
Chapter 12
Model-Based Stochastic Search Methods

Jiaqiao Hu

Abstract Model-based algorithms are a class of stochastic search methods that
have successfully addressed some hard deterministic optimization problems. How-
ever, their application to simulation optimization is relatively undeveloped. This
chapter reviews the basic structure of model-based algorithms, describes some
recently developed frameworks and approaches to the design and analysis of a
class of model-based algorithms, and discusses their extensions to simulation
optimization.

12.1 Introduction

In this chapter, we address the problem of finding the values of a set of design
parameters that attain the optimum of an objective function, written in the following
general form:

x∗ ∈ arg max
x∈Θ

h(x), (12.1)

where Θ is the feasible region, which is often a non-empty compact subset of
R

d , and h : Θ → R is a bounded, deterministic objective function. Stochastic
optimization often refers to the case where the objective function h itself takes the
form of an expectation

h(x) = E[H(x,ξ )],

where ξ is a random variable representing the stochastic uncertainty of the system,
which for example could be a sample path, and only estimates of the “noisy”
sample performance H are available. In this chapter, simulation optimization refers
to the special case of stochastic optimization when the sample performance H
is assessed in a path-wise manner through computer simulation. In contrast with
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deterministic optimization, simulation optimization problems are characterized by
random uncertainties in their performance measures, and the objective functions are
often highly nonlinear with respect to the underlying decision variables.

When the objective function is differentiable, a well-known class of methods for
solving simulation optimization problems is stochastic approximation [4, 5, 28, 29],
the topic of Chaps. 6 and 7. These methods mimic the classical gradient algorithms
in deterministic optimization and rely on the estimation of the gradient of the
objective function. Because they are gradient-based, these methods generally find
local optimal solutions. Sample average approximation [14,27] is another approach
that often exploits structural information such as differentiability, linearity or
convexity. The main idea of this approach is to transform a simulation optimization
problem into a deterministic one by expending a large amount of simulation effort
on each visited solution to obtain a precise estimate of the objective function value.
The resulting deterministic counterpart of the original stochastic problem is then
solved by a deterministic optimization algorithm.

Due to the limited structural knowledge for general simulation optimization
problems, it is natural to adapt random search methods from deterministic opti-
mization to these types of problems. A random search method is usually recursive
and approximates the optimal solution by a sequence of iterates (e.g., candidate
solutions, promising subsets, probability models) generated according to a specified
random mechanism. These methods differ primarily in the type of iterates an
algorithm produces and in the choices of the random strategy used to generate
the iterates. Because random search methods typically only rely on the objective
function values rather than structural information such as convexity and differentia-
bility, they are robust, easy to implement, and can be applied to a broad range of
optimization problems with very different characteristics.

From an algorithmic point of view, a random search algorithm can be broadly
classified as being either instance-based or model-based [44]. In instanced-based
algorithms, an iterate corresponds to a single or a subset of candidate solution(s),
and the construction of new iterates depends explicitly on iterates generated in
previous iterations. These include both population-based algorithms such as genetic
algorithms [10], which produce a collection of candidate solutions at each iteration,
and methods like nested partitions [36] that are based on repeatedly identifying a
promising subset of the feasible region as the search proceeds. Currently, random
search-based simulation optimization is primarily dominated by instance-based
methods, with numerous algorithms proposed in the literature and their behaviors
relatively well studied and understood. In addition to the two aforementioned
methods, some typical examples include response surface methods [3], simulated
annealing [26], tabu search [9], stochastic ruler methods [38], stochastic comparison
[11], and the COMPASS algorithm [15]; see Chaps. 2, 10, and 11, as well as [2] for
a review of this class of methods.

While the field of simulation optimization has significantly evolved in terms of
instance-based algorithms, less attention has been devoted to the study of model-
based methods. Unlike instance-based algorithms, the model-based methods are
based on sampling candidate solutions from an intermediate (usually parameterized)
probability distribution over the feasible region. The idea is to iteratively modify the
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distribution model based on the sampled solutions to bias the search towards regions
containing high quality solutions. Therefore, each iterate in a model-based algorithm
corresponds to a distribution function, which can be abstractly viewed as a “model”
characterizing the promising regions of the solution space. Examples of this type
of method include ant colony optimization (ACO) [8], estimation of distribution
algorithms (EDAs) [30], annealing adaptive search (AAS) [32, 39], probability
collectives (PCs) [37], and the cross-entropy (CE) method [35]. These algorithms
have successfully solved some hard nonlinear, non-differentiable problems and are
becoming increasingly prominent in deterministic optimization.

Unfortunately, because model-based algorithms are generally heuristic in nature,
very few of them have found their way into the simulation optimization literature. In
this chapter, we aim to stimulate new research ideas in this area by presenting some
recently developed frameworks and approaches for the design and analysis of a class
of model-based algorithms. As a starting point, we introduce these developments in
the context of deterministic optimization with the objective function h being viewed
as a “black box” that returns the exact function value for a specified solution. We
then proceed by providing specific examples and algorithms to illustrate the key
modifications needed, as well as issues and challenges involved in extending model-
based algorithms to general simulation optimization settings.

12.2 A Brief Review of Model-Based Methods

The basic idea of model-based algorithms is to use a sequence of probability
distribution functions to successively characterize the promising regions of the
solution space. So in a model-based algorithm, it is the probability distribution rather
than candidate solutions (as in an instance-based algorithm) that is propagated from
one iteration to another. Most algorithms that fall into this category are iterative
methods involving the basic steps of the framework below.

Basic Model-Based Optimization Framework

Step 1. Randomly generate a population of candidate solutions X (k) from gk, where
gk is the probability distribution on Θ at the kth iteration.

Step 2. Evaluate/estimate the performance of generated candidate solutions.
Step 3. Update gk based on the performance of the sampled solutions in X (k) to

construct a new distribution gk+1; increase k by 1 and reiterate from Step 1.

Note that since a population of candidate solutions is generated at each step,
such algorithms retain the primary strengths of population-based approaches such as
genetic algorithms, while providing more flexibility and robustness in exploring the
entire feasible region (i.e., via sampling from gk). Clearly, a major algorithmic ques-
tion in model-based algorithms is how the update in Step 3 is carried out. Important
practical implementation issues are the efficient construction/representation of the
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probability distribution gk and efficient sampling from gk over the feasible region Θ .
How these issues are addressed is what differentiates particular approaches.

Pure random search [39] (see also Chap. 11) can be viewed as one of the simplest
model-based methods, in the sense that gk is taken to be a fixed uniform distribution
over Θ (not updated at all). The algorithm proceeds by generating a sequence of
uniformly distributed random points over the feasible region and using the best
candidate solution obtained thus far as an estimate of the optimal solution. Although
the idea behind the algorithm is simple, the complexity of the algorithm increases
exponentially with the dimension of the solution space.

A nontrivial improvement of pure random search is the annealing adaptive search
(AAS) algorithm [32, 39], described in detail in Chap. 11, which replaces the fixed
uniform distribution in a pure random search method by a sequence of Boltzmann
distributions parameterized by iteration-varying temperatures Tk. These Boltzmann
distributions are constructed in such a way that as the temperature decreases to zero,
the sequence of distributions will become more concentrated on the set of optimal
solutions. So solutions sampled from Boltzmann distributions with small values of
Tk will be close to the optimum with high probability. For the class of Lipschitz
optimization problems, it has been shown that the expected number of iterations
required by AAS to achieve a given level of precision increases at most linearly
in the problem dimension [32, 39]. However, the idealized AAS is not readily
implementable in practice for solving optimization problems, because the problem
of sampling exactly from a given Boltzmann distribution is known to be very
difficult. This implementation issue has been addressed in a number of papers (see
e.g., [39, 40] and the references therein), and the basic idea is to use Markov chain
Monte Carlo techniques to sample asymptotically from the Boltzmann distribution.

The cross-entropy (CE) method [35] was originally motivated by the problem of
estimating probabilities of rare events in simulation [33], before it was discovered
that it could be modified to solving deterministic optimization problems. The
key idea of CE is to use a family of parameterized distributions to successively
approximate an optimal (importance sampling) distribution concentrated only on
the set of (near) optimal solutions, which is carried out by iteratively estimat-
ing the optimal parameter that minimizes the Kullback–Leibler (KL) divergence
between the parameterized distribution and the target optimal distribution. Since
its introduction, there have been extensive developments regarding implementation
and practical applications of CE (see [35]). Those that are particularly relevant
to our discussion include the adaptation of CE to handle stochastic network
combinatorial optimization problems [34], the application of the method to solving
buffer allocation problems in a simulation-based environment [1], and the work of
[31], which uses CE as a direct policy search approach to solving stochastic dynamic
programming problems. The literature analyzing the convergence properties of the
CE method is relatively sparse, with most of the existing results limited to specific
settings; see, e.g., [13] for a convergence proof of a variational version of CE in
the context of estimation of rare event probabilities, and [7] for probability one
convergence proofs of CE for discrete optimization problems. General convergence
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and asymptotic rate results for CE were recently obtained in [20,22] by relating the
algorithm to recursions of stochastic approximation type (see Sect. 12.4).

Two other well-established model-based methods are the ant colony optimization
(ACO) [8] and the estimation of distribution algorithms (EDAs) [30]. ACO was
inspired by the behavior of a colony of biological ants, which are capable of solving
shortest path problems by exchanging their local information indirectly through a
certain chemical substance called pheromone. ACO is frequently applied to solving
combinatorial problems, e.g., the traveling salesman problem. In such problems, the
generation of candidate solutions (tours) is based on the series of random moves
performed by a collection of artificial ants called agents, which are controlled
by an empirical distribution constructed based on each agent’s local experience.
ACO has been formally extended to stochastic settings for solving stochastic
combinatorial optimization problems. One such extension is called the stochastic ant
colony optimization (S-ACO) [12], which uses Monte-Carlo sampling to estimate
the expectation involved in evaluating the objective function. The probability one
convergence of S-ACO to the global optimal solution has been established in [12].

EDAs inherit the spirit of genetic algorithms (GAs), but eliminate the crossover
and mutation operators to avoid the disruption of partial solutions. In EDAs, a new
population of candidate solutions are generated according to the probability distri-
bution induced or estimated from the promising solutions selected from the previous
generation. Unlike CE, EDAs often take into account the interrelations between the
underlying decision variables needed to represent the individual candidate solutions.
At each iteration of the algorithm, a high-dimensional probabilistic model that better
represents the interdependencies between the decision variables is induced; this step
constitutes the most crucial and difficult part of the method. We refer the reader to
[30] for a review of the way in which different probabilistic models are used as
EDA instantiations. A proof of convergence of a class of EDAs, under the idealized
infinite population assumption, can be found in [41].

There are many other model-based algorithms proposed for optimization. Some
notable examples include probability collectives (PCs) [37], particle swarm opti-
mization [25], the particle filtering approach [42], and gradient-guided stochastic
search [43]. A complete description of all of them is outside the scope of this chapter.
Instead, we will focus our discussions on some recently developed approaches
that allow us to arrive at a systematic framework to study a class of model-
based algorithms in a uniform manner. We review specific algorithms under the
framework, present their asymptotic convergence properties, and discuss their
adaptations to simulation optimization.

12.3 A Model Reference Optimization Framework

We begin with a description of the model reference adaptive search (MRAS) method
introduced by Hu et al. [18], which will serve as a basis for subsequent discussions.

Model-based methods construct a sequence of distributions {gk} with some
desired convergence properties (ideally including gk → g∗ as k → ∞, with g∗
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being a limiting distribution assigning all of its probability mass to the set of
optimal solutions). Some common approaches for constructing such a sequence
include: (a) various proportional selection schemes—used in ACOs, EDAs, and
PCs; (b) Boltzmann selection schemes—used in AAS and the continuous EDA
algorithm in [6]; and (c) optimal importance sampling measure—primarily used
in the CE method.

However, in all cases, the obvious difficulties are that the sequence {gk} often
depends on h, which may not be available in any explicit form, and that the problem
of sampling exactly from even a known (but arbitrary) distribution gk is in general
intractable. In [18], a general approach called model reference adaptive search
(MRAS) is proposed, where these difficulties are circumvented by sampling from a
surrogate distribution that approximates gk. The idea of MRAS is to specify a family
of parameterized distributions { fϕ(·),ϕ ∈ Φ} (with Φ being the parameter space)
and then project gk onto the family to obtain a sequence of sampling distributions
{ fϕk} with desired convergence properties. The projection is carried out by finding
an optimal parameter ϕk that minimizes the Kullback–Leibler (KL) divergence
between gk and the parameterized family { fϕ(·),ϕ ∈ Φ} (cf. also [35]), i.e.,

ϕk = arg min
ϕ∈Φ

D(gk, fϕ),

where

D(gk, fϕ) :=
∫

Θ
ln

gk(x)
fϕ(x)

gk(x)ν(dx) = Egk

[
ln

gk(X)

fϕ(X)

]
, (12.2)

ν is the Lebesgue/discrete measure on Θ , and Eg[·] is the expectation taken with
respect to the density/mass functions g. The hope is that the parameterized family is
specified with some structure so that once the parameter is determined, sampling
from each of these distributions should be a relatively easy task. Moreover, the
task of updating the entire distribution can be simplified to the task of updating its
associated parameters, and the sequence {gk}, henceforth referred to as reference
distributions, is only used implicitly to guide the parameter updating procedure.

Note that there are other ways of constructing surrogate distributions. For
example, in AAS, Markov chain Monte Carlo (MCMC) techniques are frequently
used to approximate the target Boltzmann distribution at each iteration [32], and
in traditional EDAs, empirical distribution models are directly constructed to
generate new candidate solutions [30, 41]. However, these algorithms can also be
accommodated within the above model reference framework by projecting the target
distributions onto a family of parameterized distributions. Specifically, under such
a framework, the three example sequences of reference distributions {gk} can be
expressed in the following recursive forms:

(a) proportional selection scheme: gk(x) =
S(h(x))gk−1(x)
Egk−1 [S(h(X))]

;
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(b) Boltzmann selection:

gk(x) =
eh(x)/Tk∫

x∈Θ eh(x)/Tk ν(dx)
=

e
h(x)( 1

Tk
− 1

Tk−1
)
gk−1(x)

Egk−1

[
e

h(X)( 1
Tk
− 1

Tk−1
)] :=

S(h(x))gk−1(x)
Egk−1 [S(h(X))]

,

with {Tk} being a sequence of parameters determined by an annealing schedule;

(c) importance sampling measure: gk(x) =
S(h(x)) fϕk(x)

Eϕk [S(h(X))]
,

where S(·) is a non-negative increasing (possibly iteration-varying) function, and
Eϕ [·] is the expectation taken with respect to fϕ . The algorithm instantiation
considered in [18] uses the recursive procedure corresponding to case (a) to
construct the gk sequence. This form of reference distributions weights gk by the
value of the performance measure by giving more mass to solutions with good
performance. The resulting gk+1 has the property that it improves the expected
performance of gk, since

Egk+1 [S(h(X))] =
Egk [S

2(h(X))]

Egk [S(h(X))]
≥ Egk [S(h(X))].

This property ensure the convergence of the sequence {gk} to a degenerate
distribution concentrated on the set of optimal solutions. The general structure of
the MRAS method is outlined below.

Basic Model Reference Adaptive Search (MRAS) Optimization Framework

Step 0. Select a parameterized family { fϕ} and the {gk} sequence with desired
convergence properties.

Step 1. Given ϕk, generate N candidate solutions X1
k , . . . ,X

N
k by sampling from fϕk .

Step 2. Update the parameter ϕk+1 based on the sampled solutions by minimizing
the KL-divergence

ϕk+1 = arg min
ϕ∈Φ

D(gk+1, fϕ);

set k ← k+1 and reiterate from Step 1 until a stopping criterion is satisfied.

In some model-based algorithms such as CE and EDAs, there is often an addi-
tional selection step embedded in the above procedure. The idea is to concentrate
the computational effort on the set of promising solutions by using only a portion
of the samples—the set of “elite” samples—to update the probability model at
Step 2. Also note that in general, the expectation involved in the KL-divergence
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(cf. (12.2)) cannot be evaluated exactly. So in practice, the objective function
in the minimization problem at Step 2 is often replaced by its sample average
approximation. This leads to an estimator of ϕk+1 that is biased for any finite sample
size N. This bias issue will be discussed later in Sect. 12.5.

12.3.1 Convergence Result

For distributions in the natural exponential family (NEF), the minimization in Step 2
of the basic MRAS framework can be carried out in analytical form, which makes
the method easy to implement efficiently.

Definition 12.1. A parameterized family { fϕ(·),ϕ ∈ Φ ⊆ R
m} on Θ is called a

natural exponential family if there exist mappings Γ : Rd → R
m and K : Rm → R

such that fϕ(x) = exp
(
ϕT Γ (x)−K(ϕ)

)
, where K(ϕ) = ln

∫
Θ exp(ϕT Γ (x))ν(dx)

is a normalization constant.

The NEF has many interesting properties. For the purpose of our discussion, we
recall that K(ϕ) is strictly convex in the interior of Φ and the mean parameter
function defined by

m(ϕ) := ∇ϕ K(ϕ) = Eϕ [Γ (X)] (12.3)

is a one-to-one invertible mapping of ϕ . Intuitively, m(ϕ) is essentially a trans-
formed version of the sufficient statistic Γ (x), whose value contains all information
necessary in estimating the parameter ϕ . For example, in the univariate normal
distribution N (μ ,σ2) with mean μ and variance σ2, it can be seen that Γ (x) =
(x,x2)T and ϕ = (μ/σ2,−1/(2σ2))T . Thus, given the value of m(ϕ), the equation
m(ϕ) = Eϕ [Γ (X)] = (μ ,σ2 +μ2)T can be uniquely solved for μ and σ2.

When NEFs are used in the framework with the sample size N adaptively
increasing, the convergence result for the instantiation of MRAS considered in [18]
takes the form

lim
k→∞

m(ϕk) = Γ (x∗) w.p.1. as k → ∞.

Since m(ϕ) is one-to-one, this shows that the sequence of sampling distributions
{ fϕk} will converge to a limiting distribution fϕ∗ for gk sequences of proportional
selection scheme type. In addition, it has been argued in [18] that in many special
cases of interest, the limiting distribution turns out to be a degenerate distribution
on the set of optimal solutions. For example, when multivariate normal distributions
with mean vector μk and covariance matrix Σk are used as parameterized distribu-
tions, the convergence result translates to limk→∞ μk = x∗ and limk→∞ Σk = 0n×n

w.p.1, where 0n×n represents an n-by-n zero matrix.
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12.3.2 Simulation Optimization

In [19], the MRAS method has been generalized to stochastic settings where the
objective function h(x) in (12.1) can only be estimated, e.g., via a simulation model
or real-time observations. We begin by providing a high-level description of the
method.

Stochastic MRAS Framework for Simulation Optimization

Step 0. Select a parameterized family { fϕ} and an idealized {gk} sequence with
desired convergence properties.

Step 1. Given ϕk, generate N candidate solutions Λk := {X1
k , . . . ,X

N
k } by sampling

from fϕk .
Step 2. Take Mk simulation observations for each x ∈ Λk and estimate h(x) by the

sample average H(x) := 1
Mk

∑Mk
j=1 H(x,ξ j), where ξ j is the simulation noise in the

jth replication run.
Step 3. Update the parameter ϕk+1 based on the sampled solutions by minimizing

the KL-divergence

ϕk+1 = arg min
ϕ∈Φ

D(g̃k+1, fϕ);

set k ← k+1 and reiterate from Step 1 until a stopping criterion is satisfied.

The basic structure of the stochastic MRAS method (SMRAS) is similar to that
of MRAS for deterministic optimization, the main addition being the requirement
of an additional performance estimation step (i.e., Step 2 above). So in addition
to the sample size N used in MRAS, we also need to specify the number of
simulation replications to be allocated to each sampled candidate solution. At each
iteration, the sample mean based on Mk observations is used to estimate the true
performance h(x). Another modification from the original MRAS method occurs
at Step 3, where a distribution g̃k is used as an approximation of the idealized gk

distribution in minimizing the KL-divergence. The sequence {g̃k} is obtained by
replacing the true objective function h(x) in the construction of gk with its sample
average approximation H(x).

There are two general types of approaches for handling the simulation noise
involved in evaluating the objective function. One type of approaches (e.g., sample
average approximation) relies on highly precise estimates of the objective function
values by allocating a significant amount of simulation replications to each visited
solution. The other type of approaches (e.g., stochastic approximation) does not
require precise performance estimates, but generally involves some forms of
averaging, so that the estimation error due to simulation noise will automatically
cancel out over the course of a large number of iterations. The SMRAS method
falls in between these two types of approaches and requires increasingly precise
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estimates of the objective function values as the search progresses. In particular,
for the proportional selection scheme type {gk} sequence, conditions on {Mk} that
ensure the convergence of the method are provided in [19]. It has been shown
that when the simulation noises (not necessarily i.i.d.) satisfy the large deviation
principle, Mk is required to grow linearly with the number of iterations k.

As compared with the MRAS method for deterministic optimization, the updat-
ing formula for ϕk+1 (or equivalently m(ϕk+1), due to the invertibility of the
mapping m) in SMRAS has an additional simulation error term. For general
reference distribution sequences, a large deviation approach similar to that of
[19] can be applied to determine the conditions on {Mk} under which the error
term converges to zero with probability one. Again, when NEFs are used in
the SMRAS framework and {gk} is constructed using the proportional selection
scheme, essentially the same convergence result as stated in Sect. 12.3.1, i.e.,

lim
k→∞

m(ϕk) = Γ (x∗) w.p.1. as k → ∞,

has been established under some appropriate conditions on the algorithm input
parameters, the sample size N, and the number of simulation replications Mk;
see [19].

12.4 A Stochastic Approximation Framework

In this section, we present a stochastic approximation (cf. Chap. 6) framework
to analyze a general class of model-based algorithms. We show that a slight
modification of the MRAS method introduced in Sect. 12.3 will lead to an inter-
esting connection between model-based algorithms and the well-known stochastic
approximation method. This connection implies that for a general non-differentiable
(deterministic) optimization problem, a model-based algorithm implicitly trans-
forms the underlying problem into an equivalent stochastic optimization problem
with smooth differentiable structures, and the algorithm itself can be viewed as
a gradient-based recursion over a transformed parameter space for solving the
equivalent smoothed problem. This interpretation of model-based algorithms not
only explains why these algorithms work well for hard optimization problems with
little structure, but also allows us to investigate their theoretical properties such
as convergence and rate of convergence by using theory and tools from stochastic
approximation.

The main idea of the stochastic approximation framework is to replace the
reference distribution sequence {gk} in the original MRAS method by a sequence
{ĝk} of the form:

ĝk+1(x) = αkgk+1(x)+(1−αk) fϕk(x), αk ∈ [0,1] ∀k, (12.4)
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where fϕk is the sampling distribution obtained at the kth iteration of an algorithm
and αk is a mixture coefficient. Note that by taking ĝk+1 as the weighted average
of gk+1 and fϕk , it is “forced” to stay close to both distributions. Thus, if ĝk+1 is
used in place of gk+1 in minimizing the KL-divergence D(ĝk+1, fϕ) at Step 2 of
the MRAS method, the new sampling distribution fϕk+1 obtained will not deviate
significantly from the current sampling distribution fϕk . Since an NEF distribution
fϕ is uniquely characterized by its associated parameter ϕ , the above intuition can
be formally stated in terms of the difference between the two successive mean
parameter functions (cf. (12.3)) of the projected probability distributions [20, 22]:

m(ϕk+1)−m(ϕk) =−αk∇ϕD(gk+1, fϕ)|ϕ=ϕk . (12.5)

Equation (12.5) explicitly brings out the updating direction of the parameter func-
tions at each step, which is in the direction of the negative gradient of the iteration-
varying objective function for the minimization problem minϕ∈Φ D(gk+1, fϕ) ∀k.
This suggests that regardless of the type of decision variables involved in the
original problem (12.1), algorithms conforming to the framework are essentially
gradient-based recursions for solving a sequence of optimization problems on the
parameter space Φ with smooth differentiable structures. In the special case of the
CE method, i.e., when gk+1 in the right-hand-side of recursion (12.4) is replaced
with S(h(x)) fϕk(x)/Eϕk [S(h(X))], it can be seen that (12.5) becomes

m(ϕk+1)−m(ϕk) = αk
Eϕk [S(h(X))(Γ (X)−m(ϕk))]

Eϕk [S(h(X))]
= αk∇ϕ lnEϕ [S(h(X))]

∣∣
ϕ=ϕk

.

(12.6)

So the updating direction is in the gradient of the objective function for the maxi-
mization problem maxϕ∈Φ lnEϕ [S(h(X))]. The optimal solution of this optimization
problem is a parameter ϕ∗ whose associated sampling distribution fϕ∗ assigns
maximum probability to the set of optimal solutions of (12.1).

Letting ηk := m(ϕk) and using the invertibility of the mapping m, we can
write (12.5) in the abstract form

ηk+1 = ηk −αkL(ηk), (12.7)

where L(ηk) represents the gradient of the underlying (possibly iteration-varying)
objective function at ηk, which, for the three example {gk} sequences discussed in
Sect. 12.3, takes the general form

L(ηk) =
Eϕk [S(h(X))G(X ,ηk)]

Eϕk [S(h(X))]
(12.8)

for some appropriate function G(x,ηk). In actual implementation, expectations are
replaced by sample averages based on Monte Carlo sampling, (12.7) becomes
stochastic approximation with direct gradient estimation:

η̃k+1 = η̃k −αkL̃(η̃k), (12.9)
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where L̃ is an estimator for L based on sampled candidate solutions. The most
straightforward estimator is

L̃(η̃k) =
N−1 ∑N

i=1 S(h(Xi
k))G(Xi

k, η̃k)

N−1 ∑N
i=1 S(h(Xi

k))
.

Thus, it is clear that the rich body of tools and results from stochastic approximation
[28,29] can be incorporated into the framework to analyze model-based algorithms.

12.4.1 Convergence Results

Convergence of the CE Method

The convergence of the CE algorithm has been studied in [20, 22] by writing
(12.9) in the form of a generalized Robbins–Monro algorithm in terms of the true
gradient, a bias term, and a noise term caused by Monte Carlo random sampling, and
then following a standard ordinary differential equation (ODE) argument (cf. e.g.,
[4, 5, 28]). Basically, it has been shown in [22] that the asymptotic behavior of CE
is governed by the properties of a limit set of an underlying ODE. In addition, if the
limit set consists purely of isolated equilibrium points of the ODE, then the sequence
of {η̃k} generated by CE will converge to a unique limiting point η∗ w.p.1. Under
such a condition, the following asymptotic convergence rate result has also been
established in [22]:

k
τ
2 (η̃k −η∗) d−→N

(
0,Σ

)
as k → ∞,

where τ ∈ (0,1) is an appropriate constant and Σ is a positive definite covariance
matrix.

Model-Based Annealing Random Search (MARS)

The stochastic approximation framework also allows for a lot of flexibility in devel-
oping provably convergent algorithms that perform well in practice. For example,
[21] has investigated the use of Boltzmann distributions as reference models in the
framework to address the implementation difficulty of annealing adaptive search,
leading to a new globally convergent algorithm called model-based annealing
random search (MARS). The algorithm complements existing research based on
MCMC sampling techniques in the sense that it samples candidate solutions from a
sequence of NEF distributions that approximates the target Boltzmann distributions,
whereas MCMC techniques are sequential sampling procedures that sample directly
from the Boltzmann distributions. The major steps of the MARS algorithm are given
next.
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Basic MARS Algorithm

Step 0. Select an NEF distribution family { fϕ ,ϕ ∈ Φ}, a sequence of temperature
parameters {Tk}, and a gain sequence {αk}.

Step 1. Given ϕk, generate N candidate solutions X1
k , . . . ,X

N
k by sampling from fϕk .

Step 2. Update the parameter

ϕk+1 = arg min
ϕ∈Φ

D(ĝk+1, fϕ);

set k ← k+1 and reiterate from Step 1.

At Step 2 of MARS, the reference distribution ĝk+1 is given by ĝk+1(x) =
αkḡk+1(x) + (1− αk) fϕk(x), which is the mixture of the current sampling distri-
bution fϕk with ḡk+1, an empirical estimate of the true Boltzmann distribution

gk+1(x) := eh(x)/Tk∫
X eh(x)/Tk dx

based on the sampled solutions X1
k , . . . ,X

N
k .

In light of Eq. (12.5), the mean parameter function m(ϕk+1) corresponding to
the new parameter ϕk+1 obtained at Step 2 of MARS can be viewed as an iterate
generated by the gradient recursion

m(ϕk+1) = m(ϕk)−αk∇ϕD(ḡk+1, fϕ)|ϕ=ϕk . (12.10)

By the properties of NEFs, the gradient in (12.10) can be expressed in terms of a
true gradient term involving the Boltzmann distribution gk+1 and an error term due
to random sampling, leading to a Robbins–Monro type stochastic approximation
algorithm

m(ϕk+1) = m(ϕk)−αk

(
m(ϕk)−Egk+1 [Γ (X)]+Egk+1 [Γ (X)]−Eḡk+1 [Γ (X)]

)

= m(ϕk)−αk∇ϕD(gk+1, fϕ)|ϕ=ϕk −αk
(
Egk+1 [Γ (X)]−Eḡk+1 [Γ (X)]

)
. (12.11)

Note that (12.11) generalizes a typical stochastic approximation recursion in that
the function D(gk+1, fϕ) may change shape with k. This time-varying feature of
MARS actually turns out to be a desirable property, because the idealized sequence
of Boltzmann distributions {gk} converges to a limiting distribution g∗ as k goes to
infinity. This will in turn imply the convergence of the sequence of the optimal
solutions {ϕk} to a global optimizer ϕ∗. Under some appropriate conditions on
the algorithm input parameters, the following convergence result has been obtained
in [21]:

lim
k→∞

m(ϕk) = Γ (x∗) w.p.1.
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In addition, for a polynomially increasing sample size N = akβ and a gain sequence
of the form αk = c/kα for constants a > 0, c > 0, α ∈ ( 1

2 ,1), and β > α , an
asymptotic normality result of the following form is also given in [21]:

k
α+β

2
(
m(ϕk)−Γ (x∗)

) d−→N (0,Σ) as k → ∞,

where Σ is a positive definite covariance matrix.

12.4.2 Simulation Optimization

The simulation optimization setting, where H(x,ξ ) is obtained in a simulation
replication, requires an additional simulation allocation rule {Mk}, which allocates
Mk simulation observations to each of the N candidate solutions generated at the
kth iteration. Thus, in constructing gradient estimators, if the true performance at a
sampled solution Xi

k is replaced by the sample average

Hk(X
i
k) =

1
Mk

Mk

∑
j=1

H(Xi
k,ξ j),

then an estimator of the true gradient L(η̃k) in (12.8) will take the form

LN(η̃k) =
N−1 ∑N

i=1 S(Hk(Xi
k))G(Xi

k, η̃k)

N−1 ∑N
i=1 S(Hk(Xi

k))
.

Consequently, the gradient iteration (12.9) can be carried out at each step by
replacing the true performance at a sampled solution Xi

k by its sample average
approximation Hk(Xi

k), leading to a recursion of the form

η̃k+1 = η̃k −αkL̃N(η̃k)+αk
(
L̃N(η̃k)−LN(η̃k)

)
. (12.12)

Under some appropriate conditions on the allocation rule {Mk}, the expectation
(conditional on the current sampled solutions) of the error term L̃N(η̃k)− LN(η̃k)
goes to 0 as k → ∞. Thus by treating the simulation noise L̃N(η̃k)− LN(η̃k) as a
vanishing bias term, the (possibly local) convergence and convergence rate analysis
of recursion (12.12) can be studied along the same line as in the deterministic
optimization case.
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Application of MARS to Finite-Horizon Markov Decision Processes

To illustrate the adaptation of the stochastic approximation framework to simula-
tion setting, we modify and extend the MARS algorithm to a stochastic setting
and present a simulation-based algorithm called approximate stochastic annealing
(ASA) for solving finite-horizon Markov decision processes (MDPs) [16]. The idea
is to interpret an MDP as a stochastic optimization problem on the (randomized)
policy space (where candidate solutions are policies) and then use ASA as a specific
optimization strategy to directly search the policy space to find good policies.

Consider a discrete-time finite H -horizon stochastic system xt+1 = f (xt ,at ,wt)
for t = 0,1, . . . ,H −1, where xt represents the system state at time t taking values
from a finite state space X , at is the control applied at time t chosen from a finite
action set A , {wt} is a sequence of random vectors representing the stochastic
uncertainty of the system, and f is the next-state transition function. Let Rt(xt ,at ,wt)
be the one-stage reward for action at taken in state xt at time t. Define Π as the set of
non-stationary deterministic Markovian policies π = {πt , t = 0, . . . ,H −1}, where
each πt : X → A is a function that specifies the action to be applied at time t for
each x ∈ X . For an initial state x0 = x, the expected total reward (value function)
associated with a policy π is given by

V π(x) := E
[H −1

∑
t=0

Rt(xt ,πt(xt),wt)
∣∣x0 = x

]
. (12.13)

The objective is to find an optimal policy π∗ ∈ Π that maximizes the expected total
reward for a given state x, i.e.,

V π∗
(x) = max

π∈Π
V π(x). (12.14)

At each iteration, ASA searches for improved policies by sampling from a
probability distribution function φ(π,q) over the policy space Π , where q is a
parameter vector taking values from some parameter space. The distribution is then
modified using a Boltzmann selection scheme based on the simulated/estimated
value functions of the sampled policies. One simple way to specify the parame-
terized distribution φ(π,q) is to use an |X |-by-|A |-by-H stochastic matrix qk,
whose (i, j, t)th entry qk(i, j, t) specifies the probability that the action a j is applied
to state xi at time t. Such a stochastic matrix qk gives rise to a probability mass
function over Π :

φ(π,qk) :=
H −1

∏
t=0

|X |
∏
i=1

|A |
∏
j=1

[
qk(i, j, t)

]I{π∈Πi, j(t)} ∀π ∈ Π , (12.15)

where I{·} is the indicator function and Πi, j(t) := {π : πt(xi) = a j} denotes the
set of deterministic policies that assign action a j to state xi at time t. Thus, as in
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the MARS algorithm, the goal is to iteratively update the entries qk(i, j, t) so that
φ(π,qk) will be a close approximation to the desired Boltzmann distribution

gk+1(π) =
eV π/Tk

∑π∈Π eV π/Tk
.

This results in the following adaptive policy search procedure.

Approximate Stochastic Annealing (ASA) Algorithm for Solving MDPs

Step 0. Select a sequence of temperature parameters {Tk} and a gain sequence
{αk}.

Step 1. Given qk, sample N policies Λk := {π1
k , . . . ,π

N
k } from φ(π,qk).

Step 2. For each π ∈ Λk, perform Mk independent simulation replication runs and
let V̄ π

k = 1
Mk

∑Mk
l=1 V π

l , where V π
l is an estimate of the value function V π obtained

in the lth replication run.
Step 3. Update the q matrix

qk+1 = arg min
q

D
(
ĝk+1,φ(·,q)

)
.

Set k ← k+1 and reiterate from Step 1.

Note that at Step 3, the KL-divergence is with respect to ĝk+1(π) = αkg̃k+1(π)+
(1−αk)φ(π,qk), where g̃k+1 is an empirical estimate of the true Boltzmann distri-
bution gk+1 based on the sampled policies in Λk and value function estimates V π

l .
Since the parameterized distribution φ(π,qk) given in (12.15) belongs to NEFs,

it is not difficult to show that the entries of the qk matrix updated at Step 3 satisfy
the following recursion:

qk+1(i, j, t)−qk(i, j, t) = αk

[
Eg̃k+1 [I{π ∈ Πi, j(t)}]−qk(i, j, t)

]

= αk

[
Egk+1 [I{π ∈ Πi, j(t)}]−qk(i, j, t)

]

−αk

[
Egk+1 [I{π ∈ Πi, j(t)}]−Eg̃k+1 [I{π ∈ Πi, j(t)}]

]
. (12.16)

Since gk+1 assigns more weight to policies with better performance, the first term on
the right-hand-side of the second equality implies that the entries of qk are updated
in a direction that “pursues” the optimal policy π∗, whereas the second term can
be viewed as a noise term caused by the approximation error between g̃k+1 and
gk+1. Thus the convergence analysis of ASA essentially boils down to the issue of
inspecting whether the Boltzmann distribution gk+1 can be closely approximated
by its empirical estimate g̃k+1. In particular, under some mild conditions on the
algorithm input parameters, the following result is obtained in [16]:

qk(i, j, t)→ I{π∗ ∈ Πi, j(t)} ∀i, j, t as k → ∞ w.p.1,
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which indicates that the sequence of stochastic matrices qk generated by the
algorithm will converge to a limiting matrix assigning unit probability mass to the
optimal policy π∗.

12.5 A Stochastic Averaging Approach

As we have seen in previous sections, convergence analysis of model-based
algorithms typically requires a sample size N that increases polynomially with the
number of algorithm iterations. In practice, this translates to using a per-iteration
computational effort that grows without bound as the number of iterations increases,
which may have a negative impact on the algorithm’s practical performance,
especially in the setting where simulation/function evaluations are expensive.

This efficiency issue has been tackled in [17], where the basic idea is to maintain
a population of probability distribution models (rather than just a single model as
in a typical model-based algorithm) at each iteration and then adaptively allocate a
given computing budget among different models in order to maximize the expected
performance of the algorithm. In this section, we present an approach that aims
to improve the sampling efficiency of model-based algorithms from a different
perspective, focusing primarily on reducing the number of candidate solutions
generated per iteration. This is carried out through embedding a stochastic averaging
procedure within model-based algorithms to make more efficient use of the past
sampling information. The material in this section is based on [23, 24].

For simplicity, we consider the general reference distribution introduced in
Sect. 12.3:

gk(x) =
S(h(x))gk−1(x)
Egk−1 [S(h(X))]

.

By expanding the above recursion, we can write gk in terms of the initial distribution
g0 as

gk(x) =
Sk(h(x))g0(x)
Eg0 [Sk(h(X))]

, (12.17)

where Sk is some appropriate iteration-varying function that depends on S. Substi-
tuting (12.17) into the minimization problem minϕ D(gk+1, fϕ) and dropping terms
that are constants with respect to ϕ , it can be seen that the parameter ϕk+1 obtained
at Step 2 of the MRAS method of Sect. 12.3 can be equivalently obtained by solving
the following optimization problem

ϕk+1 = arg max
ϕ∈Θ

(
Qk+1(ϕ) :=

∫
x∈Θ

Sk+1(h(x)) ln fϕ(x)dx

)
. (12.18)
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As discussed previously, in model-based algorithms, the integral involved in
the Q-function Qk+1(ϕ) is estimated by generating N i.i.d. candidate solutions
X1

k , . . . ,X
N
k from fϕk , and then replacing Qk+1(ϕ) by its sample average

approximation

Q̄k+1(ϕ) :=
1
N

N

∑
i=1

Sk+1(h(Xi
k))

fϕk(X
i
k)

ln fϕ(X
i
k).

Although Q̄k+1(ϕ) is an unbiased estimator of Qk+1(ϕ), the corresponding opti-
mization step will lead to an estimator of ϕk+1 that is biased for any finite
sample size N, because the optimal solution to (12.18) involves a ratio of inte-
grals/expectations. Consequently, common implementations of these algorithms
either require hundreds or even thousands of candidate solutions to be generated
per iteration [6, 35], or require the use of a sample size N that increases at least
polynomially with k in order to reduce the ratio bias effect [13, 18, 21, 22].

This bias issue has been addressed in [23, 24] by replacing the sample average
approximation Q̄k(ϕ) with the stochastic averaging procedure

Q̂k+1(ϕ) = (1−βk)Q̂k(ϕ)+βk
1
N

N

∑
i=1

Sk+1(h(Xi
k))

fϕk(X
i
k)

ln fϕ(X
i
k), (12.19)

with Q̂1(ϕ) := 1
N ∑N

i=1

(
S1(h(Xi

0))/ fϕ0(X
i
0)
)

ln fϕ(Xi
0), where βk is a step size

constant satisfying βk ∈ (0,1] ∀k. Note that this procedure incrementally updates the
current estimate of the Q-function as new sampling information becomes available
at each iteration. In addition, due to the recursive nature of (12.19), all candidate
solutions generated in the previous iterations contribute to the estimation of the
Q-function Qk+1(ϕ). Consequently, it is reasonable to expect that the number of
samples per iteration N can be significantly reduced or even held at a small constant
value.

It is interesting to note that when NEF is used, Q̂k+1(ϕ) can be expressed as a
linear combination of the parameter vector ϕ and the function K(ϕ):

Q̂k+1(ϕ) = ϕTSk+1 −K(ϕ)Rk+1,

where the quantities Sk and Rk can be computed via the respective recursions

Sk+1 =Sk +βk

(
1
N

N

∑
i=1

Sk+1(h(Xi
k))

fϕk(X
i
k)

Γ (Xi
k)−Sk

)
,

Rk+1 =Rk +βk

(
1
N

N

∑
i=1

Sk+1(h(Xi
k))

fϕk(X
i
k)

−Rk

)
,

with S1 := 1
N ∑N

i=1 S1(h(Xi
0))/ fϕ0(X

i
0)Γ (Xi

0) and R1 := 1
N ∑N

i=1 S1(h(Xi
0))/ fϕ0(X

i
0).

Thus, by substituting Q̂k+1(ϕ) for Qk+1(ϕ) in (12.18), we have the following
optimization problem:
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ϕk+1 = arg max
ϕ∈Θ

(
ϕTSk+1 −K(ϕ)Rk+1

)
,

whose unique closed-form solution is given by

m(ϕk+1) =
Sk+1

Rk+1
or equivalently ϕk+1 = m−1

(Sk+1

Rk+1

)
.

The above stochastic averaging idea has been combined with the MARS algorithm
of Sect. 12.4, leading to a two-time-scale stochastic approximation type of algorithm
called MARS with stochastic averaging (MARS-SA).

MARS with Stochastic Averaging (MARS-SA)

Step 0. Select temperature parameters {Tk} and gain sequences {αk} and {βk}.
Step 1. Generate N i.i.d candidate solutions Λk := {X1

k , . . . ,X
N
k } from fϕk(x).

Step 2. Update Sk+1 and Rk+1 according to the recursions:

Sk+1 =Sk +βk

(
1
N ∑

x∈Λk

eh(x)/Tk+1

fϕk(x)
Γ (x)−Sk

)
,

Rk+1 =Rk +βk

(
1
N ∑

x∈Λk

eh(x)/Tk+1

fϕk(x)
−Rk

)
.

Step 3. Compute a new parameter ϕk+1 as

m(ϕk+1) = αk
Sk+1

Rk+1
+(1−αk)m(ϕk).

Set k ← k+1 and reiterate from Step 1.

By exploiting the connection of MARS-SA to stochastic approximation method,
it is shown in [23, 24] that the algorithm converges globally even when the per
iteration sample size N is held at a small constant value. In addition, preliminary
empirical results reported in [24] indicate that the new algorithm can be more
efficient (in terms of the number of performance evaluations) than the original
MARS algorithm.

12.6 Conclusions and Open Research Questions

In this chapter, we have provided an overview of three model-based optimization
methods and discussed their extensions to simulation optimization. In particular,
the MRAS method discussed in Sect. 12.3 offers a general framework to design and
implement model-based algorithms, whereas the stochastic approximation method
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presented in Sect. 12.4 provides a systematic approach to analyze the convergence
properties of these algorithms. In addition, we have also outlined in Sect. 12.5 a
stochastic averaging procedure that addresses the estimator bias issue in model-
based algorithms and aims to make these algorithms computationally more efficient.
These methods are illustrated through a number of exemplary algorithms that are
both provably convergent and exhibit promising empirical performance.

There are many challenging research issues that remain to be addressed. For
example, the theoretical convergence and empirical performance of model-based
algorithms are greatly influenced by the choices of reference distributions. So a
natural research question is how the reference distributions should be chosen for
specific problems. Moreover, since existing convergence results are all asymptotic
in nature, a theoretical issue is to study whether finite-time performance bounds
(e.g., similar to those in stochastic adaptive search [39]) can also be developed for
these algorithms.

Model-based algorithms generally do not make use of problem structure, whereas
in a continuous-variable simulation optimization setting, there may be additional
information available (e.g., stochastic gradient estimates, Lipschitz continuity)
from problem knowledge. It is well-known that effective use of structure may
dramatically improve the solution efficiency. Therefore, another interesting research
direction is to investigate how to incorporate problem structure information into
model-based algorithms, as well as to identify classes of problems for which this
can be done in a systematic manner.

The extension of model-based algorithms to simulation optimization is carried
out in a relatively straightforward manner by introducing an additional simulation
allocation sequence {Mk} to obtain increasingly precise performance estimates as
the search proceeds. This motivates the design of new model-based algorithms that
do not rely on expending additional simulation effort on performance estimation
(Mk = 1 for all k), e.g., in a way that the simulation noise will act like martingale
difference noise in stochastic approximation and automatically average out over a
large number of iterations. This is yet another avenue of research that merits further
investigation.
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