
Chapter 9
The Dynamical Analysis of Inter-Trial
Fluctuations Near Goal Equivalent Manifolds

Joseph P. Cusumano, Joseph M. Mahoney and Jonathan B. Dingwell

9.1 Introduction

The human body possesses a number of degrees of freedom far in excess of that
needed to accurately execute a typical goal-directed movement. It is natural to ex-
pect this redundancy to play an important role in the regulation of motor variability
as well as to influence its experimentally-observed structure. An important class of
data analysis methods, based on the notion of task manifolds (Scholz and Schoner
1999; Müller and Sternad 2004; Cusumano and Cesari 2006), has been developed
to examine the effect of this redundancy. In this chapter, we present a data anal-
ysis paradigm that integrates a consideration of redundancy at the task level with
the dynamical analysis of inter-trial fluctuations arising from repeated goal-directed
movements. We ground our discussion by presenting a study of variability in a virtual
shuffleboard task, and model inter-trial fluctuations as the output of a perception-
action loop whose primary function is to reduce error from one trial to the next. We
show that the fluctuation dynamics in the vicinity of the task’s goal equivalent man-
ifold (GEM) (Cusumano and Cesari 2006; John and Cusumano 2007; Dingwell et
al. 2010; Dingwell and Cusumano 2010; Dingwell et al. 2013; Cusumano and Ding-
well 2013) allow us to characterize not only the “static,” geometrical distribution of
the variability, but also its temporal structure. This combined space-time analysis of
observed variability yields an improved understanding of how goal-level errors are
regulated and generated.

Task manifolds are surfaces in an appropriate body state space (e.g., joint kine-
matic variables) that contain all possible task solutions. Since, by definition, every
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point in a task manifold corresponds to body states that result in perfect task exe-
cution, only deviations off of the manifold result in error at the goal level. While
this same basic idea underlies multiple methods of variability analysis, a different
approach has been taken to implement it in each case, largely motivated by a differ-
ence in analytical focus. Uncontrolled manifold (UCM) analysis (Scholz et al. 2000;
Scholz and Schoner 1999; Latash et al. 2002; Schöner and Scholz 2007) assumes that
the task manifold is defined at each instant along a given movement trajectory, and
uses an average movement in a time-normalized set of trials to represent the task’s
goal. Given the hypothesis that control will only be applied to correct deviations
off of the manifold, ratios of normalized variances perpendicular and tangent to a
candidate manifold are used as a test: the expectation is that, for a true UCM, there
should be greater variance along it than there is normal to it. With a primary focus
on motor learning, the tolerance, noise, and covariation (TNC) method (Cohen and
Sternad 2009; Müller and Sternad 2004; Ranganathan and Newell 2010; Sternad
et al. 2011) statistically decomposes observed variability into the three empirical
“costs” in its name, each of which are defined relative to a task manifold. The TNC
approach defines the task manifold in a minimal space of variables needed to specify
the outcome of a task, such as the position and velocity of a ball at release during
a throwing task. TNC analysis does not just focus on the orientation of variability
with respect to the task manifold (via the covariation cost) but also takes into con-
sideration the total body-level variability (the noise cost), and relates the goal-level
error to variability at the body level (via the tolerance cost).

The GEM concept (Cusumano and Cesari 2006) was initially developed to carry
out experimental sensitivity analyses explicitly relating variability at the body and
goal levels. The GEM approach defines the task manifold in a manner similar to that
of the TNC approach, however it does so by emphasizing the role of a goal function,
a mathematical hypothesis on the task strategy that encodes the relationship between
the body and goal needed for perfect task execution. The zeros of the goal function are
used to analytically define the GEM. In addition, the derivative of the goal function
gives the body-goal matrix, the singular values of which characterize the task’s
sensitivity to body-level errors (Cusumano and Cesari 2006; John and Cusumano
2007), independent of any control considerations. Motivated by the fact that optimal
control, particularly in the form of the minimum intervention principle (MIP), has
been proposed as a theoretical basis for modeling the neuromotor system (Scott 2004;
Todorov and Jordan 2002; Todorov 2004), optimal control ideas were incorporated
with the GEM approach. The resulting dynamical data analysis framework allows one
to create models of inter-trial fluctuations that can be tested against movement data
from human subjects (Dingwell and Cusumano 2010; Dingwell et al. 2010; Dingwell
et al. 2013), providing an analysis of human motor variability data that combines
task manifold, optimal control, and time series analysis approaches (Cusumano and
Dingwell 2013).

In what follows, we describe GEM-based fluctuation analysis, and, as an illus-
tration, use it to study data from a virtual shuffleboard task. After defining the key
concepts, we obtain the geometric stability properties of the inter-trial dynamics for
skilled players operating near the shuffleboard GEM. The eigenvalues and eigen-
vectors of a linear update equation estimated from the data characterize the way
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inter-trial fluctuations are organized around the GEM. We show that subjects exhibit
strong control of fluctuations in an eigendirection transverse to the GEM, but weak
control of fluctuations in an eigendirection nearly tangent to it. Furthermore, we
demonstrate that our dynamical analysis is robust under coordinate transformations
in a way that non-temporal variance-based methods are not. We conclude by dis-
cussing how our results support a generalized interpretation of the MIP, and in doing
so, suggest the possible involvement of competing costs other than pure goal-level
error minimization.

9.2 The Goal Equivalent Manifold

Consider a task for which we can express the goal-level error, e, in terms of a goal
function as:

f(x) = e (9.1)

where x ∈ R
B (the body space), f ∈ R

E (the goal space). For redundant systems,
B > E, that is the dimension of the body state space is greater than that of the space
of goal-level errors. This introduces the possibility that there are many (possibly
infinite) x that result in the goal-level error being zero. This particular set of body
states is called the goal equivalent set (GES), and is expressed mathematically as the
set G:

G � {x | f(x) = 0}.
If the GES forms a surface in the body space, then it is referred to as a GEM. By
definition, changes in the body state variables that remain in G do not change the
performance at the goal, because the error remains zero.

Fluctuations in the body state are mapped to their resulting fluctuations at the
goal. Given an operating point on the GEM, x∗ ∈ G, we write the state for small
body-level fluctuations, ξ , away from a state on the GEM, x∗ ∈ G. The sensitivity
of the goal-level error to the body-level fluctuations ξ is found using a Taylor series
expansion of the error:

e = f(x∗ + ξ ) = f(x∗) + Df(x∗)ξ + O
(||ξ ||2) ,

where Df(x∗) � J is the Jacobian of the goal function evaluated at x∗. By hypothesis,
f(x∗) = 0, and, for skilled task performance, we expect small errors and, hence, small
fluctuations away from the GEM (‖ξ‖ 
 1). Thus, the error is expected to be well
approximated by the linear relationship:

e ≈ Df(x∗)ξ = Jξ . (9.2)

In this context, J is referred to as the body-goal variability matrix (Cusumano and
Cesari 2006): it maps the fluctuations at the body level, ξ , to the error at the target, e.
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Fig. 9.1 Schematic of shuffleboard task. The subject releases the puck at position x0 with an initial
velocity v0. The goal is for the puck to come to a stop at the target. The coefficient of kinetic friction
is constant along the length of the board

Since B > E (by hypothesis), the E × B matrix J has more columns than rows,
and so can be decomposed into orthogonal subspaces: the null space, N , and the
column space, C (Poole 2010; Golub and van Loan 1996), where:

N � {ξ | Jξ = 0}, (9.3a)

and

C � {ξ | ξT w = 0 ∀w ∈ N }. (9.3b)

As defined in Eq. (9.3a), all perturbations away from x∗ that belong to the null
space will not cause the error to change from zero, to linear order in ξ . In contrast,
perturbations in the column space (Eq. 9.3b) will create nonzero error at the target.
Thus, in the context of movement variability analysis, we call N and C, the goal
equivalent and goal relevant subspaces, respectively. Geometrically speaking, the
null space is tangent to the GEM at x∗, whereas the column space is orthogonal to
the GEM.

As an illustration, consider the simple shuffleboard task shown in Fig. 9.1, for
which B = 2 and E = 1. The goal of this task is to release a puck at some initial
distance, x0, with some initial velocity, v0, and have it stop on the target line that is
located at a distance L from the start position, x = 0. Once released, the puck is
decelerated by a Coulomb friction force until it comes to rest, so that, by Newton’s
second law (Greenwood 1988):

ẍ(t) = −μg, (9.4)

where μ is the coefficient of kinetic friction and g is the local acceleration of gravity.
Solving the above differential equation gives the final position, xf as

xf = x0 + v2
0

2μg
. (9.5)

For convenience, we rescale the release position and velocity into dimensionless
quantities, x and v, using

x = x0

L
and v = v0√

2μgL
, (9.6)
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which makes our analysis universal for any length of board, coefficient of friction,
or local acceleration of gravity. The goal function for the system is then obtained,
following Eq. (9.1), by noting that xf − L is the scalar error, where xf is as in
Eq. (9.5). After substituting Eq. (9.6), we find the goal-level error, e, in dimensionless
form as:

e = xf − L

L
= v2 + x − 1. (9.7)

Thus, for the shuffleboard task, the goal function is a scalar valued function, e =
f (x) ≡ f (x, v), so that the 2D body state is x = (x, v). That is, the performance
in one trial, as measured by e, is determined exclusively by the value of (x, v), the
position and velocity of the puck at release.

The GEM is then obtained from Eq. (9.7) as G = {(x, v) | v = √
1 − x } (for

0 ≤ x ≤ 1; see Fig. 9.2), and the 1 × 2 body-goal variability matrix is computed by
the gradient of Eq. (9.7) as

J = (1, 2v). (9.8)

Using the definitions of Eqs. (9.3a) and (9.3b), we find the unit normal and unit
tangent, n̂ and t̂, respectively, to be

n̂ =
[

1√
1 + 4v2

,
2v√

1 + 4v2

]T

(9.9a)

and

t̂ =
[
− 2v√

1 + 4v2
,

1√
1 + 4v2

]T

, (9.9b)

where the superscript T indicates the matrix transpose. The unit vectors are shown
in Fig. 9.2.

9.3 Inter-Trial Control

Fluctuations in movement arise from inherent physiological noise that is present at
multiple scales (Eldar and Elowitz 2010; Faisal et al. 2008; Osborne et al. 2005;
Stein et al. 2005; McDonnell and Ward 2011). Thus, during repeated task execution,
a subject will strive to make adjustments from one trial to the next in an attempt
to maximize performance. We model this behavior as an iterative, error-correcting,
perception-action process (Warren 1990, 2006) in which perceived error from trial
k is used to estimate the body state at trial k + 1 in an attempt to drive the goal-level
error to zero. Among the simplest models are update equations with the form

xk+1 = xk + (I + Nk) u(xk) + νk , (9.10)



130 J. P. Cusumano et al.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x

v

x*

›n

›t

Fig. 9.2 The goal equivalent manifold (GEM) for the shuffleboard task. The solid gray line denotes
the GEM (body states x = (x, v) leading to perfect task performance); dashed gray lines are ±5 %
error contours. Also shown (black arrows) are the unit normal n̂ (Eq. 9.9a) and unit tangent t̂
(Eq. 9.9b) at an operating point x∗. Deviations from the GEM in the t̂ direction cause no error at
the target (i.e., they are goal equivalent), whereas deviations in the n̂ direction result in error at the
target (i.e., they are goal relevant)

in which u(xk) is an inter-trial, error-correcting controller depending on the current
state xk , Nk is a matrix representing signal-dependent noise in the motor outputs
(Harris and Wolpert 1998), and νk is an additive noise vector representing unmodeled
effects from perceptual, sensory, and motor sources. For skilled movements, which
are the focus of this chapter and for which the fluctuations ξ are small, similarly
small multiplicative noise terms drop out of the leading order analysis (Dingwell
et al. 2010; John and Cusumano 2007; Cusumano and Dingwell 2013), and so the
random matrix Nk will not be included in what follows.

To motivate the above model, consider that, for a skilled subject, we expect xk

to lie very close to the GEM, so if there were no noise there would be no need for
control (i.e., u = 0), and Eq. (9.10) would give xk+1 ≈ xk . However, some noise, νk ,
is always present, and if there were no control, the fluctuations in xk would display
a random walk in the body space, which is not observed in experiments. These two
extreme limits illustrate that the job of the controller is to keep a multi-trial perfor-
mance closer to that of a perfect repetition than to a noise-induced random walk.
Models of this type implicitly assume a hierarchical structure to the overall motor
control system: the controller of Eq. (9.10) makes error-correcting adjustments, be-
tween trials, to an approximately “feed forward” controller that executes the task
within trials. In this view, the body state xk of Eq. (9.10) plays the role of a control
parameter for each individual goal-directed action.

Similar models have found use for the study of motor learning (van Beers 2009;
Burge et al. 2008; Diedrichsen et al. 2005), with the difference that the controllers
were formulated to depend directly on the goal-level error ek , instead of the body
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state xk . However, in our approach, the body and goal-level fluctuations are related
by Eq. (9.1), so the fact that Eq. (9.10) depends only on body states yields a system
that is amenable to dynamical analysis in the presence of task redundancy. However,
it leaves open the question of how the controller incorporates error information,
something which we now address.

As before, we let ξ k be a fluctuation (at trial k) from an operating point on the
GEM, x∗ ∈ G, so that ξ k = xk − x∗. For skilled performance, these fluctuations will
be small and so we assume a proportional linear controller

uk = Bξ k , (9.11)

where B is a constant proportional gain matrix. Subtracting x∗ from both sides of
Eq. (9.10) and substituting in Eq. (9.11), we directly relate the fluctuations from one
trial to the next:

ξ k+1 = (I + B)ξ k + νk , (9.12)

where I is the identity matrix. Taking an optimal control approach, we further assume
that the controller acts to specify the state at the next trial, xk+1, to minimize the
expected value of a cost function 
 with the following general form:


 = α0e(xk+1)2 +
M∑

j=1

αjpj (xk+1) + ξT
k BT KBξ k , (9.13)

with terms described as follows. The first term in e(xk+1) = ‖f(xk+1)‖ (via Eq. 9.1),
represents the cost of goal-level error. The summation term represents additional
possible costs, as appropriate for a given problem, that may arise from biomechanical
(e.g., range of motion), physiological (e.g., energy minimization), psychological
(e.g., risk avoidance), or other considerations. The last term represents the cost of
controller “effort.” Also in Eq. (9.13), the parameters αj (j = 0, 1, . . . , M) as well
as the matrix K, are adjustable weights that can influence details of the system such
as, for example, the location of the operating point x∗.

Thus, the goal-level error is incorporated into the controller of Eq. (9.10) implic-
itly, via the first cost of 
. Furthermore, because the leading terms of 
 are evaluated
at the next step, substitution of the update equation (Eq. 9.10) into Eq. (9.13) im-
mediately shows how the noise νk enters into the optimization, explaining why we
minimize the expected value, E[ 
 ], to determine the controller.

For an ideal MIP controller, α0 �= 0 and αj = 0 for j ≥ 1 in Eq. (9.13), so the
sole cost being minimized at the next trial is the goal-level error. Since the goal-
level error deviates from zero only for goal relevant fluctuations (Fig. 9.2), such
a “perfect” MIP controller would push subsequent body states onto the GEM, but
would exert absolutely no control along it. The result is that in the presence of noise,
the model Eq. (9.10) predicts an unbounded random walk along the GEM. However,
such behavior is yet to be observed in multi-trial experiments. For this reason, in
Dingwell et al. (2010), an additional cost related to minimizing the distance from
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a “preferred operating point” on the GEM was included as p1 in Eq. (9.13) (with
α1 �= 0 and M = 1 in the sum). This allowed the associated models to capture the
localization of multi-trial experimental data around a location on the GEM in a way
that an ideal MIP model could not.

9.4 Local Geometric Stability

We can analyze the local geometric stability of the inter-trial control process using
Eq. (9.12). For convenience, we let A = I + B and rewrite Eq. (9.12) slightly as

ξ k+1 = Aξ k + νk. (9.14)

The eigenvalues and eigenvectors of A, which satisfy Aê = λê, determine the sta-
bility properties of the inter-trial control applied to fluctuations near the GEM. The
magnitude of an eigenvalue indicates the action of the system on fluctuations in the
direction of its corresponding eigenvectors: after one trial, the size of the fluctuation
is reduced by a factor of (1 − |λ|) × 100 %. Thus having at least one eigenvalue
with |λ| > 1 indicates instability, whereas if all eigenvalues satisfy 0 ≤ |λ| ≤ 1,
the system is stable (Guckenheimer and Holmes1983; Hirsch et al. 2004). Heuris-
tically speaking, smaller values of |λ| correspond to greater stability. To facilitate
our discussion, in the remainder we focus on the case where the body states xk (and
hence the fluctuations ξ k) are 2D, as is true for the shuffleboard task. In this case,
A is a 2 × 2 matrix, so there will be two eigenvalues. We also limit our discussion
to the case of real, distinct eigenvalues, which has been found to be sufficient in
experimental applications to date.

We label the the eigenvalues as λw and λs to classify them as “weak” and “strong,”
respectively, according to their magnitude, so that |λs | < |λw|. The corresponding
eigenvectors are labeled as êw and ês . Thus, after one trial, the size of fluctuations
along êw is reduced much less than those along ês . A typical situation is shown
schematically in Fig. 9.3, which shows the orientation of the eigenvectors with respect
to the GEM. Also shown are the weakly and strongly stable subspaces, span{êw} and
span{ês}, respectively. As illustrated in the figure, in general êw · ês �= 0.

Note that, in general, the stability subspaces are not aligned with the normal and
tangential directions of the GEM. However, for an ideal MIP controller that pushes
states onto the GEM but has absolutely no control along it, one finds that êw is identical
to t̂, the unit tangent to the GEM (Fig. 9.2). Furthermore, the eigenvalues of an ideal
single-step MIP controller are λw = 1 and λs = 0, indicating that fluctuations along
the GEM are allowed to persist indefinitely, whereas those transverse to it are, in the
absence of noise, eliminated after a single trial. However, as discussed at the end of
the last section, such a scenario is not expected in experiments, since in the presence
of noise, it would result in a random walk of body states along the GEM from trial
to trial. Thus, we do not anticipate the controller to satisfy a strict interpretation of
the MIP, or UCM hypothesis, but rather a generalized version for which goal-level
error is still the dominant cost to be minimized (Eq. 9.13), but there is at least one
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Fig. 9.3 Schematic showing the typical orientation of the weak and strong eigenvectors of matrix
A (Eq. 9.12), êw and ês , respectively (black arrows) with respect to the goal equivalent manifold
(GEM) (gray curve). The weakly and strongly stable subspaces (dashed lines) span the respective
eigenvectors. The associated eigenvalues satisfy |λs | < λw; in general, λs ≈ 0 and λw is closer to 1.
The weakly stable subspace for a generalized minimum intervention principle (MIP) controller will
be close to tangent to the GEM. The subspaces are so named because deviations off of the GEM
are strongly corrected, whereas deviations along it are only weakly corrected

additional cost, pj (xk+1), with a corresponding αj �= 0. A small perturbation of this
type will only slightly change the local stability, so that we still expect |λs | ≈ 0 and
0 
 λw < 1. In addition, the eigenvectors will be slightly rotated from those for the
ideal MIP controller, so that, in particular, êw will no longer be exactly tangent to the
GEM.

As discussed in Cusumano and Dingwell (2013), consideration of the above leads
to a set of generic experimental hypotheses. Here, we present only those needed for
the experimental study of the 2D shuffleboard task to be discussed in the remainder
of the chapter:

H1 Consistent with the hypothesis of weak (but not zero) control along the GEM,
one of the eigenvectors, êw, will be close to the GEM tangent, and so will make
an angle θw ≈ 90◦ with n̂, the GEM normal. The corresponding eigenvalue,
λw, will be less than one but much greater than zero (0 
 λw < 1).

H2 The fluctuation dynamics transverse to the GEM are strongly stable: i.e., we
expect 0 ≈ |λs | 
 λw. The associated eigenvector, ês , will make a much
smaller angle with n̂ than does êw (θs 
 θw).

H3 Consistent with the stability properties of H1 and H2, fluctuations in the weakly
stable subspace will exhibit statistical persistence, whereas those in the strongly
stable subspace will be non-persistent (uncorrelated). In terms of the exponent
α from detrended fluctuation analysis (DFA) (Hausdorff et al. 1995; Peng et
al. 1992), we expect 0.5 ≈ αs 
 αw.
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Table 9.1 Experimental
subject demographics (mean
± standard deviation).
Assuming normal
distributions, no measures,
except age, had significantly
different means

Younger Older

n 8 8

Age (years) 23.7 ± 3.8 66.2 ± 7.2

Body mass (kg) 68.6 ± 13.0 72.5 ± 8.4

Height (cm) 172.9 ± 8.4 168.0 ± 11.1

Upper arm length (cm) 30.3 ± 2.3 30.0 ± 1.9

Forearm length (cm) 26.1 ± 1.4 26.5 ± 2.8

Hand length (cm) 18.3 ± 1.3 18.4 ± 1.2

Taken together, these hypotheses can be summarized as the expectation of
dynamic anisotropy in the fluctuation dynamics, consistent with the action of a
generalized MIP controller that has goal-level error as its main, but not only, cost.

9.5 Experimental Implementation

In this section, we apply the ideas and methods developed in the previous sections
to study the experimentally-observed variability in a virtual shuffleboard task.

9.5.1 Apparatus and Protocol

Sixteen subjects (Table 9.1) were recruited as two cohorts, eight subjects between
18 and 35 (“younger”) and eight subjects older than 60 (“older”). Subjects were
screened and asked to report any neurological conditions, upper-body arthritis and
joint replacement, or uncorrected vision in either eye for exclusion. Subjects were
also given the Edinburgh Handedness Inventory (Oldfield 1971), and all participants
were deemed right handed, having a score of at least 60 on a −100 to 100 scale.
Testing was approved by The Pennsylvania State University Institutional Review
Board. No statistically significant differences for the analyses carried out for this
chapter were found between the younger and older cohorts, so the results presented
below were computed with the cohorts merged.

A custom experimental virtual shuffleboard system was used for the task. The
experimental system was composed of a manipulandum on a linear bearing attached
to a linear variable differential transformer (LVDT) (Daytronic Corporation; Dayton,
OH) that measured the manipulandum’s position. A linear accelerometer (ADXL320;
Analog Devices, Inc.; Norwood, MA) was mounted on the manipulandum. Both the
LVDT and the accelerometer were routed into a low-pass filter with a 20 Hz cutoff.
Out of the filter, the data were sampled by a 12-bit PCMCIA data acquisition card
(NI DAQCard-6024E; National Instruments; Austin, TX) at 1 kHz, and sent to a
laptop where it was read into simulation and control software written in MATLAB
(The Mathworks; Natick, MA).
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The control software was used to generate a 2D, top-down view of a virtual
shuffleboard court that was projected onto a screen located in front of the subjects’
seat. The projected image displayed a virtual cue that moved in sync with physical
motions of the manipulandum, together with a puck and a target line (recall Fig. 9.1).
Each trial started with the puck at rest at its zero position. While the puck was being
pushed by the cue and subsequently released, its position was displayed in real time.
The puck was released when the computed virtual contact force between the puck and
cue fell to zero. The velocity at release, v, was found by integrating the acceleration
data, and the release position, x, was found directly from the LVDT. A numerical
simulation then took over to calculate the released puck’s position and velocity, based
on the equation of motion (Eq. 9.4), and the puck’s motion was displayed in real time.
After the puck came to a stop, in addition to being able to visually see the puck’s
final location, subjects were shown the error e (Fig. 9.1), which was displayed at the
top-right of the screen. When the cue was retracted to the start position, the next trial
began.

Subjects were asked to adjust the seat to their comfort, but were required to have
their forearm parallel to the ground and their right hand above their mid-thigh when
the cue was at its initial position. All participants used their right hand to operate the
manipulandum. Subjects were given the instruction: “On each trial, have the center
of the puck stop on the black target line.” Subjects were given a training session of 50
trials to familiarize themselves with the system, and then were asked to complete 5
blocks of 50 trials each that were used for analysis. Between each block, the subject
was given a minimum of 90 s to rest. The release position and velocity, xk = (xk , vk),
and the error ek (via Eq. 9.7) for each trial were recorded and stored.

9.5.2 Data Processing

All 250 trials were grouped together for each of the 16 subjects. Because we assumed
that subjects performed at a skilled steady-state, the first trial of each block after the
training block was removed to allow for refamiliarization after a break, and the
final trial was removed in case the subject performed differently knowing it was
the last trial. Any trials that involved subject errors or technical malfunctions were
also removed: there were a total of only six such trials removed across all subjects,
with a maximum of three for one subject. All data analyses were performed using
MATLAB.

For skilled subjects, we expect the average performance to be nearly perfect. That
is, the mean body state over all trials is very nearly on the GEM, and so we defined an
empirical operating point as x∗ = x. Then the fluctuation time series was computed
with respect to this mean operating point (MOP) from ξ k = xk − x.

Because of the limited length of each inter-trial time series, as well as the known
sensitivity of eigenanalyses for matrices contaminated by noise (Golub and van Loan
1996), bootstrapping (Mooney and Duval 1993; Freedman 1981; Efron and Tibshi-
rani 1994) was used to produce a confidence interval (CI) for the eigenvalue and
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eigenvector calculations. A set of 250 fluctuations, ξ k , and the following fluctuation,
ξ k+1, was selected randomly with replacement from the original trial data on each
iteration of the bootstrap. The matrix A was estimated via least squares, using the
pseudo-inverse (Moore and Barnard 1939; Golub and van Loan 1996) for each set
of ξ k and ξ k+1. The eigenvalues and eigenvectors for each A were then calculated
and stored. This process was repeated over 105 iterations of the bootstrapping pro-
cedure. Occasionally, an A matrix with imaginary eigenvalues and eigenvectors was
produced: in this case, such matrices are numerical artifacts stemming from the fact
that we are trying to estimate a nearly-singular matrix with one eigenvalue near zero.
However, across all subjects, a mean of only 0.06 % of matrices generated during
the bootstrapping iteration fell in this category, with a maximum of 0.93 % for one
subject. Because of the relatively small number of instances, these matrices were
simply removed from the sample and rerun with new entries.

The above bootstrapped eigenanalyses were used to test hypotheses H1 and H2.
To test hypothesis H3, we employed DFA (Hausdorff et al. 1995; Peng et al. 1992).
The output of the DFA algorithm is a positive exponent, α: when α < 0.5, a time
series is said to be “antipersistent,” meaning that fluctuations in one direction are
likely to be followed by fluctuations in the opposite direction; when α > 0.5, the
time series is “persistent,” meaning that fluctuations are likely to be followed by
subsequent fluctuations in the same direction; finally, when α = 0.5, the time series
is “non-persistent” or uncorrelated. DFA has been widely used to search for long-
range persistence (also called long-range correlations) in experimental time series, a
topic that is beyond the scope of this chapter. However, as discussed at some length
in Cusumano and Dingwell (2013), when used for this purpose, DFA is prone to
false positives (Delignières and Torre 2009; Maraun et al. 2004; Gao et al. 2006).
Accordingly, we emphasize that we are not using DFA to claim that observed fluctu-
ations exhibit long-range persistence, but merely as a convenient tool to characterize
persistence in general. In previous work (Dingwell and Cusumano 2010), we have
shown that antipersistent time series are consistent with the overcorrecting control
of fluctuations normal to a GEM, whereas persistent fluctuations suggest weak or
“indifferent” control of fluctuations along it. In this chapter, instead of projecting the
fluctuations onto the vectors normal and tangent to the GEM, we examine fluctuations
in the weakly and strongly stable directions.

Direct application of DFA within each iteration of bootstrapping was compu-
tationally costly, so we first computed the mean value, A, of the 105 matrices A
generated during the bootstrapping procedure for one subject. Using A, we found
the “average” weak and strong eigenvectors êw and ês . Then we transformed the
fluctuations using the linear coordinate transformation

ξ = Pζ , (9.15)

where P is the matrix containing êw and ês as its columns. This transformation
projects the fluctuations ξ , originally expressed in dimensionless position and veloc-
ity coordinates, onto the average eigendirections, so that we can write ζ = (ζw, ζs)T.
Finally, DFA was performed on the resulting ζw and ζs fluctuation time series. These
results were used to test H3.
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Fig. 9.4 Plot in the body space of all 250 trials (light gray dots) for one subject, showing the weakly
and strongly stable eigenvectors, êw and ês , respectively, obtained from the average, A, of all 105

matrices A estimated via regression during bootstrapping. Also shown are the mean operating point
(MOP, black circle) and goal equivalent manifold (GEM) (dark gray line). Normal and tangential
dashed reference lines are spanned by n̂ and t̂, respectively (Fig. 9.2). The angles θw and θs to each
eigenvector are measured counterclockwise from the normal, as shown

While the bootstrapped empirical probability density functions (EPDFs) obtained
for this study were close to Gaussian, the aggregate distributions were typically
not. Nor were they symmetric about their median. Therefore, across all subjects, a
comparison of medians was done using a two-sample, two-sided sign test (Wilcoxon
1945), with significance level set to 0.05. In the box plots used throughout, the
center line shows the median value, the lower and upper box edges encompass
the interquartile range (IQR), and whiskers extend a maximum of 1.5 IQR. Note,
however, that all data, including outliers, were included in the data analyses described
above.

9.6 Results

To illustrate the geometrical features of the data analysis, a scatter plot of an ensemble
of body states (release positions and velocities), collected for all 250 trials for one
subject, is shown in Fig. 9.4. For reference, the GEM and the directions normal
and tangential to it are also displayed. We see that the MOP is not located on the
GEM, but is close to it, as expected. Also plotted are the weakly and strongly stable
eigenvectors, êw and ês , respectively, for this figure computed from the average
matrix, A, estimated during the bootstrapping process. Also displayed are the angles
θw and θs that each eigenvector makes with the normal. Note also that the apparent
orientation of the cloud of trials does not align with the normal and tangential axes.

Across all subjects and trials, the goal-level error was e = −0.0204
[−0.1828, 0.1713], where the stated value is the median, and the range in square
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Fig. 9.5 Typical empirical probability density functions (EPDFs) for the local stability analysis,
obtained via bootstrapping for one subject: (top) eigenvalues λw and λs ; (bottom) angles θw and θs

made by the eigenvectors êw and ês , respectively, with the normal n̂ to the gold equivalent manifold
(GEM) (see Fig. 9.4 for angle definitions). In the angular EPDFs, the radial direction is the relative
frequency, the circumferential direction is the angle, and the italicized numbers represent the relative
frequency

brackets is the 90 % CI. The corresponding median distance from the GEM in the
body space was δ = −0.0118 [−0.0221, 0.0046]. Thus the aggregate performance
displayed, roughly speaking, about as much overshooting (e > 0) as undershooting
(e < 0), though with some indication of a small bias toward undershooting. This
small bias is more apparent in the stopping distance, since the CI shows a significant
bias toward trials “under” the GEM curve (δ < 0). Nevertheless, these overall results
are consistent with the assumption that skilled performance would involve operation
close to the GEM.

In Fig. 9.5 we show typical results from the bootstrapped local stability analysis
using the data from all 250 trials for one subject. Figure 9.5 (top) displays the EPDFs
obtained for the eigenvalues, λw and λs , of the matrix A (Eq. 9.14); in Fig. 9.5
(bottom) are the EPDFs for the angles, θw and θs that the eigenvectors êw and ês

make with n̂, the unit normal to the GEM (Fig. 9.4). Observe that the displayed
EPDFs are unimodal and symmetric about the median, so that the mean, median,
and mode are close to equal: this was found to be true for all bootstrapped distributions
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Fig. 9.6 Aggregate geometric stability results: magnitude of mean eigenvalues , λw and λs , obtained
from each subject’s bootstrapped distributions (left); mean eigenvector angles θw and θs (right) . The
median value of λw (0.5597) was significantly larger than that of λs (0.1076), with p = 3.05×10−5.
The aggregate median value of θw (85.83◦) was significantly larger than that of θs (20.33◦), with
p = 3.05 × 10−5. Since λw was positive for all subjects, these results confirm hypotheses H1 and
H2: 0 ≈ |λs | 
 λw and θs 
 θw ≈ 90◦

generated for this study. For this subject, we find λs = −0.1039 [ − 0.2191, 0.0143]
and λw = 0.4947 [0.3997, 0.5871], so that 0 ≈ |λs | 
 λw as hypothesized. The fact
that λs < 0 indicates that this subject slightly overcorrected deviations transverse
to the GEM, suggesting a slightly suboptimal controller (Dingwell et al. 2010). We
also find θw = 93.62◦ [73.68◦, 119.74◦], indicating that êw is nearly tangent to the
GEM, whereas θs = 20.78◦ [16.82◦, 24.45◦]. Thus, again as hypothesized, we find
θs 
 θw ≈ 90◦.

Aggregate geometric stability results across all subjects are shown in Fig. 9.6. To
compare eigenvalues, we look at their absolute values to directly compare the relative
strength of control without regard to possible overcorrection (λ < 0) or undercorrec-
tion (λ > 0). Note, however, that for all subjects it was found that the bootstrapped
distribution of λw was strictly positive, as in Fig. 9.5. As a comparison statistic, for
each subject, we used the mean value of the eigenvalues and angles obtained from
each subject’s bootstrapped EPDF. In Fig. 9.6 (left) are box plots showing the dis-
tribution of |λs | and |λw| ≡ λw, whereas Fig. 9.6 (right) displays box plots for the
corresponding mean eigenvector angles θw and θs . Applying the two-sided sign test
showed that the aggregate median value of λw (0.5597 [0.3026, 0.9194]) was signif-
icantly larger than that of λs (0.1076 [0.0141, 0.3564]), with p = 3.05 × 10−5. It
was also found that the aggregate median value of θw (85.83◦ [53.72◦, 115.59◦])
was significantly larger than that of θs (20.33◦ [ − 13.39◦, 33.35◦]), again with
p = 3.05 × 10−5. Since λw > 0 in all cases, we find that 0 ≈ |λs | 
 λw and
θs 
 θw ≈ 90◦. Taken together, these results confirm hypotheses H1 and H2.

The persistence properties of the inter-trial fluctuations, computed using DFA,
are presented in Fig. 9.7. For each subject, the average matrix A was obtained from
bootstrapping, and the fluctuations ξ were projected onto the average weakly and
strongly stable directions using the transformation Eq. (9.15). The DFA algorithm
was then applied to the resulting ζw and ζs fluctuation components. We found that the
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Fig. 9.7 Aggregate results for the detrended fluctuation analysis (DFA) exponent α, for fluctuations
in the weakly and strongly stable directions, ζw and ζs , respectively. For ζw, we found αw =
0.9433 [0.7500, 1.2950] indicating statistical persistence consistent with weak control (Dingwell
and Cusumano 2010). For ζs we found αs = 0.4948 [0.2773, 0.6863], indicating approximately
uncorrelated fluctuations, consistent with strong control. The difference between the median values
of α in both cases was significant (p = 3.06 × 10−5). These results confirm hypothesis H3:
0.5 ≈ αs 
 αw

ζw fluctuations were statistically persistent, with an αw = 0.9433 [0.7500, 1.2950],
suggesting weak control in the weakly stable direction, which Fig. 9.6 shows is nearly
tangent to the GEM. In contrast, for ζs , we found αs = 0.4948 [0.2773, 0.6863],
indicating approximately uncorrelated fluctuations. This is consistent with strong
control that suppresses substantial deviations from the GEM, leaving only noise.
The difference between the median values of α in both cases was significant (p =
3.06 × 10−5). Thus, 0.5 ≈ αs 
 αw, confirming hypothesis H3.

Taken together, these results demonstrate that subjects exhibited strong dynamical
anisotropy around the GEM, precisely as anticipated. This supports the claim that
inter-trial error correction for the shuffleboard task is organized around a “GEM
aware” generalized MIP controller.

9.7 Comparison with “Static” Variability Analysis

In this section, we contrast our dynamical analysis with an approach that does not
consider the temporal order of the data, but instead analyzes only the “static” inter-
trial variability structure. Here, we do this by applying principal component analysis
(PCA) (Mardia et al. 1979; Daffertshofer et al. 2004) to the ensemble of body states.
PCA calculates a new set of coordinates for the data set such that the covariance
between the coordinates is zero. A principal component (PC) is an eigenvector of
the data’s covariance matrix, and its associated eigenvalue, the principal value (PV)
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Fig. 9.8 Aggregate results of principal component analysis (PCA) applied to each subject’s Inter-
Trial data: (left) percent of total variance explained by each PV, λ1 and λ2; (right) the angle, θ1

and θ2, between each PC and n̂ (Fig. 9.2). We see that the first principal value (PV ) explains about
80 % of the total variance (81.66 % [61.66 %, 95.58 %]), however, both PCs are approximately the
same angular distance (about 27◦) from the tangent, t̂, and hence do not locate the goal equivalent
manifold (GEM) in body space

indicates how much variance lies along that direction. Thus, each PV represents
a fraction of the total variance that lies in the direction of its associated PC. With
2D data, as was collected for this study, a possible interpretation of PCA results
is that the first PC, which has the larger PV and, therefore, the greater variability,
indicates a weakly-controlled direction because fluctuations are larger along it. The
second, smallest variance PC then indicates a strongly-controlled direction. If true,
that would imply that variance analysis alone could identify the organization of inter-
trial variability about a candidate GEM. We here show that this interpretation does
not hold, in general.

Applying PCA to our fluctuation data, we obtain the aggregate results shown in
Fig. 9.8. We labeled the two PVs as λ1 and λ2, where λ1 > λ2, so that the associated
PCs are the unit vectors p̂1 and p̂2. We then computed the angles that each PC made
with the unit normal to the GEM, as was done for Fig. 9.6. We see thatλ1 accounted for
81.66 % [61.66 %, 95.58 %] of the total variance, whereas λ2 accounted for 18.34 %
[4.416 %, 38.23 %]. We also see that θ1 = 27.23◦ [7.714◦, 116.6◦] and θ2 = 117.2◦
[97.71◦, 206.6◦]. Thus, neither PC was close to either n̂ or t̂, and so they did not help
locate the GEM. In particular, the angular distance of the first and second PCs from
the GEM tangent was roughly 63◦ and 27◦, respectively, thus neither could be said
to identify a weakly controlled direction.

To further explore this issue, we transformed the data from one subject using a
coordinate transformation that rendered the variability isotropic, for which, that is,
the variance ellipse would be a circle. This is easily accomplished using a linear
transformation similar to Eq. (9.15), however instead of constructing the matrix P
by using the eigenvectors êw and ês as its columns, we use the eigenvectors of the
covariance matrix, that is, the PCs, p̂1 and p̂2. This projects the original fluctuations
ξ onto the principal directions. After this step, each coordinate was normalized to
unit variance, giving fluctuations in rescaled principal coordinates, q = (q1, q2)T.
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Fig. 9.9 Illustration showing the effect of a coordinate transformation that renders the variability
ellipse circular: (left) data from one subject (light gray dots) together with the weakly and strongly
stable eigenvectors, êw and ês (black arrows), for a matrix A estimated via regression during a single
iteration of the bootstrap; (right) the same ensemble (gray dots) after transforming into rescaled
principal coordinates (q1, q2) that have isotropic variance. In the right plot, the eigenvectors were
calculated from a new matrix A estimated from the transformed data. Also shown in both figures is
the goal equivalent manifold (GEM) (dark gray line) in the local coordinates, and the variance ellipse
(dashed line). We observe that while the variability is radically changed by the transformation, the
local geometry of the inter-trial dynamics is fundamentally preserved

Figure 9.9 shows the effect of this transformation on a typical geometric stability
analysis, carried out using the data from one subject. In Fig. 9.9 (left), we see the
results for the data in the original position–velocity fluctuation coordinates. For this
figure, the eigenvectors êw and ês were computed from a single, typical matrix A, as
would be estimated during a single bootstrap iteration. Also included in the figure
is the standard variance ellipse, which, as would be expected from the results of
Fig. 9.8, is not particularly well aligned with the GEM. However, the weakly and
strongly stable subspaces are oriented in a way that helps understand how control
is organized around the GEM. In Fig. 9.9 (right), we see the same data, however
transformed into (q1, q2) coordinates, together with the eigenvectors. These eigen-
vectors were not merely transformed from Fig 9.9 (left), rather, the transformed data
were used to estimate a new matrix A, and a new eigenanalysis was then performed.
In the transformed picture, it is clear that the variability cloud provides no useful
information about the location of the GEM since, by design, its variability ellipse
is circular. However, the new eigenvectors continue to define weakly and strongly
stable subspaces that correctly demonstrate how control is organized about the GEM.

9.8 Discussion

In this chapter, we have described a dynamical approach to the experimental anal-
ysis of inter-trial variability in skilled movement tasks. Our approach combines
consideration of task manifolds, in the particular form of GEMs, with optimal con-
trol concepts, to formulate experimentally testable models of inter-trial fluctuations.



9 The Dynamical Analysis of Inter-Trial Fluctuations Near Goal Equivalent Manifolds 143

Because of this fundamentally dynamical perspective, we are not forced to make
inferences about control based solely on the “static” structure of variability observed
in some body-level state space, but rather can characterize the way variability, at
both the body and goal levels, is organized and generated in time.

While the general GEM-based framework discussed in this chapter can be used
to create mathematical models suitable for theoretical analysis, our approach is phe-
nomenological and experimentally oriented. Thus, the primary significance of the
theoretical discussion presented here is that it allows us to arrive at a set of quite
generic hypotheses on the structure of variability observed with skilled performers:
namely, that we expect to see strong evidence of dynamic anisotropy in the inter-
trial fluctuations near a GEM. Furthermore, while motivated by both the MIP and
the UCM hypothesis, consideration of our relatively simple mathematical models
in the light of available experimental evidence leads us to the conclusion that nei-
ther can be true in an ideal form, since “perfect” MIP controllers would result in
nonlocalized fluctuations that drift randomly along the GEM. Thus, our hypotheses
include the assumption of a generalized MIP for which control along the GEM is
not zero, but weak. This seemingly minor observation has an important experimental
consequence: while this weakly controlled direction might be expected to be nearly
tangent to the GEM, it will not, in general, be perfectly so.

To illustrate the theory, as well as its experimental implementation, we applied
our analysis approach to study the variability observed in a virtual shuffleboard ex-
periment. We found that all of our general hypotheses regarding dynamic anisotropy
were supported by the analysis results. In particular, we found that subjects exhibited
strong control of fluctuations in a direction transverse, but not typically normal, to
the GEM, whereas they only weakly controlled fluctuations in a direction nearly, but
not exactly, tangent to it. The assessment of control “strength” in these two directions
was not determined by the relative magnitude of variances, but was provided both
by local stability analysis and DFA. In both of these cases, the differences between
the weakly and strongly stable directions were found to be as predicted and highly
significant.

We compared our dynamical analysis with a non-temporal, variance-based anal-
ysis carried out using PCA. We found that the orientation of the variability cloud
did not help identify how inter-trial control was organized around the GEM. Further-
more, we showed that our dynamical approach is robust to coordinate changes that
result in isotropic variability. Under such circumstances, variability alone provides
no information about the GEM, whereas the orientation of weakly and strongly stable
subspaces still helps explain how variability is structured around a GEM, as well as
how control is temporally organized.

The theoretical discussion in this chapter, together with the experimental demon-
stration that the weakly stable directions are not exactly directed along the GEM,
suggest that while goal-level error minimization is likely a dominant cost being min-
imized by the human motor system, it is not the only one. In particular, our work
suggests that there are relatively small additional costs—such as might be related to
ergonomic, physiological, or even psychological needs of the performer—that need
to be considered in combination with error reduction so that we might completely
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characterize experimentally-observed motor variability. It is hoped that dynamical
data analysis methods like those presented here might help us to identify such costs
in future experiments.
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