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      Fruit Processing 

                Ömer     Utku     Çopur      and     Canan     Ece     Tamer   

1            Introduction 

 The quality of processed fruit products depends on their quality at the start of 
processing; therefore, it is essential to understand how maturity at harvest, harvesting 
methods, and postharvest handling procedures infl uence quality and its maintenance 
in fresh fruits between harvest and process initiation (Kader and Barrett  2005 ). 
The specifi c qualities required in fruits and vegetables will depend on their end-use 
and the selection of appropriate cultivars for particular products is of paramount 
importance (Aked  2002 ). Quality of fresh produce includes appearance (size, shape, 
color, gloss, and freedom from defects and decay), texture (fi rmness, crispness, 
juiciness and toughness, depending on the commodity), fl avor [sweetness, sourness 
(acidity), astringency, aroma, and off-fl avors], and nutritive value. Nutritional 
 quality is determined by a fruit’s content of vitamins, minerals, dietary fi ber, carbo-
hydrates, proteins, and antioxidant phytochemicals (carotenoids, fl avonoids, and 
other phenolic compounds) (Kader  2001 ; Kader and Barrett  2005 ). 

 Despite the benefi cial health effects of fresh produce, there is a growing aware-
ness concerning its microbial and chemical food safety (Lynch et al.  2009 ; Strawn 
et al.  2011 ). There was in general an agreement on the main priorities in food 
safety of fresh produce. Bacterial pathogens were overall considered to be the 
most important food safety issue for fresh produce, followed by foodborne viruses, 
pesticide residues, and mycotoxins. Other food safety issues such as antimicro-
bial resistance, wax coatings, nanomaterials, and genetically modifi ed organ-
isms are increasingly becoming a concern for the fresh produce supply chain 

        Ö.  U.   Çopur    (*) •    C.  E.   Tamer    
  Faculty of Agriculture, Department of Food Engineering ,  Uludag University ,   Bursa ,  Turkey   
 e-mail: ucopur@uludag.edu.tr  

mailto: ucopur@uludag.edu.tr


10

(Tait and Bruce  2001 ; Domingo and Gine Bordonaba  2011 ; Magnuson et al.  2011 ). 
Hence, assuring the safety of fresh produce and alertness to maintain consumer 
trust in fresh produce as a healthy food is of primary importance for stakeholders. 
This is a challenging task in an increasingly globalized and more complex fresh 
produce food supply chain. It implies a shared responsibility of the stakeholders 
within the farm-to-fork continuum (producers, processors, trading companies, 
retailers, and consumers) and those closely involved in supporting food safety in 
the supply chain (competent authorities, industry associations, food scientists). 
Alert systems such as the European Commission’s Rapid Alert System for Food 
and Feed (RASFF) were considered as the most important source of information of 
food safety issues, followed by reports of international organizations (e.g., WHO, 
EFSA), legislative documents (e.g., EU legislation), national reports (e.g., on mon-
itoring hazards, foodborne outbreaks), and exchange of information between peo-
ple. Concerning the control measures, the application of good agricultural practices 
(GAP) was identifi ed to be the most important control measure to assure the safety 
of fresh produce, followed by the application of good hygienic practices (GHP) and 
the certifi cation of food safety management systems (FSMS) (Van Boxstael et al. 
 2013 ). Today’s management of food safety is to a great extent based on the applica-
tion of the HACCP system. Originally, the system was introduced to ensure the 
microbiological safety of food products. Later on, its use was extended to all types 
of foodborne hazards, including chemical hazards (Motarjemi et al.  2009 ). As the 
primary source of raw ingredients for food production, the agricultural sector is a 
fundamental component of the most food product and supply chains. Consequently, 
the development of effective HACCP procedures for this sector is essential to the 
overall success of HACCP (Ropkins et al.  2003 ). Current attention in chemical 
HACCP is mainly focused on residual chemicals from the agricultural sector 
(e.g., pesticides, growth hormones, fumigants, and some natural toxins) (Ropkins 
and Beck  2003 ). 

 Increasing international trade and globalization were overall expected to have a 
large impact on food safety in fresh produce. Other contextual factors perceived to 
be important were the food safety policies by governments and the (lack of) food 
safety knowledge by consumers and other stakeholders of the fresh produce supply 
chain (Van Boxstael et al.  2013 ). 

 Food processing operations have a major infl uence on the stability of phyto-
chemicals and often damage antioxidants in fruit and vegetables and their products. 
Domestic, industrial, thermal, and nonthermal processing are widely reported to 
degrade the level of phytochemicals in processed food products. In order to retain 
the nutraceutical and pharmacological properties of phytochemicals in processed 
fruit and vegetable products, the food processor must optimize relevant processing 
steps in order to restrict the loss of phytochemicals (Tiwari and Cummins  2013 ). 
In this chapter, quality criteria in freshly harvested produce, the principal causes 
of quality deterioration and maintaining quality of fruit products, the impact of 
 thermal and nonthermal processing on nutrients and antioxidants of fruit products 
are briefl y discussed.  
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2     Principal Causes of Quality Deterioration 

 Exposure of a commodity to temperature, relative humidity, and/or concentrations 
of oxygen, carbon dioxide, and ethylene outside its optimum ranges will accelerate 
loss of all quality attributes. The loss of fl avor and nutritional quality of fresh intact 
or cut fruits and vegetables occurs at a faster rate than the loss of textural and appear-
ance quality (Kader  2001 ). Many factors can lead to loss of quality in fresh produce, 
hence the common description of these products as “perishable.” Some of these 
factors are part of the life cycle of living produce, that is, over-ripening of fruits or 
sprouting in root and bulb crops. Others are a consequence of the act of harvesting. 
Once severed from the mother plant, the plant organ is deprived of its source of 
water, nutrients, and antisenescent hormones. As a consequence normal factors such 
as transpiration and respiration lead ultimately to water loss and senescence of the 
product. The growth of pathogens or physical damage will cause direct loss of prod-
uct quality through their visual impact but both also stimulate senescence. 
Furthermore, the storage environment (temperature, relative humidity, air move-
ment, atmospheric composition, ethylene) will play a highly signifi cant role in 
determining the speed of all quality changes (Aked  2002 ). 

 Fruits and vegetables are naturally contaminated with microorganisms, and 
many of these microorganisms possess pectin-degrading enzymes, enabling them to 
produce colonization by using fruit nutrients. Moreover, tissue damage originated 
by cutting or wounding leads to cell damage, releasing nutrients, and favoring 
growth of most types of microorganisms. They may also cause spoilage and affect 
the economic value of produce, not only by decreasing the organoleptic and nutri-
tional quality and shelf-life of produce but also by causing foodborne disease. 
Therefore, it is important to prevent contamination and growth of microorganisms, 
in order to reduce degradation of nutrients and maintain fruit safety and sensory 
attributes. Some of these problems can be solved by improving preharvesting prac-
tices, and others need to be addressed through appropriate postharvest handling and 
processing (Ruiz-Cruz and Arvizu-Medrano  2010 ).  

3     Storage and Packaging Techniques for Maintaining 
Quality of Fruits 

 Maintaining quality requires action to be taken to limit factors causing deterioration 
in fresh fruits (Aked  2002 ). Fruit storage technology deals essentially with the inhi-
bition of natural, physical, pest-induced, and pathogen-induced decay and damage 
without going to extremes such as drying or freezing. The object is to maintain fresh 
quality as long as possible or as long as necessary, depending on market conditions. 
The two broad categories of obstacles in achieving these objectives are: “the 
 biochemical and physiological activities that proceed within the fruit itself after 
harvest” and “the introduction and proliferation of microbial pathogens and insects 
in the storage environment” (Raghavan et al.  2005 ). 
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 To prolong the storage life of fresh fruits and vegetables, controlled atmosphere 
(CA) storage is frequently used. The basic CA effect on biochemical reactions can 
also be used to extend the shelf life of processed and ready-to-use fruit products. 
These products are often peeled and sliced and they are preferred as fruit dishes by 
consumers. The technique that provides CA condition for this ready-to-use fruit 
dishes is usually modifi ed atmosphere packaging (MAP) (Balla and Farkas  2006 ). 
MAP involves the modifi cation of the internal atmosphere composition of a pack-
age by reducing the amount of oxygen (O 2 ) and replacing it by carbon dioxide 
(CO 2 ) and/or nitrogen (N 2 ). This process aimed to extend the postharvest life of 
whole and fresh-cut commodities by reducing their respiration rate and the produc-
tion of ethylene, minimizing metabolic activity, delaying enzymatic browning, and 
retaining visual appearance. The gas re-balancing can be achieved either using 
active or passive techniques inside a package made of various types and/or combi-
nations of fi lms (Saxena et al.  2008 ; Cui et al.  2009 ; Ramos et al.  2013 ). Several 
studies have reported that modifi ed/controlled atmosphere packaging delayed 
senescence and microbial growth in fruits and vegetables. On the other hand, it has 
been observed that the antioxidant content and bioactivity could vary depending on 
the kind of treated fruit and treatment (Ayala-Zavala et al.  2005 ,  2007 ; González- 
Aguilar et al.  2010 ).  

4     Impact of Processing on Nutrients and Antioxidants 
of Fruits 

 Intact fruits and vegetables obviously are prone to deleterious changes induced by 
respiratory, metabolic, and enzymatic activities, as well as by transpiration, pest and 
microbial spoilage, and temperature-induced injury. Most such changes may impact 
adversely on the antioxidant status of these products (Lindley  1998 ). 

 In fruits and vegetables, phytochemicals can be bound in the plant cell mem-
branes or exist as free compounds. Food processing such as heating or freezing can 
disrupt the cell membrane leading to the release of membrane-bound phytochemi-
cals, which implies higher bioaccessibility (Lemmens et al.  2009 ). Moreover, the 
amount of phytochemicals retained in fruits and vegetables depends on their stabil-
ity during food preparation and processing before consumption, which is mostly 
related to their sensitivity toward oxidation and the environmental conditions 
(Leong and Oey  2012 ). 

 Food processing operations have a major infl uence on the stability of phytochem-
icals and often damage antioxidants in fruit and vegetables and their products. 
Conventional thermal: (blanching, pasteurization, frying, steaming, baking, stewing, 
roasting), nonthermal (high pressure processing, pulsed electric fi eld, ultrasound, 
ultraviolet), domestic (washing, peeling, cutting), and industrial (canning, drying, 
extraction, concentrating by evaporation, extrusion) processing are widely reported 
to degrade the level of phytochemicals in processed food products (Tiwari and 
Cummins  2013 ). 
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 Heat treatment may lead to a decrease in essential nutrients and consequently 
reduces the nutritional value of some foods. In this context, some water-soluble 
vitamins (vitamins C, B1, B2, B6, and folic acid) are heat sensitive, while lipid 
soluble vitamins are relatively stable to heat. The Maillard reaction itself may also 
lead to the loss of vitamins and proteins due to the transformations involved in the 
reaction. However, a fi rst and often very important loss of vitamins and minerals 
already occurs prior to any heat treatment, when the raw materials are physically 
prepared. This may occur by the practice of peeling fruits or vegetables. The amount 
of minerals in foods is not much affected by processing, except when this includes 
discarding certain constituents. Unit operations such as cooking, drying, extrusion, 
and so on have little effect on the bioavailability of minerals (Burri et al.  2009 ). 

 Food processing and subsequent storage conditions may have a positive or nega-
tive infl uence on the stability of phytochemicals (Aaby et al.  2007 ; Volden et al. 
 2009 ; Rawson et al.  2010 ; Tiwari and Cummins  2013 ). Maceration, heating, and 
various separation steps can result in oxidation, thermal degradation, leaching, and 
other events that lead to lower levels of antioxidants in processed food compared 
with fresh. This is particularly true in the case of vitamin C and phenolic antioxi-
dants. However, in the case of carotenoids, processing can lead to a dissociation of 
antioxidants from plant matrix components, an increase in carotenoid antioxidants, 
and improved digestive absorption (Kalt  2005 ). 

 During the processing of fruits and vegetables, several types of oxidative 
 reactions may occur in which electrons are removed from atoms/molecules leading 
to the formation of an oxidized form. These reactions cause browning, loss or 
changes of fl avor or odor, changes in texture, and loss of nutritional value from 
destruction of vitamins and essential fatty acids (Dziezak  1986 ). The oxygen also 
can play a major role in the fl avonoids degradation during the different steps of 
processing and storage. The presence of oxygen can accelerate the degradation 
either through a direct oxidative mechanism and/or through the action of oxidizing 
enzymes as polyphenoloxidase (PPO). For this reason, the degradation of fl avo-
noids is a combination of several mechanisms depending on the operating condi-
tions and the food matrix (Ioannou et al.  2012 ). 

 While most vegetables are cooked at domestic level prior to consumption, fruits 
are consumed raw or undergo minimal processing which has been defi ned as a 
combination of procedures, such as washing, sorting, trimming, peeling, and slic-
ing or chopping, that do not affect the fresh-like quality of the food (Odriozola-
Serrano et al.  2008a ; Tiwari and Cummins  2013 ). “Fresh-cut” is defi ned as any fruit 
or vegetable or combination that has been trimmed, peeled, washed, and cut into 
100 % useable product that is then bagged or prepackaged and remains in a fresh 
state (Lamikanra  2002 ). Fresh-cut fruits and vegetables are highly perishable prod-
ucts because of their intrinsic characteristics and the minimal processing (Ayala-
Zavala et al.  2008a ). Microbial growth, decay of sensory attributes, and loss of 
nutrients are among the major causes of compromised safety and quality of fresh-
cut produce. These problems are caused by the steps involved in the minimal 
 processing, such as peeling and cutting, which promote an increment in the meta-
bolic rate, enzymatic reactions, and released juice (Ayala-Zavala et al.  2008b ). 
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Peeling, trimming, depitting, and/or leaf selection may cause a partial or total 
decrease in fl avonol levels (Amarowicz et al.  2009 ). 

 Vinha et al. ( 2013 ) demonstrated that the removal of the skin of tomato caused a 
loss of 80 % of lycopene, 63 % of phenolic compound, 57 % of β-carotene, and 
26 % of ascorbic acid. Removing the seeds caused 63 % loss of total phenolics. Size 
reduction (dicing and slicing) results in increasing losses through increasing the 
surface to volume ratio (Ramaswamy and Chen  2002 ). Robles-Sánchez et al. ( 2009 ) 
evaluated the losses of bioactive compounds that occur after cutting and cold storage 
and their contribution to the total antioxidant capacity of fresh-cut mangoes. No 
signifi cant losses of total phenols were found at the end of storage. Mangoes treated 
with the antioxidants maintained better quality and higher antioxidant potential 
compared with controls. Although minimally processing of fruit accelerates ripen-
ing of fresh-cut tissues, which could promote an increase in β-carotene content, it is 
possible that low storage temperature used for mangoes retarded its biosynthesis and 
accumulation. Plaza et al. ( 2011 ) investigated the effect of minimal processing on 
the health-related characteristics of orange. Carotenoids were retained in minimally 
processed oranges during refrigerated storage. The fl avanone content showed a sig-
nifi cant increase throughout refrigerated storage as response to cold stress. Although 
some vitamin C losses were observed, the antioxidant activity remained stable. 
Overall, the microbiological quality and potentially health-promoting attributes of 
minimally processed oranges were preserved during 12 days of storage at 4 °C. 

4.1     Thermal Processes 

 Heating results in enzyme inactivation, texture changes of fruits and vegetables, and 
unavoidable leaching of water-soluble compounds which could alter the entire phy-
tochemical profi le and content of fruit and vegetables. Phytochemicals do not exist 
as an individual compound; they are mostly bound to other compounds or to cell 
structures. Due to heat, the disruption of cell membranes occurred. Once the cell is 
damaged due to heat, this creates an opportunity for the bound phytochemical com-
pounds to be released into the medium, hence they are readily extracted. In fact, 
heating has been reported to increase the chemical extractability of phytochemical 
compounds, because of the release of phytochemicals from chromotoplasts leading 
to an increment of concentration. Heating also encourages the diffusion of cellular 
fl uids, containing phytochemicals, from the plant cell to the water medium (Howard 
et al.  1999 ; Leong and Oey  2012 ). 

 Jiratanan and Liu ( 2004 ) concluded that depending on the particular produce and 
processing parameters and methods, thermal processing may enhance, reduce, or 
cause no change in total antioxidant activity from that of fresh produce. 

 High-temperature processing may lead to thermal destruction of antioxidants. 
Due to this, long cooking times and sterilization are considered antioxidant- 
destructive (Grajek and Olejnik  2010 ). Changes connected to mild hydrothermal 
processing (<100 °C) are usually advantageous. Due to heating, oxygen is 
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removed from solutions, oxidoreductases are denaturated, and heteroglycosides are 
hydrolyzed to aglycones. In other respects, increased temperature may lead to 
higher losses because a portion of water-soluble antioxidants are extracted. Losses 
in water-soluble vitamins are a good indicator of the antioxidant potential decrease 
of a given food product. Blanching, where solid material is in direct contact with 
steam or hot water, effectively inactivates oxidative enzymes and due to that loss of 
antioxidants. For example, enzymatic oxidation of vitamin C can be eliminated due 
to the inactivation of ascorbic acid oxidase. If the process is performed at too low 
temperature, though, it may be ineffective and lead to polyphenol oxidation by 
PPO. During treatment, a portion of antioxidants leach into the water, which 
decreases the antioxidant potential of plant materials (Lin and Chang  2005 ; Amin 
et al.  2006 ; Wachtel-Galor et al.  2008 ; Leong and Oey  2012 ). 

 Rickman et al. ( 2007a ,  b ) reported that, depending on the commodity, freezing 
and canning processes may preserve nutrient value. The initial thermal treatment of 
processed products can cause loss of water-soluble and oxygen-labile nutrients such 
as vitamin C and the B vitamins. However, these nutrients are relatively stable during 
subsequent canned storage owing to the lack of oxygen. Frozen products lose fewer 
nutrients initially because of the short heating time in blanching, but they lose more 
nutrients during storage due to oxidation. Phenolic compounds are also water soluble 
and oxygen labile, but changes during processing, storage, and cooking appear to be 
highly variable by commodity. The higher levels of carotenoids typically found in 
canned as compared to fresh products may be attributed to reporting results on a wet 
rather than dry weight basis, greater extractability, or differences in cultivars. 
Minerals and fi ber are generally stable to processing, storage, and cooking, but may 
be lost in peeling and other removal steps during processing. Mineral uptake (e.g., 
calcium) or addition (e.g., sodium) during processing can change the natural mineral 
composition of a product. Changes in fi ber during processing, storage, and cooking 
appear to be minimal for intact fruits and vegetables. Outer layers removed or peeled 
products, however, contained lower amounts of fi ber than their unprocessed counter-
parts. The stability of fi ber during storage depends on commodity. Generally, fresh, 
frozen, and canned fruits and vegetables contained similar amounts of fi ber. 

 Processing of fruit or vegetables can result in a signifi cant reduction in phyto-
chemical content. Thermal processes have a large infl uence in fl avonoid availability 
in foods which depends on their magnitude and duration (Ioannou et al.  2012 ; Tiwari 
and Cummins  2013 ). In general, the level of phytochemicals in vegetable and fruit 
processing decreases exponentially with a linear increase in blanching and boiling 
time (Tiwari and Cummins  2013 ). Most of heat processes lead to a degradation of 
fl avonoids. Thermal pasteurization treatment (90 °C, 60 s) for strawberry juices had 
no effect on quercetin and kaempferol contents (Odriozola-Serrano et al.  2008b ), 
whereas it reduced naringin, narirutin, quercetin, naringenin content for grapefruit 
juices (Igual et al.  2011 ) and procyanidins in canned peach (Asami et al.  2003 ). 
Effect of pasteurization has been reported for mulberry fruit extract, pineapple juice, 
and cashew apple juice leading to a decrease in the levels of bioactive components 
such as total anthocyanin, ascorbic acid, and carotenoids (Rattanathanalerk et al. 
 2009 ; Zepka and Mercadante  2009 ; Aramwit et al.  2010 ; Rawson et al.  2011a ). 
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Pasteurization of grape juice increased the concentration of catechins in cold-pressed 
juices, but it decreased concentrations in hot-pressed juices. The concentration of 
most procyanidins was also increased by pasteurization (Fuleki and Ricardo-Da-
Silva  2003 ). An increase of temperature during pressing from 40 to 70 °C allows 
increasing fl avonoid content (50 %) in apple juice (Gerard and Roberts  2004 ), simi-
lar results were found by Renard et al. ( 2011 ) an increase of pressing temperature 
from 5 to 24 °C, increase the extraction of proanthocyanidins. Van Der Sluis et al. 
( 2002 ) noted that antioxidant activity of juice is lower than that of apple. The fl avo-
noid contents were reduced due to pressing in which most fl avonoids were retained 
in the pomace. In processing blueberries into juice, substantial losses of phenolics 
occurred; the recovery of anthocyanins, procyanidins, and chlorogenic acid were 32, 
43, and 53 %, respectively. Heat-labile enzymes (PPO) in blueberry fruit made a 
large contribution to the loss in anthocyanins. Approximately 20 % of the anthocya-
nins in blueberries were retained in the press cake after juicing (Skrede et al.  2000 ). 
The total fl avonoid content of the juices obtained by manual extraction was less than 
half that obtained by mechanical extraction the percentage of fl avones in the juices 
obtained manually was always lower than in the juices extracted using industrial 
methods which implies a possible greater contribution of fl avones from albedo and 
fl avedo (Amarowicz et al.  2009 ). In juice production from concentrates, the range 
of thermal processing is wider and additionally includes concentration of juice. 
All these processes lead to decomposition of thermolabile compounds, which 
include antioxidants (Grajek and Olejnik  2010 ). 

 Durst and Weaver ( 2013 ) analyzed fresh freestone peaches, fresh cling peaches, 
and canned cling peaches for vitamins (A, C, E, folate), antioxidants, total pheno-
lics, and total carotenoids to assess how these nutrients were affected by the canning 
and whether storage further changed these components. The nutritional content of 
canned peaches was comparable to that of fresh peaches. There were no statistically 
signifi cant decreases in those nutritional parameters measured between fresh free-
stone peaches and canned cling peaches. Vitamins A and E along with total carot-
enoids decreased immediately upon processing, but stabilized after the processing 
step, showing minimal additional changes upon storage for 3 months. After canning 
of mandarin orange segments, small proportions of phenolic acids and ascorbic acid 
were reduced, and about half of fl avanone glycosides and total antioxidant capacity 
were lost. However, in view of that considerable portion of phenolic compounds and 
ascorbic acid existing in the syrup portion, so the loss was not so signifi cant 
(Fengmei et al.  2011 ). 

 During the heat treatment, the antioxidant activities of fl avonoids were also slightly 
decreased but they remain relatively high. This is due to the fact that the degradation 
products possess also an antioxidant activity (Murakami et al.  2004 ; Buchner et al. 
 2006 ). Jeong et al. ( 2004 ) determined an increase of the antioxidant activity of citrus 
peels during a heat treatment (50, 100, and 150 °C for 60 min). The degradation of 
fl avonoids is not only a function of temperature and magnitude of heating; it may 
depend also on other parameters such as pH, the presence of oxygen, and the presence 
of other phytochemicals in the medium (Ioannou et al.  2012 ). Degradation of rutin 
and quercetin is higher under weakly alkaline and neutral reaction conditions 
(Takahama  1986 ; Buchner et al.  2006 ). The presence of oxygen highly induces 
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 quercetin and rutin degradations, while the absence of oxygen has the opposite 
effects (Makris and Rossiter  2000 ; Buchner et al.  2006 ). Moreover, the presence of 
other phytochemicals in the medium like chlorogenic acid plays a protective role 
(Murakami et al.  2004 ). 

 According to Turkmen et al. ( 2005 ), food processing and domestic cooking led to 
an increase in phenol concentration when compared to raw samples. This suggested 
that temperature-related treatments might produce changes in antioxidant extract-
ability, not only for cellular disruption and dissociation of some phenolic compounds 
from biological structures but also for the alteration in their chemical structure 
which could make possible the conversion of insoluble phenolics into more soluble 
forms (Cohen et al.  2001 ; Bernhardt and Schlich  2006 ; Dini et al.  2013 ). 

 Processing of strawberries into jam may result in a loss of up to 70 % of the ini-
tial anthocyanin content (García-Viguera et al.  1999 ). Jams produced from various 
strawberry cultivars differed in terms of pigment and antioxidant capacity retention. 
Temperature proved to be the most important factor during storage (Wicklung et al. 
 2005 ). Brownmiller et al. ( 2008 ) determined a reduction of about 43 % in total 
anthocyanins in purees following blanching and pasteurization comparing to the 
original levels found in fresh blueberries. Losses of about 23 % of fl avonoids were 
reported in the blackberry juice. Especially blanching, drastically reduced antho-
cyanins, whereas hot-fi lling degraded ellagitannins (Gancel et al.  2011 ). In some 
cases thermally processed fruits are shown to have higher levels of phytochemicals 
(Tiwari and Cummins  2013 ). For instance, Zafrilla et al. ( 2001 ) noted that a 2.5-fold 
increase in free ellagic acid content during the processing of raspberry jams. They 
suggested that it could be due to the hydrolytic breakdown of ellagitannins to ellagic 
acid during thermal treatment. In some cases, blanching inactivates enzymes such 
as PPO, which improves the stability of anthocyanins in processed food. Leong and 
Oey ( 2012 ) evaluated the effects of heating (98 °C, 10 min), freezing (−20 °C), and 
freeze-drying on anthocyanins, carotenoids, and vitamin C content of cherries, nec-
tarines, apricots, peaches, plums, carrots, and red bell peppers. In most cases, heat-
ing increased the anthocyanin content in cherries, peaches, and plums but not in 
nectarines. It was determined that the heated fruits contained more anthocyanins 
than the fresh fruits. However, heating decreased the content of carotenoids in apri-
cots, nectarines, and carrots while maintaining the carotenoid content in cherries, 
peaches, plums, and red bell peppers. 

 The production of tomato paste from fresh tomatoes involves mechanical homog-
enization and heat treatment. In this process, bioavailability of β-carotene and lyco-
pene is enhanced, but other labile antioxidants are destroyed. The increase in 
carotenoids is due to enzymatic degradation, weakening of protein-carotenoid 
aggregates, and concentration of dry matter during evaporation (Van Boekel et al. 
 2010 ). However, confl icting data on tomato carotenoid stability during thermal pro-
cessing of tomato can be found in the literature. For instance, Capanoglu et al. 
( 2008 ) showed a signifi cant decrease in the content of both lycopene (32 %) and 
β-carotene (36 %) during preparation of a tomato paste. 

 Drying processes lead to fl avonoids degradation. The proportion lost depends on 
the drying method. Freeze-drying is the less aggressive method, whereas hot air dry-
ing leads to major losses. As intermediate solutions, microwave and vacuum drying 
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can be used (Zainol et al.  2009 ; Zhang et al.  2009 ; Dong et al.  2011 ; Ioannou et al. 
 2012 ). Microwaves directly interact with food and heat is generated volumetrically. 
Short processing time in microwave drying, sterilization, and thawing is advanta-
geous to reduce quality losses especially for perishable food products (Sumnu and 
Sahin  2005 ). Microwave treatments produced small modifi cations of the quantita-
tive and qualitative composition of carotenoids in papaya and anthocyanins in straw-
berry. Chlorophylls in kiwi fruit showed signifi cant degradation as a consequence of 
microwave heating (De Ancos et al.  1999 ). Igual et al. ( 2012 ) compared the drying 
kinetics and the change in the organic acids, phenolic compounds, and antioxidant 
activity of dried apricot when using hot air drying and microwave energy. The 
authors noted that the industrial processing of dried apricots may be improved by 
using microwave energy, as the drying time is considerably reduced, and the obtained 
fruit had a higher phenolic content, particularly of chlorogenic acid, catequin, and 
epicatequin. Nevertheless, as the contribution of these phenols to antioxidant capac-
ity was not signifi cant, microwave dried samples maintained the same antioxidant 
capacity as the air-dried ones. Fast development allowed new hybrid solutions like 
microwave-hot air-drying, microwave-vacuum drying, microwave- spouted bed dry-
ing, and microwave-halogen lamp drying. These methods allow reduced drying time 
and maintenance of the high nutritive quality of products (Grajek and Olejnik  2010 ). 

 Comparative studies on freeze-drying and hot air-drying of tomatoes showed that 
freeze-drying retained high levels of antioxidant compounds (8–10 % loss), whereas 
high temperature treatment caused a tremendous decrease in the content of antioxi-
dants (56–61 % loss) (Chang et al.  2006 ). Interestingly, the total phenolic and fl avo-
noid contents in both freeze and hot-air-dried tomatoes were signifi cantly higher 
than in fresh material. Different changes appeared in lycopene content. In freeze- 
dried tomatoes, lycopene content was reduced by 33–48 %; however, the amounts 
of lycopene in hot-air-dried tomatoes increased 152–197 %, probably due to break-
ing of cell walls and weakening of the binding forces between lycopene and the 
tissue matrix (Grajek and Olejnik  2010 ). 

 Compared to heating, freezing could maintain or slightly increase the content of 
phytochemicals for most of the commodities. Freezing induces the formation of ice 
crystals that favors localized concentration of solutes (including phytochemicals) and 
reallocation of water molecules in the cell structure. Nevertheless, the common con-
sequences of freezing due to cell damages by the growth of ice crystals from tem-
perature fl uctuation and turgor loss lead to softening texture (Szczesniak  1998 ). It is 
noted that the rate of freezing infl uences the ice crystals formation that impact on the 
food structure by expanding the separation between cells. In other words, when the 
samples were rapidly frozen, large amounts of smaller ice crystals formed and caused 
a lesser degree of cell structure disruption than the samples being frozen slowly, 
which formed large intercellular ice crystals (Leong and Oey  2012 ). In general, the 
manner in which the frozen sample is thawed is a key factor that will attribute to the 
changes in phytochemical contents (Robards  2003 ). In contrast, freeze-dried samples 
mostly resulted in a lower amount of phytochemicals, as compared to fresh, heated, 
and frozen commodities. Basically, freeze-drying is the combination of dehydration 
and freezing, i.e., dehydrating the samples by freezing the immobilized water into ice 

Ö.U. Çopur and C.E. Tamer



19

and then removing the ice crystals via sublimation into vapor. While freeze-drying is 
incapable of inactivating all of the enzymes, it is effective in preserving the sensory 
and nutritional qualities. Usually, a minor loss of vitamin does occur but extensive 
reduction of water during freeze-drying will form the fragile porous structure in the 
end product. Sublimation of ice to vapor caused by drying in the sample slices gave 
an open and porous texture. The heat utilization in freeze-drying may be harsher than 
the conventional freezing mechanism as the fl avor and aroma compounds were evap-
orated along with water as volatiles. In practice, thinly sliced samples were used to 
promote larger surface area available for dehydration had increased the water removal 
rate. Nevertheless, the phytochemicals in freeze-dried samples were more prone to 
degradation due to the large surface area exposed during processing. Hence, most of 
the labile phytochemicals were rapidly oxidized, because the water molecules 
attached on the sample surface that acted as a protecting fi lm were evaporated as well 
(Gross  1991 ; Leong and Oey  2012 ). Georgé et al. ( 2011 ) determined the impact of 
thermal processing and lyophilization on carotenoids, total polyphenols, and vitamin C 
in red and yellow tomato cultivars. Micronutrients were analyzed in fresh tomatoes, 
tomato purée, and lyophilized tomatoes. Processing did not affect the carotenoid con-
tent in red tomato, but signifi cantly lowered β-carotene in yellow tomato and also the 
contents of total polyphenol and vitamin C in both cultivars. Lyophilization lowered 
the carotenoid content in red tomato but not in yellow tomato; in contrast, the total 
polyphenol content was preserved in red tomato but lowered in yellow tomato, and 
the vitamin C content was not affected in both cultivars. Arancibia-Avila et al ( 2012 ) 
determined that the antioxidant activity of lyophilized berry samples subjected to 
thermal processing at 100 °C for 10 and 20 min did not differ from the non-processed 
berries, showing high correlation between the total polyphenols, fl avanols, and the 
antioxidant activities. It was found that berries subjected to thermal processing not 
more than 20 min maximally preserved the bioactivity. 

 Ohmic heating, also called electric resistance heating, is a direct heating method 
in which the food itself is a conductor of electricity, taken from the mains that are 
50 Hz in Europe and 60 Hz in the USA. It provides rapid and uniform heating, 
resulting in less thermal damage to the product (Ramaswamy and Chen  2002 ; Icier 
and Ilicali  2005 ; Leizerson and Shimoni  2005 ). Vikram et al. ( 2005 ) reported that 
the smallest losses of vitamin C were observed in the ohmic-heated orange juices. 
The highest losses of vitamin C were observed during microwave heating due to 
uncontrolled temperature generated during processing. Lee et al. ( 2012 ) evaluated 
the effi cacy of continuous ohmic heating for inactivating  Escherichia coli  O157:H7, 
 Salmonella typhimurium , and  Listeria monocytogenes  in orange and tomato juices 
with various treatment times and electric fi eld strengths (25–40 V cm −1 ). The con-
centration of vitamin C in continuous ohmic-heated orange juice was signifi cantly 
higher than in conventionally heated orange juice. It was suggested that continuous 
ohmic heating might be effectively used to pasteurize fruit and vegetable juices in a 
short operating time and that the effect of inactivation depends on applied electric 
fi eld strengths, treatment time, and electric conductivity. Yildiz et al. ( 2009 ) demon-
strated that ohmic heating did not cause any different effect in other quality indices 
and total phenolic contents of pomegranate juice than the conventional heating.  
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4.2     Nonthermal Processing 

 Nonthermal technologies are effective at sublethal temperatures, thereby minimiz-
ing negative thermal effects on phytochemicals. Several nonthermal techniques 
such as high pressure processing (HPP), pulsed electric fi eld (PEF), ultrasound/
sonication, and ultraviolet (UV) techniques have been investigated on fruit and veg-
etables and their products (Tiwari et al.  2009a ). Recent interests in these technolo-
gies are not only to obtain high quality food with “fresh-like” characteristics but 
also to provide food with improved functionalities (Rawson et al.  2011a ). 

 When innovative processes are used instead of thermal treatments, the impor-
tance of food matrix is lower because the fl avonoid degradations are limited 
(Ioannou et al.  2012 ). Several studies reported the capacity of innovative processes 
(microwave, infra-red, high-pressure processing) to enhance the fl avonoid extrac-
tion (Périno-Issartier et al.  2010 ; Srinivas et al.  2011 ; Zill et al.  2011 ). Odriozola- 
Serrano et al. ( 2008b ) studied the effect of high-intensity pulsed electric fi elds 
(HIPEF) process on quercetin and kaempferol contents of strawberry juices and 
reported that such a process caused no damage on these compounds. 

4.2.1     High Hydrostatic Pressure Processing (HHP) 

 HHP entails the transmission of pressures usually ranging from 300 to 700 MPa to 
foods, which results into a reduction of microbial loads and thus shelf life extension 
(Patras et al.  2009a ). High hydrostatic pressure (HHP) treatment is considered to be 
an alternative to thermal pasteurization for fruit and vegetable juices. HHP treat-
ment could preserve nutritional value and the sensory properties of fruits and veg-
etables due to its limited effect on the covalent bonds of low molecular mass 
compounds such as color, fl avor compounds, and vitamins. HHP processing may 
enhance the antioxidant activity of juices comparing to those untreated. However, 
inactivation of important foodborne pathogens in low acid foods by HHP is most 
urgent and critical (Oey et al.  2008 ; Garcia-Parra et al.  2011 ; Pilavtepe-Celik  2013 ; 
Uckoo et al.  2013 ). 

 Huang et al. ( 2013 ) investigated the effects of (HHP) at 300–500 MPa for 
5–20 min and high temperature short time (HTST) at 110 °C for 8.6 s on enzymes, 
phenolics, carotenoids, and color of apricot nectars. Micronutrients and phytochem-
icals of nectar were well preserved by both HHP and HTST. Compared with HHP 
treatment (500 MPa/20 min), HTST led to complete inactivation of enzymes, higher 
total phenolics, epicatechin, ferulic acid, and p-coumaric acid and lighter and more 
intensity color than those of HHP treatment, since HTST treatment gave better 
impact on the quality of apricot nectar. PPO, peroxidase, and pectinmethylesterase 
in apricot nectar were found to be highly resistant to high pressure inactivation, thus 
in order to maintain the quality of apricot nectar, HHP should be accompanied by 
additional measures. 

 Sanchez-Moreno et al. ( 2003 ) measured vitamin C, provitamin A carotenoids, and 
other carotenoids in freshly squeezed juices from oranges that were subjected to HHP. 
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Total carotenoids and vitamin A (expressed as retinol equivalents) showed an increas-
ingly better extraction when the pressure increased from 100 to 400 MPa. Vitamin C 
content seems to preserve the carotenoid compounds from oxidation in the treated 
orange juices. Fernández-García et al. ( 2001 ) reported that the vitamin C content of 
orange and orange–carrot–lemon juices processed at 500 and 800 MPa was not, or 
only insignifi cantly, reduced compared to that of unprocessed juices. Vitamin B1, B2, 
B3, and B6 contents were not changed after pressurizing orange juice (Donsi et al. 
 1996 ). In orange juice and kiwi puree, folic acid was relatively pressure stable, in 
contrast to that in carrot juice (Indrawati et al.  2004 ). Different folate stabilities among 
orange juice, kiwi puree, carrot juice, and asparagus seemed to coincide with different 
levels of ascorbic acid content. 

 Ferrari et al. ( 2010 ) studied the effects of high pressures (400–600 MPa) at 25, 
45, 50 °C for 5 or 10 min on phytochemical content of pomegranate juice. Their 
experimental results indicated that the content of anthocyanins was infl uenced 
mainly by pressure and temperature level. At room temperature, the concentration 
of these molecules decreases with the intensity of the treatment in terms of pressure 
level and processing time. Therefore, the higher pressure levels or longer processing 
times caused a decrease of the anthocyanin content. High pressure treatments modi-
fi ed the mechanism of anthocyanin degradation by affecting the enzymes involved 
in the kinetics of reaction. The residual activity of the enzymes along with a small 
concentration of dissolved oxygen could cause the degradation of the anthocyanins 
during the storage of the processed juice. 

 Keenan et al. ( 2010 ) assessed the effect of thermal and HHP on the antioxidant 
activity and phenolic content of fruit smoothies. Since decreases in levels of antioxi-
dants were noted during long-term storage, it would appear that higher pressure 
treatments (>450 MPa) might be required for better retention of antioxidant com-
pounds in fruit smoothies. HHP processing of smoothies at moderate temperatures 
may be a suitable alternative to traditional thermal processing (Keenan et al.  2012 ). 
Patras et al. ( 2009b ) reported that levels of phenols increased signifi cantly in HHP 
treated (600 MPa, 20 °C, 15 min) strawberry and blackberry purees (9.8 and 5.0 %, 
respectively). 

 Briones-Labarca et al. ( 2011 ) investigated the effect of high pressure on the bio-
accessibility of specifi c nutrients (antioxidant, minerals and starch) in apple. They 
reported that high pressure processed apple had signifi cantly higher antioxidant 
capacities, mineral, and starch content when compared to untreated samples. It is 
possible that changes to the tissue matrix induced by HHP, for example, disruption 
of the plant cell walls, resulted in the release of compounds with antioxidant actions 
and increased mineral and starch content into the extracellular environment. 
Consumption of apple under high hydrostatic pressure may supply substantial anti-
oxidants, minerals, and starch which may provide health promoting and disease 
preventing effects. 

 Varma et al. ( 2010 ) reported that HHP processing causes conformational changes 
from the all  trans  to  cis  isomer form of lycopene, indicating that high pressure 
application can induce isomerization, increasing the availability of the carotenoids 
in the sample. 
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 Nuñez-Mancilla et al. ( 2013 ) analyzed the effects of combined osmotic dehydration 
and high hydrostatic pressure on physicochemical and quality parameters (color, anti-
oxidant capacity, total phenolic content, and vitamin C) on strawberries stored at 
5 °C. The results indicated that quality profi les of strawberry osmotically dehydrated 
under high hydrostatic pressure between 300 and 500 MPa showed minimal differ-
ences when compared to untreated samples. For this reason, it was recommended 
working at 400 MPa/10 min to obtain processed strawberries with high levels of both 
nutritional and antioxidant characteristics. 

 Distinct from the application of HHP for preservation purposes, high pressure 
treatments have been used to extract secondary plant metabolites from fruits and 
vegetables. For example, De Ancos et al. ( 2000 ) successfully applied HHP (50–
400 MPa, 25 °C/15 min) processing to extract carotene from persimmon fruit 
purees. Different pressure levels at constant temperature gave different release of 
various carotenes depending on their chemical properties and chromoplast location. 
The use of high pressure enhances mass transfer rates, which increases cell perme-
ability as well as secondary metabolite diffusion (Dornenburg and Knoor  1993 ). 
HHP treatment infl uences the phytochemical stability and the extraction yield of 
bioactive compounds. As a consequence, changes in antioxidant activity could also 
occur during HHP treatment (Rawson et al.  2011a ).  

4.2.2     Pulsed Electric Field (PEF) 

 PEF is a technology that has been extensively investigated in recent years for its 
applications in food processing. PEF pasteurization is a technique based on the 
delivery of pulses at high electric fi eld intensity (5–55 kV cm −1 ) to a food in the mil-
lisecond range (Lado and Yousef  2002 ). By the mechanism of electropermeabiliza-
tion, pulsed electrical fi elds have proved a valid technology for the production of 
safe beverage products and shown a positive infl uence in the texture of solid plant 
foods, leading to enhanced yields of extraction of metabolites, as well as increased 
juice yields (Rawson et al.  2011a ). 

 Morales-de la Peña et al. ( 2010a ,  b ) investigated the effect of PEF on vitamin C 
in orange/kiwi/pineapple, and soymilk-based beverage immediately after treatment 
and noted that levels were not different from the thermally processed juice. However, 
the benefi cial effect of the PEF treatment was noticeable over a storage period of 31 
days, as an 800 μs treatment at 35 kV/cm showed signifi cantly greater retention than 
both 1,400 μs treatment and thermal treatment. These results showed that the shorter 
the PEF treatment time, the higher the vitamin C retention, as previously found in 
other studies focused on individual fruit juices treated by high intensity PEF 
(HIPEF). In general, longer exposure PEF treatment times may induce reduction in 
the retention of vitamin C due to product heating. Longer exposure time may also 
generate free radicals which may speed up vitamin C degradation. Moreover, the anti-
oxidant capacity of this product during storage decreased to a greater degree in ther-
mally treated samples than in PEF treated samples after a storage period of 60 days. 

Ö.U. Çopur and C.E. Tamer



23

 PEF can retain higher levels of phenolic compounds in fruit juices and improve 
their stability during storage. Odriozola-Serrano et al. ( 2008b ) observed signifi -
cantly less phenolic degradation by PEF (49 %) than by thermal pasteurization 
(55 %) after 56 days of storage of strawberry juice. 

 Studies evaluating the effects of HIPEF processing conditions on watermelon 
juices have been demonstrated that HIPEF treatments were effective in reducing the 
population of pathogenic microorganisms and inactivating spoilage enzymes. 
Watermelon juice exhibited high retention of lycopene and antioxidant capacity 
when high electric fi eld strengths, frequencies, and pulse widths were applied. 
However, severe HIPEF treatments reduced vitamin C content. Maximal relative 
lycopene content (113 %), vitamin C (72 %), and antioxidant capacity retention 
(100 %) were obtained when HIPEF treatments were set up at 35 kV/cm for 
50 μs using 7 μs bipolar pulses at 200 Hz (Aguiló-Aguayo et al.  2008 ; Oms-Oliu 
et al.  2009 ). 

 Vervoort et al. ( 2011 ) compared the impact of thermal, HHP, and PEF processing 
for mild pasteurization of orange juice, using processing conditions leading to an 
equivalent degree of microbial inactivation. Their study provided evidence that HHP 
and PEF pasteurization do not cause any signifi cant differences in the major compo-
nents regarding public health that were investigated, in comparison to thermal pas-
teurization, and therefore no changes in the human metabolism after consumption 
are to be expected.  

4.2.3    Ultrasound 

 Ultrasound is used at frequencies in the range of 20–100 kHz and requires the pres-
ence of a liquid medium for power transmission. It causes chemical and physical 
changes in biological structures (in a liquid medium) due to intracellular cavitation 
(Alexandre et al.  2012 ). In last decade power ultrasound has emerged as an alterna-
tive processing option to conventional thermal approaches for pasteurization and 
sterilization of food products. Ultrasound processing on its own or in combination 
with heat and/or pressure is an effective processing tool for microbial inactivation 
and phytochemical retention. Advantages of ultrasound include reduced process-
ing time, higher throughput, and lower energy consumption (Zenker et al.  2003 ; 
Rawson et al.  2011a ). 

 Ultrasound treatment of fruit juices is reported to have a minimal effect on the 
ascorbic acid content during processing and results in improved stability during 
storage when compared to thermal treatment. This positive effect of ultrasound 
compared with heating is assumed to be due to the effective removal of occluded 
oxygen from the juice (Knorr et al.  2004 ). Ascorbic acid content was found to be 
signifi cantly higher in guava juice samples treated with carbonation and sonication 
than in the control. It could be due to cavitation effects caused by carbonation and 
sonication (Cheng et al.  2007 ). However, degradation of vitamin C in sonicated 
orange, strawberry, and tomato juices was observed and the degradation level 
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depended on the wave amplitude and treatment time. Ascorbic acid degradation 
during sonication may be due to free radical formation and production of oxidative 
products on the surface of bubbles (Tiwari et al.  2009b ,  c ). 

 Ultrasonication may be considered a potential technology for processing of red 
juices because of its minimal effect on anthocyanins (Oms-Oliu et al.  2012 ). Tiwari 
et al. ( 2009a ) reported a slight increase (1–2 %) in the pelargonidin-3-glucoside 
content of the juice at lower amplitude levels and treatment times which may be due 
to the extraction of bound anthocyanins from the suspended pulp. 

 Ultrasonic extraction is a well-known commercial method to increase mass 
transfer rate by cavitation forces. Bubbles in the liquid–solid extraction using ultra-
sonic extraction can explosively collapse and produce localized pressure, improving 
the interaction between the intracellular substances and the solvent to facilitate the 
extraction of the phytochemicals (Saldana et al.  2010 ). The extraction of lycopene 
from tomato using ultrasonic-assisted extraction and ultrasound/microwave-assisted 
extraction was reported (Lianfu and Zelong  2008 ). Rawson et al. ( 2011b ) deter-
mined that sonication temperature played a signifi cant role in preservation of 
bioactive compounds. Freshly squeezed watermelon juice was subjected to 
thermosonication treatments with processing variables of temperature (25–45 °C), 
amplitude level (24.1–60 μm), and processing time (2–10 min) at a constant fre-
quency of 20 kHz and pulse durations of 5 s on and 5 s off. They observed a decrease 
in the phenolic content of sonicated watermelon juice when the temperature was 
increased from 25 to 45 °C. Temperature effect was more pronounced at higher 
processing times.  

4.2.4    Radiation Processing 

 Irradiation treatment generally involves the exposure of food products (raw or pro-
cessed) to ionizing or non ionizing radiation for the purpose of food preservation. 
The ionizing radiation source could be high-energy electrons, X-rays, or gamma 
rays, while the non ionizing radiation is electromagnetic radiation that does not 
carry enough energy/quanta to ionize atoms or molecules, represented mainly by 
ultraviolet rays (UV-A: 315–400 nm, UV-B: 280–315 nm, and UV-C: 100–280 nm), 
visible light, microwaves, and infrared (Prakash et al.  2000 ; Rawson et al.  2011a ). 
Food irradiation is a physical treatment in which food is exposed to ionizing radia-
tion, i.e., radiation of suffi cient energy to expel electrons from atoms and to ionize 
molecules. Foods treated with ionizing radiation have consistently been shown to be 
wholesome and nutritious. The effect of irradiation on vitamins has been studied 
extensively. Sugars may be hydrolyzed or oxidized when subjected to gamma radia-
tion. Free amino acids can be deaminated. Free radicals react with polyunsaturated 
fatty acids, producing unstable hydroperoxides and a range of further degradation 
products. Certain vitamins (A, B1, B12, C, E, K), particularly those with antioxi-
dant activity, are degraded when irradiation is carried out in the presence of oxygen 
(Niemira and Deschênes  2005 ). 
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 Alighourchi et al. ( 2008 ) reported a signifi cant reduction in the total and 
 individual anthocyanin content in pomegranate juice after irradiation at higher doses 
(3.5–10 kGy). Irradiation effects on anthocyanin pigments depend upon the nature of 
anthocyanin, for example, diglycosides are relatively stable toward irradiation dose 
compared to monoglycosides. Reyes and Cisneros-Zevallos ( 2007 ) investigated the 
effect of irradiation (1–3.1 kGy) on mango. The authors did not fi nd a signifi cant 
impact of irradiation dose on the total phenolic content, while there was a signifi cant 
increase in fl avonols after 18 days storage period for the irradiated fruits (at 3.1 kGy). 
In contrast, ascorbate content of the fruits decreased when the dose exceeded 
1.5 kGy. No major changes in the carotenoids content were recorded. In general, the 
decrease in antioxidant compounds is attributed to the formation of radiation-induced 
degradation products or the formation of free radicals (Wong and Kitts  2001 ; Sajilata 
and Singhal  2006 ). The effects of harvest date, storage, and low-dose irradiation on 
fl avanones were investigated in grapefruits. In general;  fl avanone concentrations 
increased with increasing irradiation dose even in the late season grapefruit, and 
 storage had a positive effect on fl avanone levels (Patil et al.  2004 ). 

 It has been reported that irradiation treatments can generate free radicals, thus 
leading to an induction of stress responses in plant foods, which in turn may lead to 
an increase in the antioxidant synthesis (Oms-Oliu et al.  2012 ). Song et al. ( 2006 ) 
observed that total phenolic content of carrot and kale juices substantially increased 
by applying an irradiation treatment. However, reductions in the total phenolic 
 content have been reported for treatments of more than 10 kGy in some irradiated 
products (Villavicencio et al.  2000 ; Ahn et al.  2005 ). 

 Irradiation of plant tissues with UV has been shown to have positive interactions, 
indicating an increase in the enzymes responsible for fl avonoid biosynthesis, affect-
ing plant phenolic metabolites apart from induction of abiotic stress. UV-A has been 
reported to induce anthocyanin biosynthesis in fruits encompassing cherries 
(Kataoka et al.  1996 ). 

 UV-C is the most common applied to fresh fruits and vegetables, since it acts 
directly or indirectly as an antimicrobial agent. UV-C can cause direct bacterial DNA 
damage or may induce resistance mechanisms against pathogens in different fruits and 
vegetables. Low doses of UV-C radiation (254 nm) also reduce decay of a wide range 
of fruits and vegetables when applied after harvest (Ben-Yehoshua and Mercier  2005 ; 
Ramos et al.  2013 ). Erkan et al. ( 2008 ) investigated the changes in antioxidant capac-
ity, enzyme activity, and decay development in strawberry fruit illuminated with differ-
ent UV-C dosages. Three UV-C illumination durations and dosages, 1, 5, and 10 min 
(0.43, 2.15, and 4.30 kJ m −2 ) tested promoted the antioxidant capacity and enzyme 
activities and signifi cantly reduced the severity of decay during storage at 10 °C com-
pared to the control. All UV-C dosages increased the phenolic content of strawberry 
fruits as well. Total anthocyanin content increased during storage in all treatments. 

 Like PEF treatment, UV exposure can kill microorganisms with potentially 
less impact on food quality (Chen et al.  2013 ). UV irradiation has proved to be 
effective against  E. coli  O157:H7 in unpasteurized apple cider (Hanes et al.  2002 ; 
Basaran et al.  2004 ). Guerrero-Beltrán et al. ( 2009 ) evaluated the UV-C light effect 
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on  Saccharomyces cerevisiae  inactivation in grape, cranberry, and grapefruit juices. 
The maximum log reduction (cfu/mL) was 0.53, 2.51, and 2.42 for yeast count in 
grape, cranberry, and grapefruit juices, respectively, after 30 min of UV light treat-
ment at the maximum fl ow rate (1.02 L/min). 

 Noci et al. ( 2008 ) reported that UV exposure of apple juice caused a 29 % reduc-
tion in total phenolic content, which was much lower than that due to thermal pro-
cessing (48 %). However, UV exposure has its limitations when treating juices. UV 
light only penetrates a very short depth into the surface of a juice when compared 
with clear water (Lu et al.  2010 ). The penetration of UV light into juices is about 
1 mm for absorption of 90 % of the light. As a result, a special conduction of the 
liquid fl ow is always used in the UV exposure of juices to minimize the absorption. 
Lu et al. ( 2010 ) designed a small thin fi lm UV reactor to process apple juice with 
the aim of increasing the microbial inactivation rate and reported its excellent 
 performance in the reduction of microorganisms in various apple juices. The apple 
juice stability and nutritional qualities were also improved by using this method. 

 In particular, the combination of UV and PEF as a hurdle may overcome the limi-
tations of the individual techniques and has proven to be more effective for micro-
bial inactivation and maintaining nutritional quality of fruit juice (Chen et al.  2013 ).  

4.2.5    Membrane Filtration 

 Reverse osmosis (RO) and ultrafi ltration (UF) are both unit operations in which water 
and some solutes in a solution are selectively removed through a semipermeable 
membrane. They are similar in that the driving force for transport across the mem-
brane is the pressure applied to the feed liquid. However, RO is used to separate water 
from low-molecular-weight solutes (e.g., salts, monosaccharides, and aroma com-
pounds), which have a high osmotic pressure. A high pressure, 5–10 times that is used 
in UF (4,000–8,000 × 10 3  Pa), is therefore necessary to overcome this. Microfi ltration 
(MF) is similar to UF in using lower pressures than RO, but is distinguished by the 
larger range of particle sizes (0.01–2 μm) that are separated (Fellows  2000 ). 

 UF and MF are the most commonly used membrane fi ltration techniques for fruit 
juice processing. They have been applied commercially for the clarifi cation of fruit 
juices. Basically, the membranes retain large molecules such as microorganisms, 
lipids, proteins, and colloids (UF only) and allow small molecules such as vitamins, 
salts, sugars, and water to fl ow through them. Therefore, via this process, “cold 
pasteurized” products (>5 log reduction or removal of microorganisms) can be pro-
duced with better fl avors than thermally treated products (Cassano et al.  2003 ; 
Rektor et al.  2004 ; Chen et al.  2013 ). In contrast to concentration by boiling, RO 
and UF membranes concentrate foods without heat to produce good retention of 
sensory and nutritional qualities (Fellows  2000 ). 

 Pap et al. ( 2010 ) applied reverse osmosis process for the concentration of 
black currant juice. The researchers reported that enzymatic treatment resulted in 
the increase of anthocyanin and fl avonol content of the juices. The centrifugation 
process decreased the amount of anthocyanins and fl avonols to some extent. 
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The juice clarifi ed by UF had signifi cantly lower concentrations of anthocyanins 
and fl avonols, while enzymatic pretreatment applied juice had the highest levels of 
these fl avonoids. Enzymatic pretreatment improved the permeate fl ux in RO during 
the concentration process and resulted in a juice concentrates highest in anthocya-
nins and fl avonols. 

 A comparative study by Cassano et al. ( 2003 ) on the concentration of blood, 
orange juice demonstrated that the total antioxidant activity of juice concentrated by 
evaporation was lower than that of the fresh juice. During UF, the total antioxidant 
activity was maintained in both permeate and retentate. When RO was applied, a 
small decrease of the total antioxidant activity was determined. Osmotic distillation, 
applied as subsequent concentration step after RO, did not cause any signifi cant loss 
in antioxidant activity of the juice. Cassano et al. ( 2006 ) proposed integrated 
 membrane process for the production of kiwifruit juice. Losses of total antioxidant 
activity after UF and osmotic distillation relative to the fresh juice were 4.4 and 
11.1 %, respectively, and the reduction of vitamin content in the fi nal concentrate 
was also very limited.       
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