
Chapter 6
An Overview of Stochastic Approximation

Marie Chau and Michael C. Fu

Abstract This chapter provides an overview of stochastic approximation (SA)
methods in the context of simulation optimization. SA is an iterative search
algorithm that can be viewed as the stochastic counterpart to steepest descent in
deterministic optimization. We begin with the classical methods of Robbins–Monro
(RM) and Kiefer–Wolfowitz (KW). We discuss the challenges in implementing SA
algorithms and present some of the most well-known variants such as Kesten’s
rule, iterate averaging, varying bounds, and simultaneous perturbation stochastic
approximation (SPSA), as well as recently proposed versions including scaled-
and-shifted Kiefer–Wolfowitz (SSKW), robust stochastic approximation (RSA),
accelerated stochastic approximation (AC-SA) for convex and strongly convex
functions, and Secant-Tangents AveRaged stochastic approximation (STAR-SA).
We investigate the empirical performance of several of the recent algorithms by
comparing them on a set of numerical examples.

6.1 Introduction

Stochastic approximation (SA) is a recursive algorithm that can be viewed as the
stochastic counterpart to steepest descent in deterministic optimization. SA was
introduced by Robbins and Monro in 1951 [32] to solve noisy root-finding problems
and was later applied to the setting of stochastic optimization by solving for the zero
of the gradient. The gradient-free setting was addressed by Kiefer and Wolfowitz
in 1952 [24]. SA is currently one of the most widely applicable and most useful
methods for simulation optimization.

Consider the stochastic optimization problem

min
x∈Θ

f (x), (6.1)
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where f (x) =E[Y (x,ξ )] is a performance measure, Y (x,ξ ) is a sample performance,
ξ denotes the stochastic effects, and Θ ⊆ Rd is a continuous parameter space. In
this case, the objective is to find a sequence {xn} that converges to a unique (local)
optimum

x∗ = argmin
x∈Θ

f (x), (6.2)

by using the recursion

xn+1 = ΠΘ

(
xn − an∇̂ f (xn)

)
, (6.3)

where ΠΘ (x) is a projection of x back into the feasible region Θ if x /∈ Θ , an > 0
is the step size or gain size, ∇̂ f (xn) is an estimate of the gradient ∇ f (xn), and xN

is the output, where N is the stopping time, which we denote by x∗N . The projection
operator is only required in the constrained setting. Moreover, the minimization
problem in (6.1) and (6.2) could easily be changed to maximization by changing the
sign of an in (6.3). The two classical methods, Robbins–Monro (RM) and Kiefer–
Wolfowitz (KW), estimate ∇ f (xn) using unbiased direct gradient estimates and
finite difference gradient estimates, respectively. Under certain conditions, RM and
KW have the respective asymptotic convergence rates O(n−1/2) and O(n−1/3).

Advances in SA have included the development of new algorithms, modifications
to existing ones, and new asymptotic and finite-time theory. Asymptotic conver-
gence properties of KW, RM and their variations have been a major research focus
(cf. [12, 14, 15, 28, 31, 41]). The original RM and KW algorithms apply to one-
dimensional problems, but they were later extended to the multidimensional case
[2]. Furthermore, the earlier conditions used to prove convergence for RM and
KW were relaxed to obtain almost sure convergence [2]. The estimate xn in (6.3)
was shown to be asymptotically normal [15] with the optimal convergence rate of
O(n−1/2) [8]. More recently, researchers have placed greater emphasis on finite-
time theory as well as error bounds on the difference between objective value at the
current estimate and the optimal objective value (i.e., E[ f (x∗N)− f (x∗)]), which the
next chapter treats in more detail.

Although recursion (6.3) is quite simple, the choice of step-size sequence {an},
gradient estimator ∇̂ f (xn), projection operator ΠΘ , and output x∗N each has a
significant impact on the performance of the algorithm.

We first discuss the influence of step-size sequence {an} on the finite-time
performance. It is widely known that the practical performance of the classical RM
and KW algorithms is highly dependent on the choice of {an} and often performs
poorly without tuning. The algorithm can experience a long oscillatory period if
the gain sequence {an} is “too large,” where the iterates jump back and forth
without approaching the optimum x∗, which can be seen in Fig. 6.1 (left graph),
or a degraded convergence rate if {an} is “too small” relative to the magnitude of
the gradient, where the iterates barely move, which can be seen in Fig. 6.1 (right
graph) (only x1 is labeled since the other iterates are in the same position).
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Fig. 6.1 Sensitivity of SA to step size an when an is “too large” relative to the gradient (left graph)
and when an is “too small” relative to the gradient (right graph)

One approach to tackle the sensitivity is to develop robust step-size sequences,
i.e., an adaptive step-size rule. The earliest attempt at adaptive step sizes was
Kesten’s rule, which can be applied to both RM and KW [23]. This step size only
decreases when there is a directional change in the iterates, i.e., (xn+1 − xn)(xn −
xn−1) < 0. The idea behind this adaptive step size is that, if the iterates move in
the same direction, there is reason to believe they are not in close proximity of the
optimum, so the momentum should not be decreased. Later, this idea was extended
by increasing the step size, as opposed to keeping it constant when the consecutive
errors in the estimates are of the same sign, to increase the speed to convergence
[37]. A recent attempt, called scaled-and-shifted Kiefer–Wolfowitz (SSKW) and
described in more detail in Sect. 6.4.1, adaptively adjusts the step-size sequence
{an} finitely many times during the course of a modified version of KW [4]. The
rationale behind the procedure is to increase the gain size so the iterates are able
to move from one endpoint to the other in the one-dimensional case (ideas are
analogous in the multidimensional case [3]), which ensures the step sizes are large
enough to make noticeable progress towards the optimum in finite-time. If the step
sizes {an} are too large, then they decrease at a faster pace during the recourse stage.
Another method used to select an adaptive step size is generating an approximation
of the inverse of the Hessian, which is the stochastic analogue to the deterministic
Newton–Raphson method [42]. According to Yakowitz et al. [45], “. . .the optimal
choice [of step-size sequence] involves the Hessian of the risk [objective] function,
which is typically unknown and hard to estimate.” Hessians have been estimated
using a set of finite difference gradient approximations [16], heuristics based on
quasi-Newton methods [22], and finite difference approximations using gradient
estimates [33, 42]. The choice of {an} has a significant impact on the finite-time
performance of the algorithm, which is quite difficult to characterize theoretically.
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Another approach to reduce the sensitivity of the estimated optimum to {an} is
to modify the output so that the algorithm puts less emphasis on the last iterate. The
underlying idea behind methods of this type is to take longer steps and incorporate
a subset of the iterates into the output to decrease the reliance on the last iterate.
Iterate averaging, which takes the average of all iterates as the output as opposed
to the final iterate, was the earliest proposal [31, 34]. This algorithm can be easily
implemented, is “robust,” since it is less sensitive to the initial step size choice,
and exhibits O(n−1/2) asymptotic convergence rate under appropriate conditions.
A generalization of iterate averaging, called robust stochastic approximation (RSA)
algorithm [30], uses the step-size sequence {an} for weighting the iterates, which
will be described in more detail in Sect. 6.4. Another generalization introduces a
proximity function into the objective function, which acts as a regularization term
to prevent the next iterate update xn+1 from being too far from xn. An example from
this class of algorithms called the accelerated stochastic approximation (AC-SA)
algorithm [20] is detailed in Sect. 6.4.

Asymptotic theory for SA initially only considered functions satisfying specific
global conditions; however, it is only necessary for the requirements to hold for
a compact set as long as it contains the optimum, so the projection operator is
particularly important in the constrained optimization setting. The feasible region Θ
must be large enough to increase the likelihood that x∗ ∈Θ , but enlarging the search
space may deteriorate the performance of the algorithm. Adaptively increasing the
search space still leads to provable convergence with an appropriate projection
operator, such as adaptively projecting the iterates onto an increasing compact
set [1].

The gradient estimate is also clearly central to any SA algorithm, and thus the
subject of stochastic gradients is treated in depth in Chap. 5. The most common
gradient estimate is obtained using finite differences, because it only requires
performance measures and no other additional information from the system. For
each dimension, the finite difference gradient estimate requires two performance
measures, and if the measurements are highly volatile, then the gradient estimates
can be noisy. Furthermore, finite difference estimates become computationally
expensive in high dimensions, since the cost grows linearly with the parameter
dimension [2]. Simultaneous perturbation stochastic approximation (SPSA) [38]
only requires two estimates of the objective function to approximate the gradient,
and the computational cost is independent of the dimension of the parameter
space. Recently, a new SA algorithm called Secant-Tangents AveRaged stochastic
approximation (STAR-SA) has been proposed, and it employs a hybrid gradient
estimator that combines direct gradient estimates with a symmetric finite difference
gradient estimate [5, 6].

The remainder of the chapter is organized as follows. We introduce the classical
stochastic approximation methods, Robbins–Monro (RM) and Kiefer–Wolfowitz
(KW) in Sect. 6.2. In Sect. 6.3, we present some of the most useful enhancements for
simulation optimization: Kesten’s rule, Ruppert–Polyak averaging iterates, varying
bounds, and SPSA. We describe four recent developments, scaled-and-shifted
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Kiefer–Wolfowitz (SSKW), robust stochastic approximation (RSA), accelerated
stochastic approximation (AC-SA) for convex and strongly convex functions,
and Secant-Tangents AveRaged (STAR) stochastic approximation in Sect. 6.4.
In Sect. 6.5, we present numerical experiments comparing KW-type algorithms
(original KW, KW with Kesten’s rule, SSKW), RM-type methods (original RM,
RM with iterate averaging, RSA, AC-SA), and single versus mixed gradients (RM,
KW, STAR-SA). Finally, we close with concluding remarks in Sect. 6.6.

6.2 Classical Methods

The classical RM and KW algorithms address unconstrained stochastic optimiza-
tions problems, so we consider the recursive scheme

xn+1 = xn − an∇̂ f (xn), (6.4)

which is identical to (6.3) with the exception of the projection operator.

6.2.1 Robbins–Monro (RM) Algorithm

The RM algorithm was introduced to solve the root-finding problem

M(x) = α

for x ∈ R, where M(x) is a monotone function and α ∈ R. However, it was later
applied to a specific case of root-finding in the stochastic optimization setting, where
the objective is to optimize a stochastic objective function f (x) by setting M(x) =
∇ f (x) and α = 0. RM solves this problem iteratively as in (6.3) by replacing ∇̂ f (xn)
with an unbiased estimator, and the output is taken as the last iterate, x∗N , where N
is the stopping time. However in RM, the direct gradient measurements are still
approximations to the actual gradient because of the presence of noise (∇̂ f (xn) =
∇ f (xn)+ εn, where εn is noise with zero mean). Given the appropriate parameters,
this algorithm converges asymptotically at a rate of O(n−1/2) [35].

Theorem 6.1 (Theorem 2 [32]). Assume ∇ f (x) has a unique root x∗ and suppose
∇̂ f (x) is an unbiased gradient estimator, i.e., ∇ f (x) = E[∇̂ f (x)]. If the sequence
{xn} is generated from (6.4) and the following conditions hold:

1. {an} is a sequence of positive constants such that ∑∞
n=1 an = ∞ and ∑∞

n=1 a2
n < ∞.

2. ∇ f (x) ≥ 0 for x > x∗ and ∇ f (x) ≤ 0 for x < x∗.
3. There exists a positive constant C such that P(|∇̂ f (x)| ≤C) = 1 ∀x.

Then xn
L2→ x∗ as n → ∞, where

L2→ denotes mean-squared convergence.

The most well-known conditions are restrictions on the gain sequence {an}.
Generally, an → 0 but ∑∞

n=1 an = ∞, which prevents the step size from converging
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to zero too quickly, so the iterates are able to make progress to x∗ and do not get
stuck at a poor estimate. The usual form is an =

θa
(n+A)α , where θa > 0, A ≥ 0 and

1
2 <α ≤ 1, with A= 0 and α = 1 as a commonly used choice. The objective function
f is assumed to have a global minimum with a bounded derivative.

6.2.2 Kiefer–Wolfowitz (KW) Algorithm

The KW stochastic approximation algorithm is referred to as a gradient-free or
stochastic zeroth-order method in the following chapter, since it only requires noisy
measurements of the function and does not require additional information on the
system dynamics or input distributions. The original KW iterative scheme

xn+1 = xn − an
Y (xn + cn,ξ+

n )−Y(xn − cn,ξ−
n )

2cn
, (6.5)

estimates the gradient using a symmetric finite difference gradient estimate, and
under certain conditions, KW can achieve an asymptotic convergence rate of
O(n−1/3). In addition, common random numbers (CRN) can be employed to
decrease the variance of estimates, and KW can achieve an asymptotic convergence
rate of O(n−1/2) in certain settings [25].

Theorem 6.2 (Theorem in [24]). Assume f (x) = E[Y (x,ξ )]. If the sequence {xn}
is generated from (6.5) and the following conditions hold:

1. Let {an} and {cn} be positive tuning sequences satisfying the conditions

cn → 0,
∞

∑
n=1

an = ∞,
∞

∑
n=1

ancn < ∞,
∞

∑
n=1

a2
nc−2

n < ∞.

2. f (x) is strictly decreasing for x < x∗, strictly increasing for x > x∗.
3. Var[Y (x,ξ )]< ∞ and the following regularity conditions hold:

1) There exist positive constants β and B such that

|x′ − x∗|+ |x′′ − x∗|< β =⇒ | f (x′)− f (x′′)|< B|x′ − x′′|.

2) There exist positive ρ and R such that

|x′ − x′′|< ρ =⇒ | f (x′)− f (x′′)|< R.

3) For every δ > 0 there exists a positive π(δ ) such that

|x− x∗|> δ =⇒ inf
δ
2 >ε>0

| f (x+ ε)− f (x− ε)|
ε

> π(δ ).

Then xn
p→ x∗ as n → ∞, where

p→ denotes convergence in probability.
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Condition 1 assures that the step size an does not converge to zero too fast, so the
iterates do not get stuck at a poor estimate. In addition, the condition restricts the
finite difference step size cn from decreasing too quickly, which constrains the noise
of the gradients. The second condition insures that there is a global optimum. The
first regularity condition requires f (x) to be locally Lipschitz in a neighborhood of
x∗; the second one prevents f (x) from changing drastically in the feasible region;
and the last one prohibits the function from being very flat outside a neighborhood of
x∗ so that the iterates approach the optimum. Although the KW algorithm converges
asymptotically, its finite-time performance is dependent on the choice of tuning
sequences, {an} and {cn}. If the current xn is in a relatively flat region of the function
and the an is small, then the convergence will be slow. On the other hand, if the xn

is located in a very steep region of the function and {an} is large, then the iterates
will experience a long oscillation period. If {cn} is too small, the gradient estimates
using finite differences could be extremely noisy.

KW has been extended to higher dimensions, and two common gradients
considered are symmetric differences and forward differences whose ith component
is given by

∇̂ fi(xn) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Y (xn + cnei,ξ+
n,i)−Y(xn − cnei,ξ−

n,i)

2cn
symmetric difference,

Y (xn + cnei,ξ+
n,i)−Y(xn,ξn,i)

cn
one-sided forward difference,

where ei denotes a d-dimensional ith unit basis vector, cn ∈ R+, and Y (x,ξ ) is
an unbiased estimate of f (x). This method perturbs each component of xn (i.e.,
xn,i for i = 1, . . . ,d) one at a time while holding all others constant and returns a
corresponding function value estimate. For instance, symmetric differences requires
the estimate of two function values f (xn+cnei) and f (xn−cnei) for i= 1, . . . ,d, and
forward differences requires f (xn) and f (xn +cnei) for i = 1, . . . ,d; therefore, using
symmetric and one-sided forward difference estimates involves 2d and d + 1 simu-
lation replications, respectively. Although using the symmetric difference scheme
is computationally more expensive, it has the potential to reach an asymptotic
convergence rate of O(n−1/3) compared to O(n−1/4) for forward differences. For
d = 1, the computational cost is identical for both the symmetric difference and
one-sided forward difference. Compared with the RM algorithm, however, KW
convergence rates are typically inferior, although under certain conditions with CRN
ξ+

n,i = ξ−
n,i, KW algorithms also can achieve the O(n−1/2) asymptotic convergence

rate. For simulation optimization, RM is not always applicable since additional
information is needed, which may not be readily available or is difficult to obtain.
For KW, there is an additional task of appropriately choosing the difference
sequence {cn}. In general, KW is a simple algorithm to implement for simulation
optimization applications, albeit costly in high-dimensional settings.
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6.3 Well-Known Variants

In this section, we elaborate on Kesten’s rule, iterate averaging, adaptively varying
bounds, and SPSA.

6.3.1 Kesten’s Rule

It is well-known that the classical SA algorithms are extremely sensitive to the
step-size sequence {an}. Therefore, it could be advantageous to consider adaptive
step sizes that adjust based on the ongoing performance of the algorithm, in hopes
of adapting them to the characteristics of the function at the current location of
the iterate and proximity of the current iterate to the optimum. Kesten’s rule [23]
decreases the step size only when there is a directional change in the iterates. The
notion behind this adaptive step size is that, if the iterates continue in the same
direction, there is reason to believe they are approaching the optimum and the pace
should not be decreased in order to accelerate the convergence. If the errors in
the estimate values change signs, it is an indication that either the step size is too
large and the iterates are experiencing long oscillation periods or the iterates are in
the vicinity of the true optimum; either way, the step size should be reduced to a
more appropriate step size or to hone in on x∗. The following algorithm is for the
one-dimensional case d = 1.

SA Algorithm Using Kesten’s Rule

• Input. Choose x1 ∈Θ ,{an}, ΠΘ , and stopping time N.
• Initialize.

– Let n = 2 and k = 1.
– Generate an estimate ∇̂ f (x1) of ∇ f (x1).
– Compute x2 = ΠΘ (x1 − a1∇̂ f (x1)).

• While n < N,

– Step 1. Generate an estimate ∇̂ f (xn) of ∇ f (xn).
– Step 2. Compute xn+1 = ΠΘ (xn − ak∇̂ f (xn)). If (xn+1 − xn)(xn − xn−1)< 0,

go to Step 3. Otherwise, go to Step 4.
– Step 3. Let n = n+ 1 and k = k+ 1. Go to Step 1.
– Step 4. Let n = n+ 1. Go to Step 1.

• Output. x∗N = xN .
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Kesten’s rule can be applied to both RM and KW and still guarantee convergence in
probability, as long as {an} satisfies condition (1) in Theorems 1 and 2 for RM
and KW, respectively [23]. An extension of Kesten’s rule to higher dimensions
is discussed in [11]. See [18] for an extensive review of both deterministic and
stochastic step sizes.

6.3.2 Averaging Iterates

Iterate averaging approaches SA from a different angle. Instead of fine-tuning the
step sizes to adapt to the function characteristics, iterate averaging takes bigger steps
(i.e., an larger than O(n−1)) for the estimates to oscillate around the optimum, so the
average of the iterates will result in a good approximation to the true optimum.
The idea is simple, and yet can be very effective. It is easy to see that for this
method to be successful, it is essential for the iterates to surround the optimum
in a balanced manner, and the domain for which the iterates oscillate shrinks as
n increases. Averaging trajectories reduces the sensitivity to the initial step size
choice. The algorithm follows recursion (6.3) for the RM case; however, instead
of the taking the last iterate xN as the output, the optimum is estimated by

x∗N =
1
N

N

∑
n=1

xn,

which is an average of N iterates, where N is the stopping time. Under “classic”
assumptions, iterate averaging achieves the same convergence rate as the RM
method. Furthermore,

√
n(x∗n −x∗) is asymptotically normal with mean zero and the

smallest covariance matrix, which is the inverse of the average Fisher information
matrix. (cf. [31]). A constant step size can be applied and yields convergence in
distribution [28].

A variation of this method is called the “sliding window” average, which is based
on the last m iterates:

x∗N =
1
m

N

∑
n=N−m+1

xn. (6.6)

An advantage of (6.6) is it ignores the first N −m iterates, which may be poor
estimates, since the first iterate is arbitrary, and averages only the last m, which are
assumed to be closer to x∗. Asymptotic normality for a growing window is shown
in [26, 28], which also includes constant step sizes. Another modification of the
original method incorporates x∗N with xN in the components being averaged, which
is known as the feedback approach [27]. These methods are suited for problems
where the iterates hover around the optimum. In an empirical study, iterate averaging
was applied to SPSA [29]. The results suggest that if the Hessian of f (x) is large,
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averaging is considered ideal, since it is associated with a high variability in f (x),
which indicates the iterates are moving around the optimum. In general, averaging
iterates leads to more robustness with respect to step-size sequence because of the
reduced sensitivity, while converging at the same optimal asymptotic rate as RM.
Inspired by iterate averaging, weighted averages for KW was presented to achieve
the optimal asymptotic convergence rate O(n−1/2) under certain conditions [13].
Under certain parameter settings, iterate averaging and weighted averaging produce
the same estimator.

6.3.3 Varying Bounds

Initially, the asymptotic theory for SA only considered functions satisfying specific
global conditions; however, subsequently it was shown the requirements need only
hold on a compact set Θ ∈ Rd containing the optimum. Therefore, the projection
operator is particularly important in the constrained optimization setting. Since the
optimum is unknown, the compact set should be large enough so that x∗ ∈ Θ with
high probability; however, this may increase the potential of an algorithm to perform
poorly due to the size of the parameter search space [1] . For instance, if the compact
set is very large, the step size is extremely small, and the current iterate is extremely
far from the optimum, then the convergence is likely to be slow; however, if the
compact set is small and contains the optimum, then the iterates will never be too
far from the optimum. Even if the step sizes are small, the convergence will be much
faster in comparison to the algorithm restricted to a much larger set.

One of the first ideas was to project the iterates onto a predetermined fixed
point once the magnitude of the iterate surpassed an arbitrarily specified threshold,
with the threshold increasing after it is exceeded [10]. This method converges
asymptotically, but in practice, it has its pitfalls. When an iterate is projected onto an
arbitrary fixed point, in a sense, the algorithm restarts from this “initial” value with a
smaller sequence of step sizes. Not only does it lose all of the progress gained from
the iterations prior to the projection, but the reduction in step size could hinder the
convergence by moving even slower towards the optimum. To circumvent this issue,
it was shown that it suffices to project the iterates onto a predetermined bounded set
[46]. This is a slight improvement, since the iterates do not start from the same
position with an even smaller step size. However, it still has its limitations, since
the initial start values are restricted to the predetermined compact set. Later, an
algorithm defined over a growing feasible region by writing Θ as an increasing
sequence of compact sets (i.e., Θm ⊆Θm+1, where Θ = ∪mΘm) was introduced [1].
The orthogonal projection operator changes from ΠΘm to ΠΘm+1 if xn /∈ Θm. The
idea is to start with a smaller feasible region Θ1 and only increase when there is
reason to believe the optimum x∗ /∈Θ1 (i.e., when the xn /∈Θ1). Since the projection
is made onto the current compact set Θm, the progress gained up to that point is not
lost. The feasible region Θ is written as ∪∞

m=1Θm, so it is impossible for x∗ /∈Θm for
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some m. If x∗ is contained in one of the earlier compact sets and if they grow slowly,
the empirical results could improve significantly. The key in the performance is to
choose the sequence {Θm} appropriately. If it grows too quickly, the results might
be very similar to that of the original SA algorithm. The following algorithm and
convergence result are for the RM multidimensional case d ≥ 1, where || · || denotes
the Euclidean norm.

SA with Varying Bounds

• Input. Choose x1 ∈Θ1, {an} and {Θm}.
• Initialize. Let n = 1 and m = 1.
• While n < N,

– Step 1. Generate an estimate ∇̂ f (xn) of ∇ f (xn).
– Step 2. Compute x′n+1 = xn−an∇̂ f (xn). If x′n+1 ∈Θm, go to Step 3. Otherwise,

go to Step 4.
– Step 3. Let xn+1 = x′n+1, n = n+ 1 and go to Step 1.
– Step 4. Let xn+1 = ΠΘm(x

′
n+1), n = n+ 1, m = m+ 1 and go to Step 1.

• Output. x∗N = xN .

Theorem 6.3 (Theorem 2 [1]). Let the sequence {xn} be generated using the
above algorithm, εn = ∇̂ f (x) − E[∇̂ f (x)|Fn], and βn = E[∇̂ f (x)|Fn]− ∇ f (x),
where Fn is the smallest σ -algebra used to generate xn+1. If the following
conditions hold:

1. The sequence {Θm} is a set of compact convex sets such that Θm ⊆Θm+1 for all
m and ∪∞

m=1Θm =Θ .
2. The positive sequences of real numbers {an} and {cn} converge to zero such that

∑∞
n=1 an = ∞, ∑∞

n=1 ancn < ∞, and ∑∞
n=1 a2

nc−2
n < ∞.

3. There exists κ ≥ 0 such that E[||εn||2|Fn]≤ κ
c2

n
(1+ ||xn− x∗||2) a.s. for all n.

4. ||βn|| is bounded a.s. for all n, and ∑∞
n=1 an||βn||< ∞ a.s.

5. There exist a positive sequence of real numbers {Mn} and integer N ≥ 1 such
that ∑∞

n=1 a2
nM2

n < ∞ and for all n ≥ N, supx∈Θn−1
|| f (x)|| ≤ Mn.

6. There exists a unique x∗ ∈ Θ such that ∇ f (x∗) = 0, and for all 0 < δ ≤ 1,
infx∈Θ :δ≤||x−x∗||≤δ−1 f (x)T(x− x∗)> 0.

Then xn → x∗ a.s. as n → ∞.

If an appropriate increasing sequence of compact sets is chosen, the finite-time
performance can improve significantly, but this optimal choice is still an open
problem.
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6.3.4 Simultaneous Perturbation Stochastic Approximation
(SPSA)

Simultaneous perturbation stochastic approximation (SPSA) specifically addresses
multivariate optimization problems [38]. Similar to KW-type algorithms, SPSA
only requires the objective function values to approximate the underlying gradient
and is therefore easy to implement. However, SPSA only requires two functional
evaluations at each iteration regardless of the dimension of the parameter space
Θ , which could potentially reduce the computational cost significantly in high-
dimensional problems. SPSA perturbs the vector x randomly in all directions
simultaneously (hence, the name of the method) and the ith component of the
gradient estimate has the form

∇̂ fi(xn) =
Y (xn + cnΔn,ξ+

n )−Y(xn − cnΔn,ξ−
n )

2cnΔn,i
, (6.7)

where Δn = (Δn,1, . . . ,Δn,d)∈Rd and generally assumed to be i.i.d. and independent
across components, cn ∈ R+ is the finite difference step size, and ξ±

n denotes the
randomness. Observe that the numerator in (6.7) involves two function estimates
and is identical for all i; therefore, the cost of the full gradient (aside from generating
Δn) is independent of dimension.

SPSA Algorithm

• Input. Choose x1 ∈Θ , {an}, {cn}, and stopping time N.
• Initialize. Let n = 1.
• While n < N,

– Step 1. Generate a d-dimensional random perturbation vector Δn.
– Step 2. Generate an estimate of ∇ f (xn):

∇̂ f (xn) =
Y (xn + cnΔn,ξ+

n )−Y (xn − cnΔn,ξ−
n )

2cn

⎡
⎢⎢⎣

Δ−1
n,1
...

Δ−1
n,d

⎤
⎥⎥⎦

– Step 3. Compute xn+1 = xn − an∇̂ f (xn).
– Step 4. Let n = n+ 1. Go to Step 1.

• Output. x∗N = xN .

Theorem 6.4 (Theorem 7.1 [40]). Suppose f has a unique minimum x∗ ∈ Θ and
{xn} is generated using SPSA. If the following conditions hold:
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1. The positive sequences of real numbers {an} and {cn} converge to zero such that
∑∞

n=1 an = ∞ and ∑∞
n=1 a2

nc−2
n < ∞.

2. The function f (x) ∈C3 and bounded on Rd.
3. ||xn||< ∞ for all n.
4. E[ε+n −ε−n |Δn,Fn] = 0 and E[(Y (xn±cnΔn,ξ±

n )/Δn,i)
2] is uniformly bounded for

all n, i.
5. x∗ is an asymptotically stable solution of the differential equation ∂x(t)/∂ t =

−∇ f (x(t)).
6. For each n, {Δn,i}d

i=1 are identically distributed, {Δn,i} are independent and
symmetrically distributed with zero mean and uniformly bounded in magnitude
for all n, i.

Then xn → x∗ a.s. as n → ∞.

The optimal convergence rate for SPSA is O(n−1/3) [38]. Various convergence
proofs have been presented with slight modifications to the conditions (cf. [9,13,19,
38, 43]). The perturbation sequence {Δn}, where Δn = (Δn,1, . . . ,Δn,d) with {Δn,i}
independent, must have mean zero (i.e., E[Δn] = 0), and finite inverse moments
(i.e., E[|Δn,i|−1] < ∞ for i = 1, . . . ,d). As a result, the Gaussian distribution is not
applicable. Instead, the most common distribution used is the symmetric Bernoulli
taking a positive and negative value (i.e., ±1) with probability 0.5. In addition,
an appropriately scaled xn is approximately normal for large n, and the relative
efficiency of SPSA depends on the geometric shape of f (x), choice of {an} and
{cn}, distribution of {Δn,i}, and noise level.

Many extensions to the original SPSA algorithm have been developed, e.g.,
the constrained setting using projection operators [17, 36]. A slight modification
is the averaging of the SPSA gradient estimators. Instead of generating one gradient
estimate at each iteration, multiple gradient estimates can be generated at additional
computational cost and averaged to reduce the noise. An accelerated form of SPSA
approximates the second-order Hessian ∇2 f (x) to accelerate the convergence [40],
analogous to the Newton–Raphson method. Iterate averaging in the SPSA setting
has also been explored, but performs relatively poor in finite-time [13,39]. All in all,
SPSA has been shown to be an effective SA method for tackling high-dimensional
problems, with ease of implementation and the asymptotic theory to support it.

6.4 Recent Modifications

This section presents several recently proposed modifications that focus on improv-
ing the finite-time performance of SA: the scaled-and-shifted Kiefer–Wolfowitz
(SSKW) algorithm, the robust SA (RSA) algorithm, the accelerated SA (AC-SA)
algorithm, and the Secant-Tangents AveRaged stochastic approximation (STAR-
SA) algorithm. The theoretical results for RSA and AC-SA focus on an alternative
way to analyze the performance of the estimates through f (x∗N) − f (x∗). The
inequality in (6.15) is an alternative way to view the performance of SA, which
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focuses on the distance between the function evaluated at the estimate and the
optimal function value (i.e., E[ f (x∗N)− f (x∗)]) as opposed to a distance between
the estimate and optimum (e.g., E(x∗N − x∗)2). To illustrate the difference, consider
an extremely flat function on the entire feasible region. The alternative performance
measure will indicate that almost any iterate in the feasible region will be a good
estimate, whereas performance based on the mean-squared error (MSE) of the
estimate and optimum will be more sensitive to the estimate x∗N . Further details
on these two algorithms are provided in the next chapter.

6.4.1 Scaled-and-Shifted Kiefer–Wolfowitz (SSKW)

The scaled-and-shifted Kiefer–Wolfowitz (SSKW) algorithm [4] adaptively adjusts
{an} and {cn} finitely many times during the course of the algorithm to adapt
to the characteristics of the function and noise level in hopes of preventing slow
convergence in finite-time. The idea is to increase {an} so the iterates are able to
make noticeable progress towards the optimum with the option of decreasing {an}
later if it is too large. Furthermore, if the direction of the gradient is classified as
incorrect, then {cn} is increased to reduce the noise. Note that KW only requires
two parameter choices {an} and {cn}, whereas SSKW requires eleven, as seen in
the algorithm below.

SSKW Algorithm

Scaling Phase

• Input. {an}, {cn}, [l,u], ΠΘ , stopping time N, and

– h0 = number of forced boundary hits,
– γ0 = scale up factor for {cn},
– ka = maximum number of shifts of {an},
– va = initial upper bound of shift,
– φa = maximum scale up factor for {an},
– kc = maximum number of scale ups for {cn},
– c0 = maximum value of {cn} after scale ups (i.e., cn ≤ cmax = c0(u− l)),
– g0 = maximum number of gradient estimates in scaling phase,
– mmax = maximum number of adaptive iterations (mmax ≤ N).

• Initialize.

– Choose x1 ∈ [l + c1,u− c1].
– Let n = 1, m = 1, g = 1, sh = 0, and sc = 0.

• Do while m ≤ h0 and g ≤ g0.

– Step 1.

· Generate an estimate ∇̂ f (xn) using symmetric differences.
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· Compute xn+1 using recursion (6.3).

· If xn+1 ∈ (l + cn,xn), go to Step 2.
· If xn+1 ∈ (xn,u− cn,), go to Step 3.
· If xn+1 > u− cn+1 and xn = u− cn or if xn+1 < l+ cn+1 and xn = l+ cn,

go to Step 4, if sc ≤ kc.
· If xn+1 > u− cn+1 and xn = l+ cn or if xn+1 < l+ cn+1 and xn = u− cn,

go to Step 5.

– Step 2.

· Scale {an} up by α =min{φa,(u− cn+1− xn)/(xn+1 − xn)} and use {αan}
for the remaining iterations.

· Set xn+1 = l + cn+1. Let n = n+ 1, m = m+ 1, g = g+ 1 and go to Step 1.

– Step 3.

· Scale {an} up by α = min{φa,(l + cn+1 − xn)/(xn+1 − xn)} and use {αan}
for the remaining iterations.

· Set xn+1 = u− cn+1. Let n = n+1, m = m+1, g = g+1 and go to Step 1.

– Step 4.

· Scale {cn} up by γ = min{γ0,cmax/cn} and use {γcn} for the remaining
iterations.

· Let sc = sc+ 1 and go to Step 5.

– Step 5.

· Set xn+1 = min{u− cn+1,max{xn+1, l + cn+1}}.
· Let n = n+ 1, g = g+ 1 and go to Step 1.

Shifting Phase

• While n ≤ mmax and n ≤ N,

– Step 1.

· Generate an estimate ∇̂ f (xn) using symmetric differences.
· Compute xn+1 using (6.3).

· If xn+1 > u− cn+1 and xn = l+ cn or if xn+1 < l+ cn+1 and xn = u− cn,
go to Step 2, if sh < ka.

· If xn+1 > u− cn+1 and xn = u− cn or if xn+1 < l+ cn+1 and xn = l+ cn,
go to Step 3, if sc < kc.

· Otherwise, go to Step 4.

– Step 2.

· Find smallest integer β ′ such that xn+1 ∈ (l + cn,u− cn) with an+β ′ .
· Set β = min(va,β ′) and shift {an} to {an+β}. If β = va, set va = 2va.
· Let sh = sh+ 1 and go to Step 4.
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– Step 3.

· Scale {cn} up by γ = min{γ0,cmax/cn} and use {γcn} for the remaining
iterations.

· Let sc = sc+ 1 and go to Step 4.

– Step 4.

· Set xn+1 = min{u− cn+1,max{xn+1, l + cn+1}}.
· Let n = n+ 1 and go to Step 1.

KW Algorithm

• If n > mmax and n < N, then SSKW reverts back to KW and stop when n = N.
• Output. x∗N = xN .

The SSKW algorithm has two pre-processing phases, scaling and shifting, which
adjust the tuning sequences in order to improve the finite-time performance, before
reverting back to the original KW algorithm. In the scaling phase, the {an} is scaled
up by a factor α , i.e., {an} to {αan}, so the iterates can move from one boundary
to the other to ensure the step sizes are not too small relative to the gradient. In
the shifting phase, the sequence {an} is decreased by shifting or “skipping” a finite
number (β ) of terms from {an} to {an+β}, when the iterates fall outside of the
feasible region when the sign of the gradient is correct. This acts as a recourse stage
and reduces the step size faster in case the step-size sequence {an} is too large.
During both phases, {cn} is scaled up by γ , i.e., {cn} to {γcn}, if the previous iterate
is at the boundary and the update falls outside the feasible region but is moving in
the wrong direction. This increase is an attempt to reduce the noise of the gradient
estimate. These adjustments do not affect the asymptotic convergence, since the
scaling phase only scales {an} up by a constant, the shifting phase only skips a
finite number of terms in {an}, and the perturbation sequence {cn} is only scaled up
by a constant, all of which occur finitely many times.

6.4.2 Robust Stochastic Approximation (RSA)

The robust SA (RSA) method is intended to be relatively insensitive to the choice
of the step-size sequence, similar to Polyak–Ruppert iterate averaging. The form of
RSA is identical to (6.3) with the exception of the output. Instead of x∗N = xN , where
xN is the last iterate, x∗N is calculated as

x∗N =
∑N

n=1 anxn

∑N
n=1 an

,
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where an > 0 for all n. It is clear that if an = a, where a ∈ R+ for all n, then
x∗N = 1

N ∑N
n=1 xn, giving the uniformly weighted average of Polyak–Ruppert. As

mentioned earlier, iterate averaging under a constant step size for a moving window
is asymptotically normal [28]. A finite-time bound was derived for E[ f (x∗n)− f (x∗)]
under RSA when f is assumed convex [30]. Assume there exists C > 0 such that
E[||∇ f (x)||2]≤C2 for all x ∈Θ . Then for an N-step iteration policy,

E[ f (x∗N)− f (x∗)]≤ ||x0 − x∗||2 +C2 ∑N
n=1 a2

n

2∑N
n=1 an

. (6.8)

For equal weights or iterate averaging, the bound on the right hand side of (6.8) can
be minimized if

an = a :=
DΘ

C
√

N
,

where DΘ = maxx,y∈Θ ||x− y||. The distance ||x0 − x∗|| in the place of DΘ tightens
the bound in (6.8), but x∗ is unknown so the improvement may not be practically
meaningful. This step size requires the number of iterations N to be fixed. Similar
to iterate averaging, a sliding window average can also be employed in RSA. The
estimate consists of the last N −K + 1 estimates and has the form

x∗N,K =
∑N

n=K anxn

∑N
n=K an

. (6.9)

If we consider the varying step size

an =
θDΘ
C
√

n
, (6.10)

for θ > 0, then we have the bound

E[ f (x∗N,K)− f (x∗)]≤ DΘC√
N

[
2
θ

(
N

N −K + 1

)
+

θ
2

√
N
K

]
, (6.11)

for 1 ≤ K ≤ N.

6.4.3 Accelerated Stochastic Approximation (AC-SA)
for Strongly Convex Functions

The accelerated SA (AC-SA) algorithm [21] takes a similar approach to iterate
averaging and RSA by taking long strides and incorporating each of the iterates into
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the output. The next two algorithms, accelerated SA for strongly convex and convex
functions, take advantage of the smoothness factor of the function if it exists. AC-SA
for convex functions is a special case of AC-SA for strongly convex functions, so
we first introduce AC-SA for strongly convex functions and then restrict the strong
convexity parameter for the convex case.

AC-SA is an example of a proximal method, which introduce a proximity
function into the objective function. The prox-function acts as a regularization
term to prevent the next iterate update xn+1 from being too far from xn and is
comprised of a distance generating function or Bregman function ω : Θ →R, which
is continuously differentiable and strongly convex with modulus ν > 0 satisfying

〈x− y,∇ω(x)−∇ω(y)〉 ≥ ν||x− y||2 ∀x,y ∈Θ ,

where 〈·, ·〉 denotes the inner product. A prox-function with the given distance
generating function is

V (x,y) =Vω(x,y) = ω(y)− [ω(x)+ 〈∇ω(x),y− x〉].

As xn → x∗, the regularization term disappears, so minimizing f (x) plus a regular-
izer is equivalent to minimizing the function f (x).

Consider a strongly convex function f (·) satisfying

μ
2
||y− x||2 ≤ f (y)− f (x)−〈∇ f (x),y− x〉 ≤ L

2
||y− x||2 +M||y− x||, (6.12)

for all x,y ∈ Θ where μ > 0 is the strong convexity parameter. Notice that if f is
Lipschitz continuous with Lipschitz constant M/2, then (6.12) holds with M > 0,
L= 0, and μ = 0, and if f has Lipschitz continuous gradients with Lipschitz constant
L, then (6.12) holds with M = 0, L > 0, and μ = 0.

The AC-SA algorithm updates three sequences, {xmd
n },{xag

n }, and {xn}. Here,
“md” and “ag” are abbreviations for median and aggregate, respectively, and median
is used in a loose sense.

Accelerated SA Method for Strongly Convex Functions

• Input.

– Specify V (x,y), {αn} and {γn} be given such that α1 = 1, αn ∈ (0,1) for n≥ 2,
and γn > 0 for n ≥ 1 and a stopping time N.

• Initialize. Choose xag
0 = x0 ∈Θ and let n = 1.

• While n < N,

– Step 1. Generate an estimate ∇̂ f (xn) of ∇ f (xn).
– Step 2. Compute
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xmd
n =

αn[(1−αn)μ + γn]

γn +(1−α2
n)μ

xn−1 +(1−αn)
(1−αn)(μ + γn)

γn +(1−α2
n)μ

xag
n−1

xn = argmin
x∈Θ

{αn[〈∇ f (xmd
n ),x〉+ μV(xmd

n ,x)]+ [(1−αn)μ + γn]V (xn−1,x)}

xag
n = αnxn +(1−αn)x

ag
n−1

– Step 3. Let n = n+ 1 and go to Step 1.

• Output. x∗N = xag
N .

Note: V (x,y) = 1
2 ||x− y||2 using the Euclidean norm with ν = 1 is a common prox-

function. Refer to [20] for details.

Theorem 6.5 (Theorem 1 [20]). Assume V (x,y)≤ 1
2 ||x−y||2 for all x,y∈Θ when

μ < 0 and E[(∇̂ f (x)−∇ f (x))2]≤ σ2 ∀x ∈Θ . Choose {αn} and {γn} such that

ν(μ + γn)> Lα2
n , (6.13)

γn/Γn = γn+1/Γn+1 for n ≥ 1, (6.14)

where

Γn =

{
1 if n = 1;
(1−αn)Γn−1 if n ≥ 2.

Then,

E[ f (xag
N )− f (x∗)] ≤ ΓN

(
γ1V (x0,x

∗)+
N

∑
n=1

2(M2 +σ2)α2
n

Γn[ν(μ + γn)−Lα2
n ]

)
. (6.15)

Consider αn = 2/(n+ 1), γn = 4L/[νn(n+ 1)], and Γn = 2/[n(n+ 1)]. It can be
easily checked that these choices satisfy conditions (6.13) and (6.14). Under these
conditions, the right hand side of (6.15) can be bounded by

4LV(x0,x∗)
νN(N + 1)

+
8(M2 +σ2)

νμ(N + 1)
, (6.16)

for μ > 0. The bounds in (6.15) and (6.16) rely on additional information of the
function and gradient, which are unknown, so they must be approximated.
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6.4.4 Accelerated Stochastic Approximation (AC-SA)
for Convex Functions

AC-SA for convex functions is a special case of AC-SA for strongly convex
functions with μ = 0. The algorithm is identical to AC-SA for strongly convex
function with the exception of the xmd

n and xn update since μ = 0. The resulting
updates are

xmd
n = αnxn−1 +(1−αn)x

ag
n−1,

xn = argmin
x∈Θ

{αn〈∇ f (xmd
n ),x〉+ γnV (xn−1,x)}.

Interestingly, if V (x,y) = 1
2 ||x− y||2, then the update for xn simplifies to

xn = ΠΘ

(
xn−1 − αn

γn
∇̂ f (xmd

n )

)
, (6.17)

which has a similar form to the standard SA algorithm. Notice in the update for xn

in (6.17), αn/γn takes the place of the step size an in (6.3) and the gradient estimate
∇̂ f is evaluated at xmd

n as opposed to xn−1. If we consider the same parameter
setting as in the strongly convex case, the “step size” αn/γn increases with n.
Furthermore, the lower and upper bounds for the optimal objective function can
be computed online and the difference converges to 0 as the number of iterations
goes to infinity [20].

Theorem 6.6 (Proposition 7 [20]). Assume that the assumptions in Theorem 6.5
hold for μ = 0 and the sequences αn = 2/(n+1) and γn = 4γ/[νn(n+1)] for γ ≥ 2L.
Then

E[ f (xag
N )− f (x∗)] ≤ 4γV (x0,x∗)

νN(N + 1)
+

4(M2 +σ2)(N + 2)
3γ

, (6.18)

where

γ = max

{
2L,

[
ν(M2 +σ2)N(N + 1)(N + 2)

3V(x0,x∗)

]1/2
}

minimizes the bound in (6.18).
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6.4.5 Secant-Tangents AveRaged Stochastic Approximation
(STAR-SA)

The Secant-Tangents AveRaged (STAR) stochastic approximation algorithm esti-
mates the gradient using a hybrid estimator, which is a convex combination of a
symmetric finite difference and an average of two direct gradient estimators:

∇̂ f (xn) = αn
Y (xn + cn,ε+n )−Y (xn − cn,ε−n )

2cn

+(1−αn)

(
Y ′(xn + cn,δ+

n )+Y ′(xn − cn,δ−
n )

2

)
, (6.19)

where ε±n and δ±
n denote the randomness (i.e., f (xn ± cn) = E[Y (xn ± cn,ε±n )] and

f ′(xn ± cn) = E[Y ′(xn ± cn,ξ±
n )]), αn ∈ [0,1] for all n, cn → 0 and αn → 0 as

n→∞. The STAR gradient estimate requires function and gradient estimates on two
points, xn ± cn for each ∇̂ f (xn). In a setting where direct gradients are available,
if the direct gradient is very noisy relative to the function estimates, it is difficult
to decide between implementing RM or KW, even though RM converges faster
asymptotically. Since the performance of neither algorithm is always superior to the
other, the STAR gradient incorporates both. The weights of the convex combination
play a critical role in the performance of STAR-SA and can be chosen to minimize
the variance of the gradient estimate such that it is less than the variance of both the
symmetric finite difference gradient estimate and direct gradient estimate. If

α∗
n =

σ2
g c2

n +ρσ f σgc2
n

σ2
f +σ2

g c2
n + 2ρσ f σgcn

,

where Var[Y (x,ε)] = σ2
f , Var[Y ′(x,ξ )] = σ2

g , and Corr(Y (x,ε),Y ′(x,ξ )) = ρ , then
STAR-SA is theoretically optimal in terms of MSE compared to RM and KW for
simple quadratic functions, and the variance of the STAR gradient is less than that
of RM and KW under certain conditions.

Theorem 6.7 (Theorem 3 [6]). Let {xn} be a sequence generated using recur-
sion (6.3) and gradient estimate (6.19). Assume

1. There exist positive sequences {an}, {cn}, and {αn} such that αn ∈ [0,1] for all
n, ∑∞

n=1 anαn = ∞, ∑∞
n=1 ancn < ∞, ∑∞

n=1 a2
n < ∞, and ∑∞

n=1 a2
nc−2

n < ∞.
2. There exist B,C > 0 such that P(| f ′′(x)| ≤ B) = 1 and P(| f ′(x)| ≤C) = 1 for all

x ∈Θ .
3. There exist K0,K1 > 0 such that K0|x− x∗| ≤ | f ′(x)| ≤ K1|x− x∗| for all x ∈Θ .
4. f ′(x)(x− x∗)> 0 for all x ∈R\{x∗}.
5. For c > 0, σ2 = supx∈R Var[Y (x+ c,ξ+)−Y (x− c,ξ−)|x]< ∞ for all x ∈Θ .
6. ε+n , ε−n , δ+

n ,δ−
n are i.i.d. with mean zero for all n.

Then xn
L2→ x∗ as n → ∞.
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Numerical experiments show that STAR-SA is competitive against RM and KW,
even when the number of iterations for RM are doubled due to the increase in
computational cost of STAR-SA [6]. In the experimental results, the STAR-SA
algorithm either performs significantly better than RM and KW or the MSE is
close to that of the algorithm with the lower MSE. STAR-SA has been extended
to higher dimensions by considering simultaneous perturbation gradient estimates,
instead of using a symmetric finite difference gradient estimate, to take advantage
of its potential efficiency and robustness [5].

6.5 Numerical Experiments

We present three sets of numerical experiments comparing the mean-squared error
(MSE) of various SA algorithms on several contrasting functions. The first set of
experiments illustrates the sensitivity of KW and two variants to the choice of
the two step-size sequence parameters, taken from [7]. The second set compares
three SA algorithms, the robust SA (RSA) method, the accelerated SA (AC-SA)
method, and the original RM algorithm, under various initial settings and step-
size parameters for RM (i.e., starting values, compact intervals, noise levels, and
step sizes). The last set of numerical experiments explores the potential gains from
using the STAR gradient estimate, which utilizes both direct and indirect gradient
estimates, as opposed to using them separately, as in RM and KW, respectively.
Since the numerical experiments consider maximization problems, the sign of an

and αn/γn in recursion (6.3) and (6.17), respectively, must be adjusted accordingly.

Sensitivity Analysis of KW and Its Variants

We perform a sensitivity analysis of KW and KW using Kesten’s rule (denoted
henceforth by KWK) with symmetric finite difference gradient estimates, and we
compare the results with SSKW. Using the parameter settings an = θa/n, cn =
θc/n1/4, θa > 0, θc > 0 arbitrary but fixed, N = 10,000 iterations, and 1,000
sample paths, our analysis replicates the results of [4] for f (x) = −0.001x2 on the
interval [−50,50], where SSKW performs significantly better than KW in terms of
MSE and oscillatory period; however, this result is obtained using what seem to be
nearly worst-case parameter setting for KW. In our experiments, we consider a wide
range of parameters and initial settings for KW and KWK: 19 initial starting values
uniformly spaced within the truncated interval x1 ∈ {−50+5k | k = 1,2, . . .19}, 45
different θa values parametrized by θa ∈ {10sk | k = 1,2, . . . ,9,s = 0,1, . . . ,4}, and
10 different θc values parametrized by θc ∈ {10sk | k = 1,2, . . . ,5,s = 0,1}. In total,
there are 8,550 combinations.

The numerical results illustrate the sensitivity of the classical SA methods to
the parameters. In fact, near optimal performance can be obtained with fine-tuning.
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1

a = 1, c = 1
a = 500, c = 4
a = 90, c = 5

a = 1, c = 1
a = 10, c = 5
a = 100, c = 1

a = 1, c = 1

Fig. 6.2 MSE of the 10000th iterate of KW and KWK for three parameter settings and SSKW
for f (x) =−.001x2, σ = 0.001, an = θa/n, cn = θc/n1/4

Out of the 8,550 combinations, KW outperforms SSKW in half of the cases, which
indicates that with some tuning, KW yields good performance for a fairly wide
range of tunable parameters. Figure 6.2 plots the MSE of KW, KWK, and SSKW
for f (x) = −.001x2,σ = 0.001 against the initial starting values x1 for several
parameter choices that are a good representation of a majority of the results. The
parameter value θa = θc = 1, identical to the settings in [4], is among the worst for
KW and KWK, represented by a nearly vertical orange line for both algorithms, as
a result of the overlapping red and yellow lines for KW and KWK, respectively.
For this parameter setting, SSKW beats KW and KWK significantly for all initial
values with the exception of x1 = 0. The first column in Table 6.1 compares the
MSE all three algorithms with x1 = 0.01, and clearly, KW outperforms SSKW in
almost all cases. Of course, a practitioner would have no way of knowing whether
or not the starting iterate was close to the true optimum, so these results do not
indicate that KW will always perform well. They do indicate, however, that KW
exhibits substantial variation in performance. In the case where θa = 90,θc = 5 and
θa = 10,θc = 5, KW and KWK, respectively, outperform SSKW in a neighborhood
around the optimum. There are also well-tuned parameters such as θa = 500, θc = 4
for KW and θa = 100, θc = 1 for KWK that outperform SSKW for all initial
start values. When KW and KWK perform better than SSKW, the difference is not
as pronounced as when SSKW outperforms KW, but careful tuning can partially
mitigate the sensitivity of KW to parameters such as the initial iterate.

In addition, we implement KW and its variants using the same parameters
(an = 1/n, cn = 1/n1/4, x1 = 30) as in [4] on f (x) = 100e−.006x2

to test the
algorithms under the same setting for a different function. Figure 6.3 plots the
MSE of the 10000th iterate as a function of the initial start value. The horizontal
line for all noise levels indicates that SSKW is insensitive the initial start value.
KW and KWK outperform SSKW within certain intervals around the optimum for
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Table 6.1 MSE of the 100th, 1000th, and 10000th iteration for KW and its variants with
an = 1/n, cn = 1/n1/4

f (x) =−0.001x2 [-50, 50] f (x) = 100e−0.006x2
[-50, 50]

x1 = .01 x1 = 30

σ Algorithm 100 1000 10000 100 1000 10000

0.001
SSKW 5.10x10−2 1.70x10−2 5.00x10−3 5.07x10−2 1.68x10−2 4.84x10−3

KW 10−4 10−4 10−4 763.8 653.3 431.4

KWK 1.12x10−4 1.08x10−4 1.04x10−4 10−7 3x10−8 10−8

0.01
SSKW 5.10x10−2 1.70x10−2 5.00x10−3 5.07 1.68 4.90x10−1

KW 10−4 10−4 10−4 763.8 653.3 431.2

KWK 2.10x10−3 2.11x10−3 2.05x10−3 9.54x10−6 2.76x10−6 8.41x10−7

0.1
SSKW 5.10x10−2 1.70x10−2 5.00x10−3 165.8 57.4 16.0

KW 10−4 10−4 10−4 763.4 651.4 418.2

KWK 2.01x10−1 2.03x10−1 1.97x10−1 5.65x10−2 2.76x10−4 8.41x10−5

1.0
SSKW 5.10x10−2 1.70x10−2 5.00x10−3 187.2 57.8 18.7

KW 10−4 10−4 10−4 722.5 562.5 415.7

KWK 20.1 20.3 19.7 456.9 315.1 239.7

= 0.01
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Fig. 6.3 MSE Comparison of KW and its variants for f (x) = 100e−.006x2
with values an = 1/n,

cn = 1/n1/4, N = 10000

σ ∈ {0.001,0.01,0.1,1.0} and KWK’s better performance intervals overlap those of
KW. However, KW using the deterministic step size 1/n performs better than KWK
where the intervals overlap, which can be seen in Fig. 6.3. Unfortunately, outside of
those intervals, KW and KWK have a tendency to perform poorly.



6 Stochastic Approximation 173

RM, RM with Iterate Averaging, Robust SA and Accelerated SA

We investigate the MSE performance of RSA and AC-SA using direct gradient
estimates and compare the results against the classical RM algorithm and RM with
iterate averaging. We consider the optimal parameter settings for RSA and AC-SA,
which require additional knowledge of the function, its gradient, and the optimum,
so in practice, they must be approximated.

We consider a simple quadratic function, f (x) =− 1
3 x2, on the truncated intervals

[−50,50] and [−5,95] with x1 = 30.0, σ = 1.0, and 1,000 sample paths. For the RM
and RM with iterate averaging algorithm, we employ a common step size an = θa/n,
where θa = 10.0. RM performed relatively well for a wide range of multiplicative
constants. We chose to use θa = 10.0, although it did not yield the lowest MSE
at the 1000th or 10000th iteration from preliminary numerical tests. For RSA, we
adopt a constant step size that minimizes the finite-time bound in (6.8), where C =
100/3,190/3 for the intervals [-50, 50] and [-5, 95], respectively, and DΘ = 100. For
the AC-SA algorithm, we consider αn = 2/(n+ 1) and γn = 4γ/[n(n+ 1)], where γ
is given in (6.19) with ν = 1, L = 2/3 and M = 0.

Figure 6.4 plots the MSE as a function of the number of iterations from 1 to
10000 on a log scale. The results for both the centered and skew truncated intervals
appear to have the same behavior across all four algorithms. RM performs well
with a good parameter choice, although it is not the best, but averaging the iterates
improves the performance, resulting in a smoother monotonically decreasing MSE
curve as the number of iterations increase. Compared to a decently/reasonably
tuned RM and RM with iterate averaging algorithm, RSA appears to be inferior,
at least in this simple numerical experiment. The most interesting curve is from the
AC-SA algorithm, where one can observe periodic oscillations, which decrease in
magnitude as the number of iterations increase. We further investigated this behavior
by analyzing individual sample paths, and the estimates {xag

n } appear to have the
same behavior, following a smooth oscillating path/curve. From Fig. 6.4, the AC-
SA curve appears to level off and hover slightly over the RSA curve. The stopping
time dictates the relative performance of AC-SA when there are a smaller number of
iterations because of the oscillations. For the case of the skewed interval, there is a
small range of iterations where AC-SA outperforms RSA, RM, and RM with iterate
averaging, as well as other small ranges where it outperforms RSA. Keep in mind
that these experiments are for a simple quadratic function for a particular setting, so
the relative performance will most likely change in a different setting.

From our numerical experiments, one can conclude that RM and RM with iterate
averaging has the potential to outperform RSA and AC-SA if the step-size parameter
is chosen appropriately for a wide range of choices. In this case, iterate averaging
improves the performance of RM for all 10,000 iterations. Both the AC-SA and
RSA algorithms require additional knowledge to choose the optimal step size that
minimizes the bound in (6.15) and (6.8) for AC-SA and RSA, respectively.
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Fig. 6.4 MSE under RM, RM with averaging, RSA, and AC-SA for f (x) = − 1
3 x2, x1 = 30.0,

σ = 1.0, for symmetrical [−50,50] (left graph) and skewed [−5,95] (right graph) intervals

Fig. 6.5 MSE of 1000th iterate under STAR-SA, RM, and KW for f (x) =−0.1x2, σg = 1.0, and
two levels of σ f : 0.1 (left graph) and 1.0 (right graph)

STAR-SA, RM, and KW

We implement STAR-SA, RM, and KW under various combinations of noise
levels σ f and σg, for f (x) = −ax2, a > 0 and Θ = [−50,50]. The gain sequence
and finite difference step sizes are θa/n and θc/n1/4, respectively, and the MSE
results are based on 1,000 sample paths. For a fairer comparison, the number of
iterations for RM is doubled, since STAR-SA and KW require twice the number
of sample path runs. We consider the following values for the parameter and initial
settings: steepness level a ∈ {10k|k = −3,−2.5, . . . ,1.5,2}, x1 ∈ {−50+ 5k|k =
1, . . . ,10}, θa ∈ {1,10,100}, θc ∈ {0.1,1.0}, σ f ∈ {10k|k = −3, . . . ,1}, σg ∈
{10k|k = −3, . . . ,1}, and N ∈ {100,1000,10000}. Although STAR-SA, RM, and
KW were implemented for all settings, only the case f (x) = −0.1x2, an = 10n−1,
cn = 0.1n−1/4, σ f ∈ {0.001,0.1,1.0}, σg ∈ {0.001,0.1,1.0} and N = 1000 will be
described in detail.

The STAR-SA algorithm outperforms KW and RM for 6 out of the 9
combinations for all initial start values considered. For σ f = 0.001 and σ f < σg,
the MSE of STAR-SA is lower than that of RM, but is approximately equal
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to that of KW. The only case where the MSE of the STAR-SA algorithm is
not approximately less than or equal to the MSE of KW and RM is when
both noise levels are very low, i.e., σ f = σg = 0.001, which is not shown.
In this case, RM performs better than STAR-SA except when the start value
is close to the optimum x∗ = 0. In fact, the MSE of STAR-SA decreases
as x1 approaches x∗. In addition, the MSE of KW and RM are close to the
optimum when σ f = 0.001 and σg = 0.001,0.1, respectively, whereas the MSE
of STAR-SA is close to 0 for (σ f ,σg) ∈ {(0.001,0.001),(0.001,0.1),(0.001,1.0),
(0.1,0.001),(0.1,0.1),(1.0,0.001),(1.0,0.1)}. Figure 6.5 illustrates the MSE
results when σ f = 1.0. When the noise of the function is high, KW performs
poorly, RM outperforms KW, and STAR-SA has the lowest MSE. Figure 6.5 shows
a case where the performance of KW and RM are similar, but the MSE of the
STAR-SA algorithm is lower. Overall, from the numerical experiments conducted,
STAR-SA either performs significantly better than both RM and KW in terms of
MSE or the MSE is approximately equal to that of the algorithm with the lower
MSE.

6.6 Concluding Remarks

Stochastic approximation has an enormous body of literature in all aspects of theory,
algorithms, and applications. From its origins in statistics, it has now reached many
disciplines in engineering and the social sciences, with well-known successes in
such areas as signal processing, pattern recognition, and machine learning. Clearly,
simulation optimization is another fertile area for its application.

This chapter introduced the two main versions of SA:

• KW-like methods that rely only on function estimates, known as gradient-free or
stochastic zeroth-order algorithms; and

• RM-like methods that make use of direct estimates of first-order derivative
information, known as stochastic gradient or stochastic first-order algorithms.

The latter methods generally perform better in practice, but they require information
that is not always available. Asymptotically, they can obtain an O(n−1/2) conver-
gence rate, whereas the former are generally limited to a O(n−1/3) convergence
rate. Among the gradient-free methods, SPSA has been particularly successful for
high-dimensional problems.

The finite-time behavior of any SA algorithm depends heavily on the choice of
the step-size or gain sequence, and various approaches to handling this challenge
have been presented, from Kesten’s rule to iterate averaging, with the latter
procedure highly recommended.

Classical notions of convergence in SA address the iterates {xn}, whereas
recent finite-time analysis has turned to the properties of the function values
{ f (xn)}. Chapter 7 focuses on some recent SA algorithms mainly tailored to convex
stochastic programming problems and provides such convergence properties.
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Finally, SA methods are aimed at continuous-valued optimization problems,
but there is some work attempting to apply SA to discrete optimization problems.
A recent Ph.D. dissertation [44] addresses this setting and includes a summary of
previous work in the area.
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14. V. Dupač. On the Kiefer-Wolfowitz approximation method. Časopis pro péstování Matematiky,
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