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13.1 � Introduction

Osteoporosis is a progressive degenerative bone disease associated with an in-
creased fracture risk. Due to the related morbidity, mortality, and costs with a gen-
eral increase in life expectancy, this makes osteoporosis an important worldwide 
health issue.

Burge et al. (2007) conducted an epidemiology study in the USA on the burden 
of osteoporosis-related fractures and costs in 2005, and using a state transition 
Markov decision model predicted how those quantities would grow for the period 
of 2005–2025. Starting at 2005, the actual numbers were 2 million fractures with 
an associated cost of $ 19 billion. Due to aging population, the numbers are pre-
dicted to increase by 50 % by 2025 with 72 % due to hip fractures (Burge et al. 
2007). Similar studies have been published in other countries (Rajagopal et al. 
2008).

Due to statistical requirements and the slow progression of the disease, large 
clinical trials with long duration are required to establish a beneficial effect of 
new treatments on the reduction of fracture risk. Over time, knowledge about 
bone physiology and the mechanisms underlying bone diseases has increased. 
Furthermore, various conceptual, mathematical, statistical, and epidemiological 
models have been established providing further insight into the biology, mech-
anisms, and predictive factors of osteoporosis and corresponding fracture risk 
(Post et al. 2010).
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Over the past decade, different types of mechanism-based models have had an 
increasing impact on drug development and none more so than models of osteopo-
rosis. There has been an increasing body of work elucidating the mechanisms be-
hind the (patho-)physiology of osteoporosis, including the maturation and crosstalk 
between osteoclasts and osteoblasts and how the balance between bone resorption 
and bone formation changes with age and hormonal imbalance. The intrinsic non-
linearities, feedbacks, and different time-scales present in the system may lead to 
counter-intuitive behavior, making mathematical modeling a useful analysis tool. 
Various conceptual models for bone physiology and the effects of therapies have 
been proposed. Data included in osteoporosis models range from pharmacokinetics 
(PK) of (novel) drugs, pharmacodynamics (PD) biomarkers of various time scales 
(peptides indicative of bone-turnover, bone mineral density), bone strength, as well 
as the actual clinical outcome, namely, fracture rates at various sites in the skeleton 
(Post et al. 2010).

Published PK-PD-disease models of osteoporosis have varying degrees of bio-
logical complexity ranging from purely descriptive of disease to detailed system 
models spanning various spatial scales, as well as mechanistic models of bone 
strength. The possible identification and estimability of parameters typically de-
cline with complexity. Deciding between the use of descriptive, semi-mechanistic, 
or full mechanistic models should be driven by the drug development question at 
hand (model fit for purpose), the availability of data, as well as whether one needs 
the model for extrapolation versus interpolation. These models have been used to 
describe data from clinical trials, simulate new trial designs with novel mechanisms 
of action (e.g., what doses will result in what extent of effect on biomarkers/end 
points, differentiation between subpopulation of patients), simulate combination 
treatments (e.g., what synergy—if any—should be expected?), and how these clini-
cal trials predict for real-life settings (e.g., prevention of fractures in elderly; Post 
et al. 2010).

In what follows, we start by describing the main components of bone physiol-
ogy and the transition to the pathophysiology of osteoporosis. Then, we provide a 
general description of modeling approaches to osteoporosis, followed by a series of 
examples of specific model applications.

13.2 � Overview of Osteoporosis Components for Modeling

13.2.1 � Introduction to Bone Physiology and 
Pathophysiology

The biology of bone formation and resorption (a process known as bone remodel-
ing; Fig. 13.1) and how it links to the pathophysiology of osteoporosis is progres-
sively better understood. Bone remodeling is mainly the result of the actions of 
two types of cells, osteoclast and osteoblasts. In the healthy state, resorption and 
formation are balanced and bone remodeling leads to bone renewal. The osteoclasts 
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attach to the bone surface and act by removing the mineralized matrix and breaking 
up the organic bone component in the resorption lacuna. When resorption is com-
plete, osteoclasts detach and die by apoptosis. In turn, the osteoblasts attach to the 
bone and produce a matrix of osteoid, composed predominantly of type I collagen, 
followed by mineralization of this matrix. The differentiation of preosteoblasts into 
active cells is triggered via signaling from the osteoclasts. During the mineralization 
process, a fraction of osteoblasts get trapped in the bone matrix, and differentiate to 
osteocytes (Manolagas 2000; Boyle et al. 2003).

Our current understanding is that bone remodeling is controlled through:

1.	 The secretion of transforming growth factor beta (TGF-β) by osteoclasts trigger-
ing the differentiation of preosteoblasts to responsive osteoblasts (early osteo-
blasts that are highly responsive to differentiation signals), and attenuating the 
differentiation of responsive osteoblasts to active osteoblasts (responsible for 
bone formation), controlling the build-up of a population of responsive osteo-
blasts that will colonize the resorption lacuna once the osteoclasts population has 
died out (Manolagas 2000; Boyle et al. 2003).

2.	 The receptor activator of nuclear factor κ B (RANK)—receptor activator of 
nuclear factor κ B ligand (RANKL)-osteoprotegerin (OPG) pathway, which is 
dedicated to the control of the osteoclasts population by osteoblasts. Schemati-
cally, active osteoblasts produce RANKL that interact with RANK located at the 
surface of osteoclasts precursors. Occupied RANK receptors trigger the differen-
tiation of preosteoclasts in osteoclasts. Production of OPG that inhibits RANKL 
by the responsive osteoblasts ensures that the osteoclast population grows only at 
the end of the formation process (Aubin and Bonnelye 2000; Boyle et al. 2003).

Bone loss occurs in postmenopausal women as a result of an increase in the rate 
of bone remodeling and an imbalance between the activity and number of osteo-
clasts and osteoblasts. The bone loss occurs in two phases: (1) a rapid one, due to 
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predominantly estrogen deficiency and (2) a slower one, observed also in men, due 
to the effects of aging. While the effects of estrogen on bone are not fully under-
stood, it is hypothesized that they may act at least partly through the osteoblasts 
(e.g., increased synthesis of TGF-β or decreasing OPG with decreasing estrogen), 
tipping the balance in bone remodeling. The effect of aging is thought to be due to a 
lot of factors, such as vitamin D deficiency, leading to impaired calcium absorption 
and increased parathyroid hormone (PTH) secretion, as well as impaired osteoblast 
function due to continued decline of estrogen, decreased physical activity, and de-
creased secretion of growth hormone (Raisz 2008).

13.2.2 � Metrics of Bone Physiology

The long-term clinical end point in osteoporosis is bone fracture. Bone’s material 
properties are assessed by a mechanical test that yields a stress–strain curve, includ-
ing breaking point (Cusick et al. 2011; Lotinun et al. 2013). The linear portion of the 
curve, known as Young’s modulus represents stiffness, while the height and inflec-
tion point are two different measures of bone strength. It has become increasingly 
more common to estimate bone strength through the use of finite-element analysis 
(FEA; Bouxsein and Seeman 2009).

Bone is categorized into two types: cortical and trabecular bone. Cortical bone, 
mainly the outer shell of bone, makes up about 80 % of bone mass. Trabecular bone, 
which accounts for only 20 % of bone mass, makes up about 80 % of bone surface. 
Cortical bone has a high resistance to bending and torsion and gives mechanical 
strength and protection. Trabecular bone is less dense than cortical bone, providing 
mechanical support and has a higher turnover rate than cortical bone providing a 
resource for calcium and phosphate for the maintenance of mineral homeostasis 
(Post et al. 2010).

While bone mineral density (BMD), the amount of mineral matter per square 
centimeter of bone is currently the best single, easy accessible, predictor of bone 
strength, it accounts only for 44 % of the fracture risk. Contributing to the overall 
bone strength are also shape, geometry, microarchitecture, bone tissue composition, 
mineralization, micro-damage, and the rate of bone turnover (Post et al. 2010). The 
most relevant areas for measuring BMD in relation to fractures are the spine (pre-
dominantly trabecular), hip (mix of trabecular and cortical), and the wrist (mainly 
cortical). In addition, BMD is used as a diagnostic predictor for post-menopausal 
osteoporosis (Melton III et al. 2003; WHO Study group 1994).

Biochemical turnover makers (BTMs) provide easily accessible information on 
the state of bone physiology on the shorter term. The combination of BTM and 
BMD has been shown to more accurately predict the risk of fracture than either 
marker alone, which advocates an integrated approach (Post et al. 2010). BTM can 
be divided into three categories: collagenous bone resorption markers, bone forma-
tion markers, and markers of osteoclast regulatory proteins (Post et al. 2010). The 
first are degradation products of bone collagen; most commonly used clinically are 
C- and N-telopeptides of collagen cross-links (CTx and NTx with existing assays in 
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both serum and urine). The bone formation markers are measures of enzyme activ-
ity of osteoblasts, measures of bone protein, or measures of procollagen markers; 
commonly used are bone-specific alkaline phosphatase (BASP), osteocalcin (OC) 
and carboxy- and amino-terminal propeptide of type I collagen (procollagen type I 
C-terminal propeptide, PICP, and procollagen type I N-terminal propeptide, PINP). 
The osteoclast regulatory proteins are either markers reflecting the rate of osteoclas-
togenesis or the osteoclast numbers (Post et al. 2010).

13.2.3 � Treatment of Osteoporosis

Various treatment paradigms have been developed that leverage the ability to influ-
ence specific components of the osteoblast–osteoclast interaction (Fig. 13.2). Treat-
ments can be distinguished based on their differences in mechanism, site, and mode 
of action.

Treatments are categorized into those that (1) decrease resorption, (2) increase 
formation, or (3) a combination of these actions (Post et al. 2010).

13.2.3.1 � Decreased Resorption

•	 The antiresorptive treatments include hormone replacement therapy, bisphos-
phonates, selective estrogen receptor modulators, and calcitonin. The bisphos-
phonates (e.g., alendronate, risendronate, zolendronate) act directly on the 

Fig. 13.2   Overview of osteoporosis mechanism of action and drug targets. (Source: Post et al. 
2013, with kind permission from Springer Science+Business Media B.V.)
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osteoclasts’ ability to resorb bone cells. This class of drugs is known to bind 
preferentially to calcium hydroxyapatite and can stay in the bone for years which 
has implications for replacement therapies.

•	 The RANKL inhibitor denosumab (a fully human monoclonal antibody) is a 
more targeted therapy, which results in osteoclast apoptosis and decreased bone 
resorption while avoiding some of the side effects associated with the bisphos-
phonate class (Baron et al. 2011). The importance of RANK–RANKL pathway 
was described above.

•	 It is recognized that estrogen, especially started soon after menopause, can main-
tain bone density but also leads to increased risk for blood clots, cancer, and 
heart disease. The selective estrogen receptor modulator (SERM) raloxifene 
mimics the effects of estrogen while avoiding some (but not all side effects).

•	 Fortical is a nasal spray that mimics the effects of calcitonin, a substance pro-
duced by the thyroid gland; it inhibits bone resorption but to a lesser degree.

•	 Selective and reversible inhibitors of the enzyme cathepsin K form a novel class 
of osteoporosis therapy. Odanacatib is currently being investigated in a phase 3 
trial focused on fracture risk reduction and long-term safety. Odanacatib reduces 
osteoclastic bone resorption (cathepsin K-mediated) and preserves bone forma-
tion during bone remodeling (Bone et  al. 2010; Langdahl et  al. 2012). These 
actions are thought to mediate the increases in bone mineral density observed in 
patients with low bone mass treated with odanacatib (Bone et al. 2010; Langdahl 
et al. 2012). Preclinical data indicated that cathepsin K inhibition may also in-
crease periosteal bone modeling (Cusick et al. 2011).

13.2.3.2 � Increased Formation

•	 Injectable PTH (Forteo), which acts to preferentially increase the activity of os-
teoblasts. Due to the coupled mechanism of formation and resorption, the in-
crease in formation upon continuously administered PTH leads to resorption, 
which presents an interesting phenomenon to be captured by modeling. The fre-
quency of administration (daily subcutaneous injection) has largely limited the 
use of Forteo to severe osteoporosis patients.

•	 Finally, there are newer investigational medications blocking sclerostin (Amgen, 
Lilly, and Novartis). The full mechanism by which sclerostin causes osteoblast 
apoptosis is still under investigation but there is increasing evidence that scleros-
tin (i.e., mutations of sclerostin associated with sclerosteosis, a condition with 
abnormal increase in bone growth) is a promising new target for treatment of 
severe osteoporosis (McClung et al. 2012).

Calcium and vitamin D derivatives are important supplements that positively influ-
ence bone homeostasis and are part of the daily regimen for patients with postmeno-
pausal osteoporosis.

Finally, there are new treatment paradigms under consideration, such as combi-
nation therapy or sequential therapy (short period with anabolic treatment, followed 
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by a longer maintenance with antiresorptive drug for patients with severe osteopo-
rosis). Post et al. (2013) highlight the utility of modeling when trying to understand 
what the effects of such treatment regimen might be after incorporating the specific 
treatment effects and PK of the drug and what the effects of drug withdrawal on the 
bone system are.

13.3 � General Pharmacometrics of Osteoporosis

Various conceptual, mathematical, statistical, and epidemiological models have 
been established providing insight into the biology, mechanisms, and predictive 
factors of osteoporosis (Post et al. 2010). In general terms, the statistical and epide-
miological model provide valuable information on the correlation, predictive value, 
and interrelated time courses of various BTMs, BMD, and clinical outcomes and 
this field of research has provided valuable insight into the influences of various 
factors, such as age, lifestyle, and menopause, and has made it possible to evaluate, 
statistically confirm and compare the effects of different treatments. The conceptual 
mathematical models provide insight into the dynamics of the markers, the bone 
physiology dynamics, and are amenable for quantitative modeling purposes and are 
therefore the focus of this chapter. This type of modeling can be either descriptive 
or based on known bone physiology, i.e., more mechanistically inspired.

The benefit lies in the fact that vastly different rates of the markers or indirectly 
the biological system and time-variant changes in the course of the disease are in-
corporated. General examples of the descriptive type of modeling in osteoporosis 
either include single markers of bone turnover, BMD, or fracture risk or combina-
tions of these components (Post et al. 2010).

A more integrative approach allows for a mechanism-based description of osteo-
porosis, and presumably other bone diseases, by explicitly including bone physiol-
ogy as the underlying mechanism to which all information is linked. Various short- 
and long-term markers at various levels and timescales of the disease and drug 
action can then be combined and evaluated. The following section will describe 
one initial mathematical model on which two of the specific pharmacometrics of 
osteoporosis examples are based.

13.3.1 � Bone Turnover Markers and Bone Mineral Density: 
Mechanism-Based Models Based on Bone Cell 
Interaction—Core Physiological Model

One of the first comprehensive conceptual semi-mechanistic mathematical mod-
els for bone cell interaction was published by Lemaire et al. (2004). This seminal 
model (Figs. 13.2 and 13.3) described pools of cells from both osteoclast and os-
teoblast cell lineages at different levels of maturation. Responding osteoblasts (R) 
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are recruited from a large pool of uncommitted osteoblast progenitor cells (Ru), 
which then differentiate into active, bone-forming osteoblasts (B). Active, bone-
removing osteoclasts (C), on the other hand, are recruited from a pool of osteoclast 
progenitor cells (CP) upon stimulation of RANK by its ligand (RANKL). This latter 
process is inhibited by OPG, a soluble decoy receptor for RANKL that is formed 
by the responding osteoblasts. Other approaches have been published also taking 
into account a mathematical description of bone physiology (Komarova et al. 2003; 
Rattanakul et al. 2003; Moroz et al. 2006; Wimpenny and Moroz 2007; Earp et al. 
2008; Pivonka et al. 2008; Peterson and Riggs 2010; Pivonka and Komarova 2010; 
Marathe et al. 2011; Zumsande et al. 2011; Riggs et al. 2012).

In addition, the model captures some of the postulated effects of TGF-β and 
PTH. In particular, TGF-β which is released from bone by active osteoclasts during 
bone resorption (1) stimulates the recruitment of responding osteoblasts, (2) inhibits 
the differentiation of responding osteoblasts into active osteoblasts, and (3) stimu-
lates the apoptosis of active osteoclasts. On the other hand, PTH, through binding 
to its receptors expressed by osteoblasts, stimulates the expression of RANKL and 

Fig. 13.3   Overview of osteoporosis mechanism of action and role of biomarkers for bone turn-
over and bone mineral density. (Source: Post et  al. 2013, with kind permission from Springer 
Science+Business Media B.V.)
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suppresses the secretion of OPG; we need to mention that the model by Lemaire 
et al. (2004) only captures the resorptive effects of PTH.

Mathematically, this translates into the following set of differential equations:

in which R, B, and C denote the concentrations of responding osteoblasts, active 
osteoblasts, and osteoclasts, respectively, DR, DB, DC represents the differentiation 
rates of osteoblast progenitors, responding osteoblasts, and osteoclast precursors, 
kB the apoptosis rate of active osteoblasts and DA the osteoclast apoptosis rate due 
to TGF-β. Finally, πC and πL ( R, B) denote the TGF-β receptor occupancy and the 
RANK receptor occupancy. The expressions for these parameters, as well as the 
detailed derivations can be found in Lemaire et al. (2004).

Various extensions to the model of Lemaire were made, including explicitly in-
corporating calcium dynamics by Peterson and Riggs et  al. and describing bone 
dynamics in rheumatoid arthritis by Earl et al. (Lemaire et al. 2004; Riggs et al. 
2012; Earp et al. 2008; Peterson and Riggs 2010). It is worth noting that elements 
of this approach were also presented in Marathe et  al. (2011) where the authors 
combined the original Lemaire et al. (2004) model and linked the number of osteo-
clasts to biomarkers of resorption in order to characterize the effect of the RANKL 
inhibitor denosumab but in multiple myeloma patients, a cancer accompanied by 
bone lesions. This Lemaire model forms the basis for two specific applied examples 
described below.

13.4 � Specific Applied Examples of Pharmacometrics  
in Osteoporosis

13.4.1 � Mechanism-Based Models of Bone Turnover 
Markers and Bone Mineral Density

13.4.1.1 � Reduced Core Physiological Model Describing Five Biomarkers  
in a Population Approach

In work from Post (2009) and Schmidt et al. (2011) a way was proposed to reduce 
the system by Lemaire to one describing the dynamics of only osteoblasts (B) and 
osteoclasts (C), such that the dynamics of the system are kept and the different tim-
escales in the system can be described as explained below:
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with the function R = R( C) defined by

In applying this reduced system to clinical data, Post et al. connected the dimension-
less cell concentrations to the corresponding biomarkers of turnover and also to the 
bone mineral density measures (Post et al. 2010; Post 2009). This application of the 
reduced core model to clinical data was done via the population approach. To be 
able to include disease and treatment-related changes and to include multiple mark-
ers, the changes in B  and C  were related to their respective baseline values B0  and 
C0 , resulting in a dimensionless system:

such that

where PCa  and E Ti( )  are treatment effects of calcium and tibolone, respectively 
and f t( )  presents the disease progression related to a decline in estrogen during 
menopause.

This resulted in the ability to include bone turnover markers describing resorp-
tion in this system through a functional relationship of the form
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where the marker is linked to the dimensionless activity p, which is either z  for 
resorption or y  for formation. Biomarkers of formation (i.e., BSAP) are linked 
to osteoblast activity. Osteocalcin (OC) is linked to both y  and z  because it is 
produced by osteoblasts incorporated into bone and thereafter, released from bone 
during another resorption cycle. Markers of resorption (i.e., NTx) are linked to os-
teoclast activity z .

The site-specific (lumbar spine and total hip) BMD is modeled using the ratio 
S z y= /  in the following functional form:

where S  presents the ratio between the activities of resorption and formation, k  is 
the turnover rate of BMD, and BMDρ  is a transduction parameter relating changes 
in bone cells to BMD.

In this form, the reduced Lemaire model can be applied to describe the dynamics 
of the osteoblast/clast system under conditions of drug treatment, as it has enough 
granularity to capture various driving events/conditions, namely disease progres-
sion (trajectory relative to the start-of-menopause), start-of-treatment, achievement 
of systems (disease) steady-state, and end-of-treatment.

The system resulted in the ability to describe the effects of treatment based on 
clinical data within a population approach including data of NTx, BSAP, OC as 
bone turnover markers and lumbar spine and total hip BMD. Figure 13.4 gives the 
description of the model to the data by means of a predictive check (selected doses 
and data).

The quantitative description of the clinical biomarker data by this reduced mech-
anism-based core model enables the evaluation of the drug treatment effects on the 
various short- and long-term biomarkers. Once further developed and qualified with 
different biomarkers and treatments, this approach may be used to predict changes 
in long-term biomarkers based on short-term biomarker response. Ultimately, this 
model should be linked to other measures of bone strength and ultimately fracture 
risk (Figs. 13.2 and 13.3).

Below is an example (Fig.  13.5) which shows how to translate the estimated 
parameters to the course of the changes in relative osteoblasts ( z = B/B0) and osteo-
clasts ( y = C/C0) where the state of the RANK–RANKL–OPG system changes with 
each event and achieves different relative osteoblast and osteoclast turnover ( z, y 
space) starting from healthy state (1,1). This gives a means to visualize the vari-
ous changes in a two-dimensional plot. Each change in the system is defined as an 
orbit. The green orbit represents natural disease progression, while the blue orbit 
represents the addition of calcium treatment (aka placebo orbit). The solid red orbit 
describes the transition upon infinite tibolone treatment and the dashed red orbit 
represents the resetting upon treatment discontinuation after 1000 days.

(1 ),BMDdBMD k S
dt

ρ= −
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13.4.1.2 � Extended Physiological Model in a Systems Biology Approach

Another mathematical model of dynamics of bone remodeling based on available 
physiological observations, specifically in the context of the mechanisms of action 
of available osteoporosis treatments was recently developed by Mehta et al. (2012). 
This work builds on prior approaches of Peterson and Riggs et al. (Peterson and 
Riggs 2010; Riggs et al. 2012), Marathe et al. (2008), Lemaire et al. (2004), and 
Komarova et al. (2003) and is novel in how it integrates known interventions in 
osteoporosis disease mitigation with an explicit connection to existing therapies. It 
also differs in the way it approaches the formulation of the model and how it retains 
the conceptual clarity of the relationships between the state variables and the model 

Fig. 13.4   Visual predictive check of the marker NTx, BSAP, and lumbar spine bone mineral 
density ( BMD) (Post et al. 2013, with kind permission from Springer Science+Business Media 
B.V.). The blue dots represent the natural logarithms of the observations. The 5th, 50th, and 95th 
percentiles of the observations are presented by the red dashed and red solid lines. The 5th, 50th, 
and 95th percentiles of the simulated data are presented by the black dashed and black solid lines. 
The confidence intervals for the simulated data’s 5th, 50th, and 95th percentiles are presented by 
the blue, red, and blue area, respectively
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parameters, while being parsimonious in and of itself. In contrast to the work de-
scribed in the previous section, this is a deterministic and not a population model.

The extended physiological model is based on the osteoclast/osteoblast signal-
ing model of Lemaire (Lemaire et  al. 2004), the calcium sensing model of Ca-
bal et al. (2013), a model of TGF-β signaling, and cathepsin-K (Cat K) enzymatic 
bone degradation, a signaling protein model of the osteoblast apoptosis regulation 
as suggested by Bellido (Bellido et al. 2003). The model, in the form of ordinary 
differential equations (ODEs), quantifies the relationships between the key molecu-
lar pathways governing bone remodeling, and links, via reasonable assumptions, 
the cell and molecular concentrations to the biomarkers measured in the laboratory 
(P1NP, CTx, and BMD). The model equations follow the interactions between the 
state variables of the system which are often chemical reactions following either 
mass-action kinetics or nonlinear hill function rates for enzymatic systems wherein 
the intermediate steps are excluded to preserve model simplicity.

The extended physiological model results are consistent with the known effects 
of PTH, bisphosphonates, and anti-RANKL treatment regimens on the bone remod-
eling process. Figures 13.6, 13.7 and 13.8 show the model behavior in response to 
the known treatment strategies for osteoporosis. Notably, it is able to predict the 
delicate nature of bone build up in response to PTH treatment, and the fact that 
the same unified model can predict treatments which differ in their mechanism of 
action (bisphosphonates, rPTH, and anti-RANKLs). The model allows the compari-
son of osteoporosis therapies already on the market and new, innovative therapies in 
different stages of development and lends itself as a tool to evaluate potential new 
therapies under various administration protocols.

Fig. 13.5   Orbits of solutions of the system in red in the ( z, y)-plane (Post et al. 2013, with kind 
permission from Springer Science + Business Media B.V.). The green curve is the orbit in the 
absence of any treatment, the blue curve is the orbit in the presence of calcium treatment alone and 
the red curves are orbits caused by calcium and tibolone treatment combined. The solid red curve 
is the orbit during continuous tibolone treatment, the dashed curve the continuation after termina-
tion and washout at t = 1000 days
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13.4.2 � Finite Element Analysis

As mentioned above, the current clinical standard for diagnosing osteoporosis and 
assessing the risk of fracture and treatment effects is dual energy x-ray absorpti-
ometry (DXA), which is used to measure areal BMD (aBMD) at the spine and hip. 
The performance of DXA-aBMD as a diagnostic, as well as a predictor of bone 
strength and treatment intervention are well documented (Cummings et al. 2002; 
Pistoia et al. 2002; Cefalu 2004; Delmas and Seeman 2004; Schuit et al. 2004; See-
man 2007). As a two-dimensional projection of three-dimensional structure, DXA-
aBMD lacks the ability to interrogate the macro- and micro-architectural features 
of the bone that has a direct impact on its strength and ability to withstand specific 
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Fig. 13.6   Effect of parathyroid hormone (PTH) treatment: Simulated effect of pulse shape in the 
extended physiological model for five different administration profiles of PTH ( left plot: from 
placebo to increasing sharper rises and declines). Middle panel: The shape of the PTH pulse has a 
nonintuitive impact on osteoblasts and progressively on bone mineral density (BMD; right panel). 
The model prediction of a sharper PTH infusion yielding improvement in BMD is consistent with 
results from Cosman et al. (2010). The different colored lines here indicate different PTH admin-
istration profiles. The total area under the curve for each of the profiles is kept similar (apart from 
placebo), while the pharmacokinetic profile is varied: red—placebo (no PTH); magenta—continu-
ous administration (infusion) of PTH directly into plasma; black—PTH administration with slow 
clearance (similar to PTH secretion in response to orally administered calcilytic drugs); green—
subcutaneous injection of PTH; and blue—transdermal delivery of PTH using micro-needles as 
per Cosman et al. (2010)
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loading situations. The shape and structure of bone at a macro- and micro-archi-
tectural level provide additional, independent information to better predict fracture 
risk, assess response to treatment, and potentially differentiate new therapies from 
standard of care (Homminga et al. 2002, 2004).

Computationally, this has been addressed by the use of finite element (FE) meth-
odology, a numerical discretization procedure that has been extensively used for 
several decades in science and engineering to get good approximate solution of 
complex mathematical problems (Zienkiewicz and Taylor 2002, 2005). FEA is the 
most used computational analysis technique in the world today to solve solid me-
chanics problems and bone mechanics is no exception. Three dimensional (3D) 
images of bone are subdivided into a finite set of hexahedrons and tetrahedrons 
called elements. Applied to all nodes that form the elements, Newton’s second law 
of motion takes the following general form:
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Fig. 13.7   Simulations of changing receptor activator of nuclear factor κ B ligand (RANKL) con-
centrations in the extended physiological model were performed as a proxy for treatment with 
anti-RANKL molecules like denosumab. Decreasing concentrations of RANKL resulted in a dose-
dependent increase in bone mineral density (BMD), consistent with the findings of Marathe et al. 
(2008). The model predicts slow return to the baseline following treatment cessation after a year 
(three doses, at every 6 months)
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where i x y z= , ,  are the spatial coordinates, ui  are the coordinates of the displace-
ment vector, Fi  are the coordinates of the external body forces applied. Hooke’s law 
yields a six-dimensional stress–strain linear relationship:

Various forms of this functional relationship are possible depending on the resolu-
tion of the bone 3D image available, the loads (boundary conditions) applied to the 
bone, and the material properties used (Young’s modulus, Poisson’s ratio, etc). For 
example, under the assumption that bone is a homogeneous isotropic material, the 
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Fig. 13.8   Extended physiological model predictions of weekly dosing of bisphosphonates dem-
onstrated a dose-dependent decrease in bone mineral density (BMD), bone biomarkers, and bone 
remodeling activity, which is consistent with known effects of bisphosphonates
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above 36 coefficients are reduced to two, the Young’s modulus ( E) and the Pois-
son’s ratio ( g):

When the FE-models are generated from high-resolution micro-computed tomogra-
phy (μCT) images of trabecular samples, the models accurately capture the complex 
morphological architecture of the structures and can be used to estimate the bone 
hard tissue Young’s modulus (Zienkiewicz and Taylor 2002, 2005; Guo 2001). The 
FE model allows for computing the apparent stiffness. Physical compression ex-
periments of trabecular bone samples provide an assessment of the experimental 
stiffness. The true hard tissue Young’s modulus is then estimated from the ratio of 
the experimental and FEA-based stiffness estimates.

Animal models are a vital component of the drug discovery process and they 
provide an excellent opportunity to test FEA methodologies in disease models, ac-
quiring advanced information to help design and execute clinical studies. An ex-
ample of how the ovariectomized nonhuman primates osteoporosis model was used 
to qualify the validity of high-resolution peripheral quantitative computed tomog-
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raphy (HR-pQCT) based FEA estimates of bone strength was presented in (Jayakar 
et  al. 2012). The roadmap from ex vivo preclinical FEA qualification to in vivo 
clinical translation is illustrated in Fig. 13.9.

Several clinical publications (Boutroy et al. 2008; Burghardt et al. 2010, 2011; 
Macdonald et  al. 2011) have shown that high-resolution peripheral quantitative 
computer tomography (HR-pQCT)-based FEA-estimated bone strength provides 
information about skeletal fragility and fracture risk not assessed by BMD. A unique 
advantage of the preclinical FEA-estimated bone strength lies in its ability to en-
able in-vivo longitudinal estimates of bone strength that can be validated at the end 
of the study. This, in turn, provides the necessary level of confidence for the FEA 
predictions for the clinical estimates.

On the 3D clinical imaging technology resolution scale, the next class of lower 
resolution bone imaging tools is provided by QCT scanners, which can be used to 
scan whole bones at skeletal central sites, which are the most relevant for osteopo-
rosis (femur and vertebra), as compared to HR-pQCT. With the lower resolution 
(~ 500 μm), the FE models generated from those images are not capable of resolv-
ing the trabecular microarchitecture at the level of a single trabecular structure. The 
heterogeneity of the trabecular bone is represented in the QCT-based FEA assigning 
different elastic properties to the different voxels of the image in correspondence 
to the QCT density of the given voxel (Morgan and Keaveny 2001; Crawford et al. 
2003; Morgan et al. 2003).

FE models enable the testing of bone specimens in any configuration and loading 
conditions in silico, thus facilitating the exploration of potential treatment specific 

Fig. 13.10   FE-mesh of two proximal femurs under two different loading and boundary conditions
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effects. Proximal femurs could, for example, be tested in fall loading or neck shear 
configurations as illustrated in Fig. 13.10.

Another unique feature of the FEA is its ability to accurately estimate the spa-
tial stress and strain distribution for any given load. This facilitates the analysis of 
subject specific biomechanical differences even in the cases where subjects have 
the same integral BMD at a given skeletal site. Some studies have been conducted 
to assess the ability of FE models to predict the location and type of clinically rel-
evant fractures (Lotz et al. 1991a, b; Keyak et al. 2001). Figure 13.11 shows the 
spatial stress distribution on the proximal femur of a rhesus monkey subjected to a 
neck shear test. The location of the high stresses, in red, shows the places where the 
fracture is most likely to occur.

In the past decade, thanks to improvements in imaging tools and their avail-
ability, in vivo FEA have become a frequently used biomarker in phase III clinical 
trials for new osteoporosis therapies (Keaveny et al. 2007, 2008; Brixen et al. 2013). 
FEA has enabled clinical longitudinal measurements of bone strength and provided 
unique clinical insight into the biomechanical effects of new osteoporosis therapies.

Fig. 13.11   Two different views of a rhesus monkey’s right proximal femur von Mises stress spa-
tial distribution ( red being the highest stress and blue being the lowest stress)
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13.5 � Conclusions

During the past decade, a myriad of disease models for osteoporosis has been devel-
oped and applied to drug development questions. The current toolbox for the phar-
macometricians provides state-of the-art modeling of the bone model unit includ-
ing the osteoclast and osteoblast dynamics and endogenous modulator molecules, 
predictive biomarkers as NTx, uNTx, and bone mineral density, risk of fracture and 
bone strength. As a result, our understanding of mechanisms of action and (devel-
opmental) drug characteristics in osteoporosis has progressed significantly. In the 
future, further integration of approaches and end points will provide higher and 
earlier predictiveness from biomarkers to fractures and deliver on the promise of 
model-based drug development in osteoporosis, where the model is continuously 
developed in parallel with the drug. The ultimate goal is to integrate all sources of 
information to obtain a comprehensive description of the pathophysiology of os-
teoporosis, including treatment and disease. This enables the description of various 
treatments and their impact on clinical outcome; enabling the prediction of short-
term to long-term outcome on fracture risk.

Summary and Key Aspects of the Chapter 
•	 Due to statistical requirements and the slow progression of osteoporosis, large 

clinical trials with long duration are required to establish a beneficial effect of 
new treatments on the reduction of fracture risk.

•	 Over the past decade, different types of mechanism-based models have had an 
increasing impact on drug development.

−	 Various conceptual models for bone physiology and the effects of therapies 
have been proposed. Data included in osteoporosis models range fromPK 
of (novel) drugs, PD biomarkers of various time scales (peptides indicative 
of bone-turnover, bone mineral density), bone strength, as well as the actual 
clinical outcome, namely fracture rates at various sites in the skeleton.

•	 Published PK–PD-disease models of osteoporosis have varying degrees of bio-
logical complexity ranging from purely descriptive of disease to detailed sys-
tems model spanning various spatial scales, as well as mechanistic models of 
bone strength.

−	 These models have been used to describe data from clinical trials, simulate 
new trial designs with novel mechanisms of action, and simulate combination 
treatments and how these clinical trials predict for real-life settings.

•	 A more integrative approach allows for a mechanism-based description of osteo-
porosis, and presumably other bone diseases, by explicitly including bone physi-
ology as the underlying mechanism to which all information is linked. Various 
short- and long-term markers at various levels and timescales of the disease and 
drug action can then be combined and evaluated.

•	 Specific applied examples of pharmacometrics in osteoporosis concern mech-
anism-based models based on bone cell interaction—i.e., a core physiological 
model.
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−	 Mechanism-based models of bone turnover markers and BMD.
◦	 Reduced core physiological model describing five biomarkers in a pop-

ulation approach (reduced Lemaire core model including bone turnover 
markers and bone mineral density).

	   - � Quantitative system able to describe the effects of treatment based on 
various short- and long-term biomarker clinical data within a population 
approach (treatment and disease progression).

◦	 Extended physiological model in a systems biology approach (extensions 
to the Lemaire core model).

 	 - � Mathematical model of dynamics of bone remodeling based on avail-
able physiological observations, specifically in the context of the mecha-
nisms of action of available osteoporosis treatments.

−	 Finite element analysis
◦	 Describing the shape and structure of bone at a macro- and micro-architec-

tural level provides additional, independent information to better predict 
fracture risk.

•	 The current toolbox for the pharmacometricians provides state-of the-art mod-
eling of the bone model unit including the osteoclast and osteoblast dynamics 
and endogenous modulator molecules, predictive biomarkers as NTx, uNTx, and 
bone mineral density, risk of fracture and bone strength.

•	 In the future, further integration of approaches and end points will provide high-
er and earlier predictiveness from biomarkers to fractures and deliver on the 
promise of model-based drug development in osteoporosis, where the model is 
continuously developed in parallel with the drug. The ultimate goal is to inte-
grate all sources of information to obtain a comprehensive description of the 
pathophysiology of osteoporosis, including treatment and disease. This enables 
the description of various treatments and their impact on clinical outcome; en-
abling the prediction of short-term to long-term outcome on fracture risk.
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