
Chapter 13
Solving Markov Decision Processes via
Simulation

Abhijit Gosavi

Abstract This chapter presents an overview of simulation-based techniques useful
for solving Markov decision processes (MDPs). MDPs model problems of sequen-
tial decision-making under uncertainty, in which decisions made in each state
collectively affect the trajectory of the states visited by the system over a time hori-
zon of interest. Traditionally, MDPs have been solved via dynamic programming
(DP), which requires the transition probability model that is difficult to derive in
many realistic settings. The use of simulation for solving MDPs allows us to bypass
the transition probability model and solve large-scale MDPs considered intractable
to solve by traditional DP. The simulation-based methodology for solving MDPs,
which like DP is also rooted in the Bellman equations, goes by names such as
reinforcement learning, neuro-DP, and approximate or adaptive DP. We begin with a
description of algorithms for infinite-horizon discounted reward MDPs, followed by
the same for infinite-horizon average reward MDPs. Then we present a discussion
on finite-horizon MDPs. For each problem considered, we present a step-by-step
description of a selected group of algorithms. In making this selection, we have
attempted to blend the old and the classical with more recent developments. Finally,
after touching upon extensions and convergence theory, we conclude with a brief
summary of some applications and directions for future research.

13.1 Introduction

Reinforcement learning (RL) and approximate dynamic programming (ADP),
also called adaptive DP by some authors, are closely related research fields that
have been successfully applied to many practical problems addressing sequential
decision-making under uncertainty. The central ideas in these fields are closely tied
to solving control problems in discrete-event dynamic systems where the underlying
problem revolves around finding the optimal control (action) in each state visited
by the system. These problems were initially studied by Richard Bellman [10],
who also formulated what is now known as the Bellman equation. Much of the
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methodology in RL and ADP is tied to solving some version of this equation.
These problems are often called Markov decision processes/problems (MDPs).
The solution methods invented by Bellman [11] and Howard [45] are called value
iteration and policy iteration, respectively; collectively, they are called dynamic
programming (DP) methods.

When the number of states and/or the number of actions is very large, DP suffers
from the curse of dimensionality, i.e., it becomes difficult to apply DP in an exact
sense. This is because DP requires the transition probability matrices, which can
become huge for large-scale problems, too large to be stored or manipulated. It is
on these problems that simulation can play a major role in solution methods. The
key role that simulation plays is in avoiding the transition probabilities. It is well-
known that for complex systems, producing simulators is significantly easier than
developing exact mathematical models, i.e., the transition probabilities.

RL algorithms can run in simulators and have the potential to break the curse of
dimensionality to produce optimal or near-optimal solutions. In particular, we will
focus on methods in which the number of actions is finite and relatively small, e.g.,
a dozen. The algorithms will be based on the Bellman equation but will not need the
transition probability model.

A significant body of literature in the area of RL and ADP appears to be divided
into two branches. The first seeks to use algorithms on a real-time basis within
the system, i.e., while the system is running (on-line). This branch is more closely
associated with the name RL and is popular within the computer science and
artificial intelligence (robotics) community. The other branch works primarily in an
off-line sense and seeks to solve large-scale MDPs where the transition probabilities
can be estimated but a naïve application of DP does not work. This branch is
more closely associated with the name ADP and finds applications in electrical,
industrial, and mechanical engineering. Another somewhat synthetic approach to
study the differences between these two branches is to consider the function used:
RL algorithms for the most part work with the Q-function defined by Eq. (13.1)
or (13.2), whereas most ADP algorithms work with the value function of DP (e.g.,
Definition 13.1).

In the simulation community, one is usually interested in the algorithms belong-
ing to the RL variety, because the Q-function can help avoid the transition
probabilities. Note, however, that there are important exceptions to this, e.g.,
evolutionary policy iteration algorithm [25] and many model-building algorithms
(see e.g., [84]). Regardless of whether the Q-function or the value function is used,
in the simulation community, the interest lies in problems where the transition
probability model is not easy to generate. As such, in this chapter, we limit ourselves
to discussing algorithms that can bypass the transition probability model. As stated
above, the algorithms we discuss will be limited to finite action spaces. It is also
important to note that we will employ the RL algorithm in an off-line sense within
the simulator. Hence, one assumes that the distributions of the random variables that
form inputs to the system are available.
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Some of the earlier books that cover the topics of RL and simulation-based
algorithms include [12, 24, 30, 79, 82]. Numerous books have also appeared that
primarily focus on the ADP aspects, and some of these include [66, 74]. The latest
edition of the second volume of [15] has an entire chapter dedicated to ADP (and
also to RL). See also [21] for policy search via simulation optimization. RL has also
been surveyed in journal articles [35, 49, 52].

In writing this chapter, we have had to make some conscious choices regarding
the selection of algorithms from the vast array now available in the literature. We
have sought to blend our discussion of classical algorithms based on Q-functions
and value iteration with that of the more recent developments in the area of policy
iteration. We study the three main classes of objective functions commonly studied
in this area: the infinite-horizon discounted reward, the infinite-horizon average
reward, and the finite-horizon total reward. A highlight of our presentation is a
step-by-step description of combining function approximators with algorithms of
the Q-Learning type—an important topic from the perspective of attacking large-
scale problems within simulators. Another highlight is the discussion on the finite
horizon and average reward problems that are of significant interest in the operations
research community.

The rest of this chapter is organized as follows. In Sect. 13.2, we present some
background material including notation. Algorithms related to discounted reward,
average reward, and total reward (finite horizon) are presented in Sects. 13.3, 13.4,
and 13.5, respectively. Some simple numerical results are presented in Sect. 13.6.
Sects. 13.7 and 13.8 present short discussions on extensions and convergence theory,
respectively. Sect. 13.9 concludes this chapter with a discussion of applications and
topics for future research and open problems.

13.2 Background

In this section, we present some background for simulation-based optimization of
MDPs. In an MDP, the system transitions from one state to another in a dynamic
fashion. The decision-maker is required to select an action from a set of actions
(where the set contains at least two actions) in a subset of states. Those states in
which actions have to be chosen are called decision-making states. Henceforth,
by states, we will mean decision-making states, since for analyzing MDPs, it is
sufficient to observe the transitions that occur from one decision-making state to
another. Thus, as a result of selecting an action, the system transitions to another
state (which can be the same state)—usually in a probabilistic manner. (In this
chapter, we will confine our discussion to those MDPs in which the transitions are
probabilistic, since they are more interesting in a simulation-based context.) The
probability of transitioning (moving/jumping) from one state to another under the
influence of an action is called the one-step transition probability, or simply the
transition probability. The transition probabilities are collectively referred to as the
transition probability model.
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During a transition from one state to another, the system receives a (one-step)
immediate reward, which is either zero, positive, or negative. Negative rewards can
be viewed as costs. The decision-maker’s goal is to choose actions in each state in a
fashion that optimizes the value of some performance metric of interest. The actions
chosen in the different states visited by the system are stored in a policy, and the
decision-maker is interested in the policy that optimizes the performance metric of
interest, so the solution to an MDP is an optimal policy. As stated above, our interest
in this chapter lies in simulation-based methods that can help determine the optimal
policy without generating the transition probabilities, and thereby solve complex
large-scale MDPs with finite action sets, considered intractable via traditional DP
methods.

The performance metric’s value generally depends on the actions chosen in each
state, the immediate rewards, the time horizon of interest and whether the time value
of money is considered. When the time value of money is taken into account in the
calculations, we have a discounted performance metric, while when it is ignored,
we have an undiscounted performance metric. The time value of money will be
discussed later in more detail. We now present some of the fundamental notation
needed in this chapter.

13.2.1 Notation and Assumptions

A deterministic policy is one in which the decision-maker selects a fixed (deter-
ministic) action in each decision-making state, in contrast to a stochastic policy
in which in each decision-making state, each action is chosen with some fixed
probability (such that the probability of selecting all actions sums to one for every
state). A stationary policy is one in which the action selected in a state does not
change with time. In general, we will be interested in finding stationary deterministic
policies, so henceforth when we refer to a policy, we mean a stationary deterministic
policy unless explicitly specified otherwise.

Let S denote the finite set of states visited by the system, A (i) the finite set of
actions permitted in state i, and μ(i) the action chosen in state i when policy μ is
pursued. We define A ≡ ∪i∈SA (i). Further let r(., ., .) : S ×A ×S → R denote
the immediate reward and p(., ., .) : S ×A ×S → [0,1] denote the associated
transition probability. Then the expected immediate reward earned in state i when
action a is chosen in it can be expressed as:

r̄(i,a) =
|S |
∑
j=1

p(i,a, j)r(i,a, j).

We will make the following two assumptions about the problems considered in
this chapter.
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• Both the state-space, S , and the action-space, A , are finite.
• The Markov chain of every policy is regular, i.e., the transition probability of the

Markov chain can be raised to some finite power such that all elements in the
resulting matrix become strictly positive [42].

13.2.2 Performance Metrics

We now define the three metrics of interest to us. The first metric is the expected
total discounted reward over an infinitely long time horizon. The discount factor is
a well-known mechanism used in MDP theory to capture the time value of money.
It is to be interpreted as follows. If one earns z dollars at a time τ time periods after
the current time, then the current value of those z dollars will be

z

(
1

1+κ

)τ
,

where κ is the rate of interest. We denote 1/(1 + κ) by γ . For the MDP, the
assumption is that transition from one state to another requires one time period,
i.e., τ = 1. Hence, the discount factor that will be used after one state transition will
be γ .

Definition 13.1. The expected total discounted reward of a policy μ starting at state
i in an MDP over an infinitely long time horizon is:

Vμ(i)≡ liminf
k→∞

Eμ

[
k

∑
s=1

γs−1r(xs,μ(xs),xs+1)

∣∣∣∣∣x1 = i

]
,

where γ is the (one-step) discount factor, Eμ denotes the expectation operator over
the trajectory induced by policy μ , and xs denotes the state occupied by the system
before the sth transition (jump) in the trajectory occurs.

In a discounted reward MDP, the goal is to maximize this performance metric for
all values of i ∈ S , i.e., it appears that there are multiple objective functions, but
fortunately, it can be shown that when all policies have regular Markov chains,
there exists a stationary, deterministic optimal policy that maximizes the value of
the above metric for all starting states simultaneously [15].

We now define the other popular performance metric for infinite time horizons:
the expected reward per transition over an infinitely long time horizon, commonly
known as the “average reward.” In this metric, the time value of money is ignored.

Definition 13.2. The average (expected) reward of a policy μ per transition in an
MDP, starting at state i over an infinitely long time horizon, is defined as:
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ρμ(i)≡ liminf
k→∞

1
k
Eμ

[
k

∑
s=1

r(xs,μ(xs),xs+1)|x1 = i

]
.

If the Markov chain of the policy is regular, the average reward does not depend on
the starting state, i.e., ρμ(i) = ρμ for all i ∈S . The goal thus becomes to maximize
the average reward.

The third performance metric of interest here is that of the expected total reward
over a finite time (i.e., number of stages) horizon, which is sought to be maximized.
It depends on the starting state in the problem, which is assumed to be known, and
is defined as follows:

Definition 13.3. The expected total reward over a finite horizon of T time periods
for a policy μ when the starting state is i is defined as:

φμ(i)≡ Eμ

[
T

∑
s=1

r(xs,μ(xs),xs+1)

∣∣∣∣∣x1 = i

]
,

where s is generally known as the stage, and the starting state i is fixed for the
problem.

13.2.3 Bellman Equations

The theory of DP is rooted in the famous Bellman equations, which were originally
presented in the form of the value functions (see [11]). For the simulation-based
context, it is the Q-function that is more useful, and hence we present the Bellman
equations in the Q-format. We present the first equation for the discounted reward
MDP.

Theorem 13.1. For a discounted reward MDP, there exists a function Q : S ×
A → R such that the following set of equations have a unique solution

Q(i,a) =
|S |
∑
j=1

p(i,a, j)

[
r(i,a, j)+ γ max

b∈A ( j)
Q( j,b)

]
∀(i,a) (13.1)

and the policy μ , defined by μ(i)∈ arg maxa∈A (i) Q(i,a) for all i ∈S , is an optimal
policy for the MDP.

The associated result for the average reward MDP is:

Theorem 13.2. For an average reward MDP, there exists a function Q : S ×
A → R and a scalar ρ∗ ∈R such that a solution exists for the following equations:
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Q(i,a) = ∑
j∈S

p(i,a, j)

[
r(i,a, j)+ max

b∈A ( j)
Q( j,b)−ρ∗

]
∀(i,a). (13.2)

Further ρ∗ equals the optimal average reward of the MDP, and the policy μ , defined
by μ(i) ∈ arg maxa∈A (i) Q(i,a) for all i ∈S , is an optimal policy for the MDP.

We note that Q(·, ·) is commonly called the Q-factor, Q-value, or the state-action
value in the literature. Finding the optimal values of these quantities holds the key
to solving the MDP.

For the finite-horizon problem, we need a somewhat enhanced style of notation
to account for the stage. In a finite-horizon problem, the state-action pair, (i,a), will
be replaced by the state-stage-action triple, (i,s,a), where s is the stage index and
takes values in the set T = {1,2, . . . ,T}. The notation for the immediate reward,
the transition probability, and the Q-function will need to account for this triple. In
such problems, we will assume that there is no decision-making to be performed
in stage T + 1 and that the Q-value in that stage, regardless of the state or action,
will be zero. The starting state, i.e., when s = 1, will be assumed to be known with
certainty in finite-horizon problems. The following is the Bellman equation for a
finite-horizon undiscounted problem.

Theorem 13.3. There exists a function Q : S ×T ×A → R such that a solution
exists for the following equations: For all i ∈S , all s ∈T , and all a ∈A (i,s):

Q(i,s,a) = ∑
j∈S

p(i,s,a, j,s+1)

[
r(i,s,a, j,s+1)+ max

b∈A ( j,s+1)
Q( j,s+1,b)

]
,

(13.3)

where Q( j,T +1,b) = 0 for all j ∈S and b∈A ( j,T +1). The policy μ , defined by
μ(i,s) ∈ arg maxa∈A (i,s) Q(i,s,a) for all i ∈S and all s ∈ T , is an optimal policy
for the MDP.

13.3 Discounted Reward MDPs

In this section, we present some of the key (simulation-based) RL algorithms
for solving discounted reward MDPs. We begin with the classical Q-Learning
algorithm, which is based on value iteration, along with a discussion on how it
can be combined with function approximation. This is followed by a popular,
but heuristic, algorithm called SARSA(λ ), based on the notion of the temporal
difference learning algorithm TD(λ ). Thereafter, we present two algorithms based
on policy iteration: one is based on the classical modified policy iteration approach
and the other based on the actor-critic algorithm. We conclude this section with a
relatively new algorithm that combines ideas of genetic algorithms within policy
iteration.
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13.3.1 Q-Learning

The idea of Q-Learning [88] is based on iteratively solving the Bellman equation
presented in Eq. (13.1) while avoiding the transition probabilities. We will first
present the intuition underlying the derivation of this algorithm and then present
the steps more formally.

Clearly, Eq. (13.1) contains the transition probabilities that we seek to avoid
in simulators. The main idea underlying Q-Learning is to use a Robbins–Monro
stochastic approximation algorithm [70] to estimate the mean via samples without
directly summing the samples. If xk denotes the kth sample and x̂k denotes the
estimate after k samples, then the update is as follows:

x̂k+1 ← (1−αk)x̂k +αkxk,

where αk denotes the step size in the kth iteration, which is a small positive scalar
less than 1 that must satisfy the following conditions:

∞

∑
k=1

αk = ∞;
∞

∑
k=1

(
αk

)2
< ∞.

Examples of step-size rules that satisfy the conditions above include

αk =
A

B+ k
(B ≥ A ≥ 0), αk =

logk
k

(k ≥ 2).

In practice, finding the right step-size often requires some experimentation; see
Chaps. 6 and 7 for further discussion.

To apply the Robbins–Monro update for estimating the Q-factors in Eq. (13.1), it
is necessary to express the right hand side of the Bellman equation as an expectation
as follows:

Q(i,a) = Ei,a

[
r(i,a, j)+ γ max

b∈A ( j)
Q( j,b)

]
∀(i,a),

where the expectation operator Ei,a[·] is over the random state transitions that can
occur from state i under the influence of action a. Then the Q-Learning algorithm is
as follows:

Qk+1(i,a) = (1−αk)Qk(i,a)+αk
[

r(i,a, j)+ γ max
b∈A ( j)

Qk( j,b)

]
, (13.4)

where the terms in the square brackets represent the sample. Note that (13.4) does
not contain the transition probabilities. In a simulator, where every action is selected
in each state with the same probability, it can be shown that as k tends to infinity, the
algorithm converges to the unique solution of Eq. (13.1), i.e., the Bellman equation,
thereby solving the problem.
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The above presentation ignores subtleties that we now note. First, there are
multiple Q-factors being estimated simultaneously here. Furthermore, in any given
update, the terms within the square brackets potentially contain Q-factors of other
state-action pairs. In general, the Q-factors of the other state-action pairs will
not have been updated with the same frequency, which is true of synchronous
updating used in DP. Updating of this nature is called asynchronous updating, and
the differences in the frequencies arise from the fact that the trajectory pursued
in the simulator is random. In the simulation-based setting, the haphazard order
of updating can rarely be avoided, but in practice, it is necessary to maintain
rough equality in the frequencies with which state-action pairs are visited. The
convergence analysis of the algorithm must take all of this into account.

Not surprisingly, all convergence proofs require that all state-action pairs be
visited infinitely often in the limit. Also, since we are dealing with simulation
noise, all convergence proofs ensure convergence only with probability (w.p.) 1.
Fortunately, a number of proofs for convergence have been worked out under some
rather mild conditions [12, 16] that can be ensured within simulators for the case
in which the Q-factor for each state-action pair is stored separately—a scenario
generally referred to as the “look-up table” case. When the state-action space is very
large, e.g., of the order of hundreds of thousands or millions, it is impossible to store
each Q-factor separately, and one must then use a function-approximation scheme.
When function approximation schemes are used, showing convergence becomes
significantly more challenging, although some progress has been made even in
this direction recently (see the chapter on ADP in [15]). The general Q-Learning
algorithm is presented below.

Basic Q-Learning Algorithm

Step 0. Input kmax= total number of iterations. Initialize iteration count k = 0 and
all Q-values to 0, i.e., for all (l,u), where l ∈S and u ∈A (l), set Qk(l,u) = 0.
Start system simulation at any arbitrary state.

Step 1. For current state i, select action a w.p. 1/|A (i)|, and simulate to reach next
state j, receiving reward r(i,a, j).

Step 2. Update the Q-value of (i,a) via Eq. (13.4). Increment k by 1.
If k < kmax, then set i ← j and return to Step 1; otherwise, go to Step 3.

Step 3. For each l ∈S , select d(l) ∈ arg maxb∈A (l) Qk(l,b).
The policy (solution) generated by the algorithm is d.
Stop.

Alternative action–selection strategies for Step 1 will be discussed later.
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13.3.2 Q-Learning with Function Approximation

As stated above, function approximation is necessary when the state-action space
is large. The function approximation approach hinges on using what is known as a
basis-function representation of the Q-function, along with the steepest-descent rule
over the Bellman error, which is essentially the sum of squared errors in regression
theory applied to the Bellman equation. We now present the key ideas. To simply
exposition, we drop the superscript k in this subsection.

Basis Functions

The Q-factor can be represented via basis-functions and their weights using a linear
architecture as follows:

Qw(i,a) =
n

∑
m=1

w(m,a)φ(m,a), (13.5)

where {φ(·, ·)} denote the basis functions and {w(·, ·)} the weight functions, and
n should be much smaller than the size of the state space. The actual set of basis
functions is problem dependent. We now provide a simple example where the state
has a single dimension.

Example with a Linear Architecture

Consider an MDP with a single-dimensional state, i, and two actions. Let n = 2,
where for both values of a, the analyst chooses to use the following architecture:

φ(1,a) = 1; φ(2,a) = i.

Thus, Qw(i,1) = w(1,1)+w(2,1)i; Qw(i,2) = w(1,2)+w(2,2)i.

Bellman Error

The following model is used to represent the Q-factor:

Q(i,a) =
|S |
∑
j=1

p(i,a, j)

[
r(i,a, j)+ γ max

b∈A ( j)
Qw( j,b)

]
∀(i,a),

where Qw(·, ·) denotes an estimate of the true Q-factor. The Bellman error, BE, is
then defined as follows:
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BE ≡ 1
2 ∑

i∈S ,a∈A (i)

[Q(i,a)−Qw(i,a)]
2 .

Thus, the Bellman error denotes one-half times the sum of the squared difference
between the hypothesized model of the Q-factor and that given by the function
approximator. This is the classical sum of squared errors of regression and the
coefficient of 1/2 is popular in the machine learning community because it
simplifies the resulting algorithm. The following expression, the detailed derivation
of which can be found in [12], is commonly used to minimize the Bellman error (the
first use was seen in [90] and now extensively used in the RL literature):

∂BE
∂w(m,a)

=−∂Qw(i,a)
∂w(m,a)

[
r(i,a, j)+ γ max

b∈A ( j)
Qw( j,b)−Qw(i,a)

]
for all (m,a).

(13.6)

The above is generally combined with the following steepest-descent algorithm:

w(m,a)← w(m,a)−α
∂BE

∂w(m,a)
for all (m,a), (13.7)

where α is the step size. For using the above, we must determine the expressions
for ∂Qw(i,a)

∂w(m,a) , which can be done easily from the architecture defined in Eq. (13.5). In
general, it is easy to see from Eq. (13.5) that for linear architectures:

∂Qw(i,a)
∂w(m,a)

= φ(m,a).

Then, for the example MDP considered above, we obtain the following definitions
for the partial derivatives:

∂Qw(i,a)
∂w(1,a)

= 1;
∂Qw(i,a)
∂w(2,a)

= i. (13.8)

We now describe the algorithm using the above example as a specific case. We
note the basis-function representation is conceptual; we do not store Qw(i,1) or
Qw(i,2) in the computer’s memory. Rather, only the following four scalars are
stored: w(1,1), w(2,1), w(1,2), and w(2,2).

Note that in the above, α uses the step-size rules discussed previously. Further-
more, note that the rule to update weights (i.e., Eqs. (13.9) and (13.10)) is derived
from Eqs. (13.6) to (13.8). The above is a popular algorithm, and can be extended
easily (using the above equations) to more complex basis functions that can express
a non-linear architecture, e.g.,

Qw(i,1)=w(1,1)+w(2,1)i+w(3,1)(i)2;Qw(i,2)=w(1,2)+w(2,2)i+w(3,2)(i)2.
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Algorithm for the 2-Action Linear Architecture Example

Step 0. Input kmax= total number of iterations. Initialize iteration count k = 0 and
the weights for action 1, i.e., w(1,1) and w(2,1), to small random numbers,
and set the corresponding weights for action 2 to the same values. Start system
simulation at any arbitrary state.

Step 1. For current state i, select action a w.p. 1/|A (i)|, and simulate to reach next
state j, receiving reward r(i,a, j).

Step 2. Compute the following:

Qold ← w(1,a)+w(2,a)i.

Then, set Qnext ← max{Qnext(1),Qnext(2)} , where

Qnext(1) = w(1,1)+w(2,1) j; Qnext(2) = w(1,2)+w(2,2) j.

Then, update the two weights as follows:

w(1,a)← w(1,a)+α (r(i,a, j)+ γQnext −Qold)1; (13.9)

w(2,a)← w(2,a)+α (r(i,a, j)+ γQnext −Qold) i. (13.10)

Increment k by 1. If k < kmax, then set i←j, go to Step 1; otherwise, go to Step 3.
Step 3. The policy learned, μ , is virtually stored within the weights. To determine

the action prescribed in a state i for any i ∈S , compute the following:

μ(i) ∈ arg max
a∈A (i)

[w(1,a)+w(2,a)i] .

Before concluding this subsection, we note that the steepest-descent technique,
coupled with Bellman error (discussed above), closely resembles the approach
adopted in the RL community that uses neurons (also called linear neural networks),
via the Widrow–Hoff (adenaline) rule [58, 93], for approximating the Q-function.

13.3.3 SARSA(λ )

We now present a heuristic algorithm which is known to have strong empirical
performance. It is based on the concept of TD(λ ), popular in RL [80], and the
SARSA algorithm [71]. We first explain the concept of TD(λ ) and follow that by
SARSA.

The notion of TD(λ ) is based on the idea that the immediate reward (also called
“feedback” in the machine learning community), computed within the simulator
after a state transition occurs, can be used to update all state-action pairs in
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the system. Note that in Q-Learning, only the Q-factor of the most recently visited
state-action pair is updated when the immediate reward is obtained from a state
transition. This is called a single-step update. In contrast, in TD(λ ), the impact of
the update for any state-action pair is proportional to how recently it was visited,
something that is measured with the “recency traces.”

We present this idea somewhat more formally now. If W k(i,a) denotes the iterate
in the kth iteration for the state-action pair, (i,a), the Robbins–Monro update is:

W k+1(i,a)←W k(i,a)+αk [feedback] , (13.11)

where the feedback really depends on the objective function at hand. In the TD(λ )
update, where λ ∈ [0,1], one simulates an infinitely long trajectory, and the feedback
takes on the following form:

feedback = Rk +λRk+1 +λ 2Rk+2 + · · · , (13.12)

where Rk is a term that depends on the algorithm and the iteration index k. Note
that in Q-Learning, λ = 0, and Rk = r(i,a, j)+ γ maxb∈A ( j) Q( j,b)−Q(i,a). When
λ > 0 (but less than 1), we have a multi-step update, also called a TD(λ ) update.
In such an update, all states in the system are updated after every state transition in
the simulator, and the feedback from multiple state transitions is used in updating
all (or as we will see later, all but one) states. In the algorithm that follows, we will
use such an updating mechanism.

Within the simulator, the SARSA algorithm uses a policy which is initially fully
stochastic but gradually becomes greedy with respect to the Q-factors. This is also
called an ε-greedy form of action selection (or policy). Furthermore, in SARSA, the
feedback contains the Q-factor of the next state-action pair visited in the simulator;
this is different than in Q-Learning, where the feedback contains the maximum
Q-factor of the next state.

Formally, an ε-greedy form of action selection can be described as follows. In a
state i, one selects the greedy action

arg max
u∈A (i)

Q(i,u)

w.p. Pk and any one of the remaining actions w.p.

1−Pk

|A (i)|−1
.

Furthermore, the probability of selecting non-greedy actions is gradually diminished
to zero. A potential rule for the probability that can achieve this is: Pk = 1−B/k,
where for instance B = 0.5.
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SARSA (λ ) Algorithm

Step 0. Input kmax= total number of iterations. Initialize iteration count k = 0 and
all the Q-values, Q(l,u) for all l ∈S and u ∈A (l), to arbitrary values. Set the
recency trace, e(l,u), to 0 for all l ∈S and u ∈A (l). Start system simulation at
any arbitrary state.

Step 1. For current state i, select action a ∈ A (i) via an ε-greedy form of action
selection. Simulate action a, and let the next state be j, with r(i,a, j) being the
immediate reward. Select an action b ∈ A ( j) via the ε-greedy form of action
selection. Then, compute the feedback, δ , and update e(i,a), the recency trace
for (i,a), as follows:

δ ← r(i,a, j)+ γQ( j,b)−Q(i,a);

e(i,a)← e(i,a)+1. (13.13)

Step 2. Update Q(l,u) all l ∈S and u ∈A (l) using

Q(l,u)← Q(l,u)+αδe(l,u). (13.14)

Then, update the recency traces for all l ∈S and u ∈A (l) using

e(l,u)← λγe(l,u).

Increment k by 1. If k < kmax, then set i←j, go to Step 1; otherwise, go to Step 3.
Step 3. For each l ∈ S , select d(l) ∈ arg maxb∈A (l) Q(l,b). The policy (solution)

generated by the algorithm is d. Stop.

Original Version of SARSA

SARSA(0), which can be interpreted as a special case of SARSA(λ ) with λ = 0,
was in fact the original version of SARSA [71]. It uses one-step updates, and hence
no eligibility traces are needed in it. Furthermore, it can be shown to converge to the
optimal policy under some mild conditions on how the ε-greedy action selection is
performed (see [75] for details).

Steps in SARSA are similar to those for SARSA(λ ) above with the following
differences: No eligibility traces are required, and in Step 2, only the Q-factor of the
current state-action pair, (i,a), is updated as shown below:

Q(i,a)← Q(i,a)+αδ .
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The multi-step updating of TD(λ ), used in SARSA(λ ), can speed up the updating
in the sense that fewer state-transitions may be necessary in the simulator for
convergence. But it also has some drawbacks: First, after each transition, all
state-action pairs have to be updated, which is computationally intensive (unlike
single-step updating in which only one state-action pair is updated after one state-
transition). Secondly, and more importantly, SARSA (λ ) requires the storage of
the recency traces, which can be challenging via function approximation. On the
other hand, SARSA, which does not require these traces, can be handily combined
with function approximators, via the Bellman error approach (discussed in the
previous section). Thus, overall, the usefulness of employing multi-step updating
in simulators has not been resolved comprehensively in the literature and remains
an open issue for future study.

Finite Trajectories

A version of SARSA (λ ) that often performs better in practice uses finite trajecto-
ries. In such a version, the trajectory for any state is allowed to end (or is truncated)
when that state is revisited. This concept has been discussed extensively in [76]
in the context of the “replacing traces.” In such a finite trajectory algorithm, the
updating of the traces in the steps above is performed as follows: Eq. (13.13) is
replaced by

e(i,a) = 1 and for all u ∈A (i)\{a}, e(i,u) = 0;

in all other respects, the algorithm is identical to that described above.
The above mechanism for updating traces ensures that when a state is revisited,

the feedback prior to that visit is discarded when that particular state is to be updated
in the future. Essentially, the intuition underlying this is that the effect of an action
in a state should only be measured by the impact the action produces in terms of the
cumulative rewards generated by it, and this impact should terminated when that
state is revisited, because a new (different) action will be selected when the state is
revisited. Updating of this nature has been used widely in artificial intelligence; see
e.g., [91]. This sort of updating can be tied to the original idea of TD(λ ), defined in
Eq. (13.12), by noting that the trajectory is now a finite one that ends when the state
concerned is revisited.

The notion of TD(λ ) has been discussed in the context of the value function,
but not the Q-factors, in much of the literature [12, 79]. In the simulation-based
setting, however, one is interested in the Q-factors, and hence SARSA(λ ) holds
more appeal to the simulation community. In the next subsection, we will discuss
another application of TD(0)—also in the context of Q-factors.
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13.3.4 Approximate Policy Iteration

We now present an algorithm based on ideas underlying policy iteration—a well-
known DP technique that is based on selecting a policy, evaluating its value function
(also called policy evaluation), and then moving on to a better policy. An algorithm
called modified policy iteration [86] uses an iterative approach, rooted in value
iteration, to evaluate the value function of a given policy. The classical form of
policy iteration on the other hand performs the policy evaluation in one step by
solving the Bellman equation for the given policy, which is also called the Poisson
equation. This step requires the transition probabilities that we seek to avoid here.
Modified policy iteration, however, is more relevant in the simulation-based context,
since one can invoke the Q-factor version of the Poisson equation, and then use
a Q-Learning-like approach to solve the Poisson equation, thereby avoiding the
transition probabilities.

In this section, we present a Q-factor version of the modified policy iteration
algorithm that can be used within a simulator. Algorithms belonging to this family
have also been called Q-P-Learning [30], originally in the average reward context
[31]. The algorithm we present is closely related to approximate policy iteration
(API), which is based on the value function of DP, rather than Q-factors. API has
been discussed extensively in [12]. Unfortunately, API based on the value function
cannot be used directly when the transition probability model is not available, which
is the case of interest here. When the transition probability model is available, it is
unclear why one needs a simulator, since efficient methods for DP are available in
the literature. Hence, we restrict our discussion to the Q-factor version here which
can be implemented within simulators, bypassing the transition probability model.

The central idea is to start with any randomly selected policy and evaluate
its Q-factors via the Poisson equation. In the algorithm, the given policy, whose
Q-factors that are being evaluated, will be stored in the form of the P-factors (a
name used to distinguish them from the Q-factors that are simultaneously being
estimated within the simulator). A clear separation of the two types of Q-factors
allows one to perform function approximation. The Q-factor version of the Poisson
equation (or the Bellman equation for a given policy) for policy μ is:

Q(i,a) =
|S |
∑
j=1

p(i,a, j) [r(i,a, j)+ γQ( j,μ( j))] ∀(i,a).

Thus, when a given policy, μ , is available, the algorithm will seek to solve the above
equation via a form of Q-Learning. As discussed in the context of Q-Learning, one
can use the Robbins–Monro algorithm in a simulator to solve this equation without
any need for the transition probabilities. When the Q-factors are evaluated, i.e., the
above equation is solved, a new policy is generated via the policy improvement step
[15]. We now present a step-by-step description of the Q-factor version of API.
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Approximate Policy Iteration (API) Algorithm Using Q-Factors

Step 0. Input kmax= number of iterations per policy evaluation and Emax = total
number of policy evaluations, α ∈ (0,1). Initialize policy evaluations count E = 0
and all the P-values, P(l,u) for all l ∈S and u ∈A (l), to arbitrary values.

Step 1 (Policy Evaluation). Start fresh simulation at any initial state. Initialize all
the Q-values, Q(l,u), to 0, and k, the number of iterations within a policy
evaluation, to 0.

Step 1a. For current state i, select action a w.p. 1/|A (i)|, and simulate to reach
next state j, receiving reward r(i,a, j).

Step 1b. Update Q(i,a) via

Q(i,a)← (1−α)Q(i,a)+α

[
r(i,a, j)+ γQ

(
j,arg max

b∈A ( j)
P( j,b)

)]
. (13.15)

Step 1c. Set k ← k+1. If k < kmax, set i ← j and go to Step 1a; else go to Step 2.
Step 2 (Policy Improvement). Set for all l ∈S and all u ∈A (l),

P(l,u)← Q(l,u); E ← E +1.

If E equals Emax, then go to Step 3; otherwise, go to Step 1.
Step 3. For each l ∈ S , select d(l) ∈ arg maxb∈A (l) Q(l,b). The policy (solution)

generated by the algorithm is d. Stop.

In practice, the algorithm exhibits robust behavior but may be time-consuming,
since a number of policies are generally evaluated before the algorithm converges,
and each policy evaluation requires numerous iterations. The convergence of this
algorithm, which is a special case of TD(0) adapted to Q-factors, can be shown along
the lines of the convergence of Q-Learning [39]. Furthermore, as in Q-Learning,
one can use function approximation; separate approximators would be needed for
the Q- and the P-function.

13.3.5 Actor-Critic Algorithm

We now present an API algorithm that is based on policy iteration but is much faster
because it performs the policy evaluation via only one iteration. The algorithm has
been called the actor-critic or the adaptive critic in the literature. This algorithm
has evolved over time with ideas from [8, 53, 89, 95]. We present the most modern
version, which has some proven convergence properties.

The algorithm stores the value function and a substitute (proxy) for the action–
selection probability. Here J(i) will denote the value function for state i, and H(i,a)
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for all i ∈ S and all a ∈ A (i) will denote the quantities (proxies) used to select
actions in the states visited. We present the step-by-step algorithm.

Approximate Policy Iteration (API) via Actor-Critic

Step 0. Input kmax= total number of iterations, α ∈ (0,1). Initialize iteration count
k = 0 and all J-values and H-values to 0, i.e., for all l, where l ∈S , and u∈A (l),
set J(l)← 0 and H(l,u)← 0. Initialize a scalar, H̄, to the largest possible value
such that exp(H̄) can be stored in the computer’s memory without overflow. Start
system simulation at any arbitrary state.

Step 1. For current state i, select action a w.p.

exp(H(i,a))

∑b∈A (i) exp(H(i,b))
,

and simulate to reach next state j, receiving reward r(i,a, j). The above style of
action selection is called the Gibbs-softmax method of action selection.

Step 2. (Critic update) Increment k by 1. Update J(i) via

J(i)← (1−α)J(i)+α [r(i,a, j)+ γJ( j)] .

Step 3. (Actor update) Update H(i,a) using a step size, β , that shares a special
relationship with α (discussed below):

H(i,a)← H(i,a)+β [r(i,a, j)+ γJ( j)− J(i)] .

If H(i,a)<−H̄, set H(i,a) =−H̄; if H(i,a)> H̄, set H(i,a) = H̄.
Step 4. If k < kmax, then set i ← j, go to Step 1; otherwise, go to Step 5.
Step 5. For each l ∈ S , select d(l) ∈ arg maxb∈A (l) H(l,b). The policy (solution)

generated by the algorithm is d. Stop.

The algorithm’s ε-convergence to optimality can be shown when the step-sizes
share the following relationship in addition to the usual conditions of stochastic
approximation and some other conditions [53]:

lim
k→∞

β k

αk = 0.

The above requires that β converge to 0 faster than α . It is not difficult to find step
sizes that satisfy these conditions. One example that satisfies all of these conditions
required in [53] is: αk = log(k)/k and β k = A/(B+k). Although the initial policy is
a stochastic policy, under ideal conditions of convergence, the algorithm converges
to a deterministic stationary optimal policy in the limit as k → ∞.
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Note that the update in Step 4 ensures that the H(·, ·) values are projected onto
the interval [−H̄, H̄]. This is necessary because in the simulator the values of one or
more elements of the matrix H(·, ·) become unbounded.

The algorithm can be combined with function approximation, using ideas
related to Bellman error, by using separate approximators for J(·) and H(·, ·). One
difficulty with this algorithm is that convergence to optimality depends on finding
a sufficiently large value for H̄. Note that the algorithm requires computation of
exp(H(i,a)). If the theoretical value for H̄ that leads to an optimal solution is so
large that the computer overflows in trying to compute exp(H̄), one obtains sub-
optimal policies.

13.3.6 Evolutionary Policy Iteration

We conclude this section with a relatively recent development that combines ideas
from genetic algorithms (GAs) and policy iteration. The GA is a widely used meta-
heuristic [44] based on the principles of genetic evolution. It is typically used in
discrete optimization when the number of solutions is large, but a mechanism is
available to estimate the objective function at each solution. The GA is a very
popular algorithm known to have the ability of generating good solutions when the
number of solutions is very large. The other attractive feature of GA is that it is
simple to code.

The algorithm of interest here is Evolutionary Policy Iteration (EPI) due to [25].
It uses simulation to evaluate the value function of each state for a given policy.
The overall scheme is similar to that used in a typical GA, and in what follows, we
present an informal explanation.

One starts with an arbitrarily selected population (collection) of n policies.
Thereafter, an elite policy is generated from the population. This is the best policy
in the current population; the elite policy and how it is generated is a special feature
of this algorithm. Via mutation, (n − 1) policies are generated from the existing
population; this is called offspring generation in GAs. The elite policy and the
(n − 1) newly generated policies are considered to be the new population, and
the algorithm repeats the steps described above performing another iteration. The
algorithm terminates when the last K (a large number, e.g., 20) iterations have not
produced any change in the elite policy.

Estimating the value function of a given policy, μ , for a given state, i, can be
performed via one simulation trajectory as shown below (it is also possible to use a
one long trajectory to update all states, but we restrict our discussion to the case of
a given state). The output generated by the rth trajectory will be denoted by V̂ r

μ(i).
In practice, one needs to simulate numerous trajectories, and obtain the average of
the values generated by each trajectory. Thus, if R trajectories are simulated, the
average will be:

Ṽμ(i) =
∑R

r=1 V̂ r
μ(i)

R
.
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The routine described below must be applied for each state in the system separately.

Inputs: Given a state i, a policy μ , and the trajectory index r.
Initialize T R, the total reward, to 0. Set k, the number of steps, to 0.
Loop until k = kmax, where kmax denotes the number of state transitions in the
trajectory:

• Start simulation in a given state i. Selection action μ(i) in state i. Let the next
state be j. Observe the immediate reward, r(i,μ(i), j). Update T R as follows:

T R ← T R+ γkr(i,μ(i), j).

• Set i ← j and k ← k+1.

Output: V̂ r
μ(i)← T R.

Note that in the above, the value of kmax depends on γ . Clearly, when γk is
very small, there is no point in continuing with the trajectory any further. Thus, in
practice, kmax can be quite small; however, the above routine needs to be performed
for numerous (R) trajectories and for each state separately. In what follows, we will
assume that the above routine can be called whenever the value function of a state
for a given policy is to be estimated.

Evolutionary Policy Iteration (EPI) Algorithm

Initialization: Set the iteration count, k, to 0. The population (collection) of policies
in the kth iteration will be denoted by L k. Populate L 0 with n arbitrarily selected
policies. Set θ , the global/local selection probability, to an arbitrarily selected value
between 0 and 1. Set a and b, the local and the global mutation probabilities, also
to values in (0,1) such that a < b. Initialize action–selection probabilities, P(i,a) for
all i ∈S and all a ∈A (i), to some values such that ∑b P(i,b) = 1 for every i ∈S .
One example is to set P(i,a) = 1/|A (i)| for every i ∈S .

Loop until a termination criterion is met:

• Select an elite policy, denoted by π∗, from L k via the following computation.
For every state i ∈S , select an action ai as follows:

ai ∈
{

arg max
π∈L k

Ṽπ(i)

}
and set π∗(i) = ai.

• Offspring generation:

1. Generate (n−1) subsets of L k, denoted by Y (t) for t = 1,2, . . . ,n−1. Each
of these subsets will contain m policies where m itself is a random number
from the discrete uniform distribution, DU(2,n−1). The m policies that will
be selected for Y (·) will be selected with equal probability from the set L k.
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2. Generate (n− 1) offspring (policies), denoted by π t for t = 1,2, . . . ,n− 1,
as follows: For each state i ∈ S and each value of t, select an action ut

i as
follows:

ut
i ∈

{
arg max
π∈Y k(t)

Ṽπ(i)

}
and set π t(i) = ut

i.

3. For each π t for t = 1,2, . . . ,n− 1, generate a mutated policy, denoted by π̂ t ,
from π t as follows. With probability θ , use a as the mutation probability and
with the remaining probability (1−θ), use b as the mutation probability. The
mutation probability is the probability with which each state’s action in the
policy undergoes a change (mutation). If a state’s action is to be changed, it
is changed to an action selected via the action–selection probabilities, P(·, ·),
defined above.

• Generating the new population: The new population Qk+1 is now defined to be
the following set:

{π∗, π̂1, π̂2, . . . , π̂n−1}.

• Set k ← k+1.

Output: The policy π∗ is the best policy generated by EPI.

The idea of mutating policies can be explained via a simple example. Assume
a = 0.2 and b = 0.9. Further assume that θ = 0.4. Then, a random number from
the distribution U(0,1) is first generated. If this number is below θ = 0.4, then the
mutation probability will be a; otherwise, the mutation probability will be b. When
it comes to mutating a given policy, consider the following example. Assume that
there are three states and four actions in each state. Furthermore, for the sake of
exposition, the policy, μ , will now be expressed as (μ(1),μ(2),μ(3)). Consider the
following policy which is to be mutated w.p. 0.9:

(3,4,1).

A random number, y, from the distribution U(0,1) will be generated for each state.
We illustrate these ideas for state 2 in which the action prescribed by the policy is 4.
If for state 2, y < 0.9, then the state’s action will be altered to one dictated by P(·, ·),
defined above. Then an action v is selected for state 3 w.p. P(3,v). On the other
hand, if y ≥ 0.9, the state’s action will be unaltered. These mutations are performed
for every state in the system for every policy that is to be mutated.
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13.4 Average Reward MDPs

Average reward MDPs (infinite horizon) are commonly associated to problems
where discounting does not appear to be appropriate. This is usually the case
when the discount factor is very close to 1. Also, finite-horizon problems are often
converted into infinite-horizon problems to make them tractable, and if the horizon
is short, money does not lose value appreciably to factor that into the calculations.
Under these conditions also, the average reward is a more appropriate performance
metric. Finally, there are scenarios, e.g., in queueing networks, electrical systems
and production systems, where the rewards/costs are often calculated in terms of
non-monetary measures such as waiting time, utilization, inventory, etc. Again, in
such instances, the average reward is a more suitable performance metric.

Surprisingly, simple extensions of the discounted MDP algorithms do not work
in the average reward domain. Thus, for instance, setting γ = 1 in Q-Learning leads
to an unstable algorithm in which the Q-factors become unbounded. For average
reward, we cover two different algorithms: one based on relative value iteration and
the other based on updating the value of average reward, alongside the Q-factors.
Note that the Bellman optimality equation for average reward, Eq. (13.2), contains
ρ∗ as an unknown in addition to the Q-factors. Hence, a straightforward extension
of Q-Learning is ruled out.

13.4.1 Relative Q-Learning

The algorithm we now describe employs the concept of relative value iteration in
combination with Q-Learning and originates from [2]. The steps differ from those
in Q-Learning as follows:

• In Step 0, any state-action pair in the system is selected, and henceforth termed
the distinguished state-action pair. It will be denoted by (i∗,a∗).

• In Step 2, the update is performed as follows:

Qk+1(i,a) = (1−αk)Qk(i,a)+αk
[

r(i,a, j)+ max
b∈A ( j)

Qk( j,b)−Qk(i∗,a∗)
]
.

The algorithm can be shown to converge w.p.1 to the optimal solution [2], under
conditions identical to those required for Q-Learning. Furthermore, it can be shown
that w.p.1,

lim
k→∞

Qk(i∗,a∗) = ρ∗,

which implies that in the limit the Bellman optimality equation for average reward
is solved.
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13.4.2 R-SMART

We now present another algorithm for average reward MDPs [38], which is a refined
version of algorithms originally presented for semi-MDPs (a more general version
of the MDP) in [26, 32]. We restrict the discussion here to the MDP, which is
a special case of the semi-MDP. The algorithm is called R-SMART (short for
Relaxed-Semi-Markov Average Reward Technique). Like SARSA, this algorithm
relies on using ε-greedy action selection, and further it uses a separate update for the
average reward term. There are two versions of this algorithm. One uses connection
to the stochastic shortest path (SSP) problem [15], and the other uses an artificial
contraction factor. We now present details.

SSP-Version

In this version, the average reward problem is essentially transformed into an SSP.
Since we are not interested in the original SSP, we do not explain the SSP in detail,
but refer the reader to [15]. What is important to note is that the SSP transformation
creates a contractive mapping for the Q-factors enabling their convergence. The
steps in the resulting algorithm will have the following differences with those of
Q-Learning:

• In Step 0, select any state in the system, and call it the distinguished state i∗.
• In this algorithm, some parameters related to the average reward calculation will

be needed. They are T R, the total reward, T T , the total time, and ρk, the estimate
of the average reward in the kth iteration. In Step 0, initialize each of T R, T T ,
and ρ1, to 0.

• In Step 1, select action a using an ε-greedy form of action selection (as discussed
in the context of SARSA).

• In Step 2, update Q(i,a) as follows:

Qk+1(i,a) = (1−αk)Qk(i,a)+αk
[

r(i,a, j)+1{ j 
= i∗} max
b∈A ( j)

Qk( j,b)−ρk
]
,

(13.16)

where 1{·} is the indicator function that returns a 1 if the condition inside the
brackets is satisfied and zero otherwise. This is followed by an update of ρ . If a
greedy action was selected in Step 1, i.e., if a∈ arg maxb∈A (i) Q(i,b), then update

T R, T T and ρk in the order shown below:

T R ← T R+ r(i,a, j);

T T ← T T +1;

ρk+1 ← (1−β k)ρk +β k(T R/T T ).

If a greedy action is not selected, set ρk+1 ← ρk.
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In the update for ρk, the step size β k is chosen in a manner discussed in the actor-
critic algorithm. The indicator function within the update in Eq. (13.16) ensures
that the problem is essentially transformed into an SSP. Further note that the steps
above ensure that Q-factors for state-action pair (i∗,a) are updated like every other
Q-factor. Under some conditions shown in [38], the algorithm is shown to converge
to the optimal solution and ρk to ρ∗ w.p.1. It is also worthwhile pointing out that
the state i∗ plays the role of the (fictitious) absorbing state in the SSP when it is
encountered as the next state ( j) in a transition.

Contraction-Factor Version

In this version of R-SMART, an artificial contraction factor, γ̄ , will be used. This
artificial factor will make the Q-factor transformation contractive, thereby enabling
convergence. The average reward will be updated as done above in the SSP-version.
The steps in the contraction-factor version of R-SMART will have the following
differences with those of Q-Learning:

• In Step 0, select a suitable value for γ̄ ∈ (0,1).
• As in the SSP-version above, in Step 0, initialize each of T R, T T , and ρ1, to 0.
• In Step 1, select action a using an ε-greedy form of action selection.
• In Step 2, update Q(i,a) as follows:

Qk+1(i,a) = (1−αk)Qk(i,a)+αk
[

r(i,a, j)+ γ̄ max
b∈A ( j)

Qk( j,b)−ρk
]
.

Thereafter, update ρk as shown in the steps of the SSP-version.

In the above algorithm, the value of γ̄ must be guesstimated. Convergence can
be assured under certain conditions that require the knowledge of the transition
probabilities. In practice, a value close to 1 often generates optimal solutions.
Although, it is not possible to guess the correct value of γ̄ and one must use trial
and error, on large-scale problems, this version often outperforms the SSP-version.

13.5 Finite Horizon MDPs

As noted earlier, the finite-horizon problem includes stages, which further adds to
the curse of dimensionality posed by the state-action space of infinite-horizon prob-
lems. Nonetheless, these problems are important in their own right. They find many
applications in operations research. Many inventory control problems and problems
in revenue management belong to the finite time horizon. In machine learning,
these problems are called episodic tasks. Sometimes finite-horizon problems can



13 Markov Decision Processes 365

be converted into infinite-horizon problems by introducing an artificial transition
from the absorbing state to a starting state; the reason for this transformation is that
it can make the problem tractable [40].

In this section, we will first discuss an SSP algorithm for solving the finite-
horizon problem. Thereafter, we will consider a learning automata algorithm that
has been developed more recently.

13.5.1 Special Case of Stochastic Shortest Path (SSP)

The finite-horizon problem can be studied as a special case of the stochastic shortest
path (SSP) problem in which the state-action pair is replaced by the state-stage-
action triple [15]. Notation for this problem has been introduced earlier, and the
reader should review it at this time.

We will assume that there are T stages in which decision-making is to be
performed. When the system reaches the (T +1)th stage, there is no decision making
to be done, and the simulator will return to the starting state, which is assumed to
be known. The following description is based on [37].

Simulation-Based Algorithm for Finite-Horizon MDPs

Step 0. Input kmax= total number of iterations. Initialize iteration count k = 0, stage
s = 1, and all the Q-factors, Qk(i,s,a) for all i ∈S , all s ∈T and all a ∈A (i,s),
to 0. Also set Qk( j,T + 1,b) = 0 for all k, all j ∈ S and b ∈ A ( j,T + 1).
Start system simulation at the starting state, which is assumed to be known with
certainty.

Step 1. For current state i and current stage s, select action a w.p. 1/|A (i,s)|, and
simulate to reach next state j in stage (s+1), receiving reward r(i,s,a, j,s+1).

Step 2. Update the Q-value of (i,s,a) as follows:

Qk+1(i,s,a)← (1−αk)Qk(i,s,a)+α
[

r(i,s,a, j,s+1)+ max
b∈A ( j,s+1)

Qk( j,s+1,b)

]
.

Increment k by 1 and s by 1, and if the new value of s equals (T +1), set s = 1.
If k < kmax, then set i ← j and return to Step 1; otherwise, go to Step 3.

Step 3. For each l ∈S and each s ∈ T , select d(l,s) ∈ arg maxb∈A (l,s) Qk(l,s,b).
The policy (solution) generated by the algorithm is d.
Stop.
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13.5.2 Pursuit Learning Automata (PLA) Sampling

We now present the pursuit learning automata (PLA) sampling algorithm due to
[23]. The theory of learning automata for MDPs has been covered extensively
in [60]. This particular algorithm is based on the concept of PLA [67, 85]. The
idea here is to apply a simulation-based sampling algorithm at each state-stage
pair in the system. It is possible to start the simulation at any given state-stage
pair, and simulate different actions. The algorithm is remarkably robust, and can
converge quickly to the optimal solution. In algorithms considered previously, one
simulates a long trajectory in which states are visited in an asynchronous manner.
This algorithm is also simulation-based, thereby avoiding the transition probability
model, but requires that the system be simulated in each state-stage pair separately;
also, a long simulation trajectory is not needed here. In many ways, it uses the
power of simulation and at the same time does not leave the convergence to count
on visiting each state-stage pair infinitely often. Thus, it appears to combine the
graceful and systematic synchronous updating of dynamic programming with the
power of simulation.

The algorithm will be presented for a given state-stage pair (i,s). Since the
value function of the next state-stage pair will be required, a recursive call will
be necessary to that pair if a forward pass is done. Alternatively, one could start at
the last decision-making stage (T ) in any state, update all the states in that stage,
and then move backwards, one stage at a time, as is done in backward dynamic
programming. Furthermore, in a backward pass style of updating, all states for that
stage must be updated before moving to the previous stage. Remember that for stage
T , the value function of the next stage is zero. Thus, if V (l,s) denotes the value
function for state l and stage s, then V (l,T +1) = 0 for all l.

The steps below present a routine (function) that must be performed for each
state-stage pair separately. A step-size α , which could be state-dependent, will be
used in updating the probabilities of the learning automaton (LA). In each state, the
LA will store an action–selection probability of P(i,a) such that ∑a P(i,a) = 1.
Some other counters will be needed: T R(l,s,u) will measure the total reward
accumulated thus far within the routine when action u is tried in state l when
encountered in stage s, and N(l,s,u) will measure the number of times action u
has been tried in the state-stage pair, (l,s).

The initialization step must be performed each time this routine is called. For
each call, we have a given state, i, and a given stage, s.
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Pursuit Learning Automata (PLA) Sampling Algorithm

Initialization: Input kmax(i,s) = number of iterations (simulations) allowed for each
state-stage pair (i,s) (simulation budget), α ∈ (0,1). Initialize the LA probabilities
as follows: For any l ∈ S and all a ∈ A (l), P(l,a) = 1/|A (l)|. Initialize the
counters, T R(l,s,u) and N(l,s,u), for all l ∈ S , all s ∈ T , and all u ∈ A (l,s),
to 0; the iteration count k = 0; and V (l,T +1) = 0 for all l.

Step 1. For current state i and current stage s, select action a w.p. P(i,a), and simu-
late to reach next state j and next stage (s+1), receiving reward r(i,s,a, j,s+1).

Step 2. Update the following quantities:

T R(i,s,a)← T R(i,s,a)+ r(i,s,a, j,s+1)+V ( j,s+1); (13.17)

N(i,s,a)← N(i,s,a)+1.

Then compute

Q(i,s,a)← T R(i,s,a)
N(i,s,a)

. (13.18)

Step 3. Determine the greedy action as follows:

a∗ ∈ arg max
b∈A (l,s)

Q(l,s,b).

Step 4. Update the action–selection probabilities: For all u ∈A (i,s),

P(i,u)← (1−α)P(i,u)+α1{a∗ = u}.

Step 5. Increment k by 1. If k < kmax(i,s), then return to Step 1; otherwise, go to
Step 6.

Step 6. Set

V (i,s) = Q(i,s,a∗).

Stop.

Note that the update in Eq. (13.17) requires the value function of the next state-
stage pair. In a backward pass application of the above routine, this value will
already have been computed and will be available for use in the update. In case
one does not use a backward pass, estimating this value will have to be done via a
recursive call to the next state-stage combination ( j,s+ 1). It is also interesting to
note that the computation of the Q-factor in Eq. (13.18) is based on direct averaging,
a concept used in model-building (also called model-based) RL [79].
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13.6 Numerical Results

In this section, we present numerical results on some small problems in order to
illustrate the use of RL algorithms. The case studies covered here are for problems
whose transition probabilities can be estimated; thus, it is possible to determine
whether the optimal solution was reached. Furthermore, these problems can also
be used as testbeds by other researchers for empirical investigation of their own
algorithms. In practice, a simulation analyst is generally also interested in testing
an algorithm on large-scale problems, whose transition probabilities are difficult to
estimate and the only benchmarks available are problem-specific heuristics. Large-
scale versions of both case studies that we cover here are also candidates for such
tests. We begin with the infinite-horizon problem, and then discuss the finite horizon
case.

13.6.1 Infinite Horizon

The case study we cover here is on preventive maintenance of machines and is
primarily drawn from [34]. It is well-known that systems whose probabilities of
failures increase as they age can benefit from preventive maintenance. Examples of
such systems include production lines, bridges, roads, and electric power plants.

We consider the case of a production line which deteriorates with time and
the deterioration can be captured by a function. After a preventive maintenance,
generally, the system has a lower probability of failure than when it failed. Since
it generally costs much lower to preventively maintain a line than to repair it after
a failure, a significant volume of literature has appeared in the area of preventive
maintenance. Toyota Motors have popularized the use of preventive maintenance
in many automobile firms. A large chunk of the literature studies the problem of
determining the time interval after which maintenance should be performed.

We make the following assumptions about the system:

• The production line is needed every day.
• If the line fails during the day, the repair takes the remainder of the day, and the

line is available only the next morning. After a repair, the line is as good as new.
• When a line is shut down for preventive maintenance, it is down for the entire

day. After a preventive maintenance, the line is as good as new.
• If σ denotes the number of days elapsed since the last preventive maintenance

or repair (subsequent to a failure), the probability of failure during the σ th day
can be modeled as (1−ξ ψσ+2), where ξ and ψ are scalars in the interval (0,1),
whose values can be estimated from the data for time between successive failures
of the system.

• For any given positive value of ε ∈ R, we define σ̄ε as the minimum integer
value of σ such that the probability of failure on the σ̄ th day is less than or
equal to (1− ε). Since a fixed value of ε will be used, we will drop ε from the



13 Markov Decision Processes 369

notation. The definition of σ̄ will allow us to truncate the countably infinite state
space to a finite one. The resulting state space of the system will be assumed
to be S = {0,1,2, . . . , σ̄}, i.e., the probability of failure on the σ̄ th day will be
assumed to equal 1. Furthermore, note that rounding of this nature is necessary
to ensure that the probabilities in the last row of the finite Markov chain for one
of the actions (the production action in particular) add up to 1.

• The costs of maintenance and repair are known with certainty, and will equal Cm

and Cr respectively.

The underlying system transitions can be modeled via Markov chains as follows.
Let the state of the system be defined by σ , the number of days elapsed since
the last preventive maintenance or repair. Clearly, when a maintenance or repair
is performed, σ is set to 0. If a successful day of production occurs, i.e., no failure
occurs during the day, the state of the system is increased by 1. Each morning,
the manager has to choose from two actions: {produce,maintain}. Then, we have
the following transition probabilities for the system. We first consider the action
produce. For σ = 0,1,2, . . . , σ̄ −1,

p(σ , produce,σ +1) = ξ ψσ+2; p(σ , produce,0) = 1−ξ ψσ+2.

For σ = σ̄ , p(σ , produce,0) = 1. For all other cases not specified above,

p(·, produce, ·) = 0.

For the action produce and all values of σ ,

r(σ , produce,0) =−Cr; r(σ , produce,σ ′) = 0 when σ ′ 
= 0.

For the action maintain, the mathematical dynamics will be defined as follows.
For all values of σ , p(σ ,maintain,0) = 1 and r(σ ,maintain,0) =−Cm. For all other
cases not specified above, p(.,maintain, .) = 0 and r(.,maintain, .) = 0.

We set ξ = 0.99, ψ = 0.96, Cm = 4, Cr = 2, and σ̄ = 30. Thus, we have 31
states and 2 actions. Our objective function is average reward, and the optimal
policy, which is determined via policy iteration, is of a threshold nature in which
the action is to produce for σ = 0,1, . . . ,5 and to maintain from σ = 6 onwards. The
contracting factor version of the algorithm R-SMART was used in a simulator with
the following specifications:

• The artificial contraction factor, γ̄ , was set to 0.99.
• The learning rates used were:

αk =
1000

5000+ k
; β k =

1000
k(5000+ k)

where k ≥ 1.
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• The exploration probability was defined as shown below:

Pk = 0.5
log(k+1)

k+1
where k ≥ 1.

• The system was simulated for 200,000 days.

The algorithm always generated the optimal solution in every replication. At least
20 different replications were performed.

The above problem can be studied for a much larger state space. If the time
between failures is significantly higher and as a result σ̄ is closer to 1,000,
the transition probability matrix contains a million elements, which is not easy
to handle. In other words, dynamic programming breaks down. However, it is
not difficult to simulate this system, allowing us to use the simulation-based
algorithm—if necessary in conjunction with some function approximation. It is
also very critical to note here that unlike the problem considered above, usually
the transition probability structure is not available, and the system can still be
simulated as long as the distributions of the input random variables are available.
Thus, for example, in an M/G/1 queue, if one observes the system at the instants
when arrivals occur, one can formulate a Markov chain. However, the transition
probabilities of this Markov chain are not necessary to simulate the system; rather
one can simulate the queue using the distributions of the inter-arrival time and the
service time. In preventive maintenance problems also, simulation of the system is
often possible without generating the transition probabilities (see e.g., [26]).

In general, look-up tables work with up to maybe 2,000 Q-factors in regular
computers, but for a state-action space larger than that, some sort of function
approximation becomes necessary. Thus, for large-scale MDPs, it is imperative that
the analyst either seeks to reduce the state-action space to a reasonable number or
alternatively uses a function approximation scheme. Using function approximation
introduces additional computational issues with regards to how to capture the state-
action space in terms of the basis functions (architectures). It is not uncommon in
practice to experiment with a large number of candidate architectures before the
algorithm starts outperforming a heuristic or a set of heuristics known to generate
reasonable results. It is this aspect of the large-scale problem that makes it necessary
to study, or generate if necessary, some problem-specific heuristics. In summary, one
can conclude that a successful implementation of RL on a large-scale problem is a
significant computational exercise that requires patience.

13.6.2 Finite Horizon

We now consider a finite-horizon MDP where the objective is to maximize the
expected value of the total undiscounted reward over the time horizon. We use an
example, drawn from [24], on inventory control. Inventory control problems are
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ubiquitous in supply chain management, and indeed, most modern supply-chain
software seek to solve problems of the nature considered here. Although the
transition probabilities will be computed to determine the optimal solution, as in
the previous subsection, these problems can be solved for any given distribution of
the input random variable—the size of the demand (in one period/stage) in this case.

In many inventory control problems, the manager seeks to order raw material in
a fashion so as to minimize the fixed costs of ordering (also called set-up costs),
the costs of lost sales, and the costs of holding inventory. In general, large order
quantities increase holding costs, but reduce the costs of lost sales and the ordering
costs; on the other hand, small order quantities increase the risk of lost sales, the
ordering costs, but minimize the inventory holding costs. Clearly, without holding
costs, the problem has a trivial solution, which is: order the maximum possible
quantity. A goal of modern inventory control [5], however, is to maximize inventory
turns and minimize inventory. As such, the holding costs play a critical role in
this problem. Moreover, this is a multiple-period problem in which decisions for
ordering quantities have to be made in every period (stage) separately and unused
inventory from a previous time period is carried over into the next time period.

Let Ds denote the demand during the sth stage (period), xs denote the inventory
at the start of the sth stage, and us denote the action chosen in the sth stage. The
action us will equal the amount ordered at the start of the sth stage. The following
assumptions will be made about the problem:

• There is no backordering, and a demand lost is lost forever.
• The size of demand in a given time period is a discrete random variable whose

distribution is known.
• The holding costs per unit per unit time, h, the cost per order, A, and the lost sales

cost per unit (opportunity cost), p, are known with certainty.
• We will assume that the demand will be realized at the end of the stage, and the

order placed at the start of a stage will arrive at the end of the stage. This will
simplify the computation of the inventory holding costs.

• There is an upper limit, M, on the amount of inventory that can be held (dictated
by storage requirements). This implies that an ordering amount that causes
inventory to exceed M will not be allowed.

• The number of stages, T , is deterministic and known.
• The starting inventory, x1, is known with certainty.

Under these conditions, the inventory levels will then change from one stage to
the next as follows:

xs+1 = (xs +us −Ds)
+ , x1 ≥ 0,

where x+ ≡max(x,0), which reflects the condition that inventory cannot be negative
due to the no backordering assumption. The goal is to minimize the expected total
costs of operating the system, where costs can arise out of holding inventory, lost
sales, and the set-up (fixed) cost per order. The total cost in one trajectory can be
computed as follows:
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T

∑
s=1

[
A ·1{us > 0}+hxs + py−s

]
,

where x− ≡ max(−x,0) and ys+1 = xs +us −Ds for s = 1,2, . . . ,T , and y1 = 0.
The following values were used for the inputs in the experiments reported in [24]:

p = 10, A = 5, h = 1, M = 20, T = 3, x1 = 5, and kmax(i,s) = 4 for all state-stage
pairs. The demand was assumed to have a discrete uniform distribution, DU(0,9).
Backward dynamic programming was used to determine the optimal solution, which
was also delivered by the PLA sampling technique. Then, via simulation, the value
function for the starting state, VPLA(x1,1), was computed for the optimal policy,
using 30 replications and a large number of samples. This value was found to
be 24.48 with a standard error of 0.51, which compares well with the true value,
V∗(x1,1) = 27.322, determined via backward dynamic programming (which needed
the exact transition probabilities). Numerous results with other values for the inputs
can be found in [24].

13.7 Extensions

The ideas underlying MDPs can be extended to at least three other domains:
semi-MDPs (SMDPs), stochastic games, also called Competitive Markov decision
processes (CMDPs), and Partially Observable MDPs (POMDPs).

In an SMDP, the time of transition from one state to another is not the same for
every transition. In the most general case, this time is a generally distributed random
variable. Although the SMDP is sometimes loosely referred to as a continuous time
MDP (CTMDP), the latter name is usually reserved for the SMDP in which the
transition times have the exponential distribution. The theory of SMDPs can be
studied for both discounted and average reward objective functions [15]. RL for
SMDPs has been studied in [19] (discounted reward) and [31,38] (average reward).

In a CMDP, there are multiple decision-makers, and the transition probabilities
and rewards depend on the actions of all or a subset of all decision-makers. The
problem becomes significantly more complex and has been studied in detail in [29].
These problems are of considerable interest to economists, and both of the early
contributors [61, 73] have been awarded Nobel prizes in economics. The work in
[61] provides a critical idea, called Nash equilibrium, needed for solving a CMDP,
while the work of Shapley [73] provides the first attempt at value iteration and
solving the CMDP computationally.

In a POMDP, the underlying state is only partially observable to the decision
maker via signals, and the decision-maker is required to choose the best possible
action. The POMDP has been used in robotics and pattern recognition problems.

Not surprisingly, attempts have been made to use simulation to solve POMDPs
and CMDPs via simulation. Some noteworthy works in CMDPs include the
algorithms in [46,69]. Some special forms of sequential games in which the actions
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of the different decision-makers are not concurrently taken but are sequential are
studied in [12]. For POMDPs, the body of literature is somewhat evolved. See [49]
for a survey of early algorithms and [24] for some more recent simulation-based
algorithms.

A large number of computational extensions can be found in computer science,
e.g., hierarchical RL, although convergence guarantees for the underlying theory are
somewhat sparse. Another topic that we did not cover is that of policy gradients [9,
77], which is rooted in the idea of using simulation and derivatives of the objective
function to generate an optimal policy in MDPs. These algorithms suffer from large
variance.

13.8 Convergence Theory

The convergence theory for RL algorithms has become quite rigorous. Here, we
provide a brief account. At least three different lines of convergence arguments have
been worked out for classical Q-Learning-type algorithms:

1. theory developed in [12], which is based primarily on the idea of “reducing cube
sizes” (see Prop. 4.5 of [12]);

2. theory developed in [48, 75, 83], which is based on some remarkably simple
arguments and draws on some basic results in stochastic approximation (see [48]
in particular), and

3. theory based on ordinary differential equations, for which the reader is referred
to [16].

Although one finds three distinct strands of convergence arguments, many of the
proofs rest on showing some basic properties, e.g., the underlying transformation is
contractive (shown for Q-Learning and the SSP-version of Q-Learning in [12]) and
the iterates remain bounded (shown for the SSP-version of Q-Learning in [12] and
for classical Q-Learning in [33]). In other words, by exploiting these fundamental
convergence arguments, generally showing convergence boils down to stability and
contraction arguments, which are much simpler.

More recently, convergence arguments when the algorithm is combined with
function approximation have been developed; [15] provides an up-to-date account
and presents some of the open problems. The algorithms based on evolutionary
search and learning automata have an independent convergence theory, which has
been developed in depth in texts such as [24, 60].

13.9 Concluding Remarks

This chapter presented selected topics on RL relevant to simulation optimization.
We began with Q-Learning, along with a discussion on how to combine it with a
simple linear-basis function approximator, which is critical for large-scale problems
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that simulation-based optimization seeks to solve. We also covered actor-critics, but
only the most modern version. SARSA(λ ) was covered in some detail, because
although a heuristic, it remains popular and can be implemented in simulators.
Thereafter, we presented algorithms belonging to the class called API. Our dis-
cussion included average reward and the finite-horizon problems, which are not
covered in most texts in much detail. Extensions and convergence theory were
briefly described. Here, we summarize some applications and some of the open
problems that should be exciting topics for future research.

• Applications: Since this area has origins in machine learning, some of the initial
applications were naturally in the area of robotics and computer science. Even
today, these algorithms find applications in exciting areas in machine learning,
e.g., autonomous helicopter control [1, 63] and fMRI studies [97]. However, the
body of literature that applies these algorithms to industrial tasks is expanding.
Some of the early applications in the area of operations management include
jobshop scheduling [99], AGV routing [84], preventive maintenance [26], and
airline revenue management [31, 40]. Some more recent work includes the
beer game of supply chain management [22], wireless communication [3, 96],
irrigation control [72], and reentrant semiconductor manufacturing [68].

• Function approximation and convergence: While many advances have been
made in combining RL with function approximators, this is an area that needs
significant additional research without which function approximation will remain
the Achilles’ heel of RL. Not surprisingly, recent coverage of RL seems to stress
the function approximation aspects, many of which are heuristically applied
without convergence analysis. The Bellman error development is also rather
heuristic, and apart from the traditional techniques used in conjunction with
Bellman error [6, 17, 18, 27, 89], recently other techniques have been sought
to be used: see [64] (kernel-based function approximation), [92] (evolutionary
function approximation), and [56] (Laplacian methods). Regardless of the nature
of the function approximation technique used, a preliminary step in this process
involves transforming the state space into the feature space, and some important
references in this context include [43] (coarse coding), [4] (CMAC coding),
and [50] (Kanerva coding). Another promising line of investigation includes the
LSTD (least-squares temporal differences) algorithm [62,98]. Much of this work
has occurred along the lines of API, which also happens to be an active area of
research [14]. See also [55] where a Q-function-based LSTD algorithm, which
is suitable for a simulation-based setting, is presented, although the algorithm’s
convergence has never been proved.

• TD(λ ) in combination with Q-Learning: Although the concept of TD(λ ) has been
around for a long time in this field, its convergence properties are known well for
the case when it is combined with policy evaluation within an API algorithm.
In API, whether λ > 0 provides any advantages over λ = 0 has not been tested
empirically in a comprehensive manner; one clear disadvantage is that it requires
eligibility traces that are not easily combined with function approximation. When
combined with value iteration algorithms, such as Q-Learning (see Q(λ ) learning
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in [65]), the worth of TD(λ ) becomes even more doubtful, since no convergence
guarantees to optimality are available. However, in practice, Q(λ ) appears to
converge significantly faster than Q-Learning [65]. See [83] for an interesting
result which shows that Q(λ ) does converge but not necessarily to the optimal
solution. It is clear that issues with respect to combining TD(λ ) with algorithms
such as Q-Learning and SARSA remain important open problems that require
further investigation.

• Optimistic API: Although much research has occurred in classical versions of
API, it is well-known that it is slow, since it requires numerous simulations to
evaluate just one policy. As such, there is great interest in optimistic API in which
the policy is evaluated via just one (or a few) state transition. The interest in API
also stems from the empirical evidence suggesting that function approximation
works better in conjunction with API rather than with value-iteration-based
methods. Interestingly, the actor-critic, one of the earliest algorithms in RL
[8,95], sought to attain the same objective. One recent algorithm in this direction
is [13].

• Model-building algorithms: Model-building (also called model-based in the RL
literature, but not to be confused with the same term in optimization) algorithms
do not need the transition probability model, but build it within the simulator
while simultaneously solving the Bellman equation. The earliest model-building
algorithms for discounted and average reward are [7, 84], respectively. Other
works on model building include [20, 28, 51, 59, 78, 81, 87] While most of these
algorithms seek to generate the value function and are rooted in DP, some recent
algorithms are based on Q-Learning and actor-critic frameworks [36, 41]. These
algorithms have attracted significant interest recently in applications: robotic
soccer [94], helicopter control [1, 54, 63], function magnetic imaging resonance
(fMRI) studies of brain [47, 97], and vision [57].
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