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8.1 � Introduction

The issue of bacterial resistance to antimicrobial agents, which is evident by a di-
minishing therapeutic value of many commercially available antimicrobials, has 
reached an alarming height of imminent danger to the general population. The rapid 
emergence of bacterial resistance to antimicrobial agents has rendered many of 
the commercially available antibiotics useless at the clinically tolerable dose. The 
resistance to treatment has also rapidly increased hospital mortality due to oppor-
tunistic infections (De Kraker et al. 2011). To combat this crisis, there are two op-
tions: (1) the development of new antimicrobials, which requires developing a new 
class of drugs and/or (2) preserving the value of existing ones by tackling bacterial 
resistance mechanisms. The first option can prove extremely costly and lengthy; 
the pharmaceutical industry has no incentive in developing new class of antibiot-
ics due to a small return on the investment. The second option can be addressed 
in two ways: first, development of new drugs that counter the resistance mecha-
nisms in bacteria for example the use of β-lactamase inhibitor in combination with 
a β-lactam agent; and second, optimizing treatment of existing antibiotics. The need 
for an optimized treatment, whether it is for new or existing drugs, in order to limit 
the chance of bacterial resistance, has prompted the use of quantitative approaches 
to guide dosing regimens.

The application of pharmacokinetic–pharmacodynamic (PKPD) modeling and 
simulation has been proven useful in the selection of dosing regimens that over-
come resistance development and achieve the desired clinical outcome (Drusano 
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2004). Even with a good track record of optimizing antimicrobial dosages, how-
ever, the PKPD model and simulation is still underutilized in managing bacterial 
infections. This chapter focuses on the available PKPD models that were derived 
from in vitro, animal, and clinical data. The discussion separates two major model-
ing approaches applied to antimicrobial PKPD, namely, the minimum inhibitory 
concentration (MIC)-based and the in vitro time-course-based approaches. We ex-
plore how each approach handles monotherapy and combination therapy, as well as 
in the context of emergence of drug-resistant infections.

8.2 � MIC-based Approaches

The PKPD properties of antibiotics to guide dosing schedules were conceived as 
early as the 1950s by Eagle who demonstrated the time-dependent nature of peni-
cillin antibacterial activity, the concentration-dependent pattern for streptomycin 
and bacitracin, and a characteristic mixture of both patterns for tetracyclines (Eagle 
et al. 1950a, b; 1953a, b). With this knowledge, Eagle suggested that the efficacious 
way to administer penicillin was to give continuous infusion and regimens that gave 
the highest peak concentrations, such as an intravenous bolus, and would provide 
an effective cure for drugs that are concentration dependent (Eagle et al. 1950a).

It was not until much later, when Craig rediscovered and expanded the PKPD 
concepts in antimicrobial therapy using rodent studies (Craig 1998), that the PKPD 
relationship of new antibiotics was evaluated routinely. This information provides 
the basis for deciding the dose and dosing interval of antimicrobial agents, as well 
as determination of susceptibility breakpoints.

This first part of characterizing the PKPD properties of antibiotics is generally 
classified as the MIC-based approaches. This section will discuss how the MIC-
based approaches are utilized to optimize dosing strategies, as well as their limita-
tions.

8.2.1 � In Vitro Susceptibility Tests

The MIC has been the primary tool for determining bacterial susceptibility to an 
antibiotic. This test is carried out by either an agar diffusion or broth dilution; both 
methods are most commonly used for MIC determination, since they are easy to 
perform (Jorgensen and Ferraro 2009). In the agar diffusion method, the bacte-
rial culture is spread uniformly across the agar plate and then grown overnight; a 
rectangular strip impregnated with a gradient amount of drug is laid on top of the 
agar plate. This test is commonly known as the Epsilometer test (or Etest). Be-
cause MICs are typically based on twofold dilution, the drug concentrations on the 
Etest strip also increases exponentially. In post-24-h incubation, an elliptical zone 
of bacteria-free area resulted along the strip where the drug concentrations were 
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sufficient against the specific bacteria. The point at which the bacteria-free ellipse 
intersects with the Etest strip is the MIC. Older agar diffusion test utilizes disk 
diffusion wherein circular wafers impregnated with fixed concentrations of antibi-
otic are placed on a plate full of bacteria.

The broth dilution method utilizes a liquid medium usually Mueller-Hinton 
broth inoculated with specific bacterial colony forming unit (5 × 105 CFU/mL) and 
specific drug concentration is pre-added in twofold dilutions (e.g., 0.125, 0.25, 
0.5,1, 2, 4, 8,…μg/mL). The mixture is incubated for 24 h at 37 °C. The lowest drug 
concentration of antibiotic allowing no visible bacterial growth in the media is the 
MIC. Positive controls containing only the bacteria and negative controls contain-
ing only MHB are observed simultaneously. Because the MIC is determined by 
visual inspection, it does not necessarily mean that there are no bacteria remaining 
in the media. Rather in most cases, the bacteria level is below a CFU size that is 
detectable by the human eye (≤ 106 CFU/mL). For large MIC values (MIC ≥ 100 μg/
mL), it is advisable to evaluate susceptibility using a linear increase (e.g., 100, 200, 
300,…µg/mL) than an exponential increase (i.e., twofold) in drug concentration.

The macrodilution and microdilution methods differ in the volume of the media 
wherein macrodilution method is often between 1 and 2 mL and microdilution is 
≤ 500 μL. The bacteria inoculum should be the same for both methods. The volume 
of bacteria solution to add to the mixture should be adjusted to achieve a final in-
oculum of 5 × 105 CFU/mL.

For the past several decades, the MIC has been used extensively to define the 
susceptibility of a specific bacterial species or strain to an antibiotic agent. In the 
hospital setting where multiple strains of a specific bacterial species are available, 
MIC50 and MIC90, representing the concentration of the antimicrobial agents where-
in 50 and 90 % of the bacterial population do not show visible growth after 24-h 
incubation, are often reported (Walkty et al. 2011). The ease of use, rapid turnover 
of results, and cost effectiveness have made the MIC approach the testing of choice 
in the clinical setting.

8.2.2 � PKPD Indices

The current approach in the treatment of microbial infection in the clinic is primar-
ily based on the relationships between drug exposure and MIC (Drusano 2004; 
Schmidt et al. 2008). The three standard PKPD indices are fT > MIC, fCmax/MIC, 
and fAUC/MIC. The duration of time in the 24-h period wherein the drug concen-
tration is above the MIC is f T > MIC. The percentage of time above MIC over the 
24-h period is often used instead (% f T > MIC). AUC refers to the area under the 
drug concentration–time curve over the 24-h period and Cmax is the peak drug con-
centration. The prefix f refers to the free drug concentration. The indices are based 
on the free and unbound drug concentration, as only the unbound drug can exert its 
pharmacological effect. If the relationship is time dependent, the dosing strategy 
is simply to maintain the free drug concentrations above the MIC value for an ex-
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tended period of time. On the other hand, if the efficacy is concentration dependent, 
the goal is to attain sufficient peak drug concentrations or drug exposure above 
MIC (Mueller et al. 2004). The β-lactams are commonly associated with the term 
“concentration-independent kill” or “time-dependent kill.” That is because the ef-
ficacy of the β-lactams is associated with the time that the free drug concentration of 
these agents is maintained above MIC. The quinolones and aminoglycosides, on the 
other hand, are “concentration dependent” in their effects. Whether these agents are 
above MIC for an extended period or not do not seem to have a significant impact 
on the observed antimicrobial effect but rather the magnitude of the peak concentra-
tion is associated with a more efficient bacterial kill. The third type of antibiotics 
which include azithromycin and vancomycin is not concentration dependent but 
their efficacy is linked to the fAUC/MIC ratio (Drusano et al. 2004; Rybak et al. 
2009a, b). The 24-h exposure, measured by the AUC-to-MIC ( fAUC/MIC) ratio, is 
related to the observed effect. The action of many antimicrobial agents has gener-
ally been classified based on these PKPD indices.

The determination of which indices best characterize the drug action is based 
on fitting a sigmoidal Emax model to the PD endpoint such as the bacterial log10 
CFU/mL at 24 h or the log change in CFU/mL against the three PK/PD indices 
(Dudhani et al. 2010). The PD endpoint is often taken from animal studies where-
in several live mouse thighs or lungs were injected with specific bacteria with 
predetermined MIC. The mice were then administered antibiotic at different drug 
doses and regimens in dose fractionation studies. The pharmacokinetic parame-
ters ( fT > MIC, fCmax/MIC, fAUC/MIC) were then determined for each animal. At 
the end of the experiments, the bacterial CFU/mL was determined from the tissues 
injected with bacteria. The 24-h log10 CFU/thigh against the PKPD indices was 
used to evaluate which PKPD index best characterizes the activity of the specific 
antimicrobial agent being tested (Dudhani et al. 2010). The relationship between 
the PD endpoints and PKPD indices are plotted and the best fits for the relation-
ships were determined by R2 (coefficient of determination). It was suggested that 
the PKPD index determined in mice could be extrapolated to clinical efficacy 
(Ambrose et al. 2007). Many of the current dosing regimens in the clinic were 
based on the PKPD indices determined from animal studies. Vancomycin dosing 
regimens, for example, were determined based on the target of AUC/MIC ratio of 
approximately 325 in treating ventilator-associated Staphylococcus aureus pneu-
monia (Moise-Broder et al. 2004a, b; Sakoulas et al. 2004; Rybak et al. 2009b). 
The vancomycin nomogram was designed to achieve a target trough concentra-
tion of 15–20 mg/L (Kullar et al. 2011).

Drusano provided an explanation of how the shape of the drug profile affects 
the type of cell kill for drugs that are concentration dependent versus those that 
are time dependent (Drusano 2004; Jumbe and Drusano 2011). The rate of kill 
in concentration-dependent drugs is different at each segment of the concentra-
tion–time profile and the total number of organisms killed can be approximated 
as an expectation which is the summation of the kill rate and time period over the 
specific kill rate. For time-dependent drugs, the kill rate is constant and the total 
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cell kill is the rate constant multiplied by the time period that the drug concentra-
tion is above the MIC.

8.2.3 � Probability of Target Attainment and Clinical Breakpoints

The probability of target attainment (PTA) is often determined from simulation of 
1000–10,000 individual drug concentration–time profiles using a population phar-
macokinetic model and the proportion of the population above a specific target 
(Drusano et al. 2001; de Kock et al. 2014). The simulation generates a distribution 
of PKPD index (e.g., fAUC24/MIC) which becomes the basis for determining the 
likelihood of achieving a certain target attainment. The fAUC24/MIC will be used 
as an example because it is easier to generate than fT > MIC or fCmax/MIC, as AUC 
can be estimated by integrating the population-PK model or estimated from the 
clearance values without running secondary pharmacokinetic analysis (e.g., non-
compartmental analysis) of the generated profiles. The PTA is determined as the 
proportion of simulated individual profiles that are above a specific target, such 
as fAUC24/MIC, to achieve greater than or equal to 2 log10 kill from animal stud-
ies, for a range of increasing MIC values and is usually evaluated using several 
dosing regimens in dose fractionation studies. In the study of tigecycline against 
E. coli, Ambrose et al. (2009) determined the potential tigecycline–Enterobacteria-
ceae susceptibility using both PTA and clinical response expectation as responses. 
The steady-state AUC24 was simulated from the distribution of clearance parameter 
from a population pharmacokinetic model of tigecycline. In the example in Fig. 8.1, 

Fig. 8.1   Probability of target attainment (PTA, open triangles) based on AUCss,24h/MIC ratio, 
clinical response expectation ( open circles), and tigecycline MIC distribution ( bars), showing a 
trend of decreasing PTA and median clinical response expectation in increasing MIC. (Image from 
Ambrose et al. 2009; used with permission)
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PTA is plotted as a function of MIC, represented by triangle symbols. The clinical 
response expectation versus MIC, represented by circular symbol, was determined 
from a logistic regression model that describes the PKPD relationship for efficacy 
in patients with complicated intra-abdominal infections (Meagher et al. 2007; Pas-
sarell et al. 2008). As shown in their study, the two metrics, namely PTA and clinical 
response expectation, may not necessarily correlate with each other. However, both 
metrics indicate a trend towards less favorable outcome with increasing MIC.

A natural extension of the PTA is to categorize the antimicrobial activity of spe-
cific treatment against a microorganism population. The European Committee on 
Antimicrobial Susceptibility Testing (EUCAST) has provided definitions to catego-
rize microorganisms’ antibiotic phenotype based on the quantitative antimicrobial 
susceptibility evaluation (Kahlmeter et al. 2003, 2006). Mouton et al. (2012) pro-
vided this categorical description:

A microorganism is defined as susceptible by a level of antimicrobial activity associated 
with a high likelihood of therapeutic success. A microorganism is categorized as susceptible 
by applying the appropriate breakpoints in a defined phenotypic test system. Conversely, 
resistance is defined as a high likelihood of therapeutic failure. Ideally, clinical breakpoints 
should therefore distinguish between patients that are likely or unlikely to respond to anti-
microbial treatment.

The clinical breakpoints are determined from (1) statistical approach such as clas-
sification and regression tree (CART) analysis or multivariate logistic regression to 
look for a value of PKPD index that best differentiate failures and successes in treat-
ment outcome and (2) probabilistic approach of PTA that considers the variability in 
patients’ pharmacokinetic and the MIC of the microorganism population. With the 
probabilistic approach of PTA, the microorganism with MIC values that result in the 
PKPD index value lower than the target are considered resistant, which translates to 
a lower probability of cure whereas those that result in a larger PKPD index values 
than a specific target are considered susceptible. This target value that separates the 
PKPD index for the two-microorganism phenotype is the clinical MIC breakpoint. 
It is noted that the clinical breakpoint may be dependent on the dosing regimen. A 
case is illustrated by Mouton et al. (2005, 2012) wherein the relationship between 
fT > MIC and MIC of ceftazidime for two different dosing regimens produces two 
separate and distinct PTA–MIC curves as shown in Fig. 8.2. Assuming that the tar-
get is 60 % fT > MIC, the dosing of 500 mg thrice daily and 1 g thrice daily resulted 
in breakpoints of 4 and 8 mg/L MIC.

Ambrose et al. (2007) provided an excellent review to show how rodent studies 
translate to humans. The studies in rodent infection models showed that a total le-
vofloxacin AUC24:MIC value of 88 in immunosuppressed mice was associated with 
favorable microbiological response (Jumbe et al. 2003). Levofloxacin fAUC24:MIC 
value of 62 determined from patients with hospital-acquired pneumonia separates 
those patients with 90 and 43 % response to therapy (Drusano et al. 2004).The two 
studies show a good correlation between rodent studies and humans, given that the 
PKPD indices in animal studies are closely related to that in humans.
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8.2.4 � Limitations of the MIC-based Approach

Though this approach has been used to guide dosing for various classes of anti-
microbials, several shortfalls of the MIC-guided approach are discussed here. The 
determination of the MIC of the patient’s infection often takes several days follow-
ing the initial treatment and consequently the drug concentration and duration may 
not be optimal without the prior knowledge of the MIC, particularly when using the 
relationship between pharmacokinetic properties of the drug and the MIC-based 
PKPD indices to guide treatment. This simplification of dosing scheme is believed 
to potentially lead to treatment failure and may foster the emergence of resistant 
bacterial populations (Hoffman and Stepensky 1999).The utility of MIC assumes 
that this value is stationary. This is not the case because MIC within a bacteria spe-
cies can change. When bacteria are exposed to a low concentration of drug, which 
is not enough to eradicate them, the bacteria will acquire resistance, resulting in a 
shift towards a higher MIC level (Tam et al. 2007a). Also depending on the spe-
cies and strain of bacteria, the MIC may not be consistent across the species and 
strains. This scenario renders a “nonstationary” MIC. With an increasing rate of 
treatment failure, MIC is more likely to be changing over time due to develop-
ment of resistance. For example, the AmpC β-lactamase is induced when exposed to 
low β-lactam concentration. The ampC expression is repressed by three AmpD ho-
mologues, including the previously described AmpD protein (Langaee et al. 1998, 
2000) plus two additional proteins AmpDh2 and AmpDh3 (Juan et al. 2006). The 
two additional homologues are responsible for the stepwise ampC upregulation that 
results in hyper-expression of cephalosporinase and high level of β-lactam resis-
tance (Juan et al. 2006).

The rate of bactericidal activity or bacteriostatic effect with different drug con-
centrations cannot be determined from the MIC approach. Several killing patterns 
can converge to the same MIC value when only the 24-h time point is measured. 
Relying on a “snapshot” view of MIC for defining the PKPD relationship for the 
entire treatment duration can be misleading.
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Fig. 8.2   The percent of time 
that the free ceftazidime 
concentration is above MIC 
(% fT > MIC) for two dosing 
regimens of ceftazidime (1 g 
q8h vs. 500 mg q8h) against 
MIC to illustrate that clinical 
breakpoint is dependent on 
the dosing regimen. Arrows 
indicate that the pharmacody-
namics target corresponding 
to 60 % fT > MIC is 4 and 
8 mg/L for 500 mg q8h and 
1 g q8h, respectively. (Image 
from Mouton et al. 2012; 
used with permission)
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Because only unbound drug concentration can exert its pharmacological effect, 
ignoring protein binding and tissue distribution of the drug can have serious impli-
cation in extrapolating in vitro efficacy results to human studies. When the drug en-
ters the blood stream, it can bind to proteins such as albumin, α-, β-, or γ-globulins, 
α1-acid glycoprotein, lipoproteins, and/or erythrocytes (Dasgupta 2007; Trey-
aprasert et al. 2007; Mouton et al. 2008). The percentage of drug binding can be 
constant (linear) or nonconstant (nonlinear) depending on the drug concentration; 
characterization of protein binding across a range of drug concentrations can pro-
vide important information on its protein binding properties. Since anti-infective 
drugs need to get to the infection sites, for example, in skin infection, the unbound 
fraction of drug crosses the membrane to the infected tissue. Microdialysis proce-
dures have been used to determine the free fraction of drug at a specific tissue (e.g., 
adipose and skin; Li et al. 2006). It is important to consider protein binding when 
translating in vitro results to the clinic.

8.2.5 � Resistance Problem in Antimicrobial Therapy

The number of new bacterial strains with more efficient resistance mechanisms has 
emerged over the past decade. From the year 2000 through 2004, the percentages 
of methicillin susceptible and resistant S. aureus (MSSA and MRSA) isolates with 
vancomycin MIC of 1 μg/mL increased from 40 to > 70 % and from 10 to > 60 %, 
respectively (Wang et al. 2006). Within the span of 5 years, S. aureus clinical iso-
lates have evolved towards decreasing vancomycin susceptibility. The resistance 
problem is not isolated to just one class of antimicrobials. Various newly discovered 
β-lactamases can rapidly inactivate β-lactams and some β-lactamases such as the 
variant of TEM-1 are resistant to β-lactamase inhibitors, for example clavulanic 
acid (Sideraki et al. 2001).

There are experimental evidences that the efflux pump upregulation is a first-
line defense for microorganisms when challenged with antimicrobial agents (Jumbe 
et al. 2006; Louie et al. 2007; Drusano et al. 2009). The MexCD-OprJ, not typically 
expressed under noninduced conditions, exports fluoroquinolones and a number 
of β-lactams (Poole et al. 1996; Masuda et al. 2000b). MexXY-OprM contributes 
to resistance to fluoroquinolone, aminoglycoside, and some β-lactam (Aires et al. 
1999; Mine et al. 1999; Masuda et al. 2000b; Sobel et al. 2003); this efflux pump is 
induced by tetracycline and aminoglycosides (Aires et al. 1999; Mine et al. 1999; 
Masuda et al. 2000a). β-Lactam resistance in clinical isolates of Pseudomonas ae-
ruginosa has been shown to interplay between diminished production of OprD (an 
outer membrane protein that regulates the entry of carbapenems) and an increased 
AmpC β-lactamase activity (Quale et al. 2006).

The choice of dosing regimen affects the extent of resistance development. Tam 
et al. (2007a) demonstrated that the relationship between quinolone exposure and 
resistance amplification is characterized by an inverted U-shaped curve. This in-
dicates that development of resistance is minimal at low antimicrobial challenge 
and rapidly increases over a range of drug concentration unless a sufficiently high 
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drug concentration kills both the susceptible and resistant populations. These re-
sults prompted recommendations for increasing doses, shorter treatment period, and 
combining several antimicrobials with different mechanisms of action to counter 
the emergence of drug-resistant bacteria (Mouton et al. 2011).

8.2.6 � Combination Therapies

The resistance to treatment has also rapidly increased hospital mortality due to op-
portunistic infections (De Kraker et al. 2011). Administering two antibiotic drugs 
with different mechanisms of action can potentially restore the utilities of these 
agents. This approach is called combination therapy. The action of many antimi-
crobial agents has generally been classified based on the PKPD indices, previously 
described. These indices, however, are relevant primarily to monotherapy. When 
evaluating combination therapy that includes multiple antibiotics, the pattern may 
no longer be relevant. This renders the classification of combination therapy and the 
determination of optimal dosing strategies nontrivial.

Drugs of different mechanisms of action may act synergistically, resulting in 
greater than fourfold decrease in the MIC of each drug in the same pathogen in 
vitro (Paul et al. 2004). The use of aminoglycoside/β-lactam combination was prac-
ticed in the past (Piccart et  al. 1984; Hoepelman et  al. 1988a, b; Mondorf et  al. 
1989). However, the benefits from the combination were later questioned based on 
a meta-analysis study (Bliziotis et al. 2005). The likely reason could be that the pa-
tients who received combination therapy had a higher propensity for mortality since 
combination antibiotics are more commonly prescribed for the critically ill patients 
than the single-agent antibiotics. The one subgroup of Gram-negative pathogens, 
for which the question of combination therapy is currently being investigated in 
more and more studies, is P. aeruginosa (Louie et al. 2013). This bacterial species is 
also more common in patients who are severely ill, including the late stage of mor-
bidity in cystic fibrosis (CF) patients (Breen and Aswani 2012). In fact, the Cystic 
Fibrosis Foundation guidelines recommend that an antipseudomonal β-lactam with 
an aminoglycoside be used in the treatment of acute pulmonary exacerbations of CF 
(Flume et al. 2009). CF patients were thought to have higher clearance and larger 
volumes of distribution, which makes dosing more challenging due to lower expo-
sure (Spino 1991). In a matched control study, no difference was found in aztreo-
nam volume of distribution between CF patients and matched healthy subjects but 
total body clearance was 30 % higher in CF patients due to enhanced renal clearance 
as CF patients had 20 % higher free fraction of the drug (Vinks et al. 2007).

The synergy of activities from combination of β-lactam and aminoglycoside 
would be particularly beneficial in these difficult-to-treat populations. The combi-
nation of an aminoglycoside and a β-lactam seems to be the most frequently used 
combination against P. aeruginosa. Louie et al. (2013) showed that tobramycin in 
combination with meropenem suppressed resistance amplification in P. aeruginosa 
at all combination regimens that were tested in the murine pneumonia model.
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Safdar et  al. (2004) performed a meta-analysis on combination antimicrobial 
therapy for bacteremia due to Gram-negative bacilli. Their overall results, combin-
ing all types of bacteria that were found in their literature search, indicated that 
combination therapy does not reduce mortality in patients with Gram-negative bac-
teremia. One limitation of their study was that the literature that they used did not 
stratify the outcome by the severity of illness. The patients with multiple comorbidi-
ties were also more likely to die due to their underlying conditions. In a stratified 
analysis, they found a significant survival benefit with combination therapy in P. 
aeruginosa bacteremia, translating to an approximately 50 % mortality reduction 
(CI: 32–79 %). This specific result provided the rationale for the hypothesis that 
the combination of aminoglycoside and β-lactam may provide synergism in vivo 
in a setting where the suspected infection is predominantly P. aeruginosa or other 
multiresistant Gram-negative bacilli where more than one drug would assure sus-
ceptibility to at least one of the antimicrobial agents.

The exact mechanism of action of aminoglycosides is not fully known. It was 
suggested that aminoglycosides could be either bacteriostatic and/or bactericidal 
(Bakker 1992). The bacteriostatic effect stops the growing of bacteria by inhibiting 
protein synthesis as the aminoglycoside binds to the 16S rRNA. The mechanism 
for its bactericidal effect is by disrupting the integrity of bacterial cell membrane 
(Shakil et al. 2008). In contrast, the mechanism of action of β-lactam antibiotics 
is completely known. β-Lactam antibiotics are bactericidal and act by an irrevers-
ible inhibition of the penicillin-binding proteins, which normally catalyze the cross-
linking of bacterial cell walls. The drug binding to the penicillin-binding proteins 
kills the bacteria due to the disruption of the cell wall synthesis (Fisher et al. 2005).

The PKPD indices for combination therapy have not been explored yet. It is 
likely more challenging to develop since the evaluation would require a much larger 
set of dose fractionation studies especially combining two drugs. The in vitro time-
course-based approach may provide a simpler methodology to evaluate dosing regi-
mens for combination therapies than the summary PKPD variables that are MIC 
based.

8.3  �In Vitro Time-Course-Based Approaches

8.3.1 � Time-Kill Kinetic Studies

The advancement of PKPD modeling approach came with more defined in vitro 
methodologies. The in vitro time course of drug–bacterial response characterized by 
the kill-curve assays has been used as the basis for developing PKPD models to de-
scribe bacterial population dynamics, drug effects, and the emergence of resistance. 
Depending on the objective of the study, the drug concentration in these in vitro 
time-kill experiments can be relatively constant in the static situation (Garrett et al. 
1966; Mielck and Garrett 1969; Garrett and Nolte 1972) or dynamically changing 
to mimic the in vivo half-life of the drug in humans (Sanfilippo and Morvillo 1968; 
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Sanfilippo and Schioppacassi 1973; Grasso et al. 1978). The data from static time-
kill experiments are often used to develop a mathematical model that links the free 
drug concentrations to the bacterial response whereas dynamic time-kill data are 
used to validate the model and to predict the outcome in the clinic. The dynamic 
kill-curve provides an alternative for evaluating PKPD relationships; it simulates 
the time course of the unbound drug concentrations at the site of action based on a 
preset half-life. Using multiple pumps, the hollow fiber infection model is used to 
simulate concentration-time profiles of free drug concentration that mimics the in 
vivo profiles (Crandon et al. 2012). The effects of different dosing regimens, drug 
half-lives and even starting inocula can be simulated to study their effects on the 
bacterial population dynamics over a time period, for example 24 or 48 h.

8.3.2 � PKPD Models of In Vitro Time-Kill Kinetics

The Logistic Growth Models  The PKPD models currently used to describe the in 
vitro bacterial population dynamics came from models used to study human popu-
lation dynamics. In 1838, Pierre-François Verhulst described the logistic growth 
model that many of the modern antimicrobial PKPD models were based on:

�

(8.1)

where N is the population number, r is the growth rate, and K is the carrying capac-
ity or the maximum number of individuals that is supported by the environment 
(Gershenfeld 1999). The analytical solution to Eq. (8.1) is:

�
(8.2)

where N0 is the initial population number at time t = 0. The important property of 
this model is that the limit of this function as time goes to infinity is the carrying 
capacity: lim ( )
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where N is the bacterial population with the initial count of N0, kgrowth is the first-
order rate constant for bacterial synthesis, and kdeath is the first-order rate constant 
for bacterial death. This common structure to describe bacterial growth is also used 
in other disease areas such as tumor dynamic models, where a first-order self-rep-
lication rate is implemented (Jusko 1971). This model assumes that the bacteria are 
from a homogeneous population with the same growth and death rate constants, 
which may not reflect the true population of microbes, which is known to select for 
resistant strain in the presence of an antimicrobial challenge. The variations based 
on the compartmental model have improved on this limitation and will be described 
more thoroughly in later sections of this chapter.

The Mechanistic Models  The third type of antimicrobial models considers the 
bacterial growth cycle, states of bacterial susceptibility, drug–receptor interaction, 
and the mechanisms of drug action. This type of models utilized many concepts 
of mathematical modeling in biology, including the two modeling approaches dis-
cussed above. Each of the mechanistic models will be discussed separately as there 
is no common mathematical approach across these models that can be summarized 
briefly.

8.3.3 � Modifications on the Logistic Growth Model

To incorporate drug action to the capacity limited growth model, Eq. (8.1) can be 
modified to include a function to describe the drug effect:

�

(8.4)

where the added fdeath (drug) describes the effect of an antimicrobial agent (Nolting 
et al. 1996; Mouton et al. 1997; Yano et al. 1998; Mouton and Vinks 2005). In this 
equation, as N approaches Nmax, the growth term approaches a plateau or stationary 
condition, where there is no net change in the bacterial population. The drug effect 
is often represented by an Emax or a sigmoidal Emax model such that,

�

(8.5)

where C is the drug concentration at any specific time, Emax is the maximum drug 
effect, and ECmax is the concentration at which the half-maximum effect is achieved. 
The shape parameter γ is 1 in the Emax model and is a parameter in the sigmoidal 
Emax model.

During the initial growth phase where N N<< max and the growth is linear, 
Eq. (8.4) can be simplified to the following equation (Nolting et al. 1996):

growth death
max

1 (drug),dN Nk N f
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�

(8.6)

By solving for the analytical solution to Eq. (8.6), one can determine the number of 
bacteria at time ( t) through the following equation:

�
(8.7)

Mouton and Vinks proposed that the stationary concentration (SC), which is defined 
as the concentration at which the growth rate equals the kill rate and is also the point 
at which no net change in the number of bacteria is observed, can be derived from 
Eq. (8.7) (Mouton and Vinks 2005). By taking the natural log of the ratio N t N( )/ 0 
divided by time, which is equivalent to max

50
growth

E C

EC C
k

+
−

γ

γ γ , one can obtain the equation 
for C:

�

(8.8)

When there is no net change in the number of bacteria, the term 1
0t

N t
Nln ( )  approaches 

0 and the SC is defined as:

�

(8.9)

The SC is not to be confused with the MIC, as SC refers to the concentration where 
no net bacterial growth occurs. It is often assumed that bacterial growth occurs 
when the drug concentration is below the MIC. Mouton and Vinks had shown that a 
correction factor to the SC equation might be required to estimate the MIC (Mouton 
and Vinks 2005):

�
(8.10)

The value 0.29 is obtained from the kill curves such that N( t) reached 108 CFU/
mL at 18 h, assuming an initial inoculum of 5 × 105 CFU/mL. This correction factor 
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is therefore dependent on the specific system that is being tested. The relationship 
between MIC and SC is described in greater detail in Mouton and Vinks (2005).

Tam et  al. (2008) modified the logistic growth model to study the effects of 
gentamicin and amikacin on the in vitro time-kill kinetics of P. aeruginosa ATCC 
27853 and Acinetobacter baumannii ATCC BAA 747, respectively, by introducing 
an adaptation factor to the EC50 parameter:

� (8.11)

α is defined as:

� (8.12)

where τ is the exponent of the adaptation factor and β is the maximal adaptation. 
The range of values for the function 1 C te−− τ  is between 0 and 1. The adaptation 
function α starts from a baseline EC50 and increases over time to a maximal value 
of β, if τ is positive.

Delay functions were applied to both the growth rate and the drug effect function 
to describe the population dynamics of Streptococcus pneumoniae, Haemophilus 
influenzae, and Moraxella catarrhalis in the presence of azithromycin (Treyaprasert 
et al. 2007). The delay function has the following form:

�

(8.13)

One can see that the delay function has a similar form to the adaptation function 
discussed above. The two equations, 1− −e xt  and 1− −e yt  (Mouton et  al. 1997), 
behave like a cumulative density function starting from 0 at t = 0 to a maximum 
value of 1 as t → ∞. The delay function acts as a modulator to allow the curves to 
conform to the S-shaped pattern of bacterial growth which is often observed during 
the first couple of hours of the time-kill kinetic experiments in the presence of low 
antimicrobial agent concentrations. The two functions also shape the transition to 
plateau after a decrease then increase in bacterial population at the antimicrobial 
concentrations that allow for bacterial regrowth to occur. An example of model 
using the delay function is shown in Fig. 8.3. Another modification introduced a 
second compartment for the persistent bacterial population to differentiate from the 
first compartment of susceptible bacteria; this alteration was used to model the ef-
fect of oxazolidinone on Staphylococcus aureus (Schmidt et al. 2009).

Bulitta et al. (2009) linked the bacterial population dynamic to cell wall synthe-
sis, and drug effect of ceftazidime on cell wall synthesis to describe the lag time in 
bactericidal effect of β-lactams. The study examines the inoculum effect of ceftazi-
dime against P. aeruginosa. The natural first-order death rate was dependent on the 
number of existing CFU in the system and the logistic growth part of the model 
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was dependent on both the cell wall synthesis and CFU. The drug effect acts on the 
compartment representing the cell wall dynamics, since the primary mode of action 
of ceftazidime is to inhibit cell wall synthesis:

�
(8.14)

�
(8.15)

where CW represents a hypothetical cell wall measurement, whose synthesis is 
expressed as a fraction of the baseline value. The IC CW50,  is the concentration of 
ceftazidime in the broth that inhibits 50 % of cell wall synthesis and k CWout ,  is the 
first-order rate constant for the cell wall turnover. The investigators claimed that 
this model accounts for the slow onset due to the delay between ceftazidime binding 
to the penicillin-binding proteins and the depletion of cell wall components (Bulitta 
et al. 2009).

out,
50,
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Fig. 8.3   Time-kill kinetics and model prediction of aztreonam-avibactam effect against K. 
pneumoniae
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8.3.4 � Examples of the Compartmental Model

During the linear growth phase just before reaching the plateauing phase, the popula-
tion dynamics can be described by simple first-order growth and death rates that are 
dependent on the bacterial burden present at the specific time. In addition to the logis-
tic growth model, other strategies had been utilized to describe the decrease in the net 
growth rate as the system approaches the plateau wherein the net bacterial growth is 
zero. One approach is to implement a phenotypic switch between susceptible and per-
sistent population such that the persisters have a markedly reduced growth rate (Balaban 
et al. 2004). The overall change in the total number of bacteria would then be the sum of 
those in susceptible ( S) and in persistent resting ( R) states, such that:

� (8.16)

The transition between the two states is defined by their respective rate constants. 
Nielsen et al. presented an example of compartmental model wherein a two-com-
partment model was used to describe the in vitro effect of a number of antibiotics, 
including moxifloxacin, vancomycin, benzylpenicillin, cefuroxime, and erythromy-
cin against Streptococcus pyogenes (Nielsen et al. 2007). The delay in the effect of 
drugs was modeled using an effect compartment model for the drug. The following 
assumptions were made: (1) The drug effect is to increase the death rate of the sus-
ceptible state and (2) the antimicrobials have no effect on the persistent population. 
The differential equations for the two bacterial populations are shown in the follow-
ing equations:

� (8.17)

� (8.18)

As the persistent population is unlikely to return to the susceptible state for the 
duration of the experiment, the transfer rate for the return to the susceptible state 
was assumed to be negligible and kRS  was fixed to 0. The transfer rate constant that 
indicates the rate of change from the susceptible to the persistent states, kSR, dictates 
the growth-limited capacity using the following equation:

�
(8.19)

where Bmax is the maximum number of bacteria supported by the system.
The investigators evaluated whether the drug decreases the growth rate or in-

creases the rate of death. The later scenario, increase in death rate, was examined 
as either an additive or a proportional effect. The equations to describe the three 
different scenarios are shown below:

A S Rtotal = +

dS
dt

k S k S k S k RSR RS= − − +growth death

dR
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k S k R k RSR RS= − − death .

k
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S RSR =
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� (8.20)

� (8.21)

� (8.22)

where f (drug) is a sigmoidal Emax model to account for the effect of various drug 
concentrations.

In a follow-up study, the same group described a mechanism for adaptive resis-
tance in E. coli due to gentamicin by introducing two additional compartments that 
regulate resistance development (Mohamed et al. 2012):

� (8.23)

�
(8.24)

where ARoff represents the adaptive resistance in dormant stage and ARon is for the 
active state; the transfer between states is represented by koff and kon; and C refers 
to gentamicin concentration. A greater flexibility was achieved by the two addi-
tional compartments as can be seen in how the model adapted to the data trend. 
The investigators noted that the model is suitable for gentamicin in the context of 
compartmental models.

8.3.5 � Examples of Mechanistic Models

A similar approach to the compartment model involving three-state susceptibility 
was used to study colistin effect in P. aeruginosa (Bulitta et al. 2010). In this model, 
the states of susceptibility included susceptible ( S), intermediate ( I), and resistant 
( R). A fourth compartment or state ( ),CFUS lag  was introduced to account for the dif-
ference between the initial total bacterial burden, CFUALL, and the initial conditions 
of the susceptible, intermediate and the resistant populations.

� (8.25)

The intermediate and resistant populations were assumed to be fractions of the ini-
tial total bacterial burden, CFU0:

� (8.26)
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�

(8.27)

�
(8.28)

�
(8.29)

where VGmax refers to the maximal rate of bacterial growth in the unit of CFU/
(mL.h), CFUm  is the bacterial density that produces 50 % of the maximal growth 
rate, kd is the natural death rate, klag represents the first-order growth rate constant 
associated with the slower initial growth phase of the susceptible population in the 
lag compartment, INHKill and INHRep are represented by the following equations:

�
(8.30)

� (8.31)

INHKill  and INHRep are inhibition of killing and of replication by signal molecules, 
Csignal. The synthesis of freely diffusible signal molecules CSignal by the bacteria was 
assumed to inhibit or to slow down the killing effects of colistin. The Imax,Kill and 
Imax,Rep were the maximum inhibition of killing and of replication; the concentration 
of signal molecules to achieve 50 % of the maximum inhibition is the IC50. The 
kinetic behavior of the hypothetical signal molecule is described by the following 
differential equation:

� (8.32)

where kdeg  is the degradation rate constant.
The assumption was made that the effect of colistin is to displace competitively 

both Mg2+ and Ca2+ from the binding sites in the outer membrane and the resulting 
displacement is responsible for colistin killing effect. The model utilizes receptor 
occupancy model to describe the competitive inhibition of colistin with Mg2+ and 
Ca2+ for the membrane binding sites. The fractional occupancy of these cations as 
a function of the molar sum of Mg2+ and Ca2+ concentrations as well as colistin 
concentration in mg/L is defined such that:

�

(8.33)
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where Kd Cations,  and Kd Colistin,  are the dissociation constants for the two cations and 
colistin, respectively; Mm  is the average molecular mass of colistin A and B, which 
are the two primary components of colistin; and C refers to the concentration of 
the respective components in the broth. The fraction of the receptors that were not 
bound to Mg2+ or Ca2+ was used to compute the effective colistin concentration at 
the target site. The effective colistin concentration, CColistin,eff , was a Hill function 
dependent on the FrCations  and colistin concentration in broth, CColistin:

�
(8.34)

An important difference between this model and the logistic growth or the compart-
ment models is that it assumes that the drug has an effect on all types of bacteria 
from the susceptible to the intermediate to the resistant ones. The limitation of such 
a complex model is that the data from an in vitro time-kill study will not be suf-
ficient to characterize the model parameters and that many of the parameter values 
will have to be derived from the literature.

Another compartmental-type model incorporated mechanisms involved in the 
life cycle of bacterial replication, autolysis, and ceftazidime effect against P. ae-
ruginosa (Bulitta et  al. 2009). The model utilizes a two-compartment model for 
the bacteria population and a turnover model to describe the time-kill behavior in 
the presence of antimicrobial agents. The bacterial life-cycle model utilizes two 
states for the susceptible population, wherein the first state, S1, describes the cycle 
immediately after cell replication whereas the second state, S2, occurs just before 
replication:

� (8.35)

� (8.36)

where k12 and k21 are first-order transition rates between the first and second states. 
k12  is determined from the mean generation time (MGT) such that k MGT12 121= /
. The MGT is discussed later in this section. Inhk12  is identical to Eqs. (8.30) and 
(8.31). The factor 2 was used to represent bacterial doubling during cell replication. 
The autolysin activity ALysS  is stimulated by ceftazidime and is described by a 
turnover model:

� (8.37)

The S Smax,  value limits the maximum value of ALysS  to 1, indicating that a high 
drug concentration can completely inhibit replication. SC50  refers to the drug con-
centration at which autolysin is half maximally stimulated. Smax,loss  represents the 
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maximum extent of the inoculum effect at high signal molecule concentrations. In 
contrast to the previous model, the current one assumes two signal molecules with 
the following behavior:

� (8.38)

where the initial conditions for CSig1  and CSig2  were CFU0  and CFU k kS S0 12 21⋅ / . 
The role of the first signal molecule CSig1  is to slow down the replication rate and 
CSig1  is in equilibrium with CSig2 .

The life-cycle growth model involving two-stage susceptibility was applied to 
the study of linezolid against vancomycin-resistant enterococci and S. aureus (Tsuji 
et al. 2012a, b). Linezolid effect was assumed to inhibit protein synthesis; a turn-
over-type model was used to describe its effect:

�
(8.39)

where P  represents the protein pool whose steady-state maximum value is 1, IC50 is 
the linezolid concentration that produces half-maximum inhibition of protein syn-
thesis and kprot is the turnover rate constant of the protein pool. The probability of 
death due to lack of protein represented by (Lack P= −1 ) was defined by the fol-
lowing function:

� (8.40)

The Emax-type model was used to describe the plateau phase of the primary sus-
ceptible bacterial population. A two-state susceptibility bacterial population was 
described for S1 and S2, similar to the model described in Eqs. (8.35) and (8.36), 
with the function 1− Probdeath replacing the 1− ALyss  and Inh12  was fixed to 1. The 
number of sensitive alleles (NSen) was a covariate to determine the IC50  of linezolid 
in inhibiting protein synthesis:

� (8.41)

where IC50Sen0 refers to the IC50  for a strain with no sensitive alleles, Imax,Sen refers 
to the maximum fractional decline for IC50, fHFIM  refers to the ratio of IC50  in the 
hollow fiber infection model compared with the static time-kill model, and HSen 
is the hill coefficient.

dC
dt

CFU C k k C k CS S
Sig1

ALL Sig1 Sig1 Sig2= − ⋅ − ⋅ + ⋅( ) deg 12 21

dC
dt

k C k CS S
Sig

Sig1 Sig2
2

12 21= ⋅ − ⋅ ,

dP
dt

k
C

IC C
P= −

+








 −













Prot
drug

drug

1
50

,

Prob I Lackdeath max,Rep= ⋅ .

IC IC
I N
N N50 50 0 1= ⋅ −

⋅
+







Sen

max,Sen sen
HSen

50,Sen
HSen

sen
HSen  ⋅ fHFIM ,



2498  Pharmacometrics in Bacterial Infections

The MGT is defined as the doubling time required for the bacteria to double in 
number and is computed from the net growth rate, similar to the computation of 
half-life (Garrett 1978):

� (8.42)

where k k knet growth death= − . In the model, the number of resistant alleles ( )Nres  was 
used as a covariate to compute the MGT (MGT12) wherein k12 was computed as 
1 12/MGT :

�
(8.43)

where N Res50,  refers to the number of resistant alleles that produce 50 % of Smax Res, , 
which is the maximum fractional increase in MGT12 due to resistant alleles, and 
HRes is the Hill coefficient.

The goal of anti-infective therapy is to administer an effective dose of drug to 
a patient with a high probability of achieving therapeutic success while minimiz-
ing toxicity. Mechanistic models are believed to better describe the processes and 
subtleties of nature that may not be apparent in an empirical model (Lo et al. 2011). 
Whether mechanistic models are better predictors of clinical outcome over the em-
pirical and semi-mechanistic models is yet to be proven.

8.3.6 � Models of Combination Therapy

We have recently modified the logistic growth model to study the enhanced po-
tency of aztreonam by avibactam using a shift in EC50 that approximates the reduc-
tion in MIC values at increasing avibactam concentrations against K. pneumoniae 
(Fig. 8.3; Sy et al. 2013). The reduction in aztreonam EC50 as a function of avibac-
tam concentration was approximated by an empirical bi-exponential decay equa-
tion. Avibactam, being a β-lactamase inhibitor, has no antimicrobial activity against 
K. pneumoniae, but rather restores the potency of aztreonam by inhibiting aztreo-
nam removal and degradation by the β-lactamase enzymes. The advantages of this 
simple approach are that the model-predicted aztreonam EC50 closely mimicked the 
MIC value and the generated curves described well the observed bacterial dynamics 
in response to the combination therapy.

The Loewe additivity was utilized to evaluate the effect of combination therapy 
consisting of a novel aminoglycoside, vertilmicin, and ceftazidime on P. aerugi-
nosa (Zhuang et al. 2013). The bacterial population model was based on a two-state 
logistic growth model. In contrast to the aztreonam–avibactam study, both agents 
have antimicrobial effects with different mechanisms of action. Greco et al. pro-
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posed a generalized sigmoidal Emax equation to describe Loewe additivity of the 
combined effect of two agents (Greco et al. 1995):

�

(8.44)

The additive effect of the two agents is described by the sum of the first two terms 
and the third term is an interaction term, wherein γ  is a parameter that indicates syn-
ergism–antagonism interaction. The interaction is additive if the 95 % confidence 
interval of the γ  estimate overlaps the zero value. If 0>γ  or 0<γ , the interaction 
is either synergistic or antagonistic, respectively. In the model, m1 and m2  were as-
sumed to be equal. An additional interaction term λ  was incorporated to the effect 
of an initial killing rate of both agents ( kmax ) such that:

� (8.45)

The resulting Emax model to evaluate the combination of vertilmicin and ceftazidime 
was:

�

(8.46)

where i∝  refers to the adaptation factor mentioned in Eq. (8.12). This empirical ap-
proach described well the combined effects of an aminoglycoside and a β-lactam 
against P. aeruginosa.

8.3.7 � Models Estimating Resistant Subpopulation

To quantify the resistant bacterial subpopulation in an in vitro time-kill experiment, 
one can plate the bacteria in agar plates that contained the antimicrobial agent at 
three times the MIC or greater. This approach ensures that susceptible bacteria are 
removed by the drug. The choice for at least thrice the MIC is that twice the MIC 
level is still within the error measurement of susceptibility determination. An alter-
native method to determine resistance development is to determine the MIC after 
the 24-h time-kill experiment.
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The subpopulation of resistant bacteria is a very small fraction of the total bacterial 
population that is predominantly drug-susceptible wild-type population. The prob-
ability of detecting the resistant subpopulation is dependent on the inoculum size or 
total bacterial burden and the frequency of mutation to the drug-specific resistance 
(Jumbe and Drusano 2011). For a resistant subpopulation to amplify effectively, both 
the fitness of the mutant and the selection pressure presented by the antimicrobial 
agent are important determining factors. Jumbe and Drusano proposed equations that 
incorporate probability estimates to a general model that governs the natural replica-
tion of bacteria and the death due to antimicrobial effect (Jumbe and Drusano 2011):

�
(8.47)

�

(8.48)

where S  and R  represent susceptible and resistant bacterial population, Gζ  and 
ΨK  are rates related to the natural replication and bacterial death, and E a tR ( )  and 
E a tD ( )  refer to antimicrobial effects on replication and death. P is the probability 
related to mutation occurrence and Γ  determines the relative fitness of the suscep-
tible to resistant population. This modeling strategy of estimating the proportion 
of each subpopulation was adopted in the model used to study colistin effect in P. 
aeruginosa that was previously discussed (Bulitta et al. 2010). Tam et al. (2005, 
2007b) applied the PKPD model to describe the dynamics of garenoxacin-sensitive 
and -resistant subpopulations of P. aeruginosa and S. aureus in response to fluctuat-
ing concentrations of quinolone drugs. Their study showed that exposure below a 
specific breakpoint allowed resistant subpopulation to grow rapidly. Jumbe et al. 
(2003) showed the predictive value of modeling and simulation in determining the 
proliferation of resistant population in insufficient antimicrobial therapy.

8.3.8 � Models Incorporating Host Defense

Rodent studies provide a good model to evaluate the effect of the host’s immune 
system on the time course of antimicrobial effect by chemotherapeutic agents, as 
well as the antimicrobial effect imposed by the immune system. The effect of the 
immune system can be quantified by comparing the immune-competent mice and 
the neutropenic mice. To evaluate the contribution of granulocytes on bacterial kill, 
studies performed in the mouse thigh-infection model and the murine model of 
pneumonia showed that granulocytes alone are potent in eradicating bacteria at a 
low inoculum size whereas for bacterial burden of ≥ 107 CFU/g of tissue, a net bac-
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terial growth was observed after 24 h (Drusano et al. 2010, 2011a, b). The model 
incorporating host defense has similar mathematical form as that of drug effects and 
combination study (Jumbe and Drusano 2011):

�

(8.49)

where EP  and EI  refer to the humoral and cellular response of the host and the in-
nate adaptive immunity interaction is characterized by P IE E⋅ . When the combined 
effect of the two host’s defense processes is greater than the microorganism natural 
proliferation rate, K GC >> ζ , the host immunity can remove the infection without 
therapeutic intervention (Jumbe and Drusano 2011).

8.3.9 � Linking In Vitro Models to PKPD Indices

The concentration–effect relationship of ceftazidime established from in vitro time-
kill curves was used to explain the PKPD index that % f T > MIC of 40 % is required 
for a static effect in vivo (Mouton et al. 2007). The logistic-growth model was used 
to simulate the bacterial kill over time in dosing regimens of 1 mg every 2 h to 
256 mg every 8 h. The pharmacokinetic profiles were simulated using parameters 
for mice and humans. The dosing regimens that resulted in a predicted static ef-
fect (i.e., CFU at 24 h ≤ CFU at 0 h) were then evaluated and the corresponding 
% fT > MIC for the dosing regimen was determined. For a 2  log10 decrease after 
24 h, the authors estimated that % fT > MIC of at least 50 % is required. Neilsen et al. 
(2011) used a semi-mechanistic PKPD model based on the compartment approach 
to predict the PKPD indices of several antibiotics. They have shown that simulation 
studies using the information from in vitro studies can be used to predict the PKPD 
indices of antimicrobial agents but cautioned that the determination of the suitable 
PKPD index for a particular drug is sensitive to the study conditions including dos-
ing frequency as well as uncertainty in the MIC values.

8.4 � Summary

Due to rapid evolution of bacterial resistance to many of the commercially avail-
able antimicrobial agents, many investigators have called for drug discovery and 
development programs that target suppression of resistance selection and eradica-
tion of drug-resistant infections (Jumbe and Drusano 2011; Nielsen and Friberg 
2013). Pharmacometrics has an important role in developing dosing strategies to 
effectively achieve these two goals. The search for regimens and drug combinations 
in anti-infectives has benefitted tremendously from modeling and simulation. Many 
of the current dosing regimens were based on understanding of the PK–PD relation-
ship between antimicrobial agents and bacterial infection.

( ) ( ) ( ) ( ),G R K D P P I I
dN E a t N t C E a t E E E E N t
dt

ζ    = ⋅ ⋅ − ⋅ + + ⋅ + ⋅   



2538  Pharmacometrics in Bacterial Infections

In this chapter, we have summarized the pharmacometric models that were used 
to derive the current state-of-the-art treatment paradigm. More progress can still 
be made to maximize patients’ benefits through implementing treatment programs 
based on sound analysis of all available information from in vitro studies, animal 
models of infections, and clinical data.
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