
Chapter 5
Stochastic Gradient Estimation

Michael C. Fu

Abstract This chapter reviews simulation-based methods for estimating gradients,
which are central to gradient-based simulation optimization algorithms such as
stochastic approximation and sample average approximation. We begin by describ-
ing approaches based on finite differences, including the simultaneous perturbation
method. The remainder of the chapter then focuses on the direct gradient estimation
techniques of perturbation analysis, the likelihood ratio/score function method,
and the use of weak derivatives (also known as measure-valued differentiation).
Various examples are provided to illustrate the different estimators—for a single
random variable, a stochastic activity network, and a single-server queue. Recent
work on quantile sensitivity estimation is summarized, and several newly proposed
approaches for using stochastic gradients in simulation optimization are discussed.

5.1 Introduction

For optimization problems with continuous-valued decision variables, the availabil-
ity of gradients can dramatically improve the effectiveness of solution algorithms,
but in the stochastic setting, since the outputs are themselves random, finding or
deriving stochastic gradient estimators can itself be a challenging problem, which
constitutes the subject of this chapter. The three succeeding chapters on stochastic
approximation and sample average approximation—Chaps.6, 7, and 8—highlight
the central role that stochastic gradients play in simulation optimization. In addition
to their use in gradient-based simulation optimization, these estimators have other
important applications in simulation, most notably sensitivity analysis, e.g., factor
screening to decide which factors are the most critical, and hedging of financial
instruments and portfolios.
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Consider the general optimization problem

min
x∈Θ

f (x), (5.1)

where x ∈ Θ ⊆ R
d . In the context of simulation optimization considered here, f

is not directly available but instead the simulation model returns a noisy output
Y (x,ξ ), where ξ represents the randomness. We consider two forms of the objective
function, the commonly used expected value performance

f (x) = E[Y (x,ξ )], (5.2)

and the quantile

f (x) = qα(x) = sup{y : P(Y (x,ξ )≤ y)≤ α, 0 < α < 1, (5.3)

where α = P(Y (x,ξ )≤ qα(x)) when Y is a continuous random variable.
We introduce two examples that will also be used later to illustrate the various

direct gradient estimators:

• A stochastic activity network is a directed acyclic graph where the arcs have
random activity times. The decision variables influence the distribution of these
activity times. The output performance to be considered is the total time to
go from a designated source to a designated sink in the network. We will
specifically consider the longest path performance where the decision variables
(input parameters) are in the individual activity time probability distributions.

• A first-come, first-served (FCFS) single-server queue, where the customer arrival
process and the customer service times are both stochastic and independent of
each other. The output performance to be considered is the average time spent
in the system by a customer, denoted by T , and the input parameters will be
in the service time distribution(s). When the arrival process is renewal, and the
service times are independent and identically distributed (i.i.d.), this is known as
a G/G/1 (or sometimes written GI/GI/1) queue. A simple optimization problem
could be to choose the mean service time x > 0 to minimize

f (x) = E[T (x,ξ )]+ c/x,

where c can be viewed as the cost of having a faster server.

To solve (5.1) for either setting (5.2) or (5.3), a natural adaptation of steepest
descent in deterministic nonlinear optimization is stochastic approximation (SA),
which is an iterative update scheme on the parameter that takes the following general
form for finding a zero of the objective function gradient:

xn+1 = ΠΘ

(
xn − an∇̂ f (xn)

)
, (5.4)

where ∇̂ f is an estimate of the gradient ∇ f , {an} is the so-called gain (also known
as step-size) sequence, and ΠΘ denotes a projection back into the feasible region
Θ when the update (5.4) would otherwise take xn+1 out of Θ . Guaranteeing with
probability 1 (w.p.1) convergence of xn requires an → 0, but at a rate that cannot be
too quick, with a common set of conditions being
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∑
n

an = ∞, ∑
n

a2
n < ∞.

In practice, an is often adjusted to a constant value after some number of iterations,
which theoretically only guarantees weak convergence (in distribution). The gain
sequence need not be deterministic, i.e., it could depend on the output that is
generated, e.g., Kesten’s rule [31], which decreases an only when the sign of the
derivative estimate changes. Under appropriate conditions, there are also Central
Limit Theorem results that characterize the asymptotic behavior of xn (cf. [34]).

When ∇̂ f is an unbiased estimator of ∇ f , the SA algorithm is generally
referred to as being of the Robbins–Monro (RM) [38] type, whereas if ∇̂ f is only
asymptotically unbiased, e.g., using a finite difference estimate with the difference
going to zero at an appropriate rate, then the algorithm is referred to being of the
Kiefer–Wolfowitz (KW) [32] type; see Chap. 6 for details. The Robbins–Monro
SA algorithm generally has a canonical asymptotic convergence rate of n−1/2, in
contrast to n−1/3 for the Kiefer–Wolfowitz SA algorithm.

A key challenge for using an SA algorithm for simulation optimization, is the
sensitivity of the early transient finite-time behavior of (5.4) to the sequence {an};
for KW-type algorithms, there is the additional choice of the difference sequence.
For example, the behavior of SA for the commonly used sequence an = a/n (a > 0)
is very sensitive to the choice of a. If a is too small, then the algorithm will “crawl”
towards the optimum, even at the 1/

√
n asymptotic rate. On the other hand, if a

is chosen too large, then extreme oscillations may occur, resulting in an “unstable”
progression. Iterate averaging, whereby the estimated optimum is not the latest value
of xn but an average of a window of most recent values, can reduce the sensitivity.
Robust SA is a further generalization involving a weighted (based on {an}) average.
Addressing the choice of {an}—as well as other issues such as how to project onto
the feasible region Θ , which might be specified indirectly (e.g., in a mathematical
programming formulation) and possibly involve “noisy” constraints that also have
to be estimated along with the objective function—is one of the main topics of
Chap. 6. Robust SA and other generalizations and extensions of iterate averaging,
along with finite-time analysis of the resulting algorithms, are described in more
detail in Chap. 7.

The rest of this chapter is organized as follows. Section 5.2 summarizes the
finite difference approaches, including the simultaneous perturbation method that
is especially useful in high-dimensional problems. Section 5.3 describes the direct
gradient estimation techniques of perturbation analysis, the likelihood ratio/score
function method, and the weak derivatives method (also known as measure-valued
differentiation) in detail, including illustrative examples (Sects. 5.3.3 and 5.3.4),
a summary of some basic theoretical tools (Sect. 5.3.5), and guidelines for the
practitioner (Sect. 5.3.6). Section 5.4 treats the more recent work on quantile
sensitivity estimation. Section 5.5 describes some new developments in using
direct stochastic gradients in simulation optimization. Section 5.6 concludes by
briefly describing the main application areas in historical context and providing
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some primary reference material for further reading. The content in Sects. 5.2
and 5.3 draws heavily from Fu [14], whereas the exposition on quantile sensitivities
(Sect. 5.4) and recently proposed approaches to using stochastic gradients in
simulation optimization (Sect. 5.5) is new.

An important note on notation: f will later be used to denote a probability
density function (p.d.f.) rather than the objective function, so it will be replaced
by J henceforth; also, what has been referred to as the decision variable(s) x in
the optimization problem (5.1) and in the general SA recursion (5.4) will become
the parameter (vector) θ . Specifically, the goal of the rest of the chapter will be to
estimate either

∇θ J(θ ) = ∇θE[Y (θ ,ξ )],

or in Sect. 5.4

q′α(θ ),

where qα is defined by (5.3) and θ is scalar.

5.2 Indirect Gradient Estimators

We divide the approaches to stochastic gradient estimation into two main
categories—indirect and direct—which we now more specifically define. An
indirect gradient estimator usually has two characteristics: (a) it only estimates
an approximation of the true gradient value, e.g., via a secant approximation in
the scalar case; and (b) it uses only function evaluations (performance measure
output samples) from the original (unmodified) system of interest. When used in
SA, the resulting algorithms are commonly referred to as gradient-free or stochastic
zeroth-order methods. A direct gradient estimator tries to estimate the true gradient
using some additional analysis of the underlying stochastics of the model. More
specifically, we will refer to the indirect gradient estimation approach as one in
which the simulation output is treated as coming out of a given black box, by
which we mean it satisfies two assumptions: (a) no knowledge of the underlying
mechanics of the simulation model is used in deriving the estimators, such as
knowing the input probability distributions; and (b) no changes are made in the
execution of the simulation model itself, such as changing the input distribution
for importance sampling. Note that this entails satisfying both assumptions; many
of the direct gradient estimation techniques can be implemented without changing
anything in the underlying simulation, but they may require some knowledge of the
simulation model, such as the input distributions or some of the system dynamics.
In the case of stochastic simulation, as opposed to online estimation based on an
actual system, it could be argued that to carry out the simulation most of these
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mechanics need to be known, i.e., one cannot carry out a stochastic simulation
without specifying the input distributions. Here, we simply use the two assumptions
to distinguish between the two categories of approaches and not to debate whether
an estimator is “model” dependent or not. In terms of stochastic approximation
algorithms, indirect and direct gradient estimators generally correspond to Kiefer–
Wolfowitz and Robbins–Monro algorithms, respectively.

We describe two indirect gradient estimators: finite differences and simultaneous
perturbation. Following our definition, these approaches require no knowledge of
the workings of the simulation model, which is treated as a black box.

5.2.1 Finite Differences

The straightforward brute-force method for estimating a gradient is simply to use
finite differences, i.e., perturbing the value of each component of θ separately while
holding the other components at the nominal value. If the value of the perturbation
is too small, the resulting difference estimator could be extremely noisy, because
the output is stochastic; hence, there is a trade-off between bias and variance in
making this selection, and unless all components of the parameter vector are suitably
“standardized” a priori, this choice must be done for each component separately,
which could be a burdensome task for high-dimensional problems.

The simplest finite difference estimator is the one-sided forward difference
gradient estimator, with ith component given by

Y (θ + ciei,ξ2,i)−Y(θ ,ξ1,i)

ci
, (5.5)

where c is the vector of differences (ci the perturbation in the ith direction) and ei

denotes the unit vector in the ith direction.
A more accurate estimator is the two-sided symmetric (or central) difference

gradient estimator, with ith component given by

Y (θ + ciei,ξ2,i)−Y (θ − ciei,ξ1,i)

2ci
, (5.6)

which corresponds to the estimator used in the original Kiefer–Wolfowitz SA
algorithm. The variance reduction technique of common random numbers (CRN)
can be thought of being the case where ξ1,i = ξ2,i = ξi. In stochastic simulation,
using CRN can reduce the variance of the gradient estimators substantially, although
in practice synchronization is an important issue, since merely using the same
random number seeds is typically not effective. The symmetric difference estimator
given by (5.6) is more accurate, but it requires 2d objective function estimates
(simulation replications) per gradient estimate, as opposed to d + 1 function
estimates (simulation replications) for the one-sided estimator given by (5.5).
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5.2.2 Simultaneous Perturbation

Introduced by Spall in 1992 [41], simultaneous perturbation stochastic approx-
imation (SPSA) is targeted at high-dimensional problems, due to the property
that the number of simulation replications needed to form an estimator of the
gradient is independent of the dimension of the parameter vector. Specifically, the
ith component of the simultaneous perturbation (SP) gradient estimator is given by

Y (θ +CΔ ,ξ2)−Y (θ −CΔ ,ξ1)

2ciΔi
, (5.7)

where Δ = (Δ1, . . . ,Δd) is a d-dimensional vector of perturbations, which are gener-
ally assumed i.i.d. as a function of iteration and independent across components. In
this case, C contains the set of differences for each component as a diagonal matrix
with the differences {ci} on the diagonal. The key difference between this estimator
and a finite difference estimator is that the numerator of (5.7)—corresponding
to a difference in the function estimates—is the same for all components (i.e.,
independent of i), whereas the numerator in the symmetric difference estimator
given by (5.6) involves a different pair of function estimates for each component
(i.e., is a function of i). Thus, the full gradient estimator requires only two function
estimates, regardless of the size of the dimension d. On the other hand, since d
random numbers must be generated to produce the perturbation sequence Δ at
each iteration, if generating function estimates is relatively inexpensive in terms of
computation, then this procedure may not be computationally superior to the previ-
ous finite difference approaches. In most simulation optimization settings, however,
generating simulation output responses Y (θ ,ξ ) is relatively quite expensive. SPSA
has also been applied in situations where the output J(θ ) is actually deterministic
(no random Y ) but expensive to generate, e.g., requires computationally intensive
finite-element method calculations.

The key requirement on the perturbation sequence to guarantee w.p.1 conver-
gence of SPSA is that each term have mean zero and finite inverse second moments.
Thus, the normal (Gaussian) distribution is prohibited, and the most commonly used
distribution is the symmetric Bernoulli, whereby the perturbation takes the positive
and negative (equal in magnitude, e.g., ±1) value w.p. 0.5. Intuitively, convergence
comes about from the averaging property of the random directions selected at each
iteration, i.e., in the long-run, each component will converge to the correct gradient
even if at any particular iteration the estimator may appear odd. Thus, an interesting
alternative to using random perturbation sequences {Δ} is to use deterministic
sequences [3, 46], analogous to the use of quasi-Monte Carlo.

A very similar gradient estimator for use in SA algorithms is the random
directions gradient estimator [33], whose ith component is given by

[Y (θ + cΔ ,ξ2)−Y(θ − cΔ ,ξ1)]Δi

2ci
. (5.8)
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Instead of dividing by the perturbation component, the difference term multiplies the
component. Thus, normal distributions can be used for the perturbation sequence,
and convergence requirements translate the moment condition to a bound on the
second moment, as well as zero mean. Of course, a correspondence to the SP
estimator can be made by simply taking the componentwise inverse, but in practice
the performance of the two resulting SA algorithms differs substantially.

An extensive and frequently updated annotated bibliography for SPSA can be
found on the World Wide Web at http://www.jhuapl.edu/SPSA/.

5.3 Direct Gradient Estimators

When available, direct gradient estimators offer the following advantages:

• They are generally unbiased, which results in faster convergence rates when
implemented in a simulation optimization algorithm, whether stochastic approx-
imation, sample average approximation, or response surface methodology.

• They eliminate the need to determine appropriate values for the finite difference
sequences, which influence the accuracy of the estimator. Smaller values of c
in (5.5)–(5.8) lead to lower bias but usually at the cost of increased variance, to
the point of possibly giving the wrong sign for small enough values.

• They are generally more computationally efficient.

We begin with the case where the output is an expectation, and write the output
Y in terms of all the input random variables X ≡ {Xi}:

J(θ ) = E[Y (X)] = E[Y (X1, . . . ,XN)], (5.9)

where N is a fixed finite number, and for notational brevity, the display of the
randomness ξ and the dependence on the parameter θ will often be suppressed
in the following derivations. The various direct gradient estimation techniques are
distinguished by their treatment of the dependence on θ in (5.9):

sample (pathwise) vs. measure (distributional).

As illustrated in the examples that follow, many settings allow either dependence,
leading to different gradient estimators.

To derive direct gradient estimators, we write the expectation using what is
sometimes called the law of the unconscious statistician:

E[Y (X)] =

∫
ydFY (y) =

∫
Y (x)dFX(x), (5.10)

where FY and FX denote the distributions of Y and X, respectively. In fact, when
estimating expected value performance, stochastic simulation can be viewed as a
way of implicitly carrying out this relationship, i.e., the simulation model is given

http://www.jhuapl.edu/SPSA/
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input random variables with known distributions, and produces samples of output
random variables, for which we would like to characterize the distributions.

For simplicity in discussion, we will assume henceforth that the parameter
θ is scalar, because the vector case can be handled by taking each component
individually. In view of the right-hand side of (5.10), we revisit the question as
to the location of the parameter in a stochastic setting. Putting it in the sample
performance Y (·;θ ) corresponds to the view of perturbation analysis (PA), whereas
if it is absorbed in the distribution F(·;θ ), then the approach follows that of the
likelihood ratio (LR) method (also known as the score function (SF) method)
or weak derivatives (WD) (also known as measure-valued differentiation). In the
general setting where the parameter is a vector, it is possible that some of the
components would be most naturally located in the sample performance, while
others would be easily retained in the distributions, giving rise to a mixed approach.
For example, in an (s,S) inventory control system, it might be most effective to use
PA for the control parameters (decision variables) s and S, and WD or LR/SF for the
demand distribution parameters.

Let fX denote the p.d.f. of all of the input random variables (not to be confused
with the original objective function f as defined by (5.1)). Differentiating (5.10),
and assuming an interchange of integration and differentiation is permissible, we
write two cases:

dE[Y (X)]

dθ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫ ∞

−∞
Y (x)

d fX (x;θ )
dθ

dx (5.11)

∫ 1

0

dY (X(θ ;u))
dθ

du, (5.12)

where x and u, as well as the integrals, are N-dimensional. For notational simplicity,
these N-dimensional multiple integrals are written as a single integral throughout,
and we also assume one random number u produces one random variate x. In (5.11),
the parameter appears in the distribution directly, whereas in (5.12), the underlying
uncertainty is considered the uniform random numbers; this dichotomy corresponds
to the respective distributional (measure) and pathwise (sample) dependencies.

For expositional ease in introducing the approaches, we begin by assuming that
the parameter only appears in X1, which is generated independently of the other
input random variables. So for the case of (5.12), we use the chain rule to write

dE[Y (X)]

dθ
=

∫ 1

0

dY (X1(θ ;u1),X2, . . .)

dθ
du

=
∫ 1

0

∂Y
∂X1

dX1(θ ;u1)

dθ
du. (5.13)

In other words, the estimator takes the form



5 Stochastic Gradient Estimation 113

∂Y (X)

∂X1

dX1

dθ
, (5.14)

where the parameter appears in the transformation from random number to random
variate, and the derivative is expressed as the product of a sample path derivative
and derivative of a random variable. The issue of what constitutes the latter will
be taken up shortly, but this approach is called infinitesimal perturbation analysis
(IPA). For the M/M/1 queue, the sample path derivative could be derived using
Lindley’s equation, relating the time in system of a customer to the service times
(and interarrival times, which are not a function of the parameter).

Assume that X1 has marginal p.d.f. f1(·;θ ) and that the joint p.d.f. for the
remaining input random variables (X2, . . .) is given by f−1, which has no (functional)
dependence on θ . Then the assumed independence gives fX = f1 f−1, and the
expression (5.11) involving differentiation of a density (measure) can be further
manipulated using the product rule of differentiation to yield the following:

dE[Y (X)]

dθ
=

∫ ∞

−∞
Y (x)

∂ f1(x1;θ )
∂θ

f−1(x2, . . .)dx (5.15)

=

∫ ∞

−∞
Y (x)

∂ ln f1(x1;θ )
∂θ

fX (x)dx. (5.16)

In other words, the estimator takes the form

Y (X)
∂ ln f1(X1;θ )

∂θ
. (5.17)

Since the term ∂ ln f1(·;θ)
∂θ is the well-known (efficient) score function in statistics, this

approach has been called the score function (SF) method. The other name given to
this approach—the likelihood ratio (LR) method—comes from the closely related
likelihood ratio function given by

f1(·;θ )
f1(·;θ0)

,

which when differentiated with respect to θ gives

∂ f1(·;θ )/∂θ
f1(·;θ0)

,

which is equal to the score function upon setting θ0 = θ .
On the other hand, if instead of expressing the right-hand side of (5.15) as (5.16),

the density derivative is written as

∂ f1(x1;θ )
∂θ

= c1(θ )
(

f (+)
1 (x1;θ )− f (−)

1 (x1;θ )
)
,

it leads to the following relationship:
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dE[Y (X)]

dθ
=

∫ ∞

−∞
Y (x)

∂ fX (x;θ )
∂θ

dx

= c1(θ )
(∫ ∞

−∞
Y (x) f (+)

1 (x1;θ ) f−1(x2, . . .)dx−
∫ ∞

−∞
Y (x) f (−)

1 (x1;θ ) f−1(x2, . . .)dx

)
.

The triple
(

c1(θ ), f (+)
1 , f (−)

1

)
constitutes a weak derivative (WD) for f1, which is

in general not unique. The corresponding WD estimator is of the form

c1(θ )
(

Y (X (+)
1 ,X2, . . .)−Y(X (−)

1 ,X2, . . .)
)
, (5.18)

where X (−)
1 ∼ f (−)

1 and X (+)
1 ∼ f (+)

1 , henceforth often abbreviated X (±) ∼ f (±).

The term weak derivative comes about from the possibility that ∂ f1(·;θ)
∂θ in (5.15)

may not be proper, but its integral may be well-defined, e.g., it might involve
delta-functions (impulses), corresponding to probability mass functions (p.m.f.s)
of discrete distributions. Note that even for a given WD representation, only the
marginal distributions for the two random variables X (±) are specified, i.e., their
joint distribution is not constrained, so the “estimator” given by (5.18) is not really
completely specified. Since (5.18) is a difference of two terms that appear similar,
one might expect that generating the two random variables using CRN rather
than independently would be beneficial, and it is indeed true in many situations,
but such a conclusion is problem dependent. However, for the Hahn–Jordan WD
representation (to be described later in Sect. 5.3.2), independent generation turns
out to be the method that minimizes the variance of the WD estimator [44].

If in the expression (5.12), the interchange of expectation and differentiation does
not hold (e.g., if Y is an indicator function), then as long as there is more than one
input random variable, appropriate conditioning will often allow the interchange as
follows:

dE[Y(X)]

dθ
=

∫ 1

0

dE[Y (X(θ ;u))|Z(u)]
dθ

du, (5.19)

where Z ⊆ {X1, . . . ,XN}. This conditioning is known as smoothed perturbation
analysis (SPA), because it seeks to “smooth” out a discontinuous function. SPA
leads to an estimator of the following form:

∂E[Y (X)|Z]
∂X1

dX1

dθ
. (5.20)

Note that taking Z as the entire set leads back to (5.14).
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Remark. For SPA, the conditioning in (5.19) was done with respect to a subset of
the input random variables only. Further conditioning can be done on events in the
system, which leads to an estimator of the following general form:

dY
dθ

+EZ[δY |B]
dPZ(B)

dθ
, (5.21)

where the subscript indicates a corresponding conditional expectation/probability,
B is an appropriately selected event, and δY represents a change in the performance
measure under the conditioned (usually called “critical”) event. In this case, if the
probability rate dPZ (B)

dθ is 0, the estimator (5.21) also reduces to IPA. On the other
hand, if the IPA term dY

dθ is zero, the estimator may coincide with the WD estimator
in certain cases, with correspondences between c(θ ) and the probability rate, and
between the difference term in (5.18) and the conditional expectation in (5.21).

5.3.1 Derivatives of Random Variables

PA estimators—e.g., those shown in (5.14), (5.20), (5.21)—require the notion
of derivatives of random variables. The mathematical problem for defining such
derivatives consists of constructing a family of random variables parameterized
by θ on a common probability space, with the point of departure being a set of
parameterized distribution functions {F(·;θ )}. We wish to construct X(θ )∼F(·;θ )
s.t. ∀θ ∈ Θ , X(θ ) is differentiable w.p.1. The sample derivative is then defined in
the intuitive manner as

dX(θ ,ω)

dθ
= lim

Δθ→0

X(θ +Δθ ,ω)−X(θ ,ω)

Δθ
,

where ω denotes a sample point in the underlying probability space. If the
distribution of X is known, we have [21, 42]

dX(θ )
dθ

=− ∂F(X ;θ )/∂θ
∂F(X ;θ )/∂X

, (5.22)

where we use the (slightly abusive) notation
∂F(X ;θ )

∂X
=

∂F(x;θ )
∂x

∣∣∣∣
x=X

.

Definition. For a distribution function F(x;θ ), θ is said to be a location parameter
if F(x+θ ;θ ) does not depend on θ ; θ is said to be a scale parameter if F(xθ ;θ )
does not depend on θ ; and θ is said to be a generalized scale parameter if F(θ̄ +
xθ ;θ ) does not depend on θ , for some fixed θ̄ (usually a location parameter) not
dependent on θ .
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In these special cases, one can use the following sample derivatives for the three
respective cases (location, scale, generalized scale):

dX
dθ

= 1,
dX
dθ

=
X
θ
,

dX
dθ

=
X − θ̄

θ
.

The most well-known example is the normal distribution, with the mean being
a location parameter and the standard deviation a generalized scale parameter.
Similarly, the two parameters in the Cauchy, Gumbel (extreme value), and logistic
distributions also correspond to location and generalized scale parameters. Other
examples include the mean of the exponential being a scale parameter; and the mean
of the uniform distribution being a location parameter, with the half-width being a
generalized scale parameter. In the special case U(0,θ ), the single parameter is an
ordinary scale parameter. Also, for N (θ ,(θσ)2), θ is an ordinary scale parameter.
See Table 5.1 in Sect. 5.3.3 for more examples.

Lastly, note that for a given distribution, there may be multiple ways to generate a
random variate, which leads to different derivatives, some of which may be unbiased
and some of which may not. This is called the role of representations, and is
illustrated with a simple example (Example 5.5) in Sect. 5.3.3.

5.3.2 Derivatives of Measures

As we have seen already, both the LR/SF and WD estimators rely on differentiation
of the underlying measure, so the parameters of interest should appear in the
underlying (input) distributions. If this is not the case, then one approach is to try
to “push” the parameter out of the performance measure into the distribution, so
that the usual differentiation can be carried out. This is achieved by a change of
variables, which is problem dependent.

Recall that we introduced the idea of a weak derivative by expressing the
derivative of a density (p.d.f.) as an appropriately normalized difference of two
p.d.f.s, i.e., the triple (c(θ ), f (+), f (−)) satisfying

∂ f (x;θ )
∂θ

= c(θ )
(

f (+)(x;θ )− f (−)(x;θ )
)
.

This idea can be generalized without the need for a differentiable density, as long as
the integral exists with respect to a certain set of (integrable) “test” functions, say
L , e.g., the set of continuous bounded functions.

Definition. The triple (c(θ ),F (+),F (−)) is called a weak derivative for distribution
(c.d.f.) F if for all functions g ∈L (not a function of θ ),

d
dθ

∫
g(x)dF(x;θ ) = c(θ )

(∫
g(x)dF(+)(x;θ )−

∫
g(x)dF(−)(x;θ )

)
.
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Remark. As mentioned earlier, the derivative is “weak” in the sense that the density
derivative may not be defined in the usual sense, but in terms of generalized
functions integrable with respect to the functions in L , as in the “definition” of
a delta function in terms of its integral. The concept of a weak derivative need not
be restricted to probability measures, but any finite signed measures. Lastly, note
that a WD gradient estimate may require as many as 2d additional simulations for
the vector case (a pair for each component), unlike LR/SF and IPA estimators, which
will always require just a single simulation.

One choice for the weak derivative (density) that is readily available is

∂ f
∂θ

= c
(

f (+)− f (−)
)
, (5.23)

where

f (−) =
1
c

(
∂ f
∂θ

)−
, f (+) =

1
c

(
∂ f
∂θ

)+
, (5.24)

(x)+ ≡ max{x,0}, (x)− ≡ max{−x,0}, and c =
∫ ( ∂ f

∂θ

)+
dx =

∫ ( ∂ f
∂θ

)−
dx, using the

fact that

∫
f (x)dx = 1 =⇒

∫ ∂ f
∂θ

dx = 0.

The representation given by (5.23) and (5.24) is the Hahn–Jordan decomposition,
which will always exist for probability measures, and results in a decomposition
involving two measures with complementary support. It can be shown in this case
that generating the two random variables according to f (+) and f (−) independently
minimizes variance for the WD estimator [44].

Remark. The representation is clearly not unique. In fact, for any non-negative
integrable function h, we have

∂ f
∂θ

= c
(
[ f (−) +h]− [ f (+) +h]

)
= c̃

(
[ f (−) +h]/(1+

∫
h)− [ f (+) +h]/(1+

∫
h)

)
,

where c̃ = c(1 +
∫

h). Thus, one way to obtain the estimator using the original
simulation is to choose a representation in which both measures have the same
support as the original measure. Then importance sampling can be applied, so that
the original simulation can be used to generate the estimator without the need for
simulating the system under alternative input distributions. Perhaps the most direct
way to achieve this is to add the original measure itself to both f (−) and f (+) and
renormalize appropriately, i.e., choose h = f above:

∂ f
∂θ

= 2c
(
[ f (−) + f ]/2− [ f (+)+ f ]/2

)
.
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5.3.3 Input Distribution Examples

We now demonstrate some of these concepts on a single random variable. Sec-
tion 5.3.4 then considers the two examples introduced at the beginning of the chapter
(stochastic activity network and single-server queue).

Example 5.1. Let X ∼ exp(θ ), an exponential random variable with mean θ and
p.d.f. given by

f (x;θ ) =
1
θ

e−x/θ 1{x > 0},

where 1{·} denotes the indicator function. The usual construction of the random
variable is

X(θ ;u) =−θ lnu,

where u represents a random number. Differentiating both expressions, we get

∂ f (x;θ )
∂θ

=

[
x

θ 2

1
θ

e−x/θ − 1
θ 2 e−x/θ

]
1{x > 0}

= f (x;θ )
[

x
θ 2 − 1

θ

]

=
1
θ

[ x
θ 2 e−x/θ 1{x > 0}− f (x;θ )

]

=
1

θe

[ e
θ

( x
θ
− 1

)
e−x/θ 1{x > θ}− e

θ

(
1− x

θ

)
e−x/θ 1{0 < x ≤ θ}

]
,

dX(θ ;u)
dθ

= − lnu =
X(θ ;u)

θ
.

In the third and fourth lines above, the density derivative (which is itself not a
density) has been expressed as the difference of two densities multiplied by a
constant. This demonstrates that the weak derivative representation is not unique,
with the last decomposition being the Hahn–Jordan decomposition, noting that
x = θ is the point at which d f (x;θ )/dθ changes sign. The following correspond
to the LR/SF, WD (a) & (b), and IPA estimators, respectively:

Y (X)
1
θ

(
X1

θ
− 1

)
,

1
θ

[
Y (X (+)

1a , . . .)−Y(X (−)
1a , . . .)

]
,

1
θe

[
Y (X (+)

1b , . . .)−Y(X (−)
1b , . . .)

]
,

dY
dX1

X1

θ
,
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where X (−)
1a ∼ exp(θ ) and X (+)

1a ∼ Erl(2,θ ), where “Erl” is an Erlang distribution

(see Table 5.1), and X (−)
1b ∼ θ − trunc(Erl(2,θ ), [0,θ ]) and X (+)

1b ∼ θ +Erl(2,θ ),
where “trunc(F, [a,b])” represents a distribution (c.d.f.) F truncated to the range
[a,b]. Since an Erl(2,θ ) distribution can be generated by the sum of two i.i.d. expo-
nentially distributed random variables, one way to realize the first WD estimator

would be to use X (−)
1a = X1 and then generate another X̃1 ∼ exp(θ ) independent of

the original X1, giving the WD estimator

1
θ
[
Y (X1 + X̃1, . . .)−Y(X1, . . .)

]
.

The following is a simple example that demonstrates that the WD estimator is
more broadly applicable than the LR/SF estimator.

Example 5.2. Let X ∼U(0,θ ). Then we have the following:

f (x;θ ) =
1
θ

1{0 < x < θ},
X(θ ;u) = uθ ,

∂ f (x;θ )
∂θ

=
1
θ

[
δ (θ − x)− 1

θ
1{0 < x < θ}

]
(5.25)

=
1
θ
[δ (θ − x)− f (x;θ )] ,

dX(θ ;u)
dθ

= u =
X(θ ;u)

θ
,

where we define the Dirac δ -function as the “derivative” of a step function by

1{x ≥ θ}=
∫ x

−∞
δ (y−θ )dy. (5.26)

On the right-hand side of Eq. (5.25), we have the difference of densities for a mass
at θ and the original U(0,θ ) distribution, respectively, i.e., the weak derivative
representation (1/θ ,θ ,F), where θ indicates a deterministic distribution with mass
at θ . So, for example, the estimator in (5.18) would be given by

1
θ
(Y (θ ,X2, . . .)−Y (X1,X2, . . .)) .

This is a case where the LR/SF estimator is ill-defined, due to the δ -function.
Another example is the following.

Example 5.3. Let X ∼ Par(α,θ ), which represents the Pareto distribution with
shape parameter α > 0 and scale parameter θ > 0, and p.d.f. given by

f (x) = θ α αx−(α+1)1{x ≥ θ}.
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Once again the LR/SF estimator does not exist (for θ ), due to the appearance of
the parameter in the indicator function that controls the support of the distribution,
whereas WD estimators can be derived (see Table 5.1 at the end of the section).

However, the very general exponential family of distributions leads to a nice form
for the LR/SF estimator.

Example 5.4. Let θ denote the vector of parameters in a p.d.f. that can be written
in the following form:

f (x;θ ) = k(θ )exp

(
∑

i
vi(θ )ti(x)

)
h(x),

where the functions h and {ti} are independent of θ , and the functions k and {vi} do
not involve the argument. Then it is straightforward to derive

∂ ln f (x;θ )
∂θ

=
∇k(θ )
k(θ )

+∑
i

∇vi(θ )ti(x).

Examples include the normal, gamma, Weibull, and exponential, for the continuous
case, and the binomial, Poisson, and geometric for the discrete case.

As mentioned in Sect. 5.3.1, the application of PA (both IPA or SPA) depends
on the way the stochastic processes in the system are represented. We illustrate
this through a simple random variable example. In terms of simulation, this means
that a different representation used to generate the random variable could lead to
a different PA estimator. For instance, in Example 5.1, an alternative equivalent
representation is X = −θ ln(1 − u), which in this case leads to the same IPA
estimator X/θ . Since the underlying distribution is identical for the different
representations, the LR/SF and WD estimators are not dependent on the process
representation, but as noted earlier, the same distribution has infinitely many
possible WD estimators.

Example 5.5. For θ ∈ (0,1), let

X ∼
{

U(0,1) w.p. θ ,
U(1,2) w.p. 1−θ ,

a mixture of two uniform distributions, with E[X ] = 1.5− θ and dE[X ]/dθ = −1.
A straightforward construction/representation using two random numbers is

X = 1{U1 ≤ θ}U2 + 1{U1 > θ}(1+U2), (5.27)

where U1, U2 ∼U(0,1) are independent. However, since
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dX
dθ

= 0 w.p.1,

this clearly leads to a biased estimator. Note that viewed as a function of θ , X
jumps from 1+U2 down to U2 at θ = U1. However, an unbiased estimator can
be obtained by using the following construction in which the “coin flipping” and
uniform generation are correlated:

X = 1{U ≤ θ}U
θ
+ 1{U > θ}

(
1+

U −θ
1−θ

)
, where U ∼U(0,1),

=⇒ dX
dθ

=− U
θ 2 1{U ≤ θ}+ U − 1

(1−θ )2 1{U > θ},

which is unbiased (has expectation equal to dE[X ]/dθ = −1). This construction is
based on the property that the distributions of the random variable U/θ under the
condition {U < θ} and the random variable (U − θ )/(1− θ ) under the condition
{U ≥ θ} are both U(0,1). From a simulation perspective, this representation has
the additional advantage of requiring only a single random number to generate X
instead of two as in the previous construction. In this case, the construction also
corresponds to the inverse transform representation. In terms of the derivative, the
crucial property of the representation is that X is continuous across θ =U . One can
easily construct other single random number representations that do not have this
desirable characteristic, e.g.,

X = 1{U ≤ θ}(1−U
θ
)+ 1{U > θ}

(
1+

1−U
1−θ

)
, where U ∼U(0,1),

=⇒ dX
dθ

= 1{U ≤ θ} U
θ 2 + 1{U > θ} 1−U

(1−θ )2 ,

which is biased (has expectation +1), the intuitive reason being the discontinuity of
X at U = θ , where it jumps from 0 to 2.

For the first representation given by (5.27), which used two random numbers and
led to a biased IPA estimator, SPA can be applied by conditioning on U2 as follows:

X = E[X1|U2] =U2θ +(1+U2)(1−θ ) = 1+U2−θ ,

leading to the trivially unbiased “estimator” dX/dθ =−1.

To derive the WD and LR/SF estimators, the p.d.f. is given by

f (x;θ ) = θ1{x ∈ (0,1]}+(1−θ )1{x∈ (1,2]},
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so
∂ f (x;θ )

∂θ
= 1{x ∈ (0,1]}− 1{x∈ (1,2]}, (5.28)

∂ ln f (x;θ )
∂θ

=
1
θ

1{x ∈ (0,1]}− 1
1−θ

1{x ∈ (1,2]}, (5.29)

and the obvious WD from (5.28) is simply (1,U(0,1),U(1,2)), corresponding to the
Hahn–Jordan decomposition, whereas the LR/SF estimator from (5.29) is given by

Y (X) ·
{ 1

θ if X ≤ 1,
− 1

1−θ otherwise.

However, as noted in the remark at the end of Sect. 5.3.2, the WD representation
is not unique, so for example, one can add and subtract a U(0,1) density in (5.28)
to get

1{x ∈ (0,1]}+ 1{x∈ (0,1]}− 1{x∈ (1,2]}− 1{x∈ (0,1]}

= 2

[
1{x ∈ (0,1]}− 1

2
1{x ∈ (0,2]}

]
,

yielding the alternative WD representation (2,U(0,1),U(0,2)).

Discrete distributions present separate challenges for the different approaches.
Basically, when the parameter appears in the support probabilities, then LR/SF and
WD can be easily applied, whereas IPA is in general not applicable. The reverse is
true, however, if the parameter appears instead in the support values. The next two
examples demonstrate this dichotomy, where we work directly with the probability
mass function (p.m.f.) p(x;θ ) = P(X = x), instead of densities with δ -functions.
Let Ber(p;a,b) denote a Bernoulli distribution that takes value a w.p. p and b w.p.
1− p. We start with an example where the parameter θ is the Bernoulli probability.

Example 5.6. Let X ∼ Ber(θ ;a,b), a = b, which has p.m.f.

p(x;θ ) = θ1{x = a}+(1−θ )1{x= b},

so

∂ p
∂θ

= 1{x = a}− 1{x= b},

which can be viewed as the difference of two (deterministic) masses at a and b
(with c(θ ) = 1), and is the Hahn–Jordan decomposition in this case. For the LR/SF
estimator, we have

∂ ln p
∂θ

=
1{x = a}− 1{x= b}

θ1{x = a}+(1−θ )1{x= b} =
1
θ

1{x = a}− 1
1−θ

1{x = b}.
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Note the similarity of both the WD and LR/SF estimators to the previous example.
In this case, there is no way to construct X such that it will be differentiable w.p.1.
For example, the natural construction/representation

X = a1{U ≤ θ}+ b1{U > θ}

yields dX/dθ = 0 w.p.1, so IPA is not applicable.

In contrast, now consider an example where the parameter θ is one of the support
values.

Example 5.7. Let X ∼ Ber(p;θ ;0), θ = 0, E[X ] = pθ , dE[X ]/dθ = p, which has
p.m.f.

p(x;θ ) = p1{x = θ}+(1− p)1{x= 0},

which is not differentiable with respect to θ , so LR/SF and WD estimators cannot
be derived. The natural random variable construction

X = θ1{U ≤ p}

leads to the unbiased

dX
dθ

= 1{U ≤ p}= 1{X = θ}= X
θ
.

The IPA estimator dX/dθ = 1{X = θ} holds even if additional values are added
to the underlying support, as long as the additional values do not involve θ . If θ
enters into them, then the estimator can be easily modified to reflect the additional
dependence.

For many common input distributions, Table 5.1 provides the necessary deriva-
tives needed to implement each of the three methods (IPA, LR/SF, WD). Recall
also that the two parameters in the Cauchy, Gumbel, and logistic distributions
(not given in the table) are location and (generalized) scale parameters, so the IPA
expressions would be the same as for the normal distribution. The entry for the mean
of the normal has an interesting implementation for the WD estimator, based on the
observation that a normally distributed random variable N (μ ,σ2) can be generated
via the product of a uniform U(0,1) random number and a double-sided Maxwell
Mxw(μ ,σ2) random variate (generated independently of each other, cf. [25], which
also provides a method for generating from this distribution). Implementation using
such pairs of independent U(0,1) and Mxw(μ ,σ2) distributed random variates
results in a WD derivative estimator with provably the lowest variance for any
polynomial output function. Of course, in most settings the output is not polynomial;
furthermore, the WD estimator requires an additional simulation replication per
partial derivative.
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Table 5.1 Derivatives for common input distributions (NA= not applicable)

Distribution Parameterization p.d.f./p.m.f. f (x)/p(x) Support

Bernoulli Ber(p;a,b) p1{x = a}+(1− p)1{x = b} {a,b}
geometric geo(p) (1− p)x−1 p Z

+

negative binomial negbin(n, p)

(
x−1

n−1

)
(1− p)x−n pn {n,n+1, . . .}

binomial bin(n, p)

(
n

x

)
px(1− p)n−x

N

Poisson Poi(λ ) e−λ λ x

x! N

normal (Gaussian) N (μ,σ2) 1√
2πσ e

− (x−μ)2

2σ2 R

Maxwell (2-sided) Mxw(μ,σ2) (x−μ)2√
2πσ3 e

− (x−μ)2

2σ2 R

uniform U(a,b) 1
b−a [a,b]

exponential exp(β ) β−1e−x/β x ≥ 0

Weibull Wei(α ,β ) αβ−α xα−1e−(x/β )α x ≥ 0

gamma gam(α ,β ) β−α xα−1 e−x/β
Γ (α) x ≥ 0

Erlang Erl(α ,β ) β−nxn−1 e−x/β
(n−1)! x ≥ 0

Pareto Par(α ,β ) αβ α x−(α+1) x ≥ β

α > 0 is generally the shape parameter, μ is a location parameter, and β > 0 is a scale parameter;
Γ (α) =

∫ ∞
0 tα−1e−t dt; Γ (α) = (α − 1)Γ (α − 1); geo(p) = negbin(1, p), Erl(n,β ) = gam(n,β ) for

n ∈ Z
+; Wei(1,β ) = gam(1,β ) = exp(β ). The definition of the parameter β used here in the exponential,

Weibull, and gamma distributions is the inverse of what is often found in the literature ([35] being a notable
exception), but makes β a scale parameter. This is why the WD expressions below for the exponential,
Weibull, and gamma distributions differ slightly from the table in [24].

input dist IPA LR/SF WD

X ∼ F dX
dθ

∂ ln f (X ;θ )
∂ θ (c(θ),F(+) ,F(−))

Ber(θ ;a,b) NA 1
θ 1{X = a} (1,a,b)

− 1
1−θ 1{X = b}

Ber(p;θ ,b) 1{X = θ} NA NA

geo(θ) NA 1
θ + 1−X

1−θ ( 1
θ ,geo(θ),negbin(2,θ))

bin(n,θ) NA X
θ − n−X

1−θ (n,1+bin(n−1,θ),bin(n−1,θ))
Poi(θ) NA X

θ −1 (1,1+Poi(θ),Poi(θ))
N (θ ,σ2) 1 X−θ

σ2

(
1√
2πσ ,θ +Wei(2, 1

2σ2 ), θ −Wei(2, 1
2σ2 )

)

N (μ,θ 2) X−μ
θ

1
θ

[( x−μ
θ

)2 −1
]

( 1
θ ,Mxw(μ,θ 2),N (μ,θ 2))

U(0,θ) X
θ NA ( 1

θ ,θ ,U(0,θ))

U(θ − γ ,θ + γ) 1 NA ( 1
2γ ,θ + γ ,θ − γ)

U(μ −θ ,μ +θ) X−μ
θ NA ( 1

θ ,Ber(0.5;μ −θ ,μ +θ),U(μ −θ ,μ +θ))
exp(θ) X

θ
1
θ
(

X
θ −1

)
( 1

θ ,Erl(2,θ),exp(θ))

Wei(α ,θ) X
θ

1
θ
[(

X
θ
)α −α

]
( α

θ , [Erl(2,θ α )]1/α ,Wei(α ,θ))

gam(α ,θ) X
θ

1
θ
(

X
θ −α

)
( α

θ ,gam(α +1,θ),gam(α ,θ))

Par(α ,θ) X
θ NA ( α

θ ,Par(α ,θ),θ)
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5.3.4 Output Examples

We consider the two examples introduced at the beginning of the chapter: stochastic
activity network and single-server queue.

Stochastic Activity Network
A stochastic activity network will be given by a directed acyclic graph, defined by
M nodes and N directed arcs representing activities. The activity times are given by
random variables Xi, i = 1, . . . ,N. Without loss of generality, we take node 1 as the
source (origin) and node M as the sink (destination). A path P is a set of directed
arcs going from source to sink. Let P denote the set of all paths from source to
sink, and P∗ denote the set of arcs on the optimal path corresponding to the project
duration given by Y (e.g., shortest or longest path, depending on the problem), i.e.,

Y = ∑
j∈P∗

Xj,

where P∗ itself is a random variable. We wish to estimate dE[Y ]/dθ , where θ is a
parameter in the distribution(s) of the activity times {Xi}.

Example 5.8. An example of a five-node network with six arcs is shown in Fig. 5.1,
in which there are three paths: P = {(1,4,6),(1,3,5,6),(2,5,6)}. If the longest
path is the performance measure of interest, then

Y = max{X1 +X4 +X6,X1 +X3 +X5 +X6,X2 +X5 +X6}
= X6 +max{X1 +X4,X1 +X3 +X5,X2 +X5}.

For a specific realization, {X1 = 9, X2 = 15, X3 = 8, X4 = 16, X5 = 11, X6 = 12},
Y = 12+max{9+ 16,9+ 8+11,15+11}= 40 and P∗ = (1,3,5,6).

•1

X1

X2

•2

•
3

X3

X4

X5

•4 X6 •5

Fig. 5.1 Example stochastic activity network
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Denote the c.d.f. and p.d.f. of Xi by Fi and fi, respectively. For simplicity, assume
all of the activity times are independent. Even so, it should be clear that duration of
paths in P will not in general be independent, e.g., Example 5.8, where all three of
the paths include arc 6, so clearly the durations are not independent.

Let θ be a parameter in the distribution of a single Xi, i.e., in fi and Fi only. Then
the IPA estimator is given by

dY
dθ

=
dXi

dθ
1{i ∈ P∗}.

The LR/SF estimator is given by

Y
∂ ln fi(Xi;θ )

∂θ
.

The WD estimator is of the form

c(θ )
(

Y (X1, . . . ,X
(+)
i , . . . ,XN)−Y (X1, . . . ,X

(−)
i , . . . ,XN)

)

where X (±)
i ∼ F (±)

i , and (c(θ ),F (+)
i ,F (−)

i ) is a weak derivative for Fi.
If we allow the parameter to possibly appear in all of the distributions, then the

IPA estimator is found by applying the chain rule:

dY
dθ

= ∑
i∈P∗

dXi

dθ
,

whereas the LR/SF and WD estimators are derived by applying the product rule of
differentiation to the underlying input distribution, applying the independence that
allows the joint distribution to be expressed as a product of marginals. In particular,
the LR/SF estimator is given by

Y (X)

(
N

∑
i=1

∂ ln fi(Xi;θ )
∂θ

)
.

The WD estimator is of the form

N

∑
i=1

ci(θ )
(

Y (X1, . . . ,X
(+)
i , . . . ,XN)−Y (X1, . . . ,X

(−)
i , . . . ,XN)

)
,

where X (±)
i ∼ F (±)

i , i = 1, . . . ,N, and (ci(θ ),F
(+)
i ,F (−)

i ) is a weak derivative for Fi.

Example 5.9. We illustrate several cases for Example 5.8 when θ = 10 is the
mean of the exponential distribution for one or all of the activity times. For
the WD estimator, assume that the WD used is the entry from Table 5.1, i.e.,

(1/θ ,Erl(2,θ ),exp(θ )), so that for the distribution(s) in which θ enters, X (+)
i ∼
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Erl(2,10) and X (−)
i = Xi. Assume the same values for Xi as in Example 5.8, and the

following outputs for X (+)
i : X (+)

1 = 17, X (+)
2 = 33, X (+)

3 = 15, X (+)
4 = 40, X (+)

5 =

20, X (+)
6 = 25.

Case 1: θ is the mean of the first activity time, i.e., X1 ∼ exp(θ ).
The IPA estimate is simply X1/θ = 9/10 = 0.9, since X1 is on the critical path
in Example 5.8. The LR/SF estimate is given by (40)(1/10)(9/10− 1) = −0.4.
For WD, in the “+” network, the longest path remains the same as in the original
network, and the longest path length simply increases by the difference in X1, so the
WD estimate is given by (1/10)(48-40) = 0.8.

Case 2: θ is the mean of the second activity time, i.e., X2 ∼ exp(θ ).
The IPA estimate is 0, since X2 is not on the critical path for Example 5.8. The LR/SF
estimate is given by (40)(1/10)(15/10− 1) = 2. For WD, in the “+” network, the
longest path becomes (2,5,6), and the WD estimate is given by (1/10)(56-40) = 1.6.

Case 3: θ is the mean of the sixth activity time, i.e., X6 ∼ exp(θ ).
The IPA estimate is X6/θ = 12/10 = 1.2, since X6 is always on the critical path.
The LR/SF estimate is given by (40)(1/10)(12/10−1)= 0.8, and the WD estimate
is given by (1/10)(53-40) = 1.3.

Case 4: θ is the mean of all of the activity times, i.e., Xi ∼ exp(θ ) i.i.d.
The IPA estimate is (X1 +X3 +X5 +X6)/θ = 40/10 = 4.0. The LR/SF estimate is
given by (40)(1/10)(−0.1+0.5−0.2+0.6+0.1+0.2)= 4.4. For WD, the longest
path has to be computed separately for six different network realizations; and the
WD estimate is the sum of the six differences: (1/10)(8+16+7+21+9+13) = 7.4.

If instead we were interested in estimating P(Y > y) for some fixed y, the WD
and LR/SF estimators would simply replace Y with the indicator function 1{Y > y}.
For example, in Case 1 of Example 5.9, for any y < 40, the LR/SF estimate is given
by (1/10)(9/10-1) = -0.01, and the WD estimate is (1/10)(1-1) = 0; for y ≥ 40, the
LR/SF estimate is 0; for y ≥ 48, the WD estimate is (1/10)(0-0) =0, whereas for
40 ≤ y < 48, the WD estimate is (1/10)(1-0)=0.1. However, IPA would not apply,
since the indicator function is inherently discontinuous, so an extension of IPA such
as SPA is required. On the other hand, if the performance measure were P(Y > θ ),
then since the parameter does not appear in the distribution of the input random
variables, WD and LR/SF estimators cannot be derived without first carrying out an
appropriate change of variables. These cases are addressed in [15].

Single-Server Queue

We illustrate each of the three direct gradient estimators for the FCFS G/G/1 queue.
Let Ai be the interarrival time between the (i− 1)st and ith customer, Xi the service
time of the ith customer, and Ti the system time (in queue plus in service) of the
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ith customer. The sample performance of interest is the average system time over
the first N customers T N = 1

N ∑N
i=1 Ti, and we take θ as a parameter in the service

time distribution(s). Assume that the system starts empty, so that the times of the
first N service completions are completely determined by the first N interarrival
times and first N service times. Also assume that the arrival process is independent
of the service times, which are also independent of each other but not necessarily
identically distributed, with the p.d.f. and c.d.f. for Xi given by fi and Fi, respectively.

The system time of a customer for a FCFS single-server queue satisfies the
recursive Lindley equation:

Ti+1 = Xi+1 +(Ti −Ai+1)
+. (5.30)

The IPA estimator is obtained by differentiating (5.30):

dTi+1

dθ
=

dXi+1

dθ
+

dTi

dθ
1{Ti ≥ Ai+1}, (5.31)

so that the IPA estimator for the derivative of average system time is given by

dT N

dθ
=

1
N

N

∑
i=1

dTi

dθ
=

1
N

M

∑
m=1

nm

∑
i=nm−1+1

i

∑
j=nm−1+1

dXj

dθ
, (5.32)

where M is the number of busy periods observed and nm is the index of the last
customer served in the mth busy period (n0 = 0 and nM = N for M complete
busy periods), and expressions for dX/dθ for many input distributions can be
found in Table 5.1. Implementation of the estimator involves keeping track of two
running quantities, one for (5.31) and another for the summation in (5.32); thus, the
additional computational overhead is minimal, and no alteration of the underlying
simulation is required.

To derive an LR/SF estimator, we use the fact that the interarrival times and
service times are independently generated, so the joint p.d.f. on the input random
variables will simply be the product of the p.d.f.s of the joint interarrival time
distribution and the individual service time distributions given by

g(A1, . . . ,AN)
N

∏
i=1

fi(Xi;θ ),

where g denotes the joint p.d.f. of the interarrival times. Thus, the straightforward
LR/SF estimator would be given by

(
dT N

dθ

)

LR
= T N

N

∑
i=1

∂ ln fi(Xi;θ )
∂θ

, (5.33)

where expressions for some common input distributions can be found in Table 5.1.
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The WD estimator is also relatively straightforward, just incorporating the
product rule of differentiation as before:

(
dT N

dθ

)

WD
=

N

∑
i=1

ci(θ )
[
T N(A1, . . . ,AN , . . . ,X

(+)
i , . . .)−T N(A1, . . . ,AN , . . . ,X

(−)
i , . . .)

]
,

where X (±)
i ∼ F(±)

i , i = 1, . . . ,N for (ci(θ ),F
(+)
i ,F (−)

i ) a weak derivative of Fi

(again, see Table 5.1). Note that in general, implementation of the estimator requires
2N separate sample paths and resulting sample performance estimates whenever the
parameter appears in N input random variables.

Example 5.10. We illustrate the numerical calculation for the three estimators when
θ = 10 is the mean of the exponential distribution for two cases: the first service
time only or all of the service times. Again, for the WD estimator, assume that the
WD used is the entry from Table 5.1, i.e., (1/θ ,Erl(2,θ ),exp(θ )), so that for the

distribution(s) in which θ enters, X (+)
i ∼ Erl(2,10) and X (−)

i =Xi. Take N = 5, with
the first five arrivals occurring at t = 10,20,30,40,50, i.e., Ai = 10, i = 1,2,3,4,5,
and the following service times generated:

X1 = 15, X2 = 7, X3 = 11, X4 = 9, X5 = 6.

For these values, it turns out that all five customers are in the same busy period, i.e.,
all except the first customer have to wait, and we get the following outputs:

T1 = 15, T2 = 12, T3 = 13, T4 = 12, T5 = 8; T 5 = 12.0.

For the WD estimate, we also need the following (only first entry for the 1st case):

X (+)
1 = 25, X (+)

2 = 12, X (+)
3 = 21, X (+)

4 = 19, X (+)
5 = 11.

Letting T (+i)
j ≡ Tj(. . . ,X

(+)
i , . . .) and T

(+i)
N ≡ T N(. . . ,X

(+)
i , . . .) = 1

N ∑N
j=1 T (+i)

j , we

compute the following values for T (+i)
j and T

(+i)
5 :

�����i
j

1 2 3 4 5 T
(+i)
5

1 25 22 23 22 18 22.0
2 15 17 18 17 13 16.0
3 15 12 23 22 18 18.0
4 15 12 13 22 18 16.0
5 15 12 13 12 13 13.0
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Note that since all the service times X (+) are longer than the original service times,
all five customers remained in a single busy period on the “+” path.

Case 1: θ is the mean of the first service time only, i.e., X1 ∼ exp(θ ).
The IPA estimate is simply [5(X1/θ )]/5 = 15/10 = 1.5; the LR/SF estimate is
(12)(1/10)(15/10− 1)= 0.6; and the WD estimate is (1/10)(22−12) = 1.0.

Case 2: θ is the mean of all of the service times, i.e., Xi ∼ exp(θ ) i.i.d.
The IPA estimate is [(5X1 +4X2+3X3+2X4+X5)/θ ]/5 = 3.2; the LR/SF estimate
is (12)(1/10)(0.5 − 0.3 + 0.1 − 0.1 − 0.4) = −0.24; and the WD estimate is
(1/10)(10+ 4+ 6+4+1)= 2.5.

Variance Reduction

Both the LR/SF and WD estimators may have variance problems if the parameter
appears in all of the distributions, e.g., if it is the common mean when the service
times are i.i.d. The variance of the LR/SF estimator given by (5.33) increases
linearly with N, so some sort of truncation is generally necessary. For the single-
server queue example, the regenerative structure provides such a mechanism, to be
described shortly. For the WD estimator, although the variance of the estimator may
not increase with N, implementation may not be practical for large N. However,
in many cases, the expression can be simplified, making the computation more
acceptable. As discussed earlier, the variance properties of a WD estimator depend
heavily on the particular weak derivative(s) used and the coupling (correlation)

between X (+)
i and X (−)

i .
Using regenerative theory, the mean steady-state system time can be written as a

ratio of expectations:

E[T ] =
E[Q]

E[η ]
,

where η is the number of customers served in a busy period and Q is the sum of the
system times of customers served in a busy period. Differentiation yields

dE[T ]
dθ

=
dE[Q]/dθ

E[η ]
− dE[η ]/dθ

E[η ]
E[T ].

Applying the natural LR/SF estimators for each of the terms separately leads to the
following regenerative estimator over M busy periods, for the i.i.d. case where θ
appears in the common service time p.d.f. fX :
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(
dT N

dθ

)

LR
=

1
N

M

∑
m=1

{(
nm

∑
i=nm−1+1

Ti

)
nm

∑
i=nm−1+1

∂ ln fX (Xi;θ )
∂θ

}

− 1
N

M

∑
m=1

{
(nm − nm−1)

nm

∑
i=nm−1+1

∂ ln fX (Xi;θ )
∂θ

}
T N .

The advantage of this estimator is that the summations are bounded by the length of
the busy periods, so provided the busy periods are relatively short, the variance of
the estimators should be tolerable.

Higher Derivatives

For the WD estimator, a second derivative estimator would take exactly the same

form as before, the only difference being that (ci(θ ),F
(+)
i ,F (−)

i ) should be a weak
second derivative of Fi.

Using the regenerative method as before, the second derivative LR/SF estimator
is also relatively easy to derive:

(
d2T N

dθ 2

)

LR
=

1
N

M

∑
m=1

{(
nm

∑
i=1

Ti

)
nm

∑
i=nm−1+1

[
∂ 2 ln fX (Xi;θ )

∂θ 2 +

(
∂ ln fX (Xi;θ )

∂θ

)2
]}

− 1
N

M

∑
m=1

{
(nm −nm−1)

nm

∑
i=nm−1+1

[
∂ 2 ln fX (Xi;θ )

∂θ 2 +

(
∂ ln fX (Xi;θ )

∂θ

)2
]}

1
N

N

∑
j=1

Tj.

On the other hand, IPA will not work for higher derivatives for the single-
server queue example. The implicit assumption used in deriving an IPA estimator
is that small changes in the parameter results in small changes in the sample
performance, which translates to the boundary condition in (5.31) being unchanged
by differentiation. In general, the interchange (5.11) will typically hold if the sample
performance is continuous with respect to the parameter. For the Lindley equation,
although Tn+1 in (5.30) has a “kink” at Tn = An+1, it is still continuous at that point,
which is the intuition behind why IPA works. Unfortunately, the “kink” means that
the derivative given by (5.31) has a discontinuity at Tn = An+1, so that IPA will fail
for the second derivative.

An unbiased SPA second derivative estimator can be derived under the addi-
tional assumption that the arrival process has independent interarrival times, by
conditioning on all previous interarrival and service times at each departure, which
determines the system time, say Tn, with the corresponding next interarrival time,
An+1, unconditioned. We provide a brief informal derivation based on sample path
intuition (refer to Fig. 5.2). For the right-hand estimator, in which we assume
ΔTn > 0 (technically it should refer to Δθ ), the only “critical” events are those
departures that terminate a busy period, with the possibility that two busy periods
coalesce (idle period disappears) due to a perturbation. Letting gn and Gn denote the
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Fig. 5.2 Quantities used in deriving FCFS single-server queue SPA estimator

respective p.d.f. and c.d.f. of An, the corresponding probability rate (conditional on
Tn) is then calculated as follows:

lim
Δθ→0

P(Tn +ΔTn ≥ An+1|Tn < An+1)

ΔTn
=

gn+1(Tn)

1−Gn+1(Tn)

dTn

dθ
,

and the corresponding effect would be that the ΔTn perturbation would be propa-
gated to the next busy period. The complete SPA estimator is given by

(
d2T N

dθ 2

)

SPA
=

1
N

M

∑
m=1

nm

∑
i=nm−1+1

i

∑
j=nm−1+1

d2Xj

dθ 2

+
1
M

M

∑
m=1

gnm+1(Tnm)

1−Gnm+1(Tnm)

(
dTnm

dθ

)2

,

where d2X
dθ 2 is well-defined when FX(X ;θ ) is twice differentiable, and, in particular,

d2X
dθ 2 = 0 for location, scale, and generalized scale parameters.

5.3.5 Rudimentary Theory

A basic requirement for the stochastic gradient estimator is that it be unbiased.

Definition. The gradient estimator ∇̂θ J(θ ) is unbiased if E[∇̂J(θ )] = ∇θ J(θ ).

Basically, unbiasedness requires the exchange of the operations of differentiation
(limit) and integration (expectation), as was assumed in deriving (5.11) and (5.12).
Although in theory uniform integrability is both a necessary and sufficient condition
allowing the desired exchange of limit and expectation operators, in practice the key
result used in the theoretical proofs of unbiasedness is the (Lebesgue) dominated
convergence theorem. In the case of PA, the bounding involves properties of the
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performance measure, whereas in LR/SF and WD, the bounding involves the
distribution functions (probability measures).

Theorem 5.1 (Dominated Convergence Theorem). If limn→∞ gn = g w.p.1 and
|gn| ≤ M ∀n w.p.1 with E[M]< ∞, then limn→∞E[gn] = E[g].

Take Δθ → 0 instead of n → ∞, and g is the gradient estimator, so gΔθ is the
limiting sequence that defines the sample (path) gradient. Verifying that an actual
bound exists is often a non-trivial task in applications, especially in the case of
perturbation analysis.

Considering the two equations in (5.11), we translate these conditions to

gΔθ =
Y (θ +Δθ )−Y(θ )

Δθ
, (5.34)

gΔθ = Y (x)
f (x;θ +Δθ )− f (x;θ )

Δθ
, (5.35)

for IPA and LR/SF, respectively.
For IPA, the dominated convergence theorem bound implied by (5.34) corre-

sponds to Lipschitz continuity on the sample performance function Y , so that the
usual conditions required are piecewise differentiability and Lipschitz continuity of
Y , where the Lipschitz modulus is integrable, i.e., ∃M > 0 with E[M]< ∞ s.t.

|Y (θ +Δθ )−Y(θ )| ≤ M|Δθ |.

In practice, the following generalization of the mean value theorem is useful.

Theorem 5.2 (Generalized Mean Value Theorem). Let Y be a continuous
function that is differentiable on a compact set Θ̃ = Θ\D̃, where D̃ is a set of
countably many points. Then, ∀θ ,θ +Δθ ∈Θ ,

∣∣∣∣
Y (θ +Δθ )−Y(θ )

Δθ

∣∣∣∣≤ supθ∈Θ̃

∣∣∣∣
dY
dθ

∣∣∣∣ .

If Y (θ ) can be shown to be continuous and piecewise differentiable on Θ w.p.1,
then it just remains to show

E

[
supθ∈Θ̃

∣∣∣∣
dY
dθ

∣∣∣∣
]
< ∞,

to satisfy the conditions required for unbiasedness via the dominated convergence
theorem. Basically, in order for the chain rule to be applicable, the sample
performance function needs to be continuous with respect to the underlying random
variable(s). This translates into requirements on the form of the performance
measure and on the dynamics of the underlying stochastic system. The applicability
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of IPA may depend on how the input processes are constructed/generated, as was
illustrated in Example 5.5, where one representation led to a biased estimator
while another led to an unbiased estimator. In applying SPA, there is the choice
of conditioning quantities (cf. (5.19)/(5.20)), which affects how easily the resulting
conditional expectation can be estimated from sample paths. In Example 5.5, the
representation that led to a biased IPA estimator only had two random variables,
so there was a limited choice on what to condition, and the obvious choice led
immediately to an unbiased SPA estimator.

For the LR/SF method, the bound is applied to the (joint) p.d.f. (or p.m.f.). Note
that the bound on f (x;θ ) is with respect to the parameter θ and not its usual
argument. For WD, the required interchange is guaranteed by the definition of the
weak derivative, but the sample performance must be in the set of “test” functions
L in the definition, which again generally requires the dominated convergence
theorem.

The previous examples can be used to show in very simple cases where
difficulties arise. Consider the p.d.f.

f (x;θ ) =
1
θ

1{0 < x < θ},

where the LR/SF method does not apply. In this case, f viewed as a function of θ
for fixed x has a discontinuity at θ = x. Similarly, consider the function

P(Y > y) = E[1{Y > y}],

for which IPA will not work. In this case, the performance measure is an indicator
function, which is discontinuous in its argument. In both of these simple examples,
the dominated convergence theorem cannot be applied, because the required
quantity cannot be bounded. However, since the dominated convergence theorem
provides only sufficient conditions, it is possible in some very special situations
(neither of which these two examples satisfy), unbiasedness may still hold.

In addition to the basic requirement for an unbiased estimator, it is important
for the estimators to have low variance. There are also a multitude of choices of
WD triples for a given input distribution, and this determines both the amount of
additional simulation required and the variance of the resulting WD output gradient
estimator. For LR/SF estimators, the variance of the estimator could also be a
problem if care is not taken in implementation, e.g., a naïve estimator may lead
to a linear increase in variance with respect to the simulation horizon, as in the
single-server queue example.
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5.3.6 Guidelines for the Practitioner

Here we summarize some key considerations in applying the three direct gradient
estimation methods (PA, LR/SF, WD) (cf. [14]):

• IPA is generally inapplicable if there is a discontinuity in the sample performance
or the underlying system dynamics; the commuting condition (see [21]) can be
used to check the latter by considering possible event sequences in the system.
Smoothness may depend on system representation, as mentioned in Sect. 5.3.1
and illustrated in Example 5.5.

• SPA uses conditional Monte Carlo, so just as in its use for variance reduction,
the chief challenges of applying this approach include choosing what to condition
on and being able to compute (or estimate) the resulting conditional expectation.
The derived estimator may require additional simulations; see [18] for a compre-
hensive treatment of SPA.

• LR/SF and WD are more difficult to apply when the parameter does not appear
explicitly in a probability distribution (so-called “structural” parameters), in
which case an appropriate change of variables needs to be found.

• When the parameter of interest is known to be a location or (generalized)
scale parameter of the input distribution, then IPA is particularly easy to apply,
regardless of how complicated the actual distribution may be.

• For the LR/SF method, if the parameter appears in an input distribution that
is reused frequently such as in an i.i.d. sequence of random variables, e.g.,
interarrival and service times in a queueing system, truncation of some sort will
usually be required to mitigate the linear increase in variance.

• Application of the WD method generally requires two selections to be made:
(a) which (non-unique) weak derivative (c,F (+),F (−)) representation to use; and
(b) how to correlate (or couple) the random variables generated from F (+) and
F (−). Table 5.1 provides recommendations for many common distributions, and
the Hahn–Jordan decomposition given by (5.23) and (5.24) always provides a
fallback option. For the continuous distribution WD representations in Table 5.1,
the use of common random numbers can often reduce variance, whereas for the
Hahn–Jordan WD representation, it is best to generate the random variables
independently [44]. High-dimensional vectors may require many additional
simulations.

• For discrete distributions, IPA can usually be applied if the parameter occurs in
the possible values of the input random variable, whereas LR/SF and WD can be
applied if the parameter occurs in the probabilities.

• Higher derivative estimators are generally easy to derive using the LR/SF or WD
method, but the former often leads to estimators with large variance and the latter
may require a large number of additional simulations.
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5.4 Quantile Sensitivity Estimation

We begin by considering the sensitivities of the order statistics, which naturally
leads to quantile sensitivity estimation. This is the approach taken in [44]; see [16,
29, 30] for alternative approaches.

For a sample size n of random variables Yj, j = 1, . . . ,n, we consider the ith order
statistic Y(i), where the order statistics are defined by

Y(1) ≤ Y(2) ≤ ·· · ≤ Y(i) ≤ ·· · ≤ Y(n).

For simplicity, assume the {Yj} are all continuous random variables, so that equality
occurs w.p.0. The order-statistics definition assumes neither independence nor
identical distributions for the underlying {Yj}. When i = �αn�, where �x� denotes
the ceiling function that returns the next integer greater than or equal to x, Y(i) will
correspond to the quantile estimator for qα , which we denote by q̂n

α(θ )≡Y(�αn�). We
write Y(i)(Y1, . . . ,Yn) as necessary to show explicit dependence on the {Yj}, which
will be the case for the WD estimator.

Under the setting that Yi are i.i.d. and θ is a (scalar) parameter in the (common)
distribution of {Yj}, the first objective will be to estimate

J′(θ )≡ dE[Y(i)]

dθ
.

Then the respective IPA, LR/SF, and WD estimators are given by

dY(i)
dθ

, (5.36)

Y(i)
n

∑
j=1

∂ ln fYj (Yj;θ )
∂θ

, (5.37)

c(θ )
n

∑
j=1

[
Y(i)(Y1, . . . ,Y

(+)
j , . . . ,Yn)−Y(i)(Y1, . . . ,Y

(−)
j , . . . ,Yn)

]
, (5.38)

where fYj denotes the p.d.f. of Yj. Note that for the IPA estimator, dY(i)/dθ
corresponds to the dY/dθ for Y(i) and NOT the ith order statistic of {dYi/dθ}, i.e.,
if we write the order statistics for the IPA estimators of {dYi/dθ} as

[
dY
dθ

]

(1)
≤ . . .

[
dY
dθ

]

( j)
≤ . . .

[
dY
dθ

]

(n)
,

then in general,

dY( j)

dθ
=
[

dY
dθ

]

( j)
.
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For the setting where Yi are i.i.d., since the dependence of Y on its arguments
doesn’t depend on the order,

E

[
Y( j)

∂ ln fY (Yj)

∂θ

]
= E

[
Y(k)

∂ ln fY (Yk)

∂θ

]
∀ j,k,

where fY denotes the common p.d.f., so that the following LR/SF estimator

nY( j)
∂ ln fY (Yj)

∂θ
∀ j,

has the same expectation as the original LR/SF estimator given by (5.37), but now
the linearly (with n) increasing variance becomes quadratic in n. The other problem
with these estimators, whether this one or the original (5.37), is that they depend
on fY , which is in general unknown in the simulation setting, where the Yi denote
the output of i.i.d. simulation replications, a function of input random variables, say
X1, . . . ,Xn, whose distributions are known.

Similarly, we can eliminate the linearly (with n) increasing number of replica-
tions for the WD estimator by noting that if Y ∗ is independent of all Yi (which are
i.i.d.) but not necessarily having the same distribution, then the following is true:
∀ j,k ∈ {1, . . . ,n},

Y(i)(Y1, . . . ,Yj−1,Y
∗,Yj+1, . . . ,Yn)

d
= Y(i)(Y1, . . . ,Yk−1,Y

∗,Yk+1, . . . ,Yn).

As a result, the following estimator with the same expectation and order n− 1 less
pairs of simulations can be used:

nc(θ )
[
Y(i)(Y1, . . . ,Y

(+)
j , . . . ,Yn)−Y(i)(Y1, . . . ,Y

(−)
j , . . . ,Yn)

]

for any j. Again, as in the LR/SF case, the Y (+)
j and Y (−)

j need to be derived as a
function of the (common) distribution of the {Yi}.

It turns out that although all of the order statistics sensitivity estimators are
unbiased, going to the quantile estimation setting by increasing the sample size only
leads to asymptotic unbiasedness and not consistency in the general case, so that
batching is required to obtain a consistent estimator of the quantile sensitivity q′α ,
where qα is defined by (5.3). Specifically, although the usual quantile estimator
q̂n

α ≡ Y(�αn�) is strongly consistent, i.e.,

lim
n→∞

q̂n
α = qα w.p.1,

for the quantile sensitivity estimator q̂′nα (θ ) ≡ dY(�αn�)/dθ , it does not follow in
general that

lim
n→∞

q̂′nα (θ ) = q′α(θ )
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in any sense (strong or weak), except that the mean converges correctly, i.e.,

lim
n→∞

E[q̂′nα (θ )] = q′α(θ ).

To obtain consistency requires batching, i.e., for k batches each of sample size n, the
estimator is

q̄′n,kα (θ ) =
1
k

k

∑
i=1

q̂′n,iα (θ ),

where q̂′n,iα (θ ) is the ith estimate out of k batches for whichever estimator is used—
IPA, LR/SF, or WD, given by (5.36), (5.37), or (5.38), respectively—for q̂′n,iα (θ ).
Then it can be established that

lim
k→∞
n→∞

q̂′n,kα (θ ) = q′α(θ ).

The unbatched IPA quantile sensitivity estimator (5.36) does turn out to be provably
consistent if the following (very restrictive) condition is satisfied [30]:

There exists a function φ s.t. dY
dθ = φ(Y ).

We illustrate this condition with two simple examples, the first of which satisfies
this condition, and the second of which does not. In both of these toy examples,
the distribution of the output Y is known, so the LR/SF and WD quantile sensitivity
estimators can also be written down explicitly.

Example 5.11. Take Example 5.1 with Y = Xθ where X is exponentially distributed
with mean 1, i.e., X ∼ exp(1), so Y ∼ exp(θ ). Since dY/dθ = X = Y/θ , the
condition is satisfied with φ(y) = y/θ , and the unbatched IPA estimator Y�αn�/θ
is consistent.

Example 5.12. Take Y = θX1 + X2, where X1 and X2 are both N (0,1) and
independent, so Y ∼ N (0,θ 2 + 1). Then dY/dθ = X1 = (Y −X2)/θ , which still
involves the input random variable X2, and there is no way to write it in terms of Y
only.

However, E[dY/dθ |Y ] = E[X1|Y ] = θY/(θ 2 + 1) = −∂2FY (Y ;θ )/∂1FY (Y ;θ ),
where ∂i denotes the partial derivative with respect to the ith argument (i = 1,2),
and the relationship

E

[
dY
dθ

∣∣∣∣Y
]
=−∂2FY (Y ;θ )

∂1FY (Y ;θ )

can be shown to hold in general [30].
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5.5 New Approaches for Using Direct Stochastic Gradients
in Simulation Optimization

This section provides an overview of several new developments in using direct
stochastic gradient estimators for simulation optimization: three approaches to
enhancing metamodels for response surface methodology (RSM), and combining
indirect and direct estimators when used in stochastic approximation (SA), a
simulation optimization approach introduced earlier in the introduction and treated
in-depth in Chaps. 6 and 7. The new estimator is called a Secant-Tangents AveRaged
(STAR) gradient, because it averages two direct (tangent) gradient estimators and
one indirect (finite-difference secant) gradient estimator.

Before describing the other three approaches, we briefly summarize RSM;
see Chap. 4 for details. Like SA, RSM is a sequential search procedure. The
central component of RSM is the fitting of the local response surface using a
metamodel, and the most common procedure used is regression. Specifically, after
the preliminary scaling and screening of the input variables (called factors in the
experimental design terminology), there are two main phases to RSM. In Phase I,
which is iterative, a linear regression model is generally used to estimate a search
direction to explore. Once a relatively flat area is found, RSM proceeds to Phase II
where a higher-order—usually quadratic—model is fitted, which is used to estimate
the optimum.

Because regression analysis arose from physically observed processes, it assumes
that the only data points generated are measurements of the value of the dependent
variable for each combination of independent variable values. In the simulation
setting, the availability of direct gradient estimates opens up new possibilities that
have just recently begun to be exploited. We begin by discussing a promising new
approach that generalizes traditional regression, which is called Direct Gradient
Augmented Regression (DiGAR).

Another metamodeling technique that can be used for RSM is kriging, which
also arose from physical measurements. In the simulation setting, a generalization
called stochastic kriging, is apropos. We discuss two enhancements to stochastic
kriging that exploit the availability of direct gradient estimates: Stochastic Kriging
with Gradients (SKG), which is analogous to DiGAR, and Gradient Extrapolated
Stochastic Kriging (GESK), which uses the gradients in a totally different manner
by generating new output data.

For these three approaches, we follow the notation of statisticians in using y for
the output and x for the input.

5.5.1 Direct Gradient Augmented Regression (DiGAR)

Consider the usual regression setting with independent variable x and dependent
variable y, where n > 1 data points (x1,y1), . . . ,(xn,yn) are given. Both independent
and dependent variables take values from a continuous domain. For expositional
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ease, here we describe only the one-dimensional setting, for which the basic DiGAR
model is the following:

yi = β0 +β1xi + εi, (5.39)

gi = β1 + ε ′i , (5.40)

where gi, i = 1,2, . . . ,n are the gradient estimates with residuals {ε ′i}, and {εi}
denote the residuals of the outputs. The first line corresponds to traditional
regression, whereas the second line adds the direct gradient estimates in the natural
way. A weighted least-squares objective function is defined by

L = α
n

∑
i=1

(yi −β0 −β1xi)
2 +(1−α)

n

∑
i=1

(gi −β1)
2, (5.41)

where α ∈ [0,1]. Note that α = 1 corresponds to standard regression, whereas
α = 0.5 corresponds to the ordinary least squares (OLS) DiGAR model where
the function estimates and derivative estimates are equally weighted, and α = 0
corresponds to using only the gradient information. Solving the least-squares
problem by minimizing (5.41) yields the following α−DiGAR estimators for the
parameters in the regression model given by (5.39)/(5.40):

β̂0 = ȳ− β̂1x̄, β̂1 =

1
n

n
∑

i=1
(xi − x̄)(yi − ȳ)+ 1−α

α ḡ

1
n

n
∑

i=1
(xi − x̄)2 + 1−α

α

, (5.42)

where the bars indicate the sample means of the respective quantities. If the
estimators for the gradients are also unbiased, then the α−DiGAR estimators are
also unbiased. In the homogeneous setting where the variances of the function
and gradient estimates are given by σ2 and σ2

g , respectively, the following result
(Proposition 4 in [19]) provides conditions under which the new DiGAR estimator
guarantees variance reduction for the slope estimator in the regression model,
assuming unbiased estimators in the uncorrelated setting.

Theorem 5.3. For E[εi] = E[ε ′i ] = 0 ∀i, Cov(εi,ε j) = Cov(ε ′i ,ε ′j) = 0, i = j,
Cov(εi,ε ′j) = 0 ∀ i, j,

σ2
g

σ2 ≤ 2α
1−α

+
1

1
n

n
∑

i=1
(xi − x̄)2

⇐⇒ Var(β̂ DiGAR
1 )≤ Var(β̂ standard

1 ),

where β̂ DiGAR
1 and β̂ standard

1 denote the α-DiGAR slope estimator (5.42) and the
standard slope estimator, respectively.
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Even stronger guarantees are available in the maximum likelihood estimator (MLE)
setting (Proposition 7 in [19]). However, all of these results are for the one-
dimensional uncorrelated setting. For the multivariate setting xi = {xi j, j = 1, . . . ,d}
with corresponding output {yi} and partial derivatives {gi j}, the extension of the
least-squares objective function (5.41) for the α-DiGAR model

yi = β0 +
d

∑
j=1

β jxi j + εi,

gi j = β j + ε ′i j,

with non-negative weights that sum to 1, {α j, j = 0,1, . . . ,d}, is

α0

n

∑
i=1

(yi −β0 −
d

∑
j=1

β jxi j)
2 +

d

∑
j=1

α j

n

∑
i=1

(gi j −β j)
2,

which when minimized yields the following slope estimators:

β̂ j =

n
∑

i=1
(xi j − x̄ j)(yi − ȳ)−∑k = j βk

n
∑

i=1
(xik − x̄k)(xi j − x̄ j)+ n

α j
α0

ḡ j

n
∑

i=1
(xi j − x̄ j)2 + n

α j
α0

, j = 1, . . . ,d,

which reduces to the previous expression (5.42) with α0 = α,α1 = 1−α, when
there is just a single input.

In the simulation optimization setting, simulation replications are often compu-
tationally expensive, so it is desirable to use as few of them as possible for each
value of the input variable. When applying RSM for sequential search, the direction
of improved performance is perhaps the most critical output of the fitted metamodel
in Phase I. In several numerical experiments reported in [19] for an M/M/1 queue
with relatively small number of simulation replications per design point, the slope of
the standard linear regression model often gave the wrong sign, whereas the DiGAR
model always estimated the sign correctly. Thus, where applicable, DiGAR should
provide a better metamodel for simulation optimization using RSM.

5.5.2 Stochastic Kriging with Gradients (SKG)

The stochastic kriging (SK) model, introduced by [1], takes multivariate input
{(xi,ni)}, i = 1,2, . . . ,k, which generates y j(xi) as the simulation output from
replication j at design point xi, where x = (x1,x2, . . . ,xd)

T ∈R
d . Stochastic kriging

models y j(xi) as

y j(xi) = f(xi)
Tˇ+M(xi)+ ε j(xi), (5.43)
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where f(xi) ∈ R
p is a vector with known functions of xi, and ˇ ∈ R

p is a vector
with unknown parameters to be estimated. It is assumed that M is a realization of
a mean zero stationary random process (or random field). The simulation noise for
replication j taken at xi is denoted as ε j(xi). The trend term f(xi)

Tˇ represents
the overall surface mean. The stochastic nature in M is sometimes referred to as
extrinsic uncertainty. The uncertainty in ε j comes from the nature of stochastic
simulation, and it is sometimes referred to as intrinsic uncertainty.

Given the simulation response outputs
{

y j(xi)
}ni

j=1, i = 1,2, . . . ,k, denote the
sample mean of response output and simulation noise at xi as

ȳ(xi) =
1
ni

ni

∑
j=1

y j(xi), ε̄(xi) =
1
ni

ni

∑
j=1

ε j(xi), (5.44)

and model the averaged response output as

ȳ(xi) = f(xi)
Tˇ+M(xi)+ ε̄(xi).

The SKG framework, introduced in [10, 11], parallels DiGAR in the stochastic
kriging setting by modeling the added gradient information analogously:

ḡr(xi) =

(
∂ f(xi)

∂xr

)T

ˇ+
∂M(xi)

∂xr
+ δ̄ r(xi).

5.5.3 Gradient Extrapolated Stochastic Kriging (GESK)

Rather than modeling the gradient directly as in DiGAR and SKG, Gradient
Extrapolated Stochastic Kriging (GESK) extrapolates in the neighborhood of the
original design points {xi}, i= 1,2, . . . ,k, i.e., additional response data are generated
via linear extrapolations using the gradient estimates as follows:

x+i = xi +Δxi, y j(x+i ) = y j(xi)+ g j(xi)
T Δxi, (5.45)

where Δx = (Δx1,Δx2, . . . ,Δxd)
T , and ȳ(x+i ) is defined similarly as ȳ(xi) as

in (5.44). Different extrapolation techniques can be applied in (5.45), and multiple
points can also be added to the neighborhood of xi. For simplicity, here we assume
that the same step size is used for all design points, i.e., Δxi = Δx, i = 1,2, . . . ,k,
and that only a single additional point is added in the neighborhood of each point.
Figure 5.3 depicts the idea where the gradient is indicated by the arrow and the
extrapolated point by the cross.

The GESK model requires the choice of step sizes for the extrapolated points;
large step sizes allow better coverage but at the cost of additional bias since the
linearity is less likely to hold further from the original point. Thus, there is a basic
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Fig. 5.3 Illustration of gradient-extrapolated response points

bias-variance tradeoff to consider. In [37], this tradeoff is analyzed in a simplified
setting, leading to conditions under which improvement can be guaranteed. To
illustrate the potential improvements in performance that SKG and GESK offer over
ordinary stochastic kriging, we present a simple stylized numerical example from
[37] for a highly nonlinear function with added noise.

Numerical Example

The output is y j(x) = f (x) + ε j(x), where f (x) = exp(−1.4x)cos(7πx/2) and
ε j(x) ∼ N (0,1), and the gradient estimate is given by g j(x) = f ′(x) + δ j(x),
where δ j(x) ∼ N (0,25). Note that the variance of the direct gradient estimates
are higher than those of the response outputs, generally the situation found in
stochastic simulation settings. The Gaussian correlation function RM(x,x′) = exp
{−θ (x− x′)2} is used for the stochastic kriging models. The number of design
points is six, and the number of replications per design point is 50. Predictions are
made at N = 200 equally spaced points in [−2,0]. Figure 5.4 shows the results in
the form of graphs for a typical macro-replication, where both SKG and GESK are
considerably better than SK as a result of incorporating gradient estimates, and both
SKG and GESK better capture the trend of the response surface.
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Fig. 5.4 Fitted curves for a representative macro-replication (6 points, 50 replications per point)

5.5.4 Secant-Tangents AveRaged Stochastic Approximation
(STAR-SA)

Another proposal for the use of direct stochastic gradients is combining them
with indirect gradients obtained from function estimates. In the deterministic
optimization setting, there is nothing gained by the use of the function values
themselves if exact gradients are available, but in the simulation setting the direct
gradient estimates are noisy, so averaging them with indirect (finite difference)
gradient estimates could potentially reduce the variance at the cost of adding some
bias. This is the idea of the Secant-Tangents AveRaged (STAR) gradient estimator
used in the STAR-SA algorithm introduced in [8, 9]:

gSTAR(x,ξ ) = α
Y (x+ c,ξ )−Y(x− c,ξ )

2c
+(1−α)

g(x+ c,ξ )+ g(x− c,ξ )
2

,

(5.46)

where α ∈ [0,1], and for notational convenience, the same noise is assumed for both
points, e.g., through common random numbers, which is a convex combination of a
symmetric finite difference (secant) and an average of two direct gradient (tangent)
estimators. More details are provided in the following chapter on stochastic
approximation, Chap. 6, including the extension to higher dimensions in the form
of STAR-SPSA [8].
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5.6 Concluding Remarks

The direct estimation techniques PA, LR/SF, and WD have been applied to a wide
variety of application domains, the dominant ones being queueing, inventory, and
finance. Historically, the early research was all on queueing systems, motivated
originally by problems in manufacturing and communication networks. The first
work in the inventory control setting was [13, 23]. The first work in finance was
[5, 17], which considered IPA, SPA, and LR/SF estimators (cf. the book [22]).
More recent research in the finance setting includes the first work on quantile
sensitivity estimation [29]; the first combined IPA/LR estimator for options pricing
[45]; and the development of various WD estimators, as described in the dissertation
[44], which also includes an extensive treatment of IPA and LR/SF. Other areas of
application include preventive maintenance, statistical process control, and traffic
light signal control. Stochastic gradient estimation approaches not covered in this
chapter include frequency domain experimentation and Malliavin calculus, the latter
primarily used in continuous-time finance settings; see [14] for references on these
various applications.

More details on IPA can be found in the books by Glasserman [21], Ho and
Cao [26], and Cao [6], whereas a comprehensive treatment of SPA can be found in
the book by Fu and Hu [18]. Although IPA and SPA are the best known forms of
perturbation analysis, other versions include rare perturbation analysis [4], structural
IPA [12], discontinuous perturbation analysis [40], and augmented IPA [20]. This
chapter has treated gradient estimation, hence the focus on infinitesimal PA, but
perturbation analysis originally arose from investigating the effects of a finite
perturbation [27]; see also [7,28,43]. LR/SF is discussed in the books by Rubinstein
and Shapiro [39], Glasserman [22], and Asmussen and Glynn [2], all of which also
include discussion of IPA. The weak derivative method was introduced by Pflug
[36], and many of the WD entry derivations in Table 5.1 can be found in [24].
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