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15.1  Introduction

Alzheimer’s disease (AD) affects 35 million patients worldwide, with an expected 
increase to 150 million within the next generation (World Alzheimer’s Report 2010; 
Schneider and Sano 2009).

Recent late phase failures for candidate drugs for AD highlights the importance 
of developing more informative tools to increase the efficiency of the decision-
making process (Schneider and Sano 2009). Currently available evidence suggests 
the initiating event in AD is related to abnormal processing of beta-amyloid (Abeta) 
peptide, ultimately leading to the formation of Abeta plaques in the brain. Jack 
et al. have proposed an overarching model that relates disease stage to AD biomark-
ers in which Abeta biomarkers become abnormal first, before neurodegenerative 
biomarkers and cognitive symptoms, and neurodegenerative biomarkers become 
abnormal later, and correlate with clinical symptom severity. This process can begin 
decades prior to any clinical signs of diminished cognition.

Ideally, a quantitative understanding of the time course of disease  progression 
(cognitive and functional deterioration), and the relevant sources of variability 
would be the most useful for drug development. While the ability to detect and 
analyze biomarkers in the cerebrospinal fluid (CSF) related to Abeta and Tau have 
emerged over the past decade, limited longitudinal data are yet available to com-
pletely quantify each of the curves above. In addition, the ability of these  biomarkers 
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(Abeta, Tau, and brain structure) to translate into clinical outcome has not yet been 
determined. Attempts at meta-analytics for these endpoints are further hampered 
by factors such as interlaboratory assay and imaging algorithm differences. On the 
other hand, a wealth of information is available for the clinical manifestations, es-
pecially memory or cognition. As such, the majority of work involving clinical trial 
simulation (CTS) on AD has involved the primary clinical outcomes typically mea-
sured in these studies—function and cognition. While various tests have been used 
to measure functional changes across clinical studies, the Alzheimer’s disease as-
sessment scale cognitive sub-scale (ADAS-cog) has been used almost universally in 
trials of mild and moderate AD patients to measure changes in cognition. As a result, 
the majority of CTS activities in AD have focused on variants of the ADAS-cog.

Assumptions about disease progression and the time-variant effects of placebo 
and existing drug treatments for AD form the basis for various decisions made in AD 
drug development, including decisions relating to trial design and analysis (Rogers 
et al. 2012). While ad hoc synthesis of estimates from a small number of trials can, 
in some cases, form sufficient evidence base for such assumptions, it is a generally 
a more informative and objective approach to concisely summarize all available 
and relevant data with the aid of a meta-analytic model (Rogers et al. 2012). Such 
a meta-analytic synthesis is particularly relevant in AD, where extensive historical 
data are available (Romero et al. 2009, 2011; Sheiner 1997). Moreover, models may 
be used to interpolate expected results and to simulate data under conditions that 
have not been previously studied, e.g., when sampling at different time points or 
when enrolling patients with a different set of covariates (Rogers et al. 2012). Such 
approaches also allow the incorporation of different sequences of active treatment 
and placebo (like staggered start or delayed withdrawal designs), while accounting 
for residual effects for both active treatment and placebo (Rogers et al. 2012; Hol-
ford and Peace 1992).

Standard statistical analysis methods (ANOVA, ANCOVA) are typically used 
for the predefined primary analysis of the results of the active treatment and control 
arms at the end of the randomized phase of trials in AD (Holford and Peace 1992). 
These approaches are also used for post-hoc subgroup analyses (mild vs. moderate 
ApoE4, carrier vs. noncarrier, background therapy vs. no background therapy, etc.) 
following large late-stage failed trials. In many cases these post-hoc analyses have 
lead to further development activities in these subgroups, often resulting in further 
failures. In addition to its role in CTS, a meta-analytic model can provide a useful 
informed prior consent when attempting to understand such post-hoc analyses.

This chapter describes relevant efforts in modeling and simulation-utilizing 
drug-disease-trial (DDT) models in AD (Gobburu and Lesko 2009), focusing on 
cognition. This includes data considerations and descriptions of relevant public data 
sources available for AD model developers. It includes a brief description of previ-
ous work in the field, along with a description of common elements contained with-
in DDT models currently used for CTS in AD. Examples of applications for study 
planning and study interpretation among other potential uses are also included. It 
concludes with a look at potential future applications of CTS in AD and areas for 
growth.
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15.2  Data Considerations

The data used to aid in the design of a clinical trial can come from a variety of 
sources. A team may use past and recent literature to inform them about expected 
treatment effects and current study designs in use. They may have patient-level 
data in their organization that informs them about expected intrasubject variability, 
intersubject variability, and interoccasion variability (Milligan et al. 2013). They 
often have past clinical trial experiences that they draw from (which varies between 
individuals). The team designing a clinical trial will attempt to implicitly integrate 
all of this information to form conclusions about what design is likely to be the best 
for the stage of development and the compound in question. The broader the data 
source(s) used with respect to patient types, study durations and designs, and patient 
inclusion/exclusion criteria, the more “rugged” the final model is likely to be.

Standardized quality data sources remain a significant hurdle to developing and 
implementing a longitudinal DDT model (Romero et al. 2009, 2011). Often, when 
pooling across different data sources (different studies, different programs, differ-
ent sponsor), a significant amount of effort and resources are required to ensure that 
common standards for data collection and scoring have been adhered to (Romero 
et al. 2009, 2011). Small changes in something as simple as how missing scores are 
handled can lead to increased noise within the dataset. Often, an arduous remapping 
process may need to occur (if item level data are available). In addition, standards 
between analysts are likely to differ, making it nearly impossible to merge addi-
tional relevant datasets, without another lengthy remapping process.

In an ideal scenario, data standards would be applied a priori so that data are 
collected, scored, and recorded in a standardized form. The field of drug develop-
ment for AD is at the forefront, being the first to have generated therapeutic area 
standards in this area, in a form accepted by FDA (Romero et al. 2009, 2011).

15.2.1  Relevant Data Sources for Modeling and Simulation  
in AD

Researchers aiming to develop a quantitative understanding of AD disease progres-
sion and drug effects, often start with data within their own organizations, or other pro-
prietary data that have been made available to them. Often, however, they find that the 
data they have are limited in one or more ways, such as by limited numbers in subsets 
of interest (disease severity, genotype, biomarker classification). Generally, develop-
ers will utilize one or more of the number of large available data sources in AD, which 
may provide robust information to inform the different components of the DDT.

15.2.1.1  Literature Data

In the field of AD, a wealth of literature data from many different clinical trials and 
observational studies are readily available that can contribute to the development of 
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quantitative modeling and simulation tools. While limited in its value for determin-
ing impact of individual patient covariates of disease or drug effects, it can provide 
valuable estimates of drug effects (size, onset, offset), disease progression within a 
trial, etc.

15.2.1.2  ADNI Studies

The longitudinal Alzheimer’s Disease Neuroimaging Initiative (ADNI; http://www.
adni-info.org/) was launched in 2003 by the National Institute on Aging (NIA), 
the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the US 
Food and Drug Administration (FDA), private pharmaceutical companies, and non-
profit organizations, initially as a 5-year public–private partnership (Weiner et al. 
2012). Since 2005, the longitudinal ADNI has been validating the use of biomarkers 
including blood tests, tests of CSF, and magnetic resonance imaging–positron emis-
sion tomography (MRI–PET) imaging for AD clinical trials and diagnosis. Now 
in its third phase (ADNI, ADNI GO, and ADNI 2), ADNI 2 is studying the rate 
of change of cognition, function, brain structure, and biomarkers in 150 elderly 
controls, 450 subjects with mild cognitive impairment (MCI), 150 with mild-to-
moderate AD, and a new group of 100 people with significant, yet subtle, memory 
complaints, referred to as the significant memory concern cohort. It has also added 
whole genome sequences (WGS) for 809 ADNI participants. Similar studies have 
also been launched in other regions, such as Japan (J_ADNI). As such, the ADNI 
study series will continue to be a rich and complete source of data on the natural 
history of AD at various stages.

15.2.1.3  The Coalition Against Major Diseases Database

Coalition Against Major Diseases (CAMD) is a formal consortium of pharmaceuti-
cal companies, research foundations, and patient advocacy/voluntary health asso-
ciations, with advisors from government research and regulatory agencies includ-
ing the FDA, the European Medicines Agency (EMA), the National Institute of 
Neurological Disorders and Stroke (NINDS), and the NIA. The CAMD is led and 
managed by the nonprofit Critical Path Institute (C-Path), which is funded by a 
cooperative agreement with the FDA (Romero et al. 2009, 2011).

The CAMD database represents patient-level data from the control arms from 
phase II and III clinical trials in patients with MCI as well as mild and moderate Al-
zheimer’s dementia. As of September 2014, the CAMD database represents >6500 
individual patients. Access to this database can be requested at www.codr.c-path.org. 
It is a rich source of control-arm data for the model developer.

In addition, CAMD partnered with the Clinical Data Interchange Standards Con-
sortium (CDISC) to develop a standard for data collection in CDISC form. This 
AD standard represents the first-ever therapeutic area standards in CIDSC form. 
The intended advantage of such a standard is that it not only serves the purpose of 

http://www.adni-info.org/
http://www.adni-info.org/
www.codr.c-path.org
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integrating data from legacy clinical trials but it is also suited for prospective data 
collection in new trials, foreseeing the coming FDA requirement for data to be in 
CDISC standard form by 2017.

15.3  Summary of Disease Progression Models  
for ADAS-cog to Date

15.3.1  Historical Progression of AD Models

Various disease progression models for clinical outcomes in AD have been pub-
lished (Holford and Peace 1992; Chan and Holford 2001) and the methods utilized 
in early publications laid the groundwork for future modeling work (Mould et al. 
2007). Newer work provides further improvement and increased complexity and 
continues to build on past researchers findings, but incorporates newer, broader data 
types and sources, and utilizes new modeling methodologies resulting in an evolu-
tion of models over time (Table 15.1).

Early models were based on a limited number of trials of short duration used 
to evaluate symptomatic agents and did not contain newer key data types such as 
genotype and biomarker information, now known to be important covariates in un-
derstanding the rate of disease progression (Atchison et al. 2007). Later models 
described utilizing a variety of data types including summary level data from litera-
ture sources, data directly from one or more of a related series of controlled clinical 
trials, or noninterventional natural history studies. Rogers et al. have attempted to 
integrate all these sources in one analysis.

Historical models primarily described AD disease progression as linear, which 
was sufficient for simulation of trials of the shorter durations used for the develop-
ment of symptomatic agents. The Ito literature model identified that the severity 
of the disease itself influenced the slope, and thus the slope changed over time (in-
troducing nonlinearity). More recent models have directly incorporated nonlinear 
relationships to describe the course of disease over time.

In addition, these models lacked certain structural features that would improve 
their use for CTS, such as constraining the limits of the ADAS-cog (0–70), and 
allowing for variance components to change over time (an essential feature if the 
model is to be used for CTS of disease progression for AD).

The models described in the literature also improved with respect to all the com-
ponents typically required for a DDT model. A DDT model that includes all these 
components would require underlying data that can inform each of the various trial 
components in the model. For example, natural history data to inform underlying 
disease progression, placebo arm data to inform about magnitude, onset and offset 
of placebo response in controlled clinical trials, estimates of various drug effects 
(magnitude, time to onset, and durability), rate and magnitude of dropouts in the 
trials, and a rich source of covariates for model building. Over time, more and more 
of these components have been added in.

A brief description of more recent work is provided below.



456 B. Corrigan et al.

Model Drug effect 
component

Trial 
components

Data source Covariates Linearity

Holford and 
Peace 1992

Yes Varied Individual 
studies 
(tacrine)

Varied Linear

Ito et al. 2010 Yes (symp-
tomatic agents 
estimated)

Placebo 
(onset and 
magnitude)

All controlled 
studies in 
the literature 
1990–2008

Baseline 
severity

Linear (nonlin-
earity introduced 
by baseline 
covariates)

Ito et al. 2011 No (NA) No (NA) ADNI (nor-
mal, MCI, 
mild AD)

Baseline sever-
ity, age, ApoE4 
genotype, and 
sex

Linear (nonlin-
earity introduced 
by baseline 
covariates); fits 
normal MCI and 
mild AD

Samtani et al. 
2013

No (NA) No (NA) ADNI mild 
AD

Disease onset, 
hippocampal 
volume and 
ventricular 
volume, age, 
total choles-
terol, ApoE 
ε4 genotype, 
trail-making 
test (part B) 
score

Nonlinear; fits 
mild AD

William-
Faltaos et al. 
2013

No Dropout No 
placebo

Covariates 
influencing 
the intercept 
were baseline 
ADAS-cog 
score (did not 
use data prior 
to 4 months) 
and baseline 
MMSE score; 
no covariates 
influenced 
the disease 
progression 
slope

Nonlinear (log 
transform not 
suitable for 
whole range 
of ADAS-cog 
scores of 0–70)

Rogers et al. 
2012

Yes Placebo 
dropout

Literature 
CAMD ADNI

Baseline 
MMSE; 
disease pro-
gression time 
ApoE4 status, 
age, gender; 
dropout time, 
baseline age, 
baseline 
MMSE

Nonlinear

MMSE mini-mental state examination

Table 15.1  Relevant previous disease progression models for clinical outcomes in AD 
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15.3.2  Model-Based AD Literature Meta-Analyses

15.3.2.1  Ito (2010)

Ito et al. (2010) applied a model-based meta-analysis to summary level data avail-
able in the literature to quantify the dependence of rates of progression on base-
line ADAS-cog scores. In this analysis, a systematic literature review from 1990 to 
2008 for all available AChE inhibitor studies as well as clinical studies that evalu-
ated the rate of deterioration in AD patients was conducted. From 52 trials, which 
represented approximately 19,992 patients and more than 84,000 individual ob-
servations, a total of 576 mean ADAS-cog change-from-baseline data points were 
collected. Based on the data available from these articles, a model was developed 
to describe the longitudinal response in ADAS-cog (change from baseline) in mild-
to-moderate severity AD patients. The model described the rate of disease progres-
sion, the placebo effect observed, and the symptomatic effect of AChE inhibitors. 
Baseline ADAS-cog, mini-mental state examination (MMSE), age, and publication 
year were tested as covariates.

Ito’s model reports that disease progression in mild-to-moderate AD patients 
across all available and relevant literature sources was estimated at 5.5 ADAS-cog 
units per year. An Emax-type model best described the symptomatic drug effect 
for AChE inhibitors. The rate of disease progression (underlying disease progres-
sion) was not different between placebo and AChE-inhibitor-treated groups. Unlike 
previous modeling work, which did not include covariates, Ito’s model identified 
baseline ADAS-cog as significant covariate on disease progression. Baseline age 
was also tested as a covariate on the rate of disease progression but the model was 
not able to describe any effect, likely due to the narrow distribution of mean age 
(literature-level analysis). There was no significant impact of publication year in 
the model.

The literature-based meta-analyses provided a useful and complete integration of 
the estimated natural history of AD and provided estimates of treatment effects for 
currently available AChE-inhibitor therapies. However, due to the nature of the lit-
erature data in that it is only study-level summary data; the model had limited abil-
ity to evaluate important individual covariates, such as age and ApoE4 genotype. 
Also, the meta-analysis model from the literature using study-level data neither 
provides intersubject variability information nor includes components for increas-
ing variance over time.

15.3.3  Patient-Level Models

15.3.3.1  Ito ADNI Model (2011)

In 2011, Ito et al. published a patient-level model-based meta-analysis to describe 
the longitudinal response in ADAS-cog obtained from the ADNI (Ito et al. 2011). 
The model was fit to the longitudinal ADAS-cog scores from 889 patients. Risk 
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factors (age, ApoE4 genotype, sex, family history of AD, and years of education) 
and baseline severity were tested as covariates. Results indicated that rate of disease 
progression increased with baseline severity. Age, ApoE4 genotype, and sex were 
identified as potential covariates influencing disease progression. The rate of dis-
ease progression as described by the ADAS-cog in mild-to-moderate AD patients 
was estimated at approximately 5.5 ADAS-cog units/year, similar to that reported 
using literature-based analyses.

The authors concluded that a linear disease progression model adequately de-
scribed the natural decline of ADAS-cog observed in ADNI over 2–3 years within 
the individual patients. Baseline severity, which is incorporated into the model to 
explain the nonlinearity of the disease progression, is an important covariate to 
predict a curvilinear rate of disease progression in normal elderly, mild MCI and 
patients with Alzheimer’s dementia. Age, ApoE4 genotype, and sex also influenced 
the rate of disease progression.

15.3.3.2  Samtani ADNI Model (2012)

The objective of the Samtani et al. analysis was to develop a semimechanistic non-
linear disease progression model from the ADNI study, but that used an expanded 
set of covariates that captured the longitudinal change of ADAS-cog scores (Sam-
tani et al. 2012). The model described the rate of progression and baseline disease 
severity as a function of influential covariates. The covariates that were tested fell 
into four categories: (1) imaging volumetric measures, (2) serum biomarkers, (3) 
demographic and genetic factors, and (4) baseline cognitive tests.

Covariates found to affect baseline disease status were years since disease onset, 
hippocampal volume, and ventricular volume. Disease progression rate in the mod-
el was influenced by age, total serum cholesterol, ApoE4 genotype, trail-making 
test (part B) score as well as current levels of cognitive impairment as measured by 
ADAS-cog. Rate of progression was slower for patients with mild and severe AD 
compared with moderate AD.

15.3.3.3  Faltaos Model (2013)

This research aimed to quantitatively describe the natural progression of AD based 
on ADAS-cog scores in patients with mild-to-moderate AD utilizing data from ten 
placebo-controlled clinical trials submitted to the FDA (> 2600 patients) with up to 
72 weeks of treatment (William-Faltaos et al. 2013). Different models describing the 
time course of ADAS-cog were evaluated. Patient characteristics potentially affect-
ing score changes were assessed. Patient-dropout patterns were characterized using 
parametric survival models. Covariate selection was performed to identify the risk 
factors associated with a higher dropout rate. In this case, the ADAS-cog time course 
in mild-to-moderate AD patients receiving placebo was described by a log-linear 
model, where the intercept represents the log-transformed ADAS-cog score at week 
10 , the slope is the disease progression (i.e., natural increase of ADAS-cog score) 
on the log scale. Covariates influencing the intercept were baseline ADAS-cog score 
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and baseline MMSE score. No covariates were identified that influenced the disease 
progression slope. A parametric log-normal model fit the dropout data best. Baseline 
ADAS-cog score and age were found to be significant predictors for dropout.

15.3.4  Integrative Meta-analytic Approaches

15.3.4.1  Rogers Model (2012)

This research aimed to incorporate many of the best elements of the models described 
above in a beta regression (BR) model (Rogers et al. 2012). The use of the BR con-
strained simulations to the 0–70 range of the ADAS-cog, even when residuals were 
incorporated. In addition, the model described the longitudinal progression of the 11 
item ADAS-cog in AD patients in both natural history and randomized clinical trial 
settings, utilizing both individual patient and summary level literature data. Patient 
data from the CAMD database (3223 patients), the ADNI study database (186 pa-
tients), and summary data from 73 literature references (representing 17,235 patients) 
were fit to a BR DDT model. Treatment effects for currently available acetyl cholin-
esterase inhibitors, longitudinal changes in disease severity, dropout rate, placebo ef-
fect, and factors influencing these parameters were estimated in the model. Based on 
predictive checks and external validation, the researchers concluded that an adequate 
BR meta-analysis model for ADAS-cog using both summary-level and patient-level 
data was developed. Baseline ADAS-cog was estimated from baseline MMSE score. 
Disease progression was found to be dependent on time, ApoE4 status, age, and gen-
der. Study dropout was a function of time, baseline age, and baseline MMSE.

The model allowed for simultaneous fitting of summary and patient-level data, 
allowing for integration of all information available. A further advantage of the BR 
model was that it constrained values to the range of the original instrument for sim-
ulation purposes, in contrast to methodologies that provide appropriate constraints 
only for conditional expectations.

15.4  Review of Structural Components for Models in AD

Table 15.2 lists the general basic components of a DDT model, as described by 
Gobburu and Lesko (2009).

15.4.1  Disease Model Components

Understanding both the placebo response and the natural underlying disease pro-
gression is crucial to designing and interpreting results from AD clinical trials, 
given that it is sometimes difficult to differentiate the placebo effect and underly-
ing disease progression in longitudinal studies, resulting in misinterpretation of the 
study results. Several authors have proposed that the placebo response be assumed 
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to consist of “underlying disease progression” and “placebo effect,” where “under-
lying disease progression” describes the natural history of the disease, and the “pla-
cebo effect” represents a temporal component, i.e., such as psychological effect, or 
any effect derived from the conduction of and participation in clinical trials.

Figure 15.1 illustrates the concept behind the longitudinal diseases progression 
model, where the overall observed placebo response in a trial (C) is simply the ad-
dition of the underlying disease progression (A) and placebo effect (B). Increase in 
ADAS-cog score indicates cognitive deterioration over time.

In general, the shape described above, is adequate to describe both data reported 
from the literature and from patient-level data collected in placebo-controlled clini-
cal trials, as shown in Fig. 15.2.

15.4.1.1  Natural Longitudinal Progression

In the case of natural history studies, such as ADNI, a placebo effect is not required, 
and the time course may be described by the underlying natural history of disease 
progression (Fig. 15.3).

Table 15.2  Basic components of disease-drug-trial modeling and simulation tools for drug 
development
Component Quantitative description
Disease model (1) Natural longitudinal progression, (2) rela-

tionship of biomarkers to outcome, (3) placebo 
effect within controlled trials

Trial model (1) Patient population (baseline disease sever-
ity, etc.), (2) patient dropout rate and factors 
impacting it, (3) therapeutic adherence

Drug model (1) Overall efficacy/effectiveness, (2) impact 
of patient characteristics on drug effect, (3) 
changes in drug effect(s) over time

8

(A)
undarlying disease
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Fig. 15.1  Concept of placebo 
response in a disease pro-
gression scenario. ADAS-
cog Alzheimer’s disease 
assessment scale cognitive 
sub-scale
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Historically, the progression rate has been modeled as a linear function. Although 
the data appear linear over a short duration, given the scale is finite, and that most 
AD patients reach the maximum as they become more severe (requiring the use of 
other measures such as the severe impairment battery) the data are better described 
by a sigmoid-like function restricted between 0 and 70 (the limits of the ADAS-cog 
score; Rogers et al. 2012; Samtani et al. 2012).

Recently, different researchers (Ito et al. 2010; Samtani et al., 2012; William-
Faltaos et al. 2013; Ashford and Schmitt 2001) have provided important insights 

Fig. 15.2  Observed placebo 
response for change from 
baseline Alzheimer’s disease 
assessment scale cognitive 
sub-scale ( ADAS-cog) from 
literature, 1990–2008. ( Top: 
all data with loess line and 
model prediction; bottom: 
CAMD studies; the blue line 
and gray-shaded area in the 
figure indicate a lowess fit 
line with 95 % confidential 
intervals)
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into the nonlinear progression of AD. Ito et al. (2010) analyzed the ADNI data using 
a linear AD progression model based on a population-based mixed effects approach 
(with a function to introduce nonlinearity based on baseline severity), Ashford and 
Schmitt (2001) applied a logistic model to characterize disease progression, while 
Samtani et al. (2012) developed a nonlinear mixed effects model. Samtani et al. 
(2012) proposed a logit function that restricts the ADAS-cog scores to the test’s in-
trinsic range of 0–70 points. Samtani’s models were in turn captured using a Bayes-
ian meta-analytic approach by Rogers et al. (2012) thus giving a comprehensive 
aggregation of literature- and patient-based knowledge.

In essence, the disease progression function proposed by Samtani et al. (2012) 
and Ito et al. (2010) has been integrated by Rogers et al. (2012), and can be de-
scribed as the following logit function:

Relevant covariates that affect the “intercept” ( ηpk) that have been identified by 
different authors include: baseline disease severity as expressed by ADAS-cog or 
MMSE, baseline age, and age of onset of disease (which is usually derived from 
arguably unreliable data from dates of first diagnosis). ADASipk denote the observed 
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ADAS-cog score on the ith occasion in the pth patient in the kth study. In turn, tipk 
represents the time of the observation relative to the randomization time for that 
given patient.

In line with current thinking regarding AD pathophysiology, covariates identi-
fied by several authors as affecting the rate of progression αpk have included ApoE4 
genotype, total blood cholesterol, baseline age, gender, and baseline disease sever-
ity (baseline ADAS-cog or baseline MMSE).

15.4.1.2  Placebo Function Components

The onset, offset, and overall extent of placebo effect has been successfully esti-
mated and described in the past by the use of a first order appearance (onset) and 
a first order disappearance (offset) constant, commonly known as a Bateman-type 
function (Holford and Peace 1992; Ito et al. 2010):

where βp is a factor defining the magnitude of the placebo effect, Kelp is the rate 
constant for the offset rate of the placebo effect, and Keqp is the rate constant for the 
onset rate of the placebo effect.

15.4.2  Drug Model Components

The selection of drug model components and the underlying assumptions around it 
are highly dependent on the proposed use of the model, the mechanism(s) postu-
lated, and information available on the compound(s) of interest. In the past, models 
have attempted to describe either symptomatic effects or disease-modifying effects.

15.4.2.1  Symptomatic Effect

Agents thought to have “pure symptomatic” effects can be expressed as a shift in the 
overall disease progression curve, without a change in the rate (slope) of progres-
sion (Holford and Peace 1992; Samtani et al. 2012; Bhattaram et al. 2009). Esti-
mates for magnitude, onset and offset of these symptomatic effects can be estimated 
from data available for currently approved drugs, or from proprietary data.

It has been proposed that Emax-type models adequately describe the symptom-
atic drug effect for cholinesterase inhibitors, which are the main currently available 
symptomatic treatments for AD. For example, Ito et al. (2010, 2013) proposed the 
following expression:
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where Dipk represents the dose administered to a given patient at a given occasion 
in a given trial, EΔ,d(  p) denotes the maximum symptomatic effect at a given dose for 
a given patient, and ET50,d(  p) expresses the time at which 50 % of the maximum 
symptomatic effect is achieved for a given patient at a given dose.

15.4.2.2  Disease-Modifying Effect

Agents thought to have “pure disease-modifying” effects can be expressed as a 
change in the rate of progression ( αpk in the model defined above) without a shift in 
the overall disease progression curve (Holford and Peace 1992; Samtani et al. 2012; 
Bhattaram et al. 2009). Currently, there are no FDA-approved disease-modifying 
treatments, which constitute a limitation in terms of available data for modeling 
purposes.

As mentioned previously, covariates identified by several authors as affecting the 
rate of progression have included ApoE4 genotype, total blood cholesterol, baseline 
age, gender, and baseline disease severity (baseline ADAS-cog or baseline MMSE). 
As such, it is possible to “enrich patient populations using these factors to observe 
a faster rate of progression, and theoretically, to observe a disease-modifying effect 
in a treatment arm more easily”. This has led researchers to propose the inclusion 
of proportional hazard functions to the rate of progression, in which a given percent 
modification (reduction) in the rate of progression could be incorporated into the 
disease progression function described before.

15.4.2.3  Dropout Component

Since the described modeling approaches aim at characterizing the complete data 
distribution, summary statistics based on direct simulation from the model would not 
correctly mimic the behavior of real summary statistics, as actual summary statistics 
usually are computed using incomplete data. Even in the unlikely scenario that the 
true missing data mechanism (MDM) is missing completely at random (MCAR), 
the real summary means will be based on fewer observations than their simulated 
counterparts, and the latter will therefore have standard errors that are unrealistically 
low. Accordingly, for the purpose of model validation, a MDM or “dropout model” 
is a reasonable component to be incorporated for simulation purposes.

Here, the work of William-Faltaos et al. (2013) constitutes an important exam-
ple. As explained before, these authors identified the Weibull distribution as the one 
that would most adequately characterize the evolution of the dropout hazard over 
time, and the two most important covariates for the dropout hazard were baseline 
age and baseline disease severity.

As implemented in the Rogers et al. work, the fitted dropout model utilizing 
these two covariates exhibited a high degree of agreement with the observed drop-
out rates, as seen in Fig. 15.4. The model adequately captures the dropout rate both 
by baseline MMSE and by age in these two plots.
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It is important to note that such a working model for the MDM is reasonable to 
employ for the purpose of model validation. However, for the purpose of model 
fitting, researchers can assume less restrictive conditions that are required for ig-
norability of the missing data mechanism, implying that posterior distribution for 
parameters describing the complete data distribution may be computed using the 
observed response and covariates.

A fully realistic MDM would be fairly complex and correspondingly would re-
quire substantial justification. Moreover, since the true MDM is never known, the 
issue cannot be adequately addressed without considering several MDMs, including 

Fig. 15.4  Plot of probability 
(dropout) over time by base-
line age ( upper panel) and 
baseline mini-mental state 
examination ( BMMSE, lower 
panel). ( Solid line represents 
Kaplan–Meier (nonpara-
metric) estimates based on 
observed data; dashed line 
represents model prediction; 
grey region represents 90 % 
credible interval for model 
prediction)
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various combinations of missingness related to tolerability, missingness related to 
lack of efficacy, and missingness associated with disease state. While this full treat-
ment would be a desirable research project, currently available work is only able 
to propose a plausible “working hypothesis” MDM based on observed associations 
between baseline covariates and dropout.

15.4.3  Meta-analytic Integration of Literature  
and Patient-Level Data

As explained before, there are a number of relevant databases for modeling and sim-
ulation in AD, which represent patient-level and study-level data from both obser-
vational studies and clinical trials. These can be combined with additional patient-
level data from active treatment arms that may be available to specific researchers. 
However, the amount of data available from the scientific literature should not be 
ignored (especially when trying to incorporate drug effects into models). In order 
to adequately integrate those patient-level data with summary-level information, 
Gillespie et al. (2009) have proposed a Bayesian implementation, which allows a 
probabilistically correct synthesis of literature meta-data with patient-level data. 
Additional contributions have also been made by Rogers et al. (2012), in terms of 
applying β-distributed residuals in conjunction with a generalized logistic function 
for expected disease progression (i.e., “BR”), with the defining feature of specify-
ing the residual scores for a given patient as following a β distribution. This results 
in a predictive distribution that falls entirely within the 0–70 range of the ADAS-
cog, which is a valuable feature for the purpose of simulating clinical trials.

Regarding the challenge of integrating patient-level and summary-level infor-
mation, Gillespie et al. (2009) propose that the summary-level data be modeled by 
directly specifying likelihoods based on approximate sampling distributions. As has 
been explained before, the model for individual ADAS-cog scores is nonlinear, and 
the exact sampling distributions for sample means are not available in analytical 
form. An elegant solution proposed by Rogers et al. (2012) concentrates on the ap-
proximate linearity of the logit function over the range of primary interest to derive 
the approximate distributions. These approximations can then be employed as the 
operational likelihoods.

15.5  Example Applications

15.5.1  Planning Prospective Trials

These models described previously have had varying degrees of applicability for 
CTSs, understanding CTS as a means of estimating relevant operating character-
istics for essentially any clinical trial design under any hypothesized parameter 
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configuration for the “true” effects of a drug. It may be used to assess how different 
trial design and drug factors affect trial performance. These factors may be control-
lable trial design properties, such as the doses studied, the sampling times, the op-
timal study duration and sampling times, and use of washouts (Gobburu and Lesko 
2009) or uncontrollable factors, such as the drug characteristics (pharmacokinetic 
or pharmacodynamics; Hennig et al. 2009). Other influencing factors may include 
the progression of disease over time or subject-specific characteristics that may be 
related to disease progression or treatment response.

15.5.1.1  “Super Symptomatic” Agents

“Super symptomatic drug effect” is conceptualized as superior clinical efficacy to 
currently available symptomatic therapies, either as stand-alone or as add-on ther-
apy. Such a super symptomatic drug profile is desired for new symptomatic drugs 
under development for AD.

As stand-alone therapy, the drug could achieve the super symptomatic effect either 
by having superior acute cognitive enhancement or by having acute symptomatic ben-
efit similar to marketed agents plus disease-stabilizing attributes. However, for com-
pounds with new mechanisms of action, it remains unclear which of these could occur.

Given the extremely high failure rate in neurodegenerative drug development pro-
grams, it is often the goal in early development to obtain an early and cost effective 
read of efficacy for compounds thought to be predominantly “symptomatic” agents. 
In this scenario, a crossover design may provide more to detect a difference rapidly, 
but would underestimate the total treatment effect relative to the longer parallel trial 
design typically used. 

Two drug profiles were studied under this scenario. In this study, the desired su-
per symptomatic drug effect was set as 3.5 points of ADAS-cog better than placebo 
at week 24. For the first drug profile, it was assumed that the drug had a superior 
symptomatic drug effect of 3.5 points on ADAS-cog at 24 weeks but similar drug 
onset compared to donepezil (thus, the first profile is Edrug,24week = 3.5 and ET50 = 1.62 
week). For the second drug profile, it was assumed that the drug had donepezil-like 
symptomatic effect ( Edrug,24week = 2.5) and a moderate disease-stabilizing effect (i.e., 
50 % decrease on slope). In both drug scenarios, true drug effect would be 3.5 points 
on ADAS-cogat 24 weeks, which is the desired effect for the super symptomatic 
treatment.

The objectives of early studies to advance drug candidates that are expected to 
have a super symptomatic profile are not only to test whether the drug is better than 
placebo but also to obtain certain confidence that the estimated drug effect would 
achieve the “target value.” Typically, this target value is defined by current standard 
of care, regulatory requirements or other thresholds for evidence of efficacy. The 
confidence level required is dependent on multiple factors, like the stage of drug 
development, the overall development plan and the medical need for the drug. The 
drug candidate in this scenario was considered to be at an early stage of develop-
ment, so the confidence requirement was not as high as that for a drug in later stages 
of development. Herein, we defined that we would need at least 25 % confidence 
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the drug is 3.5 points or more, better than placebo on the ADAS-cog scale after 
completion of the study in order to continue the drug as a potential super symptom-
atic treatment. Besides the 6-week crossover and 12-week parallel designs as de-
scribed above (a and b), a third candidate trial design was also evaluated, which was 
a two-arm parallel design (75 patients per arm) with 24 week treatment duration 
and assessments at weeks 0, 3, 6, 9, 12, and 24. The primary analysis is based on a 
linear mixed-effects model with random subject effect and fixed effects for baseline 
ADAS-cog, visit (nominal scale), treatment, and visit by treatment interaction, with 
drug effect formulated as the expected difference at week 24.

Figure 15.5 displays the average simulated results for a 6-week crossover design 
and a 12-week parallel design using a symptomatic drug that was similar to done-
pezil (2.5 points superior to placebo on ADAS-cog at week 24, ET50 of 1.62 week 
and washout half-life of 1 week). In the crossover design, under these assumptions, 
the treatment effect (difference between placebo and treatment) at the end of each 
6-week period is independent of the treatment period. Thus, in this context a cross-
over design has the potential to reduce the sample size while maintaining appropri-
ate power to demonstrate the drug benefit.

The simulation results showed that approximately 89 % power was achieved with 
30 patients per arm (60 patients in total) in a 6-week crossover study (Table 15.3). 
The power of a 12-week parallel design with 75 patients per arm (150 patients 
in total) was about 82 %. Meanwhile, as expected, the relative bias of the 6-week 
treatment in the crossover study (− 17.3 %) was higher than the 12-week parallel 
study (− 7.3 %), both of which would underestimate the true drug effect at week 24, 
given the achievement of a partial drug effect over the duration of the study. As also 
shown in Table 15.3, with a slower drug onset (e.g., ET50 of 3 weeks, two times that 
of donepezil), the power in a 6-week crossover study (81 %) still remained compa-
rable to a 12-week parallel study (79 %), although the difference of the relative bias 
for 6-week crossover study versus 12-week parallel study significantly increased. 

Fig. 15.5  Simulated 6-week crossover trials ( left panel) versus 12-week parallel trials ( right 
panel) for drugs with only symptomatic effects. ADAS-cog Alzheimer’s disease assessment scale 
cognitive sub-scale
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Depending on the primary goal of the study, the development team can use these 
results to determine the trade-off between the increase in bias and the gain in power. 
For example, when the objective of the study is to test if the drug has any effect 
rather than to measure the steady-state treatment effect, the crossover design would 
be favorable due to smaller sample size and higher power.

For super symptomatic drug scenarios, two different types of drug profiles, supe-
rior acute symptomatic drug effect ( Edrug,24week = 3.5) and acute symptomatic benefit 
plus disease-stabilizing drug effect (Edrug,24week = 2.5 plus 50 % decrease on slope) 
were assumed and studied. Three study designs of interest (6-week crossover, 12-
week parallel and 24-week parallel studies) were simulated and compared for each 
drug profile and the results are displayed in Table 15.4.

When a drug exhibited the desired super symptomatic efficacy (3.5 points at 
week 24) on ADAS-cog measures, the power to detect the drug effect was high 
regardless of the design (≥ 92 %) for the superior symptomatic drug profile and the 
symptomatic plus disease-stabilizing drug profile. However, as expected, the true 

Table 15.3  Comparison of relative bias and power for a 6-week crossover 12-week parallel study 
design

Design Relative bias (%) Power ( α = 0.05, 
two-sided)

Drug onset same as 
donepezil (ET50 = 1.62 
weeks)

6-week crossover 
( n = 30/arm)

− 17.1 0.89

12-week parallel 
( n = 75/arm)

− 7.9 0.81

Drug onset slower than 
donepezil (ET50 = 3 
weeks)

6-week crossover 
( n = 30/arm)

− 26.8 0.81

12-week parallel 
( n = 75/arm)

− 9.6 0.79

Table 15.4  Comparison of power to detect drug effect and to achieve target value for different 
study designs
Drug effect Study design Relative bias (%) Power to detect 

drug effect
( α = 0.05, 
two-sided)

Probability to 
achieve 25 % 
confidence ≥ 3.5

Superior acute 
symptomatic 
effect
( Edrug,24week = 3.5)

6-week crossover 
( n = 30/arm)

− 17.8 0.99 0.41

12-week parallel 
( n = 75/arm)

− 7.0 0.98 0.65

24-week parallel 
( n = 75/arm)

− 0.3 0.96 0.73

Acute symptom-
atic plus disease-
stabilizing effect
( Edrug,24week = 2.5 
and 50 % decrease 
on slope)

6-week crossover 
( n = 30/arm)

− 36.7 0.92 0.11

12-week parallel 
( n = 75/arm)

− 19.0 0.95 0.45

24-week parallel 
( n = 75/arm)

0.7 0.97 0.72
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drug effect at week 24 would be underestimated in both the 6-week crossover study 
and, to a lesser extent, the 12-week parallel study. The bias of drug effect estimates 
increased remarkably for drugs with acute symptomatic plus disease-stabilizing ef-
fects compared to a drug with only superior acute symptomatic effect (− 36.7 vs. 
− 17.8 % in 6-week crossover study and − 19.0 vs. − 7.0 % in 12-week parallel study, 
respectively).

The probability for a drug to achieve the target value (3.5 points with at least 
25 % confidence) in each study design is shown in Table 15.4. For a drug having 
superior acute symptomatic effect, the probability was 41 % in a 6-week crossover 
study and increased to 65 % in a 12-week parallel study while the probability was 
estimated as 73 % for a 24-week parallel study under the assumption that the true 
effect was 3.5 points at week 24. However, if a drug achieved the super symptom-
atic profile by having combined symptomatic and disease-stabilizing effects, the 
probability would be only 11 and 45 % in a 6-week crossover study and a 12-week 
parallel study, respectively. The probability remained the same (72 %) in a 24-week 
parallel trial since the true drug effect was still 3.5 points at week 24.

15.5.2  Retrospective Analyses

Given the high attrition, and often late stages of failure of compounds developed 
for AD, it is not surprising that following a negative trial a large number of post-
hoc analyses are completed to determine if a group of responders can be identified. 
Typically these post-hoc analyses are data cuts done by disease severity (very mild, 
mild, and moderate), ApoE4 genotype (carriers vs. noncarriers) CSF Abeta or Tau 
cuts, gender, age, etc. Given the number of analyses involved (often without correc-
tion for multiplicity), and the smaller sample sizes, the likelihood of a false positive 
being identified is high.

Alternatively, a small parallel design POC trial may yield positive results in a 
select group of study centers or patients, but the results are not replicated in larger, 
multinational trials in phase III. The question then becomes which study represents 
the true potential of the new agent?

15.5.2.1  Using Drug Models to Facilitate Interpretation of Study Results

Figure 15.6 (upper panel) shows results from two phase-II clinical trials for two 
different compounds (drug A and drug B) with similar inclusion criteria. In both 
cases, based on change from baseline, it appears as though a treatment effect was 
present as compared with the placebo group in each study. However, when these 
two clinical trial results are compared against the historical control data overlaid 
along with model predictions conditioned for baseline severity, it appears that the 
placebo response in the drug B trial was much worse than what would be pre-
dicted (Fig. 15.6, lower panel). Conversely, the treatment arm in trial B appears 
to be where the expected response for placebo usually falls. Given this result, and 
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without clear rationale for why a difference in placebo response would be observed, 
the clinical team concluded that the placebo response in the drug B study was not 
normal and needed more data to confirm the efficacy before taking further action 
(Ito et al. 2013).

15.5.2.2  Comparison of Phase II to Phase III Results

In this example, the treatment group from a 52-week, multi-center, placebo-con-
trolled, double-blind phase-II study demonstrated a significant effect in a phase-II 
study, followed by a 26-week, placebo-controlled, double-blind, multi-center,  global 

Fig. 15.6  Phase II clinical trial results from different drugs: change from baseline Alzheimer’s 
disease assessment scale cognitive sub-scale ( ADAS-cog, mean ± SE). Upper panels: The typi-
cal plot obtained after completion of the clincial trial, compared with the controlled placebo arm 
within the study. Lower panels: The same data above are overlaid with the historical data (litera-
ture) and its model prediction. (Reprinted from Ito et al. 2013, Copyright 2013, with permission 
from IOS Press)
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(including USA, Latin America, Europe, and Russia) phase-III study (Fig. 15.7, 
upper panel). The phase-III results appeared markedly different from the phase-II 
study, in the sense that there was no significant difference between the treatment 
and the placebo control groups. Unaided, by historical reference, the clinical team 
questioned the placebo response in the phase-III study, which appeared almost flat 
(Ito et al. 2013).

Phase-II and phase-III clinical trial results were then compared against the his-
torical control data and with model predictions conditioned for baseline severity. In 
this case, the placebo response in phase II and III could be quantitatively assessed 
against historical controls and was deemed well within the normal range; it was 
still within the 90 % prediction intervals when compared with historical placebo 

Fig. 15.7  Different results between phase-II and phase-III studies: change from baseline Alzheim-
er’s disease assessment scale cognitive sub-scale ( ADAS-cog, mean ± SE). (case study 2). Upper 
panels: The results obtained after completion of phase II ( left) and phase III ( right) studies com-
pared with the controlled placebo arm displayed with the range of the treatment duration (52 and 
26 weeks for phase II and III, respectively). Lower panels: The same data are overlaid with the 
historical data (literature) and its model prediction, using the same x- and y-axis range. The size of 
point is proportional to the number of patients in each treatment group. (Reprinted from Ito et al. 
2013, Copyright 2013, with permission from IOS Press)
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response and model prediction (Fig. 15.7, lower panel). It was revealed that the 
placebo responses in both phase II and phase III were reasonable, and it was the 
treatment group that appeared different, resulting in a failed phase-III trial. Note 
that symbol size (points) in Fig. 15.7 (lower panel) is proportional to the sample 
size of the study, i.e., bigger symbols indicate larger sample studies. This method 
is useful when visualizing information about the size of the study and comparing 
different studies, as is also seen in Fig. 15.6.

15.6  Discussion and Future Perspectives

15.6.1  Moving to Early AD: Selection and Modeling  
of Selective Subscores of the ADAS-cog

With the understanding that AD pathology and irreversible neuronal damage are 
present decades before presentation of clinical symptoms, researchers are moving 
to study disease-modifying agents in patients at a much earlier stage of the disease. 
The trade-off is that in these populations, it becomes harder to measure changes 
in cognition and function, as the magnitude of impairment and the overall rates of 
change in early AD are much slower.

Although some success has been noted in modeling longitudinal changes in cog-
nition in MCI and early AD populations with ADAS-cog, it is unlikely that the total 
ADAS-cog (designed for use in mild and moderate patients) will be sufficiently sen-
sitive to be used in these populations. Other measures have been proposed for early 
AD Huang et al. (2014), and yet other composites, containing ADAS-cog subscales 
sensitive in early AD, are under development. For example, using ADNI data, Sam-
tani et al. (2013) also identified the most informative cognitive measures from the 
ADAS-Cog and other available scales. Informative measures were identified based 
on standardized mean of 2-year change from baseline and were combined into novel 
composite endpoints. They assessed performance of the novel endpoints based on 
sample size requirements for a 2-year clinical trial. Further improvements were 
achieved by using cognitive-functional composites. Combining the novel compos-
ites with an enrichment strategy based on CSF beta-amyloid (A(1–42)) in a 2-year 
trial yielded gains in power of 20–40 % over ADAS-Cog 11, regardless of the novel 
measure considered.

15.6.2  Integrating Data Across the Entire AD Spectrum: 
the IRT Approach

As the number of tools designed for specific parts of the AD continuum continues 
to grow, the result is a further fragmentation of the tools used to capture the changes 
in the AD patient’s cognition over time, and likely the need to develop new longitu-
dinal DDT models when sufficient data becomes available.
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Ueckert et al. (2014) have proposed an alternative model-based framework that 
maximizes the precision gained from the existing ADAS-cog assessments in any 
AD population, utilizing an item response theory (IRT) model for the ADAS-cog 
assessment. In the framework of IRT, the questions of the ADAS-cog (or any other 
cognitive measurement instrument now or in the future) can be described through 
characteristic curves, which describe the probability to answer correctly given a 
certain cognitive disability. This in essence, allows mapping of other instruments 
to a common scale. Based on a prior assumption about the distribution of cognitive 
disability in the population and the characteristic curves of the questions, IRT deliv-
ers an estimate of the most likely cognitive disability given a patient’s response. By 
combining the entire knowledge gained from all questions (right or wrong; easy, 
hard, harder), a more precise estimate of the patients’ ability can be obtained than 
that which would be obtained from just the simple summing of all scores typically 
used.

Using this approach, Ueckert et al. determined the most sensitive test subsets in 
MCI and mild AD populations using Fisher information. The IRT-based framework 
would allow use and comparison of data from any cognitive instrument (present 
or future), to permit instrument-independent assessment of cognition of the patient 
over the entire span of the disease.

15.6.3  Future

The development of models for CTS in AD have evolved continuously, as the 
understanding of the disease improves, and as more sophisticated modeling tech-
niques become available. Complete DDT models require a variety of data types that 
support each of the components (natural progression, placebo effect, drug effects, 
dropouts, etc.). Obviously, no single study can provide all the relevant information 
for all components at once. This means that the integration of disparate data sources 
becomes key. Normally, literature knowledge, public access data (CAMD, ADNI), 
and data within one’s own organization inform decision making in drug develop-
ment. Rogers et al. (2012) attempted to integrate all these relevant data sources to 
inform each component.

While it may be that newer models have made incremental improvements in de-
scribing longitudinal changes over a longer duration, added trial execution compo-
nents, such as dropout, lengthened the duration for which simulations can be com-
pleted; the key structural elements and idea behind the work remain similar in all 
the work reported here. At some point it may be beneficial for the field to adopt one 
common background model to move forward as a community. CAMD, FDA, and 
EMA have come together to evaluate the work of Rogers et al. as such a common 
background model. This CTS tool was put by CAMD through the first regulatory 
review process of this kind for modeling and simulation tools. As of June 12, 2013, 
FDA issued a regulatory letter to CAMD, regarding the Agency’s decision to deem 
this proposed clinical trial simulator as a “fit-for-purpose” drug development tool for 
AD. In the Agency’s opinion, this tool will assist sponsors in optimizing clinical trial 
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designs for AD therapies. As the first ever stand-alone CTS tool to receive a regula-
tory decision, this tool represents a milestone in the effort to improve the efficiency 
and success of future clinical trials by integrating knowledge gained from earlier 
studies. Moreover, since it was developed through a partnership involving multiple 
pharmaceutical companies, regulatory agencies, patient groups, academia, and re-
search organizations, the tool demonstrates that stakeholders can come together pre-
competitively to develop tools that will benefit the entire field. In issuing a positive 
regulatory decision for the CAMD AD CTS tool, the FDA stated that the model can 
now be used to aid in the selection of clinical trial design features for mild-to-mod-
erate AD, and that the use of this tool can facilitate the review of new drug protocols. 
http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobac-
co/CDER/ucm180485.htm. Accessed 09 Sep 2014. The FDA also recommended that 
sponsors help update the tool with new information about drugs under development. 
For example, incorporating clinical and biomarker data from patients at earlier stages 
of the disease could expand the usefulness of the tool in helping sponsors design ap-
propriate clinical trials to evaluate novel therapeutic candidates.

The EMA has also endorsed the tool in Europe, through the issue of a positive quali-
fication opinion for the CTS tool in AD drug development. http://www.ema.europa.eu/
ema/pages/includes/document/open_document.jsp?webContentId=WC500146179. 
Accessed 09 Sep 2014
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