
Chapter 2
Discrete Optimization via Simulation

L. Jeff Hong, Barry L. Nelson, and Jie Xu

Abstract This chapter describes tools and techniques that are useful for
optimization via simulation—maximizing or minimizing the expected value of
a performance measure of a stochastic simulation—when the decision variables are
discrete. Ranking and selection, globally and locally convergent random search and
ordinal optimization are covered, along with a collection of “enhancements” that
may be applied to many different discrete optimization via simulation algorithms.
We also provide strategies for using commercial solvers.

2.1 Introduction

In this chapter we cover optimization via simulation (OvS) problems that can be
represented as

ming(x), x ∈Θ , (2.1)

where g(x) = E [Y (x,ξ)]. There is a single objective g(x), which is representable as
the expected value of a random variable Y (x,ξ), where ξ represents the randomness,
e.g., the random numbers in a simulation. The distribution of Y (x,ξ) is an unknown
function of the vector of decision variables x, but realizations of Y (x,ξ) can be
observed through simulation experiments. If the problem is more naturally thought
of as maximization then we can always formulate an equivalent minimization
version. Henceforth we drop the argument ξ for notational convenience.

L.J. Hong
City University of Hong Kong, Kowloon Tong, Hong Kong
e-mail: jeffhong@cityu.edu.hk

B.L. Nelson
Northwestern University, Evanston, IL, USA
e-mail: nelsonb@northwestern.edu

J. Xu (�)
George Mason University, Fairfax, VA, USA
e-mail: jxu13@gmu.edu

© Springer Science+Business Media New York 2015
M.C. Fu (ed.), Handbook of Simulation Optimization, International Series in Operations
Research & Management Science 216, DOI 10.1007/978-1-4939-1384-8__2

9

mailto:jeffhong@cityu.edu.hk
mailto:nelsonb@northwestern.edu
mailto:jxu13@gmu.edu

10 L.J. Hong et al.

Our focus is on two related cases: Either x is an index in the set Θ = {1,2, . . . ,k}
of feasible solutions, which may be categorical (not ordered in any way); or x
is a vector of d integer-ordered decision variables in a feasible region Φ ⊂ R

d ,
possibly defined by a set of deterministic constraints. In this case we assume that
Φ is compact and convex. Therefore, Θ = Φ ∩Z

d is a finite set, where Z
d denotes

all d-dimensional vectors with integer components, and Problem (2.1) has only a
finite number of feasible solutions. We refer to this class of problems as Discrete
Optimization via Simulation (DOvS) problems.

The solution methods we describe assume that Var[Y (x)]< ∞ for all x ∈Θ , and
that we have an estimator ĝ(x) that converges with probability 1 (w.p.1) to g(x)
as we expend more and more simulation effort on solution x. If that estimator is a
sample mean, then we use the notation Y (x). Often, but not always, we can simulate
independent and identically distributed (i.i.d.) replications, Y1(x),Y2(x), . . . at any x.

The following examples, which are based on Nelson [48], illustrate the types of
problems we consider and the issues that arise.

2.1.1 Designing a Highly Reliable System

A system works only if all of its subsystems work; the subsystems consist of
components that have their own time-to-failure and repair-time distributions. The
objective is to decide how many and what redundant components to use to minimize
steady-state system unavailability given budget constraints. The budget is relatively
tight, so altogether there are only 152 feasible configurations. Let x∈ {1,2, . . . ,152}
index the configurations.

In this problem there are a small number of feasible solutions, and they can be
treated as categorical. This is a choice, however, because we could also define
x = (x1,x2, . . . ,xd) where xi is the number of redundant components of type i
to include. The state of art for solving DOvS problems makes it advantageous
to treat the problem as categorical if the number of solutions is relatively small
because there are highly efficient solution methods that apply when it is possible
to simulate all feasible solutions, at least a little. This is analogous to deterministic
integer programming (IP) problems in which it is possible to exhaust the feasible
region, making it pointless to apply a high-powered IP algorithm. However, unlike a
deterministic IP, a single evaluation of the objective function in DOvS is (typically)
not sufficient because Y (x) is only an estimator of g(x) that is subject to sampling
error, i.e., Y (x) �= g(x) w.p.1, even though E[Y (x)] = g(x). Sampling error is reduced
by expending additional simulation effort at solution x, and doing so (usually
adaptively) is the central feature of solution methods.

In this problem g(x) represents steady-state (long-run average as time goes to
infinity) system unavailability, which implies that the estimator of g(x) can be
defined in one of two ways:

2 Discrete Optimization via Simulation 11

Extended replication average:

Ŷ (x) =
1
T

∫ T

0
A(t)dt (2.2)

where A(t) = 1 if the system is unavailable, and 0 otherwise. Sampling error is
controlled by increasing the run length T .

Additional replication average:

Y (x) =
1
n

n

∑
i=1

(
1

Te −Tb

∫ Te

Tb

Ai(t)dt

)
=

1
n

n

∑
i=1

Ŷi(x) (2.3)

where Te > Tb are fixed times, and Ai(t) is the sample path from the ith
replication. Sampling error is controlled by increasing the number of i.i.d.
replications n.

In Sect. 2.3 we describe ranking and selection methods for such problems.

2.1.2 Flow-Line Throughput

A three-stage flow line has finite buffer storage space in front of stations 2 and
3 (the number of spaces being denoted by x4 and x5) and an infinite number of
jobs in front of station 1. There is a single server at each station, and the service-
time distribution at station i has service rate xi, i = 1,2,3. If the buffer of station
i is full, then station i− 1 is blocked and a finished job cannot be released from
station i− 1. The total buffer space and the service rates are limited by constraints
on space and cost. The objective is to find a buffer allocation and service rates
such that the expected throughput over a 1-year planning horizon is maximized. The
deterministic constraints are x1+x2+x3 ≤ 20,x4+x5 = 20,1≤ xi ≤ 20 and xi ∈Z

+

for i = 1,2, . . . ,5, implying 21,660 feasible solutions. This example is adapted from
[8, 58] .

Here the number of feasible solutions is probably larger than can be exhausted,
so some sort of search is required. In Sects. 2.5–2.6 we describe methods to solve
such problems based on adaptive random search.

Notice in this problem that the fixed 1-year planning horizon means that sampling
error is reduced only by increasing the number of replications—it makes no sense
to extend a replication beyond 1 year because the performance measure of interest
is defined with respect to 1 year. Thus, the natural estimator is

Y (x) =
1
n

n

∑
j=1

Yj(x)

where Yj(x) is the throughput observed in 1 year of production on replication j for
solution x.

12 L.J. Hong et al.

2.1.3 Inventory Management with Dynamic Customer
Substitution

A retailer faces a one-shot inventory stocking decision for six product variants
at the beginning of the selling season so as to maximize the expected value of
profit. No inventory replenishment can occur, and there is no salvage value for the
products. Each consumer selects the available product with the highest utility for
them, which may be a no-purchase option. The number of customers is Poisson, and
the customer’s choice behavior is modeled by a multinomial logit model. Pricing
is an exogenous decision. Let x1,x2, . . . ,x6 denote the number of each variant the
retailer chooses to stock. This example is adapted from [45].

In theory, there are a countably infinite number of feasible solutions since there
is no fixed upper bound on the quantity of variant i that the retailer stocks, xi. In
practice, clearly there is a level beyond which it makes no sense to stock. These level
bounds can be determined by factors such as store capacity and maximal demand
possible. Then, the problem can be transformed into a DOvS problem.

When solving deterministic IPs, branch-and-bound methods that relax integrality
constraints are often used, which is possible because the objective function can
be evaluated at non-integer values. When solving DOvS problems, however, the
simulation may not make sense at fractional values of x. For instance, it is not
clear how to simulate stocking 112.3 blue shirts. As opposed to having a known
linear, quadratic or even convex objective function, the function g(x) is implied by
the simulation model and little structural information about it is available. And, of
course, g(x) can only be estimated.

2.1.4 Themes

The focus of this chapter is on methods that lead to rigorously provable performance,
as defined in Sect. 2.2 below (however, in Sect. 2.8 we give practically useful tips
for using commercial OvS solvers based on metaheuristics). We assume little or no
structural information about g(x); as a result, the balance between expending effort
on search—looking for better feasible solutions—and estimation—estimating the
true objective function value of solutions we have investigated—is a core issue for
DOvS algorithms.

There are three fundamental types of errors that occur in DOvS problems; the
latter two occur even when the number of feasible solutions is small enough that all
of them can be simulated.

1. The optimal solution is never simulated. This is a reality in many difficult
nonlinear IPs when the feasible solutions cannot be exhausted, and DOvS is no
different.

2 Discrete Optimization via Simulation 13

2. The best solution that was simulated is not selected. Sampling variability means
that the best solution we simulated may not have the best estimated objective
function value.

3. We do not have a good estimate of the objective function value of the solution
we do select. When minimizing a stochastic response by selecting the solution
with the smallest estimated value, there is a natural bias toward solutions whose
estimated performance is better (lower) than its true expected value.

How these issues are addressed in different problem classes is the subject of the
remainder of this chapter.

2.2 Optimality Conditions

Let Θ ∗ = argmin{g(x) : x ∈ Θ} be the set of optimal solutions of Problem (2.1).
Because Θ = Φ ∩Z

d and Φ ⊂ R
d is a compact set, Θ is a finite set, i.e., |Θ | < ∞.

Therefore, Θ ∗ is guaranteed to be nonempty. Furthermore, the finiteness of Θ also
implies that there exists a positive constant δ > 0 such that

g∗ ≤ g(y)− δ forall y ∈Θ \Θ ∗, (2.4)

where g∗ = minx∈Θ g(x) is the optimal objective value. Note that Eq. (2.4) implies
that optimal solutions are at least δ better than other feasible solutions.

To solve optimization problems we often need optimality conditions which
(a) assure the correctness of algorithms and (b) help in designing implementable
stopping rules. To illustrate the usefulness of optimality conditions, we consider the
following two examples.

• In unconstrained nonlinear optimization, convergence to a stationary point
whose gradient is zero is a widely used optimality condition. Many algorithms,
including the steepest descent algorithm and Netwon’s method, are proved to
satisfy this condition [50]. In practice, all these algorithms typically stop short
of convergence. But they often stop when they find a solution whose gradient is
sufficiently close to zero.

• In integer linear programming, algorithms often keep track of an upper bound and
a lower bound. A commonly used optimality condition is that the gap between the
two bounds goes to zero. Many algorithms, including the branch-and-bound and
branch-and-cut algorithms, are proved to satisfy this condition. Then in practical
implementation, these algorithms often stop when the gap is small enough.

Although the set of optimal solutions Θ ∗ is clearly defined for DOvS problems,
defining optimality conditions for DOvS algorithms is not easy for the following
reasons:

1. The objective function g(x) cannot be calculated exactly; instead, it can only be
estimated by Y (x). This estimation noise generally makes it impossible to rank

14 L.J. Hong et al.

solutions with 100% confidence. Therefore, DOvS algorithms cannot guarantee
in general to find an optimal solution with a finite amount of computational effort.

2. Typically g(x) and Y (x) are unknown functions that are embedded in simulation
models. We do not have the structural results on g(x) or Y (x) that can be used to
screen out (often a large number of) inferior solutions as, for instance, in branch-
and-cut algorithms for integer linear programs. Therefore, to find an optimal
solution of Problem (2.1), one has to evaluate all feasible solutions.

3. Although Θ is a finite set, it often has a large number of feasible solutions as in
the flow-line and inventory-management examples reported in Sects. 2.1.2 and
2.1.3, respectively. Complete enumeration of all solutions may not be possible
for many practical problems.

Despite these difficulties, researchers have established various optimality con-
ditions for DOvS problems that are either theoretically convenient or practically
useful. In this section we will introduce these conditions.

When Θ is small, i.e., Θ has less than a few hundreds of solutions, we may
be able to simulate all solutions and select the best among them. This is known
as ranking and selection (R&S). Because of the randomness in the simulation
outputs, one cannot guarantee to select the best solution with 100% confidence.
Then, a practical approach is to analyze the probability of correct selection (PCS),
i.e., P(x∗ ∈ Θ ∗) where x∗ denotes the selected best solution. A commonly used
optimality condition is to require R&S algorithms to achieve a predetermined PCS,
i.e., P(x∗ ∈Θ ∗)≥ 1−α . In Sect. 2.3 we will introduce such algorithms.

When Θ is large, simulating all solutions in Θ becomes practically impossible.
One may soften the goal of finding an optimal solution to finding a good enough
solution, where a “good enough” solution may be defined as one of the top t
solutions in Θ . Suppose that one has the computational budget to evaluate n
solutions in Θ . Then, it is important to know the probability that at least one of these
n solutions is a top t solution, which is known as the alignment probability (AP).
Let T ⊂Θ denote the set of top t solutions, and let S denote the set of the chosen n
solutions. Then, the alignment probability is defined as P(|T ∩S| ≥ 1). A commonly
used optimality condition is to require algorithms to achieve a predetermined level
of AP, i.e., P(|T ∩ S| ≥ 1) ≥ 1−α . This optimality condition is used in ordinal
optimization, which will be introduced in Sect. 2.4.

Another commonly used optimality condition when Θ is large is global con-
vergence as the amount of computational effort goes to infinity. Let x∗m denote the
solution that the algorithm would report as optimal if stopped at the end of iteration
m and g∗m = g(x∗m). Then, the algorithm is globally convergent in probability if
g∗m → g∗ in probability and globally convergent w.p.1 if g∗m → g∗ w.p.1. By Eq. (2.4),
these two convergence criterion are equivalent to

lim
m→∞

P(x�m ∈Θ �) = 1,

P
(

lim
m→∞

1{x�m ∈Θ �}= 1
)
= 1,

2 Discrete Optimization via Simulation 15

respectively, where 1{·} is the indicator function. As all algorithms stop in a
finite amount of time, one may wonder why convergence properties are desirable.
Andradóttir [2] answers this question:

Although this [convergence] performance guarantee does not assure that the algorithm will
return a “good” estimated optimal solution (because additional computational effort may
be required), it is certainly a reassuring property to have. From a different perspective, it
is worrisome to use a simulation optimization algorithm in practice that is not known to
converge even if an infinite amount of computational effort is expended!

Many globally convergent algorithms have been proposed to solve DOvS problems
and we will introduce them in Sect. 2.5.

As pointed earlier in this section, optimality conditions assure the correctness of
algorithms and help in designing implementable stopping rules. Global convergence
achieves the first goal by reassuring the algorithm eventually finds an optimal
solution. However, to achieve global convergence when there is no special structure,
algorithms have to evaluate all solutions in Θ in the limit, and it is not clear how
to relax this requirement for some implementable stopping rules. To resolve this
problem, local convergence has been proposed. Let N(x) ⊂ Θ denote the local
neighborhood of any solution x ∈ Θ , and let x be a locally optimal solution if
g(x)≤ g(y) for all y ∈ N(x). Notice that the definition of local optimality depends
on the definition of the local neighborhood and different local neighborhoods
may result in different local optimal solutions. Let L denote the set of locally
optimal solutions for the DOvS problem. Then, similar to the definition of global
convergence, we may define local convergence in probability and local convergence
w.p.1 as

lim
m→∞

P(x�m ∈L) = 1,

P
(

lim
m→∞

1{x�m ∈L }= 1
)
= 1,

respectively. To converge to a locally optimal solution, algorithms do not need
to evaluate all feasible solutions. Furthermore, because the local neighborhood is
typically a small set, one can statistically test the local optimality of any solution
x, i.e.,

H0 : g(x)≤ min
y∈N(x)

g(y) vs H1 : g(x)> min
y∈N(x)

g(y),

and control the type I and type II errors of the test. This provides an implementable
stopping rule for algorithms in a finite amount of time. In Sect. 2.6 we will introduce
some locally convergent algorithms.

Other than the algorithms that are built around convergence or correct-selection
guarantees, there are also many algorithms that are based on heuristics for deter-
ministic optimization algorithms, such as genetic algorithms and tabu search. These
algorithms work well for difficult deterministic integer programs, and they are
somewhat tolerant of sampling variabilities. However, they typically do not satisfy
any optimality conditions for DOvS problems and may be misled by sampling
variabilities. These algorithms are typically used in commercial Solvers and we offer
some suggestions on how to use them effectively and efficiently in Sect. 2.8.

16 L.J. Hong et al.

2.3 Ranking and Selection

Methods in the category of ranking and selection (R&S) apply to problems with a
relatively small number of feasible solutions, such as designing the highly reliable
system described in Sect. 2.1.1. The R&S procedures that have seen broad use
in optimization via simulation treat the feasible solutions as categorical, meaning
that they make no attempt to exploit relationships among the solutions (other than
that their similarity may make the use of common random numbers effective). The
definition of “relatively small” depends to some extent on how much time it takes to
simulate an alternative, since R&S procedures simulate them all, but problems with
up to 1,000 feasible solutions have been solved in this way. Recently, Luo et al.
[44] implemented R&S procedures on a parallel computing environment with tens
to hundreds of parallel processors, and solved practical DOvS problems with more
than 20,000 feasible solutions.

Our focus will be on the indifference-zone formulation of optimality, as described
in Sect. 2.2, but with some discussion of a Bayesian formulation. Suppose that
there are k ≥ 2 solutions in Θ , denoted as x1,x2, . . . ,xk. We let Yj(xi) denote
the jth observation from simulating solution xi. Many R&S methods assume that
Yj(xi) ∼N (g(xi),σ2

i), where g(xi) is unknown and the σ2
i are typically unknown

and unequal. To simplify notation, we let g(x1)≤ g(x2)≤ ·· · ≤ g(xk) and the goal
of a R&S procedure is to select solution x1 whose identity is unknown. Under
the indifference-zone formulation, the best solution x1 will be selected with a
probability at least 1−α as long as the difference between the objective values
of the best and second-best solutions is at least δ > 0. If there are a set of solutions
whose objective values are within δ of the best solution, then all solutions in that
set are acceptable.

R&S procedures were developed in the 1950s for statistical selection problems
such as choosing the best treatment for a medical condition. In such contexts small
numbers of alternatives with relatively equal variances (maybe even “known” vari-
ances from similar experiments) were common. Researchers have creatively built on
this foundation to address problems that are of particular importance in computer
simulation: unknown and unequal variances; larger numbers of feasible solutions;
induced correlation across solutions due to the use of common random numbers;
autocorrelation within a replication of a solution in steady-state simulation; and
non-normal output data. Despite the extensive literature and the many variations
that have been proposed, the foundations for most procedures can be found in three
very old procedures described below.

Bechhofer’s procedure [4] is one of the earliest and simplest indifference-zone
selection procedures. It assumes that σ2

1 = σ2
2 = · · · = σ2

k = σ2 and σ2 is known,
and Yj(xi) is independent of Yn(xm) whenever i �= m (different solutions) or j �= n
(different observations) or both.

Bechhofer’s procedure determines the sample sizes required for all k solutions
based on the variance of the solutions and by assuming g(x1)+ δ = g(x2) = · · · =
g(xk)—the most difficult case—which frees it from needing to know anything about

2 Discrete Optimization via Simulation 17

the true means. This procedure can be thought of as a hypothesis test with controlled
power for detecting that one solution is ≥ δ better than the others; it provides an
experiment design that leads to the indifference-zone definition of optimality being
satisfied with prespecified probability.

Bechhofer’s Procedure

Step 1. Determine the constant h that satisfies P(Zi ≤ h, i = 1,2, . . . ,k− 1) = 1−
α where (Z1,Z2, . . . ,Zk−1) has a multivariate normal distribution with means 0,
variances 1, and common pairwise correlations 1/2. Let

n =

⌈
2h2σ2

δ 2

⌉
.

Step 2. Take n observations from each solution and calculate Y (xi;n) for all i =
1,2, . . . ,k, where Y (xi;n) denotes the sample mean of Yj(xi), j = 1,2, . . . ,n.

Step 3. Select the solution with the smallest sample mean Y (xi;n) as the best.

A feature of Bechhofer’s procedure and its descendants is that they do not try
to exploit information provided by the sample mean of each alternative until the
very end. When the samples are collected one at a time, as they are in simulation
experiments, it is possible to evaluate the selection decision at intermediate stages.
Fully-sequential procedures evaluate after every sample is taken. The simplest
fully-sequential procedure is Paulson’s procedure [54], which makes the same
assumptions as Bechhofer’s procedure.

Paulson’s Procedure

Step 1. Let 0 < λ < δ and

a = ln

(
k− 1

α

)
σ2

δ −λ
.

Let I = {x1,x2, . . . ,xk} and r = 0.
Step 2. Let r = r + 1. Take one observation from each solution that is in I and

compute Y (xi;r) for all xi ∈ I.
Step 3. Let Iold = I and

I=

{
xi ∈ Iold : Y (xi;r)≤ min

�∈Iold
Y(x�;r)+

(a
r
−λ
)+}

, where (x)+ ≡ max{0,x}.

If |I|> 1, then go to Step 2; otherwise, select the solution in I as the best.

Paulson’s procedure uses a large deviations bound to account for taking multiple
looks at the data. Descendants of Paulson’s procedure use bounds based on
Brownian motion crossing boundaries. The efficiency that comes from eliminating
noncompetitive solutions early can be substantial.

18 L.J. Hong et al.

Relatively large numbers of alternatives typically means that (a) they were
created by taking all feasible combinations of some more basic decision variables,
and (b) many of them are not really competitive. Both Bechhofer-like and Paulson-
like procedures can benefit from a prescreening step that eliminates many of the
uncompetitive solutions while retaining the best with a guaranteed probability.
Subset selection procedures trace back to a procedure due to Gupta [22, 23]:

Gupta’s Procedure

Step 1. Determine the constant h that satisfies P(Zi ≤ h, i = 1,2, . . . ,k − 1) =
1 − α where (Z1,Z2, . . . ,Zk−1) has a multivariate normal distribution with
means 0, variances 1, and common pairwise correlations 1/2. Select n ≥ 1.

Step 2. Take n observations from each solution and calculate Y (xi;n) for all i =
1,2, . . . ,n.

Step 3. Let

I =

{
xi : Y (xi;n)≤ min

� �=i
Y (x�,n)+ hσ

√
2
n

}
.

Step 4. Return I.

Under the same assumptions as Bechhofer’s and Paulson’s procedures, Gupta’s
procedure guarantees that P(x1 ∈ I) ≥ 1−α . No indifference-zone parameter is
specified, and it is possible that |I| = k, i.e., no solution is eliminated. In practice,
when k is large many solutions are screened out so that a selection procedure like
Bechhofer’s can be applied to a much smaller set of solutions. By appropriately
spending the allowable error α between screening and selection, the desired
indifference-zone optimality condition can be attained.

We now present two procedures that are based on the principles of Bechhofer,
Paulson and Gupta, but have been extended to be relevant for simulation. NSGS
(Nelson et al. [49]) combines subset selection like Gupta with ranking like
Bechhofer. It allows unknown and unequal variances.

NSGS Procedure

Step 1. Specify a common first-stage number of replications from each solution
n0 ≥ 2; further, set

t = t
n0−1,(1−α/2)

1
k−1

the (1−α/2)
1

k−1 quantile of the t distribution with n0 − 1 degrees of freedom,
and obtain Rinott’s constant h= h(n0,k,1−α/2) from the tables in Wilcox [72],
Bechhofer et al. [5] or Goldsman and Nelson [21].

2 Discrete Optimization via Simulation 19

Step 2. Take n0 replications from each feasible solution. Calculate the first-stage
sample means Y (xi;n0) and marginal sample variances

S(xi)
2 =

1
n0 − 1

n0

∑
j=1

(
Yj(xi)−Y(xi;n0)

)2
,

for i = 1,2, . . . ,k.
Step 3. Calculate the quantity

Wi� = t

(
S(xi)

2 + S(x�)2

n0

)1/2

for all i �= �. Form the screening subset

I = {xi : Y (xi;n0)≤ Y (x�;n0)+Wi� for all � �= i}.

Step 4. If |I| = 1, then stop and return the solution in I as the best. Otherwise, for
all xi ∈ I, compute the second-stage sample sizes

Ni = max

{
n0,

⌈(
hS(xi)

δ

)2
⌉}

.

Step 5. Take Ni − n0 additional replications from all solutions xi ∈ I.
Step 6. Compute the overall sample means Y (xi;Ni) for all xi ∈ I. Select the

solution xB = argminxi
Y (xi;Ni) as best.

NSGS guarantees that xB = x1, or g(xB) is within δ of g(x1), and also that
g(xB) ∈ Y (xB;NB)± δ , all w.p. ≥ 1−α . NSGS has been applied to problems with
more than 1,000 feasible solutions, and tends to be very efficient when there are
a few competitive solutions and many non-competitive ones. The procedure works
even if this is not the case, but may be computationally expensive if the subset-
selection Step 3 cannot screen out a significant number of feasible solutions.

Procedure KN (Kim and Nelson [39]) below is a descendant of Paulson that
allows unknown and unequal variances, and the use of common random numbers.

KN Procedure

Step 1. Specify common first-stage number of replications n0 ≥ 2. Set

η =
1
2

[(
2α

k− 1

)−2/(n0−1)

− 1

]
.

Step 2. Let I = {x1,x2, . . . ,xk} be the set of solutions still in contention, and
let h2 = 2η(n0 − 1). Obtain n0 observations Yj(xi), j = 1,2, . . . ,n0 from each
solution xi ∈ I and compute Y (xi;n0). For all i �= � calculate

20 L.J. Hong et al.

S2
i� =

1
n0 − 1

n0

∑
j=1

(
Yj(xi)−Yj(x�)−

[
Y (xi;n0)−Y (x�;n0)

])2
,

the sample variance of the difference between solutions i and �. Set r = n0.
Step 3. Set Iold = I. Let

I =
{

xi : xi ∈ Iold and Y (xi;r)≤ Y (x�;r)+Wi�(r),∀� ∈ Iold, � �= i
}
,

where

Wi�(r) =
δ
2r

(
h2S2

i�

δ 2 − r

)+
.

Step 4. If |I|= 1, then stop and select the solution whose index is in I as the best.
Otherwise, take one additional observation Yr+1(xi) from each solution xi ∈ I, set
r = r+ 1 and go to Step 3.

Many extensions and variations of KN have appeared in the literature. Kim and
Nelson [41] proposed KN++, which is asymptotically valid even when observations
are non-normal and dependent. A drawback of a fully sequential procedure, such as
KN, relative to a two-stage procedure, like NSGS, is that fully sequential procedures
frequently switch among the simulations of different solutions. Switching can be
computationally much more costly than running simulation experiments, depending
on the computing environment, offsetting the efficiency gain of the fully sequential
procedures compared to two-stage procedures that require a minimum number of
switches. Hong and Nelson [27] and Osogami [53] designed sequential procedures
that reduce the number of switches dramatically while still maintaining the benefit
of being sequential.

There are two basic paradigms for solving the selection-of-the-best problem:
frequentist (described above) and Bayesian. A comprehensive reference that covers
the basic theory upon which frequentist R&S procedures are based is Kim and
Nelson [40]. We give a brief overview of the Bayesian approach below, based largely
on Frazier and Powell [17]. For more comprehensive treatments, see [11, 16].

A Bayesian procedure consists of a sequence of decisions; the decisions include
which solution x to simulate next, and possibly whether or not to stop the procedure
and select a solution. Let x(j), j = 0,1,2, . . . be the jth decision of which solution to
simulate, which leads to obtaining the (j + 1)st simulation observation Yj+1(x(j)).
The linking of the jth decision to the (j + 1)st observation emphasizes that in a
Bayesian framework we may have informative prior distributions on the values of
g(x1),g(x2), . . . ,g(xk) that could be used to make an intelligent decision x(0) even
when no data have yet been obtained.

2 Discrete Optimization via Simulation 21

Let H j = {x(0),Y1(x(0)),x(1),Y2(x(1)) . . .x(j−1),Yj(x(j−1))} denote the history up
through decision j−1 (observation j), with H0 = /0. The procedure is controlled by
a policy π and a stopping time τ where τ(H j) yields a binary decision to stop the
procedure or to apply

x(j) = π(H j)

to decide which solution x(j) to simulate next.
The key to seeking optimal policies in the Bayesian formulation is that uncer-

tainty about g(x) is represented as a prior probability distribution on its value,
which is updated to a posterior distribution using Bayes rule as observations are
obtained. A typical choice of prior distribution is a non-informative normal-gamma
prior (g(x) is normally distributed given its posterior variance σ2(x), and 1/σ2(x)
has a gamma distribution); see [17] or [15]. This choice of prior leads to a generic
Bayes procedure of the following form:

Procedure Generic Bayes

Step 1. Set n(x) = 0, H0 = /0 and Y (x) = null for all x ∈Θ , and j = 0.
Step 2. Let x(j) = π(H j).
Step 3. Obtain observation Yj+1(x(j)) and update

n(x(j)) = n(x(j))+ 1

Y (x(j)) =
1

n(x(j))
∑

i:x(i)=x(j)

Yi+1(x(i)).

Step 3. If τ(H j+1) indicates time to stop, then return xB = argminx∈ΘY (x).
Else j = j+ 1 and go to Step 2.

Step 2 as stated above masks what is really happening: The decision x(j) is
actually a function of the posterior distributions as calculated from H j, and these
posterior updates may be easy (in the case of a conjugate prior) or numerically
challenging to obtain [11, 16].

The best policy π and stopping time τ depend on the objective. For instance, a
natural objective is

inf
π
Eπ [g(x�N)] = inf

π
Eπ
[

min
x∈Θ

Y N(x)
]

(2.5)

where N is a fixed simulation budget. This is equivalent to minimizing the expected
opportunity cost for the selected solution within a given simulation budget. Another
objective is

inf
π ,τ

Eπ [g(x�τ)− c(τ)] = inf
π ,τ

Eπ
[

min
x∈Θ

Y τ(x)+ c(τ)
]

(2.6)

22 L.J. Hong et al.

where c(j) is the cost of running j simulations; this policy and stopping rule balance
selection loss with the cost of additional simulation. The expectations in (2.5)–(2.6)
are with respect to the posterior distributions of g(x).

The optimal policies for (2.5) and (2.6) are the solutions to dynamic pro-
gramming problems. Unfortunately, it is computationally difficult or impossible to
actually achieve the optimal policy; therefore, research has focused on heuristics
that are implementable and effective. These include the optimal computing budget
allocation (OCBA) procedures [9], the expected value of information (EVI) proce-
dures [12], and the knowledge gradient (KG) methods [17,18], which are the topics
of Chap. 3.

An advantage of the Bayesian formulation is its flexibility; many kinds of
information or knowledge about the problem can be incorporated into the prior
beliefs, leading to substantial gains in efficiency. For instance, the knowledge that
two similar solutions (x1 ≈ x2) will probably have similar values (g(x1) ≈ g(x2))
can be exploited (e.g., [19]).

Branke et al. [7] conducted a comprehensive set of experiments to compare the
performance of different R&S procedures on thousands of combinations of problem
structures. They found that no R&S procedure can dominate in all situations. They
also found that the Bayesian procedures are often more efficient in terms of the
total number of samples required to make a decision. However, they do not provide
the type of correct-selection optimality guarantee that the frequentist procedures
provide.

2.4 Ordinal Optimization

Ordinal optimization (OO), introduced by Ho et al. [25] and treated in detail in
the book by Ho et al. [26], proposes “soft optimization” for OvS problems when
the number of feasible solutions k = |Θ | is too large for R&S methods. Ordinal
optimization selects a subset S from Θ and limits further analysis to S. If we define a
set T of good enough solutions in Θ , which are often the top t solutions in Θ , we are
interested in the probability that at least l solutions in T are in S, i.e., P(|T ∩S| ≥ l).
This probability is referred to as the alignment probability (AP) and l is called the
alignment level.

There are two basic ideas behind ordinal optimization:

1. Estimating the order among solutions is much easier than estimating the absolute
objective values of each solution.

2. Softening the optimization goal and accepting good enough solutions leads to an
exponential reduction in computational burden.

To understand the first idea, recall that estimating g(x) with Y (x) only has a
convergence rate of 1/

√
n according to the Central Limit Theorem. By comparison,

if one is only interested in identifying the set of optimal solutions Θ ∗, one can

2 Discrete Optimization via Simulation 23

achieve exponential convergence rate with respect to order using results from large
deviation theory. Specifically, if Y (x) has a finite moment generating function
M(λ) = E[eλY(x)], then for any positive constant δ > 0, there exists a positive
constant β such that

P(|Y (x)− g(x)|> δ)≤ e−nβ . (2.7)

Based on this result, for any alignment level l, the misalignment probability
decays exponentially, as shown in [13, 14, 26, 68]. Without loss of generality,
we assume that g(x1) < g(x2) < .. . < g(xk). For simplicity, we assume that
all solutions receive the same number of simulation replications n. Let Δ =
mini=1,2,...,k−1(g(xi+1)− g(xi)), and δ = Δ/2. Clearly, if no sample mean Y (xi)
deviates from its true mean g(xi) by more than δ , then all sample means are in
the same order as the true means, and thus all solutions are aligned. Therefore, for
misalignment to happen, there must exist some xi such that |Y (xi)−g(xi)| ≥ δ . We
thus have the following inequality to bound the misalignment probability

P(|T ∩S|< l) ≤ P(∃xi s.t. |Y (xi)− g(xi)| ≥ δ)

= P

(⋃
i=1,...,k

[|Y (xi)− g(xi)| ≥ δ]

)

≤
k

∑
i=1

P(|Y (xi)− g(xi)| ≥ δ)

≤ ke−nβ .

The last inequality follows from (2.7). Therefore, the misalignment probability
decays exponentially fast as simulation replication n increases, confirming the first
basic idea that estimating order is easier than estimating the absolute objective value.

It is also worthwhile noticing that the analysis above does not impose the normal-
ity assumption as in the R&S algorithms in Sect. 2.3. A finite moment generating
function is both sufficient and necessary to achieve the asymptotic exponential
convergence rate with respect to order [20]. However, common distributions such as
lognormal and certain Gamma distributions do not have finite moment generating
functions. In such cases, proper truncations can be used to recover the exponential
convergence rate [20].

To understand the benefit of goal softening, we assume that we randomly (and
thus blindly) pick the set S from all k solutions. For simplicity, we only consider
l = 1. Let s = |S| and t = |T |. The misalignment probability is P(|T ∩ S| = 0) =(k−t

s

)
/
(k

s

)
. So the AP is given by

P(|T ∩S| ≥ 1) = 1−P(|T ∩S|= 0)

24 L.J. Hong et al.

= 1−
(

k− t
s

)/(
k
s

)

= 1− (k− t)(k− t− 1) · · ·(k− t − s+ 1)
k(k− 1) · · ·(k− s+ 1)

. (2.8)

We can bound (2.8) by using the fact that

k− t − i
k− i

= 1− t
k− i

≤ 1− t
k
,

for all i = 0,1, . . . ,s− 1. So we have

P(|T ∩S| ≥ 1)≥ 1−
(

1− t
k

)s
. (2.9)

Since 1− t/k ≤ e−t/k, we can further bound (2.9) with the following inequality

P(|T ∩S| ≥ 1)≥ 1− e−
ts
k . (2.10)

The righthand side of (2.10) establishes the fact that as we soften our goal, i.e.,
increase t to make the “good enough” set T larger, or increase the size of the selected
set s, the alignment probability converges exponentially to 1.

Instead of blindly picking the set S, one may run a few simulation replications on
all x ∈ Θ and choose S according to the sample mean Y (x). Under the assumption
of a common additive Gaussian simulation error term N (0,σ2) for all x, when an
equal number of simulation replications n is allocated to every x ∈ Θ , selecting the
top s solutions ranked by Y (x) has the same lower bound on AP given in (2.10) as
in the blind picking case under a Least Favorable Configuration (LFC) [42]. In an
LFC, without loss of generality, we have g(x) = 0 for all x ∈ S and g(x) = Δ for
all x ∈ Θ \ S. Notice that when Δ = 0, it is equivalent to the blind picking case.
Furthermore, if Δ > Δ , where

Δ =
σ√

n

[
1
2
+ log

(
k− 1√

2π

)]
,

then a tighter lower bound on AP is [42]

P(|T ∩S| ≥ 1)≥ 1− max(t,s)
|t − s| e

[
−min(t,s)(Δ−Δ)

√
n

σ

]
. (2.11)

The new lower bound (2.11) shows that AP converges exponentially to 1 when

• the optimization goal is softened by increasing min(t,s);
• the difference in solution quality Δ between good and bad solutions is larger;
• simulation replications n increases.

2 Discrete Optimization via Simulation 25

The LFC represents the worst case scenario of AP and thus (2.10) is a universal
lower bound on all problems. Given that the least favorable configuration is hardly
the case in real problems, using Y (x) to choose the set S can achieve much higher
alignment probability than the probability given in (2.8) when S is chosen randomly.
However, unless there is structural information about the problem, such as an LFC
configuration with Δ difference, there is no readily available tighter lower bound on
AP other than (2.10). Nevertheless, for many practical engineering problems, one
may conduct pilot experiments to gain knowledge about the problem and use the
tables in [26] to identify the s that approximately achieves the required AP.

Therefore, to implement OO, one first determines a target AP and picks the set S.
Once the set S is determined, one can then apply a R&S procedure to select the best
solution in S. Because the set S is often much smaller than the feasible solution space
Θ , R&S procedures are both effective and efficient. Furthermore, because the set S
contains at least one good enough solution with a given AP and a R&S procedure
can select the best solution from the set S with a given PCS, one can thus select the
appropriate AP and PCS to ensure that the solution finally selected is a good enough
solution of the original DOvS problem with a target probability.

2.5 Globally Convergent Random Search Algorithms

In this section we consider globally convergent algorithms designed for large, but
still finite, feasible regions Θ . We focus on algorithms that exploit no structural
information other than |g(x)| < ∞ and that we have a consistent estimator ĝ(x) of
g(x) for all x ∈Θ .

The methods described here can be broadly characterized as globally convergent
adaptive random search (GCARS). We start by defining a high-level GCARS
algorithm that contains the key features found in the research literature; we then
discuss some of the possible choices for these features and their consequences.
Finally, we present several specific algorithms that illustrate these choices.

Let Θ � ⊂ Θ be the set of globally optimal solutions, which is guaranteed to be
non-empty since |Θ |< ∞. Further, let m = 0,1,2, . . . be the index of the number of
iterations of the algorithm, and let x�m be the solution that the algorithm would report
as optimal if stopped at the end of iteration m. We are interested in algorithms that
provide one of the following convergence guarantees:1

lim
m→∞

P(x�m ∈Θ �) = 1 or

P
(

lim
m→∞

1{x�m ∈Θ �}= 1
)
= 1,

i.e., convergence in probability or w.p.1, respectively.

1One can also define convergence of ĝ(x∗m), the estimated optimal value, but we do not do so here.
See for instance Andradóttir [1].

26 L.J. Hong et al.

On iteration m of our generic algorithm, there is an estimation set Em ⊂ Θ
containing the solutions that will be simulated to estimate, or refine the estimate
of, g(x) for all x ∈ Em. From iteration to iteration the algorithm retains some
memory of what is observed through estimation; let Mm ⊂ Θ denote the set of
solutions on which information is retained through iteration m. For the moment we
are intentionally vague about what the information is, but it could be as little as the
identity of x�m, or as much as a record of all solutions that have ever been estimated,
the order in which they were encountered, and all of the observations collected on
each of them.

Solutions in the estimation set are simulated; how much simulation effort is
expended depends on a simulation allocation rule, denoted SARm(Em|Mm), which
may depend on the estimation set, the solutions on which we retain information,
and the iteration number. The result of estimation is that each solution x ∈Mm has
a value, denoted V (x), which may be an estimate of g(x) or an indicator that x is, or
is not, the current estimated optimal solution x�m.

To represent the “random” aspect of adaptive random search, let Fm(·|Mm) be a
probability distribution on x∈Θ that may depend on the iteration m and information
on the solutions in Mm. Given these components, the generic GCARS algorithm is
as follows:

Generic GCARS Algorithm

Initialization: Set M0 = /0 and choose feasible solution x�0. Set the iteration index
m = 0.

Sampling: Choose the estimation set Em where some or all of the solutions are
sampled from Θ according to Fm(·|Mm).

Estimation: Apply the SARm(Em|Mm) to solutions x ∈ Em in the estimation set.
Iteration: Update V (x) for all x ∈ Em and choose x�m+1 as the solution with the

best V (x) value. Update the set Mm+1, let m = m+ 1 and go to Sampling.

Notice that the generic GCARS algorithm contains no stopping rule, which is
appropriate for proving asymptotic convergence. In practice stopping may occur,
for instance, when a computation budget is exhausted or when progress appears
too slow. Unless all solutions in Θ are actually simulated, or we have structural
information on g, it is not possible to stop a GCARS algorithm with any statistical
guarantee that x�m is an optimal solution.

We now describe several different ways that the steps of GCARS might be
accomplished. Let Vm be the set of solutions that have been visited by the algorithm
through iteration m. By “visited” we mean that the solutions in Vm have been
simulated during one or more iterations; therefore,Vm =∪m

j=0Em. A key requirement
for GCARS that exploit no structural information about g is that

Vm
m→∞−→ Θ w.p.1, (2.12)

i.e., all solutions will eventually be visited. Clearly this is a strong condition, and
one that will not be realized in practice when Θ is very large. Therefore, the focus of

2 Discrete Optimization via Simulation 27

algorithm design is often on being as aggressive as possible in exploring promising
areas of Θ while still maintaining Condition (2.12) as well as others.

The burden of insuring (2.12) falls primarily on Fm. Three types of distributions
are common.

• A distribution Fm(·|Mm) that puts positive probability on a small number of
feasible solutions in a neighborhood of x�m. When this is the case, then Fm and the
neighborhood structure on which it is defined must connect Θ so that any solution
is reachable from any other solution after a sufficient number of iterations.

• A distribution Fm(·|Mm) that puts positive probability on a “promising” subset
Θ m ⊂Θ that may be large or small, but is not necessarily a neighborhood of x�m.
Typically these distributions attempt to use the memory Mm in an intelligent way
to concentrate the search.

• A distribution Fm(·|Mm) that puts positive probability on all of Θ , but may
change as a function of m and Mm. In this case the search is always global,
although it may become probabilistically focused on promising regions.

For instance, the Stochastic Ruler algorithm [73] (described below) takes Mm =
{x�m}, and only the identity of the current estimated optimal solution is retained.
The estimation set is Em = {x�m,x

′}, where x′ ∼ Fm(·|x�m), and Fm(·|x�m) puts positive
probability only on a neighborhood of x�m. When the support of Fm is a small local
neighborhood of x�m, then solution sampling is typically easy. And because the
estimation set is a single neighbor, x�m+1 is one of x�m and x′. Algorithms built in this
way require very low memory, but need increasing effort per iteration to converge to
an optimal solution. In other words, SARm(Em|x�m) must prescribe longer and longer
simulation runs as m increases.

The Nested Partitions algorithm [63,64] (also described below) takes Mm = Vm,
and also retains some measure of the value of each solution visited. Typical choices
for the value are V (x) =C(x), a count of the number of times that x has been visited
by the algorithm through iteration m; or V (x) = Y (x;n(x)), the cumulative sample
mean of the n(x) observations of solution x for all x ∈ Vm. In these algorithms,

x�m+1 = argmaxx∈Vm
C(x) or (2.13)

x�m+1 = argminx∈Vm
Y (x;n(x)). (2.14)

In the Nested Partitions algorithm, Fm(·|Mm) assigns substantial probability to a
subset Θ m ⊂Θ that shows promise of containing good solutions based on previous
iterations, but also some to Θ\Θ m to insure convergence. Depending on how these
subregions are formed, sampling x from Θ m may be easy or computationally
challenging. When the estimated optimal is defined by (2.14) or (2.13) it is not
essential that SARm increase the simulation effort in m. For instance, when the
cumulative average (2.14) is employed, and Y (x;n(x)) satisfies a strong law of large
numbers, then SARm need only assure that if x is in the estimation set infinitely
often, then it will receive an infinite amount of simulation effort.

28 L.J. Hong et al.

We now look at four GCARS algorithms in more detail to gain insight into the
strengths and weaknesses of various approaches. To simplify the presentation and
statement of results, we assume that there is a unique globally optimal solution x�.

For the Stochastic Ruler algorithm, we need an unbiased estimator ĝ(x) of g(x),
whose distribution need not change as a function of the iteration m; e.g., it could be
Y (x;n) with n fixed. We also need constants a and b such that P(a ≤ ĝ(x)≤ b) = 1
for all x ∈Θ .

Stochastic Ruler Algorithm

Step 0. Choose a and b such that P(a ≤ ĝ(x)≤ b) = 1 for all x ∈Θ , an irreducible
Markov chain transition matrix R on Θ such that R(x,x′) = R(x′,x) for all
solutions x,x′ ∈ Θ , and a sequence of positive integers tm such that tm → ∞ as
m → ∞. Select an initial solution x�0 and set m = 0.

Step 1. Generate a candidate solution x′ from R(x�m, ·); in other words, randomly
select a solution using the x�k row of R as the probability distribution on solutions.

Step 2. For i = 1 to tm do:
Generate an independent estimate ĝ(x′) of g(x′)
Generate U ∼U(a,b)
If ĝ(x′)>U , then

x�m+1 = x�m; go to Step 3
endif

Next i
x�m+1 = x′

Step 3. m = m+ 1; go to Step 1

The Stochastic Ruler algorithm works because it insures that the search is
attracted to x� from which it is difficult to leave. Specifically, the probability
of rejecting the candidate solution x′ at Step 2 is minimized at x�; furthermore,
the transition probability into x� is greater than out of x�. And even though
candidate solutions are generated from a stationary discrete-time Markov chain,
the implied transition matrix that describes the movement from solution to solution
is irreducible, aperiodic and finite, and its steady-state probabilities degenerate to
a distribution putting probability 1 on x� as m → ∞. Thus the convergence is in
probability.

The algorithm is elegant and compact (since it retains no past data), but it is not
adaptive and requires increasing effort from iteration to iteration in Step 2. As a
result its performance in practice is often poor.

When memory of visited solutions is not a limitation, Andradóttir [1] showed that
there are significant advantages to using the cumulative sample mean to estimate the
value of the optimal solution, even if it is not used for guiding the search. This
approach makes almost sure convergence of the algorithms easy to prove via the
strong law of large numbers, provides a better estimate of the true value of the
selected solution whenever the algorithm terminates since information on it is
accumulated, and tends to yield better empirical performance. Since it is now
computationally possible to store sample mean information on a very large number

2 Discrete Optimization via Simulation 29

of solutions, this insight has had a profound impact on algorithm design. The next
two algorithms we describe provide better performance than the Stochastic Ruler
algorithm by being more adaptive and retaining the cumulative sample means.

The principles of branch and bound have had an important influence on DOvS,
even though classical branch and bound techniques such as relaxing integrality
constraints to bound the potential of a partition of the feasible region are not
possible. We first describe the stochastic branch-and-bound method (SB&B) of
Norkin et al. [51,52], and then show how it leads to the widely used Nested Partitions
(NP) algorithms of Shi and Ólafsson [63, 64] and Pichitlamken and Nelson [58].
This development is based on Nelson [48].

To describe a simplified version of SB&B, let {Θ p} be subsets of Θ creating a
partition P . Define the value of the optimal solution restricted to Θ p by

g�(Θ p) = min
x∈Θ p

g(x).

Clearly g(x�) = minΘ p∈P g�(Θ p). Suppose that there exist two bounding functions
� and u defined on subsets of Θ such that

• �(Θ p)≤ g�(Θ p)≤ u(Θ p)
• u(Θ p) = g(x′) for some x′ ∈Θ p

• If |Θ p|= 1 then �(Θ p) = g�(Θ p) = u(Θ p).

If we knew � and u then we could directly apply branch and bound. Instead, suppose
that there are estimators Lk and Uk defined on subsets Θ p such that w.p.1,

lim
m→∞

Lm(Θ p) = �(Θ p),

lim
m→∞

Um(Θ p) = u(Θ p).

Under these assumptions, a SB&B algorithm is the following:

Stochastic Branch and Bound Algorithm

Step 1. Set m = 0, P0 =Θ and generate Lm(Θ) and Um(Θ).
Step 2. Set

Θm = argmin{Lm(Θ p) : Θ p ∈Pm}
x�m ∈ argmin{Um(Θ p) : Θ p ∈Pm}.

Step 3. If |Θm|= 1 then Pm+1 =Pm and go to Step 4.
Else let P ′

m be a partition of Θm and let Pm+1 = (Pm\Θm)∪P ′
m.

Step 4. For all Θ p ∈Pm+1 generate Lm+1(Θ p) and Um+1(Θ p), set m = m+ 1 and
go to Step 2.

30 L.J. Hong et al.

As the algorithm progresses, better estimates are obtained of the bounding
functions, and the partition with the best lower bound is partitioned finer and finer.
Under mild conditions x�m converges w.p.1 to x�.

There are two practical barriers to the application of SB&B. First, there needs to
be bounding functions � and u and convergent estimators of them; see [24, 51, 52]
for some specific stochastic optimization problems where this is the case. A second
barrier is the computing overhead needed to retain and refine a larger and larger
partition structure as the algorithm progresses, since no partition is ever eliminated
from consideration as in deterministic branch and bound.

Notice, however, that for any subset Θ p, it is trivially true that

�(Θ p) = min
x∈Θ p

g(x)

Lm(Θ p) = min
x∈Θ p

Y (x;n(x))

satisfy the required conditions, provided n(k), the cumulative number of replications
of solution x through iteration k, increases. In other words, the smallest objective
function value in a partition is a (tight) lower bound, and a consistent estimator of
it is the smallest sample mean provided all solutions in the partition are simulated
infinitely many times. But it is also true that the estimator

L̂m(Θ p) = min
x∈X p(m)

Y (x;n(x))

works provided X p(m) is a randomly sampled subset of solutions from Θ p that
converges to Θ p as m → ∞. Therefore, L̂m(Θ p) is a sampling-based lower bound
that is available for any problem, which addresses the first drawback of SB&B.

To avoid the need to carry along information on an increasing number of
partitions, we can modify the definition of the new partition, Pm+1, to be

Pm+1 = (Θ\Θm)∪P ′
m.

In words, we maintain only the most recently refined partition, and aggregate all
other feasible solutions into a single “surrounding region.” With these two refine-
ments SB&B becomes a version of the NP method that is similar to Pichitlamken
and Nelson [58].

NP uses a very straightforward adaptation: sample solutions more intensely
in the partition that has most recently provided an apparently good solution, but
continue to sample solutions from the surrounding region in case the global optimal
is in it. The effectiveness of both SB&B and NP can be enhanced by making
good decisions about which region to partition further, and how many solutions
to sample from each partition. Shi and Ólaffson [64] describe embedding ranking
and selection (Sect. 2.3) or ordinal optimization (Sect. 2.4) into NP to increase the
likelihood that it partitions a region with good solutions. Xu and Nelson [71] suggest
using a more sophisticated sampling-based bound than L̂m, one that is based on an

2 Discrete Optimization via Simulation 31

empirical Chebyshev inequality, to guide the solution sampling effort allocated to
each partition in SB&B.

A typical strategy for GCARS is to exploit (search intensively) regions of Θ that
appear to have good solutions, while still maintaining enough global exploration to
be sure to capture x� in the limit. And since g(x) can only be estimated, solutions
must not only be visited, they must be estimated with less and less error in the
limit to allow convergence. Prudius and Andradóttir [60] proposed a framework
called balanced explorative and exploitative search with estimation (BEESE),
which keeps global exploration, local exploitation and solution estimation in play
by switching back and forth among them. Specifically, BEESE uses a Global
probability distribution that places positive probability on all elements of Θ for
exploration; a family of Local probability distributions that assigns probability
only to solutions that are close (in some sense) to the current sample best solution in
Θ for exploitation; and an estimation scheme that allocates replications to a solution
x to estimate g(x). The probability 1 global convergence of an algorithm that falls
into the BEESE framework can be proved provided the Global search distribution
satisfies certain conditions. The simplest version of BEESE, known as R-BEESE,
has the following high-level structure:

R-BEESE

Step 1. Sample a solution x′ ∼ Global(Θ) and estimate g(x′).
Step 2. With probability q, take additional replications of the current sample best

solution x�m to refine the estimate of g(x�m).
Else w.p. p sample a solution x′ ∼ Global(Θ) and estimate g(x′) or refine the
estimate of g(x′) if x′ has been visited before.
Otherwise sample a solution x′ ∼ Local(x�m) and estimate or refine the estimate
of g(x′).

Step 3. Update current sample best solution and go to Step 2.

The Global and Local distributions on Θ , and the switching probabilities
p and q, have an impact on performance. Since p and q are hard to choose (and
should probably evolve), Prudius and Andradóttir [60] also describe A-BEESE
which makes the switching decisions dynamic and adaptive to the progress of the
search. The BEESE framework provides a structure and conditions that guarantee
global convergence, but within which smart heuristics can be employed.

The Stochastic Ruler algorithm generates new candidate solutions directly from
a neighborhood of the previous candidate; NP samples solutions intensely from
a promising region defined by constraints; while R-BEESE switches between
sampling solutions from a static global distribution on Θ and a local distribution
that concentrates around the current sample best. Another approach is to always
generate candidate solutions from a global probability distribution over Θ , but
one that adapts based on the performance of previous candidates. Therefore, the
search is always global, but concentrates on promising areas by changing the global
distribution. The final GCARS algorithm we describe is the Model Reference
Adaptive Search (MRAS) algorithm of Hu et al. [34, 35], and in particular its

32 L.J. Hong et al.

stochastic simulation counterpart SMRAS [36]. MRAS and SMRAS are closely
related to the cross-entropy method [62] and the estimation of distribution algorithm
[46], and thus demonstrates the principles of those algorithms as well.

To make the algorithm easier to state, consider a problem where the goal
is maximization, g(x) > 0 and (for the moment) g can be evaluated exactly,
i.e., we have a zero-variance estimator of g(x), so the optimization problem is
deterministic.2 Let r(·) be a probability mass function over x ∈ Θ , which defines
a random variable X ∼ r; in other words, X is a randomly sampled solution from
Θ , sampled according to distribution r. Therefore r induces a distribution on the
random variable g(X), the value of the objective function at X, making quantities
such as Er[g(X)] well defined.

Under appropriate conditions, there exists a recursive sequence of reference
distributions {rm;m = 0,1,2, . . .) on Θ with the property that [35]

lim
m→∞

Erm [g(X)] = g(x�).

Since x� is unique, this sequence of distributions converges to a distribution
that concentrates all probability on x�. Specifically, starting from some initial
distribution r0(x) that assigns positive probability to all x ∈Θ ,

rm+1(x) =
g(x)rm(x)

∑x′∈Θ g(x′)rm(x′)
.

If we could generate samples from rm, then we could empirically estimate rm+1,
and continue to do this until the reference distribution essentially degenerates
onto x�. Unfortunately, rm may have no special structure, making sampling from it
computationally difficult. Therefore, MRAS samples solutions from Θ using a con-
venient parametric distribution f (·;ˇm), where at each iteration, ˇm minimizes the
Kullback–Leibler divergence between the parametric distribution and the reference
distribution. SMRAS adapts MRAS to DOvS problems by substituting simulation
estimators for g(x), increasing the precision of these estimators as the algorithm
closes in on x�. A high-level description of SMRAS is given below.

SMRAS Algorithm

Step 1. Choose initial distribution f (·;ˇ0) that assigns positive probability to all of
Θ ; a mixing coefficient λ ∈ (0,1); an initial number of solutions to sample t0;
an initial simulation sample size n0 > 1; a simulation allocation rule nm; and set
m = 0.

2Clearly any minimization problem on g(x) can be formulated as a maximization problem. If an
estimator ĝ(x) of g(x) could be negative, then MRAS/SMRAS maximizes s(g(x)) instead, where
s is a non-negative, strictly increasing function.

2 Discrete Optimization via Simulation 33

Step 2. Generate tm candidate solutions from f̄ (·;ˇm)= (1−λ) f (·;ˇm)+λ f (·;ˇ0)

to fill the estimation set Em =
{

x(1),x(2), . . . ,x(tm)
}

.

Step 3. Simulate nm i.i.d. observations Y1(x),Y2(x), . . . ,Ynm(x) for each solution x∈
Em and compute its sample mean Y (x;nm).

Step 4. Calculate a threshold γ for elite solutions.
Step 5. Determine new distribution parameter ˇm+1 by solving

ˇm+1 = arg max
β

{
1
tm

∑
x∈Em

[Y (x;nm)]
m

f (x;ˇm)
w
(
Y (x;nm)

)
ln f (x;ˇ)

}

where

w(y) =

⎧⎪⎨
⎪⎩

0, if y ≤ γ − ε
y− γ + ε

ε
, if γ − ε < y < γ

1, if y ≥ γ.

Step 6. Set m = m+ 1, choose new solution sample size tm and go to Step 2.

Step 2.5 minimizes the empirical Kullback–Leibler divergence between the
parametric distribution and the reference distribution. There are conditions on the
growth of nm and tm necessary for convergence; and while the algorithm need not
maintain memory of previously visited solutions (since βk+1 completely specifies
the sampling distribution for the next iteration) simulation effort can be saved
by retaining Y (x;n(x)) and n(x) for each visited solution, so that if a solution
is revisited then only nm − n(x) additional replications need to be obtained. The
evolving threshold in Step 2.5 is also important for algorithm performance; see [36].

Notice that SMRAS employs the mixture distribution f̄ (·;ˇm) = (1 −
λ) f (·;ˇm) + λ f (·;ˇ0), where f (·;ˇ0) forces the algorithm to keep a global
perspective. As a result, the distribution can never degenerate to the optimal
solution. What can be shown is that for certain choices of parametric distributions

lim
m→∞

Eβm [X] = x∗.

2.6 Locally Convergent Random Search Algorithms

In this section, we consider locally convergent DOvS algorithms designed for a finite
but potentially large feasible region Θ . As in Sect. 2.5, we focus on general-purpose
algorithms that only assume Var[Y (x)]< ∞ and that we have a consistent estimator
ĝ(x) of g(x) for all x ∈Θ .

34 L.J. Hong et al.

Recall from Sect. 2.2 that we use N(x) ⊂ Θ to denote the local neighborhood
of a solution x ∈ Θ . We define x as a locally optimal solution if g(x) ≤ g(y) for
all y ∈ N(x). Since this definition of local optimality depends on the definition
of N(x), we may have different sets of locally optimal solutions when different
neighborhood structures are used. For notational simplicity, we do not explicitly
mention this dependence on the definition of N(x) in this section.

Let L denote the set of locally optimal solutions for the DOvS problem. We
again use x∗m to denote the solution that the DOvS algorithm would report as optimal
if terminated at the end of iteration m. We are interested in algorithms that provide
local convergence in probability or local convergence w.p.1:

lim
m→∞

P(x�m ∈L) = 1,

P
(

lim
m→∞

1{x�m ∈L }= 1
)
= 1,

Similar to GCARS, an LCARS algorithm has the following key components: an
estimation set Em ⊂ Θ containing the solutions that will be simulated to estimate,
or refine the estimate of, g(x) for all x ∈ Em; a memory set Mm ⊂ Θ containing
information on a set of solutions simulated up to iteration m; a simulation allocation
rule, denoted SARm(Em|Mm), determining how much simulation effort is expended
on each solution x∈ Em, which may depend on the memory set Mm and the iteration
number m; and a sampling probability distribution Fm(·|Mm) to control the adaptive
random search process.

Unlike Fm(·|Mm) in GCARS algorithms, which may put positive probability on
all of Θ , Fm(·|Mm) in LCARS algorithms typically only puts positive probability
on a “promising” subset Θ m ⊂ Θ , which may be a small neighborhood of x∗m or
a larger area that is believed to contain good solutions according to information in
Mm. When global convergence is not required, focusing sampling on “promising”
areas can speed up the progress of random search considerably.

Similar to GCRS, LCARS algorithms converge in an asymptotic sense as
simulation effort goes to infinity. But unlike its globally convergent counterpart,
an LCARS algorithm can be, and should be, combined with a statistical procedure
to test the local optimality of x∗m. Formally, the statistical local optimality test of a
solution x∗m is

H0 : g(x∗m)≤ min
x∈N(x∗m)

g(x) vs H1 : g(x∗m)> min
x∈N(x∗m)

g(x).

A local optimality test procedure controls the type I and type II errors and
provides an implementable stopping rule for LCRS algorithms to terminate the
search when a locally optimal solution is found. Such a capability is a very desirable
improvement over GCRS, for which it is not possible to stop with any statistical
guarantee that x∗m is an optimal solution. This test can be rewritten in the following
form:

2 Discrete Optimization via Simulation 35

P(declarex∗mlocallyoptimal)≥ 1−αL ifg(x∗m)≤ min
x∈N(x∗m)

g(x),

P(declarex∗mnotlocallyoptimal)≥ 1−αL ifg(x∗m)≥ min
x∈N(x∗m)

g(x)+ δL,

where αL is the type I error and δL is the indifference zone parameter. This test is
thus a special case of comparison with a standard, which is x∗m. Therefore, efficient
sequential procedures such as that of Kim [38] can be used to perform this test.

The generic LCARS algorithm is identical to the generic GCARS algorithm
presented in Sect. 2.5. We now look at two specific LCARS algorithms in more
detail to learn how different components of the generic LCARS algorithm can
be designed to improve the practical performance of an LCARS algorithm while
preserving its local convergence property. We will pay special attention to the
design of the “promising” subset Θ m ⊂Θ and the sampling probability distribution
Fm(·|Mm).

Convergent Optimization via Most-Promising-Area Stochastic Search (COM-
PASS) [28] proposes a unique structure of the most promising area Θ m: it includes
all solutions that are closer to x∗m than any other simulated solution. Let Vm denote
the set of all solutions simulated through iteration m, and Nm(x) be the total
number of i.i.d. simulation replications a solution x has received up to iteration m.
COMPASS starts with an initial feasible solution x0 ∈ Θ provided by the user and
randomly samples tm solutions (duplicates allowed) from Θm at each iteration.

COMPASS

Step 1. Set m = 0,V0 = {x0},x∗0 = x0. Simulate n0(x0) i.i.d. observations for x0,
set N0(x0) = n0(x0), and calculate its sample mean Y 0(x0). Let Θ0 =Θ .

Step 2. Let m = m+1. Sample tm candidate solutions x(1)m ,x(2)m , . . . ,x(tm)m uniformly

and independently from Θm−1. Let Vm =Vm−1
⋃{x(1)m ,x(2)m , . . . ,x(tm)m }. Determine

nm(x) according to the SAR for every x ∈ Vm and simulate nm(x) i.i.d. replica-
tions for every x ∈ Vm. Update Nm(x) and Y (x) for every x ∈ Vm.

Step 3. Let x∗m = argminx∈Vm Y (x). Let Θm = {x : x ∈Θ , ||x−x∗m|| ≤ ||x−y|| ∀y ∈
Vm,y �= x∗m}. Go to Step 2.

Since COMPASS does not aim for global convergence, it can focus search effort
in the area Θm, which is changed adaptively at each iteration based on information
collected on all simulated solutions x ∈ Vm. As the algorithm iterates, Θm shrinks
quickly and guides the search towards a potential locally optimal solution. When
more simulations reveal that x∗m−1 is no longer the optimal solution, COMPASS
allows the construction of a new Θm and moves the search towards new areas.

COMPASS maintains the cumulative sample mean of each simulated solution
x ∈ Vm, and thus the memory set Mm = Vm. The sampling distribution Fm(·|Mm)
is uniform on Θm and puts zero density on Θ \Θm. The estimation set Em is set to
be Vm, and the SAR(Em|Mm) requires that nm(x)→ ∞ as m → ∞. From a practical
point of view, increasing nm(x) fast can slow down the progress significantly as

36 L.J. Hong et al.

Em includes every visited solution x ∈ Vm. The original COMPASS algorithm thus
increases nm(x) logarithmically.

As COMPASS iterates, the most promising area Θm eventually will only contain
x∗m. When this happens, we may perform a statistical local optimality test on x∗m and
its neighbors. Although COMPASS converges to a locally optimal solution w.p.1
as m → ∞, the statistical local optimality test provides the capability to stop the
optimization with a rigorous statistical guarantee of local optimality. This is another
significant advantage of LCRS algorithms compared to GCRS algorithms that are
typically stopped either when computation budget is exhausted or progress has been
too slow, and thus no guarantee can be provided on the performance of x∗m when the
algorithm is stopped.

COMPASS sets the estimation set Em to the entire set of visited solutions. As
COMPASS iterates, the size of Em keeps increasing and simulating all solutions in
Em becomes a big computational burden. It has been shown by Hong and Nelson
[29] that for COMPASS to converge to a locally optimal solution w.p.1, it only
requires the simulation effort for solutions that define the most promising area Θm

to go to infinity as m→∞. The constraint defining Θm can be written in the following
form:

(x∗m − xi)
T

(
x− x∗m + xi

2

)
≥ 0, xi ∈ Vm.

Some of these constraints are inactive in the sense that removing them will not
change Θm. To determine if a solution xi defines an active constraint, Xu et al. [69]
propose to solve the following linear program (LP)

minx (x∗m − xi)
T

(
x− x∗m + xi

2

)

s.t. (x∗m − x j)
T

(
x− x∗m + x j

2

)
≥ 0 ∀x j ∈ Vm \ {x∗m}, j �= i.

The solution xi defines an active constraint if and only if the objective function
value is negative. The LP needs to be solved for every xi ∈ Vm to find all active
solutions. This step is referred to as constraint pruning [69]. When simulation is very
time-consuming, there is still substantial saving in computational cost via constraint
pruning. Numerical experiments conducted in [69] show that performing constraint
pruning every 50 iterations seems to give good practical performance.

Hong and Nelson [29] introduce a generic LCRS algorithm framework with
rather mild conditions on the sampling and estimation steps to ensure local conver-
gence. Xu et al. [70] propose another set of conditions that facilitate implementation
of fast LCRS algorithms. Their results show that to achieve local convergence,
it is sufficient for an LCRS algorithm to satisfy the following conditions on

2 Discrete Optimization via Simulation 37

Fm(·|Mm), Em, and the sample allocation rule SARm(Em|Mm) on every x ∈ Em. In
the following, let Sm be the set of solutions sampled from Θm at iteration m using
the sampling distribution Fm(·|Mm). Their conditions are:

1. The sampling distribution Fm(·|Mm) guarantees that Pr{x ∈Sm} ≥ ε for all x ∈
N (x∗m−1) for some ε > 0 that is independent of m.

2. The estimation scheme satisfies the following requirements:

(a) Em is a subset of Vm;
(b) Em contains x∗m−1 and Sm;
(c) nm(x) is allocated such that minx∈Em Nm(x) ≥ 1 for all m = 1,2, . . . and

minx∈Em Nm(x)→ ∞ w.p.1 as m → ∞.

These flexible conditions allow the construction of alternative most promising
areas Θm, which has critical influence on the practical performance of an LCRS
algorithm. Xu et al. [70] propose a hyperbox-shaped Θm and call the algorithm the
Adaptive Hyperbox Algorithm (AHA).

Let x(k) be the kth coordinate, 1 ≤ k ≤ d, of a visited solution x ∈ Vm. Set l(k)m =

maxx∈Vm,x �=x∗m{x(k) : x(k) < x∗(k)m } if it exists; otherwise, let l(k)m =−∞. Also, let u(k)m =

minx∈Vm,x �=x∗m{x(k) : x(k) > x∗(k)m } if it exists; otherwise, let u(k)m = ∞. The hyperbox

containing x∗m is Hm = {x : l(k)m ≤ x(k) ≤ u(k)m ,1 ≤ k ≤ d}.

In words, u(k)m and l(k)m give the boundaries, along the kth coordinate direction,
of the largest hyperbox that encloses x∗m but has all other visited solution x ∈ Vm

either on the boundary or outside. Note that u(k)m and l(k)m is ±∞ when there is no
other solution to provide the hyperbox boundary along the kth coordinate direction.
This may arise when x∗m is on the boundary, or when AHA has not visited enough

solutions yet. Let Lm = (l(1)m , . . . , l(d)m) and Um = (u(1)m , . . . ,u(d)m).
AHA constructs its most promising area Θm by finding Hm and setting Θm =

Hm
⋂

Θ . This construction of Θm allows AHA to shrink the volume of Θm expo-
nentially fast and thus scales up to higher-dimensional DOvS problems. Another
advantage is that it is much less computationally expensive to identify Hm than to
identify the set of active solutions for the COMPASS algorithm. Again, we denote
the starting solution as x0.

AHA

Step 1. Set m = 0,V0 = {x0},E0 = {x0},x∗0 = x0. Simulate n0(x0) i.i.d. observa-
tions for x0, set N0(x0) = n0(x0), and calculate its sample mean Y 0(x0). Let
U0 =L0 =H0 = /0, and Θ0 =Θ .

Step 2. Let m = m+1. Sample tm candidate solutions x(1)m ,x(2)m , . . . ,x(tm)m uniformly

and independently from Θm−1. Remove any duplicates from x(1)m ,x(2)m , . . . ,x(tm)m ,
and let Sm be the remaining set. Let Em = Sm

⋃{x∗m−1}. Determine nm(x)
according to the SAR for every x ∈ Em and simulate nm(x) i.i.d. replications
for every x ∈ Em. Update Nm(x) and Y (x) for every x ∈ Em.

38 L.J. Hong et al.

Step 3. Let x∗m = argminx∈Em Y (x). Identify Um and Lm and thus Hm. Let Θm =
Hm

⋂
Θ . Go to Step 2.

It is straightforward to verify that AHA satisfies the convergence conditions on
the sampling distribution Fm(·|Mm) and the estimation scheme. Therefore, AHA
converges to the set of locally optimal solutions w.p.1.

Both COMPASS and AHA use a uniform sampling distribution with support on
the most promising area Θm. This choice is reasonable when there is no structural
information about the problem inside the most promising area Θm. As an alternative,
Hong et al. [32] propose uniformly sampling along coordinate directions inside Θm

and illustrate with a special case how coordinate sampling may help increase the
chance of finding a locally optimal solution inside Θm. Yet another approach by
Sun et al. [65] proposes to use a Gaussian process model as the sampling distribution
to balance exploration and exploitation. It can be effectively combined with an
LCRS algorithm like COMPASS or AHA to improve its practical performance.

Another category of locally convergent DOvS algorithms extend the problem
to the continuous domain via linear interpolation. The advantage is by doing
so, one can apply efficient gradient-based line search methods. The R-SPLINE
algorithm of Wang, Pasupathy, and Schmeiser [66, 67] works within a retrospective
framework [10,33,55–57]. At each iteration m, the retrospective framework converts
a stochastic problem into a deterministic problem by averaging across km sample
paths (generated using common random numbers). Given the deterministic sample-
path problem, R-SPLINE uses piecewise linear interpolation to extend the problem
into the continuous domain, and gradient estimates can then be computed to perform
a line search. R-SPLINE also conducts a neighborhood enumeration search after
every line search step. As km → ∞ with at least a logarithmic pace, R-SPLINE
converges to a locally optimal solution w.p.1.

Stochastic approximation [37, 61] uses stochastic estimates of the gradient
directly to guide a line search. Lim [43] also extends the discrete problem g(x)
into a continuous problem g̃(x) via piecewise linear interpolation. The basic idea is
to find a g̃(x) that has the following properties:

1. Both g(x) and g̃(x) have the same set of locally optimal solutions.
2. It is relatively easy to compute unbiased estimates of g̃(x).
3. Stochastic approximation converges to a locally optimal solution of g̃(x).

When these conditions are satisfied, stochastic approximation can be used to
solve the original DOvS problem. The algorithms in [43] assume simulation noise
has zero mean and finite variance. For a one-dimensional problem, the algorithm
requires that g(x) has a unique local minimizer. In the multidimensional case, the
algorithms require that g(x) is L�-convex or multimodular [47]. Multimodular or L�-
convex functions arise naturally in many important problems in inventory systems
and queueing networks.

2 Discrete Optimization via Simulation 39

2.7 Algorithm Enhancements

R&S procedures have also been used in conjunction with other DOvS algorithms to
improve their efficiency or to make a correct decision at the end of the optimization
process. Boesel et al. [6] proposed a “clean up” R&S selection procedure that selects
the best solution among all solutions evaluated by a DOvS algorithm and provides a
fixed-width confidence interval for the objective function value of the best solution.
Many search-based OvS algorithms select the best solution from a neighborhood.
Pichitlamken et al. [59] designed a sequential procedure for that purpose. Since a
DOvS algorithm often runs for many iterations and the algorithm may stop at any
iteration, it is desirable to have a R&S procedure that guarantees the solution of
the current iteration is the best among all visited solution. Hong and Nelson [30]
designed such a procedure. In Xu et al. [69], they also used the comparison-with-
a-standard procedure of Kim [38] to test the local optimality of a solution when
solving DOvS problems.

2.8 Using Commercial Solvers

This section is based on material in Hong and Nelson [31], Chap. 12 of Banks et al.
[3], and Nelson [48].

Most commercial simulation modeling software also includes an OvS tool;
however, to the best of our knowledge none of these tools are based on the DOvS
algorithms presented in this chapter, with the exception of the ranking and selection
procedures that are found in a number of simulation packages. In addition, a free
version of COMPASS called “Industrial Strength COMPASS” can be obtained from
www.iscompass.net; with some effort it could be used in conjunction with
commercial simulation modeling software, although it is most suitable for use with
a lower-level programming language such as C++.

Instead of provably convergent DOvS algorithms, robust metaheuristics are the
most common foundation for integrated OvS tools. A “robust metaheuristic” is an
OvS procedure that does not depend on strong problem structure to be effective,
and is somewhat tolerant of some sampling variability. Examples include genetic
algorithms and tabu search. These integrated tools can be applied to problems with
continuous, integer and categorical decision variables. Robust metaheuristics have
been observed to be effective on difficult deterministic optimization problems, but
they usually provide no performance guarantees for deterministic problems, and
certainly not for OvS problems. The following three simple ideas can make them
more effective in practice and help avoid the three types of errors described in
Sect. 2.1.4.

40 L.J. Hong et al.

2.8.1 Preliminary Experiment to Control Sampling Variability

It will often be up to the simulation user to determine how many replications
are needed at each feasible solution examined by the heuristic. We know that
convergence requires that the number of replications should increase as the heuristic
discovers better and better solutions because it is statistically much more difficult to
distinguish solutions that are close in performance than ones that differ substantially.
Therefore at the beginning of the search very little error control may be needed
for the solver to identify good solutions and search directions, but later in the
search this might not be the case. Unfortunately, some solvers use the same number
of replications at all solutions visited, and do not revisit solutions to add more
replications.

However, some OvS software does have an “adaptive” setting, meaning it adjusts
the number of replications based on the variance of the simulation estimates. If
this feature is available, then use it. When the user must specify a fixed number
of replications per solution, then a preliminary experiment should be conducted:
Simulate several solutions, some at the extremes of the feasible region and some in
the interior. Compare the apparent best and apparent worst of these solutions. Find
the minimum number of replications required to declare them to be statistically
significantly different. This is the minimum number of replications that should
be used, which may be substantially more than the default minimum number of
replications specified by the OvS tool because the software designers want their
tool to deliver results quickly. But remember, when the decision that will be based
on the DOvS results really matters, then waiting hours or even days for the best
decision may well be worth it.

2.8.2 Restarting the Optimization

Even with infinite effort, robust metaheuristics may provide no guarantee that they
converge to the optimal solution. Therefore, the chances of finding a very good,
or even the best, solution is increased if the solver is run multiple times. Each
optimization run should use different random number seeds or streams, and should
start from different initial solutions if possible. Be sure to select starting solutions
on the extremes of the solution space, in the center of the space, or even randomly
generated. If you suspect that certain solutions will be good, include them as starting
solutions also. These runs can be made in parallel on different computers. The
inconvenience of initializing several optimization runs is worth it if it leads to a
much better solution, and if all runs lead to the same solution then you can have
higher confidence that you have found the best.

2 Discrete Optimization via Simulation 41

2.8.3 Statistical Clean Up After Search

After the optimization run or runs have completed, it is critical to perform a second
set of statistically designed experiments on the apparent best solutions identified by
the heuristic; we call these “clean-up experiments.”

In an OvS problem you can never be sure you have found the optimal solution;
this is an error that cannot be avoided unless you exhaust Θ , although restarting
helps. The two other types of errors are avoidable: failing to recognize the best
solution that actually was visited, and poorly estimating the performance of the
solution that was selected in the end. These errors occur because no optimization
algorithm can hope to make any progress while at the same time maintaining
statistical error control every step of the way, and because there is a natural
bias toward solutions that, by chance, received favorable simulation estimates.
Therefore, it is prudent to perform a rigorous statistical analysis, using a ranking-
and-selection procedure such as those described in Sect. 2.3, to decide which are the
best or near-best of the solutions visited during the search. Include at least the top
5 % of the solutions encountered during the search in this controlled experiment. The
ranking-and-selection procedures built into the packages are ideal for this purpose.

The “clean up” concept was introduced in [6], which extended NSGS to be able
to start with solutions having unequal numbers of observations, as one would expect
at the end of a DOvS run.

In summary, the outcomes from using commercial OvS software can be improved
by (a) doing some preliminary experiments to assess output variability; (b) making
multiple optimization runs to improve the chances of identifying good solutions; and
(c) performing a sound experiment on the top solutions to provide a statistical guar-
antee of selecting the best among them and estimating its performance precisely.

Acknowledgements This work was supported in part by the National Science Foundation 1099
under Grant CMMI-1233376, and by the Hong Kong Research Grants Council under Project
613011, 613012 and N_HKUST626/10.

References

1. S. Andradóttir. Accelerating the convergence of random search methods for discrete stochastic
optimization. ACM Transactions on Modeling and Computer Simulation, 9:349–380, 1999.

2. S. Andradóttir. Simulation optimization: integrating research and practice. INFORMS Journal
on Computing, 14:216–219, 2002.

3. J. Banks, J. S. Carson, B. L. Nelson, and D. M. Nicol. Discrete-Event System Simulation.
Prentice Hall, Inc., Upper Saddle River, NJ, 5th edition, 2010.

4. R. E. Bechhofer. A single-sample multiple decision procedure for ranking means of normal
populations with known variances. Annals of Mathematical Statistics, 25:16–39, 1954.

5. R. E. Bechhofer, T. J. Santner, and D. Goldsman. Design and Analysis of Experiments for
Statistical Selection, Screening and Multiple Comparisons. John Wiley, New York, 1995.

42 L.J. Hong et al.

6. J. Boesel, B. L. Nelson, and S.-H. Kim. Using ranking and selection to ‘clean up’ after
simulation optimization. Operations Research, 51:814–825, 2003.

7. J. Branke, S. E. Chick, and C. Schmidt. Selecting a selection procedure. Management Science,
53:1916–1932, 2007.

8. J. A. Buzacott and J. G. Shantikumar. Stochastic Models of Manufacturing Systems. Prentice-
Hall, Englewood Cliffs, NJ, 1993.

9. C.-H. Chen, J. Lin, E. Yücesan, and S. E. Chick. Simulation budget allocation for further
enhancing the efficiency of ordinal optimization. Discrete Event Dynamic Systems: Theory
and Applications, 10:251–270, 2000.

10. H. Chen and B. W. Schmeiser. Stochastic rooting-finding via retrospective approximation. IIE
Transactions, 33: 259–275, 2001.

11. S. E. Chick. Subjective probability and Bayesian methodology. In S. G. Henderson and B.
L. Nelson, editors, Handbooks in Operations Research and Management Science: Simulation.
Elsevier, New York, 2006.

12. S. E. Chick and K. Inoue. New two-stage and sequential procedures for selecting the best
simulated system. Operations Research, 49:732–743, 2001.

13. L. Dai. Convergence properties of ordinal comparison in simulation of discrete event dynamic
systems. Journal of Optimization Theory and Applications, 91:363–388, 1996.

14. L. Dai and C.-H. Chen. Rates of convergence of ordinal comparison for dependent discrete
event dynamic systems. Journal of Optimization Theory and Applications, 94:29–54, 1997.

15. M. H. DeGroot. Optimal Statistical Decisions. Wiley, New York, 1970.
16. P. I. Frazier. Decision-theoretic foundations of simulation optimization. Wiley Encyclopedia of

Operations Research and Management Sciences. Wiley, New York, 2010.
17. P. I. Frazier and W. B. Powell. The knowledge-gradient stopping rule for ranking and selection.

In S. J. Mason, R. R. Hill, L. Möench, O. Rose, T. Jefferson, and J. W. Fowler, editors,
Proceedings of the 2008 Winter Simulation Conference, pages 305–312. IEEE, Piscataway,
NJ, 2008.

18. P. I. Frazier, W. B. Powell, and S. Daynik. A knowledge-gradient policy for sequential
information collection. SIAM Journal on Control and Optimization, 47:2410–2439, 2008.

19. P. I. Frazier, W. B. Powell, and S. Daynik. The knowledge gradient policy for correlated normal
beliefs. INFORMS Journal on Computing, 21:599–613, 2009.

20. M. C. Fu and X. Jin. On the convergence rate of ordinal comparison of random variables. IEEE
Transactions on Automatic Control, 46: 1950–1954, 2001.

21. D. Goldsman and B. L. Nelson. Comparing systems via simulation. In J. Banks, editor,
Handbook of Simulation. John Wiley, New York, 1998.

22. S. S. Gupta. On a Decision Rule for a Problem in Ranking Means. PhD thesis, University of
North Carolina, Chapel Hill, NC, 1956.

23. S. S. Gupta. On some multiple decision (ranking and selection) rules. Technometrics,
7:225–245, 1965.

24. W. J. Gutjahr, A. Hellmayr, and G. Ch. Pflug. Optimal stochastic single-machine-tardiness
scheduling by stochastic branch-and-bound. European Journal of Operational Research,
117:396–413, 1999.

25. Y.-C. Ho, R. Sreenivas and P. Vakili. Ordinal optimization of discrete event dynamic systems.
Journal of Discrete Event Dynamic Systems, 2:61–88, 1992.

26. Y.-C. Ho, Q.-C. Zhao and Q.-S. Jia. Ordinal Optimization: Soft Optimization for Hard
Problems. Springer, New York, 2007.

27. L. J. Hong and B. L. Nelson. The tradeoff between sampling and switching: New sequential
procedures for indifference-zone selection. IIE Transactions, 37:623–634, 2005.

28. L. J. Hong and B. L. Nelson. Discrete optimization via simulation using COMPASS.
Operations Research, 54:115–129, 2006.

29. L. J. Hong and B. L. Nelson. A framework for locally convergent random search algorithms
for discrete optimization via simulation. ACM Transactions on Modeling and Computer
Simulation, 17:19/1–19/22, 2007.

2 Discrete Optimization via Simulation 43

30. L. J. Hong and B. L. Nelson. Selecting the best system when systems are revealed sequentially.
IIE Transactions, 39:723–734, 2007.

31. L. J. Hong and B. L. Nelson. A brief introduction to optimization via simulation. In M. D.
Rossetti, R. R. Hill, B. Johansson, A. Dunkin and R. G. Ingalls, editors, Proceedings of the
2009 Winter Simulation Conference, pages 75–85. IEEE, Piscataway, NJ, 2009.

32. L. J. Hong, B. L. Nelson and J. Xu. Speeding up COMPASS for high-dimensional discrete
optimization via simulation. Operations Research Letters, 38:550–555, 2010.

33. J. Jin. Retrospective Optimization of Stochastic Systems. PhD thesis, Purdue University, West
Lafayette, IN, 1998.

34. J. Hu, M. C. Fu, and S. I. Marcus. Stochastic optimization using model reference adaptive
search. In M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, editors, Proceedings
of the 2005 Winter Simulation Conference, pages 811–818. IEEE, Piscataway, NJ, 2005.

35. J. Hu, M. C. Fu, and S. I. Marcus. A model reference adaptive search method for global
optimization. Operations Research, 55:549–568, 2007.

36. J. Hu, M. C. Fu, and S. I. Marcus. A model reference adapative search method for stochastic
global optimization. Communications in Information and Systems, 8:245–276, 2008.

37. J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function.
Annals of Mathematical Statistics, 23:462–466, 1952.

38. S.-H. Kim. Comparison with a standard via fully sequential procedure. ACM Transactions on
Modeling and Computer Simulation, 15:1–20, 2005.

39. S.-H. Kim and B. L. Nelson. A fully sequential procedure for indifference-zone selection in
simulation. ACM Transactions on Modeling and Computer Simulation, 11:251–273, 2001.

40. S.-H. Kim and B. L. Nelson. Selecting the best system. In S. G. Henderson and B. L. Nelson,
editors, Handbooks in Operations Research and Management Science: Simulation. Elsevier,
New York, 2006.

41. S.-H. Kim and B. L. Nelson. On the asymptotic validity of fully sequential selection procedures
for steady-state simulation. Operations Research, 54:475–488, 2006.

42. L.-H. Lee, T.-W. E. Lau, and Y.-C. Ho. Explanation of goal softening in ordinal optimization.
IEEE Transactions on Automatic Control, 44:94–99, 1999.

43. E. Lim. Stochastic approximation over multidimensional discrete sets with applications
to inventory systems and admission control of queueing networks. ACM Transactions on
Modeling and Computer Simulation, 22:19:1–19:23, 2012.

44. J. Luo, L. J. Hong, B. L. Nelson, and Y. Wu. Fully sequential procedures for large-
scale ranking-and-selection problems in parallel computing environments. Working paper,
Department of Industrial Engineering and Logistics Management, Hong Kong University of
Science and Technology, 2013.

45. S. Mahajan and G. Van Ryzin. Stocking retail assortments under dynamic consumer substitu-
tion. Operations Research, 49:334–351, 2001.

46. H. Mühlenbein and G. Paaß. From recombination of genes to the estimation of distributions
I. Binary parameters. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors,
Parallel Problem Solving from Nature – PPSN IV, pages 178–197. Springer Verlag, Berlin,
Germany, 1996.

47. K. Murota. Note on multimodularity and L-convexity. Mathematics of Operations Research,
30:658–661, 2005.

48. B. L. Nelson. Optimization via simulation over discrete decision variables. In J. J. Hasenbein,
editor, TutORials in Operations Research, 7:193–207. INFORMS, Hanover, MD, 2010.

49. B. L. Nelson, J. Swann, D. Goldsman, and W.-M. Song. Simple procedures for selecting
the best simulated system when the number of alternatives is large. Operations Research,
49:950–963, 2001.

50. J. Nocedal and S. Wright. Numerical Optimization. Springer, New York, 2nd edition, 2006.
51. V. I. Norkin, Y. M. Ermoliev, and A. Ruszczyński. On optimal allocation of indivisibles under

uncertainty. Operations Research, 46:381–395, 1998.
52. V. I. Norkin, G. Ch. Pflug and A. Ruszczyński. A branch and bound method for stochastic

global optimization. Mathematical Programming, 83:425–450, 1998.

44 L.J. Hong et al.

53. T. Osogami. Finding probably best systems quickly via simulations. ACM Transactions
onModeling and Computer Simulation, 19:12:1–12:18, 2009.

54. E. Paulson. A sequential procedure for selecting the population with the largest mean from k
normal populations. Annals of Mathematical Statistics, 35:174–180, 1964.

55. R. Pasupathy. Retrospective-Approximation Algorithms for the Multidimensional Stochastic
Rooting-Finding Problem. PhD thesis, Purdue University, West Lafayette, IN, 2005.

56. R. Pasupathy and B. W. Schmeiser. Retrospective-approximation algorithms for the multidi-
mensional stochastic rooting-finding problem. ACM Transactions on Modeling and Computer
Simulation, 19:2:1–2:36, 2009.

57. R. Pasupathy. On choosing parameters in retrospective-approximation algorithms for stochastic
rooting-finding and simulation optimization. Operations Research, 58:889–901, 2010.

58. J. Pichitlamken and B. L. Nelson. A combined procedure for optimization via simulation. ACM
Transactions on Modeling and Computer Simulation, 13:155–179, 2003.

59. J. Pichitlamken, B. L. Nelson, and L. J. Hong. A sequential procedure for neighbor-
hood selection-of-the-best in optimization via simulation. European Journal of Operational
Research, 173:283–298, 2006.

60. A. A. Prudius and S. Andradóttir. Balanced explorative and exploitative search with estimation
for simulation optimization. INFORMS Journal on Computing, 21:193–208, 2009.

61. H. Robbins and S. Monro. A stochastic approximation method. Annals of Mathematical
Statistics, 22:400–407, 1951.

62. R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified Approach to
Combinatorial Optimization, Monte Carlo Simulation, and Machine Learning. Springer,
New York, 2004.

63. L. Shi and S. Ólafsson. Nested partitions method for stochastic optimization. Methodology and
Computing in Applied Probability, 2:271–291, 2000.

64. L. Shi and S. Ólafsson. Nested Partitions Method, Theory and Applications. Springer,
New York, 2009.

65. L. Sun, L. J. Hong, and Z. Hu. Optimization via simulation using Gaussian process-based
search. In S. Jain, R. R. Creasey, J. Himmelspach, K. P. White, and M. Fu, editors, Proceedings
of the 2011 Winter Simulation Conference, pages 4139–4150. IEEE, Piscataway, NJ, 2011.

66. H. Wang. Retrospective Optimization of Discrete Stochastic Systems Using Simplicial Linear
Interpolation. PhD thesis, Purdue University, West Lafayette, IN, 2009.

67. H. Wang, R. Pasupathy, and B. W. Schmeiser. Integer-ordered simulation optimization
using R-SPLINE: Retrospective search with piecewise-linear interpolation and neighborhood
enumeration. ACM Transactions on Modeling and Computer Simulation, 23:17:1–17:24, 2013.

68. X. Xie. Dynamics and convergence rate of ordinal comparison of stochastic discrete-event
systems. IEEE Transactions on Automatic Control, 42: 586–590, 1998.

69. J. Xu, B. L. Nelson, and L. J. Hong. Industrial Strength COMPASS: A comprehensive
algorithm and software for optimization via simulation. ACM Transactions on Modeling and
Computer Simulation, 20:1–29, 2010.

70. J. Xu, B. L. Nelson, and L. J. Hong. An adaptive hyperbox algorithm for high-dimensional
discrete optimization via simulation problems. INFORMS Journal on Computing, 25:133–146,
2013.

71. W. L. Xu and B. L. Nelson. Empirical stochastic branch-and-bound for optimization via
simulation. IIE Transactions, 45:685–698, 2013.

72. R. R. Wilcox. A table for Rinott’s selection procedure. Journal of Quality Technology,
16:97–100, 1984.

73. D. Yan and H. Mukai. Stochastic discrete optimization. SIAM Journal of Control and
Optimization, 30:594–612, 1992.

	2 Discrete Optimization via Simulation
	2.1 Introduction
	2.1.1 Designing a Highly Reliable System
	2.1.2 Flow-Line Throughput
	2.1.3 Inventory Management with Dynamic Customer Substitution
	2.1.4 Themes

	2.2 Optimality Conditions
	2.3 Ranking and Selection
	2.4 Ordinal Optimization
	2.5 Globally Convergent Random Search Algorithms
	2.6 Locally Convergent Random Search Algorithms
	2.7 Algorithm Enhancements
	2.8 Using Commercial Solvers
	2.8.1 Preliminary Experiment to Control Sampling Variability
	2.8.2 Restarting the Optimization
	2.8.3 Statistical Clean Up After Search

	References

