems

Though related to V. fischeri, the quorum-sensing systems of V. harveyi (a pathogen
of marine organisms) and V. cholerae (the etiological agent of cholera) are somewhat
different—[8] includes a review of these networks. These pathogens produce and
secrete a signal molecule in much the same way as the luxIR system, but this signal is
detected via a two-component system (akin to agr), i.e. the network is in some sense
a hybrid of the two described above. Binding of the signal molecule to the receptor
protein triggers a phosphorylation cascade between itself and the intracellular LuxO
protein (note that in these systems, LuxO is considered active when it is in a
dephosphorylated form, hence the bound receptor ultimately removes phosphates
from LuxO). Activation of LuxO releases the production of multiple Qrr sRNAs
that LuxO otherwise inhibits when inactive. Since Qrr sRNAs prevent production of
the response regulator (LuxR) of the systems (via degradation of luxR mRNA), this
releases production of LuxR, which is responsible for inducing a quorum-sensing
response. We depict this process in Fig. 9.8 (including the feedback loops not
addressed in the description above) but note that this is grossly simplified in several
respects: intermediary molecules have been neglected where they do not have a
direct role in feedback, in reality there are multiple types of Qrr sRNAs (which
have different combined effects between V. harveyi and V. cholerae) and multiple
signal–receptor pairs exist; see [8] for the full networks. For the purpose of this
chapter, however, (i.e. to examine the role of feedback) it is satisfactory (and indeed
desirable given the full system complexity) to ignore these components. In addition
we neglect the receptor complex, LuxPQ, and assume LuxO dephosphorylation
occurs in response to increased signal levels.

Fig. 9.8 A schematic representation of the simplified V. harveyi quorum-sensing network (due to
the additional components required in this minimal network compared to the agr or lux systems,
we do not illustrate a version in terms of only the “signal” and “regulator”). In reality, this system
contains multiple signal–receptor pairings, Qrr species and intermediary molecules that we have
neglected from the model. The full system (which we omit here in the interests of space due to
its complexity) can be found in [8]. We depict here the LuxPQ receptor component but we do not
include this in the modelling, assuming instead that phosphorylated LuxO levels relate directly to
signal level (as we did for the agr model). The homologue of LuxR in V. cholerae is HapR
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It is noteworthy that there is no positive feedback present in this network,
meaning that, given the results of Sects. 9.3.1 and 9.3.2, one might expect a more
graded response to increasing quorum-sensing signal (we shall see in Sect. 9.3.3.2
that this is indeed the case). On the other hand, there are four negative feedback
loops (see Fig. 9.8). Possible explanations behind each of these loops are discussed
in [8] and we shall revisit these here with our model.

9.3.3.1 Model Formulation

Very few models relevant to V. harveyi or V. cholerae quorum sensing exist in the
literature and those that do focus mostly on specific aspects of either upstream
elements (for example, [24]) or the action of the Qrr sRNAs (see [34] or [35]),
for the large part neglecting feedback. We instead seek to formulate the simplest
model that can account for all the feedback loops in this network.

Most terms in the equations are derived in the same manner as those for the
agr and luxIR systems. In addition, we require autophosphorylation of LuxO in
the absence of signal (at rate �), dephosphorylation (and therefore activation) of
LuxO�P in the presence of signal (we recall that we omit the intermediary receptor
proteins from the model) at rate ˛ and degradation of LuxO and LuxR by Qrr sRNAs
at rate �1 and �2, respectively (this also results in the degradation of Qrr sRNAs; note
that, since we do not consider mRNA explicitly, we treat Qrr as acting directly on
the relevant proteins). All variables and parameters are provided in Table 9.2. The
model is given by

ds

dt
D cs � ˛r	

1 s � ıs; (9.18)

dr1

dt
D cr1ˇ

r1 C r	
1 C ˇ

� �r1 C ˛r	
1 s � �1qr1 � ır1; (9.19)

dr	
1

dt
D �r1 � ˛r	

1 s � ır	
1 ; (9.20)

dq

dt
D cqr	

1 r2

.r	
1 C ˇ/.r2 C ˇ/

� �1qr1 � �2qr2 � ıq; (9.21)

dr2

dt
D cr2ˇ

r2 C ˇ
� �2qr2 � ır2: (9.22)

Similarly to the previous sections, we take

s.0/ D r1.0/ D r	
1 .0/ D q.0/ D r2.0/ D 0: (9.23)

Note that, in contrast to the previous two models, there will always be regulator
present in the model for t > 0 even when no signal is present.
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Table 9.2 Descriptions of the variables and parameters used in the model for
the quorum-sensing networks of V. harveyi and V. cholerae. As before, we use
the simplest parameter set possible, though we find that ı must be small for
any quorum-sensing response to be induced. Note that we have also made the
simplification that Qrr sRNAs can be treated as acting on LuxO and LuxR
proteins rather than the corresponding mRNAs

Variable Description

s LuxS (signal)

r1 LuxO

r�

1 LuxO�P

q Qrr

r2 LuxR (response regulator)

Parameter Rate of Value

cs Basal signal production 0–100

cr1 LuxO production 1

cr2 LuxR production 1

cq Qrr production 1

˛ Activation (dephosphorylation) of LuxO 1

� Auto-phosphorylation of LuxO 1

�1 Degradation of LuxO by Qrr 1

�2 Degradation of LuxR by Qrr 1

ı Degradation 0.1

ˇ Ratio of regulator separation to binding on the operon 1

9.3.3.2 Numerical Investigations

We divide this section into discussion of the four different negative feedback loops,
comparing our results with the postulated roles given in the microbiology review [8].

LuxO Autorepression

It is suggested in [8] that LuxO autorepresses in order to constrain its own levels
and consequently those of the Qrr sRNAs that are produced in response to active
LuxO levels. Removal of these loops in Fig. 9.9b does incur higher levels of LuxO
and LuxO�P, but does not significantly alter Qrr levels in our parameter regime
(though this may be due to the influence of the remaining negative feedback loops
operating). Removal of this loop has very little effect on final LuxR levels. Thus the
results are in agreement with [8], suggesting that this autorepression loop may be
responsible for avoiding undesirable effects of noise.
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Fig. 9.9 Steady-state curves of the simplified V. harveyi and V. cholerae circuitry (9.18)–(9.22) in
response to changes in signal influx, cs (the x-axis in each case is cs). All steady states depicted
here are stable. Column (a) represents the wild-type system, (b) when there is no negative feedback
into LuxO (the first term of (9.19) is replaced by cr1 ), (c) when there is no negative feedback into
LuxO via Qrr (�1 D 0), (d) when there is no negative feedback into LuxR via Qrr (the first term of
(9.21) is replaced by cqr�

1 =.r�

1 C ˇ/), and finally (e) no auto-repression by LuxR (the first term of
(9.22) is replaced by cr2 ). The rows represent LuxR, signal (LuxS), active LuxO, inactive LuxO�P
and Qrr, respectively

LuxO Negative Feedback via Qrr

This feedback loop can be viewed in two ways: either to constrain the levels of LuxO
or those of Qrr. We see in Fig. 9.9c that Qrr levels are increased slightly at low signal
concentrations on removing this feedback loop, while LuxO concentrations remain
largely the same. In agreement with [36], this does have a slight consequence on
LuxR by lowering its levels (see Figs. 9.9c and 9.10c). Thus this loop may both filter
out noise from Qrr levels and coordinate a greater “whole population” response at
low signal levels.
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Fig. 9.10 Time-dependent solutions for the V. harveyi and V. cholerae quorum-sensing systems
(9.18)–(9.23) with (a) wild-type circuitry, (b) no negative feedback into LuxO, (c) no negative
feedback into LuxO via Qrr, (d) no negative feedback into LuxR via Qrr, and (e) no auto-repression
of LuxR. Population size is represented indirectly via the basal rate of signal production, cs

LuxR Negative Feedback via Qrr

It is hypothesised that this feedback loop should prolong the production of Qrr
sRNAs and hence delay the cells attaining the levels of LuxR required for quorum-
sensing activation. While it is difficult to see any difference between the wild-type
steady-state curves and those where this loop has been removed (Fig. 9.9a, d) from
the time-dependent solutions in Fig. 9.10d it is evident that in our parameter regime
LuxR levels are actually lowered in the absence of this indirect LuxR negative
feedback. This is likely to be a result of the interplay with the active loops and is
worthy of further investigation to see whether this would be reproducible in reality
or whether it is due to our specific parameter choice.

Timing of any quorum-sensing response again appears unaffected by this loop,
but it is possible that this consequence could be lost from the model as a result of
omission of intermediary species along the pathway, which would slow down the
response.

LuxR Auto Repression

Removing LuxR autorepression has a similar effect to including positive autoinduc-
tion of the regulators in Sects. 9.3.1 and 9.3.2: LuxR levels significantly increase.
This has little or no effect on the other variables in the model but the loop should
prevent unnecessary production of LuxR (see Sect. 9.2.2). This agrees with the
biological explanation in [8], where it is suggested that this loop will prevent
runaway luxR transcription, minimising the chance of ill-timed commitment to
quorum-sensing upregulation. Though it does not change the shape of the response
(Sect. 9.2.1), it does alter the sensitivity of the overall system to signal levels.
Furthermore, higher LuxR levels would make it trickier for the cells to switch off
their quorum sensing response [36, 37].
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Overall, therefore, this model implies that each individual negative feedback loop
may prevent fluctuations in individual components of the network, constraining
them to the desired level, whether this be to prevent unnecessary overproduction or
to prevent inappropriate reactions to noisy inputs. This should ensure a coordinated
response across a population of cells and matches neatly the evidence that both
V. harveyi and V. cholerae are insensitive to small changes in signal level [8]. In
addition, their mutual action maintains a graded response from the cells, preventing
an on-off type switch [36] (though we note that in individual loop knock-outs, the
response shape always remains largely the same (see Fig. 9.9), thus this may be as
a result of their combined effects).

9.3.3.3 Analytical Investigations

For the V. harveyi and V. cholerae systems we consider the possibility that both the
activation rate and the action of Qrr sRNAs are large: ˛; �1; �2 ! 1. This yields
various possibilities and we focus on the case in which the signal and Qrr sRNA
levels become negligible: s; q ! 0. This gives

˛r�

1 s � cs; (9.24)

q � cqr�

1 r2

.r�

1 C ˇ/.r2 C ˇ/.�1r1 C �2r2/
; (9.25)

dr1

dt
� cr1ˇ

r1 C r�

1 C ˇ
� �r1 C cs � cq�1r�

1 r2r1

.r�

1 C ˇ/.r2 C ˇ/.�1r1 C �2r2/
� ır1; (9.26)

dr�

1

dt
� �r1 � cs � ır�

1 ; (9.27)

dr2

dt
� cr2ˇ

r2 C ˇ
� cq�2r�

1 .r2/2

.r�

1 C ˇ/.r2 C ˇ/.�1r1 C �2r2/
� ır2: (9.28)

If, in addition, we take the small limit of the rate of LuxO autophosphorylation
(� ! 0, so the cells are increasingly likely to become activated), then r1 ! 0 and
we have (we note that a number of limits are required in the current case to achieve
the level of simplicity attained earlier in (9.5)–(9.7) and (9.12)–(9.17): the virtue of
such an approach—and the reason for including the analysis—is that the properties
of the resulting system, (9.29)–(9.31), are almost completely transparent)

�r1 � cs C cr1ˇ

r	
1 C ˇ

; (9.29)

dr	
1

dt
� cr1ˇ

r	
1 C ˇ

� ır	
1 ; (9.30)

dr2

dt
� cr2ˇ

r2 C ˇ
� cqr	

1 r2

.r	
1 C ˇ/.r2 C ˇ/

� ır2: (9.31)
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Note that at leading order in this scenario, response regulator levels (r2) are governed
by the negative feedback loops: the source term is monotonically decreasing in r2

and the action of the Qrr sRNAs is present implicitly. Thus the negative feedback
loops remain significant in this limit.

It is hoped that such comments indicate the potential scope and value of analytic
(in particular, asymptotic) investigations.

9.4 Summary

We have provided a general review of mathematical models of quorum sensing that
consider the role of feedback in bacterial cell communication. Drawing on this,
four dominant roles were apparent: defining the shape of the system response (often
controlled by the presence of a positive feedback loop inducing bistability), tuning
of signal or regulator levels (usually either a positive feedback loop ensuring a
coordinated response from a whole population of cells or the absence of a positive—
or inclusion of a negative—loop either simply reducing unnecessary production of
proteins or inducing population heterogeneity), filtering noise out from the system
(largely via negative feedback) or in the timing of the onset of a quorum-sensing
response.

Interestingly, the last of these does not frequently arise from the results of
mathematical models but is often postulated in biological articles. It is possible
therefore that feedback may not be as important in the timing of a quorum-sensing
response as often assumed, but the modelling results could also be a consequence of
the simplifying assumptions required to make a mathematical model tractable. For
instance, considering transcription and translation separately (and therefore mRNA
and proteins) could delay the signal transduction through a pathway in a numerical
solution, providing more scope for feedback to affect timing, but would typically
result in increased numbers of variables, parameters to estimate and complexity in
the analysis.

The models presented of the agr, luxIR and V. harveyi/V. cholerae quorum-
sensing systems were deliberately simplified for ease of analysis but were still able
to identify the first three roles for feedback listed above. In the agr system, positive
feedback influences the shape of the transition between quorum-sensing down- and
up-regulated states and makes a coordinated response from the whole population
more likely. The lux system, additionally, employs a negative feedback loop that is
likely to play a role in filtering noise from the system. Similarly, the V. harveyi and
V. cholerae systems adopt multiple negative feedback loops capable of constraining
protein and signal levels and making the system robust to noise. Regarding this last
network, it is possible to imagine that each loop dominates at the appropriate time
as the signal is transmitted through the cell and this would likely best be studied
using delay differential equations.

There is scope for an abundance of future work related to this review including
more detailed models of specific networks (including such delay effects, as well



9 Feedback in Quorum Sensing 187

as stochastics) and, in particular, the inclusion of experimental data for better
parameter estimation (genetic manipulation can be performed experimentally to
reproduce the modified network architectures discussed in this study). It will be
fascinating to see if different parameter regimes are capable of displaying different
goals for identical feedback architectures. Moreover, as more quorum-sensing
systems and their targets are identified, it will be enlightening to see how these
targets tie in with the relevant feedback architecture.
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Chapter 10
The Role of Biosurfactants in Bacterial Systems

Raf De Dier, Maarten Fauvart, Jan Michiels, and Jan Vermant

10.1 Bacteria, Quorum Sensing, and Surfactant Production

The complex biochemistry inside bacterial systems results in the production of
several species of molecules with complex composition and architecture. This
architecture may have a specific biological role, but often also entails a significant
surface activity of the molecules. For example, in the important process of quorum
sensing, small chemical molecules are secreted by bacteria to achieve a basic
form of communication between individual cells. Compounds such as peptides in
Gram-positive bacteria and N-Acyl Homoserine Lactones (AHL) in Gram-negative
bacteria [1] are continuously produced by these organisms. As the population grows,
these signaling molecules reach a threshold concentration and trigger changes
within a cell regarding gene expression, enzyme activity, secretion, and many other
behaviors [2, 3]. However, among these secretion products are often surface active
agents, or surfactants in short, as produced by bacterial systems such as Bacillus
subtilis, Escherichia coli, Rhizobium etli, Proteus mirabilis and rhamnolipids in
Pseudomonas aeruginosa [4, 5].
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The most common usage of surfactants in biological sciences is for their
bactericidal nature and their use in cell lysis. The addition of surfactants to
a liquid suspension of bacterial cells causes these surface active molecules to
adhere to the interface between the water phase and the cell wall where they
disturb the surface interactions and subsequently may lead to rupture of the cell
membrane [6]. In contrast, surfactants have also been shown to confer several
biological advantages to the bacterial organism that can self-produce them, all
related to the alteration of interfacial properties. One of these roles is to increase
attachment of individual cells to hydrophobic surfaces, initiating the formation of
biofilms [4, 7–9]. The same mechanism is also utilized to obtain emulsification of
organic compounds, increasing the apparent solubility of carbon resources and so
their availability to the bacterial community [10–12]. Additionally, molecules of
the quorum sensing system may have a dual role as surfactant and the process of
cell lysis can be used to rupture the cell membranes of neighboring competing
organisms, such as viruses [13, 14], bacteria [4, 15], or fungi [16, 17]. Another
important biological advantage of self-production of surfactants is the ability of
rapid surface colonization. This process is referred to as swarming and describes
a coordinated movement across solid or semi-solid surfaces at velocities that are
much faster than any other type of motility such as swimming or gliding [18]. This
will be discussed in more detail below.

The production of the surfactants that play a role in this variety of phenomena in
bacterial systems seems often to be regulated by quorum sensing, and surfactant
concentrations will be proportional to concentration. Only at high population
densities, the concentration of the secreted signal molecules becomes significant.
Processes such as improved adhesion, emulsification, and surface translocation can
be seen as a built-in reaction to a high population density and accompanying low
nutrient sources and brings forth a mechanism for attracting or seeking out new
food sources.

10.2 Swarming as a Surfactant-Driven Fluid Flow

The main activity and challenge of bacterial communities is to survive. In order
to achieve this, cells need sufficient amounts of nutrients and minerals to grow
and reproduce. In an aqueous environment, this is an easy task, as diffusion of
the available nutrients and the swimming movement of the cells lead to significant
fluxes. However, colonies on solid or semi-solid surfaces have to cope with more
difficult circumstances as both diffusion and cell movement are drastically reduced,
which can lead to a depletion of nutrients for a large part of the cells within the
community. One way to overcome these difficulties is the formation of a biofilm,
a moist slime consisting of self-produced polysaccharides that encapsulates the
cells in the colony, preventing dehydration and stimulating the partitioning of the
accessible nutrients [19, 20].

When the population density within a colony exceeds a critical value for the
resources to sustain, the cells need to undergo surface translocation in search for
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Fig. 10.1 Surface colonization of a swarming P. aeruginosa wild-type (left) and a non-swarming
surfactant-deficient mutant (right) community [29]—Reproduced by permission of The Royal
Society of Chemistry

new nutrient sources. Due to the high friction of the cell body with the solid or
semi-solid substrate, this movement is significantly hampered. In response, some
organisms have developed a mechanism where cells within the colony transform
from vegetative to so-called swarmer cells, characterized by the presence of
numerous flagella, in order to overcome the higher friction with the surface, and
become strongly elongated by suppression of cell division [19, 21]. Although
swarmer cells are mainly located at the colony edge, the process of swarming is
found to be a strongly cooperative phenomenon between all participating cells in
the biofilm. It has been suggested that the vegetative cells account for the supply of
nutrients that are dispersed among all cells, while the swarmer cells, mostly situated
at the edge, bundle their numerous flagella to form rafts, groups of side-by-side
aligned cells [22] and expand the boundaries of the biofilm.

Numerous studies have shown that apart from cell differentiation also surfactants
play an important role in swarming. However, often it was difficult to identify
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Fig. 10.2 A multitude of swarming patterns: Fractal-like patterns in Bacillus subtilis (a) [30]
(Reprinted from Marrocco et al. [30] with permission from Cambridge University Press), dendritic
shapes in P. aeruginosa (b) (Reprinted from Verstraeten et al. [20] with permission from Elsevier)
and a “bulls eye pattern” Proteus mirabilis (c) (Reprinted figure with permission from Czirok
et al. [31]. Copyright (2001) by the American Physical Society)

the exact role of these molecules [3, 19, 21–28]. An experiment, as illustrated in
Fig. 10.1, shows a colony of P. aeruginosa on a semi-solid surface where the amount
of nutrients is expected to decrease due to localized consumption. In the left part of
the image, a wild-type strain undergoes a rapid surface colonization process upon
reaching a high population density and accompanying depletion of the nutrients.
In contrast, in the right-hand part, a mutant strain, in which only the gene that
is responsible for the production of a bio-surfactant is knocked out, is not able to
achieve a similar translocation, in spite of all other conditions being equal.

The swarming is often accompanied by striking and beautiful patterns (Fig. 10.2),
such as the fractal-like patterns in Bacillus subtilis [32], the dendritic shapes in
P. aeruginosa [33], or the concentric circles in Proteus mirabilis [31]. This way, it is
often believed that the surfactant merely functions as a wetting agent in this process,
lowering friction between cell and surface and it is surmised that differences in
individual cell motility between the species are responsible for the variety of
swarming patterns observed. Additionally, quantitative biological models are highly
nonlinear and can produce a wide range of morphologies [34]. However, these
models focus on matching the patterns with experimental observations and do not
explain the velocities of swarming, nor the effect of different physical parameters.
Despite the often biologically related mechanisms that are suggested, it may be that
purely physico-chemical phenomena can account for these observations, where
parameters such as the heterogeneity of the surface and the viscosity dependence
on cell concentration all affect the action of swarming [29, 35]. Therefore, it has
recently been suggested that all swarming observations, regardless of the differences
in pattern formation, can be related to the same driving force that triggers the fast
surface translocation, namely the surface active nature of the secreted molecules
by the quorum sensing system and spatial variations in bacterial density. This
surface tension gradient control is an a-specific mechanism, relying only on surface
tension effects only, and hence it may be a generic mechanism in many bacterial
systems [20, 29, 35–37].
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To fully understand how differences in surface active molecules can activate a
colony to cooperatively spread out over a surface, the properties of the surfactants
need to considered. Surfactants locally modify the interfacial interactions with a
change in the surface tension as a result, which strongly decreases for higher con-
centrations of surface active molecules. Concentration gradients of these surfactants
that exist within the biofilm will result in gradients in surface tension, which can
set up a liquid flow away from the zone of low surface tension, as liquid with
a higher surface tension pulls onto the surrounding liquid. The result is that the
biofilm starts to flow in a direction along the surface tension gradient towards
the higher surfactant concentration, a phenomenon referred to as the Marangoni
effect [38], mitigating the existing difference in surfactant concentration to even
out the interface. If such surface tension gradients are observed to be present in
bacterial systems, they can suggest a physico-chemical approach to understanding
and controlling the swarming phenomenon.

10.3 Surfactant Concentration Gradients Induce
Marangoni Flows

The occurrence of a Marangoni flow in bacterial systems is controlled by three
factors: (i) a quorum sensing regulated or related production of the surface active
species, (ii) strong concentration dependence of the interfacial properties, and
(iii) the presence of a spatial or temporal gradient of the secreted surface active
molecules. In only a few cases, swarming has been clearly related to the production
of surfactants. Many other bacterial species that show swarming behavior have
not been adequately screened for surfactant production or vice versa. Table 10.1
lists some of the known quorum sensing regulated surfactants that are secreted by
diverse organisms. The concentrations that are encountered in the local environment
are generally high and exceed the concentrations needed for Marangoni flows to
occur. The surface active nature of these secreted molecules can easily be assessed
by evaluating the change in surface tension with concentration, as illustrated in

Table 10.1 Quorum sensing-related surfactant molecules produced by diverse
microorganisms. The relevant physico-chemical surfactant properties are: the surface
tension value (�), critical micelle concentration (CMC), and biologically relevant
concentrations (c)

Microorganism Surfactant � (mNm�1) CMC (�M) c (gL�1) Reference

B. subtilis Surfactin 27–32 0:02 2–3 [5, 39]

S. marcescens Serrawettin 28–34 0:01 1 [40, 41]

P. aeruginosa Rhamnolipid 28–30 0:04 2.5 [42, 43]

E. coli ˛-haemolysin 47 0:002 � [44]

R. etli AHL < 40 � � [36]
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Fig. 10.3 Evolution of the surface tension as a function of concentration for rhamnolipids
extracted from P. aeruginosa colonies

Fig. 10.3 for P. aeruginosa cells, measured using a Wilhelmy plate tensiometer. The
surface tension drastically decreases in value starting at very low concentrations
until it reaches a nearly constant value when the adsorption starts to compete
with the formation of micelles in the bulk (as defined by the critical micelle
concentration, CMC). As strong changes in surface tension can be achieved at small
concentrations of surfactants, strong Marangoni flows can be generated within the
bacterial community at biologically relevant concentrations.

The mechanism by which these local variations in surfactant concentration and
surface tension emerge within the biofilm has not yet univocally been identified.
Different hypotheses have emerged to explain the existence of such gradients. A first
description brings into play the geometry of the entire bacterial biofilm [37], which
can be described as a spherical cap. The height of the colony is the largest in the
center and gradually decreases towards the edges, proportional to the number of
cells present (Fig. 10.4a). Under the assumption that the surfactant production for
each cell is identical, the concentration of surfactant at the colony edge is expected
to be smaller than at the center of the cap, creating an outward gradient along the
surface, in the same direction as the swarming phenomenon. This leads to a high
surface tension in the liquid layer on top of the substrate pulling along the biofilm
containing secreted surfactants.

Visualization of the actual geometrical shape of a biofilm shows that the spherical
cap assumption is not valid for all microorganisms. Rather, a pancake-like geometry
can be observed, where the height is approximately constant throughout the colony.
A second explanation suggests a more localized distribution of surfactant molecules
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Fig. 10.4 Possible mechanisms for surfactant concentration gradients within bacterial biofilms:
spherical cap geometry [37] (a), penetration depth theory [29] (b) and precursor film analy-
sis [35] (c)

at the very edge of the biofilm [29], due to the impossibility of the bacteria to fully
penetrate the outer layers of the biofilm leading to lower concentrations of bacteria
near the edge (Fig. 10.4b). An additional effect may be the down-regulation of
the surfactant production at the biofilm edges during the swarming process [45],
creating a very local gradient in surface tension that drives the liquid flow.

A third interpretation states that the surfactant concentration gradient is not found
within the biofilm itself, but between the colony and the underlying uncontaminated
substrate [35] (Fig. 10.4c). In case the surface beneath the biofilm contains a
sufficient amount of moisture, a continuous interface can be formed between the
pristine substrate film and the concentrated surfactant solution of the biofilm.

10.4 Modeling the Swarming Process

A variety of models exist that characterize the swarming behavior of specific bacte-
rial organisms. Three classes are routinely encountered in literature: (1) population
growth (2) reaction-diffusion and (3) fluid mechanical-Marangoni models.

The basic population models are differential equation models solely based on
the multiplication of cells using the nutrients that are available in the immediate
environment, combined with an active, yet random movement of all cells in the
colony during its growth. These actions are described using a system of partial
differential equations and solved to obtain the evolution of all dependent parameters,
such as cell concentration and nutrient levels in space and time. Additional effects
such as chemotaxis, the increased mobility of cells located at the biofilm edge,
and the bundled rafts of cells can be implemented to increase the directionality
of the bacterial movement and to predict some of the experimentally observed
patterns [31, 46–49].
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Other authors describe swarming using reaction-diffusion models that contain
a set of equations to represent the evolution in biofilm properties such as the cell
density of “active” (motile) and “passive” (vegetative) cells and the local nutrient
concentration by a range of processes including cell growth and division and nutrient
diffusion and consumption. The cell movement is modeled as a random, diffusion-
controlled operation that is initiated by the reaction on the property of interest, such
as cell density, reaching a limit value [30, 50–52]. These reaction-diffusion models
contain an excess of experimental parameters by which all observed swarming
patterns can be represented. However, the association of these parameters with the
underlying mechanisms that govern the process of swarming is limited such that no
biological or physical explanations can be extracted from these models to describe
the variations in the patterns of different bacterial species.

A third class of models uses a fluid mechanical approach, taking into account the
effect of bacterial surfactant production and the accompanying Marangoni flows.
A simple back-of-the-envelope calculation already allows to check if the Marangoni
flows can possibly account for the mechanism during the swarming process by
comparing the actual spreading velocities and the predicted velocities encountered
in Marangoni flows [29,37]. Assuming the biofilm can be considered as a continuum
(viscoelastic) liquid, the driving force for a Marangoni flow is the surface tension
gradient, which creates a shear stress � acting on the liquid:

� D �

L
(10.1)

where L is the length scale over which a gradient in surface tension, � exists.
Here, L can maximally be the radius of the bacterial colony. This spreading action
is opposed by the process of viscous dissipation. Work against viscous forces is
irreversibly converted into internal energy, proportional to the viscosity � and the
velocity U of the moving fluid and inversely proportional to the biofilm height H :

� D �U

H
(10.2)

Taking experimental values for the biofilm height H and viscosity � and the
size of the colony and realistic gradients of surface tension into the dimensionless
analysis equations (10.1) and (10.2) and equating these lead to spreading velocities
expected for Marangoni driven flows to be in the range of 0.5–5 �ms�1, which
match the observed velocities in swarming colonies very well [29]. These velocities
are an order of magnitude higher than what would be expected for other forms of
surface translocation such as wetting and swimming.

More detailed descriptions and a full quantitative modeling exist that expand
this simple dimensional analysis. These models bridge the phenomena occurring at
the level of the individual cell with the effects at a macroscopic level. This way,
processes such as cell growth and division, nutrient consumption, and production of
quorum sensing signals and surfactants are correlated to their influence on a larger
scale, the Marangoni effect [35, 53].
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Fig. 10.5 Marangoni driven swarming: (a) Fractal-like swarming of Bacillus subtilis on a semi-
solid agar surface [30] (Reprinted from Marrocco et al. [30] with permission from Cambridge
University Press) and (b) patterns during spreading of an aqueous surfactant droplet on a thin water
film (Reprinted with permission from Matar and Troian [54], Copyright 1999, AIP Publishing
LLC)

Similar approaches as used in the basic differential equations or reaction-
diffusion analysis models can be used to describe the biological processes on the
single cell scale. To describe the physical process of the Marangoni forces, literature
provides sufficient examples, such as the spreading of surfactant droplets on a thin
water film [54–61]. The effects observed in these experiments, such as the spreading
velocities, but more specifically the resulting patterns during the spreading action of
the droplet uncover a strong similarity with the biofilm swarming observations, as
illustrated in Fig. 10.5.

The evolution of the droplet (or biofilm) shape in presence of Marangoni stresses
over time is represented by the change in height of the liquid layer, H.x; t/ as
function of distance x and time t . Incorporated into this equation is the driving force
of the Marangoni spreading, opposed by the action of creation of surface curvature,
respectively:
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The local surfactant concentration � .x; t/ allows to estimate the magnitude of
the Marangoni forces, with an additional surface diffusivity (Ds) term:
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Fig. 10.6 Height profiles of swarming colonies (a-b) Experimental [29] biofilm and (c-d)
predicted height profiles for Marangoni driven swarming, where (a) and (c) reflect the initial stage
and (b) and (d) reflect the stage just before the pattern becomes unstable (Part a and b from [29]—
Reproduced by permission of The Royal Society of Chemistry)

Both equations can be linked using an equation of state that relates the
concentration of the surfactant to the surface tension property:
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with �0 the surface tension of the pure liquid, ˛ D �=.�0��/ and �m the maximum
surfactant concentration at the interface [29, 37].

In each simulation step, both set of equations, on the local and macroscopic
level, can be solved independently using suitable initial and boundary conditions.
These results are subsequently used as an update for the starting solution in the
next iteration step. In the initial stage, a droplet containing surfactant molecules
is deposited onto a thin liquid film, representing a biofilm holding self-produced
biosurfactants on top of a solid or semi-solid surface (Fig. 10.6a, c). Due to the low
surface tension at the droplet interface and the higher surface tension at the pristine
water film surrounding the droplet, Marangoni forces induce a radially outward flow
from the center. Over time, a rim in the height of the spreading liquid, as shown
in Fig. 10.6b,d, as the edge of the expanding droplet is not able to move as fast
for the liquid that is pulled in from behind by Marangoni forces [57, 60]. These
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steps occur in both the droplet spreading as in the biological swarming experiment
and reveal a strong similarity between the experimental observations and theoretical
simulations [35, 53], as emphasized in Fig. 10.6.

In a later stage, the rim becomes unstable by perturbations in surfactant con-
centration along the droplet’s spreading edge, possibly created by inhomogeneities
in the underlying substrate [55, 56]. These concentration differences destabilize the
interface of the droplet and create local protrusions from the spreading colony at
a velocity that is faster than the neighboring zones in the spreading rim, forming
distinct fingering patterns as previously observed in Fig. 10.2.

The instabilities that occur along the edge of the rim have a dominant wavelength
associated with the fingers. This wavelength is dependent on several parameters,
such as temperature, substrate, and surfactant type, directly influencing the distance
between the fingers that emerge from the spreading droplet. Given the highly
nonlinear nature of the governing equations, it can be assumed that a change in
one or more of these parameters can form the explanation why the swarming
patterns in different bacterial organisms show variations, going from very thin,
fractal-like patterns in Bacillus subtilis to thicker dendrites in P. aeruginosa to even
no observable instabilities in Proteus mirabilis by surfactants that are not able to
sufficiently destabilize the interface.

10.5 Drying of Bacterial Colonies

The presence of self-produced surfactants by bacteria has a strong effect on the
swarming motility of the entire colony on a semi-solid or solid surface, which is a
situation where the contact line of the colony is moving. In addition to this effect,
surfactants also strongly affect the phenomena during the dehydration and drying of
a biofilm, a situation where the contact line is pinned.

Figure 10.7 shows the difference between a dried colony of a P. aeruginosa
colony for a wild-type and surfactant-production deficient mutant [62]. In the
absence of surfactants, the dehydration leads to a ring-shaped pattern that is formed
as the majority of all cells present in the biofilm are accumulated at the outer rim
and only few are found in the center, as depicted in Fig. 10.7a. In contrast, for the
surfactant-producing organism, observations show a uniform distribution of cells
after complete evaporation of the colony (Fig. 10.7b). Moreover, the mutant does
show a similar deposition pattern as the wild-type strain upon exogenous addition
of surfactant. The presence of surfactant molecules appears to induce a completely
different morphology during the drying of biofilms and will influence the viability of
the colony once it rehydrates when environmental conditions improve. The uniform
spreading of all cells encountered in the dehydration process can be seen as a natural
strategy to prevent bacterial overlap and to maximize the chances to reach new food
sources [63]. Interestingly, the surfactants can hence both cause height increases of
a colony near the edge, when the colony is swarming and the contact line moves
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Fig. 10.7 The drying of a small bacterial colony for (a) surfactant-deficient mutant and (b) wild-
type cells of P. aeruginosa—Reproduced from [62]

(as discussed in the previous section, when the colony is producing extra material),
or do the opposite when the contact line of the colony is pinned (as during drying of
the colony).

During the evaporation of water from a colony, or a droplet in general, a
phenomenon commonly referred to as the “coffee ring effect” induces an internal
flow from the center radially outwards [64–67]. This flow is strong enough to entrain
all suspended matter, such as cells, and brings all this to the edge where they
accumulate over time, leaving behind a ring-like deposit upon complete evaporation
of all solvent.

When surfactants are self-produced by the colony, the dynamics change drasti-
cally. In addition to the accumulation of the bacterial cells, surfactant molecules are
also convected from the center outwards by the internal flow and the concentration
increases at the edge. As these molecules are advected from the center of the biofilm,
a depletion of surfactants is created at the apex. These concentration differences
along the free surface of the biofilm generate a mismatch in surface tension and
create a Marangoni flow that is directed from the low surface tension at the edge to
the higher surface tension at the quasi pristine interface in the center [62, 68]. The
Marangoni flow acts together with the outward evaporative flow to create a swirling
motion where cells that are convected outwards reach the edge and, once there, are
pulled upwards and back inwards along the interface by the Marangoni flow. Over
time, the swirling flow prevents accumulation and results in a homogeneous deposit
of all cells after complete evaporation of the moisture in the colony.
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10.6 Conclusion

In the process of quorum sensing, biosurfactants are often found to be among
the secretion products in many bacterial species and they have proven to have
a beneficial effect on the producing organism. In general, the presence of these
molecules increases the chances of survival by an increase in the availability of food
sources or the destruction of other, possibly harmful, cells. However, the biological
advantage is visible the most in the phenomenon of swarming: a coordinated
movement across solid or semi-solid surfaces at velocities much higher than gliding,
twitching, swimming, or any other type of motility.

Simple experiments have shown the necessity of surfactants in this swarming
process, which leads to the exploration of new resources when the population further
grows. The main influence of surfactant molecules on this spreading behavior is,
however, often misinterpreted and has generated an enormous amount of theories
that only are applicable for the specific organism under study, resulting in a lack
of a general perspective of a phenomenon that can universally be described by
purely physico-chemical means. Apart from any possible role in communication,
surfactants and the presence of local concentration gradients of these molecules and
a resulting gradient in surface tension play a key role in swarming.

The pattern formation, height profiles, and swarming speeds can be rationalized
and quantitatively predicted by considering the dependency of the different physico-
chemical parameters and the surfactant activity. So far, only the fingering patterns
have been investigated and an analysis of the set of nonlinear differential equations
may require further investigations, in particular with respect to understanding the
sensitivity of the different physico-chemical parameters that control the richness
in experimentally observed patterns. Clearly, the questions of how the individual
bacteria and their possible differentiation intervene in the phenomena remain highly
relevant.
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Chapter 11
Ecology of a Simple Synthetic Biofilm

Edward M. Nelson, Utkur Mirsaidov, Koshala Sarveswaran, Nicolas Perry,
Volker Kurz, Winston Timp, and Gregory Timp

11.1 Introduction

Most bacteria are found in dense communities within biofilms [1, 2]. A biofilm
comprises microcolonies of live bacteria with intervening water channels and layers
of dead cells encapsulated in a hydrated matrix of polysaccharides, proteins, and
other extracellular polymeric substances (EPS). A biofilm confers a competitive
advantage on the community over a free-swimming planktonic bacterium as it
affords protection against environmental stresses like oxidants, antibiotics, extreme
pH shifts, or macrophages [3]. Because they are so prevalent—biofilms can be
found in everything from water distribution systems to catheter tubes [4, 5] and
troublesome—biofilms have been implicated in 65 % of all infections [6, 7]—
their development, architecture, and population dynamics have been the subjects of
intense scrutiny. However, the creation of relevant models remains a vexing problem
because native biofilms are so complex. Methods have been developed to synthesize
model biofilms based on passing a bacterial suspension through a flow-cell [8] or
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parallel plate reactors [9, 10], but they do not generally afford control over the
biofilm architecture with single cell specificity, while concurrently allowing for
testing dynamics—and a lot of this work is accomplished in single species biofilms.

The complex heterogeneous community of microbes comprising a native biofilm
reflects different epigenetic and genetic constituencies, and environmental gradients
in nutrient and flow conditions. The EPS encapsulates the cells, placing them in
close proximity within the biofilm, and enabling genetic exchange, cell-to-cell
communications and the formation of symbiotic microconsortia [2]. Intraspecies
and interkingdom communications occur within a biofilm all at the same time,
which can affect the formation, structure, and fitness in an ecological niche [11].
For example, some bacteria within a biofilm have been observed to coordinate
their response to an environmental stimulus through quorum-sensing (QS) signals
[12–16]. According to the QS hypothesis, bacteria count their numbers by pro-
ducing, releasing, and detecting small, diffusible, signaling molecules. QS can
coordinate differentiation in a biofilm, producing phenotype diversity that allows
adaptation to the environment, and has been implicated in bacterial surface motility
[15] and biofilm architecture, and may play a role in the exchange of genetic materi-
als [13, 16]. However, the information communicated by the QS signals can depend
on environmental conditions—mixing and flow, and the density, distribution and
type of cells producing the signals and their antagonists [17–20]. This observation
has prompted an alternative view, which posits that the QS signal acts simply as a
probe measuring mass transport in the microenvironment of otherwise autonomous
cells [12, 13]. Finally, noise in the QS communication channel can compromise
the coordination of the cellular response to environmental changes [21–25]. In part,
the origins of the noise can be traced to the stochasticity associated with a few
copies of genes and low concentrations of protein and ligands either in the QS signal
transmitter, the receiver or the medium connecting the two. To mitigate the noise,
some QS systems rely on stochastic, bistable switching elements to coordinate
behaviors and produce predictable biological functions [21].

In the chapter that follows, we review our efforts to develop a model that
captures some aspects of the ecology in a biofilm [17, 21, 26–28]. To explore
the ecology, live-cell lithography was used to create two-dimensional (2D) and
three-dimensional (3D) synthetic biofilms from genetically engineered bacteria [26,
28]. Live-cell lithography described in the next Sect. 11.2 uses laminar flows in
a microfluidic device to convey cells within the capture range of multiple, time-
shared holographic optical tweezers formed from a laser using a high numerical
aperture objective along with acousto-optical deflectors (AODs) and a spatial
light modulator (SLM) that are used to precisely manipulate the 3D positions of
multiple cells into arrays. Subsequently, the cells in the arrays were encapsulated
in a photopolymerized hydrogel—creating a living “voxel”. The bacteria forming
the voxels in a synthetic biofilm were transformed with plasmids that separately
transmit and receive acyl-homoserine lactone (AHL) signaling molecules used in
QS [24–27] to create communication links (com-links).

Generally, in QS, each cell is both a transmitter and receiver, and requires two
proteins: (1) an AHL-synthase (I); and (2) an AHL-binding protein (R), which acts
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as a signal receptor and transcriptional activator [12, 29, 30]. The AHL-synthase
produces AHL that, in combination with the AHL-binding protein, positively
regulates the production of the synthase creating a positive feedback loop. In many
gram-negative bacteria, QS is accomplished by a signaling circuit comprised of a
protein homologous to LuxI of Vibrio fischeri, which produces a diffusible AHL
signal, as well as a receptor protein that is homologous to LuxR of Vibrio fischeri.
Thus, in QS, there is no distinction between transmitting and receiving cells since
each cell is both a transmitter and receiver. However, in this work, the QS circuitry
was separated into two cell types, a transmitter and receiver, to form a com-link
that can be spatially distributed. The transmitter can signal only—and the receiver
transmits no signal at all. Thus, native QS circuits were separated into two parts: one
gene that co-expresses the AHL-synthase with a fluorescence reporter and another
that produces the AHL-binding protein that activates a fluorescent reporter in the
presence of AHL. Subsequently, separate bacteria were transformed with these
sub-circuits. In the second Sect. 11.3, we describe tests of cell-to-cell signaling.
The lux quorum sensing (QS) system of Vibrio fischeri and the lac induction
system in E. coli were chosen for testing cell signaling in a biofilm because many
of the parameters that govern the reaction kinetics are already known, enabling
quantitative simulations of the experiments for prediction of the outcomes from an
environmental stimulus [21, 27, 31, 32]. Moreover, due to live-cell lithography it
was possible, in principle, to address each cell of each voxel to assess the effect of
the environment on gene expression.

Noise is inherent to single-cell behavior; it results from the small cell volume
and stochasticity associated with a few copies of genes and dilute concentrations of
molecules. Moreover, cascading variable elements can amplify noise [22–24, 33–
35]. Each step in a cascade receives a stochastic signal from its upstream transmitter
and adds variability to it. Interestingly, in the third Sect. 11.4 we show that, despite
the noise in the transmitted signal, the receiver response was found to be tightly
coordinated after the initial pulse of inducer in these synthetic biofilms—a stochastic
switch in the receiver gene circuit actually provides noise abatement—and the noise
is suppressed compared to the transmitter [21].

Thus, the gene circuitry in these simple biofilms reflects an integrated design
approach [36] that promotes coordinated activity by leveraging noisy signaling
systems that are responsive to the environment. We pursued this route in an attempt
to produce a predictable biological function, which is the primary goal of all
synthetic biology. Whereas native QS systems are supposed to rely on stochastic,
bistable switching elements to coordinate behaviors [37] prior to this effort, it was
problematic to study the behavior of these feedback mechanisms directly in single
cells due to the difficulty in controlling the microenvironment and probing the
resulting behavior at the same time. These models provide an opportunity to follow
the coordination of single-cell behavior. Moreover, these efforts represent a launch
point for the study of more complex models described in the final Sect. 11.5 that
can be accessed through live-cell lithography.
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11.2 Creating Synthetic Biofilms with Live-Cell Lithography

There are a number of ways to co-culture two or more cell types and control
the cell positions [38–48] and each has advantages and limitations, but none of
these techniques has shown the ability to assemble individual cells with single
cell precision into heterotypic 3D configurations like that found in vivo as live-cell
lithography can. At the core of the live-cell lithographic approach is the ability to
create heterotypic microarrays of cells using optical tweezers in conjunction with
a microfluidic device to control with submicron-scale precision the cell-type and
position within the tissue [26, 28]. The optical tweezers are formed from a laser
using a high numerical aperture objective along with AODs and an SLM that are
used to manipulate the 3D positions of multiple cells into arrays. Cells are conveyed
to the tweezers using laminar flows in a multi-port microfluidic device, tweezed
into position, and subsequently encapsulated in a photopolymerizable hydrogel—
creating a living voxel. As illustrated in Fig. 11.1a, a single living voxel, consisting

Fig. 11.1 Optical micrographs showing living voxels containing bacteria. (a) A transmission
micrograph of a 21 � 21—2D microarray of P. aeruginosa formed with a 100�, 1.25NA oil
immersion (Zeiss Plan-Apo) objective at � D 900 nm using <2 mW per trap. (b) A false-color
iso-surface generated from volumetric data obtained from deconvolved confocal images of a
single voxel consisting of a 5 � 5 array of P. aeruginosa. The average center-to-center distance is
1.52 ˙ 0.06 �m and average space between each bacterium is 354 ˙ 134 nm. (c–e) Transmission
and fluorescent micrographs of a single heterologous 3D voxel of E. coli with the focus at z D 18,
9, and 0 �m, respectively. The first images in (c–e) are transmission micrographs taken at t D 0,
just prior to induction. The second column shows fluorescent images obtained 200 min later. A
3 � 1 array of cells expressing mRFP is located in the top plane at z D 18 �m, while 3 � 1 arrays
expressing YFP are located at z D 9 and 0 �m. When 2 mM IPTG in M9 media is broadcast to the
array at 0.03 �l/min flow, the cells detect the inducer in their microenvironment above threshold
and begin to produce mRFP1 (red fluorescence) and YFP (yellow fluorescence). (f) A false-color
perspective iso-surface, reconstructed from volumetric data obtained from a series of confocal
images, showing the same voxel as in (c–e). Adapted from [26, 28]
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of hundreds of bacteria, can be assembled in a microfluidic channel and the spacing
between the bacteria can be precisely controlled (Fig. 11.1b). The voxels are not
limited to planar cell configurations either. If the beam entering the objective lens
is slightly divergent, then the entire pattern of traps comes to focus at a different
point along the optical axis. This divergence can be introduced dynamically using a
Fresnel lens encoded into the liquid crystal array of an SLM with a time-shared
focus. Figures 11.1c–e show 3D voxels formed using time-shared holographic
optical traps (HOTs) comprised of three 2D—3� 1 heterologous sub-arrays of
genetically engineered E. coli incorporating YFP-LVA and mRFP-LVA functionally
linked to lac. The fluorescence images, illustrating the heterologous character of the
array and viability, were taken 200 min. after broadcasting the ligand isopropyl-“-
D thiogalactopyranoside (IPTG) into the array. Genetically engineered bacteria like
these represent an especially stringent test of this strategy for tissue engineering
because, aside from the plasmids used to transform them, the cells are otherwise
morphologically identical.

While optical trapping can be used to create vast networks of cells resembling
tissue, the trapping beam still has to be held on the cells to maintain the array.
To minimize exposure to the laser beam, the position of the cells was fixed in
a bio-compatible scaffold made from a photopolymerizable poly(ethylene glycol)
diacrylate (PEGDA) hydrogel. After assembling the array with tweezers, the pre-
polymer solution in the microfluidic channel was exposed to UV light to form
the gel. PEGDA hydrogel is an efficacious scaffold because UV exposure for
photopolymerization can be relatively minimal (�0.1–1 s at <100 mW/cm2) [28,
41] and it is porous [21, 49, 50], allowing for transport of nutrients to the cell
and waste away from it. Hydrogels have been shown to maintain viability and
activity of bioluminescent E. coli for up to two weeks without a change in the dose-
dependent induction [51]. Finally, employing a step-and-repeat strategy [26], the
live-cell lithography tool can step to an adjacent location in any direction while
maintaining registration with a reference voxel, and repeat the process. By stitching
together living voxels this way, it is possible to create cytoarchitectures of any size,
shape, and constituency that mimic in vivo tissue.

11.3 Forming a Com-Link in a Synthetic Biofilm

Using the step-and-repeat method, heterologous networks can be precisely assem-
bled consisting of thousands of living cells without loss of viability [26]. Using
this method to capture one of the more essential aspects of biofilm biology, a
communication link was formed in a synthetic biofilm by first splitting the lux QS
system into gene circuits consisting of separate sets of transmitters and receivers,
transforming E. coli (DH5’) with them, and subsequently stitching together voxels
of transmitters and receivers. Two of the com-links that have been implemented are
represented schematically in Fig. 11.2a, b [17, 21]. These lux com-links incorporate
transmitter cells that harbor either: (a) the plasmid 111 (4,640 bp), which has
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Fig. 11.2 A biofilm model. (a) (111) Transmitter bacteria produce luxI (AHL producing enzyme)
as well as mRFP under control of the lac operon induced with IPTG. (203) Receiver bacteria
produce LuxR (AHL-binding protein) constitutively under the luxP(L) promoter. LuxR binds
to AHL, then dimerizes and binds to the lux operon, upregulating luxP(R) and downregulating
luxP(L). Upon receipt of AHL, receivers produce GFP-LVA, a rapidly degradable form of GFP. (b)
Like (a), but the (113) transmitter bacteria produces luxI-LVA and GFP-LVA instead of mRFP. (c)
A volume reconstruction obtained from confocal images of an array of 111-transmitter and 203-
receiver voxels stitched together to form a com-link. The hydrogel was stained with rhodamine
to form a confocal image. (d, left) Top-down transmission optical micrograph of a 3 � 4 array
of 3 � 3 homologous microarrays of transmitters (highlighted in red) and receivers (highlighted in
green) encapsulated inside a hydrogel. The architecture was formed from voxels each encapsulated
in a hydrogel microstructure of size 27 � 27 � 40 �m using a step-and-repeat methodology.
The 1 � 4 voxel of receivers on the top is separated from the 1 � 4 voxel of transmitters by a
microchannel 10 �m wide and 120 �m long. The arrow indicates the flow direction. (d, right)
Fluorescent image of the same array 600 min after induction with IPTG

an IPTG-inducible luxI gene, co-expressed with red fluorescent protein (mRFP)
(Fig. 11.2a); or (b) the plasmid 113 (4,854 bp), which has an IPTG-inducible luxI-
LVA (degradable LuxI) gene, co-expressed with a degradable version of the green
fluorescent protein (GFP-LVA) (Fig. 11.2b). Lux-LVA and GFP-LVA are unstable
and degrade by proteolytic digestion with a half-life of 40 min [52]. The expression
of LuxI in the 111 transmitter facilitates the synthesis of N-(“-ketocaproyl)-L-
homoserine lactone (3OC6HSL or AHL) by leveraging the cell metabolism [17].
From normal metabolic products (S-adenosyl methionine and an acyl-ACP carrier
protein used in fatty acid synthesis) LuxI catalyzes the production of AHL that
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then diffuses across the cell membrane out into the environment. Likewise, the
113 transmitters co-expressed degradable forms of LuxI (LuxI-LVA) and a GFP
(GFP-LVA) reporter under a lac promoter [21]. Upon induction with IPTG, AHL is
produced transiently by LuxI-LVA and diffuses across the 113 cell membrane, until
it degrades.

The lux-receivers harbor the plasmid 203 (3,739 bp) that expresses GFP-LVA
when LuxR is complexed with AHL (P), and the dimer (P2) binds the luxP(L)
promoter. The receiver plasmid consists of a bidirectional promoter luxP; the
luxP(L) promoter controls LuxR production and the luxP(R) promoter controls GFP-
LVA production. It has been shown that LuxR in combination with this promoter
positively auto-regulates the QS response by modulating its own expression [21, 27,
53]. While luxP(R) has only a low-level basal expression, it is strongly up-regulated
in the presence of the LuxR-3OC6HSL (P2) dimer and produces GFP-LVA. This
gene component is derived from one of the two interlocked feedback loops found in
the lux QS circuitry found in V. fischeri. The bistability of this switch is a hallmark
of the positive autoregulation associated with the feedback loop, which modulates
the expression of LuxR as part of the QS response. Subsequently, we tested for
coordination in the response to changes in the gene environment.

As a preliminary test of the com-links, networks of transmitters and receiver
voxels were created on a hydrogel scaffold embedded in a microfluidic device
that allows for control of fluid flow and the broadcasting of exogenous inducers.
Figure 11.2c is a perspective iso-surface, reconstructed from volumetric data
obtained from a series of confocal images, showing the 3D aspects of the hydrogel
microstructure containing a 2D 3� 4 array of voxels, each containing 3� 3 E. coli
transformed to be either transmitters or receivers. Interposed between two 1� 4
arrays of lux-receivers (203) voxels, there is a 1� 4 array of lux transmitter (111)
voxels; one of the receiver arrays is separated from the transmitters by an open
channel whereas the other is in intimate contact. Figure 11.2d shows a transmission
image of the same array of voxels at tD 0 h, just prior to induction with IPTG.
Whereas the 1� 4 receiver (green highlight) and transmitter (red highlight) voxels
at the top of the image are stitched together into what amounts to one hydrogel
microstructure—the adjacent voxels are spaced �30 �m apart (in x and/or y)
using a motorized x-y stage (Zeiss DC) with 0.25 �m step resolution, the array
of receiver voxels at the bottom of the image (highlighted in green) was separated
from the arrays at the top by a microchannel that is �10 �m-wide and 120 �m-
long. The microchannel was created by increasing the spacing between hydrogel
microstructures to 35 �m in the y-direction.

To test the 111! 203 com-link, 2 mM of IPTG in M9 media was broadcast
into the microfluidic device containing the network of transmitters and receivers
shown in Fig. 11.2d at tD 0 min with a quasi-static flow rate of 50 nL/min. The
diffusion coefficients of the inducer and AHL in the hydrogel were estimated
using a fluorescent surrogate (rhodamine) with a similar molecular weight, to be
Dhydrogel

rhodamineD 17˙ 10 �m2/s, which is less than 5 % of the value measured for free
diffusion of the same ligand in water, but consistent with a high cross-linking
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density in the PEGDA hydrogel [21, 54]. As a result, the inducer concentration
was estimated to be practically uniform after broadcasting into the biofilm from the
microfluidic device, varying <1 % throughout the array within 90 s. After about
1 h, (red) fluorescence was observed with continuously increasing intensity so that
it could be seen clearly at 2 h, indicating the co-expression of LuxI and therefore the
production of AHL. When the AHL concentration in the hydrogel exceeded �2 nM
[17, 21, 27]—near tD 3.7 h—the receivers produce sufficient GFP-LVA to observe
fluorescence above the background. Figure 11.2d (right) shows the corresponding
fluorescence observed in the same array at tD 10 h after induction. Clearly, the lux-
transmitters (111) are linked to the receivers (203) as evident from the fluorescence.

Figure 11.3 illustrates the cell signaling dynamics of a similar network compris-
ing the 111! 203 com-link, formed in a hydrogel scaffold by juxtaposing 2� 4
arrays of (3� 3) 203-receiver voxels (72 total) next to a 1� 4 array of (3� 3) 111-
transmitter voxels (36 total), where the receivers are separated from the transmitters
by a 10 �m-wide open microchannel as illustrated in the transmission image.
Starting at time tD 0, the microfluidic was used to broadcast 2 mM of IPTG to
the array at a quasi-static flow rate (30 nL/min) to induce production of AHL in
the transmitters. After 2 h, (red) fluorescence was observed in the transmitter array
(fluorescence image in Fig. 11.3a) indicating the production of AHL that, in turn,
diffused out of the cell and into the environment. Accumulation of the AHL in
the environment eventually initiated GFP-LVA production and fluorescence in the
receivers at 2.5 h establishing the connection to the transmitter. After about 3.7 h
(Fig. 11.3a) the flow rate was increased to 10 �L/min for 40 min, flushing the array
of any residual AHL and subsequently the receiver fluorescence diminished whereas
the transmitter fluorescence continued to grow, as there has been no change in the
IPTG inducer concentration. The network was then allowed to recover in quasi-
static flow conditions and the receiver fluorescence returns as before. This procedure
was repeated again at tD 7.3 and 10.2 h with similar results.

The fluorescence responses measured over each element in each of the lux
transmitter and receiver voxels are summarized in the kymographs of Fig. 11.3b–d
(left), respectively. The kymographs track the logarithm of the fluorescence of each
region-of-interest (ROI) in the array, illustrating the timing of the response relative
to the IPTG pulses. The green and red lines in the kymographs demarcate the
intervals in which the flow rate in the overlying microfluidic channel was increased
from quasi-static (50 nL/min) to 10 �L/min (green) and vice versa (red). Each ROI
was defined to be 5 �m on edge so that initially it encompassed the length and
breadth of a single bacterium in the super-array. However, as the measured doubling
time in the film was 185˙ 10 min, cell proliferation eventually led to multiple
bacteria within each ROI. Still, it was possible to follow the dynamics associated
with a single cell using confocal microscopy and a comparison shows the same
trends were observed with a 5 �m ROI [21]. Thus, due to the length and width
of the bacteria, the difficulties in tracking a single cell through proliferation, and
economy in the analysis, the scope of an ROI 5 �m on edge was used to define the
volume of the stochastic response [21].
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Fig. 11.3 Voxels of 111 transmitters juxtaposed with a 203 receivers separated by a 10 �m wide
open microchannel. (a) Transmission (t D 0 h) and fluorescence images taken at t D 2, 3.7, 7.2,
10, and 12 h of a 3 � 4 array of voxels, consisting of one column of transmitter cells (right most
column) downstream of two columns of receiver cells. The transmitter array was separated from
the receivers by a 10 �m wide and 120 �m long channel oriented perpendicular to the flow. The
arrow indicates the flow direction. Signaling was initiated at t D 0 by broadcasting 2 mM IPTG
into the microfluidic under quasi-static flow (50 nL/min). After 2.5 h, fluorescence is observed in
the receiver arrays. At 3.7 h, the flow rate was increased to 10 �L/min for 0.7 h, and subsequently
the system was allowed to recover in quasi-static flow. Similarly, the system was flushed again at
7.3 and 10.2 h and allowed to recover. (b–d) Kymographs of the log of the fluorescent intensity
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It is apparent from the kymographs that the integrity of the com-link between
the transmitters and receivers can be compromised, depending on the flow rate
[17]. Even though the 111 transmitters produce a signal continuously, the 203
receivers detect it only intermittently. To account for the disruption in the com-
link, these experiments were simulated stochastically using the models depicted
schematically in Fig. 11.2a with parameters that are tightly constrained by the
literature [31, 32]. Stochastic simulations of the lux com-link that account for the
bistable switching element, the promoter luxP used in the receiver, have already
been successfully and extensively tested [17, 21, 27]. The results (Fig. 11.3b–d
(right)) capture the fluorescent response to changes in mass transport conditions
perfectly. The close correspondence with the experimental outcomes related to the
timing, spatial dependence and strength of the fluorescent signals implies further
that the inducer and signal gradients were represented accurately.

The simulated AHL concentration gradient, corresponding to t D 3.7 h expected
at the fluorescent peak in the first pulse is delineated in Fig. 11.4a–c. Apparently,
judging from Fig. 11.4a, the velocity of the flow above and throughout the open
channel in the same plane as the cell array has little effect on the concentration
profile since the contours of uniform concentration (Fig. 11.4c) are hardly disrupted
by flow in the channel. Whereas the velocity in the plane of the bacteria is low
(<20 nm/s), the majority of signal flux is conveyed convectively over the top of the
arrays. This argument is supported by the observation that, despite the low velocity,
a change to high flow completely disrupts the com-link and extinguishes the receiver
fluorescence.

The gradient in AHL subtly affects the coordination of the receiver responses.
Corresponding to AHL concentrations that differ by 0.5 nM from each other
(Fig. 11.4c), three galleries were identified in the receiver array. In each gallery, the
mean fluorescence response measured during the first IPTG pulse was subsequently
calculated and plotted in Fig. 11.4d, e. The plot in Fig. 11.4d indicates that the
receivers closest to the transmitter array showed the largest receiver fluorescent
response. If the receiver arrays closest to the transmitters are induced sooner than
those on the opposite side were, it seems that the total amount of fluorescent
protein measured by the fluorescence produced by the former was greater. However,
Fig. 11.4e indicates that cells in different galleries begin to express GFP at nearly the
same time in relation to external stimuli (i.e., � ¤ 0). To quantify the coordination
of responses between ROIs in these regions, the similarity function [21]:

J
Fig. 11.3 (continued) corresponding to individual cells in (a) as a function of time. The
fluorescence observed in the left and right column of receivers is shown in (b, left) and
(c, left), respectively; the fluorescence of the transmitter array is shown in (d, left). Simulations of
conditions similar to the experiment reveal the same behavior as a function of the flow conditions
and time. The timing of the flows is demarcated by the green dotted lines where 50 nL/min
ceased and 10 �L/min commenced, and the red dotted lines where the 10 �L/min ceased and
the 50 nL/min flow resumed



11 Ecology of a Simple Synthetic Biofilm 215

Fig. 11.4 (a) A finite element simulation of the fluid velocity in the microfluidic in the plane of
the arrays. The solid lines denote the edges of the hydrogel arrays and the numbered galleries.
The arrow indicates the direction of flow. (b) Velocity profile through the center of the array
showing quasi-static flow. The solid lines depict the edges of hydrogel array and the selected
numbered galleries. The arrow indicates the direction of flow. (c) Contour plot of the simulated
3OC6HSL concentration superimposed over a transmission image of the array. (d) Mean and
standard deviation of the fluorescence in the three regions delineated in (a) where the simulated
concentration is nearly uniform. (e) The bar graph summarizing the synchronicity measured by
the corresponding � of the fluorescence data (filled) and simulation (empty)
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was used and the value of � was plotted for the same three regions. Here, xi(t) was
a measure of the fluorescence of cell i at time t, and �t was the time differential
between the signal responses. For our purposes, the logarithmic derivative of the
fluorescence was used as a measure of the fluorescence to improve sensitivity to
weak signals. Taken together, the data of Fig. 11.4 implies that the position within
the array affects the strength of the fluorescent response, but not necessarily the
timing, and so it is possible to differentiate the expression profile by choosing the
relative position of the transmitter and receiver. Here, the differences were subtle,
however. It has been shown [27] that when the receivers are separated by greater
distances in a sharper chemical gradient, patterns emerge among phenotypes that
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could bestow a fitness advantage affecting, for example, the evolution of antibiotic
resistance [55] or even bacterial-induced regulation of host cell function in bacterial
infections [56]. For subsequent IPTG pulses in the flow rate, the advantage derived
from proximity is lost entirely and the fluorescence across the three regions becomes
nearly uniform and tightly synchronized. This occurs because the signal sensitivity
in the receiver improves dramatically due to the up-regulation of the bistable
element in the lux receiver gene, and the associated memory invested in the number
of LuxR molecules [21, 27].

11.4 Noise, Epigenetic Memory, and Synchronization

The 111 transmitters in the 111! 203 com-link produced AHL unremittingly.
The concentrations of LuxI and mRFP do not degrade even in the absence of
IPTG and so once it is induced, the production of AHL continued unabated. The
data demonstrates unequivocally that under these conditions there is not a single
cell density for which QS-regulated genes are induced or repressed, but rather
the signaling is acutely sensitive to mass transport [17]. On the other hand, it is
difficult to assess the effect of noise on the com-link due to the prevalence of
AHL. Despite the gradients that develop, the concentration of AHL was found to be
above the bifurcation threshold everywhere within the array and the corresponding
responses of the 203 receivers were at least partially entrained (� < 15 min) within
the measurement frequency and improved with subsequent broadcasts.

It was hypothesized that the response of the receivers in a synthetic biofilm like
this could be entrained to fluctuations in the environment by using the bistable
element like that found in 203 and the resulting epigenetic memory that emerges
from integrated bursts of LuxR transcription [21, 27]. Memory is a property of
biochemical systems with bistability. Under identical chemical conditions, the
system can be in either one of the two alternative states HIGH or LOW; the state
the system occupies depends on its recent history. The memory in 203 receivers
was invested in the concentration of LuxR. The concentration of LuxR affects the
sensitivity of the bacteria to AHL exposure; high levels of LuxR allow the bacteria
to respond to lower levels of AHL with up-regulation (HIGH state), while cells with
low levels of LuxR are unresponsive without higher levels of AHL (LOW state).
Changes in the memory status can occur either through production of LuxR via
induction with AHL (LOW!HIGH), or via dilution of the LuxR concentration
over time through cell division (HIGH!LOW) [21].

To estimate the number of molecules required to establish a persistent epigenetic
memory, the time evolution of fluorescent GFP expression was tracked in single
cells and the results were simulated using the same conditions to infer the number
of molecules in play. The concentration of AHL was uniform with less than 1 %
variation throughout the array within about 1.5 min after a 100 �L/min flush, yet the
cells in Fig. 11.5a, b appeared to “blink” repeatedly on-and-off again over�120 min
[27]. Out of the 81 cells in the array, 27 (33 %) demonstrated this behavior, while
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Fig. 11.5 (a) Fluorescent confocal microscopy illustrating transcriptional bursting at 3 nM AHL.
GFP-LVA is expressed, making the receiver bacteria fluorescent, and then degraded due to the
LVA tag, resulting in a loss of fluorescence. Two blinks are shown. (b) Time evolution of the
fluorescence associated with the cell in (a) is highlighted in red, while the response of 60 others to
the same experimental conditions are in gray. A typical response from one cell is highlighted in red.
(c) Stochastic simulations showing the evolution of GFP-LVA with three molecules of extracellular
AHL. The cells are initialized with 50 LuxR (R) molecules. A typical response from one cell out
of 1,000 is highlighted in red. (d) Like (a), but for 100 nM AHL. (e) Like (b), the evolution of
the fluorescence associated with a single cell represented in (d) is highlighted in red, while the
response of 30 cells to the same conditions are in gray. (f) Like (c), stochastic simulations showing
the time evolution of GFP-LVA at 50 molecules of extracellular AHL. Adapted from [27]

33 (41 %) were in the HIGH state and 21 (26 %) were in the LOW state. In
contrast, at 100 nM AHL, the fluorescence increased monotonically (Fig. 11.5d,
e), which is consistent with cells in either a HIGH or LOW state responding to this
saturating condition by inducing the HIGH expression state in the population. It
was proposed that this blinking is a result of transcriptional bursting, the subsequent
degradation of GFP-LVA, and the resulting fluctuations in the number of GFP-LVA
molecules [27], and the characteristics of the transcription bursts were used to infer
information about the LuxR concentration through stochastic simulations. Drawing
the parameters that govern the reaction kinetics of LuxR from current literature
[31], the single-cell fluorescence data was simulated using the receiver model in
Fig. 11.2a, b [27]. This model accurately captures the transcription and translation
of both LuxR and GFP-LVA in each cell—e.g., independent stochastic simulations
of an ensemble of 1,000 cells, initialized with 50 LuxR molecules per cell, indicates
a bifurcation threshold for AHL concentrations between 1 and 2 molecules per cell
(2 nM). For extracellular concentrations of AHL > 2 molecules, the cells switch
to the HIGH expression state based on the number of fluorescent GFP molecules
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in the system, in agreement with cytometry measurements [21]. According to the
simulation, positive autoregulation produces bistability at an AHL concentration
near two molecules of extracellular AHL per cell or about 3 nM.

Figure 11.5c shows the simulated time evolution of GFP-LVA for 100 cells out of
an ensemble of 1,000 cells with 50 initial LuxR molecules per cell and 3 molecules
of extracellular AHL per cell. A single representative cell was selected and plotted
in red for clarity. If the initial number of LuxR molecules was 50 per cell, then
22.4 % of the cells would blink, while 25.4 % would remain in the LOW state, which
compares favorably to the experimental data. Thus, by comparing the fractional
population that blinks, switched to HIGH or remained LOW, simulated over a
range of initial molecule numbers with the experimental data, it was concluded
that each cell had approximately 50 LuxR initially. Finally, for cells with a starting
concentration of 50˙ 10 LuxR molecules, it was estimated that the mean number
of LuxR molecules in a cell is about 140 after 6 h of exposure to 3 nM AHL. Thus,
LuxR accumulates in the cell with continuous exposure to AHL and the memory
improves, even if GFP-LVA degrades.

The delicate balance between GFP-LVA production and proteolytic digestion
produced bursts of fluorescence. From the model, it was inferred that LuxR is also
produced in bursts, but unlike GFP-LVA, it accumulated in the cells as it degraded
only by dilution through cell proliferation. In contrast with the 3 nM exposure, in
100 nM AHL, GFP-LVA (and by inference, LuxR) was produced at so high a rate as
to be practically continuous, thus leading to the monotonic increase in fluorescence
shown in Fig. 11.5e. The simulation in Fig. 11.5f with 50 initial LuxR molecules
was consistent with this behavior. All the simulations indicate the mean number of
LuxR in each microcolony grows to >970 molecules (in each cell the number grows
to >485 molecules) after the initial 6 h exposure to 100 nM AHL, which gives rise
to persistent memory as the mean doubling time for the 203 bacteria is 190 min
[27]. Taken together, the data supports the idea that the luxP promoter is a stochastic
bistable element that is sensitive to the current environment and its history and that
an epigenetic memory develops when the number of LuxR molecules exceeds about
500 in a receiver [21, 27].

To elicit the effect of noise on the signaling cascade and the corresponding
response of the bistable switch in the receiver, another com-link consisting of 113
transmitter and 203 receiver voxels was created; the transmitters are highlighted in
red and the receivers in green in Fig. 11.6a. The kymograph in Fig. 11.6b shows
the time development of the logarithm of the fluorescence of each transmitter ROI,
illustrating explicitly the asynchrony in the timing associated with the first three
0.75 mM IPTG pulses broadcast into the array. The first IPTG pulse is broadcast into
the array at tD 0, but the onset of fluorescence is not observed until 2 h later. Then
at tD 5 h, the IPTG concentration is reduced to zero for 2 h. Starting at tD 7 h, the
IPTG induction cycle is repeated twice more: broadcasting IPTG for 2 h, flushing
to zero for 2 h and then broadcasting IPTG again at 11 h for 2 h. Corresponding to
the three IPTG pulses broadcast into the array, the mean time differential among all
the cells is �0D 15 min for the first pulse, whereas �1D 5, and �2D 6 min, for the
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Fig. 11.6 The coordinated response of 203 receivers to noisy 113 transmitters. (a) Transmission
image of a 2 � 5 array of (4 � 4 arrays of) 113 transmitter voxels (160 cells) highlighted in
red, alongside a 1 � 4 array of (3 � 3 arrays of) 203 receiver voxels highlighted in green in a
microfluidic at t D 0. A concentration of 0.75 mM of IPTG was broadcast into the array at t D 0 h,
ending 5 h later; and subsequently at t D 7 and 11 h, each lasting 2 h. The beginning and end
of each IPTG broadcast are represented by blue and yellow lines, respectively. The mean time
differential between the signals, � , is shown in the bar graph above the kymograph. (b, right)
Stochastic simulation of the production of fluorescent GFP-LVA in 12 cells under conditions
identical to the experiment represented in (b, left) with an initial 40 LacI molecules/cell and 10
DNA operators/cell. The bar graph above the kymograph summarizes the corresponding � and
AHL concentration at the receivers, inferred from the simulation. (c, left) A kymograph of the time
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subsequent two pulses, respectively, as shown in the bar graph above the kymograph.
Therefore, the transmitter cells, which were initially uncoordinated, become only
weakly entrained to the IPTG in the environment.

On the other hand, Fig. 11.6c illustrates the tightly coordinated response of the
receivers in the same super-array after the initial pulse from the transmitters. The
relatively noisy transmitters conveying AHL into the super-array initially produce
an uncoordinated response among the receivers measured by the time differential
�0D 41 min, corresponding to the first IPTG pulse. However, after the second and
third broadcasts of IPTG, the time differential falls below 3 min to �1D 1 and
�2D 2 min, respectively. Thus, the noise in the receivers was substantially reduced
after the initial pulse measured relative to the noise in the transmitters.

To discover the relationships between the number of LacI, LuxI-LVA, GFP-
LVA, and AHL molecules produced in the transmitters and the LuxR and GFP-LVA
produced in the receivers, the dynamics were simulated stochastically under the
conditions of the experiments described in Fig. 11.6b, c [21]. The simulation
results, which are summarized by corresponding kymographs Fig. 11.6b, c (right)
for the transmitters and receivers, respectively, capture the entrainment observed
in the experiment. In particular, except for the first pulse, the � bar graphs above
each kymograph agree quantitatively with the time differentials measured in the
transmitters and receivers. (The difference between simulation and experiment in
the first pulse was attributed to the very weak fluorescence and instrumental noise,
and other sources of stochastic variations that are not included in the model.) From
the correspondence observed after the first pulse, it is inferred that there are �40
LacI molecules in each transmitter, whereas the number of LuxR molecules in the
receivers exceeds the critical value for a persistent memory of �500 just after the
first IPTG cycle ends, as evident from the plot in Fig. 11.6c, at which time the
concentration of AHL in the receiver array (located 25 �m from the transmitters)
exceeds 95 nM. (By the end of the second cycle, the concentration exceeds 130
nM AHL.) Since the concentration of IPTG >4.4� 105 molecules/cell (0.75 mM),
while the number of LacI that is expressed constitutively is only�40 molecules/cell,
the number of LacI molecules (and the plasmid copy number) are critical factors
limiting entrainment of the transmitter to � � 5 min. On the other hand, with the
transmitters exuding an AHL concentration in excess of the bifurcation threshold
(2 nM), the memory held in LuxR is established after the first IPTG pulse so that
the time differential in the receiver array collapses to � � 2 min and the response
becomes tightly coordinated.

J
Fig. 11.6 (continued) evolution of the logarithm of the fluorescent intensity of 20 ROIs in the
receiver 203 portion of the array shown in (a). The beginning and end of each IPTG broadcast are
represented by blue and yellow lines, respectively. (c, right) Stochastic simulation of the production
of fluorescent GFP-LVA in 12 cells under conditions identical to the experiment represent in (d,
left) with an initial 50 LuxR molecules/cell and 10 DNA operators/cell. The bar graph above the
kymograph summarizes the corresponding � and the number of LuxR molecules inferred from the
simulation. Adapted from [21]
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Thus, by exercising precise control over the gene’s microenvironment, it was
established that the autoregulation of the Lux receptor provides a memory for the
system, increasing the sensitivity and removing variability via accumulation of the
receptor protein [21, 27]. The memory that is invested in LuxR depends on the initial
exposure and degrades only by cell proliferation. It persists for several generations,
even in the absence of the QS signal [21], and so it represents an epigenetic
inheritance. This retained epigenetic memory allows for phenotypic inheritance,
while providing a minimal level of signal response. Feedback is necessary for this
behavior, as it is not present in the lac repressor system alone. Owing to the memory
of fluctuations in a precisely controlled environment, heritable variations in gene
expression create phenotype diversity within an isogenic population of bacteria.
The phenotype diversity in the population was manifested in exposure to a short-
term stimulus (such as a pulse of AHL at low concentration), which promoted a
maximally fit population. On the other hand, persistent exposure to AHL removes
phenotype diversity with the majority of the cells transforming to the HIGH state.
The memory allows both adaptation to persistent changes in environment and the
ability to respond to short-term changes via diversity of phenotype [21]. Thus,
the stringent control over the cell’s genes and its microenvironment offered by
this simple model allows for unequivocal tests of hypotheses, especially those
related to gradients in nutrients or environmental signals that might affect phenotype
development.

11.5 Further Development of the Biofilm Model

A simple model for a biofilm consists of microorganisms forming microcolonies
surrounded by EPS with open, water-filled channels between the colonies that
promote the influx of nutrients and the efflux of waste [57]. However, this simple
model does not capture the complexity found in nature. The principals of systems
biology have been used to unravel some aspects of the complexity of biofilms with
the aim of identifying and disrupting the interspecies associations. For example,
correlation network analysis has revealed two salient aspects of dental plaque (one
of the more complex biofilms): network centralities and hubs [58], which are
doubtless affected by both the constituencies and the architecture. More than 500
bacterial taxa have been isolated from oral surfaces [59]. Recently, more insight
into the microbial diversity in a biofilm was gleaned by using 454 pyrosequencing
technology [60] to obtain preliminary data on a hyper-variable region of the
16S rRNA gene extracted from samples taken from two water meters (of private
households in a city in the United States) [61]. As many as 400 operational
taxonomy units or bacterial phylogenetic types (at 97.5 % similarity in 16S RNA
sequence) were found in two water meters located at different regions of a drinking
water distribution system. The results support the assertion that polymicrobial
biofilm models are needed.
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Biofilm morphology varies widely. Oral biofilms can be up to 1 mm thick,
whereas biofilms on catheters vary in thickness from 3 to 490 �m [62]. The
microstructure exhibited in a biofilm depends on the cellular constituencies and the
environmental niche. The morphology can be flat, rough, or filamentous, and the
porosity can vary dramatically, depending on open channels and water-filled voids.
For example, according to Baum et al. [63], chemotaxis and water currents have
been used to explain large (300–500 �m in diameter) periodic bacterial patterns
on mucus veils suspended over sulfidic marine sediments [64], whereas mushroom-
shaped cell clusters and pillars are produced by Pseudomonas aeruginosa [65].

Live-cell lithography can be used to tackle some of the challenges currently
confronting synthetic biofilm engineering; specifically: open channel formation,
encapsulation, and polymicrobial cytoarchitectures. The open channels that are
evident in biofilms found in potable water systems, for example, compound the
spatial complexity because they facilitate mass transfer. Higher nutrient concen-
trations in the channel translate to more concentrated cellular metabolites and
by-products under cell clusters [66]. To mimic these structures, arrays of voxels
can easily be interlaced with open microchannels to form a vascular network by
simply offsetting the position of the living voxels in 3D by distances as small as
1 �m, leaving a void between them (Fig. 11.7) [67]. Figure 11.7 illustrates this
capability using stacked voxels consisting of two different types of bacteria 113
transmitters, (highlighted in red) sandwiched between 203 receivers. Staining the
hydrogel reveals the open channel in the center of the microstructure (Fig. 11.7c).
Advection through the open channel predominates over the mass transfer due to
diffusion in the hydrogel. Moreover, while the encapsulation of living cells in
hydrogel remains one of the main challenges in tissue engineering, because each
cell-type can demand a specific encapsulating microenvironment [68], by using
photopolymerizable hydrogels in combination with cyto-compatible chemistries,
it is possible to tailor the microenvironment within each voxel to a specific
cell-type.

In summary, although the challenges to recapitulating the complexity found
in a biofilm are daunting, the problem may yet yield to live-cell lithography
used in conjunction with gene engineering. Because biofilms are so prevalent
and troublesome in human health, the need is urgent. For example, Pseudomonas
aeruginosa in biofilms show extraordinary resistance to antibiotics (1,000–1,500�
less susceptible). Several mechanisms have been proposed to explain the resistance:
(1) the extracellular matrix where the bacterial cells are embedded presents a
diffusion barrier to penetration of antimicrobial agents; (2) the majority of the cells
in a biofilm are in a slow growing, nutrient-starved state that is not so susceptible
to antibiotics; and (3) the cells in a biofilm adopt a protected biofilm phenotype
(i.e. persister cells), with elevated expression of drug-efflux pumps [12]. The
problem remains unresolved for two reasons: lack of relevant models and testing
protocols.
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Fig. 11.7 (a, b) Confocal transmission images obtained from a 3D array of homologous voxels
of 113 transmitters (red) and 203 receivers (green) top-down and in perspective from the front,
respectively. The transmitters in the middle layer were sandwiched between 203 receivers on
the top and bottom layers (c) False-color perspective iso-surfaces reconstructed from confocal
images showing 3D arrays of 111 transmitters and 203 receivers surrounding a lumen: (c, left) is a
perspective; (c, middle) is a side view and (c, right) is a top view
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Chapter 12
Engineering Cell-to-Cell Communication
to Explore Fundamental Questions in Ecology
and Evolution

Robert Phillip Smith, Lauren Boudreau, and Lingchong You

Synthetic biology has created countless examples of gene circuits that lead to novel
behavior in cells [1]. While the technological applications of these circuits, in
terms of their use in medicine [2], industry [3, 4], and to study systems biology
[5] has been acknowledged, synthetic biology is increasingly used to explore
questions in evolution and ecology [6]. Traditionally, evolutionary and ecological
studies have taken two separate approaches to address scientific questions. One
traditional approach uses mathematical modeling to capture the essential aspects of
the dynamic or relationship under study. Research is performed in silico, allowing
the researcher to explore multiple parameters in a well-defined system, as compared
to studying the relationship in its natural setting. However, predictions generated
by mathematical models are often not verified experimentally, leading to questions
regarding their validity [6]. On the other hand, studying a single dynamic in a natural
setting offers its own set of challenges. Here, the single dynamic of interest may
be subject to multiple interacting factors, which may obscure its true contribution
to the relationship under study [7]. Synthetic biology thus offers a well-rounded
intermediate between these two approaches; modeling predictions are verified in
living, experimental systems [6, 7]. This dual approach has allowed for the study of
ecological and evolutionary dynamics that would be nearly impossible to study in
the natural environment. Indeed, the number of studies that have utilized synthetic
biology to study such relationships is growing quickly (e.g., [8–10]).
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A critical aspect in the vast majority of ecological settings is the interactions
that occur between the individuals in the environment. Such interactions often
dictate the dynamics of the ecosystem and have thus been extensively studied (e.g.,
[11]). The engineering of bacteria that can communicate with one another has
been a fundamental step in implementing synthetic circuits to study interactions
observed in ecological settings. One of the more widely used mechanisms to
engineer cell-to-cell communication is through quorum sensing, which allows for
the density-dependent regulation of gene expression. Quorum sensing allows cell-
to-cell communication through acylhomoserine lactone (AHL) molecules. These
small molecules diffuse quickly [12], do not require cellular machinery for export
as they can readily pass through the cell membrane and cell wall [12], and require
few genes in order to be implemented in a gene circuit. As such, this simple
system has allowed the facile implementation of cell-to-cell communication in
engineered bacteria, which has revolutionized our ability to understand ecological
and evolutionary relationships. In the following chapter, we review studies that have
taken advantage of quorum sensing to engineer gene circuits to study ecological and
evolutionary dynamics. We touch upon circuit and experimental design and how the
results have furthered our understanding of important natural processes.

12.1 Using Quorum Sensing Genetic Components
to Engineer Cell-to-Cell Communication

The process of engineering gene circuits that allow for cell-to-cell communication
via quorum sensing was first demonstrated by You et al. [13]. In this seminal study,
the authors constructed a gene circuit to allow for the implementation of population
density control in the bacterium Escherichia coli (Fig. 12.1a). The authors’ circuit
consists of the well-characterized LuxI/LuxR quorum sensing system from Vibrio
fischeri. A Plac/ara-1 promoter drives the expression of luxI, which synthesizes
the AHL 3OC6HSL, the concentration of which increases proportional to cell
density. Once a sufficiently high concentration of 3OC6HSL is reached, it binds
to the LuxR receptor (driven by the Plac/ara-1 promoter) and drives the expression of
the toxic fusion protein, LacZalpha-CcdB, via the Plux promoter. Once expressed,
the LacZalpha-CcdB toxic fusion protein, which consists of the LacZ protein fused
in frame to CcdB, a toxin protein that poisons the gyrase complex [14], leads to cell
death. The overall circuit logic is as follows. As the engineered bacteria increase
in cell density, 3OC6HSL accumulates in the medium. Once a sufficiently high
concentration of 3OC6HSL is reached, it activates the expression of the toxic fusion
protein, thus causing the cells to die. The author’s model predicts that activation of
the circuit in their engineered bacteria would cause the cell density to approach a
steady state that was lower than the carrying capacity achieved without gene circuit
activation. In addition, as the engineered bacteria approached this lower steady state,
dampened oscillations were predicted to occur (Fig. 12.1b).
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Fig. 12.1 Engineering cell-to-cell communication in E. coli. (a) Using AHL mediated cell-to-
cell communication to implement a population control device. The Plac/ara-1 promoter drives the
expression of luxI (synthesizes the AHL 3OC6HSL, yellow triangles) and luxR, the 3OC6HSL
receptor. The PluxI promoter regulates expression of the ccdB fusion protien, which is a toxin
and can kill the cell. At low cell density, ccdB is not expressed as insufficient 3OC6HSL is
produced. At high cell density, the CcdB toxin protein is expressed, leading to cell death and
programmed population control. (b) Programmed population control in E. coli. With the circuit
OFF, the population of E. coli reaches the nutrient-controlled carrying capacity. With the circuit
ON, the population reaches a circuit-controlled carrying capacity, which is lower than the nutrient-
controlled carrying capacity. As the population approaches the circuit-controlled steady state,
dampened oscillations occur. (c) When grown in a microchemostat, the amplitude and period of
oscillations could be controlled by dilution. Increasing the dilution rate served to decrease the
amplitude and period of the oscillations. A sufficiently high dilution rate resulted in the population
being washed out of the microchemostat

Indeed, these predictions were confirmed through experimental analysis. Without
gene circuit activation, the engineered bacteria grew exponentially until the nutrients
in the medium were exhausted, after which additional growth was not observed.
However, with circuit activation, the cells grew exponentially until a threshold point
where the cell density underwent dampened oscillations before reaching a steady
state that was lower than the carrying capacity of the medium (i.e., the final density
of bacteria without gene circuit activation). The engineered bacteria were held at
this circuit-controlled steady state for over 30 hours. Using a fluorescent assay
that reported the activity of LacZ, and thus the concentration of the LacZalpha-
CcdB toxic fusion protein, the authors observed tight dynamic coupling between
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growth of the engineered bacteria and the concentration of the toxic fusion protein.
Specifically, the population of engineered bacteria was able to grow as long as
the expression of toxic fusion protein was below the steady state. A decline in
population density was observed if excess (i.e., above the steady state) toxic fusion
protein was expressed. As such, dampened oscillations of toxic fusion protein
amount, both above and below the steady state, resulted in dampened oscillations in
population density.

Interestingly, the authors’ model predicts that cell density at the gene circuit-
controlled steady state is tunable by modulating the degradation rate of 3OC6HSL.
To modulate the degradation rate of 3OC6HSL experimentally, the authors
increased the pH of the medium, which had been shown previously to destabilize
various AHL molecules [15]. The authors observed a fourfold increase in the
number of cells at the gene circuit-controlled steady state as the pH of the medium
was increased from 6.2 to 7.8. This increase in steady state was independent of the
levels of toxic fusion protein inside the cell as the levels were found to be consistent
as pH was varied.

In a follow-up study, Balagadde et al. used the same engineered bacteria [13]
to demonstrate controlled bacterial growth in a microchemostat; a microfluidic
bioreactor that allows for the computer-regulated exchange of growth medium
during long-term bacterial cell culture [16]. By growing the engineered bacteria
in the microchemostat and monitoring bacterial growth at the single cell level,
the authors were able to examine additional cycles of dampened oscillations that
were not previously observed when the cells were grown in batch culture [13].
Furthermore, the authors were able to control the timing of circuit activation either
by introducing exogenously added IPTG (activates the gene circuit via the Plac/ara-1

promoter) to the medium or by removing it. The authors observed that cells that were
initially grown with the circuit activated (i.e., IPTG in the medium) would return to
normal wild-type growth (i.e., no dampened oscillations), with a wild-type steady
state, shortly after the removal of IPTG from the medium. Concurrently, the addition
of IPTG to the growth medium of cells previously grown without IPTG (circuit
off) resulted in a near immediate decline in population density to the gene circuit-
controlled steady state with dampened oscillations. Interestingly, by changing the
dilution rate of the medium from the microchemostat, the authors could control the
period and amplitude of the dampened oscillations. Specifically, with a low dilution
rate, the dampened oscillations had a short period and large amplitude. Increasing
the dilution rate served to decrease the period and the amplitude of the dampened
oscillations until the dilution rate was sufficiently high and the cells were washed
out of the microchemostat (Fig. 12.1c).

The results presented in these two papers were fundamental in establishing
mechanisms to engineer cell-to-cell communication in bacteria. Not only did they
serve as a proof-of-principle towards constructing more complex gene circuits
allowing cell-to-cell communication, but they also demonstrated the tunability and
simplicity of how such systems can be used in order to generate complex dynamics
in a population of E. coli.
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12.2 Engineering Cell-to-Cell Communication to Understand
Competitive Dynamics in Ecology and Evolution

One of the first applications of synthetic gene circuits allowing cell-to-cell com-
munication using quorum sensing to explore ecological dynamics was published
in 2008. Balagadde et al. engineered two E. coli strains to communicate bi-
directionally using two different quorum sensing systems (Fig. 12.2a) to study
oscillatory predator–prey dynamics [17], which are often found in natural settings
[18]. One strain, the predator, contains a circuit consisting of the PLtetO-1 promoter
driving the expression of luxR and lasI (produces the AHL 3OC12HSL). In addition,
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Fig. 12.2 A synthetic predator–prey system leads to canonical oscillatory dynamics. (a) Engi-
neering gene circuits in E. coli to create predator and prey strains. In the predator strain, a PLtetO-1

promoter drives the expression of luxR and lasI (synthesizes 3OC12HSL (orange circles)) while
a Plac/ara-1 promoter drives ccdB. In the prey strain, a Plac/ara-1 promoter drives the expression of
ccdB, luxI (synthesizes 3OC6HSL (yellow triangles)), and lasR. 3OC6HSL from the prey strain
rescues the predator strain by activating the PluxI promoter, which drives the expression of ccdA.
3OC12HSL from the predator strain kills the prey strain via a PlasI promoter that drives the
expression of ccdB. (b) When grown together in a microchemostat, the growth of the predator
and prey strains followed canonical oscillatory dynamics. The purple line represents the prey
population. The green line represents the predator population. (c) Modulating the dilution rate of
the microchemostat altered the period and amplitude of the predator–prey oscillations. Increasing
the dilution served to dampen the oscillations until the dilution rate was increased sufficiently as to
remove both populations from the microchemostat
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this strain contains a toxin/antitoxin circuit. The toxin, ccdB, is expressed via the
Plac/ara-1 promoter, while the antitoxin, ccdA, is regulated using the PluxI promoter.
The second strain, the prey, contains a circuit consisting of the Plac/ara-1 promoter
driving the expression of lasR (the receptor for 3OC12HSL) and luxI, as well as the
PlasI promoter driving expression of ccdB. The overall circuit logic is as follows.
The production of 3OC12HSL from the predator strain activates the expression
of CcdB is the prey strain, thus killing the prey. As the prey population decreases
in density, so does the concentration of 3OC6HSL in the medium. An insufficient
concentration of 3OC6HSL negatively affects the predator strain, as it can no longer
activate the expression of CcdA (which binds to and inactivates CcdB). A sufficient
decline in the prey population causes CcdB in the predator population to begin
killing the predator strain. A reduction in the predator population simultaneously
decreases the amount of 3OC12HSL being produced, which stops CcdB from
being expressed in the prey strain, thus allowing the prey population to grow.
Over time, the interplay between these two populations is predicted to result in
canonical predator–prey dynamics (Fig.12.2b). Indeed, the authors verified that
these engineered bacteria could interact and lead to predator–prey dynamics when
grown in a microchemostat [16].

While the authors did not set out to explore a specific ecological question
outside of engineering predator–prey dynamics in cells, they did, however, uncover
a unique dynamic with respect to the rate at which the predator and prey popu-
lations are diluted from the microchemostat. In a sense, dilution may effectively
represent dispersal away from a confined location where predator–prey dynamics
are occurring. As predicted by a mathematical model, the authors demonstrated that
at a low dilution rate, oscillations with long periods were produced (Fig. 12.2c).
Increasing the dilution rate led to dampened oscillations while further increases
led to the abolishment of predator–prey oscillations as the entire population was
removed from the microchemostat. With these unexpected findings, the authors may
have discovered a unique factor that modulates canonical predator prey dynamics in
nature.

In 2009, the same predator and prey strains were used to examine how biodi-
versity was affected by motility [19]. Understanding the mechanisms that control
biodiversity is paramount in maintaining microbial ecosystems, which often form
the foundation of larger ecosystems [20]. Previous studies had indicated that
reducing motility promoted biodiversity [9, 21]. However, it remained unclear
as to how motility would affect biodiversity when individuals in the ecosystem
communicated over long distances through small diffusible chemicals such as
AHL. Indeed, examples of predator–prey interactions that occur via small diffusible
chemicals are apparent in the environment [22].

To understand how motility affects biodiversity, the authors first grew both the
predator and prey strains in two different well-mixed culture conditions: in liquid
medium, which allowed the highest cellular motility, and in a well-mixed culture
distributed on an agar plate, which allowed the lowest motility (Fig. 12.3a). Using
a modified version of Simpson’s biodiversity index (BID 1�P 2

i D 1x2
i D 2x1x2,

where BI represents the biodiversity index, and x represents the ith population of
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Fig. 12.3 Segregation distance and motility affects the biodiversity index in a predator–prey
ecosystem. (a) Using a modified version of the predator–prey strains shown in Fig. 12.2 (predator
strain modified to produce green fluorescent protein and prey strain modified to produce red
fluorescent protein), the authors explored how motility alters the biodiversity index of a predator–
prey ecosystem. When the predator and prey strains were well mixed and grown on either
solid medium (an agar plate, low motility) or liquid medium (high motility), the biodiversity
index was nearly identical between the two conditions. (b) When grown in spatially partitioned
habitats, increasing the segregation distance between the predator and prey populations served to
increase the biodiversity index. (c) For a given segregation distance, increasing the motility of the
predator and prey populations served to decrease the biodiversity index. Arrows represent motility.
(d) A general rule to describe the impact of segregation distance and motility on biodiversity index.
Segregation distance has negligible impact on the biodiversity index until a critical segregation
distance is reached (dc1). Past this critical point, increasing segregation distance serves to increase
the biodiversity index until a second, critical segregation (dc2) distance is reached. Here, increasing
the segregation distance had a negligible impact on biodiversity. Motility can affect the biodiversity
index when the segregation distance is between dc1 and dc2

the co-culture), and consistent with modeling predictions, the authors observed
that motility had a negligible effect on biodiversity when both the predator and
prey strains were well mixed. That is, the biodiversity index was the same in both
conditions. Interestingly, this counterintuitive result conflicted with previous studies
that had indicated a significant effect of motility on biodiversity [21]. Using their
mathematical model, the authors suggested that while changing the motility of each
bacterial strain changed its spatial distribution, it did not change the ratio of the
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spatially averaged densities of the predator and prey strains and thus it did not
change the biodiversity index.

Next, the authors sought to determine how biodiversity would be affected if
both the predator and prey strains existed in spatially partitioned habitats, which
have been previously suggested to affect the biodiversity index [23]. Using a
mathematical model, the authors predicted that increasing the segregation distance
between the two populations serves to increase biodiversity. Their model suggests
that when the two populations are inoculated together at the same point (i.e.,
a segregation distances of zero), the predator strain would move away from its
inoculation point rapidly, effectively trapping the prey population at its inoculation
point. However, increasing the segregation distances between the two strains
decreases the strength of the long-range chemical interactions (via AHLs), which
serves to decrease the killing and rescuing rates, as well as competition for nutrients.
Using their engineered bacteria, the authors seeded separate populations of the
predator and prey strains at distances ranging from 0 to 2 cm apart on an agar plate.
As determined by the amount of fluorescent protein produced by each engineered
strain (the predator was modified to produce green fluorescent protein (GFP) and
the prey was modified to produce red fluorescent protein), the biodiversity index
increased as the segregation distance increased (Fig. 12.3b).

In addition, the authors’ model predicts that decreasing motility in partitioned
habitats increases biodiversity, which was confirmed through experimental analysis.
Experimentally, the authors modulated the motility of the bacteria by changing the
percentage of the agar in an agar plate where higher percentages of agar served to
limit motility. Their model suggests that this change in biodiversity index is due to
the ability of motility to control the spatiotemporal interaction strengths between
the predator and prey populations. At high motility, the predator and prey strains
approach each other quickly. Here, the increased local concentration of 3OC12HSL
(secreted by the predator strain) causes rapid killing of the prey serving to decrease
the biodiversity index of the system. At low motility, the populations approach each
other less rapidly. The prey encounters less 3OC12HSL, allowing the population
to grow, which increases the biodiversity index (Fig. 12.3c). Using this explanation,
the authors developed a general rule to determine the impact that partitioned habitats
would have on biodiversity and motility (Fig. 12.3d). Increasing the segregation
distance between the two populations does not affect biodiversity until a critical
segregation distance (dc1) has been reached. Here, increasing the segregation
distance increases the biodiversity index until a second, critical segregation distance
(dc2) is achieved, where any additional increase in the segregation distance does
not affect the biodiversity index. Only within these two critical distances, motility
impacts the biodiversity index. These results, and general rule, may impact the way
in which species are managed in order to increase or maintain biodiversity in a
natural setting. Moreover, this study revealed several, previously overlooked facets
that complicate the dynamics between microbial populations that interact via small
diffusible molecules.
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12.3 Engineering Cell-to-Cell Communication as a Tool
to Understand Cooperation

While gene circuits using quorum sensing have allowed us to understand the
dynamics of ecological relationships where two populations interact and compete,
it has also allowed us to examine several prominent behaviors observed when
populations of bacteria cooperate. At its very foundation, quorum sensing represents
a form of bacterial cooperation. Examples of bacteria that secrete and use public
goods (such as AHL) are ubiquitous in nature (e.g., [24]). The production and
excretion of the public good is a costly process for each cell as it requires an
energy investment. However, once released, the public good itself has a benefit
to the population as a whole, such as the ability to relieve stress (e.g., [25]). The
production of public goods is often placed under the regulation of quorum sensing.
Here, the public good is only produced once the population of bacteria has reached
a sufficiently high density. Such regulation is thought to be advantageous to the cell
as the production of certain public goods may only be beneficial when a sufficiently
high density of cells is present and are thus capable of creating sufficient public
good to relieve a stressor. While this advantage has been demonstrated previously
using a natural biological system [26], the exact conditions under which quorum
sensing regulated public good production becomes advantageous remain relatively
unexplored (Fig. 12.4a). In 2012, Pai et al. used a synthetic biology approach
to determine the conditions under which quorum sensing regulated public good
production becomes advantageous [27]. Their circuit consists of IPTG inducible luxI
and luxR genes (Fig. 12.4b). Sufficient production of 3OC6HSL (via LuxI) activates
the production of the public good, a modified beta-galactosidase, BlaMs, which is
secreted from the cell via an engineered HlyB–HlyD transport system. Once BlaMs
is secreted out of the cell, it can degrade 6-APA, an antibiotic that causes stress to
the cell by destroying the cell wall. Their circuit design allowed for three conditions
of circuit activation; ON, in which the medium is supplemented with 3OC6HSL
thus serving to activate continuous production of BlaMs, OFF, in which BlaMs
and 3OC6HSL are not created and QS, in which 3OC6HSL is produced by LuxI
and the production of BlaMs only occurs once a sufficiently high concentration of
3OC6HSL is produced.

The authors initially performed a cost–benefit analysis of quorum sensing
mediated BlaMs production in the population. They first determined that BlaMs
production is only beneficial when initiated at high cell density. As predicted by a
mathematical model, when grown in the ON state, a culture initiated from a high
cell density outgrew cells in the OFF condition (that were initiated from the same
initial density). Here, the ON population initially grew at a rate slower than the OFF
population due to the cost of producing BlaMs. However, due to 6-APA degradation
by the secreted BlaMs, the growth rate of the ON culture eventually surpassed
the growth rate of the OFF culture, thus demonstrating the advantageous nature
of BlaMs production at high initial cell density. In contrast, when the cell cultures
were initiated from a low initial cell density, cells in the OFF condition outgrew
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Fig. 12.4 Quorum sensing regulated production of a costly public good is beneficial to a
population of bacteria in alleviating a stressor. (a) Two potential strategies to deal with an external
stressor (6-APA). In one strategy (left panel), public good production (green triangles), which
inhibits the stressor, is produced and excreted a constant rate regardless of the cell density.
In a second strategy, production of the public good is regulated through quorum sensing. As
such, the public good is only produced at a sufficiently high density. (b) A synthetic circuit
to explore optimality in quorum sensing regulated public good production. An IPTG inducible
Plac/ara-1 promoter drives the expression of luxI (synthesizes the 3OC6HSL, green triangles) and
the production of luxR (gene not shown). At a sufficient high concentration (i.e., a sufficiently
high cell density), 3OC6HSL binds to LuxR, which activates the PluxI promoter to trigger the
production of BlaMs, a public good that can degrade the antibiotic 6-APA. An engineered HlyB–
HlyD transporter moves BlaMs into the extracellular environment. (c) Growth of the ON, OFF, and
QS populations in the presence of 6-APA initiated at low initial cell density. The ON population
does not reach the same cell density as the QS and OFF populations due to the cost of BlaMs
production. The QS population is able to exceed the growth of the OFF population due to the
overall benefit of quorum sensing regulated BlaMs production. (d) Optimality in sensing potential,
which is defined as the cell density at which public good production is initiated. For a given
concentration of 6-APA (green line), an optimal cell density (vopt, gray dashed line) to initiate
BlaM production exists. Here, the greatest amount of growth is observed. In the absence of 6-APA
(purple line), cell density decreases near monotonically with increasing sensing potential

those in the ON condition. As predicted by their model, cells in the ON condition
continued to pay the cost of BlaMs production but could not take advantage of its
production as the concentration of BlaMs in the medium was insufficient to relieve
the stress caused by 6-APA. This resulted in a low growth rate as compared to cells
grown in the OFF condition.
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The authors then sought to determine the conditions under which quorum sensing
mediated production of BlaMs was more advantageous. They grew their engineered
bacteria initiated from low cell density under the three conditions, OFF, ON, and
QS (Fig. 12.4c). As predicted by their model, the OFF culture vastly outpaced the
growth of the ON culture. Initially the growth rates of the OFF and QS cultures
were nearly identical but over time the QS population began to grow faster than the
OFF condition due to the production of BlaMs. Further experimentation confirmed
that QS was advantageous under several conditions (i.e., varying levels of 6-APA),
the only exception being when 6-APA is not present in the culture. Here, the OFF
culture prevailed.

While quorum sensing appeared to be a beneficial strategy for the cells when
initiated from a defined initial density, the authors sought to determine if quorum
sensing remained beneficial after a population of bacteria has undergone dispersal,
which may lead to high variability in the number of initial individuals in a
subpopulation [28]. Dispersal serves to restart the growth cycle from a low cell
density after a population has reached a high cell density. Such dynamics are often
observed in the dispersal and formation of biofilms, fruiting body development or
sporulation [28]. Experimentally, the authors could simulate dispersal by diluting
cells from a high cell density into separate wells of a 96 well plate. Each well
represented a subpopulation initiated from an initial density of �2–3 cells/well,
which was estimated experimentally. As predicted by their model, cells grown in
the QS condition continued to outcompete those in the OFF condition even after
dispersal, demonstrating that quorum sensing continued to be a robust mechanism
to regulated public good production.

The amount of variability in the initial number of cells in each subpopulation
may vary in the natural setting. As such, the authors repeated their experiment
under two different conditions; a high spread condition, which had higher variability
around a common central mean of initial number of cells, and a low spread
condition. As predicted by their model, subpopulations initiated from the high
spread (higher variability around the mean) condition significantly outgrew the low
spread condition (lower variability around the mean). The authors hypothesized that
this observation could be accounted for by the number of subpopulations initiated
from both initial high and low cell density. Here, the high spread population has
more subpopulations with both high and low initial cell densities, as compared to
the low spread condition. As such, the high density subpopulations will be the first
to reach the critical threshold to allow for BlaMs production, which in turn benefits
the population allowing them to grow faster. The increased number of high initial
density subpopulations observed in the high spread condition causes this condition
to outcompete the low spread condition. These results demonstrate that enhanced
variability during seeding of subpopulations serves to increase the benefit of placing
public good production under the regulation of quorum sensing.

Finally, the authors used their engineered bacteria to explore the optimal cell
density at which to activate quorum sensing regulated production of BlaMs. Initially,
they explored this concept using a previously developed metric, sensing potential (v)
[29]. v is a lumped metric that determines the density at which quorum sensing is
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activated; the higher value of v, the lower the cell density at which quorum sensing is
activated [29]. Without stress (i.e., 6-APA), their model predicts that overall growth
increases with decreases in v. That is, the OFF condition (i.e., vD 0) leads to the
highest growth in the absence of stress. However, with the inclusion of stress,
overall growth is a biphasic function of v, which leads to an optimal value of v
(called vopt) where growth is highest (Fig. 12.4d). This relationship results from two
opposing parameters; cost, which increases with activation at lower cell density (i.e.,
high values of v) and benefit, which decreases with activation at high cell density
(i.e., low values of v). The authors verified the model predictions experimentally
by varying the concentration of IPTG in the medium, which served to control the
cell density at which the production of BlaMs was activated. They observed that the
highest growth was achieved at an intermediate concentration of IPTG. The authors
note that this finding has implications in the use of quorum sensing disrupters for
the control of pathogens that use such systems to regulate pathogenicity, such as
Pseudomonas aeruginosa [30] and Vibrio cholera [31]. The authors caution that
adhoc manipulation of the quorum sensing threshold may increase total bacterial
growth, and could thus exacerbate a bacterial infection.

While quorum sensing regulated production of public goods appeared to be
advantageous under several conditions, the mechanisms by which this cooperative
behavior (such as the production of a public good) is maintained in a population
remain relatively unexplored. In general, “cheating” individuals can infiltrate
populations of cooperating cells. These “cheaters” take advantage of the cooperative
behavior but do not pay the “cost” of cooperation. In microbial systems, a cost can
be associated with the energy and building blocks required to produce a public good.
As such, cheaters will often proliferate faster than the cooperating cells, and thus
could dominate a population over time. Nevertheless, it is apparent that cooper-
ators continue to be maintained within natural populations [32]. One particularly
puzzling aspect of such maintenance is Simpson’s paradox: the total proportion
of cooperators in any subpopulation is lower than cheaters, however when the
global population is considered (e.g., the summation of all subpopulations), the total
proportion of cooperators is higher than cheaters (Fig. 12.5a, [33]).

To investigate how Simpson’s paradox may arise in a microbial system, Chuang
et al. engineered two strains of E. coli: a cooperator strain and a cheater strain
(Fig. 12.5b, [34]). The cooperator strain contains a circuit that consists of the
constitutive PR promoter that drives the expression of rhlI (and a GFP for strain
identification), the PlacI

q promoter that drives the expression of the rhlI receptor
(RhlR) and rhlI, which synthesizes the AHL C4HSL. The C4HSL responsive Prhl

promoter drives the expression of catLVA, which confers the ability to resist the
antibiotic chloramphenicol. The cheater strain contains both the PlacI

q promoter that
drives rhlR and the Prhl promoter that drives catLVA but it does not synthesize
C4HSL. Therefore, the cheater strain does not cooperate (i.e., does not synthesize
the public good C4HSL) but can take advantage of the C4HSL produced from
the cooperator strain. In addition, the metabolic burden associated with producing
C4HSL and GFP reduces the growth rate of the cooperator strain. The necessary
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Fig. 12.5 A synthetic system realizes Simpson’s paradox and reveals a unique effect of extreme
dilution. (a) The overall logic of Simpson’s paradox; the total proportion of cooperators (blue cells)
is lower in all subpopulations [relative to cheaters (red cells)]. However, when the global population
is considered, the global proportion of cooperators is higher than cheaters. (b) A synthetic system
to realize Simpson’s paradox. Cooperator cells contain a PR promoter that drives the expression of
rhlI (synthesizes C4HSL, orange circles) and a green fluorescent protein. This circuit causes the
cooperator strain to pay the “cost” for cooperation. Both the cooperator and cheater cells contain a
Prhl promoter that drives the expression of catLVA, which degrades the antibiotic chloramphenicol
(Cm, blue diamonds) and allows cells growth. (c) Multiple rounds of dilution (i.e., dispersal)
and pooling served to increase the overall proportion of cooperator cells from 10 to 95 %. As
such, extreme dilution may represent a mechanism by which cooperators are maintained within a
population consisting of cooperators and cheaters

conditions for studying Simpson’s paradox, reduced growth by cooperators and
access to a public good by cheaters, are thus achieved using these two strains.

To determine if Simpson’s paradox could be realized by these engineered
bacterial strains, the authors examined the growth of ten different cultures, each
initiated from a different proportion of cooperator and cheater populations. As
predicted by a mathematical model and determined experimentally, the global
proportion of cooperators increased relative to the global population of cheaters,
despite the fact that the proportion of cooperators was lower than cheaters in each
subpopulation. As such, these two strains could indeed realize Simpson’s paradox.

Previous studies have indicated that an important mechanism by which Simp-
son’s paradox can be maintained in natural populations is through repeated for-
mation of new populations. This may be realized through dispersal of individuals



240 R.P. Smith et al.

from an established population and may lead to a sufficiently large variance in
subpopulation initial density. Here, the composition of each group follows a Poison
distribution, which will result in stochastic fluctuations in the initial composition of
each group. To test this hypothesis experimentally, the authors diluted a population
containing equal proportions of cooperators and cheaters into 288 subpopulations.
The number of initial bacteria in each population followed a Poison distribution
with a value of �, where a smaller value of � indicated a smaller average number of
initial bacteria. After growing all of the subpopulations for 12 h, the authors pooled
the subpopulations and determined the proportion of cooperators. They observed
that for a sufficiently low value of �, Simpson’s paradox could be maintained.
However, if � was sufficiently high, the global proportion of cooperators was lower
than that of cheaters, thus failing to maintain Simpson’s paradox. Interestingly,
the authors performed the aforementioned dilution experiment starting with an
initial population containing 10 % cooperators and a value of � of �2 (average
of two cells initiating each subpopulation) for several rounds. After five rounds of
dilution, the authors observed that 95 % of global population consisted of cooperator
cells (Fig. 12.5c). As such, the authors demonstrated that extreme dilution favors
the maintenance of cooperation in their microbial population, which may explain
how cooperation is maintained in the face of natural selection, which would favor
cheaters.

One of the most widely studied relationships with respect to the maintenance of
a cooperative behavior is Hamilton’s rule [32], which has the general equation of
br > c. Here, b represents the benefit associated with a public good, c represents
the cost associated with the production of the public good, and r represents the
relatedness between the individuals in the population. In essence, the equation
predicts that cooperators will be maintained in a population if the benefit and/or
relatedness of the population outweigh the cost of producing a public good [32].

Building on their 2009 study, Chuang et al. used their previously engineered
cooperator and cheater strains to examine the interplay between the parameters
in Hamilton’s rule [35]. Modification of their experimental setup and gene circuit
allowed them to individually modulate the parameters of Hamilton’s rule. By chang-
ing the proportion of cooperators in a population consisting of both cooperators and
cheaters, the authors could modulate the parameter r, where a higher proportion of
cooperators would correspond to a higher value of r. To modulate c, the authors
engineered the cooperator strain to lack the argH gene, thus rendering the strain
auxotrophic with respect to arginine. As such, the authors could control the growth
rate of this cooperator strain by tuning the concentration of arginine in the medium.
Here, lower concentrations of arginine would lead to a slower growth rate, which
was verified experimentally and represented an additional cost (c) of being a
cooperator. Finally, to modulate b, the authors engineered the cooperator and cheater
strains to contain an additional copy of the RhlR receptor gene. The extra copies of
rhlR would cause the cells to respond more readily to any C4HSL in the medium,
ultimately serving to increase the benefit for a given quantity of C4HSL.
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Fig. 12.6 Using synthetic cooperator and cheater strains to explore Hamilton’s rule, b r > c, where
b represents benefit of the public good, r represents the relatedness of the individuals, and c
represents the cost of cooperation. (a) Using a modified cooperator strain shown in Fig. 12.5
(an arginine auxotroph), the authors explored the effect of modulating the cost parameter (c)
in Hamilton’s rule. When the cost of cooperation was sufficient high (low concentration or
arginine in the medium, red shaded area), the proportion of cheaters was higher than that of
cooperators. However, with a sufficiently low cost (high concentration of arginine in the medium,
green shaded areas), the total proportion of cooperators was higher than cheaters. (b) Using a
modified cooperator strain (extra copy of RhlR receptor protein, which served to increase b),
the authors observed an unexpected consequence of Hamilton’s rule. Here, increasing b (red
shaded area) served to decrease the proportion of cooperator cells such that the cheater population
dominated. The authors suggest that unexpected nonlinearities within Hamilton’s rule resulted in
this unexpected observation. Red area of the circle represents the proportion of cheaters. Blue area
of the circle represents the proportion of cooperators

Using their newly engineered �argH auxotrophic strain, the authors modulated
the c parameter in Hamilton’s rule by manipulating the concentration of arginine in
the growth medium. The authors grew several subpopulations of �argH cooperators
and cheaters, where each subpopulation had a different initial proportion of
cooperators ranging from 10 to 95 %. They observed that as the concentration
of arginine in the medium was decreased (i.e., increasing c), the proportion of
cooperators decreased in the culture. Therefore, below a critical amount of arginine,
the proportion of cooperators decreased (Fig. 12.6a). The authors explained this
result is based on Hamilton’s rule. As arginine decreased, the cost associated with
cooperation (c) increased. Eventually the value of c exceeds the value of br (i.e.,
br� c), thus causing the proportion of cooperators to decrease in the subpopulation.
Next, the authors explored the consequences of modulating the b parameter of
Hamilton’s rule by growing subpopulations of cooperators and cheaters harboring
the additional copy of the RhlR receptor. Interestingly, the authors observed that the
additional copy of this receptor, which was intended to increase b, in fact reduced
b and resulted in a decrease in the proportion of cooperator cells (irrespective
of the initial proportion of cooperators in the subpopulation, Fig. 12.6b). The
authors suggest that this counterintuitive result stems from the nonlinear relationship
between growth and cooperator proportion when an additional copy of rhlR is
present. This in turn caused b to be dependent on both the number of copies
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of rhlR genes, as well as the initial proportion of cooperators. As such, the
authors were able to uncover a unique relationship that could not be predicted
simply from measuring b, c, and r alone. Instead, in order to truly understand
the relationship between cooperators and cheaters in a microbial system, one must
consider multiple scenarios or parameters that can be varied, such as the initial
proportion of cooperators in a population or the specific biochemistry of each of
the individuals in the population.

While the secretion of a public good represents a form of altruism, the evolution-
ary constraints that lead to more extreme forms of cooperation, such as altruistic cell
death, remain relatively unexplored. Altruistic cell death is particularly puzzling
as there is no direct benefit to the cells that undergo death. In 2012, Tanouchi
et al. aimed to unravel the conditions that made altruistic death advantageous for
a population of bacteria (Fig. 12.7a, [36]). The authors implemented a gene circuit
in E. coli consisting of two modules: a suicide module and a public good module
(Fig. 12.7b). The suicide module is activated via 6-APA, a beta-lactam antibiotic
that causes murein, a component of the cell wall, to break down and generate the
cell wall intermediate aMur-Tp inside of the cell. aMur-Tp activates the PampC

promoter through its transcriptional regulator AmpR. In their circuit, activation
of the PampC promoter causes transcription of the E lysis gene, originally isolated
from bacteriophage ˆX174. In the public good module, the Plac/ara-1 promoter
drives the expression of a non-secreted form of BlaM. The overall circuit logic
is as follows: sufficient murein degradation by 6-APA activates the expression of
the E lysis gene, which leads to cell lysis. This, in turn, releases the public good
BlaM, which degrades 6-APA and serves to counteract the negative effects of this
antibiotic and thus benefitting the remaining population of cells. Initially, the authors
sought to determine if their circuit design could function to create altruistic cell
death. The authors grew bacteria containing their synthetic circuit (termed PAD for
“programmed altruistic death”) in the presence of 6-APA. In addition, the authors
used a control strain (termed NPD for no programmed death), which lacked the
E lysis gene. As such, NPD could not undergo lysis, but continued to produce non-
secreted BlaM. When both strains were grown in the presence of 6-APA, there was
an initial significant decrease in cell density of the PAD strain (as compared to
the NPD strain), owing to E lysis gene mediated cell lysis. However, after 18 h
of growth, the cell density of the PAD strain surpassed that of the NPD strain
(Fig. 12.7c). This experiment served as a proof-of-principle that altruistic death can
be advantageous to a population of single-celled organisms.

Guided by mathematical modeling, the authors then explored the conditions
that would lead to optimality in altruistic cell death. Initially, the authors explored
the effects of modulating two key parameters, the rate of cell death (which could
be increased by increasing the rate of E lysis gene synthesis via changes in the
ribosomal binding sequence) and the rate of public good production (which could
be increased by increasing the concentration of IPTG in the medium). Their model
predicts a key tradeoff with respect to the rate of cell death. For a given rate of
public good production, a low rate of cell death leads to insufficient release of
BlaM, which causes total population extinction as insufficient 6-APA is degraded.
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Fig. 12.7 A synthetic system to explore optimality in altruistic cell death. (a) The overall logic of
the synthetic system. Engineered bacteria (red ovals) produce a public good (BlaM, blue triangles)
that can only be released from the cells via cell lysis (i.e., altruistic death). The public good can
degrade the antibiotic 6-APA, which can cause cell death by activating the E lysis gene. Cell lysis
via 6-APA results in the release of public good, which causes degradation of 6-APA. This causes
the remaining unlysed cells to grow. (b) The growth advantage produced by altruistic cell death.
Without altruistic cell death (NPD strain, blue line), the increase in cell density was negligible
following the addition of 6-APA. However, with altruistic cell death (PAD strain, red line), growth
initially decreased after the addition of 6-APA due to altruistic cell death via the E lysis gene.
However, after a given time, the remaining cells increased in density (over that of the NPD strain)
owing to the release of BlaM and the degradation of 6-APA. (c) Optimality in altruistic cell death
depends upon two key variables; the rate of cell death and the rate of public good production
(BlaM). As the rate of cell death increases, the rate of public good production that leads to the
greatest increase in cell density also increases

However, a high rate of cell death does not allow for a sufficiently high population of
bacteria to benefit from the release of BlaM, thus leading to lower growth rates of the
surviving bacteria. Interplay between these two parameters leads to an optimal level
of altruistic death, where the remaining population would grow the most. Using
variations of the PAD strain (each strain produced the E lysis gene at different
rates), the authors observed that increasing the rate of BlaM production caused the
rate of E lysis gene production, that leads to the highest amount of growth due to
altruistic cell death, to shift to higher levels (Fig. 12.7d). The authors suggested that
these dynamics were due to a unique cost–benefit tradeoff in the release of BlaM.
When BlaM production is low, fast death is not advantageous as insufficient BlaM
is released, and the remaining survivors do not benefit from its release. Conversely,
fast death at high BlaM production rates serves to increase the time during which
the survivors can benefit from the released BlaM, thus increasing the overall density
of the population in the long term.
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Interestingly, their model predicts that altruistic death can lead to a unique
phenomenon called the Eagle effect, which is defined as increased bacterial growth
at increasing antibiotic concentrations [37]. Guided by their mathematical model,
the authors predicted that increasing the synthesis rate of E lysis gene would lead
to a non-monotonic dependence of bacterial growth on 6-APA concentration. For a
sufficiently high synthesis rate of the E lysis gene, bacterial growth was predicted
to be highest at an intermediate concentration of 6-APA. Indeed, by increasing
the rate of the E lysis gene expression through modulation of ribosomal binding
sequences, the authors observed the Eagle effect using their engineered bacteria. The
implications behind these findings could be of great importance in understanding the
Eagle effect in the clinical setting [38] and have relevance in determining efficacious
antibiotic treatments.

In many biological systems, cooperation is essential for survival. Often, cooper-
ation may only be beneficial, and allow for survival, if the density of the population
is above a critical density threshold. Often referred to as an Allee effect [39], this
phenomenon is observed in invasive species [40], reintroduced species [41], the
spread of infectious diseases [42] and in antibiotic resistant bacteria [43]. The Allee
effect is often cited as a predominant factor that determines whether a population of
cooperative organisms can spread and survive or goes extinct. Previous theoretical
studies have indicated that dispersal, one of the primary drivers of spread, and
the Allee effect may regulate the spread of species [44, 45]. However, direct
experimental evidence of these predictions was lacking until Smith et al. created
engineered bacteria to have an Allee effect and, using these bacteria, experimentally
simulated spread in a synthetic ecosystem [46].

In their study, the authors created a synthetic circuit that couples survival to
cooperation, which was meditated through the AHL 3OC6HSL [46]. Their circuit
consists of a toxin module and a rescue module. In the toxin module, a Plac

promoter drives the expression of ccdB, which kills the cell. In the rescue module, a
Plac promoter drives the expression of luxR and luxI. Furthermore, the 3OC6HSL
dependent Plux promoter drives the expression of ccdA, which when expressed,
inhibits the ability of CcdB to kill the cells. The circuit logic allowing for the
Allee effect is as follows: at sufficiently low cell density, insufficient 3OC6HSL
is synthesized, which allows CcdB to kill the cells. At sufficiently high cell density,
sufficient 3OC6HSL is synthesized, which activates the expression of ccdA and
allows the population to grow. To test the circuit logic, the authors grew the
engineered bacteria with or without IPTG and varied their initial density. Without
IPTG, the engineered bacteria grew at all initial cell densities. However, with
IPTG, the engineered bacteria only grew if their initial cell density was above
�104 CFU/mL. Otherwise, the engineered bacteria died. As such, the authors
successfully engineered bacteria that had the fundamental property of the Allee
effect; a sufficiently high initial density of cells is required for growth and survival.

The authors then sought to determine how dispersal and the Allee effect dictate
spread and survival of their engineered bacteria. They established a theoretical and
experimental framework that included two types of patches: a source patch, which
contains an initial amount of engineered bacteria, and a target patch, which does
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not initially contain cells. Experimentally, these patches were realized by using two
different wells of a 96-well plate. Dispersal was achieved by moving a fraction of
the cells from the source patch to the target patch. Using this system, and guided by
mathematical modeling, the authors moved cells from the source patch to the target
patch at different dispersal rates (i.e., different fractions of bacteria) and quantified
growth in both patches. When the engineered bacteria were grown in the absence
of IPTG (circuit OFF), the engineered bacteria grew in both the source and target
patches regardless of the dispersal rate. However, when the engineered bacteria
where grown in the presence of IPTG (circuit ON), the authors observed that if
dispersal was too slow, growth did not occur in the target patch. Here, insufficient
cells were moved to the target patch (i.e., below the Allee threshold) and thus
the engineered bacteria could not grow. If dispersal was too high, growth did not
occur in the source patch. Here, dispersal removed too many cells from the source
patch, causing its density to drop below the Allee effect threshold, which resulted
in population extinction. Under both of these scenarios, spread did not occur as
the engineered bacteria failed to grow in both patches. Spread only occurred when
dispersal occurred at intermediate rates. Here, a sufficiently high density of cells
(i.e., above the Allee threshold) existed in both the source and target patches, thus
allowing the engineered bacteria to grow in both patches.

Interestingly, the authors observed that spread is also contingent upon the
number of target patches in the system. In theory, increasing the number of
patches that a population is dispersing to could make the spread of that species
more prolific; the more colonized patches, the greater the overall population size.
This was indeed the case for when the engineered bacteria were grown without
IPTG; increasing the number of target patches increased the total population size.
However, for a species with an Allee effect, this relationship between population
size and the number of target patches was not straightforward. Specifically, as
predicted by the authors’ mathematical model, increasing the number of target
patches contracts the range of intermediate dispersal rates that allow for successful
spread. Furthermore, the mathematical model predicts a non-monotonic relationship
between total population size and patch number where population size is maximized
at intermediate numbers of target patches. Indeed, these mathematical predictions
were confirmed experimentally using the authors’ engineered bacteria. As such, this
study served to reveal novel tradeoffs that govern the spread of cooperative species.

12.4 Conclusion

Herein, we have described several examples of where cell-to-cell communication,
engineered through quorum sensing, has led to the discovery of novel tradeoffs
and dynamics in ecological and evolutionary fields. As our ability to control
and modulate such cell-to-cell communication increases and diversifies, synthetic
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systems with increasing complexity are going to be created. These complex
synthetic systems will serve to further our ability to understand increasingly
complex ecological and evolutionary relationships, furthering our understanding of
the mechanisms and forces that shape our environment.

References

1. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet
11:367–379

2. Weber W, Fussenegger M (2012) Emerging biomedical applications of synthetic biology. Nat
Rev Genet 13:21–35

3. Smith R (2011) Design principles and applications of engineered microbial consortia. Acta
Hortic 905:63–69

4. Brenner K, You L, Arnold FH (2008) Engineering microbial consortia: a new frontier in
synthetic biology. Trends Biotechnol 26:483–489

5. Riccione KA, Smith RP, Lee AJ, You L (2012) A synthetic biology approach to understanding
cellular information processing. ACS Synth Biol 1:389–402

6. Tanouchi Y, Smith R, You L (2012) Engineering microbial systems to explore ecological and
evolutionary dynamics. Curr Opin Biotechnol 23:791–797

7. Payne S, Smith R, You L (2012) Quantitative analysis of the spatiotemporal dynamics of
a synthetic predator-prey ecosystem. In: Weber W, Fussenegger M (eds) Synthetic gene
networks. Humana Press, New York, pp 315–330

8. Gore J, Youk H, van Oudenaarden A (2009) Snowdrift game dynamics and facultative cheating
in yeast. Nature 459:253–256

9. Kerr B, Neuhauser C, Bohannan BJM, Dean AM (2006) Local migration promotes competitive
restraint in a host-pathogen ‘tragedy of the commons’. Nature 442:75–78

10. Koschwanez J, Foster K, Murray A (2011) Sucrose utilization in budding yeast as a model for
the origin of undifferentiated multicellularity. PLoS Biol 9:e1001122

11. Dunstan PK, Johnson CR (2005) Predicting global dynamics from local interactions:
individual-based models predict complex features of marine epibenthic communities. Ecol
Model 186:221–233

12. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199
13. You L, Cox RS, Weiss R, Arnold FH (2004) Programmed population control by cell–cell

communication and regulated killing. Nature 428:868–871
14. Dwyer DJ, Kohanski MA, Hayete B, Collins JJ (2007) Gyrase inhibitors induce an oxidative

damage cellular death pathway in Escherichia coli. Mol Syst Biol 3
15. Schaefer AL, Hanzelka BL, Parsek MR, Greenberg EP (2000) Detection, purification, and

structural elucidation of the acylhomoserine lactone inducer of Vibrio fischeri luminescence
and other related molecules. In: Methods in enzymology. Academic, New York, pp 288–301

16. Balagadde FK, You L, Hansen CL, Arnold FH, Quake SR (2005) Long-term monitoring of bac-
teria undergoing programmed population control in a microchemostat. Science 309:137–140

17. Balagadde FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, Quake SR, You L (2008)
A synthetic Escherichia coli predator–prey ecosystem. Mol Syst Biol 4

18. Murray J (2002) Mathematical biology, 3rd edn. Springer, New York
19. Song H, Payne S, Gray M, You L (2009) Spatiotemporal modulation of biodiversity in a

synthetic chemical-mediated ecosystem. Nat Chem Biol 5:929–935
20. Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s

biogeochemical cycles. Science 320:1034–1039
21. Reichenbach T, Mobilia M, Frey E (2007) Mobility promotes and jeopardizes biodiversity in

rock-paper-scissors games. Nature 448:1046–1049



12 Engineering Cell-to-Cell Communication to Explore Fundamental. . . 247

22. Hart BA, Zahler SA (1966) Lytic enzyme produced by Myxococcus xanthus. J Bacteriol
92:1632–1637

23. Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF (2008) Defined spatial structure stabilizes a
synthetic multispecies bacterial community. Proc Natl Acad Sci 105:18188–18193

24. Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing rhizobia. Microbiol
Mol Biol Rev 67:574–592

25. Diggle SP, Griffin AS, Campbell GS, West SA (2007) Cooperation and conflict in quorum-
sensing bacterial populations. Nature 450:411–414

26. Darch SE, West SA, Winzer K, Diggle SP (2012) Density-dependent fitness benefits in
quorum-sensing bacterial populations. Proc Natl Acad Sci U S A 109(21):8259–8263

27. Pai A, Tanouchi Y, You L (2012) Optimality and robustness in quorum sensing (QS)-mediated
regulation of a costly public good enzyme. Proc Natl Acad Sci 109:19810–19815

28. Keller L, Surette MG (2006) Communication in bacteria: an ecological and evolutionary
perspective. Nat Rev Microbiol 4:249–258

29. Pai A, You L (2009) Optimal tuning of bacterial sensing potential. Mol Syst Biol 5:286
30. Smith RS, Iglewski BH (2003) P. aeruginosa quorum-sensing systems and virulence. Curr

Opin Microbiol 6:56–60
31. Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ (2002) Quorum-

sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci
99:3129–3134

32. Hamilton W (1963) The evolution of altruistic behavior. Am Nat 97:354–356
33. Simpson EH (1951) The interpretation of interaction in contingency tables. J R Stat Soc Ser B

(Stat Methodol) 13:238–241
34. Chuang JS, Rivoire O, Leibler S (2009) Simpson’s paradox in a synthetic microbial system.

Science 323:272–275
35. Chuang JS, Rivoire O, Leibler S (2010) Cooperation and Hamilton’s rule in a simple synthetic

microbial system. Mol Syst Biol 6
36. Tanouchi Y, Pai A, Buchler NE, You L (2012) Programming stress-induced altruistic death in

engineered bacteria. Mol Syst Biol 8
37. Zimbelman JD, Palmer AL, Todd JK (1998) Failure of beta-lactam antibiotics (Eagle effect)

and superiority of clindamycin in the treatment of invasive Streptococcus pyogenes infections.
Pediatr Res 43:161

38. Stevens DL, Gibbons AE, Bergstrom R, Winn V (1988) The Eagle effect revisited: efficacy of
clindamycin, erythromycin, and penicillin in the treatment of Streptococcal myositis. J Infect
Dis 158:23–28

39. Allee W, Emerson A, Park O, Park T, Schmidt K (1949) Principles of animal ecology. W. B.
Saunders, Pennsylvania

40. Tobin PC, Berec L, Liebhold AM (2011) Exploiting Allee effects for managing biological
invasions. Ecol Lett 14:615–624

41. Deredec A, Courchamp F (2007) Importance of the Allee effect for reintroductions. Ecoscience
14:440–451

42. Gilligan CA, van den Bosch F (2008) Epidemiological models for invasion and persistence of
pathogens. Annu Rev Phytopathol 46:385–418

43. Tan C, Smith R, Srimani J, Riccione K, Prasada S, Kuehn M, You L (2012) The inoculum
effect and band-pass bacterial response to periodic antibiotic treatment. Mol Syst Biol 8:617

44. Fath G (1998) Propagation failure of traveling waves in a discrete bistable medium. Physica D
116:176–190

45. Jonsen ID, Bourchier RS, Roland J (2007) Influence of dispersal, stochasticity, and an Allee
effect on the persistence of weed biocontrol introductions. Ecol Model 203:521–526

46. Smith R, Tan C, Srimani J, Pai A, Riccione K, Song H, You L (2014) Programmed Allee
effect results in a tradeoff between population spread and survival. Proc Natl Acad Sci U S A
111:1969–1974



Index

A
Accesory gene regulator (Agr), 163, 165,

166, 168, 169, 172–177, 180,
181, 186

Acylhomoserine lactone (AHL), 106, 116,
206, 228

Agr. See Accesory gene regulator (Agr)
Agrobacterium tumefaciens, 49, 168
AHL. See Acylhomoserine lactone (AHL)
Allee effect, 244, 245
Altruistic cell death, 5, 242, 243
Antibiotic(s), 5, 58, 71, 105, 107, 108, 112,

147, 148, 155, 205, 216, 222, 235,
236, 238, 239, 242–244

Autoinducer (AI), 1, 7, 20, 69, 83–100, 105,
123, 136

B
Bacterial communication, 51
Bimodal distribution, 40
Biodiversity, 57, 232–234
Biofilm, 1, 7, 54, 86, 105, 137, 190,

205–223, 237
Bioluminescence, 1–3, 7, 9, 10, 32, 33, 48, 84,

86, 114, 126, 130, 131, 134–136,
163, 165, 166

Biophysics, 53–75
Bioremediation, 57–58
Biosurfactant, 189–201
Bistability, 4, 20, 41, 85, 123, 166–168, 170,

186, 211, 216, 218
Burst size, 16, 39, 42–44

C
Cell-cell communication, 48, 53–75
Cell death, 5, 55, 152, 228, 229, 242, 243
CFU, 244
Clostridium

C. acetobutylicum, 169, 171, 172
C. botulinum, 147, 172
C. difficile, 172

Coarse-grained behavior, 157
Cocci, 4, 59, 151, 152, 155–157, 160, 161
Coffee ring effect, 200
Colored noise, 22
Competition, 5, 58, 134, 145, 148–159,

161, 234
Confinement, 71, 74, 123, 124, 130, 137
Consortium, 57, 58
Cooperation, 2, 5, 55, 94, 96, 98, 100, 235–245
Cooperative behavior, 145, 238, 240
Coordination, 40, 42, 206, 207, 211, 214

D
Deposition, 199
Detoxification, 88
Dichotomous noise, 25
Differentiation, 56, 66, 147, 191, 201, 206
Diffusion

constant, 137, 149
equation, 61, 96, 125, 126, 140
sensing (DS), 68, 124–130

Dispersal, 67, 232, 237, 239, 244, 245
Division of work, 95
DNA sequencing, 152
Dosage compensation, 12–14

© Springer ScienceCBusiness Media New York 2015
S.J. Hagen (ed.), The Physical Basis of Bacterial Quorum Communication, Biological
and Medical Physics, Biomedical Engineering, DOI 10.1007/978-1-4939-1402-9

249



250 Index

E
Eagle effect, 244
Ecological function, 3, 84–88
Ecology, 5, 53, 54, 75, 91, 205–223,

227–246
Efficiency sensing (ES), 3, 86–88, 124,

126, 163
Enterococcus faecalis, 172
Epigenetic memory, 5, 216–221
EPS. See Extracellular polymeric secretions

(EPS)
ES. See Efficiency sensing (ES)
Escherichia coli (E.coli), 28, 33, 67, 69, 71,

138, 147, 189, 193, 207–209, 211,
228–231, 238, 242

Evolution, 5, 54, 73, 88, 125, 194–197,
216–218, 220, 227–246

Evolutionary stability, 85, 100
Exponential phase, 28, 37, 152
Extracellular polymeric secretions (or

substances) (EPS), 3, 62, 68,
105–116, 205, 206, 221

F
Feedback, 2, 10, 20, 73, 84, 129, 155,

163–187, 207
Fingering instability, 199
First passage time, 42–44, 47
Flagellin, 152
Fluctuations, 2, 7, 15, 19–23, 27, 29, 31–33,

36, 39, 44–48, 50, 170, 185, 216,
217, 221, 240

G
Gene circuit, 207, 209, 227–231, 235, 240,

242
Gene expression noise, 33, 39, 50
Gene regulation, 1, 2, 64, 70, 71, 87, 90,

94, 125, 138, 141, 163, 165, 166,
168–170

Gene regulation network, 163, 165, 166,
168–170

Gene engineering, 222
Gillespie, 29, 36, 47
Gradient, 4, 54, 60, 61, 66–71, 91–93, 95, 97,

108, 113, 125, 137, 177, 192–196,
201, 206, 214–216, 221

Gram negative, 8, 21, 28, 83, 112, 125,
163–168, 170, 171, 176–180,
189, 207

Gram positive, 28, 58, 84, 125, 147, 163–166,
171–176, 189

H
Hamilton’s rule, 240, 241
Heterogeneity, 20, 28–33, 109, 110, 113,

186, 192
Hfq, 10, 14
High cell density, 8–13, 15, 164, 229,

235–238, 244
Human microbiome, 59
Hydrogel, 70, 109, 111, 206, 208–212,

215, 222
Hysteresis, 85, 123, 129, 167

I
Information, 1, 3, 15, 16, 20, 32, 70, 91, 94, 95,

99, 105, 109, 114, 115, 123–142,
145, 146, 176, 206, 217

Information processing, 146
Inhibited growth, 150–152
Inhibition, 66, 148–152, 154, 168, 169,

171, 177
Interfacial, 190, 193
Inverse proxies, 90

K
Killing factor, 152, 153
Kinase, 8–11, 15, 16, 64, 134

L
Lactobacillus plantarum, 172
lasIR, 168
Live-cell lithography, 206–209, 222
Locality, 85, 96–99
Low cell density, 8–13, 21, 229, 237, 244
Luminescence, 8, 10–13, 85, 88–90, 130,

131, 170
Luminescence profile, 11–13
Lux, 2, 33, 34, 126, 134–136, 139, 170,

180, 186, 207, 209–212, 214,
216, 221

LuxI, 2, 20–23, 26, 27, 33–36, 39, 41–44,
48–50, 84, 124, 126, 130, 131,
134, 136, 138, 139, 164, 167, 207,
210–212, 216, 220, 228, 229, 231,
232, 235, 236, 244

LuxIR, 163, 164, 166, 167, 169, 171, 173,
176–181, 186

LuxO, 8–11, 14–16, 134, 180–185
Lux operon, 33, 34, 134, 210
LuxR, 2, 8, 20, 84, 124, 145, 164, 207, 228



Index 251

M
Marangoni, 4, 193–198, 200
Mass transport, 73, 206, 214, 216
Mathematical model, 4, 85, 86, 157–158, 165,

171–186, 227, 232–235, 239, 242,
244, 245

Microbial communities, 2, 53–55, 57–70,
72–75

Microchemostat, 229–232
Microcolonies, 91, 94, 96, 97, 205, 221
Microdomains, 111, 116
Microdroplets, 71
Microfluidics, 70
Modeling, 2, 4, 5, 7–17, 19, 22–23, 26, 32, 36,

49, 157–158, 195–199, 227, 233,
242, 245

Morphotype, 147–149, 152, 154, 159
Motility, 1, 4, 67, 165, 190, 192, 199, 201, 206,

232–234
Multicellular organization, 95
Multiple AI systems, 95
Multispecies interactions, 74
Mutual information, 15, 16, 133–136, 141

N
Noise, 2, 15, 19, 66, 129, 170, 206
Noise regulation, 32, 33
Nonlinearity, 4, 123, 129
Nutrients, 3, 49, 54, 55, 60, 71, 72, 85, 90–95,

98, 99, 109, 123, 128, 145, 147–149,
153, 155, 157, 158, 161, 190–192,
195, 196, 206, 209, 221, 222,
229, 234

O
Optical tweezers, 4, 206, 208
Optogenetics, 69, 71
Oscillations, 166, 228–232
Overcrowding, 145, 155, 161
Oxidative stress, 3, 88

P
Paenibacillus dendritiformis, 4, 69, 146–154,

159–161
Pattern formation, 69, 192, 201
Phenotype, 1, 4, 12, 13, 21, 40, 48, 49, 93, 94,

152, 155, 157, 160, 161, 169, 206,
215, 221, 222

Phenotypic landscape, 20, 21, 44–48, 50
Phenotypic switching, 155–157, 161
Phosphatase, 8–11, 15, 16

Physico-chemical, 91, 109, 192, 193, 201
Population density control, 228
Precision, 2, 20, 21, 32, 40–44, 47–49, 130,

140, 141, 208
Predator-prey, 5, 231–233
Prior distribution, 135
Pseudomonas aeruginosa, 28, 33, 54, 58,

64, 67, 69, 93, 95, 99, 109–112,
124, 125, 138, 167, 168, 170, 189,
191–194, 199, 200, 208, 222, 238

Public goods, 3, 5, 87, 90, 235–243
Push/pull control, 93, 99

Q
Quorum sensing, 1, 7–17, 19–51, 55, 85,

105–116, 123–142, 163–187, 189,
206, 228

R
Reaction-diffusion, 69, 96, 113, 195, 196
Reaction-diffusion equation, 96
Receivers, 10, 60, 61, 85, 110, 206, 207,

209–220, 222, 223
Regulatory network, 1, 7, 12–16, 34, 38, 41,

123, 129, 132
Response regulator, 8, 10, 11, 64, 65, 169, 171,

180, 182, 186
Rhamnolipids, 189, 193, 194
Rod-like, 155

S
Self-organization, 147
Self-regulation, 157–158
Sibling colonies, 4, 148–157, 159
Sibling lethal factor, 152
Signaling factor, 54, 57, 106, 149
Signal transduction, 2, 7–17, 64, 146, 186
Simpson’s paradox, 238–240
Sinorhizobium meliloti, 141
Small RNA, 8, 10
Solubility (of an autoinducer), 137
Solventogenesis, 169, 171
Spatial patterns, 66, 70, 93
Spatial range, 137–140
Spatial structure, 2, 53–75, 91, 99
Spatiotemporal dynamics, 2
Spatiotemporal patterns, 71
Sporulation, 147, 151, 158, 160, 161, 165, 169,

172, 237
Spreading, 4, 30, 126, 133, 196–199, 201



252 Index

Stability (of an autoinducer), 47, 85
Staphylococcus

S. aureus, 27, 108, 110, 165–169, 172,
173

S. epidermidis, 172
Stationary phase, 12, 13, 28, 106, 109, 161
Steady state, 30, 37, 40–43, 49, 64, 65, 157,

160, 166–168, 172, 174, 176, 178,
183, 184, 228–230

Stochastic bifurcation, 46
Stochasticity, 2, 20, 21, 31–33, 43, 48, 50, 51,

130, 141, 206, 207
Stochastic simulation, 30, 31, 39, 40, 214, 217,

219, 220
Stochastic stabilization, 47, 50
Stress, 3, 29, 54, 88, 90, 91, 93, 145–148,

153, 155, 158, 196, 197, 205, 235,
236, 238

Stress response, 90–95
Subtilisin, 4, 147, 152–154, 157–160
Surface activity, 189
Surface tension, 153, 192–196, 198, 200, 201
Surface translocation, 190, 192, 196
Surfactant, 4, 189–201
Swarming, 4, 147, 156, 165, 190–199, 201
Symbiosis, 55, 93
Synchronization, 21, 48, 50, 141, 216
Synthetic biology, 5, 163, 166, 207, 227, 235
Synthetic ecosystems, 244

T
Temporal patterns, 113, 138–140
Theoretical modeling, 8
3D biofilm model, 108, 206
Timing, 4, 10, 171, 172, 179, 184, 186, 212,

214, 215, 218, 230
Toxin, 1, 75, 153–154, 228, 229, 232, 244
Toxin/antitoxin system, 232
Transcriptional bursting, 217
Transcriptional noise, 21, 22, 31, 48
Transmitters, 206, 207, 209–220, 222, 223

V
Variability, 5, 33, 45, 49, 50, 130, 171, 207,

221, 237
Vesicles, 112, 115, 125
Vibrio

V. cholerae, 2, 9, 12–14, 165, 171, 180–186
V. fischeri, 20, 32, 33, 48, 84, 88, 90, 91,

94, 95, 124, 126, 130, 131, 134–136,
138, 164, 166–168, 170, 180–186,
207, 211, 228

V. harveyi, 2, 8–16, 33, 48, 130, 134, 135,
165, 170, 171, 180–186

W
Wetting, 192, 196


	Contents
	Contributors
	1 Introduction
	References

	2 Modeling of Signal Transduction by the Quorum-Sensing Pathway in the Vibrios
	2.1 Introduction
	2.2 Signal Transduction Network
	2.2.1 Core Motifs
	2.2.2 Feedback Loops

	2.3 Modeling Approaches
	2.3.1 Population Level Models
	2.3.2 Single Cell Analysis

	2.4 Conclusion
	References

	3 Stochastic Effects in Quorum Sensing
	3.1 Introduction
	3.2 Diffusion and Noise
	3.2.1 Modeling the LuxI mRNA Leaky Dynamics
	3.2.2 Null-intrinsic Noise Approximation
	3.2.3 QS Switch at the Onset: Parameter Values
	3.2.4 Passive versus Active Transport in QS
	3.2.5 Dynamics and Population Heterogeneity driven by Diffusion
	3.2.6 Total Noise in QS Communication Lacking Autoinduction

	3.3 Non-stationary Signaling, Network Structure, and Noise
	3.3.1 Synthetic Strains: A LuxR/LuxI System with No Frills
	3.3.2 Bulk and Single-Cell Approaches: Cell Growth, Division, and External Dilution Protocol
	3.3.3 Noise Intensity Regulation: Burst Size
	3.3.4 LuxR Noise Levels and the Induction Time Control the Features of the QS Switch
	3.3.5 Activation Time Statistics: QS Cells Jump on the Bandwagon
	3.3.6 Solving a Noisy Mystery: The Fluctuations Modify the Phenotypic Landscape

	3.4 Discussion
	References

	4 Spatial Structure of Microbes in Nature and the Biophysics of Cell –Cell Communication
	4.1 Introduction to Microbial Structure
	4.2 Microbial Structures in Nature
	4.2.1 Structures in the Environment
	4.2.1.1 Water
	4.2.1.2 Soil
	4.2.1.3 Bioremediation

	4.2.2 Structures in the Human Body
	4.2.2.1 Wounds
	4.2.2.2 Mouth
	4.2.2.3 Gut


	4.3 Biophysics of the Spatial Structure of Microbial Communities
	4.3.1 Diffusion Sets a Length and Time Scale of Signal Exchange Between Microbes
	4.3.2 The Temporal Scale of the Biochemical Processes Involved in Cell–Cell Signaling
	4.3.3 Biophysical Detection Limits
	4.3.4 Gradients Over Short Length Scales
	4.3.5 Gradients Over Long Length Scales
	4.3.6 Efficient Signaling Can Sometimes Be Detrimental

	4.4 Engineering the Spatial Structure of Microbes in the Laboratory
	4.4.1 Controlling the Arrangement of Cells
	4.4.1.1 Engineering Cell Organization at the Macroscale
	4.4.1.2 Engineering Cell Organization at the Microscale

	4.4.2 Spatially Controlling Cellular Activity
	4.4.3 Manipulating Physical Parameters

	4.5 Next Steps in Understanding and Utilizing Spatial Regulation Within Microbial Communities
	4.5.1 Exploring the Spatial Structure of Real-World Niches, Environments, and Ecosystems
	4.5.2 Manipulating Spatial Structure in the Lab
	4.5.3 Solving Problems with Engineered Microbial Systems
	4.5.4 Concluding Remarks

	References

	5 Functionality of Autoinducer Systems in Complex Environments
	5.1 Introduction
	5.2 What Is the Ecological Function of AI Systems?
	5.3 Case Study: AI Regulation and Luminescence
	5.4 Integration of Stress Responses in AI Regulation and Its Purpose?
	5.4.1 Characteristics of the Control
	5.4.2 Nutrient Control in Different Situations
	5.4.3 Ecological Rationale

	5.5 Relevance of Locality
	5.6 Conclusions
	References

	6 Localization of Quorum Sensing by Extracellular Polymeric Substances (EPS): Considerations of In Situ Signaling
	6.1 Overview
	6.2 Signal Properties and Diffusion
	6.2.1 Measurements of Diffusion Within Biofilms
	6.2.2 Is There a Size Limit to Diffusion in a Biofilm?

	6.3 The EPS Matrix
	6.3.1 Constraining Diffusion in EPS Gels
	6.3.2 Packaging of Signals Within EPS

	6.4 Interactions of EPS and Signals
	6.5 Emerging Approaches for Understanding In Situ EPS/Signaling Interactions
	6.5.1 Raman/SERS/Raman-Confocal Microscopy

	References

	7 Swimming in Information? Physical Limits to Learning by Quorum Sensing
	7.1 Physical Interpretation of QS Behavior
	7.2 Possibilities and Limits in Diffusion Sensing
	7.3 Noise in Detection
	7.4 The Information Carried in a Signal
	7.5 Spatial Range and Sensing
	7.6 Conclusions
	References

	8 Interplay Between Sibling Bacterial Colonies
	8.1 Introduction
	8.1.1 Using Intelligence to Cope with Stress
	8.1.2 Paenibacillus dendritiformis

	8.2 Competition Between Sibling Colonies
	8.2.1 Early Observations
	8.2.2 Competition Between P. dendritiformis Colonies
	8.2.3 The Inhibited Region
	8.2.4 The Role of Subtilisin
	8.2.5 The Slf Toxin
	8.2.6 Reversible Phenotypic Switching Between Cocci and Rods

	8.3 Mathematical Modeling: Self Regulation
	8.4 Colonies of Closely Related Strains
	8.5 Summary
	References

	9 Mathematical Insights into the Role of Feedback in Quorum-Sensing Architectures
	9.1 Introduction
	9.2 The Role of Feedback in Quorum Sensing
	9.2.1 Defining Response Shape
	9.2.2 Tuning of Signal and Response Levels
	9.2.3 Noise Filtering
	9.2.4 Timing

	9.3 Investigating Feedback with Mathematical Models
	9.3.1 Gram-Positive Quorum Sensing: The agr System
	9.3.1.1 Model Formulation
	9.3.1.2 Numerical Investigations
	9.3.1.3 Analytical Investigations

	9.3.2 Gram-Negative Quorum Sensing: The luxIR System
	9.3.2.1 Model Formulation
	9.3.2.2 Numerical Investigations
	9.3.2.3 Analytical Investigations

	9.3.3 The V. harveyi and V. fischeri Quorum-Sensing Systems
	9.3.3.1 Model Formulation
	9.3.3.2 Numerical Investigations
	9.3.3.3 Analytical Investigations


	9.4 Summary
	References

	10 The Role of Biosurfactants in Bacterial Systems
	10.1 Bacteria, Quorum Sensing, and Surfactant Production
	10.2 Swarming as a Surfactant-Driven Fluid Flow
	10.3 Surfactant Concentration Gradients Induce Marangoni Flows
	10.4 Modeling the Swarming Process
	10.5 Drying of Bacterial Colonies
	10.6 Conclusion
	References

	11 Ecology of a Simple Synthetic Biofilm
	11.1 Introduction
	11.2 Creating Synthetic Biofilms with Live-Cell Lithography
	11.3 Forming a Com-Link in a Synthetic Biofilm
	11.4 Noise, Epigenetic Memory, and Synchronization
	11.5 Further Development of the Biofilm Model
	References

	12 Engineering Cell-to-Cell Communication to Explore Fundamental Questions in Ecology and Evolution
	12.1 Using Quorum Sensing Genetic Components to Engineer Cell-to-Cell Communication
	12.2 Engineering Cell-to-Cell Communication to Understand Competitive Dynamics in Ecology and Evolution
	12.3 Engineering Cell-to-Cell Communication as a Tool to Understand Cooperation
	12.4 Conclusion
	References

	Index

