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Ranking and Selection: Efficient Simulation
Budget Allocation

Chun-Hung Chen, Stephen E. Chick, Loo Hay Lee, and Nugroho A. Pujowidianto

Abstract This chapter reviews the problem of selecting the best of a finite set of
alternatives, where best is defined with respect to the highest mean performance,
and where the performance is uncertain but may be estimated with simulation. This
problem has been explored from several perspectives, including statistical ranking
and selection, multiple comparisons, and stochastic optimization. Approaches taken
in the literature include frequentist statistics, Bayesian statistics, related heuristics,
and asymptotic convergence in probability. This chapter presents algorithms that are
derived from Bayesian and related conceptual frameworks to provide empirically
effective performance for the ranking and selection problem. In particular, we
motivate the optimal computing budget allocation (OCBA) algorithm and expected
value of information (EVI) approaches, give example algorithms, and provide
pointers to the literature for detailed derivations and extensions of these approaches.

3.1 Introduction

This chapter deals with the problem of selecting the best of a finite set of
alternatives. In the context of simulation optimization, each alternative represents
a different potential configuration of (or settings for) relevant decision variables.
The performance of each alternative is not known with certainty, but its value can
be estimated using stochastic simulation. We consider the setting where the number
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of feasible solutions (called “alternatives”) is small enough so that each alternative
can be simulated at least a few times in order to estimate its performance. In the
conclusion, we will point to recent work addressing settings where this is not the
case.

In this chapter, we will refer to a replication of a stochastic simulation as a
sample. When using simulation to compare the performance of multiple alternatives,
one might gradually increase the number of samples for each alternative until the
variance of the estimator is sufficiently small (i.e., the confidence intervals for
estimation are satisfactorily narrow) so that a satisfactory amount of evidence exists
to justify a selection of the “best” alternative. One very simple approach is to use an
identical number of samples for each alternative. This approach can be inefficient:
if one alternative has very low variance, then it may only require very few samples
to accurately estimate its performance.

To improve the efficiency of selecting the best alternative, several approaches
have been explored. Intuitively, to ensure a high probability of correctly selecting
an optimal alternative, a larger portion of the sampling budget should be allocated
to those alternatives that are more critical in the process of identifying good
alternatives quickly. Those could be alternatives with high estimated mean perfor-
mance in combination with a certain degree of uncertainty about the actual mean
performance. On the other hand, one might wish to sample less often the alternatives
whose estimated means are either poor or have a low degree of uncertainty about
their values. Two questions remain. How should one allocate resources to sample
from the different alternatives, as a function of their estimated mean performance,
and the uncertainty about their mean performance? For how long should one sample
until stopping to select an alternative as best?

This chapter focuses on two different approaches to answering these questions,
based on the optimal computing budget allocation (OCBA) approach and the
Bayesian expected value of information (EVI) approach. The approaches are
motivated and basic algorithms are presented. Derivations can be found in the
provided references. Empirical results from these two approaches show that they
perform favorably relative to some other approaches that have been proposed, in
the sense of providing a relatively high average-case performance over problem
instances, for a given number of samples that are observed to estimate the mean
performances of the alternatives.

3.1.1 Intuitive Explanations of Simulation Budget Allocation

Consider an inventory control problem where the goal is to maximize the expected
profit during a certain horizon by determining the best among five inventory
ordering policies. Each alternative inventory policy is specified by two numbers
s and S, where 0≤ s< S. If the inventory level falls below s, an order is placed
to increase the inventory level to S. Otherwise, no order is placed. The profit is
estimated via simulation due to randomness in demands and the amount delivered.
The goal is to find the alternative with the highest mean profit.
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Fig. 3.1 Ninety-nine per cent
confidence intervals for five
alternatives in a given stage
of sequential sampling
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One advantage of simulation experiments is that a decision maker can collect
samples in a sequential manner. After a given stage of sampling, estimates of the
means of each alternative are available, along with an assessment of the uncertainty
in the estimates. A selection procedure considers whether additional sampling is
required before selecting an alternative, and if so, how to allocate a sampling budget
to the different simulated alternatives in the next stage of sampling.

Figure 3.1 gives a representative scenario of possible results from the samples
that have been collected through a given stage of sampling. It shows the 99 %
confidence intervals along with the accompanying mean estimator (represented
as the line in the middle of the confidence interval) for each alternative. Some
alternatives seem better, but none are clearly better than all the others: all of the
confidence intervals overlap. In situations such as this, it is not straightforward
to determine which alternatives can be eliminated and which alternatives should
receive more simulation budget.

Intuitively, the decision maker may want to allocate more samples to the
alternatives with bigger half width such as alternatives 1 and 4 to reduce the variance
of their estimators. On the other hand, it is sensible to allocate more samples to
alternatives with larger means such as alternatives 3 and 4 as the objective is to
maximize the profit. The question is how much these factors influence what gets
sampled in the next stage of sampling. The next section gives an overview of the
works attempting to select the best alternative.

3.1.2 Overview of Ranking and Selection (R&S)

R&S procedures aim to identify the best alternative. One R&S procedure might be
considered to be better in some sense than another if it requires fewer samples,
in expectation, to achieve the same level of evidence for correct selection than
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that other procedure does. In this chapter, we will focus on a common context:
all alternatives are simulated. This is suitable for simulation optimization problems
when the number of alternatives is finite and not so large that it would prevent each
alternative from being sampled at least a few times for statistical inference [26].

Many reviews on R&S are available [1, 29, 39]. There are two-stage or few-
stage procedures (e.g., [21, 50]), the two-stage procedures with screening (e.g.,
[48]), and fully-sequential procedures, (e.g., [38]) that can guarantee a desired
probability of correct selection. In indifference zone (IZ) procedures, a difference
is considered to be significant if it is larger than a specified indifference-zone
parameter. The probability of correct selection guarantee in the IZ approach is with
respect to the probability of selecting the true best, subject to the condition that
the mean of the true best is better than the mean of all of the other alternatives
by at least the indifference-zone parameter. Thus, this is based on a worst-case
performance metric. This worst case approach can provide frequentist guarantees
for correct selection, but might require more samples to be collected to obtain that
guarantee than may be practically implementable. As such, they can be statistically
conservative.

In this chapter, we present R&S procedures based on average case performance
metrics that sample in a highly sequential manner. The goal is either to maximize
evidence for correct selection subject to a constraint on the sampling budget or to
reach a level of evidence for correct selection with the fewest expected number of
samples. Using an average-case analysis rather than a worst-case bound of the IZ
approach, we present two distinct approaches. The OCBA approach uses a thought
experiment that attempts to sequentially maximize the probability that the best
alternative can be correctly identified after the next stage of sampling. The EVI
approach uses a Bayesian description of the uncertainty about the mean of each
alternative, a loss function to describe the penalty for not correctly selecting the best
alternative, and expected value of information ideas to minimize the expected loss
from selecting an alternative after simulation. This expected loss can depend upon
which alternative is selected for simulation at each stage. These procedures tend to
require much less sampling to achieve the same or better empirical performance for
correct selection than procedures which are statistically more conservative [4, 58].

The EVI approach differs from the OCBA in one key respect. In the OCBA
approach, the effect of additional sampling is modeled using a Bayesian asymptotic
normality result: the distribution that is used to describe uncertainty after the
samples are observed is assumed to be normally distributed with the same mean and
with a variance that shrinks as samples accumulate. In the EVI approach, a decision
theoretic framework is used. It explicitly models the fact that the posterior mean
will change after the samples are observed. It models the distribution of what the
posterior mean will be and explicitly models how changes in the posterior mean will
potentially change decisions as to which alternative is best. Changes in a decision
from sampling imply a value of information from those samples. The EVI approach
allocates samples in a way that maximizes, in some sense, a measure of the expected
value of information of those samples.
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3.1.3 Organization

Section 3.2 formulates the selection problem and provides the basic notation. In
addition, it provides a generic algorithm for selection procedures together with
explanations on the components of the algorithm. The main insights of the efficient
R&S procedures are presented at the end of Sect. 3.2. Section 3.3 describes one
class of efficient R&S procedures, called OCBA. It encompasses the objective of the
allocation, the allocation rule, the algorithm, and how it has been extended in other
settings. Similarly, Sect. 3.4 provides the details of the EVI procedures. In particular,
three different procedures are presented together with their algorithms. Section 3.5
concludes this chapter.

3.2 Problem Formulation and Selection Procedures

The problem of selecting the best is formulated in Sect. 3.2.1, and a generic selection
procedure algorithm is provided in Sect. 3.2.2. Section 3.2.3 provides an overview
of OCBA and EVI procedures, which are presented in more detail in Sects. 3.3 and
3.4, respectively.

3.2.1 Problem Formulation of Selecting the Best

We consider the problem of selecting the best of several alternatives based on
their means which have to be estimated via stochastic simulation. Without loss of
generality, we define the alternative with the largest mean as the best. For readability,
we use upper case for random variable, lower case for fixed value or realization, and
bold face for vectors.

Let Xij be a random variable whose realization xij is the output of the jth sample
from alternative i, j= 1, 2, . . . . There are k alternatives so that i= 1, 2, . . . , k. Let wi

and σ 2
i be the unknown mean and variance of alternative i. It will be easier at times to

refer to the precision λ i = 1/σ 2
i instead of the variance. Let w[1] ≤w[2] ≤ . . . ≤w[k]

be the ordered means. In practice, the ordering [·] is unknown, and the best
alternative is to be identified by sampling.

A problem configuration is denoted by χ = (w, σ2) where w= (w1, w2, . . . , wk)
and σ2 = (σ 2

1, σ 2
2, . . . , σ 2

k). Let ni be the number of samples from alternative i so far.
Let xi = ∑ni

j=1xi j/ni be the sample mean and σ̂2
i = ∑ni

j=1(xi j − xi)
2/(ni −1) be the

sample variance. The ordered sample means are x(1) ≤ x2 ≤ ·· · ≤ x(k). The quantity
ni depends on the decision maker while the quantities xi, σ̂2

i and (i) are updated as
more samples are observed.

Let D be the alternative that is selected as best by the selection procedure when
sampling is completed. Each selection procedure generates estimates ŵi of wi, for
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i= 1, 2, . . . , k. This chapter focuses on selection procedures where the estimates are
based on the sample mean, i.e., ŵi = xi. Thus, at the time sampling stops, D = (k)
and a correct selection occurs when the alternative with the best sample mean is the
true best (i.e., (k)= [k]).

In Bayesian approaches, unknown quantities are represented as random vari-
ables. Let Wi be the random variable that represents the unknown mean of
alternative i. The Bayesian framework uses the notion that we can update our
knowledge using the conditional distribution of parameters, given the data. Once
data are available, the posterior distribution describes the uncertainty of the
unknown mean. If we assume that samples are independent and normally distributed
with unknown mean and variance, and that a non-informative prior distribution is
used for the unknown mean and variance of each alternative, then the posterior
marginal distribution for the unknown mean Wi follows a Student’s t-distribution
St
(

xi, ni/σ2
i , vi

)

where vi = ni − 1 is the degrees of freedom [20]. The mean is xi

for vi > 1 and the variance is (σ 2
i /ni)vi/(vi − 2) for vi > 2.

In the above framework, we have assumed that the unknown means of each
alternative are independently distributed. Some extensions that are mentioned below
describe how to relax some of the assumptions made above.

It will be useful to define two figures of merit that are used by the OCBA and
EVI procedures below. Given the data E = {(xi1, xi2 . . . , xini) for i = 1, 2, . . . , k},
the posterior probability of correct selection (PCS), or posterior probability that the
best alternative is correctly selected, is

PCS = P
(

WD ≥W[k]

∣

∣

∣E
)

. (3.1)

We could further write PCS = P(D= [k]) in contexts where ties occur with
probability 0, as is the case in this setting.

If the vector of means w= (w1, w2, . . . , wk), the opportunity cost of selecting
alternative i is

LLL (i, w) = w[k]−wi. (3.2)

Thus, the expected opportunity cost (EOC), given the data ε , when D = (k) is
selected as best is

EOC = E
[

LLL (D, W )
∣

∣

∣E
]

= E
[

W[k]−WD

∣

∣

∣E
]

. (3.3)

For both the PCS and EOC, the probability expectations are with respect to the
posterior distribution of the unknown means, given all observed data.
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3.2.2 A Generic Algorithm for Selection Procedures

We present a generic sequential selection procedure. Variations on this generic
selection procedure result by making different assumptions about the nature of
the evidence for correct selection and the approximations made to measure that
evidence. In summary, an initialization step is used to provide initial estimates of the
mean and variance of each alternative. Then, samples are collected sequentially until
a stopping rule is activated. At each stage of sampling, an allocation rule specifies
how the samples to be collected during that stage should be allocated among the
alternatives.

The following are the steps for a generic algorithm for selection procedures.

1. Specify a first-stage sample size n0 > 2, and a total number of samples τ > 0 to
allocate per subsequent stage. Specify stopping rule parameters.

2. Sample Xi1,Xi2, . . . ,Xin0 independently and initialize the number of samples
ni ← n0 so far for each alternative, i= 1, 2, . . . , k.

3. Determine the sample statistics xi and σ̂2
i and the order statistics so that x(1) ≤

·· · ≤ x(k).
4. WHILE stopping rule is not satisfied, DO another stage

a. Use the allocation rule to identify which alternative to sample and determine
τ i, the number of samples to allocate to alternative i.

b. Observe the additional samples, update the sample statistics and the order
statistics.

c. Update the number of samples collected so far for each alternative,
ni ← ni + τ i.

5. Select the best alternative based on the selection rule.

As described in the algorithm, the decision maker needs to decide the allocation
rule, the stopping rule, and the selection rule. The following three paragraphs
describe each of the components of the algorithm in general. Sections 3.3 and 3.4
give specific examples of allocation rules and stopping rules.

An allocation rule is a mapping from the sampling statistics of the k alternatives
to a vector of integers that represents the number of samples to observe from each
alternative in the next stage of sampling. Let τ i be the number of samples allocated
to alternative i in the next stage of sampling, for i= 1, 2, . . . , k. We require that there
be a total of τ samples, so that ∑ k

i= 1τ i = τ . The τ i’s are recalculated at each stage
of sampling. For example, in an equal allocation, the allocation rule is to sample
evenly from each alternative: it assigns samples so that, at the end of the stage of
sampling, the difference between the number of samples between the most-sampled
and the least-sampled alternatives, is minimized. If τ = k, then the equal allocation
rule sets τ i = 1 for each i at each stage. If τ = 1, then one equal allocation rule could
set τ i = 1 for the alternative with the smallest index among those alternatives that
have been sampled the least so far, and τ i = 0 for the other alternatives.



52 C.-H. Chen et al.

The stopping rule specifies the condition under which sampling is terminated so
that an alternative can be selected as best. It can be based on a total sampling budget
or the desired level of evidence for a correct selection. If a total sampling budget
is chosen, this reflects a choice to take a deterministic number of samples before
selecting an alternative as best independent of the samples seen: sampling continues
if and only if ∑ k

i= 1ni < β , where β is a user-specified total sampling budget.
A selection procedure with such a deterministic sampling budget is “better” if it
provides a higher expected level of evidence for correct selection after sampling.
Such evidence might be the posterior PCS.

If a desired level of evidence for correct selection is chosen as a criterion for
stopping, such as a choice to stop sampling when the posterior PCS is above a pre-
specified threshold, then a “better” procedure is one that requires a fewer number
of samples, in expectation, to reach that threshold. Such a stopping rule is called
an adaptive stopping rule, because the total number of samples may depend on the
values of the samples.

The selection rule specifies which alternative to select as best when sampling is
completed. A very common sampling rule is to pick the alternative with the largest
sample mean, i.e., D= (k), where (k) is the alternative with the largest sample mean
when the sampling stops, and D is the (random) decision variable that represents
the selected alternative. This decision rule is known to be optimal in some situations
(e.g., if the loss function is the expected opportunity cost [16, 30]). An alternative
selection rule is to select the alternative with the largest posterior probability of
being the best [2].

Throughout this chapter, the “default” approach is to use a non-informative prior
distribution for the unknown parameters [20]. This implies that the decision maker
does not favor any specific value for the unknown means. As a result, initial number
of samples need to be collected. If there is additional information, the decision
maker can use an informative prior distribution to describe that information. Branke
et al. [4] and Chick and Frazier [14] show how to handle the analysis with
informative prior distributions.

3.2.3 General Concepts for OCBA and EVI

Before going into the details in Sects. 3.3 and 3.4, the basic ideas of four allocation
rules are presented. The first allocation rule is OCBA for unconstrained optimization,
which will be further described in Sect. 3.3. The other three allocation rules attempt
to maximize EVI and will be discussed in detail in Sect. 3.4.

Basic Idea of OCBA

The basic goal of OCBA is to maximize the probability of correct selection for a
given stage of sampling. It aims to derive closed-form expressions that are easy to
implement to allocate multiple samples to multiple alternatives.
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This is done using an asymptotic framework to analyze the structure of the
optimal allocation when the number of samples tends to infinity. For example,
it uses the Bayesian asymptotic normality result where the posterior distribution
of Wi follows a normal distribution, Wi ∼ N

(

xi, σ2
i /ni

)

. Based on asymptotic
analysis, the simulation budget allocation problem can be formulated as a non-linear
deterministic optimization problem that can be solved using classical techniques
such as the Karush–Kuhn–Tucker (KKT) conditions. The resulting closed-form
allocation rule can then be implemented using a sequential heuristic algorithm.

Basic Idea of EVI

The value of information is defined as the expectation of the reward obtained with
additional information less the reward obtained without that information (that is,
the expected opportunity cost). Ideas for the EVI approach have been developed
independently for several different distributional assumptions and approaches for
how to value the information [16, 22, 31, and others]. The three approaches to
EVI discussed here include variations on whether the information to be valued is
obtained by sampling from one or from multiple alternatives in a given stage of
sampling, or whether the information from only a single stage (resulting in a so-
called one-step lookahead policy) or from potentially multiple stages of sampling is
modeled. The former is typically easier to do than the latter.

The Linear Loss procedure (LL) is an EVI procedure that can allocate multiple
samples to multiple alternatives in each stage of sampling. It aims to minimize the
expected opportunity cost (EOC), which is the difference in means between the
selected alternative and the best alternative. Linear loss is another name for the
EOC [30]. In the LL procedure, the additional information is one extra stage of
sampling, and the reward is the posterior mean reward from the alternative that
would be chosen as best.

The LL1 allocation is like the LL in that it allocates samples to alternatives at each
stage of sampling in order to minimize EOC of a potentially incorrect selection,
and does so in a myopic one-step lookahead manner. The LL1 differs from the LL
allocation in the sense that it requires all samples within a given stage to be taken
from a single alternative and so it is called LL1. This restriction enables a closed
form solution for the one-stage value of information when samples are normally
distributed (with known or unknown means and variances). The LL1 allocation was
independently developed by Frazier et al. [22]. The resulting approach is called the
knowledge gradient of which idea is extensively presented and discussed by Powell
and Ryzhov [49].

Economics of Selection Procedure (ESP) looks at the case where the decision
maker has the option to continue sampling or to stop and select the best. It specifies
one alternative to be sampled like LL1. However, it looks at the future streams of
rewards (potentially multiple stages of learning and sampling costs, the benefit from
implementing a selected alternative) instead of the one-step lookahead analysis as
in the case of OCBA, LL, and LL1 which only maximizes the evidence for correct
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selection by the end of one stage of sampling. As a result, it accounts for the value
of the ability of further sampling after that stage and therefore takes a non-myopic
view of the value of sampling.

3.3 Optimal Computing Budget Allocation (OCBA)

This section briefly introduces the OCBA approach. As ni increases, ŵi = xi becomes
a better approximation to wi in the sense that its corresponding variance becomes
smaller. At a given stage, we need to allocate the additional τ samples to each
alternative. As motivated in Sects. 3.1 and 3.2, instead of equally simulating
all alternatives, we want to choose τ1, τ2, . . . , τk more intelligently so that the
simulation efficiency can be enhanced.

3.3.1 Maximization of PCS

The simulation budget allocation problem that OCBA in Chen et al. [12] aims to
maximize the probability of correct selection (PCS) subject to the sampling budget
of a given stage of sampling τ ,

max
τ1,τ2,..., τk

PCS s.t.
k

∑
i=1

τi = τ ,τi ≥ 0. (3.4)

Here ∑ k
i= 1τ i = τ denotes the total computational cost assuming the simulation

execution times for different alternatives are roughly the same. Formally, τ i is a
non-negative integer. However, the allocation rule is derived assuming that τ i is a
continuous variable.

3.3.2 Asymptotic Allocation Rule

We use the Bayesian asymptotic normality result, Wi ∼ N
(

xi, σ2
i /ni

)

[20]. After
the simulation is performed, xi can be calculated, σ 2

i can be approximated by
the sample variance; PCS can then be estimated using a Monte Carlo simulation.
However, estimating PCS via Monte Carlo simulation is time-consuming. Since the
purpose of budget allocation is to improve simulation efficiency, we need a relatively
fast and inexpensive way of estimating PCS within the budget allocation procedure.
Efficiency is more crucial than estimation accuracy in this setting. We adopt a
common approximation procedure used in simulation and statistics literature. This
approximation is based on the Bonferroni inequality. For brevity, we drop the
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notation ε .

PCS = P

(

∩
i:(i) �=(k)

(

W(k)−W(i) ≥ 0
)

)

≥ 1− ∑
i:(i) �=(k)

[

1−P
(

W(k)−W(i) ≥ 0
)]

= 1− ∑
i:(i) �=(k)

P
(

W(k) <W(i)

)

= 1− ∑
i:(i) �=(k)

ΦN
(−d( j)(k)

)

= APCS.

(3.5)

where ΦN is the cumulative distribution function of standard normal distribution
and d( j)(k) = x(k)− x( j).

Consider an asymptotic case (τ →∞ so that the total sampling budget β →∞ and
τ i → ni), Chen et al. [12] show that the approximation of PCS given in (3.4) can be
maximized when

n(i)
n( j)

=

(

σ(i)/d(i)(k)
σ( j)/d( j)(k)

)2

, (i),( j) ∈ {1, 2, . . . , k} and (i) �= ( j) �= (k), (3.6)

n(k) = σ(k)

√

√

√

√ ∑
i:(i) �=(k)

n2
(i)

σ2
(i)

. (3.7)

It is interesting to see that (3.6) implies that the number of replications for
alternative i is proportional to the square of a noise-to-signal ratio, where the noise
refers to the sample standard deviation and the signal refers to the difference be-
tween alternative i’s sample mean and the best sample mean.

3.3.3 Sequential Heuristic Algorithm for Allocation

With the asymptotic solution in (3.6) and (3.7), we now present a cost-effective
sequential approach based on OCBA to select the best alternative from k alterna-
tives with a user-specified total sampling budget β . Each alternative is initially
simulated with n0 samples in the first stage, and additional samples are allocated
incrementally with τ samples to be allocated in each iteration. Let t be the stage
number.

OCBA Algorithm

INPUT k, β , τ , n0 (β − kn0 is a multiple of τ and n0 ≥ 5);
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INITIALIZE t← 0;
Perform n0 samples for all alternatives; n1,t = n2,t = . . . = nk,t = n0.

LOOP WHILE ∑ k
i= 1ni,t < β DO

UPDATE Calculate sample means xi∑ni,t

j=1xi j/ni,t , and sample standard devia-

tion σ̂i =
√

∑ni,t

j=1(xi j − xi)
2/(ni,t −1), i= 1, 2, . . . , k, using the new simulation

output; find (k) = argmax
i

xi.

ALLOCATE Increase the sampling budget by τ and calculate the new budget
allocation, n1,t+ 1, n2,t+ 1, . . . , nk,t+ 1, according to

i)
n(i),t+1
n( j),t+1

=
( σ̂(i)/d(i)(k)

σ̂( j)/d( j)(k)

)2
, for all (i) �= (j) �= (k), and

ii) n(k),t+1 = σ̂(k)

√

Σ
i:(i) �=(k)

n2
(i),t+1

σ̂2
(i)

,

SIMULATE Perform τ i = (n(i),t+ 1 − n(i),t)+ additional simulations for alter-
native i= 1, 2, . . . , k, where (x)+ =max(0, x);
t← t+ 1.

END OF LOOP

The resulting n(i) in the ALLOCATE step is a continuous number that must
be rounded to an integer. In the numerical experiments in the next section, n(i) is
rounded to the nearest integer such that the summation of additional simulation
replications for all solutions equals τ . Note that there may not always exist a
solution that satisfies all the three constraints. It actually occurs when at least
one solution has been over simulated, i.e., n(i),t+ 1 < n(i),t. In this case, we have
to relax the constraint. For ease of control of the simulation experiment, we can
choose to maintain the constraint ∑ k

i= 1n(i),t+ 1 = τ +∑ k
i= 1n(i),t+ 1 and apply some

heuristics to round n(i),t+ 1 for all i to nearest integers. Chen and Lee [8] have found
numerically that the performance is not sensitive to how we round n(i), probably due
to the robustness of a sequential procedure.

Alternative Simpler OCBA Procedure

When the computational cost of samples (simulation replications) is relatively large
as compared to the computational cost of the ALLOCATE step, we recommend that
τ should be small, or even set to 1. When τ = 1 the ALLOCATE and SIMULATE
steps can be simplified as follows.

ALLOCATE Increase the sampling budget by τ = 1 and calculate a tentative
allocation n1,t+ 1, n2,t+ 1, . . . , nk,t+ 1, according to

i)
n(i),t+1
n( j),t+1

=
( σ̂(i)/d(i)(k)

σ̂( j)/d( j)(k)

)2
, for all (i) �= (j) �= (k), and

ii) n(k),t+1 = σ̂(k)

√

Σ
i:(i) �=(k)

n2
(i),t+1

σ̂2
i

,

leave n(i),t+ 1 as a decimal number and find (i∗) = argmax
i

(

n(i),t+1 −n(i),t
)

.
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p1 p2

U(1,39) U(5,45)

Exp(1)

Fig. 3.2 A two-stage queuing system where both p1 and p2 must be greater than 10

SIMULATE Perform additional one sample for alternative (i*);
n(i∗),t+1 = n(i∗),t +1; n(i),t+ 1 = n(i),t for (i) �= (i*);
t← t+ 1.

Intuitively, we determine which alternative is the most starving one in terms
of the need of additional simulation, and then simulate that alternative for one
additional replication. This procedure is iteratively continued until the total budget
β is exhausted or the estimated APCS is sufficiently high. As shown in Chen and
Lee [8], this simpler procedure performs equally well in our numerical testing.

3.3.4 Numerical Results

Chen and Lee [8] provide extensive numerical results for OCBA. Among them,
Fig. 3.2 gives an example of a two-stage queuing system, where we want to allocate
31 parallel servers within a two-stage queue where each stage of the queue can
contain no less than 11 servers.

Denote p1 and p2 as the numbers of workers allocated to nodes 1 and 2
respectively. Thus, p1 + p2 = 31, p1 ≥ 11, and p2 ≥ 11. There are ten alternative
combinations of (p1, p2). We want to choose the best alternative of (p1, p2) so that
the average system time for the first 100 customers is minimized. Since there is
no closed-form analytical solution for the estimation of the system time, stochastic
(discrete-event) simulation can be performed to find the best alternative.

To characterize the performance of different procedures as a function of β , we
vary β between 200 and 8,000 for all of the sequential procedures and the estimated
achieved PCS as a function of β is shown in Fig. 3.3. We estimate the PCS by
estimating the fraction of the event of correct selection out of the independent
experiments that are conducted.

We see that all procedures obtain a higher PCS as the available sampling budget
increases. We can then record the number of samples that correspond to where the
curve crosses at a certain level of PCS that we are interested in. It can be seen that



58 C.-H. Chen et al.
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b

3,200 4,200 5,200

OCBA
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Fig. 3.3 PCS vs. β using three sequential allocation procedures

Table 3.1 The sampling
budget to attain PCS= 0.95
or 0.99

PCS OCBA Equal allocation

0.95 470 1,450

0.99 850 2,890

Table 3.2 Number of
maximum allowable workers
to simulate varying numbers
of alternatives

Maximum number of workers Number of alternatives

31 10

41 20

51 30

61 40

71 50

81 60

91 70

101 80

111 90

121 100

OCBA achieves a same PCS using the lowest amount of sampling budget. Table 3.1
shows the sampling budget to attain PCS= 0.95 and 0.99 for OCBA and Equal
Allocation.

It is not surprising that the actual sampling cost using OCBA depends on the
specific problem and the corresponding PCS requirement. However, the speedup
factor of using OCBA versus equal allocation is not very sensitive to problem
specifics, except for the number of alternatives.

Instead of providing only 31 servers, we increase the number of servers up to 121,
where there must be at least 11 servers at each station. As a result, the number of
possible alternatives varies from 10 to 100. Table 3.2 lists some of the possibilities.
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Table 3.3 Speedup factor of using OCBA compared with the use of
equal allocation

Number of alternatives (k) 4 10 20 50 75 100

Speedup factor 1.75 3.42 6.45 12.8 16.3 19.8

In this test, we compare OCBA and equal allocation, and focus on the “speedup
factors” under OCBA. For both procedures, we record the minimum sampling
budget where the curve plotting the estimated PCS vs. β crosses PCS= 0.99: β OCBA

and β EA. The “speedup factor” using OCBA is given by the ratio β EA/β OCBA.
Table 3.3 shows the numerical results for different number of alternatives. We see
that OCBA is even more efficient as the number of alternatives increases. The higher
efficiency is obtained, because a larger alternative space gives the OCBA algorithm
more flexibility in allocating the sampling budget.

3.3.5 Minimization of EOC

Instead of maximizing PCS, we turn our attention to the expected opportunity
cost (EOC). From the simulation efficiency perspective, one has the same question
to ask: how should we allocate the simulation samples so that we can select an
alternative within the given sampling budget while EOC is minimized, instead of
maximizing PCS as in previous sections?

Deriving an asymptotic solution for minimizing EOC is much more complicated
than its counterpart for PCS. Following the same notion of the greedy approach
given in Chen et al. [11] and Hsieh et al. [36], He et al. [33] present a greedy
selection procedure, called OCBALL (or OCBA−EOC), to reduce the EOC of a
potentially incorrect selection by taking a similar OCBA approach to selection.

A critical component in the proposed procedure is to estimate how EOC changes
as ni changes. Let τ i be a nonnegative integer denoting the number of additional
simulation samples allocated to alternative i in the next stage of sampling. We are
interested in assessing how EOC would be affected if alternative i was simulated for
τ additional replications. He et al. [33] present an Estimated Expected Opportunity
Cost (EEOC), which is an upper bound of EOC, as follows

EEOC = ∑
i:(i) �=(k)

P
(

W(i) ≥W(k)

)

E
[

W(i)−W(k)

∣

∣

∣ W(i) ≥W(k)

]

. (3.8)

The OCBA approach in this case aims to sequentially minimize EEOC. A critical
component is to estimate how EEOC changes if alternative i is allocated with τ i

additional replications in a given stage. A heuristic approach to the approxima-

tion of the predictive posterior distribution yields Wi ∼ N

(

1
ni ∑

ni

j=1xi j,
σ̂2

i

ni + τi

)

.
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The EEOC can then be determined by using the original distributions for the
unknown means of alternatives other than i as follows

EEOC(i) = ∑
j:( j) �=(k)

∫ +∞

0
x f ∗(k), ( j),(i)(x)dx, (3.9)

where f *
(k), (j),(i)(x) is the probability density function (p.d.f.) of the difference

between alternative (k) and (j), given that τ (i) additional replications are allocated
to alternative (i), and none is allocated to others. If (i)= (k), then f *

(k), (j),(i)(x)

is the p.d.f. of N

(

x( j)− x(k),
σ̂2
(k)

n(k)+τ(k)
+

σ̂2
(i)

n(i)

)

. If (i)= (j), then f *
(k), (j),(i)(x) is

the p.d.f. of N

(

x(i)− x(k),
σ̂2
(k)

n(k)
+

σ̂2
(i)

n(i)+τ(i)

)

. Otherwise, no new information is

available to distinguish alternatives (k) and (j) and f *
(k), (j),(i)(x) is the p.d.f. of

N

(

x( j)− x(k),
σ̂2
(k)

n(k)
+

σ̂2
(i)

n(i)

)

.

Since we want to minimize EOC, OCBALL sequentially allocates additional
samples to the alternatives that lead to the lowest EEOC at each stage. Let r be
the number of alternatives to simulate in each stage. The ALLOCATE steps are
revised as follows

ALLOCATE Find the set S(r) ≡{j : EEOC(j) is among the r lowest values}.
Increase the sampling budget by τ (i) = τ/|S(r)| for alternative (i)∈ S(r), i.e.,
n(i),t+ 1 = n(i),t + τ (i) if (i)∈ S(r), n(i),t+ 1 = n(i),t otherwise. If τ = 1, only a single
replication is allocated to alternative j which minimizes EEOC(j).

3.3.6 Other Variants

This section discusses some extensions of the OCBA approach. We begin by consid-
ering an efficient budget allocation procedure for selecting an optimal subset of top-r
alternatives rather than the single best alternative [10]. Then we consider problems
with multiple performance measures, which can be formulated either as constrained
optimization or multi-objective optimization. Other recent developments are then
discussed and finally concluded with examples of generalizations of OCBA notions.

Subset Selection Problem

Instead of selecting the best alternative as in previous section, we consider a class
of subset selection problems in simulation optimization or ranking and selection. In
some cases, it is more useful to provide a set of good alternatives than a single best
alternative for decision maker to choose, because he/she may have other concerns
which are not modeled in the simulation. Such efficient subset selection procedures
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are also beneficial to some recent developments in simulation optimization that
require the selection of an “elite” subset of good candidate solutions in each iteration
of the algorithm, such as evolutionary population-based algorithm. A subset with
good performing solutions will result in an update that leads the search in a
promising direction.

Specifically, our objective is to find all top-r alternatives, where r > 1 is the
number of alternatives to select. Koenig and Law [40] develop a two-stage procedure
for selecting all the r best alternatives along the lines of the procedure in Dudewicz
and Dalal [21] (see also Sect. 10.4 of Law [41] for an extensive presentation of
the problem and procedure). However, the number of additional samples for the
second stage is computed based on a least favorable configuration, resulting in very
conservative allocations, so that the required computational cost is much higher than
actually needed.

This problem can be easily handled by changing the correct selection definition in
OCBA. Specifically, PCS = P(W(i) ≥W(j), ∀ (i)∈ Sr, (j) �∈ Sr) where Sr is the optimal
subset. Chen et al. [10] show that the allocation rule is similar to (3.6), that is

n(i)
n( j)

=
(

σ(i)/(x(i)−q)
σ( j)/(x( j)−q)

)2

, where q is a value between x(r) and x(r+1). A suggested value of

q, which asymptotically maximizes both P(W(r) ≤ q) and P(W(r + 1) ≥ q), is given by

q =
σ̂(r+1)x(r)+σ̂(r)x(r+1)

σ̂(r)+σ̂(r+1)
.

Handling Optimization with Multiple Performance Measures

OCBA has also been extended to tackle other simulation-based optimization prob-
lems. The needs of optimization problems with multiple performance measures
become more evident. We can categorize these problems according to whether there
are any constraints and whether the constraints are stochastic or deterministic.

In the case of multi-objective optimization where no performance measures are
constrained, Lee et al. [43, 44] consider the problem of finding the non-dominated
Pareto set where the evidences for correct selection used are type I and type II errors.

There are cases where the secondary stochastic performance measures act as
constraints. In this case, the simulation budget allocation can be allocated based
on the optimality only, feasibility only, or both. Lee et al. [45] propose an OCBA
approach that maximizes a lower bound of PCS. The procedure is applicable for
both the independent case and the case with correlated performance measures. In
some situations, the decision makers are only interested in differentiating the fea-
sible alternatives from the infeasible ones, which is called feasibility determination
problem as addressed by Szechtman and Yücesan [55]. In this case, there is no need
to select the best alternative.

It is also possible to consider the descriptive complexity preference. In this
case, an alternative that is simpler, i.e., having smaller descriptive complexity is
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preferred compared to a complex one if they have similar performance. The decision
makers therefore want to select the top-r simplest alternatives of which performance
measures are above certain desired level [37, 60].

Other Recent Developments

There are several other related works along the lines of the OCBA research. This
section gives some examples, which is by no means an exhaustive list. The OCBA
rule presented in Sect. 3.3.2 assume that the variances are known. In the case
of unknown variances, Chen et al. [13] proposed the OCBA algorithm based on
t distribution. It is found that the differences between the results obtained based
on the t distribution model and the normal distribution model is not significant.
Instead of finding the alternative with the best mean, Trailovic and Pao [57] develop
an OCBA approach for finding an alternative with minimum variance. Unlike the
independence assumption of simulation samples required in this book, Fu et al. [27]
extend the OCBA to problems in which the simulation outputs between alternatives
are correlated. Chen et al. [9] study of the benefit of dynamic allocation. Glynn
and Juneja [28] extend the OCBA to problems in which the simulation output is no
longer normally distributed by utilizing large deviation theory. Blanchet et al. [3]
further extend the work to heavy-tailed distributions, also utilizing large deviation
theory.

Brantley et al. [5, 6] enhance OCBA efficiency by incorporating information from
across the domain into a regression equation. Morrice et al. [46, 47] further extend
the concepts to a method for selecting the best alternative based on a transient mean
performance measure.

Generalized OCBA Notions

The different extensions presented earlier indicate that there exists a consistent
notion where an optimization model is used to determine the best allocation scheme
to maximize a certain desired quality of the outcome given a fixed budget. The
OCBA notion has been generalized for different purposes well beyond selecting the
best alternative as presented in previous subsections. The main idea is that it is
possible to replace the objective function PCS with other objectives. In addition, the
budget to be allocated is not necessarily in terms of computer time or simulation
replications. We give three examples in this section.

The Cross-Entropy (CE) method introduced by Rubinstein [51] belongs to a
class of global optimization algorithms called estimation of distribution algorithms,
which work with a probability distribution over the solution space. In every
iteration of CE, we will first generate a population of solutions from a probability
density function (p.d.f.) with a certain parameter. After these generated solutions
are simulated, the parameters of the distribution are updated by minimizing the
Kullback–Leibler (KL) divergence (or the cross entropy) between the parameterized
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p.d.f. and the target optimal p.d.f.. The CE method has shown to be promising
in solving difficult global optimization problems, but its main focus has been
on deterministic optimization problems. For the stochastic setting, He et al. [34]
develop the OCBA–CE procedure that integrates the objectives of minimizing
the KL divergence from a parameterized distribution that generates the candidate
solutions in the CE method with that of minimizing the total computing budget
per iteration. Numerical testing indicates that the OCBA–CE is promising, resulting
in substantial computational efficiency gains over the CE method with equal
allocation.

The second example is the work by Shortle et al. [54], which uses the notion
of OCBA to the problem of estimating a rare-event probability using splitting
simulation. Multi-level splitting is an effective variance reduction technique. The
basic idea is to create separate copies (splits) of the simulation whenever it gets close
to the rare event. Each level is smaller and much easier to simulate than the original.
Note that this problem is not an optimization problem as the decision maker does not
need to select the best alternative. The problem of determining the number of splits
is formulated as an optimal computing budget allocation problem. In this context,
the objective is to minimize the variance of the rare-event probability estimator. The
budget is the total computation time, which needs to be allocated to different levels.

OCBA can also be extended to problems without simulation or optimization.
For example, Wong et al. [59] propose an OCBA approach for Data Envelopment
Analysis (DEA), which is a mathematical programming approach by Charnes et al.
[7] for measuring efficiency for decision-making units with multiple inputs and
multiple outputs. The idea is to compare different decision-making units in terms of
how many inputs they have used in achieving the outputs. In this case, the objective
is to minimize the expected mean square error for the prediction of the efficiency
score in DEA. The budget refers to the total budget for data allocation. Therefore,
the budget allocation problem is to determine how the data should be collected, i.e.,
finding the optimal number of data points allocated for different unknown variables
to maximize the predicted efficiency score.

3.4 Expected Value of Information (EVI)

The EVI approach is based on a Bayesian decision theoretic approach rather than
a frequentist statistical approach. It is Bayesian in the sense that it presumes that
uncertainty about all unknown parameters, such as the unknown means of each
alternative, be described with probability distributions. It is decision theoretic in
the sense that sampling allocation decisions, as well as decisions to select a given
alternative as best, are based on maximizing an expected reward (or equivalently,
minimizing an expected loss).

There are several potential loss functions of interest in this framework. One loss
function is the 0− 1 loss function: a loss of 1 is incurred if the true best alternative
is not selected as best, and a loss of 0 is incurred if the best alternative is best. With
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the 0− 1 loss function, the expected loss is the PCS in (3.1). Another loss function
of interest is the opportunity cost. The opportunity cost is 0 if the best alternative
is selected as best. Otherwise, the opportunity cost is the difference between the
performance of the best alternative and the performance of the alternative selected
as best. The expected opportunity cost (EOC), averaged over sampling decisions and
realizations of the unknown true performance, has particular significance when the
outputs of simulated alternatives are linear measures of financial (profit) outcomes
for the alternatives they simulate. Minimizing the EOC in that case is equivalent to
maximizing the expected profit. The EOC is therefore particularly interesting when
using a selection procedure to select an alternative with the greatest financial benefit.

Independent of whether the loss function is the 0− 1 loss function, the opportu-
nity cost, or some other loss function, the EVI approach allocates samples in each
stage of sampling with the goal of reducing the expected loss obtained after the
samples are observed. This problem can be solved analytically in a few special cases
(e.g., normal distributed output with known sampling variances, k= 2 alternatives);
otherwise analytically motivated approximations that have attractive theoretical
properties can be assembled to provide good heuristics. Some of these are described
below.

We highlight three EVI procedures that focus on information with respect to the
EOC loss function. Section 3.4.1 presents the LL procedure, which allocates samples
to multiple alternatives in each stage. Section 3.4.2 focuses on a simplification where
only one additional sample to a single alternative can be collected in each stage.
Section 3.4.5 presents the multi-step valuation of information where the proposed
procedure that looks at the value of multiple stages of sampling in order to further
improve effectiveness of an allocation in a given stage.

3.4.1 Linear Loss (LL)

Chick and Inoue [16] proposed a procedure to determine the number of samples to
minimize the expected opportunity cost (EOC).

To find the expected value of sampling an alternative in the next stage of
sampling, we introduce some additional notations to account for the random output
that will be observed. Let Yij be a random variable where yij is the output of the jth
sample from alternative i, j= 1, 2, . . . , that will be observed in the next stage of
sampling. Let yi be the sample average of the output in the additional stage based
on the additional τ i samples, yi = ∑τi

j=1yi j/τi. As defined in Sect. 3.2.1, xi is the
sample mean based on ni, the number of samples from alternative i so far. The
overall sample mean for alternative i, denoted as zi is therefore

zi =
nixi + τiyi

ni + τi
. (3.10)
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Before the sampling is done, Zi =
nixi+τiY i

ni+τi
is random. Thus, Zi is the posterior

mean of the unknown mean for alternative i given that ε is the information seen so
far and the fact that τ i samples from alternative i will be observed but have not yet
been observed. The distribution of Zi depends on the value of τ i.

Minimization of EOC

Conceptually, at each stage of sampling, the LL procedure seeks to allocate samples
to several alternatives so that the expected EOC that will be obtained will be
minimized after the next stage of sampling. That so-called predictive EOC depends
on the samples taken in the next stage as they will determine the {Zi}, which in turn
determine which alternative will be selected.

Assessing that predictive EOC is analytically intractable when k> 2 or when
variances are unknown, even when samples are normally distributed. The LL proce-
dure attempts to minimize an upper bound on that predictive EOC. In particular, we
minimize (for asymptotically large τ) the term EOCbnd(τ1, τ2, . . . , τk), where

EOCbnd = ∑
i:(i) �=(k)

E
[

(

W(i)−W(k)

)+
]

−E
[

(

Z(i)−Z(k)

)+
∣

∣

∣E
]

. (3.11)

depends on the τ (i) via the Z(i), is an upper bound on the predictive EOC, where
(k) is the alternative with the highest mean given the data ε observed so far, and
(x)+ =max(0, x).

Conceptually, the difference in the summand in the equation for EOCbnd

is the expected opportunity cost of selecting with no additional information,
E[(W(i) −W(k))+|ε], minus the expected value of information of sampling,
E[(Z(i) − Z(k))+|ε], in a pairwise comparison between alternatives (i) and (k). When
no additional samples are taken, the term E[(Z(i) −Z(k))+|ε] is 0. When an infinite
number of samples are taken for both (i) and (k), the difference in the summand is
0 (an infinite number of samples gives perfect information).

At each stage of sampling, ε is updated, and the goal of the LL procedure is to
find an allocation that minimizes EOCbnd.

min
τ1,τ2,..., τk

EOCbnd s.t.
k

∑
i=1

τi = τ , τi ≥ 0. (3.12)

A solution to the problem in (3.12) for the case of known variances is not known
other than by searching on a lattice, as the τ i are non-negative integers. We therefore
derive an asymptotically optimal solution to (3.12) which assumes that τ is very
large and allows for real-valued τ i. When sampling variances are also unknown, an
additional approximation is needed to account for the fact that closed form solutions
for the distribution of differences like W(k) −W(j) are not available (the Behrens–
Fisher problem). Thus, we use the so-called Welch approximation to describe those
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differences. To do so, we define

d∗
jk =

d( j)(k)

̂λ−1/2
jk

, (3.13)

where d( j)(k) = x(k)−x( j) and ̂λ−1/2
jk =

√

σ̂2
( j)

n( j)
+

σ̂2
(k)

n(k)
. We also describe the standard-

ized statistics for the difference Z(k) − Z(j) with

d∗
{ jk} =

d( j)(k)

̂λ−1/2
{ jk}

, (3.14)

where ̂λ−1/2
{ jk} =

√

τ( j)σ̂2
( j)

n( j)(n( j)+τ( j))
+

τ(k)σ̂2
(k)

n(k)(n(k)+τ(k))
. The notation d*

{jk} differs slightly

from the standardized statistics for the difference W(k) −W(j) that is d*
jk.

We denote the Student t distribution by St(μ , κ , v), the cumulative distribution
function of the standard Student t distribution (μ = 0, κ = 1) by Φv(·), and the
probability density function by φ v(·). The posterior marginal distribution for the
unknown mean Wi has a Student t-distribution, St

(

xi, ni/σ2
i , vi

)

. The standard EOC
function Ψv[m] gives the EOC when an alternative with known mean m is selected in
preference to a single alternative whose unknown mean has a St(0, 1, v) distribution,

Ψv [m] =
v+m2

v−1
φv(m)−mΦv (−m) . (3.15)

Welch’s approximation for the degrees of freedom of W[k] −W[j] is

ν( j)(k) =

[

σ̂2
( j)/n( j) + σ̂2

(k)/n(k)
]2

[

σ̂2
( j)/n( j)

]2
/
(

n( j)−1
)

+
[

σ̂2
(k)/n(k)

]2
/
(

n(k)−1
)

. (3.16)

With this notation, and with the Welch approximation for the differences, we can
approximate EOCbnd by

EOCbnd ≈ ∑
j:( j) �=(k)

̂λ−1/2
jk Ψν( j)(k)

[

d∗
jk

]−̂λ−1/2
{ jk} Ψν( j)(k)

[

d∗
{ jk}

]

. (3.17)

When all of the τ i = 0, then ̂λ−1/2
{ jk} Ψν( j)(k)

[

d∗
{ jk}

]

becomes 0. We define

EOCBon f � EOCbnd (0,0, . . . ,0) = ∑
j:( j) �=(k)

̂λ−1/2
jk Ψν( j)(k)

[

d∗
jk

]

. (3.18)
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EOCBonf is an upper bound on the posterior EOC given ε (without considering
further sampling). Closed form solutions for the EOC are only available in special
cases, so the LL procedure is derived by myopically minimizing an upper bound on
the EOC at each stage of sampling. The upper bound is essentially a Bonferroni-
type bound that emerges from considering the EOC in a comparison between the
current best alternative, alternative (k), relative to each of the k− 1 alternatives. See
Chick and Inoue [16] and Branke et al. [4] for further details.

Allocation Rules

Given that there are τ samples to be allocated to k alternatives, the allocation rule
for LL is given by

τ(i) =

(

τ +∑k
j=1n j

)(

σ̂2
(i)γ(i)

)1/2

∑k
j=1

(

σ̂2
j γ j

)1/2
−n(i), (3.19)

where

γ(i) =

⎧

⎪

⎨

⎪

⎩

̂λ 1/2
ik

ν(i)(k)+(d∗ik)
2

ν(i)(k)−1 φν(i)(k)
(

d∗
ik

)

, for (i) �= (k)

∑
j:( j) �=(k)

γ( j), for (i) = (k).
(3.20)

This formula asymptotically minimizes (3.17) when τ is arbitrarily large (so
that all of the τ (i) are nonnegative). If τ is not sufficiently large, then (3.19) might
prescribe a nonpositive number of samples for some τ (i). If that is the case, then a
better approximation to the distribution of the posterior mean Z(i) should be used.
Fortunately, one is available: there will be no change in the posterior mean following
samples if no new samples are observed. The formulas in (3.19) and (3.20) can
therefore be adapted to the case of small τ by making use of that observation.
The following steps which check nonnegativity of the τ (i) implement the necessary
computations.

a. Initialize the set of alternatives considered for additional samples, S ←
{1, . . . ,k}.

b. For each (i) in S \{(k)} : If (k) ∈S then set ̂λ−1
ik ← σ̂2

(i)/n(i) + σ̂2
(k)/n(k), and

set υ(i)(k) with Welch’s approximation. If (k) /∈ S then set ̂λik ← n(i)/σ̂2
(i) and

υ(i)(k) ← n(i) − 1.
c. Tentatively allocate a total of τ samples to alternatives (i) ∈S

(

set τ( j) ← 0 for
( j) /∈S ):
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τ(i) ←
(

τ +∑ j∈S n j

)(

σ̂2
(i)γ(i)

) 1
2

∑ j∈S
(

σ̂2
( j)γ j

) 1
2

−n(i),

where γ(i) ←

⎧

⎪

⎨

⎪

⎩

λ 1/2
ik

υ(i)(k)+(d∗ik)
2

υ(i)(k)−1 φυ(i)(k)

(

d∗
ik

)

for (i) �= (k)

∑
( j)∈S \{(k)}

γ( j) for (i) = (k).

d. If any τ (i) < 0 then fix the nonnegativity constraint violation: remove (i) from S
for each (i) such that τ (i) ≤ 0, and go to Step 4b. Otherwise, round the τ i so that
∑ k

i= 1τ i = τ (the allocation is determined).

Chick and Inoue [16] derive this algorithm, and generalize it to minimize the
CPU time (rather than the number of samples) if the CPU time per sample differs
from one alternative to the next. The sequential algorithm is the same as that in
Sect. 3.2.2 except that we use the allocation rule in (3.19).

3.4.2 Small-Sample EVI Allocation Rule (LL1)

The somewhat cumbersome check for nonnegativity of the allocation in the LL
allocation rule above can be avoided if all samples in a given stage are allocated to a
single alternative (the alternative simulated in a given stage can still change from one
stage to the next). The LL1 allocation rule does allocate all samples to one alternative
in a given stage, and therefore simplifies the computation of the optimal allocation.
This has been done for the simulation context by Chick et al. [18] and independently
by Frazier et al. [22]. The latter paper used the term knowledge gradient to describe
the idea of one-stage lookahead for the value of sampling from one alternative at
each stage of sampling. The LL1 allocation rule has therefore also been referred to
as KG or KG1 in the literature.

Small-Sample EVI

As there is only one alternative to be sampled, the small-sample EVI procedures
avoid the asymptotic approximation, the use of Bonferroni’s inequality and the
Welch approximation which were employed in the previous EVI procedure.

In the small-sample EVI that seeks to minimize the posterior EOC, the alternative
to be sampled is the one with highest EVILL,(i) where
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EV ILL,(i) =

{

λ−1/2
{ik} Ψn(i)−1

λ−1/2
{k−1,k}Ψn(k)−1

[

d∗
{ik}

]

[

d∗
{k−1,k}

]

if (i) �= (k)
if (i) = (k)

. (3.21)

Note that x(k) +EV ILL, (i) is the expected reward when only taking τ (i) samples
for alternative (i), and then selecting the alternative with the best sample mean. Thus,
EVILL,(i) relates to the expected value of information when comparing the alternative
selected for sampling and the best of the other k− 1 alternatives.

Sequential Algorithm

The following is the procedure for LL1. It is similar to that for LL except in step 4
where the allocation rule of LL1 states that only one alternative with the highest EVI
will be sampled:

a. Set τ (i) ← τ for the alternative that maximizes EVILL,(i), and τ�← 0 for the others.

3.4.3 Stopping Rules

We now introduce some notation for some stopping rules and more formally
describe them. They were originally proposed in the context of EVI procedures,
but are equally applicable to both OCBA and EVI contexts.

The deterministic sampling rule, which was used in the OCBA algorithm
presented in Sect. 3.3.3, continues sampling until a predefined sampling budget has
been exhausted. That is, sampling continues if and only if ∑ k

i= 1ni < β for some
user-specified β . This is denoted here as the S stopping rule.

There are several adaptive stopping rules that may be used in either the OCBA or
EVI selection procedures—although they were introduced in the context of the EVI
approach. The EOCBonf stopping rule continues sampling until the posterior EOC is
sufficiently small. In particular, sampling continues until an upper bound, EOCBonf

in (3.18), drops below a user-specified threshold ε*> 0. The threshold ε* can
be chosen to be the highest acceptable expected opportunity cost associated with
a possibly incorrect selection. (Someone comfortable with the indifference zone
approach might select ε* to be the indifference zone parameter times the maximal
acceptable probability of incorrect selection [19]).

The PCSSlep stopping rule continues sampling until a user-specified lower bound
is exceeded by a lower bound on the posterior PCS, where the lower bound is due to
Slepian. That is, sampling continues until PCSSlep =∏(i) �=(k)Φv(i)(k)

(

d∗
jk

)

is at least
as great as a user-specified threshold for the posterior PCS, 1−α*, where α*> 0
is a user-specified acceptable level of probability of incorrect selection.
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Fig. 3.4 EOCIZ efficiency
for LL and LL1 in a slippage
configuration with five
alternatives
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3.4.4 Numerical Results for LL and LL1

Branke et al. [4] and Chick et al. [18] provide extensive numerical results for
procedures derived from the OCBA and EVI approaches. This includes procedures
based on the OCBA, LL, and LL1 allocation rules. They also assess EVI-based
allocation rules that focus on improving the posterior PCS, rather than the posterior
EOC, and which are named the 0− 1 allocation rule and the 0− 11 allocation rule.
These allocation rules seek to improve the value of information for the 0− 1 loss
function, whose expected value is the posterior PCS, when allocating samples to
multiple alternatives and to one alternative, respectively, per stage of sampling. The
papers also assess how different stopping rules assess the efficiency of the sampling
procedures. This section recalls some of the key results from those papers.

In making empirical assessments of selection procedures, allocation rules and
stopping rules were combined into a procedure, and were repeatedly applied to
different classes of selection problems. Curves like those in Fig. 3.4 were plotted
for each selection procedure and for each selection problem. The x-axis of the curve
gives the expected total number of samples when the procedure stops, E[N]. The y-
axis plots the empirical evidence for correct selection. In Fig. 3.4, this evidence is the
empirical expected opportunity cost EOCIZ , the average, over repeated applications
of the procedure to a selection problem, of the true opportunity cost, w[k]−wD, when
alternative D is selected as best. In Fig. 3.5, this evidence is the empirical fraction
PICSIZ = 1−PCSIZ , where PCSIZ is the probability of correctly selecting the true
best alternative, the fraction estimated over repeated applications of the procedure
to a selection problem.

Figure 3.4 presents a representative graph that supports a claim that was
systematically found to be true in numerical experiments: the adaptive stopping
rules, EOCBonf and PCSSlep, perform much more effectively than the deterministic
stopping rule. This claim is supported in the graph because the curves with the
EOCBonf stopping rule are lower (have a lower loss for any given expected number
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Fig. 3.5 PICSIZ efficiency
for LL and LL1 in a
monotonically decreasing
means configuration with ten
alternatives (means of each
alternative evenly spaced)
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of samples) than for the (deterministic) S stopping rule. In Fig. 3.4, there are five
alternatives in a so-called slippage configuration (the mean of the best alternative is
exactly the same value better than the means of the other alternatives).

In Fig. 3.4, we also observe that for a given stopping rule, that the LL allocation
rule was at least as good as the LL1 allocation rule. This was not systematically
true. Both of these allocations were equally good for k= 2 alternatives. The LL1

allocation was sometimes better than the LL allocation when there were a relatively
small number of total samples (say, 50–120 depending on the problem structure) or
when the true means of all competing systems were close to the true mean of the
best alternative. As k increases, LL tends to improve in performance relative to LL1.

In Fig. 3.5, we see that the LL allocation rule can perform even better than
the 0− 1 allocation rule for PCS-based figures of merit, even though the latter
is specifically designed to improve PCS. This is apparently due to the additional
approximations that the 0− 1 loss would seem to impose to obtain analytical results
for an easily computable allocation.

Overall, the empirical results showed that the small-sample procedures (LL1) are
competitive if either the number of additional samples allocated is very small, a
fixed budget stopping rule is used (as opposed to an adaptive stopping rule such
as EOCBonf ), or the number of alternatives is small. This may be the case when
alternatives are costly to sample, as when sampling time is very long. In most
other settings, the LL performed better. As a general rule, the OCBA, the LL and
the LL1 allocations were found to be superior to the equal allocation, many times
substantially so.

In terms of overall robustness, Branke et al. [4] and Chick et al. [18] found that
the LL allocation or OCBALL allocation rule (an allocation rule based on the EOC
loss function instead of the PCS-based loss function used for the OCBA allocation
rule from Sect. 3.3 above; see [33]), with the EOCBonf stopping rule, proved to be an
effective combination in a procedure that works best over a broad class of selection
problem structures.
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3.4.5 Economics of Selection Procedures (ESP)

The OCBA, LL, and LL1 allocations above use criteria to allocate samples during
a given stage of sampling that essentially are myopic and greedy: they try to
maximize (up to approximations) the evidence for correct selection by the end of
the stage. ESP procedures account for the value of the ability to continue to sample
further after that stage. Thus, it better accounts for the information that a sequential
selection procedure can provide.

The ESP procedures have been developed assuming a linear loss reward function,
as the economic benefit of implementing the alternative selected as best is used to
drive both the allocation of samples, and the decision of when to stop sampling. In
making the decision for when to stop sampling, samples are assumed to come at a
cost. There are at least two ways in which samples might come at a cost. One way is
that additional simulation causes delays in implementation. In large scale business
decisions, that may cause a discounting penalty due to delays in decisions. Another
way that costs may be incurred is from the marginal cost of samples: computer time
and resources cost money. Chick and Gans [15] explored the case of discounted
sampling, either with or without additional marginal costs per sample. Chick and
Frazier [14] handled the case of marginal costs of simulation without discounting.

This section describes the latter case: where simulation samples have costs but
there is no additional penalty due to discounting. Thus, to implement them, one
ideally needs to estimate the financial cost of sampling (e.g., the cost of run times
on a bank of servers) and to have simulation output that expresses financial value.
Alternatively, one might use the resulting selection procedure in the absence of those
financial interpretations, and use a notional value of the cost to sample in order to
determine how many simulation samples to run, and in which order. A reduction of
the notional value of the cost to sample would increase the number of samples, if
more samples were desired before selecting an alternative.

By its nature, both allocation rules and stopping rules are derived with this
approach. The focus on economic criteria to determine sampling plans and when to
stop sampling led to the choice of name Economics of Sampling Procedure (ESP).

Maximizing Expected Reward

Similar to the previous procedures, we want to maximize the expected reward.
However, we go beyond a one-step lookahead for the value of sampling and seek
to choose a sequence of alternatives to sample from so that the stream of costs and
terminal reward together maximize the expected net reward from the start to the
time of selecting an alternative as best.

To describe how to do so, it is useful to introduce some new concepts. A selection
policy π is a dynamic method of choosing at each stage t whether to sample an
alternative or to stop and select the alternative. The policy, at stage t, can use all
information obtained up until stage t. Let T ∈{t= 0, 1, 2, . . .} be the stage when
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the decision maker decides to stop and select the best alternative to implement. For
t< T, let i(t) be the index of the alternative to be simulated at stage t and I(T) be
the index of the selected alternative. Then the selection policy π = (i(·), T, I(T)) is
the choice of a sequence of alternatives to sample from, the stopping time, and the
selected alternative.

Let Xi be the random variable of the unknown reward of alternative i and ci is
the cost per sample of alternative i. Note that ci and the output Xi are in terms of
monetary values. The sampling selection problem is the problem of maximizing
expected value of the cost of sequential sampling plus the reward of implementing
the alternative selected as best defined by

sup
π

V π = Eπ

[

T−1

∑
t=0

− ci(t) +XI(T ), T+1

∣

∣

∣E

]

. (3.22)

It can be shown that, under certain technical conditions, a policy π maximizes Vπ

if it minimizes the sum of the expected total sampling cost (Eπ [∑T − 1
t= 0 − ci(t)|ε]) and

the expected opportunity cost when an alternative is selected (Eπ [LLL(I(T), W)|ε]).
Finding a policy π that achieves the maximum in (3.22) is challenging to

solve optimally in general, but Chick and Frazier [14] provided a solution, to an
asymptotic approximation, for the special case of comparing one alternative with
an unknown mean to a given standard alternative whose mean reward is known to
be m. From that special case, they handle the case of k> 1 alternatives by using the
following heuristic: At each stage, each alternative is assessed to see if it is worth
performing more simulations if one were to compare that alternative (with unknown
mean) to the mean of the best other alternative (presuming its mean to be known,
with m set to the current estimate of the mean of the best other alternative).

Optimal Stopping Problem for the Special Case of k= 1 Alternative

Consider comparing one alternative with a known mean reward, m. The sampling
selection problem in (3.22) then becomes an optimal stopping problem. Let c, xt and
nt be the cost per sample, the sample mean, and the number of samples seen so far
up to time t for the one alternative. The Bellman’s recursion for this problem is

V ∗ (m, xt ,nt) = max

{

m,−c+E

[

V ∗
(

m,
ntxt +Xi,t+1

nt +1
,nt +1

)

∣

∣

∣xt ,nt

]

, xt

}

.

(3.23)

The first maximand in Bellman’s recursion indicates selecting the known
alternative. The second maximand includes the cost of observing one sample
from the alternative with the unknown mean and thenhaving the option to select
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an alternative or to continue sampling, given the information from that sample.
The third maximand is associated with stopping to sample and to implement the
alternative with the unknown mean.

Chick and Frazier [14] show how to convert the discrete time dynamic program
in (3.23) into a continuous time problem. That continuous time problem is a free
boundary problem for a heat equation, and whose solution gives an asymptotic
approximation to the expected value of the option to continue sampling to learn
more (a non-myopic, multistage version of the one-stage value of information
calculations used in the LL and LL1 procedures), and upper and lower optimal
stopping boundaries. If the statistics of the alternative with the unknown mean are
below the lower stopping boundary, it would be optimal to stop sampling and to
select the known alternative for reward m. If the statistics of the alternative with
an unknown mean are above the upper boundary, the alternative with the unknown
mean should be selected as best with no further sampling. If the statistics of the
alternative with the unknown mean are between the upper and lower stopping
boundaries, then one additional sample should be taken for that alternative, and
the process should be repeated.

Solving this problem for practical use in a procedure could require computing
the solution of a partial differential equation with a free boundary. Fortunately,
Chick and Frazier [14] provide a numerical approximation to the solution to the
free boundary problem which has shown to be useful in problems and which does
not require heavy mathematical machinery for implementations. In particular, they
show that the upper and lower optimal stopping boundaries are given by

m± c1/3
i σ2/3

i b
(

σ2/3
i /c2/3

i ni

)

, (3.24)

for some function b(s)≥ 0 for s≥ 0, and that a useful approximation to b(s) is

b̃(s) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0.233s2 if 0 ≤ s ≤ 1,
0.00537s4 −0.06906s3 +0.3167s2 −0.02326s if 1 < s ≤ 3,
0.705s1/2 ln(s) if 3 < s ≤ 40,

0.642
[

s(2ln(s))1.4 − ln(32π)
]1/2

if 40 < s.

(3.25)

The region that is between the upper and lower stopping boundaries in (3.24)
for ni > 0 is called the continuation region (because it determines where sampling
should continue).

ESP Allocation Rule and Stopping Rule

The approach for the optimal stopping problem can be extended in a heuristic way
to provide a new allocation rule and a new stopping rule when there are k> 1
alternatives.
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The stopping rule is motivated and presented first. From the previous subsection,
a given alternative warrants continued simulation if it is between the upper and
lower stopping boundaries in (3.24). Adapted to the case of k> 1 alternatives, each
with unknown mean, one can substitute the value of m in (3.24) with the mean
of the alternative with the best estimated mean (specifically, the highest posterior
mean of the other alternatives). This motivates what we will call the ESPb stopping
rule: sampling continues as long as there is at least one alternative that would merit
additional sampling if it were considered in comparison with the best of the other
alternatives (at least up to asymptotic approximations). More formally, sampling
continues as long as there is at least one alternative i such that

c1/3
i σ2/3

i b
(

σ2/3
i /

(

c2/3
i ni, t

))

> ̂Δi, t , (3.26)

where ̂Δi, t =
∣

∣xi,t −max j �=ix j,t
∣

∣ is the difference in expected value between the alter-
native i and the best of other alternatives (including the known mean standard m)
conditional on information through stage t, and ni, t is the number of samples from
alternative i through stage t. When the sampling variance σ 2

i is unknown, it is
appropriate in implementations to substitute the sample variance σ̂2

i for it in (3.26),
as well as in (3.27) below [14].

The ESPb allocation rule allocates one sample to the alternative that is ‘furthest
inside’ the continuation region, in a standardized coordinate alternative that is
natural to consider in this application [14]. In particular, one should sample from
the alternative that is the solution to

argmaxib
(

σ2/3
i /

(

c2/3
i ni, t

))

− ̂Δi, t/
(

c1/3
i σ2/3

i

)

. (3.27)

The term c1/3
i σ 2/3

i in (3.26) is the cube root of the product of the sampling costs
and sampling variance, which is inversely proportional to the sampling efficiency
[32].

Chick and Frazier [14] provide another allocation rule that is based more directly
on the diffusion approximation for the expected reward of continuing to sample. But
that other allocation rule requires access to the full solution of the free boundary
problem, and is therefore less attractive from an implementation standpoint.

They also provide numerical results that illustrate the performance of a selection
procedure with various allocation rules and stopping rules. The LL allocation rule
was not tested with the ESPb stopping rule, because ESP is based on approximations
that presume one sample is taken at a time. Table 3.4, adapted from Chick and
Frazier [14], shows the expected total penalty for not knowing the mean rewards
E[cT +OC] for five different combinations between allocation rules and stopping
rules calculated using Monte Carlo Simulation with 106 samples for k= 2, 5, 10, 20
and 105 samples for k= 100. Here, the sampling cost was assumed to be c= 1, T is
the number of samples observed when an alternative is selected as best, and OC is
the realized opportunity cost of selecting that alternative.
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Table 3.4 Expected total penalty for not knowing the mean rewards
E[cT +OC] for several allocation and stopping rules

k

Allocation rule Stopping rule 2 5 10 20 100

LL EOCBonf 320 577 821 1,095 2,168

Equal allocation EOCBonf 321 629 1,040 1,815 8,425

LL1 EOCBonf 318 546 728 916 1,577

LL1 ESPb 231 506 694 875 1,516

ESPb ESPb 233 505 700 856 1,308

In Table 3.4, the stopping rule appears to be more influential than the allocation
rule. Specifically, the ESPb stopping rule performs better than the EOCBonf stopping
rule for each given allocation rule. Performance with the ESPb stopping rule
improves even upon the performance from the EOCBonf stopping rule with these
allocations in all experiments run so far (the ESPb stopping rule has been subject to
less testing to date than has the EOCBonf stopping rule). This appears to be because
the ESPb stopping rule considers the benefit of multiple future stages of sampling
when considering when to stop, whereas the EOCBonf stopping rule only looks one
step ahead.

The ESPb stopping rule works very well with the LL1 and ESPb allocation rules,
and either of those options can be recommended for the selection problem.

3.4.6 Other Variants of EVI

Apart from ESPb, Chick and Gans [15] propose another economics of selection
procedure where there is a positive discount cost. That algorithm, which has
somewhat different stopping boundaries due to the discounting, also has a stopping
boundary which is approximated with an easy to compute function. That stopping
boundary was shown to be related to the optimal stopping boundary for the Bayesian
bandit problem when samples from each bandit are independent Gaussian whose
means are unknown (and are inferred through sampling).

In addition, Chick and Gans [15] provide a discussion on whether the decision
maker should develop a simulation platform. They proposed a view of simulation
as an option to learn more about alternatives before making a selection, and a
mechanism to quantify the value of that learning. That value could be compared
with the time and financial costs of developing the simulation model in the first
place: responding to the question “To simulate, or not to simulate?” when a Bayesian
prior distribution can be used to quantify uncertainty about the potential financial
benefit of various simulated alternatives, at least in some contexts. The approach
is therefore different from most R&S work in simulation which assumes that a
simulation platform has been built and is available.
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There are also several other one-step lookahead policies to myopically maximize
EVI. Frazier et al. [23] consider the case where the prior beliefs about the rewards are
correlated and Ryzhov et al. [52] apply it to propose a new type of online learning
policy. Frazier et al. [24] consider the case with both correlations in the prior belief
and correlation in sampling which is achieved through common random numbers.
The use of common random number is also considered in the work by Chick and
Inoue [17], which minimizes the expected opportunity cost in two stages.

3.5 Conclusion

This chapter discussed some Bayesian approaches to the problem of selecting the
best from a small- to medium-sized set of alternatives, where best is the largest mean
and the means are to be estimated through sampling. The samples are presumed to
be independent, as are the values of the unknown means. The approaches reviewed
include OCBA and EVI, which have variations that are among the most effective
known today. The variations are with different allocation rules and stopping rules.
The OCBA algorithm is very effective in cases where PCS is of particular interest. To
date, it appears that the most effective procedures in a very broad range of tests are
based either on the LL or OCBALL allocation rules in conjunction with the EOCBonf

stopping rule if an adaptive stopping rule is allowed, or with a fixed budget stopping
rule if that is required. It appears that the LL1 and ESPb allocation rule are even
more effective when used in conjunction the ESPb stopping rule, in cases where
sampling costs can be estimated and the output of the simulation has a financial
impact. An analysis of tweaking a notional cost of sampling when such conditions
do not hold is yet to be done, but it would appear that such an approach could be
more broadly applicable. More testing on that would be useful. The papers cited
above also explain how a number of other practicalities might be addressed, such
as the question of including common random numbers. The codes of the algorithms
presented in this chapter can be obtained from the authors.

In cases where the number of alternatives is so large that it is not possible to
simulate all alternatives at least a few times, some other techniques may be required.
The simulation optimization literature addresses this problem. For example, see
Chap. 2 and [25, 35, 56] for reviews. In such cases, one might integrate an R&S
procedure with a search algorithm [42, 53]. He et al. [34] extend the OCBA
notion to the cross-entropy method for combinatorial problems. Or one might use a
response surface technique so that information observed for one alternative can be
informative for the mean values of other alternatives. Initial work on this approach
that is related to the EVI approach above includes the use of Kriging models for the
unknown means of the alternatives when samples are either independent [22, 23] or
correlated such as with common random numbers [24]. Brantley et al. [5, 6] develop
a new OCBA procedure under the use of a regression equation and partitioning of
the decision domain.

http://dx.doi.org/10.1007/978-1-4939-1384-8_2
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