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5.1  Introduction

Diabetes is a chronic, progressive disease that is estimated to be one of the top ten 
leading causes of death globally (WHO fact sheet number 310). Type 2 diabetes is 
the most common type of diabetes, affecting 90–95 % of the US diabetes popula-
tion. According to the latest International Diabetes Federation (IDF) report, about 
8.3 % of the global adult population, or 382 million people, have diabetes. The 
number of newly diagnosed cases worldwide continues to grow every year and 
the global figure is expected to rise to 595 million by 2035. The majority of the 
382 million people with diabetes are aged between 40 and 59, and 80 % of them 
live in low- and middle-income countries. The economic burden of diabetes is ap-
proximately 548 billion US $ in health spending (11 % of the total spent worldwide) 
in 2013 (IDF report 2013). Therefore, improving the treatment and management of 
diabetes, its comorbidities, and associated complications continue to be an impor-
tant focus of pharmaceutical research and development (R&D).

Diabetes is a metabolic disease that is rich with quantitative biomarkers and well 
understood regulatory and counter-regulatory processes. For these reasons, diabetes 
is one of the therapeutic research areas rapidly gaining R&D efficiencies with the 
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use of predictive drug and disease models. The mathematical modeling of glucose–
insulin homeostasis has provided significant insights into the underlying mecha-
nisms of the disease and is becoming a critical component of the pharmaceutical 
R&D program (Ajmera et al. 2013). Driven by the increasing cost of drug develop-
ment and the high rate of late-stage failures (over 90 % of clinical candidates never 
make it to market), the scientific leaders and regulators, advocated for the incor-
poration of model-based approaches into drug development processes (Woodcock 
and Woosley 2008) to improve the efficiency and the quality of decision-making: to 
select targets, predictive biomarkers, drug candidates, clinical trial designs, dosing 
range or regimens, and development programs with high probabilities of success 
in all the stages of drug discovery and development. Fueled by the recent techni-
cal advances in computational power, aided by the arsenal of predictive drug and 
disease models and study design efficiency-enhancing tools, pharmacometricians 
have been able to contribute more effectively in the early terminations of the “bad” 
drugs and the optimization of the development program to expedite the delivery of 
the “good” drugs to the patient.

All drug-disease models developed should be fit for purpose, specifically, pro-
vide answers to the questions of interest. Models should be developed with well-
characterized basic physiology and biochemical regulatory aspects of the disease in 
mind in order to have predictive fidelity. It is consequently important that the phar-
macometricians have a basic understanding of the disease, including that the term 
“diabetes” does not characterize a single, homogenous disease but rather encom-
passes a group of metabolic disorders, which are all characterized by hyperglycemia 
that result from defects in insulin secretion, insulin action, or both (American Dia-
betes Association 2008). It is a condition in which a person has higher than normal 
blood glucose levels either because the body does not produce enough insulin in 
response to meal intake (impaired beta cell functions), or because the body does not 
properly respond to the insulin that is produced (insulin resistance). Insulin is a hor-
mone produced by the beta cells in the Islets of Langerhans located in the pancreas 
which promotes the uptake of glucose by tissues such as muscles and adipose there-
by mediating the clearance of glucose. If there is a diminished uptake of glucose by 
tissues due to resistance to insulin, the beta cell will compensate by secreting just 
enough insulin to normalize glucose level (euglycemia). Over time, the acute insu-
lin secretory response to glucose is exhausted and the homeostatic feedback control 
diminishes progressively, leading to hyperglycemia and ultimately diabetes melli-
tus. A persistent state of hyperglycemia is associated with complications, including 
an increased susceptibility to infections, ketoacidosis, microvascular diseases, such 
as nephropathy or retinopathy and may lead to early macrovascular complications, 
such as heart attack and stroke (Morghissi et al. 2007). In recent years, there has 
been a significant emergence of type 2 diabetes driven by lifestyle factors leading 
to increased body weight and obesity.

Type 2 diabetes can be controlled with various treatment modalities. Regimented 
treatment of diabetes is important and, generally, a holistic approach that includes 
blood glucose and blood pressure control, and lifestyle changes, such as maintain-
ing a healthy body weight is recommended. Therefore, the choice of treatments 
depends on the disease status and often includes more than one antihyperglycemic 
medication.
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5.2  Therapeutic Interventions

An important component in developing drug–disease models of diabetes is that 
soon after diagnosis, patients with type 2 diabetes mellitus may be able to manage 
their glucose levels on diet and exercise alone for a few years. However, the disease 
usually progresses over time requiring multiple drugs to be prescribed concomi-
tantly. Numerous drugs of different mechanisms of action are available by oral or 
subcutaneous routes of administration. The therapeutic combination for the treat-
ment of type 2 diabetes may include insulin, to provide better glycemic control in 
combination with the more convenient oral agents. The antihyperglycemic medi-
cines that are available in the market by pharmacologic class include:

• Biguanides for inhibition of hepatic gluconeogenesis (metformin)
• Insulin secretagogues (sulfonylureas)
• Insulin sensitizers (thiazolidinedione)
• Alpha-glucosidase inhibitors for glucose or starch absorption (acarbose)
• Incretin mimetics for glucose-dependent insulin secretion (glucagon-like-

peptide-1, or GLP-1 anlogues)
• Dipeptidyl peptidase-4 (DPP-4) inhibitors
• Sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors
• Insulins (including long-acting basal insulins)

In addition, there are many investigational agents in various stages of drug discov-
ery and development, which are targeting different pathways for glucose control 
(Verspohl 2012), such as glucagon receptor antagonist, glucokinase activator, incre-
tin hormones, sodium-dependent glucose co-transporters, G-protein-coupled recep-
tor agonists, etc. Many newer agents are designed to have pleiotropic effects and 
have beneficial attributes in addition to glucose lowering to provide the additional 
benefit in the management of multiple facets of this complex metabolic disorder.

5.3  Biomarkers and Clinical Surrogates

Diabetes disease models are developed using a plethora of quantitatively predictive 
and clinically relevant biomarkers. The standard biomarker panel is not limited to 
fasting blood glucose (FBG) and postprandial glucose (PPG). There are numerous 
biomarkers and pharmacodynamic measurements available to assess glycemic sta-
tus and pancreatic beta cell health as well as to evaluate the effects of pharmacolog-
ic interventions. The pancreas releases insulin which is produced in the pancreatic 
beta cells, and glucagon is produced in the alpha cells. Glucagon is an antagonist 
to insulin causing hepatic glucose output to increase either by gluconeogenesis or 
glycogen breakdown—its effect detectable following prolonged hypoglycemia. In 
addition, hormones (somatostatin, growth hormone, cortisol, gastrointestinal hor-
mones, etc.), amino and fatty acids also play roles in this complex metabolic system.
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The choice of a pharmacodynamic biomarker in model development is depen-
dent on the drug’s mechanism of action, the duration of the trial or the stage of de-
velopment and the objective of the assessment. In addition, during the translational 
phase of development, the choice of animal models of disease is important and is 
often dependent on the mechanism of action of the pharmacologic agent and known 
inter-species differences in the target expression and biomarker response (Shafrir 
2007, 2010).

Acute biomarkers (measured in minutes, hours, or days) are measured in pre-
clinical and early clinical phases of drug development in trials of short duration 
(e.g., in phase 1). The most common biomarkers assessed in early trials are FBG, 
PPG, C-peptide, or insulin, in response to meals or glucose challenges. Biomarkers 
of the target engagement may include glucagon, dipeptidyl peptidase-4 [DPPIV] 
enzyme inhibition, glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide 
(GIP), and other hormones. In addition, complex systems pharmacology models of 
diabetes may also incorporate information based on biomarkers of pleiotropic ef-
fects, such as, cholesterols, free fatty acids and hemodynamic measures (e.g., blood 
pressure and heart rate) as well as standard laboratory assessment of cardio-renal 
functions.

Glycosylated hemoglobin (HbA1c) is formed through a nonenzymatic and ir-
reversible reaction between glucose and hemoglobin. HbA1c is a clinical surrogate 
for long-term disease progression and treatment effects and is, thus, well accepted 
as an efficacy endpoint in long-term trials (e.g., months to years). Fasting insu-
lin and C-peptide levels, on the other hand, are measures of endogenous insulin 
production and are used to assess insulin resistance and beta cell function as well 
as markers of disease progression. Long-term outcomes of diabetes and diabetes 
complications, such as strokes, coronary heart disease, neuropathy or nephropathy, 
might take several years to present themselves. Outcomes are often assessed using 
empirical or Bayesian probability models, rather than drug–disease models.

Each of these biomarkers, whether fast or slow turnover markers, carry impor-
tance at different stages of the drug discovery and development process. It is im-
portant to have a good understanding of the translatability and reproducibility of 
these biomarkers such that the use of these biomarkers is reliable and has predictive 
fidelity.

To evaluate the drug effects, pharmacokinetics-pharmacodynamics relationships 
are developed in the forms of models linking the concentration of drug to biomark-
ers of interest or outcomes, as shown in Fig. 5.1.

Diabetes is well known as a risk factor for cardiovascular disease. Despite glu-
cose control, the risk of cardiovascular mortality and morbidity remains high in 
patients with diabetes. Drug and disease modeling approaches may incorporate 
cardiovascular biomarkers in combination with glycemic parameters to assess the 
impact of a new therapeutic intervention on both diabetes and cardiovascular out-
comes (Vlasakakis and Pasqua 2013).

Due to increasing awareness in the holistic treatment of the comorbidities of 
diabetes, namely, obesity and cardiovascular diseases, novel therapies not only treat 
hyperglycemia but also aim to manage the symptoms of these comorbidities, often 
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referred to as “diabetes plus”. Therefore, the biomarker panels have been expanded 
to include measures of cardiometabolic health (e.g., body mass index, waist circum-
ference, body fat composition, lipids, triglycerides), assessment of hemodynamics 
(e.g., blood pressure, heart rate), and risk of arrhythmias (ECG changes). This chap-
ter focuses on the modeling of glycemic parameters; however, similar modeling 
concepts may be applied to cardiovascular biomarkers.

5.4  Drug–Disease Models of Diabetes

Leveraging the range of available biomarkers, computational models play an in-
creasingly important role in understanding the dynamic behaviors and the mecha-
nisms underlying diverse and complex biological systems, leading to better drug 
candidate selection, study design, dose and dosing regimen decision, and ultimately, 
better control and treatment for diabetes.

Computational models of diabetes, either mathematical or statistical, in the pub-
lished literature can broadly be classified into clinical and nonclinical categories, 
based on complexity, depth of biological description, and the type of data (individu-
al or population level; Landersdorfer and Jusko 2008; Ajmera et al. 2013). Analysis 
models of clinical data are mostly empirical in nature and emulate clinical data by 
considering only essential biological descriptors. Due to the purpose of their uses, 
these models are useful in understanding effects of dose (concentration) of new 
treatments, time course in changes of response, understanding disease progression, 
and predicting risks for complications. Nonclinical physiologically based models 
are more complex in nature and account for the mechanistic description of the bio-
logical systems, eventually, through translational sciences, aimed at being used for 
simulating clinical scenarios. Recently, semi-mechanistic and mechanistic systems 
pharmacology models have also been used in clinical setting as described later in 
this chapter.
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As emphasized earlier, the choice of the model really depends on the questions 
that need to be answered and the nature of available data. For example, simple 
models without mechanistic understanding that are developed to describe observed 
clinical data can be used for retrospective hypothesis testing and clinical trial opti-
mization using simulations. On the other hand, a mechanistic model may be neces-
sary to generate prospective hypothesis to be evaluated where changes in biomark-
ers can be assessed by altering specific biochemical pathways.

In the following section, we summarize key types of models that have to be 
utilized with nonclinical and clinical data to describe the dynamics of biomarkers 
of interest. Most of these models can be adequately modified to characterize and 
predict different biomarkers data and their interactions.

5.4.1  Systems Pharmacology Models

Conceptually, the systems approach is a mathematical representation of the per-
tinent physiology that comprise of the key pathways or targets of interest. Sys-
tems pharmacology models usually employ a “bottom up” modeling approach to 
represent the physiology and disease states. The approach requires physiological 
or systems-level information as well as the biological pathways and mechanisms. 
These physiologically based models aimed to quantitatively integrate relevant biol-
ogy across the systems, with targets or pathways, are expressed as state variables 
and parameters. The parameters in these complex models typically include those 
reported in the literature and those calibrated to match subsystem and/or system-
level behaviors. Each unique set of model parameterization represents one “virtual 
patient,” and each virtual patient response is qualified by comparing simulated re-
sponses to experimentally observed or published data. This approach focuses on 
finding biologically feasible parameterizations that reproduce critical behaviors, 
rather than on exact characterization of numerous difficult-to-measure parameters 
(Kansal 2004; Klinke 2008; Shoda et al. 2010; Schaller et al. 2013). The PK and PD 
properties of the drug(s) of interest are subsequently evaluated on specific pathways 
or targets in a systematic fashion. Together, these integrated drug–disease models 
are used to simulate the expected physiological and pharmacological responses to 
a novel therapy or combination of therapies or clinical trial simulations in virtual 
patient populations (Waters et al. 2009). A detailed case study is presented at the end 
of this chapter to describe the development and application of systems pharmacol-
ogy models using a glycogen phosphorylase inhibitor (GPi) for the treatment of 
type 2 diabetes.

5.4.2  Models for Glucose–Insulin Interaction

An advanced model of glucose–insulin regulation was developed using data from 
both healthy and type 2 diabetic subjects in glucose provocation experiments 
(Jauslin et al. 2007, 2011; Silber et al. 2007). Briefly, the glucose model is described 
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using a two-compartment model with a glucose absorption component. As shown 
in Fig. 5.2, the glucose model also includes two effect compartments accounting 
for effects on glucose production and insulin secretion. The model for insulin in-
corporates both secretion and distribution. Baseline glucose and insulin values are 
represented as population values with inter-subject variability terms.

One application of this model is for evaluation of combination of treatments with 
different mechanisms of action. An example of this application is the prediction of 
glucose response to investigational insulins or incretin mimetics, when added to 
metformin (a drug that affects hepatic glucose production) in combination with sul-
fonylurea (a drug that increases insulin secretion). The pharmacokinetic component 
of drug treatment can be introduced into the model by linking to the site of action. 
This model characterizes the fast biomarkers, thus the application of this model to 
predicting long-term steady-state biomarker response is limited. For such an appli-
cation, the placebo response with respect to inter-occasion glycemic variability and 
links to HbA1c response will need to be considered. As glucose input is the driver 
for the biomarker dynamics, this model requires reliable details about the glucose 
(as OGTT, IVGTT, MGTT or meals) intake.

5.4.3  Models for Glucose–Insulin–Glucagon Interaction

The first models exploring the glucagon counter-regulation (GCR) mechanism were 
proposed by Farhy and McCall (2009) based on rodent studies. As all the compo-
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nents of these models were clinically measurable, these models identify the role 
of delayed feedback illustrating the relationship between basal glucagon level and 
different aspects of GCR responses to insulin-induced hypoglycemia in T1DM con-
ditions. Hetherington et al. (2011) and Sumner et al. (2011) developed a composite 
model for glucagon/insulin driven liver glucose homeostasis by linking a series of 
sub-system models corresponding to different aspects of physiology. This model 
has been used further to explore the behavior of glucose homeostasis systems by 
modulating the liver insulin sensitivity and diet glucose level. Kim et al. (2007) 
developed a multi-scale model illustrating hormonal control of whole-body glucose 
homeostasis during exercise and can be envisioned as a roadmap towards achieving 
a holistic mechanistic view of the glucose homeostasis system from sub-cellular to 
a “whole-body” level.

Schneck et al. (2013) extended the insulin–glucose interaction model described 
in previous section to incorporate the key counter-regulatory hormone glucagon; 
this model was utilized to investigate the effect of a novel glucokinase activator 
on glycemic control. Baseline glucagon secretion, the inhibitory influence of glu-
cose and insulin, and the stimulatory influence of ingested exogenous protein on 
glucagon secretion were combined in a differential equation to describe glucagon 
dynamics. An effect compartment was utilized to represent a delayed effect of glu-
cagon within the system. This model describes the dynamics of fast biomarkers 
(e.g., glucose, insulin, and glucagon), thus limits the ability to utilize this model for 
predicting long-term HbA1c effects. As glucose input is the driver for the biomarker 
dynamics, this model requires reliable details about the glucose intake.

5.4.4  Time Course Models—Fasting Blood Glucose or HbA1c

In clinical trials, glycemic parameters (fasting blood glucose or HbA1c) are mea-
sured at intervals during the course of the trial. These time courses of the glycemic 
parameters are used to evaluate the effects of an intervention relative to placebo 
or an active comparator. A typical profile of FBG as a function of time is shown 
in Fig. 5.3. The time course profile of HbA1c or any other biomarker can also be 
generated and modeled in similar fashion.

At randomization, prior antidiabetic treatments may be washed out to allow bet-
ter evaluation of the active treatments. Wash-out of prior medication may cause a 
baseline excursion in fasting glucose. Specifically, trials to evaluate a new agent 
for a monotherapy indication may include a lead-in phase, during which patients 
discontinue and washout their previous antidiabetic agents. In these trials, during 
the lead-in phase, FBG levels will rise as shown by the placebo response curve in 
Fig. 5.3. Upon treatment, FBG decreases from baseline to reach a maximum possi-
ble effect ( Emax) for the assigned dose. The following model can be used to describe 
the rise in FBG in the placebo group and the fall in FBG levels with drug treatment.

Change in FBG Placebo effect Drug effect= +
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There are various ways of describing the placebo and drug effects. One of the ways 
we can describe this relationship is by the following equation:

where Pmax is the maximum change in FBG for placebo; Emax is the maximal drug 
effect, EC50 is the drug exposure that produces half maximal effect. Exposure is 
the drug exposure (which may be the area-under-curve or average concentration 
during a doing interval, or dose); FBGBase is the baseline FBG; keff  is a rate con-
stant of glucose turnover in determining the time required to achieve the maximum 
treatment or placebo effect; γ is a concentration–response steepness parameter (Hill 
coefficient); OAD stands for oral antidiabetic drug which is the excursion between 
initiation of washout of antihyperglycemic medications to baseline FBG.

In some cases, when the time-course of biomarker response may not be critical, 
for example, when the dose (exposure)–response relationship to be evaluated is at 
steady state, a model describing the changes at a predefined endpoint (for example, 
at 12 or 26 weeks) may be sufficient. The equation described above may be modi-
fied to:

where all the terms are as described earlier. It should be noted that the term that 
characterized the time course (with keff  and time) has been removed in this equa-
tion.
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In longer clinical trials, where HbA1c values are measured to evaluate the effects 
of a therapeutic intervention, the time course model described in this section for 
FBG can be easily applied to HbA1c.

In trials of add-on therapy during which patients continue taking their antihy-
perglycemic medications, without washout, FBG levels are stabilized at baseline.

5.4.5  Indirect Response Models—Insulin, Glucose, and HbA1c

As previously described, the biomarkers that are frequently measured in clinical tri-
als for antidiabetic medications are fasting serum insulin (FSI), FBG, and HbA1c. 
A generalized approach can be taken to link FSI, FBG, and HbA1c to describe the 
time courses of these biomarkers. Figure 5.4 shows a representation of the key com-
ponents and the relationships that can be used in the model.

Møller et al. (2013) used a similar approach of linking glucose to HbA1c where 
the mean plasma glucose (from 24-h glucose measurements) instead of FBG was 
used to develop an indirect response model and predict long-term HbA1c changes 
based on short-term mean plasma glucose data.

5.4.6  Physiological Linked Fasting Glucose and HbA1c Model

Hamrén et al. (2008) published a model that linked fasting glucose and HbA1c us-
ing a transit compartment model informed by physiology which is a mechanistically 
better approach versus using an indirect response relationship between these two 
biomarkers (as described in Sect. 5.4.5). In this model, a series of four transit com-
partments describe red blood cell (RBC) aging with a zero-order release of RBCs 
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into the circulation. A first-order rate constant defines the transition of RBCs from 
one stage to the next until the cell dies as shown in Fig. 5.5.

5.4.7  Models for Progression

Efforts towards the development of novel antidiabetic agents are directed at the 
drugs that can alter diabetes progression. In studies of greater than 1 year duration, 
it is important to include disease progression in the model in order to study the 
long-term effect of antidiabetic agent at different stages of progression. Disease 
progression models specific for diabetes incorporating long-term population stud-
ies with antidiabetic agents have been developed (Frey et al. 2003; de Winter et al. 
2006). De Winter et al. (2006) utilized clinical data with pioglitazone, metformin, 
and gliclazide to assess the disease progression and drug effect using indirect re-
sponse model linking FSI, FBG, and HbA1c as described in Sect. 5.4.5 (Fig. 5.6). 
The model described the rate of disease progression through the drugs effect on beta 
cell function and insulin sensitivity.

Topp et al. (2000) developed a model of disease progression by considering beta 
cell mass together with insulin and glucose concentrations. This model was de-
scribed by three nonlinear ordinary differential equations, where glucose and insu-
lin dynamics were fast relative to beta cell mass dynamics. Extending this model, 
Ribbing et al. (2010) proposed a semi-mechanistic pharmacokinetic/pharmacody-
namic model, illustrating the dynamics of fasting plasma glucose, fasting insulin, 
insulin sensitivity, and beta-cell function in a heterogeneous population.

5.4.8  Models for Diagnostic Tests

In order to evaluate the diabetic and prediabetic condition in an individual, different 
glucose tolerance tests, such as intravenous glucose tolerance test (IVGTT), oral 
glucose tolerance test (OGTT), and mixed meal glucose tolerance test (MMTT) have 
been devised. The aims of these tests are to obtain estimates of insulin sensitivity 
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(IS), glucose effectiveness (potency or potentiation), insulin secretion, and beta cell 
function. Since the liver metabolizes more than half of the secreted insulin before 
it is utilized by other body tissues, accurate estimation of pre-hepatic insulin secre-
tion, hepatic insulin extraction and clearance are essential for evaluating insulin 
secretion and beta cell function under normal and diseased conditions. Plasma C-
peptide, a part of preproinsulin peptide and therefore secreted in equimolar amounts 
as insulin by beta cell, acts as an indicator for insulin secretion. However, peripheral 
C-peptide has a longer half-life and can limit the accurate estimation of insulin se-
cretion. Consequently, a model-based approach may be recommended for greater 
accuracy.

The assessment of insulin sensitivity has been conducted using either the 
glucose clamp technique or the minimal models (Bergman et al. 1979, 1989) 
which had insulin sensitivity and glucose effectiveness as the main parameters. 
Cobelli et al. (2009) incorporated peripheral compartment for glucose distribu-
tion which modeled the glucose and insulin data simultaneously. These models 
do not take into account dynamic control mechanisms and were not ideal for 
predictive purposes. Significant improvement over the minimal models was 
achieved incorporating an additional compartment for glucose kinetics and 
data from labeled IVGTT experiments. Although these bi-compartment models 
allow precise estimation of IS and potency, the additional cost and technol-
ogy involved in using labeled IVGTT make it impractical for application in 
large clinical trials or patient care settings. Silber et al. (2007, 2010) proposed 
an integrated insulin–glucose model to describe IVGTT data from healthy as 
well as diabetic individuals, using an insulin–glucose feedback mechanism. As 
OGTT closely resembles the physiological condition, this model was extended 
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further by incorporating the description for glucose absorption and incretin ef-
fects following a meal or 24-h glucose and insulin profile following multiple 
test meals.

5.5  Case Study: Systems Pharmacology Model

A case example of systems pharmacology model aims to assess the therapeutic po-
tential of a glycogen phosphrylase inhibitor (GPi) for treatment of type 2 diabetes. 
Glycogen phosphorylase is the rate-limiting enzyme in glycogenolysis and thus is 
responsible for roughly 50 % of hepatic glucose output (HGO). Glycogenolysis is 
thought to be elevated in type 2 diabetes and several publications have described 
GPi as a promising therapeutic strategy for type 2 diabetes (Martin et al. 1998; 
Baker et al. 2005; Torres et al. 2011). The general approach to describe the pertinent 
physiology is to start with a “core” model of fundamental mechanisms that have 
been well characterized clinically. An example of such a systems or physiological 
model that would enable evaluation of various targets of glucose regulation is pre-
sented in Fig. 5.7.

As illustrated in Fig. 5.7, glucose enters the blood from the gastrointestinal tract 
following a meal (SGLT-1 transporter mediated absorption) or through hepatic glu-
cose production (via G6Pase enzyme). The regulation of HGO has been well char-
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acterized, which can be completely suppressed by high glucose, high insulin, or 
low glucagon levels. Conversely, low glucose, low insulin, or high glucagon can 
increase HGO by about fourfold. Glucose is utilized by major tissues of the body, 
most notably the brain, muscle, and abdominal organs (splanchnic tissue). The brain 
takes up glucose at a roughly constant rate via GLUT2 transporter. Muscle glucose 
uptake occurs via GLUT4 and GLUT1 transporters. Splanchnic glucose uptake is 
thought to be glucose dependent (via GLUT2 transporter). Finally, glucose is fil-
tered, and then reabsorbed at the kidney via SGLT-1 and SGLT-2 transporters. How-
ever, the reabsorption process begins to saturate when glucose rises above 180 mg/
dl resulting in urinary glucose excretion.

This core model of glucose regulation is coupled to simple models of insulin and 
glucagon dynamics. Insulin secretion is driven largely by plasma glucose levels and 
incretin hormones (GLP-1, GIP, etc.). It should also be noted that insulin is secreted 
directly into the liver via the portal vein where about 50 % is cleared on first pass 
through the liver. Thus, hepatic insulin levels are roughly twice as high as plasma 
levels. Muscle insulin levels are similar to plasma, but there is a time delay required 
for insulin to diffuse through the tight capillary junctions. Glucagon is a counter-
regulation hormone that increases three- to fourfold during the development of hy-
poglycemia. A schematic of simple insulin model is represented in Fig. 5.8.

Baseline parameters for this mechanistic model of glucose and insulin dynam-
ics represent the estimated population mean value for healthy volunteers derived 
from a meta-analysis of public literature. Virtual patients with type 2 diabetes are 
created by incorporating a real-world distribution of insulin resistance (muscle and 
liver), and insulin secretory defects. As a specific example, if the therapy of interest 
targets liver, then the core model can be expanded to include target specific liver 
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physiology; in this case the glycogenolysis, glycogen synthesis, gluconeogenesis, 
and glycolysis (Fig. 5.9).

Available data suggest that glycogenolysis and gluconeogenesis contribute 
roughly equally to total HGO. Glucose, insulin, glucagon and carbohydrate metabo-
lites (represented in this model by G6Pase process) all contribute to the regulation 
of glycogenolysis and glycogen synthesis. Glycolysis is thought to be a substrate 
driven process while gluconeogenesis is thought to be roughly constant throughout 
the day. However, gluconeogenesis has been shown to increase during prolonged 
fast and has been linked to glycogenolysis via hepatic auto-regulation.

After representing the physiology mechanistically, the next step is to link the 
drug effect to a PK/PD model. For representative purpose, we can assume the new 
drug (GPi) exhibits a 100 % inhibition of GP for the entire 24-h interval in a typical 
patient. The maximally effective GPi is projected to have a dramatic effect on gly-
cogenolysis (and thus HGO) overnight, but minimal impact during the day (as gly-
cogenolysis is highly inhibited by postprandial glucose and insulin excursions). As 
a result, GPi is projected to display impressive glucose lowering overnight but little 
to no effect during the day (Fig. 5.10). Overall, chronic dosing with a maximally 
effective GPi is projected to result in noncompetitive HbA1c reductions (Fig. 5.10).

In addition to limited efficacy, chronic GPi therapy may be associated with meta-
bolic adverse events. Following an acute dose, glycogen accumulates during the 
day but does not decrease overnight. Thus, following multiple doses, liver glycogen 
levels will likely increase to a point where they inhibit glycogen synthesis. At this 
point, the glucose that is normally converted to glycogen will be redirected to either 
lactate (risk of lactic-acidosis) or be converted to triglyceride via de novo lipogen-
esis (risk of hepatic steatosis). These pathways also suggest that GPi may not com-
bine well with metformin (inhibition of gluconeogenesis may exacerbate lactate 
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or triglyceride change) or sulfonylureas (GPi may impede the counter-regulatory 
response to hypoglycemia). Since these drugs are the two most commonly pre-
scribed diabetes therapies, there is a chance that GPi therapy may be limited to a 
small subset of the diabetes population.

Overall, this analysis, together with expert knowledge of metabolism and physi-
ology, illustrated using a systems pharmacology model of diabetes, suggests that 
GPi would be unlikely to become a viable therapy for type 2 diabetes. Thus, detailed 
mechanistic modeling, although tedious and resource intensive, provides a rigorous 
methodology for integrating our present knowledge of human pathophysiology and 
extrapolating to expected clinical outcomes. While the predictions using such com-
plex models may not always have high predictive accuracy, making decisions based 
on a rigorous analysis of the available data, informed by expert knowledge, is likely 
to be more effective, and less costly in the long run, than a trial-and-error method 
of discovery. In addition, mechanistic models can identify key knowledge gaps for 
strategic expansion of our knowledge.

As described in this case study, mechanistic modeling can effectively inform 
both efficacy and safety aspects of therapeutic interventions. Lesko et al. (2013) 
described how systems approaches can be leveraged for understanding adverse drug 
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events and ability to predict them, thus taking a step towards personalized medicine 
by enabling better identification of risk factors for an individual or subgroup.

5.6  Applications of Drug–Disease Models

The drug–disease models and the associated simulations that include parameter un-
certainty and variability are powerful tools in decision-making in drug discovery 
and development. After the drug–disease models are developed based on accruing 
experimental data and informed by expert knowledge, simulations are performed 
to explore alternative or expanded scenarios of patient populations, clinical trial 
designs or disease outcome. The common questions or what-if scenarios that can 
be addressed through model-based analysis or simulations in diabetes R&D may 
include:

• What is the predicted efficacy in patients based on in vitro or animal data?
• What is the appropriate biomarker of pharmacology, based on variability, sensi-

tivity, and time course of response?
• What is the power or sample size of the study to detect a target response (differ-

ence from placebo at endpoint) for a specific biomarker or mechanism of action?
• What is the minimum study duration to demonstrate the target response?
• What is the dose to differentiate or achieve superiority to placebo?
• What is the dose to demonstrate competitive or target response to marketed com-

parators?
• What is the probability of demonstrating superiority to marketed comparator at 

the selected dose?
• Are there subpopulations of responders or nonresponders based on the mecha-

nism of action (for efficacy or safety)?
• What is a clinically relevant drug–drug interaction or food effect?

An example application of patient response simulation was illustrated previously 
using a systems pharmacology model to support compound “go/no-go” decision. 
Example applications of trial simulations to support design optimization have been 
extensively published (Chien and Sinha 2010; Zhang et al. 2013). Figure 5.11 
shows a conceptual example of application of modeling and simulation to support 
optimum dose selection.

Based on Fig. 5.11, Table 5.1 shows the probability of each dose meeting the 
predefined target criteria (superiority to comparator). The dose selected to advance 
to phase 3 confirmatory trial was selected based on a combination of high probabil-
ity of competitive success and low probability of safety risk (e.g., cardiovascular or 
dose-limiting adverse events).

Pharmacometricians have been developing drug–disease models of diabetes to 
facilitate “rational target selection.” This is akin to “rational drug design” where 
high throughput trial-and-error methods for identifying chemicals that bind to re-
ceptors or enzymes have been replaced with methods that use knowledge of target 
structure to build ideal inhibitors or activators. For target selection, the current strat-
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egy is to replace trial-and-error methods of testing all reasonable targets preclini-
cally (and many clinically) with an approach that leverages our knowledge of inte-
grated human physiology, and strategically expand our knowledge of physiology, 
to identify therapeutic strategies that have a higher probability of success. A central 
part of this approach is mathematical models of human physiology. These ideas can 
be expanded to include the identification of optimal combination therapy, responder 
populations, and even personalized medicine (rational drug development). Philo-

Table 5.1  An example statistical analysis output of simulated trial responses
Druga Predicted HbA1c change from 

baseline at 12 months (%)
Probability of meeting efficacy 
target against comparator

Placebo (studied) − 0.08 0.0
Comparator (simulated) − 0.88 NA
Dose 1 (simulated) − 0.26 0.01

Dose 2 (studied) − 0.45 0.2

Dose 3 (simulated) − 0.61 0.38
Dose 4 (studied) − 0.87 0.62
Dose 6 (simulated)b − 1.25 0.87
Dose 7 (studied) − 1.5 0.99
Dose 8 (simulated) − 1.9 0.99

HbA1c glycosylated hemoglobin
a Indicates if the drug or dose was included in the previous study that generated the data for the 
model building (studied) or was included only in the simulation exercise (simulated)
b Indicates the dose that would be selected for phase 3 confirmatory trial and marketing
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sophically, this approach represents a shift from “discovery” to “design.” Ultimate-
ly, the model-based approaches, through the use of predictive biomarkers, basic 
science and expert disease knowledge, aim to improve the efficiency and the quality 
of decision-making in selecting the right targets, drug candidates, dosing range and 
regimens, optimal clinical trial designs, and a more efficient, more cost-effective 
development programs with high probabilities of success in drug discovery and 
development for the treatment and management of diabetes and its comorbidities.

5.7  Key Highlights of the Chapter

• Diabetes is a chronic progressive disease with robust quantitative biomarkers 
and well understood regulatory/counter-regulatory processes.

• Drug–disease models of varying degrees of complexity can be employed to de-
scribe fast biomarkers, slow biomarkers and clinical outcomes with high predic-
tive ability at different stages of drug development.

• Antidiabetic therapies target specific pathways, thus enabling application of 
mechanistic systems pharmacology models to inform novel therapies.

• Drug–disease models can effectively inform both efficacy and safety aspects of 
therapeutic interventions.

• Development of drug–disease models should start early in the development pro-
gram to answer key questions or address uncertainties from early discovery to 
clinical development in the evaluation of a novel therapy.
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