
Chapter 10
A Review of Random Search Methods

Sigrún Andradóttir

Abstract This chapter provides a brief review of random search methods for
simulation optimization. We start by describing the structure of random search
when system performance is estimated via simulation. Next, we discuss methods for
solving simulation optimization problems with discrete decision variables and one
(stochastic) performance measure, with emphasis on simulated annealing. Finally,
we expand our scope to address simulation optimization problems with continuous
decision variables and/or multiple (stochastic) performance measures.

10.1 Introduction

This chapter describes the use of random search to optimize complex stochastic sys-
tems whose expected performance under any particular system design is unavailable
in closed form, and instead must be estimated via computer simulation. Thus, if Θ
denotes the set of all possible system designs and f (x) = E[Y (x,ξ )] denotes the
expected system performance under each design x ∈ Θ , then we aim to solve the
optimization problem

min
x∈Θ

f (x) (10.1)

under the assumption that the values of the objective function f will be estimated
using simulation. We will outline the generic structure of random search methods
and provide a review of a representative set of specific random search approaches.

Random search methods involve repeatedly sampling and evaluating system
designs based on the observed history (i.e., the designs that have been sampled so
far and their estimated performance) in search of the best feasible design. They
are well suited for solving simulation optimization problems where the objective
function often has little known structure (and hence derivatives are unavailable) and
the optimization procedure must identify improved solutions with guidance from the
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estimated performance of the solutions considered so far. The scope of applicability
of random search is broad, and includes deterministic and stochastic optimization
problems with discrete and/or continuous decision parameters.

The outline of this chapter is as follows. In Sect. 10.2, we describe the structure
of random search methods. In Sect. 10.3, we review a representative set of random
search methods for solving discrete simulation optimization problems. In Sect. 10.4,
we discuss example procedures for solving simulation optimization problems with
either continuous decision variables or multiple performance measures. An earlier
overview of random search for simulation optimization emphasizing desirable
features such as convergence and efficiency can be found in Andradóttir [14].

10.2 Structure of Random Search Methods for Simulation
Optimization

In this section, we describe the structure of random search methods applied to solve
the simulation optimization problem (10.1). We will let Sn denote the sampling
strategy used to select candidate system designs in iteration n ≥ 1 of the algorithm,
with Mn specifying the number of such designs. The sampling strategy can be
updated adaptively as the algorithm learns from the results so far, and does not need
to be chosen in advance of execution. Similarly, Mn is a parameter of the sampling
strategy Sn, and consequently does not need to be chosen in advance. The sampling
strategy can be used both to identify new, promising system designs, and also to
obtain improved objective function estimates for previously sampled designs (by re-
sampling them). The following generic random search algorithm can also be found
in Andradóttir [14].

Generic Random Search Algorithm for Simulation Optimization:

Step 0 (initialize): Choose the initial sampling strategy S1 and let n = 1.

Step 1 (sample): Select x(1)n , . . . ,x(Mn)
n ∈Θ according to the sampling strategy Sn.

Step 2 (simulate): Estimate f (x(i)n ), for i = 1, . . . ,Mn, using simulation.
Step 3 (update): Use the simulation results obtained in Step 2 to compute an

estimate of the optimal solution x∗n and to choose an updated sampling strategy
Sn+1. Let n = n+1 and go to Step 1.

The primary difference among random search methods involves the choice of the
sampling strategies {Sn}. Also, the generic algorithm does not include a stopping
criterion. This is consistent with the fact that convergence results for random search
are typically asymptotic in nature. In practice, it is of course necessary to augment
the algorithm with a suitable stopping criterion.

In the remainder of this chapter, we will describe specific random search
procedures for simulation optimization. As much of the random search literature
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focuses on problems with discrete decision variables, we start by considering such
problems in Sect. 10.3. Then we consider extensions to continuous feasible regions
and multiple objectives in Sect. 10.4.

10.3 Discrete Simulation Optimization

In this section, we review example procedures for discrete simulation optimization
problems with one (stochastic) performance measure. (In addition, there may be
deterministic performance measures whose values do not need to be estimated
via simulation. They can be incorporated into the constraint set Θ .) We start by
discussing research on how the well-known simulated annealing algorithm can be
applied to solve discrete simulation optimization problems in Sect. 10.3.1. Then we
briefly review certain other random search procedures for solving the optimization
problem (10.1) in Sect. 10.3.2.

10.3.1 Simulated Annealing

The simulated annealing algorithm dates back to the pioneering work by Metropolis
et al. [61]. Since then, a large body of literature has appeared on simulated
annealing, including important works by Kirkpatrick et al. [55], Mitra et al. [62],
Hajek [42], and others. A basic version of the simulated annealing algorithm for
solving a deterministic optimization problem of the form (10.1) is provided below.
We will need the following notation:

• for all x ∈ Θ , N(x) ⊂ Θ is a set of “neighbors” of x (alternatively, N(x) is a
“neighborhood” of x);

• for all x ∈Θ , R(x, ·) is a probability distribution on N(x);
• {Tn} is a sequence of strictly positive numbers;
• w.p. = with probability;
• (y)+ = max{0,y} for all y ∈ IR.

Basic Simulated Annealing Algorithm for Deterministic Optimization:

Step 0 (initialize): Choose an initial system design x0 ∈Θ and let n = 1.
Step 1 (sample): Select a candidate solution x′n ∈ N(xn−1) according to the proba-

bility distribution R(xn−1, ·).
Step 2 (update): Let

xn =

⎧
⎨

⎩

x′n w.p. exp

(

− ( f (x′n)− f (xn−1))
+

Tn

)

,

xn−1 otherwise,

n = n+1, and go to Step 1.
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It is clear that the Basic Simulated Annealing Algorithm described above fits
within the framework outlined in Sect. 10.2 with Mn = 1 and x∗n = xn for all
n ∈ IN, except that a “simulate” step is of course not needed here, as the exact
objective function values are available. Simulated annealing is designed to solve
global optimization problems in the presence of (possibly multiple) local optimal
solutions. In each iteration n, the algorithm generates a candidate solution x′n, and
then decides whether to stay at the current solution xn−1 or move to the candidate
solution. More specifically, if the candidate solution x′n satisfies f (x′n)≤ f (xn−1), so
that x′n is better than xn−1, then x′n becomes the new estimated optimal solution.
On the other hand, if f (x′n) > f (xn−1), so that the candidate solution is worse
than xn−1, then there is nevertheless a chance that x′n will be chosen as a new
estimate of the optimal solution. This “hill-climbing” feature is designed to allow
the algorithm to escape from locally optimal solutions that are not globally optimal
(i.e., solutions x satisfying f (x) < f (x′) for all x′ ∈ N(x) but f (x) > infx′∈Θ f (x′)).
The probability exp(−( f (x′n)− f (xn−1))

+/Tn) of making such a hill-climbing move
depends both on how inferior the candidate solution is relative to the current solution
(i.e., on the magnitude of ( f (x′n)− f (xn−1))

+) and on the current “temperature” Tn,
with hill-climbing moves being less likely for worse candidate solutions and for
smaller temperatures. Hill-climbing decisions can be made by generating a uniform
random number Un on the interval [0,1], accepting the candidate solution x′n if
Un ≤ exp(−( f (x′n)− f (xn−1))

+/Tn), and rejecting it otherwise (in which case the
current solution xn−1 remains the estimate of the optimal solution). In addition to
requiring that the temperature Tn be strictly positive for all n, most of the simulated
annealing literature assumes that Tn → 0 as n → ∞ at a logarithmic rate, see for
example Hajek [42].

The previous discussion addressed the use of simulated annealing to solve
deterministic optimization problems. In the remainder of this section, we will review
simulated annealing algorithms designed to solve optimization problems with noisy
objective function values, as is the case in simulation optimization.

Bulgak and Sanders [22] present a heuristic simulated annealing approach and
use it to solve a buffer allocation problem. They deal with the noise in the objective
function evaluations by using confidence intervals to ensure that the difference in
performance is statistically significant when the candidate state has a better objective
function estimate than the current state. Haddock and Mittenthal [43] also present a
heuristic simulated annealing method together with numerical results. Their method
employs a different “update” step than the Basic Simulated Annealing Algorithm
described above (motivated by the work of Glauber [36]), and also uses a rapidly
decreasing temperature sequence {Tn} (their sequence decreases at an exponential
rate, rather than at a logarithmic rate).

We now turn to simulated annealing approaches that are provably convergent
when applied to solve discrete simulation optimization problems. For all a and
b 	= 0, let N (a,b2) denote a normal random variable with mean a and variance b2.
Gelfand and Mitter [34] show that if the transition matrix R(·, ·) is irreducible, the
temperature sequence {Tn} converges to zero, and the noise in the estimate of the
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difference f (x′n)− f (xn−1) in performance between the candidate and current states
in iteration n has a N (0,σ2

n ) distribution where σn = o(Tn) as n → ∞, then their
simulated annealing procedure with noisy objective function estimates converges
in probability to the set Θ ∗ of global optimal solutions provided that the same
algorithm using exact objective function values converges to Θ ∗ in probability.

Gutjahr and Pflug [41] also present convergence results for the simulated
annealing algorithm when the noise in the estimated objective function values
needed in iteration n has the normal N (0,σ2

n ) distribution. They show that when
σn = O(n−γ), where γ > 1, then the simulated annealing algorithm with noisy
objective function evaluations has the same asymptotic performance as when exact
objective functions are available (and hence converges in probability to Θ ∗ if
the temperature sequence {Tn} is chosen properly). They also generalize their
convergence result to noise distributions that are symmetric around zero and more
peaked around zero than the N (0,σ2

n ) distribution satisfying σn = O(n−γ), where
γ > 1 (i.e., for all ε > 0, the noise is more likely to take values in (−ε ,ε) than the
specified N (0,σ2

n ) random variable).
Gelfand and Mitter [34] and Gutjahr and Pflug [41] assume that the variance

σ2
n in the objective function evaluations required in iteration n of the simulated

annealing algorithm converges to zero as n grows. Thus, more precise estimates are
required for larger values of n, which typically results in more computation time
per iteration. Fox and Heine [33] provide convergence guarantees for simulated
annealing applied to solve discrete simulation optimization problems that do not
require a restrictive variance assumption. However, they assume that the objective
function values are restricted to a finite set (they also consider relaxing this
assumption). Each time an estimate of an objective function value f (x) is needed,
they generate a few more observations of f (x) and average them with observations
of f (x) obtained in earlier iterations to obtain the desired estimate of f (x). They
show that this variant of simulated annealing converges in probability to Θ ∗ if the
same algorithm with the exact objective function values converges in probability
to Θ ∗.

Alrefaei and Andradóttir [6] present two simulated annealing algorithms for
discrete simulation optimization. Beyond using noisy objective function estimates,
rather than the exact objective function values, these algorithms differ from the
Basic Simulated Annealing Algorithm presented above in two important ways,
namely the temperature sequence is constant (i.e., Tn = T > 0 for all n) and the
choice of the estimate of the optimal solution x∗n is decoupled from the sequence
{xn} used to search the state space Θ for the optimal solution (see also the Generic
Random Search Algorithm described in Sect. 10.2). Alrefaei and Andradóttir [6]
prove that their algorithms converge almost surely to Θ ∗ and provide numerical
results comparing their algorithms with each other and with the methods analyzed
by Gelfand and Mitter [34], Gutjahr and Pflug [41], and Fox and Heine [33].

Alkhamis et al. [5] study a simulated annealing algorithm that employs confi-
dence intervals to determine whether the difference between the estimated objective
function values at the current and candidate solutions is statistically significant.
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They prove convergence in probability to Θ ∗ when the noise the objective function
evaluations in iteration n converges to zero sufficiently fast relative to the temper-
ature sequence {Tn}, and also provide numerical results. Ahmed and Alkhamis
[1] analyze a simulated annealing approach with a constant temperature and with
decoupled sequences {xn} and {x∗n} (see Alrefaei and Andradóttir [6]) that uses
the two-stage ranking and selection procedure by Dudewicz and Dalal [30] to
decide how many objective function observations are collected from the current
and candidate solutions in iteration n. Alkhamis and Ahmed [4] continue this work
by combining the approach with constant temperature and decoupled {xn} and {x∗n}
sequences of Ahmed and Alkhamis [1] with the confidence interval approach of
Alkhamis et al. [5]. Wang and Zhang [76] study a simulated annealing approach
where a hypothesis test is used to determine whether to stay at the current state or
move to the candidate state.

Prudius and Andradóttir [70] study two simulated annealing algorithms for
discrete simulation optimization with decreasing temperatures {Tn} and with
decoupled {xn} and {x∗n} sequences. The two algorithms differ in that one uses
only the data collected on the objective function values at the current and candidate
solutions xn−1 and x′n in the current iteration n to decide on the next current point xn

(no averaging), whereas the other one uses data collected on the values of f (xn−1)
and f (x′n) in iterations 1 through n to decide on xn (averaging). Both algorithms
are shown to converge almost surely, and numerical results show that using all
available data on the objective function values (as in averaging) does not necessarily
improve performance (because the associated reduction in noise is not necessarily
beneficial).

As was mentioned at the beginning of this section, the literature on simulated
annealing for deterministic optimization is vast, and several researchers have studied
the application of simulated annealing to solve simulation optimization problems.
In addition to the contributions reviewed so far in this section, other works on
simulated annealing for noisy response functions include Painton and Diwekar [66],
who incorporate a penalty function to account for noise in the objective function
estimates, Rosen and Harmonosky [71], who combine simulated annealing with
response surface methodology, and Branke et al. [21], who consider a different
“update” step than the Basic Simulated Annealing Algorithm above under a known
variance assumption.

10.3.2 Other Developments

In this section, we briefly review certain other random search methods that have
been developed for solving discrete simulation optimization problems. Several of
these techniques are reviewed in more detail in other chapters in this volume,
viz. Chaps. 2, 11, and 12. Additional material on random search for simulation
optimization can, for example, be found in the reviews by Jin and Branke [52] and
Bianchi et al. [20].
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Stochastic ruler methods constitute a class of random search methods for discrete
simulation optimization. Like simulated annealing, they involve sampling a single
candidate point x′n in each iteration n and deciding whether to accept this point (so
that xn = x′n) or reject it (so that xn = xn−1). However, unlike simulated annealing,
this decision is not made by comparing estimated objective function values at the
current and candidate points. Instead, estimated objective function values at the
candidate point x′n are compared with observations of the “stochastic ruler,” which
is a uniform random variable whose range covers (approximately) the range of
the estimated objective function values. The original stochastic ruler method was
proposed by Yan and Mukai [83] and proven to converge to Θ ∗ in probability.
Alrefaei and Andradóttir [7, 8] have studied modified versions of the stochastic
ruler method that involve less work per iteration (i.e., the maximum number of
comparisons with the stochastic ruler in iteration n is constant, rather than diverging
to infinity with n) and decoupling the {xn} and {x∗n} sequences (see Sect. 10.2). They
prove that their approaches converge almost surely to Θ ∗ and provide numerical
results comparing the approaches.

Most random search methods for simulation optimization compare system
designs based on performance estimates, and can thus be regarded as ascent/descent
methods. For example, Gong et al. [37] present and analyze a “stochastic com-
parison” method that resembles the stochastic ruler method of Yan and Mukai
[83] except that each iteration involves comparisons between objective function
estimates at the current and candidate points, rather than comparisons with a
stochastic ruler. For other related work, see Andradóttir [11–13] and Homem-de-
Mello [44].

Deterministic optimization features various methods that involve partitioning the
feasible region, including branch-and-bound (see, e.g., Nemhauser and Wosley [63])
and random search (see, e.g., Pintér [69]). Partitioning methods have also been
developed for simulation optimization. For example, Norkin et al. [64] present
a branch-and-bound method that involves partitioning the feasible region Θ into
subsets, estimating upper and lower bounds on the optimal objective function value
within each subset, choosing the estimated optimal solution from the subset with
the smallest upper bound, and further partitioning the “record subset” that has the
smallest lower bound. The estimates of the upper and lower bounds improve when
the subset remains in the partition, and eventually converge to the actual values of
the upper and lower bounds. Moreover, the upper and lower bounds are tight for
singletons. Norkin et al. [64] prove that their method converges almost surely to
Θ ∗, discuss the choice of upper and lower bounds in various settings, and provide
illustrative examples. This work is continued by Norkin et al. [65], who provide
additional analysis, discussion about bound estimation, and examples.

Shi and Ólafsson [73] present a nested partitions method for simulation optimiza-
tion. Like branch-and-bound, their approach involves partitioning one subset (“the
most promising region”) in most iterations. The other subsets are then combined
into one “surrounding region.” Then sample designs are collected from each region
and their performance estimated via simulation. The promising index is estimated
for each region as the best estimated performance of the designs sampled from
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the region, and the region with the best promising index will be the new most
promising region. If the most promising region is a singleton, then it can clearly
not be partitioned further. If it is the surrounding region, then the method backtracks
to either its super-region or the entire feasible region. Otherwise, the most promising
region is partitioned. Shi and Ólafsson [73] prove that their method converges
almost surely to Θ ∗. Pichitlamken and Nelson [68] present a nested partitions
method that differs from the original method of Shi and Ólafsson [73] in that a
ranking and selection method is used to select the best sampled solution from
each subset, hill-climbing and restart steps are added, and the sequence {x∗n} is
chosen differently. Moreover, Xu and Nelson [80] present and analyze a method
that combines the branch-and-bound and nested partition approaches.

Hong and Nelson [46] present a random search algorithm for local simulation
optimization named COMPASS (for “convergent optimization via most-promising-
area stochastic search”). The feasible region is composed of vectors with integer
elements, and the approach is local in that the aim is to identify a design with better
performance than any point with Euclidian distance of one away from that design.
COMPASS keeps track of all designs sampled so far and performance estimates
at these designs. In each iteration, new designs are sampled from the portion of
the feasible region that is closer to the design with the best estimated performance
than to any other sampled point (again in Euclidian distance, with adjustments to
ensure that the sampling region is bounded) and simulation results are obtained for
the newly sampled points (and possibly also for previously sampled points). Hong
and Nelson [46] prove convergence w.p.1 to a local optimal solution and provide
numerical examples. This work is continued by Hong [45], Hong et al. [47], and Xu
et al. [78, 79] who improve the efficiency of the original COMPASS approach (see
also the discussion of Xu [77] in Sect. 10.4.1 below).

Andradóttir and Prudius [15] discuss the need for balancing exploration (global
search), exploitation (local search), and estimation (of objective function values at
promising points) within simulation optimization, and then present two versions
of BEESE (for “balanced explorative and exploitative search with estimation”), a
random search approach designed to achieve such a balance. The two approaches
are called R-BEESE (for Random-BEESE) and A-BEESE (Adaptive-BEESE).
Both methods switch between global search and local search for improved system
designs, with R-BEESE doing so at random and A-BEESE doing so adaptively
based on recent progress made via global and local search. Both methods also
add an estimation component via resampling of the design with the best estimated
performance and by ensuring that sufficient data has been collected at the estimated
optimal solution (moreover, A-BEESE involves more local search than its deter-
ministic variant A-BEES, which also adds an estimation component). Andradóttir
and Prudius [15] prove that their methods converge almost surely to Θ ∗ and provide
numerical results.

Model-based methods form another class of random search techniques. These
methods maintain a probabilistic model on the solutions space Θ that is used to
generate candidate solutions, whose estimated performance is in turn used to update
the probabilistic model. The cross-entropy method of Rubinstein and Kroese [72]
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involves the use of a parametric family of distributions and relies on the relationship
between optimization and rare event simulation. In each iteration, solutions are
sampled from the current model in the parametric family. The performance of these
solutions is estimated, a sample quantile is computed, and the solutions whose
estimated performance exceeds the sample quantile are used to obtain an updated
model in the parametric family. The model update involves approximating an
optimal importance sampling distribution on the set of solutions whose performance
exceeds the sample quantile via the use of the Kullback–Leibler (cross-entropy)
distance. Hu et al. [48] provide a model-based algorithm for simulation optimization
that differs from the cross-entropy method primarily in the updating of the model.
They provide convergence analysis that is applicable both when Θ is discrete and
continuous.

10.4 Extensions

In this section, we review example procedures for solving simulation optimiza-
tion problems with either continuous decision variables or multiple (stochastic)
performance measures. We start by discussing research on continuous simulation
optimization problems in Sect. 10.4.1. Then we review certain procedures for
solving simulation optimization problems with multiple performance measures in
Sect. 10.4.2.

10.4.1 Continuous Simulation Optimization

Several researchers have studied the use of random search methods to solve
continuous simulation optimization problems. The simplest form of random search
is pure (non-adaptive) random search, where solutions are sampled repeatedly
from a fixed distribution on the feasible region Θ (e.g., the search does not
utilize information gathered in previous iterations to guide the search for improved
solutions). Baumert and Smith [19] present a pure random search approach that
estimates the objective function value at each sampled solution x by averaging all
observations that are within a certain distance from x. The sampled point with the
best estimated objective function value is chosen as the estimated optimal solution.
Baumert and Smith [19] discuss at what rate the distance should decrease in order
for the method to converge in probability. Their work was continued by Andradóttir
and Prudius [16] who provide further analysis of the (deterministic) shrinking ball
method of Baumert and Smith [19], develop and analyze the stochastic shrinking
ball method, and provide numerical results.

Chia and Glynn [24] study the rate of convergence of pure random search as a
function of the number m of sampled points and number n of observations at each
point, with the estimated optimal solution being the point with the best estimated



286 S. Andradóttir

objective function value. They identify at what rates m and n should grow to achieve
the best rate of convergence. Similarly, Ensor and Glynn [31] study the choice of
m and n in grid search. Cheng [23] also studies the asymptotic behavior of pure
random search, addresses implementation issues, and provides numerical examples.
In related research, Yakowitz et al. [81] study how the number of points vs. number
of observations per point should be selected in search approaches that use low-
dispersion sequences to select points. They also discuss a sequential version of their
approach and the use of different numbers of observations to estimate the objective
function value at different sampled points.

Alexander et al. [3] develop a pure random search procedure that iteratively
samples solutions from Θ and then compares the incumbent and sampled solutions
using increasingly precise (as the number of iterations grows) estimates of the
objective function values at these solutions; the point with the better estimate
becomes the new estimate of the optimal solution. They show that their procedure
is globally convergent w.p.1. Ghate and Smith [35] study a generalized simulated
annealing procedure that also involves comparing estimated objective function
values at the incumbent and sampled solutions in each iteration, with the estimate
being more precise for larger numbers of iterations. They prove convergence in
probability and provide numerical results. Various other authors also study methods
that move between current and sampled solutions based on estimated objective
function values at those points, see for example Gurin [38], Gurin and Rastrigin
[39], Devroye [28], and Marti [59] (and Devroye [29] for related work with finite Θ ).

Yakowitz and Lugosi [82] develop a method that in certain iterations samples new
solutions from a fixed global distribution (as in pure random search) and ensures that
every sampled point has a sufficient number of observations, and in other iterations
it adaptively resamples previously sampled points. The estimate of the optimal
solution is the most recently sampled point. They prove that their method is globally
convergent in probability. Andradóttir and Prudius [16] present the Adaptive Search
with Resampling (ASR) method and prove that it is globally convergent w.p.1.
Their method includes both sampling and resampling steps (similar to the approach
of Yakowitz and Lugosi [82]), but the search is adaptive, only promising sampled
points are “accepted” for further consideration (and hence additional observations
are not collected at points that are not promising), and the estimated optimal solution
is the best point sampled so far. Numerical results suggest that the ASR method
performs better in practice than the earlier approach. Hu and Andradóttir [49]
improve further on the ASR method by allowing previously accepted points to be
discarded once better points have been found. They prove that their Adaptive Search
with Resampling and Discarding (ASRD) method is convergent w.p.1 and provide
numerical results indicating that the addition of discarding leads to substantial
improvements in performance.

Huang et al. [51], Sun et al. [74], and Xu [77] all use Kriging meta-models and
random search to solve simulation optimization problems. More specifically, Huang
et al. [51] propose the SKO (Sequential Kriging Optimization) approach, where
each iteration starts with a kriging meta-model of the objective function, identifies
a solution that maximizes an Expected Improvement (EI) function (described in
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Sect. 2.7 of [51]), and then either terminates the search (if the EI is small) or updates
the kriging model using the new data point. Sun et al. [74] propose and analyze the
GPS (Gaussian Process-based Search) algorithm whose sampling strategy takes into
account how likely feasible solutions are to improve on the current best estimate
of the optimal solution based on the current kriging model. The GPS approach
can be used for both continuous and discrete simulation optimization. In related
work, Xu [77] presents the SKOPE (Stochastic Kriging for OPtimization Efficiency)
sampling approach and integrates this approach with the AHA discrete simulation
optimization method of Xu et al. [79].

We conclude this section by briefly mentioning other methods that can be
used to solve continuous simulation optimization problems. Methods that involve
partitioning the feasible region have been developed by Deng and Ferris [27]
and Kabirian and Ólafsson [54]. More specifically, Deng and Ferris [27] adapt
the DIRECT (DIviding RECTangles) algorithm of Jones et al. [53] to simulation
optimization, and Kabirian and Olafsson [54] present and analyze a golden region
search algorithm for continuous simulation optimization. Model-based methods (see
Sect. 10.3.2, Rubinstein and Kroese [72], and Hu et al. [48]) can be used for both
discrete and continuous simulation optimization. Finally, Ferris et al. [32] and Deng
and Ferris [26] discuss continuous simulation optimization algorithms that involve
successive quadratic approximations of the objective function.

10.4.2 Simulation Optimization with Multiple Objectives

In this section, we review certain random search approaches designed for solving
simulation optimization problems with multiple (stochastic) performance measures.
Ahmed et al. [2] consider a problem with a deterministic objective function (cost)
and stochastic constraints (on system performance). They present a simulated
annealing approach for solving such problems, where a hypothesis testing step is
added after candidate generation to determine if the candidate solution is feasible
with the desired confidence. Baeslar and Sepúlveda [17] present a goal pro-
gramming framework to handle multiple stochastic performance measures. A goal
value is specified for each performance measure and the original (multi-objective)
optimization problem is translated into a (single-objective) optimization problem
where a weighted sum of the deviations from the specified goals is minimized
(possibly after normalization to address discrepancies between measurement units
for the different performance measures). This optimization problem is then solved
using a genetic algorithm. Baeslar and Sepúlveda [18] continue this research by
applying their methodology to optimize a cancer treatment center.

Multiple authors have proposed random search methods aiming to identify Pareto
optimal solutions to simulation optimization problems with multiple performance
measure. More specifically, a solution x dominates another solution x′ if no objective
performs worse at x than at x′, and at least one objective performs strictly better at x
than at x′. A solution is Pareto optimal if it is not dominated by any other solution.
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Gutjahr [40] presents a Stochastic Pareto Simulated Annealing (SPSA) based on the
Pareto Simulated Annealing (PSA) approach of Czyzak and Jaszkiewicz [25], which
maintains a search set and a solution set, and in each iteration a candidate solution
is generated in the neighborhood of each element of the search set, the estimated
performance of the candidate and current points are compared, and the search and
solution sets are updated (the update of the search set involves hill-climbing with
weights computed by the algorithm). Gutjahr [40] also specifies a Stochastic Pareto
Ant Colony Approach (SP-ACO) and compares the two approaches with a brute-
force approach. Other approaches for multi-objective simulation optimization based
on simulated annealing include Alrefaei et al. [9, 10] and Mattila et al. [60]. Lee
et al. [56] present an approach based on multiobjective evolutionary algorithms
(MOEA) (see, e.g., Zhou et al. [84]) and use it to solve an aircraft spare parts
allocation problem, and Lee et al. [57] study a multi-objective COMPASS approach
(see Sect. 10.3.2 for discussion of the original COMPASS approach).

Another approach to handling multiple performance measures is to designate
one as the objective and the others as constraints. Li et al. [58] combine COMPASS
with a penalty-function approach for handling constraints, and prove almost sure
convergence of the resulting approach. Vieira et al. [75] also present and analyze
an adaptation of COMPASS designed to handle one constraint. Park and Kim [67]
present the penalty function with memory (PFM) approach for handling stochastic
constraints. This approach can be combined with a random search approach
designed for solving unconstrained problems (the authors combine it with the nested
partitions approach, see Sect. 10.3.2) and differs from the approach of Li et al.
[58] primarily in that the penalty function does not diverge at feasible solutions.
Hu and Andradóttir [50] combine the ASRD framework discussed in Sect. 10.4.1
with a penalty function approach and prove that their framework guarantees almost
sure convergence when applied to solve simulation optimization problems with
stochastic constraints.
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