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Abstract This chapter presents a critical analysis of the behavioral alterations 
reported in the offspring of women exposed to stress and/or depression during preg-
nancy and the neurochemical and structural changes underlying them. Among the 
alterations attributed to prenatal stress in humans and experimental rats of both 
sexes is impaired regulation of the hypothalamic–pituitary–adrenal (HPA) axis, 
anxiety and exaggerated fear of novelty, and decreased social interaction. Learn-
ing and attention deficits are more prevalent in boys and male rats. Fear of novelty 
and anxiety are associated with enlargement of the amygdala and its corticotropin-
releasing factor content, and decreased socialization, with lower oxytocin activity 
in the amygdala. Learning deficits are associated with a decrease in neurogenesis, 
dendritic complexity, and spine number in the dorsal hippocampus. Fostering pre-
natally stressed (PS) pups onto control mothers prevents the dysregulation of the 
HPA axis and heightened anxiety, indicating a role for postnatal factors in their eti-
ology. By contrast, learning impairment and decreased socialization are not affected 
by this fostering procedure and are therefore prenatally mediated.

In spite of their widespread use in depressed pregnant women, selective sero-
tonin reuptake inhibitor (SSRI) antidepressants do not normalize the behavior of 
their children. When administered during gestation to stressed rats, SSRIs do not 
reduce anxiety or learning deficits in their offspring. Moreover, when given to un-
stressed mothers, SSRIs induce anxiety in the offspring. The detrimental effect of 
SSRIs may result from inhibition of the serotonin transporter exposing the brain 
to excess amounts of 5-hydroxytryptamine (5-HT) at a critical time during fetal 
development.

Abbreviations

ADHD          Attention deficit hyperactivity disorder
BrdU          5-bromo-2′-deoxyuridine
CeA Central nucleus of the amygdala
COR Corticosterone
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CRF Corticotropin-releasing factor
CRF-BP Corticotropin-releasing factor binding protein
CRFR1 Corticotropin-releasing factor receptor 1
CRFR2 Corticotropin-releasing factor receptor 2
DG Dentate gyrus
DCX Doublecortin
EE Environmental enrichment
EPM Elevated plus maze
HPA Hypothalamic pituitary adrenal
11β-HSD-2 11β-hydroxy steroid dehydrogenase-2
MWM Morris water maze
PS Prenatally stressed
SERT Serotonin transporter
SSRI Selective serotonin reuptake inhibitor

1.1  Introduction

Observations from retrospective studies starting in the 1960s suggested that pro-
longed uncontrollable stress during pregnancy may cause alterations in the devel-
opment and behavior of the offspring which can be detected in infancy, childhood, 
and adulthood. These alterations include a reduction in birth weight, delay in early 
developmental milestones, withdrawn or disruptive behavior, attention and learning 
deficits, anxiety, depression, and schizophrenia (see reviews by Koenig et al. 2002; 
Kofman 2002; Weinstock 1997, 2001, 2008). In the past decade, prospective stud-
ies were initiated in women who had been exposed to natural (Laplante et al. 2008) 
or man-made disasters (Imamura et al. 1999), marital discord (Lereya and Wolke 
2012), and adverse social or work-related conditions (Khashan et al. 2008). Expo-
sure to such adverse risk factors can also increase the incidence of depression in 
pregnant women (Giardinelli et al. 2012; Husain et al. 2012; Miszkurka et al. 2012; 
Qu et al. 2012). Both depression and gestational stress can each adversely affect 
child development and behavior. Therefore, other studies focused on offspring from 
birth through to adolescence of women with anxiety and depression during and 
after pregnancy (Bergman et al. 2007; Davis and Sandman 2012; Van den Bergh 
and Marcoen 2004; Van den Bergh et al.2008). However, these prospective studies 
underscored the difficulty in defining maternal stress and allowing for differences in 
the reaction of women to the same objective stress. While some reported an associa-
tion between maternal distress and behavioral changes in children at different ages, 
none could differentiate unequivocally between prenatal, genetic, and postnatal fac-
tors in mediating the behavioral outcome.

A clearer assessment of the contribution of pre- and postnatal factors to the be-
havioral outcome that is less influenced by genetic factors can be achieved by stud-
ies in experimental animals. The majority has been performed in rats in which more 
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comprehensive behavioral, morphological, and histological information is available 
than in other species. Several were able to replicate the increased anxiety, depres-
sive-like behavior (Alonso et al. 1991; Morley-Fletcher et al. 2004; Poltyrev et al. 
2005), learning (Yaka et al. 2007; Yang et al. 2006) and attention deficits (Wilson 
et al. 2012), reduced social interaction (Lee et al. 2007), and some of the charac-
teristic neuronal changes of schizophrenia (Koenig et al. 2005). Like in humans 
(Van den Bergh et al. 2008), gestational stress in rats impaired the regulation of the 
response to stress of the hypothalamic–pituitary–adrenal (HPA) axis in the offspring 
(Barbazanges et al. 1996; Weinstock et al. 1992).

By fostering prenatally stressed (PS) pups onto control mothers, it was also pos-
sible to differentiate behavioral alterations arising from gestational stress per se 
from those ascribed to inadequate mother–infant interactions (Barros et al. 2006; 
Yang et al. 2006). Other procedures like housing the stressed mothers (Li et al. 
2012) or their offspring in an enriched environment were able to reduce the effects 
of gestational stress on several aspects of the offspring behavior (Lui et al. 2011; 
Yang et al. 2007). This chapter discusses more recent research that has examined 
the effect of gestational stress on neurochemical, structural, gene, and proteomic 
changes in different brain regions of the offspring of both sexes. It also describes 
procedures that have been used to prevent or reverse the behavioral and structural 
changes induced by prenatal stress.

1.2  Gestational Stress and Activity of the HPA Axis  
in the Mother and Her Offspring

Subjects with anxiety and depression have hypercortisolemia and impairment of 
negative feedback by cortisol on the HPA. This has been attributed to the increased 
action of corticotropin-releasing factor (CRF; Keck 2006; Reul and Holsboer 2002). 
Hypercortisolemia also occurs after chronic stress. It has been postulated that pre-
natal stress produces alterations in brain structure and behavior through the action 
of “stress” hormones, CRF, glucocorticoids, and catecholamines arising in the ma-
ternal adrenal gland and placenta (reviewed in Jansson and Powell 2007; Sandman 
et al. 2011; Weinstock 2005). During a normal pregnancy, very little cortisol (in hu-
mans) and corticosterone (COR; in rodents) reaches the fetal brain because they are 
converted to inactive metabolites by the placental enzyme 11β-hydroxy steroid de-
hydrogenase-2 (11β-HSD-2). In addition, about 90 % of circulating corticosteroids 
are sequestered by a corticosteroid-binding globulin (CBG), thereby limiting their 
access to the fetus. However, chronic gestational stress reduces the level of CBG in 
rats (Takahashi et al. 1998) and downregulates the activity of 11β-HSD-2 in humans 
(O’Donnell et al. 2012) and rats (Jensen Pena et al. 2012). This is accomplished by 
DNA methylation at specific sites within the 11β-HSD-2 gene promoter, thereby in-
creasing the concentration of free steroids that can reach the developing fetal brain. 
Gestational stress also releases adrenaline and noradrenaline into the circulation 
which can reduce placental blood flow causing hypoxia and ischemia that could 
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adversely influence fetal brain development (Delcour et al. 2012; Fan et al. 2009). 
Higher levels of these catecholamines have been found in the fetal circulation in 
response to maternal stress (Ohkawa et al. 1991) and can reach the brain because of 
the absence of a blood brain barrier.

Several clinical studies have attempted to relate elevations in cortisol to the pres-
ence of chronic stress, anxiety, and/or depression (assessed by questionnaires) dur-
ing pregnancy. No relation was found between the magnitude of the increase in 
maternal cortisol in plasma (Baibazarova et al. 2012) or saliva between gestational 
weeks 15–37 and the level of stress, anxiety, depression, or pregnancy-specific 
anxiety at any of the times that cortisol was measured (Davis and Sandman 2010). 
However, a significant relation between salivary cortisol and maternal mood was 
found in subjects with comorbidity of anxiety and depression but not in those with 
only one of these conditions (Evans et al. 2008). It is not clear why most studies 
failed to relate maternal anxiety and/or depression at a specific time during preg-
nancy to elevation of plasma cortisol. This may depend on the method of sample 
collection or its timing during the day, which may differ in subjects with alterations 
in their circadian rhythms due to depression. It is probable that the ongoing chronic 
emotional state of anxious, depressed women does not lend itself to the detection of 
a clearly defined increase in plasma cortisol, unlike that in response to stress.

Others have tried to relate the time of occurrence of stress, anxiety, and/or de-
pression during gestation to the behavioral outcome in the offspring. Here too, there 
is little consensus among the earlier studies. For example, low birth weight, in-
creased infant anxiety, and fear of novelty were associated with stress at 28–30 
(Wadhwa et al. 1993), 15–17, 27–28, and 37–38 weeks (Huizink et al. 2003) and at 
18 and 32 weeks of gestation (O’Connor et al. 2002). More recently, high maternal 
anxiety and elevated cortisol early in pregnancy were shown to be associated with 
a deleterious effect on infant cognitive development, while those occurring towards 
the end of pregnancy were associated with improved cognitive development (Da-
vis and Sandman 2010). Likewise, maternal anxiety at 12–22 weeks of pregnancy 
was a significant predictor of symptoms of attention deficit hyperactivity disorder 
(ADHD), aggressive and delinquent behavior, and anxiety in 8–9-year-old children 
(Van den Bergh and Marcoen 2004). Alterations in the reactivity of the HPA axis 
were found in adolescent boys and girls, but depressive symptoms, only in girls 
(Van den Bergh et al. 2008). More recently, this group has shown that prenatal 
maternal-state anxiety measured around the 16th week of gestation resulted in hy-
peractivity/inattention, emotional symptoms, problems with peer relationship, and 
social interaction, which were more prevalent in boys than in girls aged 5 years 
(Loomans et al. 2011). Pregnancy-specific anxiety and a higher level of maternal 
cortisol measured at 20, 25, and 30 weeks were associated with increased anxiety in 
preadolescent children of both sexes (Davis and Sandman 2012). The fetal cortical 
and limbic systems develop during the first 10 weeks of pregnancy (Bayer et al. 
1993). It is therefore most probable that any changes in their programming by ele-
vated cortisol, and the resulting effects on behavior, occur during that period. Corti-
sol levels may remain elevated as long as maternal anxiety and depression continue. 
If they increase only at a later stage of fetal brain development, the outcome may 
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be different, and improvement in cognition can occur, as indicated in the study by 
Davis and Sandman (2010).

1.2.1  Experimental Animals

In the rat, the HPA axis, cortex, and limbic systems develop from day 13 of gesta-
tion (Bayer et al. 1993); therefore, in most studies, stress was administered dur-
ing the 3rd (last) week of pregnancy. When the rats were stressed randomly, thrice 
weekly by noise and flashing lights (Weinstock et al. 1988), or on alternate days 
throughout gestation (Takahashi et al. 1998), COR levels increased in the maternal 
and fetal blood after each stress. However, when the rats were subjected to noise 
and flashing lights once daily at the same time during the last week of gestation, 
COR no longer increased in the mother or fetuses by the 3rd day (Weinstock et al. 
1988). Very few studies have assessed whether or not the rats adapted to the form of 
stress that was used. Varied short-acting stressors during the last week of gestation 
(Salomon et al. 2011), or psychosocial stress on days 16–20 (Brunton and Russell 
2010), continued to increase plasma COR until the last day of stress. Adaptation to 
the stress after 2 or 3 days could partially explain the inconsistency in the behavioral 
data in the offspring when different stress paradigms were used.

In order to obtain direct evidence that maternal adrenal hormones mediate the 
alterations induced by gestational stress in the offspring, pregnant rats were adrenal-
ectomized prior to the initiation of stress and given saline and maintenance levels 
of COR. This prevented the dysregulation of the response of the HPA axis to stress 
(Barbazanges et al. 1996) and the heightened anxiety and learning deficits in the 
offspring (Zagron and Weinstock 2006). Administration of COR to the pregnant 
rats to mimic the increase induced by stress reinstated the altered response of the 
HPA axis to stress (Barbazanges et al. 1996) and the increased anxiety but did not 
restore the learning deficits in the offspring (Salomon et al. 2011). Thus, while glu-
cocorticoids mediate the anxiety and impaired regulation of the HPA axis induced 
by prenatal stress, other adrenal hormones appear to be responsible for the genesis 
of learning deficits.

The slower return of COR to baseline levels in response to stress in PS rats 
(McCormick et al. 1995; Weinstock et al. 1992; Weinstock et al. 1998) results from 
reduced efficiency of the feedback mechanism because of downregulation of hip-
pocampal glucocorticoid (Weinstock et al. 1992) and mineralocorticoid receptors 
(Barbazanges et al. 1996; Tamura et al. 2011). Increased activation of the HPA axis 
in PS rats is also associated with a higher expression of CRF mRNA in the para-
ventricular nucleus (PVN) of the hypothalamus in females and a reduction in its 
corticotropin-releasing factor binding protein (CRF-BP) in males which is believed 
to limit the action of CRF (Zohar and Weinstock 2011).
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1.3  Anxiety and Depressive-Like Behavior in Rats

The heightened anxiety seen in infants of stressed, anxious, and depressed mothers 
is paralleled in 10-day-old PS infant rats and detected by the increase in ultrasonic 
vocalizations in response to isolation from the mother (Laloux et al. 2012). PS males 
are also more anxious than control rats, as indicated by the longer latency to emerge 
from a dark cage into a brightly lit box (Ward et al. 2000), or by avoidance of the 
center area in the field (Abe et al. 2007). In 1988, following the description by Pel-
low and File (1986) of the use of the elevated plus maze (EPM) for detecting anx-
iolytic drugs, we used the test to demonstrate heightened anxiety in the offspring of 
both sexes of mothers subjected to unpredictable noise throughout gestation (Fride 
and Weinstock 1988). This finding was replicated in both sexes after variable forms 
of stress during the last week of gestation by Richardson et al. (2006) and Zohar and 
Weinstock (2011), but only in female offspring in a study by Schulz et al. (2011). 
When maternal stress consisted of thrice daily restraint, anxiety was detected in the 
EPM in which it was tested only in males (Baker et al. 2008; Estanislau and Morato 
2005; Li et al. 2012; Vallee et al. 1997), or was found selectively in males, but not 
in females (Zuena et al. 2008) or in neither sex (Richardson et al. 2006; Rimondini 
et al. 2003). Maternal psychosocial stress also produced conflicting results in male 
offspring. These were found to be either less anxious (Gotz and Stefanski 2007) or 
more anxious than controls (Brunton and Russell 2010).

The disparate effect of prenatal stress demonstrated in these studies may arise 
from the amount by which plasma COR increased in response to the stress, and if 
this remained elevated during the period of the development of the limbic system. 
They could also result from the environmental conditions in which anxiety was as-
sessed in the offspring, as demonstrated in the following experiment. Offspring of 
control mothers and those subjected to varied stress from day 14 of gestation were 
tested in the EPM under bright light, under dim light, or were housed from weaning 
under a reversed light cycle and tested under red light during the active phase of 
their cycle (Fig. 1.1). No difference was detected in the behavior of PS and controls 
of either sex in the EPM under bright light since the controls spent relatively little 
time in the open arms of the maze. However, under dim light, rats of both sexes 
ventured more into the open arms and a significant anxiogenic effect was detected 
only in females. In the third group, male and female controls spent even more time 
in the open arms, enabling clearer detection of anxiety in PS rats. A similar differ-
ence between PS and controls was also reported by others who assessed behavior in 
rats housed under reversed light (Brunton and Russell 2010; Zohar and Weinstock 
2011).
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1.4  Neurochemical and Structural Changes Associated 
with Increased Anxiety Induced by Prenatal Stress

The amygdala plays a primary role in the formation and storage of memories as-
sociated with emotional events that are imprinted in the lateral nuclei. Anxious be-
havior is elicited through connections between the lateral nuclei, the central nucleus 
of amygdala (CeA), and the bed nuclei of the stria terminalis. The volume of the 
amygdala is increased in children with generalized anxiety disorders (De Bellis 
et al. 2000) or in those born to women with anxiety and depression during preg-
nancy (Buss et al. 2012), as shown by structural magnetic resonance imaging. In 
a study performed only in male offspring, prenatal stress caused an increase in the 
volume of the lateral amygdaloid nucleus which contained more neurons than that 
of controls (Salm et al. 2004). The CeA is a major extra hypothalamic site of CRF 
expression (Merchenthaler et al. 1982). Injection of CRF into the amygdala was 
shown to induce anxiogenic behavior (Gray and Bingaman 1996), while adminis-
tration of a CRF receptor antagonist into the brain selectively reduced the height-
ened anxiety of PS males in the cage emergence test (Ward et al. 2000). In keeping 

Fig. 1.1  Effect of different 
environmental conditions on 
behavior in the elevated plus 
maze. a Males. b Females. 
White columns: controls; 
black columns: prenatally 
stressed. Significantly differ-
ent from controls, *p<0.05; 
**p<0.01
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with their anxiogenic behavior, we showed that PS males and females had higher 
levels of CRF protein in amygdala extracts (Fig. 1.2). In comparison with controls, 
PS males also had a reduction in the levels of CRF-BP mRNA and of CRF 2 recep-
tors (CRFR2) mRNA (Zohar and Weinstock 2011), the activation of which reduces 
anxiety. The increase in CRF protein in the amygdala in PS rats could have resulted 
from excess COR activity via glucocorticoid receptors which are expressed in the 
CeA during development (Honkaniemi et al. 1992). Maternal psychological stress 
that only increased anxiety in the male offspring also reduced the expression of 
CRFR2 and increased that of CRF 1 receptors (CRFR1), which mediates anxiety, in 
the medial nucleus of the amygdala of males (Brunton et al. 2011).

1.5  Alterations in Cognitive Function and Spatial 
Learning Induced by Prenatal Stress in Humans  
and Rats

1.5.1  Humans

Cortical neurogenesis in humans occurs between gestational weeks 6 and 16 (Sid-
man and Rakic 1973) and neuronal migration and synaptogenesis leading to distin-
guishable cortical layers between weeks 24 and 26 (Meyer et al. 2000).

It has been shown that prenatal stress affects cognitive abilities in humans from 
infancy to adulthood. Exposure of mothers to the severe stress of a freezing ice 
storm in Canada resulted in some degree of cognitive retardation in their 2-year-old 
children, while exposure to moderate levels of stress enhanced development of their 
cognitive ability (DiPietro et al. 2006). At 5.5 years of age, severe stress exposure 
resulted in lower full-scale IQs and language abilities (Laplante et al. 2008). Like-
wise, others found that high maternal antenatal anxiety, but not low or moderate 
levels, was associated with poorer performance of 17-year-old adolescent offspring 
when the cognitive load of the task was increased (Mennes et al. 2006). Young 
adults whose mothers had experienced major adverse life events during pregnancy 

Fig. 1.2  Relative amount of 
corticotropin-releasing factor 
( CRF) protein in the amyg-
dala of control and prenatally 
stressed rats White columns: 
controls; black columns: pre-
natally stressed. Significantly 
different from controls; 
*p < 0.05; **p < 0.01
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used a more rigid strategy to solve a navigational task that depended on the caudate 
nucleus, in contrast to the flexible, hippocampus-based one used by unstressed indi-
viduals (Schwabe et al. 2012). These studies did not provide any information about  
possible sex differences in the effect of prenatal stress on cognitive performance. 
Nevertheless, data accumulated so far show that adverse life events may have per-
manent effects on cognitive function and on the way in which spatial problems are 
solved. The outcome of maternal stress appears to depend on its intensity and the 
time during pregnancy of its occurrence as confirmed by studies in experimental 
animals described below.

1.5.2  Rats

In the rat, neurogenesis begins in various cortical regions on day 14 and continues 
until birth on day 21; in hippocampal fields CA 1–3, it starts on day 15, and in the 
granule cells of the dentate gyrus (DG) on day 19, continuing until postnatal day 19 
(Rice and Barone 2000). There are clear sex differences in normal brain morphol-
ogy in rats, particularly in the hippocampus, both during development (Munoz-
Cueto et al. 1990) and in adulthood (Andrade et al. 2000; Madeira and Lieberman 
1995; see below). As in humans (Newhouse et al. 2007; Sneider et al. 2011), sex 
differences underlie the performance of spatial learning in rodents and are related to 
different strategies used by each sex (Sandstrom et al. 1998). Several brain regions 
may participate in the execution of these strategies, including the medial prefrontal 
cortex (de Bruin et al. 2001) and the hippocampal formation. The latter is particu-
larly involved in spatial navigation guided by distal cues to which females tend to 
respond better than males (Blokland et al. 2006).

Most reports of the effect of prenatal stress on spatial memory are based on 
experiments in which pregnant rats were restrained once or thrice daily for periods 
ranging from 30 to 120 min during the last week of gestation when the cortical and 
hippocampal neurons develop. Spatial memory of their adult offspring was assessed 
in the Morris water maze (MWM) test. Unlike the effect of prenatal stress on anxi-
ety, there was much more agreement between studies, with most of them reporting 
learning deficits in males (Hosseini-Sharifabad and Hadinedoushan 2007; Lemaire 
et al. 2000; Li et al. 2012; Lui et al. 2011; Salomon et al. 2011; Szuran et al. 2000; 
Zagron and Weinstock 2006), and only one, selectively in females (Wu et al. 2007). 
In another study in which control females performed the task less well than males, 
prenatal stress actually improved the performance of females (Zuena et al. 2008). 
The relative immunity of adult PS females from impairment of spatial learning may 
result from the presence of estradiol which can increase neurogenesis, spine density, 
and their spatial performance (Gould et al. 1990; Phan et al. 2012).

When the effect of varied forms of prenatal stress was examined in prepuber-
tal or juvenile rats, spatial learning was selectively impaired in females (Li et al. 
2008; Weinstock 2011). However, the search strategy employed by both young PS 
male and female rats was shown to be less efficient than that of their respective 
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controls (Wu et al. 2007). In adulthood, the same varied stress only caused spatial 
memory deficits in males (Weinstock 2011), possibly due to the positive influence 
of estradiol in females (Markham et al. 2010; Yaka et al. 2007). In association with 
learning impairments in PS males, there was a decrease in hippocampal long-term 
potentiation (LTP) (Yaka et al. 2007; Yang et al. 2006) and in the expression of the 
NR2B subunit of the glutamate-type N-methyl-d-aspartate (NMDA) receptor (Lui 
et al. 2011; Yaka et al. 2007) and in the GluR1 subunit of the α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptor (Yaka et al. 2007).

Attempts have been made to relate alterations induced by prenatal stress in spa-
tial learning to those in hippocampal morphology. In accordance with the selec-
tive effect on learning, we found a reduction in dendritic length, complexity, and 
number of spines in the DG in juvenile PS females. In the hippocampal CA1 and 
CA3 regions, the length and complexity of apical dendrites were decreased in both 
sexes (Bock et al. 2011). There do not appear to be any studies on the effect of 
prenatal stress on dendritic morphology in adult females. However, in adult males, 
a reduction was found in the complexity of dendrites and their length in the hippo-
campal CA3 region after once daily maternal restraint of 1 h (Hosseini-Sharifabad 
and Hadinedoushan 2007) and in the CA1, CA3, and DG after maternal restraint 
of 2 h (Fujioka et al. 2006). By contrast, as in humans (DiPietro et al. 2006), mild 
maternal restraint stress, which consisted in rats of only 30 min, improved cognitive 
function (Fujioka et al. 2001), and increased dendritic length in the CA1 and DG 
and dendritic complexity in the CA3 region in PS males (Fujioka et al. 2006).

Neurogenesis in the subgranular zone (SGZ) of the DG of the hippocampus con-
tinues throughout life and plays an important role in cognition (Abrous et al. 2005). 
When measured by the incorporation of cells labeled with 5-bromo-2′-deoxyuridine 
(BrdU), neurogenesis was decreased in the DG of male PS rats that showed learn-
ing deficits (Lemaire et al. 2000). When the same restraint stress used by this group 
failed to induce changes in spatial learning, BrdU was not decreased significantly 
in males in the dorsal hippocampus (that is involved in spatial learning) but only 
in the ventral part in females associated with increased anxiety (Zuena et al. 2008). 
We used doublecortin (DCX), a reliable marker of newly generated neurons (Rao 
and Shetty 2004), and found that it was selectively reduced in the SGZ of the DG 
in adult males (Fig. 1.3). On the other hand, GAP 43, a protein that positively influ-
ences axonal guidance and synaptic plasticity, was increased in PS females com-
pared to that in controls (Fig. 1.3). Prenatal stress also diminished neurogenesis in 
the DG of monkeys but no information was given about their spatial learning ability 
(Coe et al. 2003).

Prenatal stress has been shown to reduce the size of the anogenital distance in 
prepubertal males (Holson et al. 1995; Pereira et al. 2006; Salomon et al. 2011), a 
sign of a relative lack of testosterone. If the amounts of testosterone synthesized 
by their hippocampal neurons are also reduced in PS males, it would adversely 
affect their synaptic plasticity (Ooishi et al. 2012) and could explain their greater 
susceptibility to learning and memory deficits. In summary, the majority of studies 
support a selective reduction in spatial learning by prenatal stress in adult males but 
not females. This is associated with a reduction of dendritic length, complexity, and 
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spines in the DG, and of neurogenesis in the SGZ which may occur through a rela-
tive lack of testosterone at a critical time during development.

1.6  Contribution of Pre- and Postnatal Factors to Human 
Offspring Behavioral Pathology

A clear association was found between the presence of anxiety disorder during 
pregnancy and depressive symptoms after birth, which together affected the out-
come, increasing the incidence of separation anxiety disorder and ADHD in the 
offspring (Martini et al. 2010). It was also shown that maternal anxiety before birth 
was also associated with anxiety and depression during and after pregnancy and 
resulted in anxiety in the children, making it impossible to differentiate genetic per-
sonality traits from pregnancy-related stress in this outcome (Martini et al. 2010). 
In an attempt to assess the relative contributions of prenatal and postnatal maternal 
anxiety, a full range of child psychopathology and functioning was assessed in over 
3000 mother–child pairs. Maternal depression was found to have a more significant 
impact on different types of child maladjustment than maternal anxiety in either the 
prenatal and postnatal periods. Internalizing difficulties in the child were linked to 
postnatal depression, while externalizing difficulties and impaired verbal IQ were 
associated with adverse prenatal factors, like low socioeconomic status and sub-
stance abuse, but not with maternal depression (Barker et al. 2011). Since smoking 
and drug abuse are themselves risk factors for infant pathology, it would be impor-
tant in future studies to separate adverse factors associated with stress from depres-
sion and drug abuse in determining their impact on child development and behavior.

Fig. 1.3  Behavior in the ele-
vated plus maze of stressed 
and control mothers with and 
without citalopram treatment. 
White column: control moth-
ers; black column: stressed 
mothers; hatched column: 
controls with citalopram 
(10 mg/kg/day); cross-
hatched column: stressed 
with citalopram (10 mg/kg/
day). Significantly differ-
ent from controls; *p < 0.05; 
significantly different from 
stressed #p < 0.05
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1.7  Experiments Differentiating Pre- and Postnatal 
Effects of Maternal Stress in Rats

1.7.1  Maternal Behavior

In experimental studies in rats, a clear separation can be made between the influ-
ence of prenatal and postnatal factors wih no confounds due to drug intake by the 
use of cross-fostering of pups from a stressed onto a control mother and vice versa. 
Thus, we found that chronic variable stress during the last week of pregnancy in-
creased the anxiogenic behavior of stressed mothers in the EPM test measured 2 
days after their pups are weaned (Fig. 1.4), and this may reduce their maternal be-
havior towards their pups (Moore and Power 1986; Power and Moore 1986; Smith 
et al. 2004). This may have resulted from excess levels of maternal COR released 
in response to stress since diminished maternal care was also seen when COR was 
administered during pregnancy (Brummelte and Galea 2010). The presence (Smith 
et al. 2004) or absence (Poltyrev and Weinstock 1999) of an alteration in maternal 
care appears to depend on the magnitude of the increase in COR and its duration 
(Brummelte and Galea 2010).

1.7.2  Cross-fostering

Fostering PS pups onto control mothers reduced their anxiety in the EPM test but 
increased anxiety in controls pups reared by a stressed mother (Barros et al. 2006). 
This testifies to the influence of postnatal factors in the etiology of anxiety in the 
offspring. The fostering procedure of PS rats onto control mothers also normal-

Fig. 1.4  Effect of prenatal 
stress on neurogenesis and 
synaptic plasticity in the 
dentate gyrus of the hippo-
campus. a Represents the % 
area of immunoreactivity in 
cells labeled with an antibody 
to doublecortin. b Represents 
the intensity of staining 
with an antibody to GAP43. 
Significantly different from 
controls; *p <0.05; **p<0.01
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ized the activity of the HPA axis of the males and prevented the downregulation 
of glucocorticoid receptors (Maccari et al. 1995). In contrast to the amelioration of 
anxiety, rearing by a control foster mother had no effect on the learning deficits or 
the reduction in LTP in PS males (Yang et al. 2006). This indicated that the effect on 
learning and synaptic plasticity is prenatally mediated.

It has been shown that the anxiety and abnormal regulation of the HPA axis, but 
not the learning deficits, in PS rats are brought about by raised levels of maternal 
COR (Barbazanges et al. 1996; Salomon et al. 2011). Chronic maternal stress was 
shown to increase COR in the mothers’ milk for periods of up to 3 weeks (Pfister 
and Muir 1989). Rearing of PS pups by control mothers would also prevent their 
exposure to such raised levels of COR. The finding that heightened anxiety in PS 
rats is associated with the quality of postnatal maternal mood, and rearing ability ac-
cords well with the findings in human subjects. The closer association between ma-
ternal stress during the prenatal period and the cognitive outcome is also in agree-
ment with the human data (Laplante et al. 2008).

1.7.3  Rearing in an Enriched Environment

Environmental enrichment (EE) consists in modifying the rat’s housing conditions 
to provide enhanced sensory motor and cognitive stimulation. This is probably 
only significant for laboratory rats that are normally housed in small cages with no 
source of stimulation or little room for movement. EE has been shown to increase 
total brain weight (Wainwright et al. 1993) and the number of dendritic branches in 
the hippocampus (Greenough and Volkmar 1973). Housing PS male rats in an EE 
from weaning restored the response of the HPA axis to stress to that in control rats 
(Morley-Fletcher et al. 2003) and reduced their anxiety (Li et al. 2012). In contrast 
to the lack of effect of fostering, an EE also normalized the spatial performance of 
PS rats in the MWM test, and hippocampal LTP (Lui et al. 2011; Yang et al. 2007). 
However, the reduction in social interaction in adolescent and adult male PS rats, 
which was associated with a decrease in oxytocin in the PVN and was restored to 
that of controls by injection of oxytocin into the amygdala, was not improved by EE 
(Lee et al. 2007). Others housed the pregnant rats themselves in an EE while they 
were stressed and found that their male offspring showed less anxiety, performed 
like controls in the MWM, and had an increase in spine density in the hippocampal 
CA1 and DG regions (Li et al. 2012). It is not yet known if maternal housing in an 
EE would prevent the reduction in social interaction induced by prenatal stress. 
The mechanism by which EE reverses some of the effects of prenatal stress is not 
clear, but it may occur through stimulation of neurogenesis and formation of more 
dendritic spines to overcome their loss in PS rats.



16 M. Weinstock

1.8  Effect of Antidepressant Treatment

During ontogenesis, 5-HT serves as a developmental signal for both serotonergic 
neurons and target tissues (Lauder 1990). In the mature brain, 5-HT acts as a neu-
rotransmitter and also modulates neuronal function and plasticity (Lesch 2001). In 
order to exert its proper function during development, serotonin must be present in 
various brain regions in optimal concentrations which are controlled through the 
levels of 5-HT synthesis and metabolism. The level of 5-HT in the brain is largely 
regulated via its reuptake through the serotonin transporter (SERT) which appears 
in humans and rats during midgestation (Daws and Gould 2011). Alterations in 
serotonergic activity are believed to occur in subjects with depression (Ressler and 
Nemeroff 2000).

1.8.1  Humans

Selective serotonin reuptake inhibitors (SSRIs), fluoxetine, paroxetine, and citalo-
pram, are most frequently prescribed antidepressants for maternal depression be-
cause they are generally considered to cause fewer adverse effects than the older 
tricyclic antidepressants (Cipriani et al. 2005; Westenberg and Sandner 2006). The 
number of anxious and depressed pregnant women using these medications varies 
from 5 to 20 % (Marcus 2009; Moses-Kolko and Roth 2004; Nordeng et al. 2012). 
A higher incidence of preterm births (Hayes et al. 2012; Klieger-Grossmann et al. 
2012), autism (Croen et al. 2011), irritability (Thormahlen 2006), and lower psy-
chomotor development index (Casper et al. 2003) has been reported in infants of 
mothers treated with SSRIs, but these symptoms are also seen in those of untreated 
subjects with depression (Louik et al. 2007). Others were able to differentiate an 
influence of SSRIs from that of depression on neuronal function. Infants from un-
treated depressed mothers had significantly lower attention scores than those of 
nondepressed mothers, while those of drug-treated mothers had a lower gestational 
age, more hypertonia, and a higher number of central nervous system stress signs 
than those of either untreated mothers or controls (Salisbury et al. 2011).

Only two studies have compared the effect on behavior of the children of de-
pressed mothers with and without SSRI treatment. In a relatively small group of 
women (22) given either paroxetine, sertraline, or fluoxetine, no difference was 
found in maternal mood or the incidence of behavioral abnormalities in 4-year-old 
children of treated and untreated mothers (Oberlander et al. 2007). In a larger group, 
depressed mothers were either untreated or given venlafaxine, sertraline, parox-
etine, fluoxetine, or citalopram in the first semester or throughout pregnancy. There 
was a reduction in the number of women who experienced a depressive episode in 
the 1st year following childbirth in those receiving venlafaxine but not the other 
drugs. However, irrespective of drug treatment and maternal outcome, their chil-
dren aged 3, 6, and 12 years had significantly higher rates of poor neonatal adapta-
tion, problematic externalizing and internalizing behaviors, and lower verbal and 
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performance IQs than those of nondepressed mothers (Nulman et al. 2012). Thus, 
there is no evidence that treatment of pregnant women with these drugs produces 
any benefit in terms of the behavioral outcome in the children.

1.8.2  Rats

Administration of citalopram (10 mg/kg/day) to pregnant rats from day 7 of gesta-
tion 1 week before commencement of stress, until the pups were weaned, reduced 
the anxiogenic behavior of stressed mothers but had no effect on that of unstressed 
mothers (Fig. 1.4). However, like SSRI treatment in depressed pregnant women 
(Nulman et al. 2012), citalopram did not ameliorate anxiogenic behavior of PS male 
offspring or their spatial learning deficits. When given to control mothers, citalo-
pram induced learning deficits in their offspring (Fig. 1.5). Maternal administration 
of fluoxetine from gestational day 11 to unstressed mothers resulted in a reduction 
in social play behavior in their juvenile offspring and anxiety at adulthood (Ol-
ivier et al. 2011). However, when fluoxetine was administered to rat mothers after 
parturition, anxiogenic behavior of the PS male offspring was decreased and there 
was no increased anxiety in controls (Rayen et al. 2011). In addition, fluoxetine 
treatment restored the suppressed neurogenesis in the SGZ of the DG of PS males 
and females to that in controls. Imipramine or fluoxetine given chronically to PS 
males in adulthood reduced their anxiety in the open field and the levels of COR 
and glucocorticoid receptor in response to stress (Szymanska et al. 2009). How can 
one explain the difference in outcome when SSRIs are given pre- or postnatally? 
Prenatal administration of SSRIs inhibits the SERT during a critical period of neu-
ron development and exposes the brain to excess amounts of 5-HT, as also shown in 

 

Fig. 1.5  Effect of maternal stress and citalopram treatment on spatial learning in the Morris water 
maze of adult male offspring. Open circles: controls, mothers untreated; closed circles: prenatally 
stressed, mothers untreated; open triangles: controls, mothers treated with citalopram (10 mg/
kg/day); closed triangles: prenatally stressed, mothers treated with citalopram (10 mg/kg/day). 
Significantly different from controls; *p < 0.05; significantly different from prenatally stressed 
#p < 0.05
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SERT knockout mice (Borue et al. 2007). Once the serotoninergic systems are fully 
developed and neuronal guidance is complete, the actions of SSRIs on abnormal be-
havior result from readjustment of alterations induced by prenatal stress in pre- and 
postsynaptic 5-HT receptor activation. Taken together, the data from experiments in 
human subjects and rats suggest that treatment of pregnant mothers with SSRIs may 
improve their depressed mood in some subjects. However, SSRIs can adversely 
affect neuronal guidance and the development of serotoninergic systems in the off-
spring by inhibiting the SERT at a critical time during development.
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