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1.1 � Introduction

Pharmacometrics has become a term that encompasses modeling and simulation 
for pharmacokinetics (PK), exposure–response relationship, and disease progres-
sion. Mechanistic models that describe the biochemical processes involved in a 
physiological system have become more utilized in drug development. The mod-
els of complex systems are generally classified as systems pharmacology. A quote 
from William Jusko describes the role of pharmacometrics in drug development: 
“Pharmacometrics lies at the heart of what drug companies do: collecting data from 
animals, normal volunteers, and patients; quantifying it, and then being able to de-
termine what that data mean for optimizing drug efficacy and minimizing toxicity” 
(Nielsen and Friberg 2013). Pharmaceutical and biotech companies have invested 
heavily in establishing pharmacometrics expertise to utilize the preclinical, clinical, 
as well as human genomic data to understand the disease progression, the drug be-
havior, and its effect on individual patients and to personalize medicine to specific 
groups of patient population. The purpose of this chapter is to provide an overview 
of different approaches that were used in pharmacometrics in the context of phar-
maceutical drug development.
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1.2 � Classical PK Analysis

There are two primary approaches in the classical PK analysis: the compartmental 
modeling and the noncompartmental analysis. Compartmental modeling is based on 
the mass balance equations on the compartment and the noncompartmental model-
ing is based on the statistical moments derived from the time course of the drug 
concentration data.

Compartmental PK models are widely used to characterize the disposition of a 
drug using its concentration–time profiles sampled from body fluid such as plasma, 
serum, or whole blood following an administered dose. The general expression of 
the compartmental model is given in Eq. 1.1, where a series of exponential terms 
are used to fit to the drug concentration–time profile:

� (1.1)

where i  indicates each compartment, n is the total number of compartment, and Ai 
and iα  are called macroconstants reflecting the amount of the drug administered, 
the mass transfer between the compartments, and the elimination of the drug from 
the body. The number of compartments (n) determined by curve fitting is a rather 
abstract mathematical construct. The interpretation of Eq. 1.1 is that the body is a 
series of compartments; the drug is distributed between compartments, and is elimi-
nated from the body. It was recognized that Eq. 1.1 was the solution of a series of 
ordinary differential equations derived by mass balance of each compartment.

The simplest compartmental model has one compartment with a bolus injection. 
The differential equation for the one-compartment model can be derived from mass 
balance; that is, the rate of change of the drug amount in the compartment equals the 
rate of the input minus the rate of output:

�
(1.2)

where V  is the volume of the compartment, C  is the drug concentration of the 
compartment, and ke is the first-order elimination rate constant. C0 is the initial 
condition of the differential equation, which is the drug concentration prior to drug 
administration. For a bolus injection, when using the delta function to represent the 
rate of input, the solution to the above equation, assuming V is a constant, is:

�
(1.3)

where Dose  is the input amount of the drug. Comparing Eq. 1.1 with Eq. 1.3, it is 
obvious that A Dose V= / , ekα = , and n = 1.

Because Eq.  1.1 is first-order kinetics, the half-life ( t1/2) can be estimated as 
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� (1.4)

where k CL Ve = /  and CL  refers to clearance. Clearance is one of the most im-
portant concepts introduced in PK. Additional information on clearance will be dis-
cussed in the section on the clearance definition.

In many cases, the disposition of a drug in the body follows a multi-exponential 
decline, which shows as multi-linear phases in the log concentration versus time 
profile shown in Fig. 1.1. This type of drug concentration profile is often character-
ized by two or more compartments. For a two-compartmental model with a bolus 
injection, Eq. 1.1 becomes

� (1.5)

The half-life of the α phase and the β phase (or called the terminal phase) of the drug 
can be estimated as

� (1.6)

To estimate the overall half-life of a drug in the body following multi-exponential 
decline, the concept of “effective half-life” was introduced and the calculation is 
given in Eq. 1.7, e.g. for a two-compartment model:

� (1.7)

where AUC  is the area under the concentration–time profile.
The differential equations for a two-compartmental model can be derived through 

mass balance on each compartment:

�

(1.8)

where Ac and Ap refer to the drug amounts in the central and peripheral compart-
ments, respectively; k12 and k21 are the mass transfer rate constants between the 
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central and the peripheral compartments, also called microconstants. The analytical 
solution to Eq. 1.8 for a bolus injection can be expressed in the same manner as 
Eq. 1.5, with the following micro- and macroconstant conversion:

Re-parameterization for a two-compartment model in terms of CL, intercompart-

mental clearance (Q), Vc, and Vp can be expressed as k
CL
V

k Q
Ve

c c

= =, 12 , k Q
Vp

21 = . 

For more detailed discussions of commonly used PK models including intravenous 
infusion and extravascular routes, the reader may refer to the textbooks on PK and 
pharmacodynamic (PD) analysis (Derendorf and Hochhaus 1995; Gabrielsson and 
Weiner 2000; Gibaldi and Perrier 1999; Rowland and Tozer 1989).

The compartmental models are often used to simulate concentration profiles from 
one dosing regimen to another, or from a single dose to a steady-state concentration 
profile. The compartmental model has its limitation, however. First, the number of 
compartments and the property of the compartments are rather abstract mathemati-
cal constructs. The underlying physiology of the model and the resulting model 
representation is subject to the analyst’s interpretation. Second, the parameters do 
not have a clear physiological meaning, and so the source of the variability of the 
parameters cannot be clearly identified and be correlated to physiological reality.

A noncompartmental model is based on statistical moments of the concentra-
tion–time data (Dunne 1993; Yamaoka et al. 1978). The nth-order statistical mo-
ment has the following mathematical form:

�
(1.9)

where t  is time, n  is the order of moment, and C t( )  is the drug concentration as a 
function of time. The area under the concentration–time curve (AUC), the moment 
curve (AUMC), and subsequently the mean residence time (MRT) can then be com-
puted through integrating the concentration–time profile:

� (1.10)
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� (1.11)

� (1.12)

In practice, the computations of the above parameters are carried out using numeri-
cal integrators such as the linear or log-linear trapezoidal rule on the discrete con-
centration–time data. PK parameters such as CL, Vss, and t1 2/  can be derived from 
those statistical moments:

� (1.13)

� (1.14)

The terminal half-life can be calculated using the slope, λz, of the log concentra-

tion curve, 1/2
ln(2)

z

t
λ

= . If the concentration profile shows mono-exponential de-

cline, the terminal half-life can also be calculated using the t MRT1 2/ *= ln(2) . If 

the concentration profile shows multi-exponential decline, the half-life calculated 
using 1/2 ln(2)* = t MRT  will be the “effective half-life,” the same as the solution us-
ing Eq. 1.7 in the compartmental modeling approach. The underlying assumption 
of the noncompartmental modeling is that the PK of a drug is linear (Gibaldi and 
Perrier 1999). A special case is that the noncompartmental model is equivalent to 
a one-compartment PK model, where the PK parameters derived through noncom-
partmental analysis can also be obtained from a one-compartment model through 
integration of Eq. 1.2.

The advantage of a noncompartmental method compared to the compartmen-
tal model is that the results from the moment approach are less subjective on the 
analysts’ bias of their model of choice (Yamaoka et al. 1978). From a numerical 
analysis point of view, noncompartmental analysis is using numerical integration 
over the time course of drug concentration to derive PK parameters rather than 
optimization on either algebraic or differential equations. Thus, the “noise” in the 
drug concentration–time profile has less impact on the PK parameters than that 
of compartmental modeling. For example, when calculating the effective half-life 
using Eq. 1.7, an unrealistically long effective half-life could be generated when 
the terminal phase slope cannot be accurately estimated. In that situation, the effec-
tive half-life estimated using ln( )*2 MRT  is more reliable. The noncompartmental 
analysis is often the choice for computing PK parameters of a drug for regulatory 
submission.
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1.3 � Physiologically Based PK Modeling

The physiologically based pharmacokinetic (PBPK) model was developed to over-
come the limitations of the compartmental modeling. The structure of the model, 
the property of the compartments, and the parameters are based on the underlying 
physiological and biological processes that are responsible for drug disposition.

1.3.1 � History and Methodology of PBPK Approach

The concept of predicting the effect of a xenobiotic on a living organism based on 
mathematical models that incorporate real physiological parameters such as organ 
functions and flow rates was initially proposed by Teorell in (1937a, b). No prog-
ress was made in PBPK since Teorell’s postulation of using mathematical models 
to describe xenobiotic disposition until the late 1950s, possibly due to the limita-
tion in computational power. The most comprehensive development was made by 
Bellman and colleagues in the early 1960s (Bellman et al. 1963). The depiction of 
a PBPK model proposed by Bellman and his colleagues is shown in Fig. 1.2 with 
modifications. In the model, the tissue or lumped tissue was connected through 
blood flow. Blood flow through the main arteries and veins was assumed to be simi-
lar to a plug flow, that is, the drug concentration during the circulation was changing 

Fig. 1.2   An illustration of a 
PBPK model for a mamma-
lian circulation system
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with time and longitude. The interstitial fluid and intracellular region were treated 
as perfectly mixed compartments. Based on those assumptions, the mathematical 
expression for the model was a set of difference-differential equations. The assump-
tion of the plug flow leads to computational difficulties, as the entire past history 
of the drug concentration at each region of the body needs to be retained for the 
calculation of the successive time interval. Their work was discussed in detail and 
summarized by Bischoff and Brown in 1966 (Bischoff 1966). In the same publi-
cation, Bischoff and Brown discussed the application of mass transfer concept at 
great length at the levels of capillary, interstitial, and intracellular region. They also 
discussed the time needed for “mixed” drug concentration in the blood circulation 
versus the transient time of a typical human (~ 1 min). Based on the physiological 
reality and transport phenomena, the compartment property including the capillary, 
interstitial, and cellular region in Fig. 1.2 was characterized without accounting for 
every detail. They turned a set of difference-differential equations into differential 
equations such as Eqs. 1.15 and 1.16. Using a delta function to represent a bolus 
injection, the drug concentration profiles in different regions of the body were simu-
lated.

To illustrate the mathematical expression and the parameters of a general PBPK 
model, for simplicity, if we assume that the interstitial and cellular regions are at 
equilibrium, a compartment in Fig. 1.2 can be illustrated as shown in Fig. 1.3. The 
differential equations describing the compartment were given in Eqs. 1.15 and 1.16:

� (1.15)

� (1.16)

where Qj is the blood flow rate for the j  compartment, PA is the product of the 
membrane permeability and the membrane area; subscript b  is for blood, t  for 
tissue, and f  for free drug concentration. The free and the total drug concentration 
can be correlated based on linear or nonlinear binding. The term rj  represents the 
elimination rate (metabolism and/or excretion) of the drug from compartment j; it 
can occur at different regions of the compartment. The drug can be administered 
through oral, intravenous, or intramuscular routes. The route of administration can 
be incorporated to the PBPK model.
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As shown in Eqs. 1.15 and 1.16, there are three types of information required to 
solve a PBPK model: (1) the anatomy and physiology of a specific species; (2) the 
physicochemical properties, such as binding and membrane permeability, that are 
drug specific; (3) metabolism and excretion that are both drug- and species-specific. 
The anatomical and physiological parameters are usually available. Extensive data 
such as weight and blood flow rate through each tissue for different species were 
provided by Brown et al. (1997). However, physicochemical data and metabolism 
information are limited and often rely on in vitro studies or in vivo tests that were 
carried out in different species.

1.3.2 � Number of Compartments in a PBPK Model

The two questions that an analyst needs to ask himself/herself when developing a 
PBPK model are: (1) how many compartments are needed and (2) how much detail 
is required for that compartment? Extensive work from a typical four-compartment 
model with flow-limited assumption with or without extensive details for a particu-
lar targeted organ to more than ten compartments describing the whole body can 
be found in the literature (Andersen et al. 1984, 1987; Bischoff et al. 1968, 1970, 
1975; Liu et al. 2005; Peters 2008; Peters and Hultin 2008; Ramsey and Andersen 
1984; Wang et al. 1997). A general consideration of the number of compartments to 
choose from and the details of the model depend on these information: the target or-
gan, the physicochemical and pharmacologic properties of the drug that determine 
the drug transfer in the body, and the PK time scale (Bischoff 1975).

1.3.3 � Target Organ

The structure of a PBPK model starts with the anatomy of the body. As the drug 
concentration in a target organ or at the site of action is of interest, single compart-
ment is often used to represent the target organ. A significant amount of work using 
the PBPK approach has been done for anticancer drugs, central nervous system, 
hepatic metabolism and xenobiotic inhalation (Andersen et al. 1984, 1987; Baxter 
et al. 1994; Chen and Gross 1979; Collins and Dedrick 1983; Pang and Durk 2010; 
Ramsey and Andersen 1984; Reddy et al. 2005).

1.3.4 � Mass Transfer Phenomenon

Lumping is often used for PBPK model reduction. There are two levels of lump-
ing: (1) at the organ level and (2) at the cellular level. Lumping at the cellular level 
was originally discussed in details by Bischoff and Brown in their work mentioned 
above (Bischoff 1966). Lumping at the organ level was extensively discussed from 
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the late 1960s to the 1990s (Bischoff 1987; Bischoff and Dedrick 1968; Coxson and 
Bischoff 1987a, b; Gerlowski and Jain 1983; Nestorov et al. 1998). The basis for 
lumping is dependent on the mass transfer process and the physicochemical proper-
ties of a drug. The following section discusses the types of mass transfer function 
and the conditions for their applications.

1.3.4.1 � Flow-Limited Assumption

The flow-limited assumption was made primarily due to the lack of information 

on membrane permeability. The criterion of flow limited was given as 1j

j

PA
Q
  

(Bischoff 1975), that is, the membrane transfer is much faster than convection (from 
blood flow). Under this assumption, the free drug concentration in the tissue and in 
the blood is at equilibrium, C Ctf j bf j, ,= . Therefore,

�
(1.17)

For linear binding, Eq. 1.16 can be simplified as C R Ct b= * , where R  is called the 
tissue to blood partition coefficient. Under flow-limited assumption, Eqs. 1.15 and 
1.16 become

� (1.18)

Or if it is expressed using Cb, Eq. 1.18 becomes

�
(1.19)

Equations 1.18 and 1.19 demonstrate that the concentration of a drug in a particular 

organ, Cb j,  or Ct j, , is determined by the value of 
Q
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b j j t j, ,+
 and the elimination 

of that organ, 
r
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. As such, lumping different organs or body regions de-

pends on the blood flow rate through the organ, the partitioning of the drug between 
the blood and the tissue levels, and the elimination process of the organ (for an 
eliminating organ).

For noneliminating organs connected in parallel, the blood concentration en-
tering those organs, C , is the same. Therefore, the blood concentration leaving 
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Q
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drug are usually lumped into a single compartment. The blood flow rate through the 
compartment is Qjj

n

=∑ 1
, and the volume of the compartment is , ,

n
b j j t jj 1

V R V
=

+∑ . 
The same principle can be applied to poorly perfused organs with similar partition 
coefficient. For a lipophilic compound, higher partition coefficient in the adipose 
versus the lean tissue resulted in different profiles of the concentration of the drug 
in the tissue, and therefore, a separate compartment for the lean tissue or the adipose 
tissue is often required. In addition, an organ or a body region with significantly 
low blood flow rate and low partition coefficient of the drug in those regions can 
be omitted in the PBPK model. Whether an eliminating organ can be lumped with 
a noneliminating organ depends on the ratio of the blood flow rate to the clearance 
of that organ (Bischoff 1975; Nestorov et al. 1998).

For organs that are connected in series, such as the venous–lung–artery channel 
or the splanchnic organs, the blood concentration profile leaving the channel and 
returning to the vein is determined by the organ that has the longest transient time, 
or the organ that eliminates the xenobiotics. If the partition coefficient between the 
plasma and the lung tissue is small, the transient time of the lung is much smaller 
than those of the vein and the artery. The vein and the artery often can be lumped to 
one compartment without including the lung, V V Vartery vein= + , if the lung is not an 
eliminating organ. In the splanchnic channel, the splanchnic organs are often omit-
ted, since the liver is the primary eliminating organ and the blood concentration leav-
ing the channel is approximately represented by the liver. The gastrointestinal tract 
(GI) tract may be included to describe the absorption and/or reabsorption of the drug.

In general, a four-compartment lumped PBPK model, consisting of the blood 
compartment, the richly perfused compartment such as liver or kidney, the poorly 
perfused compartment such as the muscle, and a compartment representing the adi-
pose tissue can adequately describe the drug disposition in the body. Other compart-
ments may be added to describe the specific target organ as in the PBPK model to 
study tumor, wherein a separate compartment was incorporated to represent that 
organ where the tumor resides.

If the drug transfer across the membrane is fast enough compared to the mass 
transfer through convection (blood flow), the entire body can be modeled as a sin-
gle-compartment model assuming that the blood concentration is at equilibrium 
with tissues at different regions. See the elimination-limited case below for the 
mathematical expression.

1.3.4.2 � Membrane Limited

The opposite situation contrasting to the flow-limited mass transfer is the case 
wherein the membrane transfer is slow enough compared to the rate of the drug 

supply by blood flow, 1j

j

PA
Q


, so that the gradient of the drug concentration in 

the blood entering and leaving the compartment is negligible (Bischoff 1975). 
Therefore, C Cb j, ≈ . Equations 1.15 and 1.16 for the compartment with membrane-
limited transfer can be simplified as:
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�
(1.20)

If the drug transfer across the membrane of all regions of the body is slow enough 
that it can be considered negligible, the entire body can be modeled as a single-
compartment model by only including the blood pool:

� (1.21)

1.3.4.3 � Elimination Limited

In their publication on the general solution of a two-compartment model, Bischoff 
and Dedrick introduced the concept of the elimination-limited assumption, where 
the mass transfer is much more rapid than the total elimination rate (Bischoff et al. 
1970). The importance of introducing the elimination-limited concept is to simplify 
a PBPK model to a one-compartment model. The criteria for when a system follows 
the elimination-limited profile is given in their study through a two-compartment 
open model under a flow-limited assumption, that is, the drug distribution to the 
tissue through the blood flow rate (mass transfer through convection) is much faster 
than the rate of elimination. In the elimination-limited situation, the entire body can 
be lumped into a one-compartment model:

�
(1.22)

Equation 1.21 has the same mathematical expression as the one-compartment mod-
el in classical compartmental modeling. The difference is that Eq. 1.5 derived from 
PBPK model gives the meaning to Vd , which is equivalent to V R Vb j t jj

n
+ ∑ , . In fact, 

the elimination-limited case does not necessary require flow-limited assumption. 
As long as the elimination rate is slow enough compared to both convection and 
membrane transfer, the elimination-limited case stands. This also explains why in 
covariate analysis in the population PK modeling, the volume of distribution often 
is related to body weight, as tissue volume is proportional to the body weight. The 
tissue concentration then can be easily calculated as C

R
b

t j,

, where Cb is the blood 

concentration and Rt j,  is the partition coefficient of the organ. A typical example can 
be found for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), since TCDD is known 
to remain in the biological system for a very long time. The half-life in human 

is around 5–10 years. Table 1.1 lists the physiological data for a standard human 

with body weight of 70 kg and the estimated value of 1
λ

 with ,lip bi
i
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VQ
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λ ≈  for a  
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t j
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V dC
dt

Input rb j= − .

.
n

b
b j tj j

j

dCV R V Input r
dt

 
+ = − 

 
∑

1  Introduction to Pharmacometrics and Quantitative Pharmacology …



12 S. K. B. Sy et al.

flow-limited case, or ,lip bi
i

el b lip

VPA
k V V

λ ≈  for a membrane-limited case, where the sub-

script lip refers to lipid content.
The lipid contents of each organ in Table 1.1 were calculated based upon the 

values from the literature (van der Molen et al. 1996). The elimination rate constant 
kel  was estimated conservatively assuming a half-life of 5 years. The values shown 
in Table  1.1 suggested that the elimination-limited assumption was satisfied for 
TCDD. This one-compartment model through PBPK reduction was adopted in hu-
man risk assessment in the environmental toxicology (Thomaseth and Salvan 1998; 
van der Molen et al. 1996).

1.3.5 � PK Time Scale

The PK time scale plays an important role in PBPK model development (Bischoff 
1975; Dedrick and Bischoff 1980; Nestorov et al. 1998; Oliver et al. 2001). For 
a standard male or female, the time it takes to complete one blood circulation is 
about 1 min. For most of the drug acting in the scale of several minutes, hours, 
days or longer, it can be assumed that the blood in the circulation is a uniform pool. 
However, more details are required in the model for the rapidly eliminated drug, in 
a time scale of minutes. The sampling site could also be important. The following 
example illustrates the methodology in the selection of the number of compartments 
to use for building a PBPK model for a short-acting drug.

1.3.6 � Example 1: A PBPK Model for a Contrast Agent 
for Ultrasound Imaging

The PBPK model developed for a contrast agent for ultrasound imaging (Wang 
et al. in preparation) is shown in Fig. 1.4. The model has detailed information on 
the cardiovascular circulation and pulmonary circulation, which included the vena 
cava, right heart, pulmonary vein, lungs, pulmonary artery, left heart, and aorta. The 
actual sampling site and the administration site had to be specified in the model to 

Table 1.1   Physiological parameters of TCDD for a standard 70-kg human
Weight 
(kg)

Blood flow 
(L/day)

Partition 
coefficient

PA (mL/h) Lipid con-
tent (kg)

1
λ

Lung 1.17 8064 6 Flow-limited 0.057 4.03 × 10−10

Spleen 0.182 111 5 Flow-limited 0.0089 2.93 × 10−8

Kidney 0.308 1786 6 9 0.015 3.49 × 10−7

Adipose 14.994 374 100 30 12.9 1.08 × 10−7

Liver 1.799 2088 6 731 0.088 4.45 × 10−9

Skin 2.597 432 10 39 0.52 8.36 × 10−8

Rest of the body 44.388 3273 1.5 98 2.84 3.31 × 10−8
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accurately describe the concentration of the agent in the blood circulation, the left 
and the right heart. Such detailed information became necessary due to the short 
time scale in its PK profile. For example, within 3 min following injection, blood 
concentration of the agent dropped tenfold. The left and the right sides of the heart 
are the target tissues for this contrasting agent. The lung is the eliminating organ. 
The adipose tissue and the lean tissue compartments were specified in the model, as 
the agent is a lipophilic compound. Coronary circulation was included in the model 
to evaluate whether coronary artery disease would have an impact on the PK of this 
agent. The viscera tissues consist of the kidney, the brain, the liver, etc. The blood 
flow rate per volume in these tissues is much faster than those of either adipose or 
lean tissues. Except for the lung, each compartment includes vascular and extravas-
cular sub-compartments.

The lung is the primary eliminating organ for this compound. A heterogeneous 
compartment for the agent based on the anatomy of the lung and mass transfer is 
depicted in Fig. 1.5. As a static homogeneous lung compartment overpredicted the 
concentration in the alveolar gas phase during the absorption and under-predicted 
the concentrations during the elimination phase (Hutter et  al. 1999), a heteroge-
neous lung model developed by Liguras and Bischoff (unpublished data), Frank 
(1982), and Bernards (1986) was adopted instead, as the one shown in Fig. 1.5.

Fig. 1.4   Illustration of the PBPK model of the human body for a contrast agent used in ultrasound 
imaging
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The lung was modeled using three compartments based on the physiology of 
the lungs, consisting of an upper dead space plus a lower dead space in series and a 
perfectly mixed alveolar region. The dead space is taken to be that of the large bron-
chial vessels, such that there is no mass transfer between the air in the lung and the 
capillary blood. The volume of the alveolar compartment changes with inhalation 
and exhalation. The mass transfer between the air in the lung and the capillary blood 
occurs across the alveolar-capillary membrane. Mathematical equations describing 
the PBPK model including the lung compartment are given in Eqs. 1.23–1.32.

1.3.6.1 � Whole-Body PBPK Model

For the left and right sides of the heart, and other compartments except the lung, the 
mass balance equations have the following form:

� (1.23)

where Vb j,  is the tissue blood volume, Ctb j,  refers to the concentration in the tissue 
blood, and Ca  is the drug concentration in the blood entering the tissue. For other 
tissues, the mass balance equations take the form of a flow-limited case.

1.3.6.2 � Lung Compartment

The breathing pattern is described by the following equation:

� (1.24)

where Qair > 0  indicates an inhalation process, Qair < 0  represents exhalation. In the 
following equations, all Qair  are absolute values, and the inhalation and exhalation 

,
, ,( ),tb j

b j j a tb j

dC
V Q C C

dt
= −

air 0.5·  sin( ),Q TV tω ω=

Fig. 1.5   Structure of the 
physiological model of the 
lung
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processes are identified by either a positive or a negative sign, respectively. The 
total dead space was modeled using two compartments.

For the upper dead space of the lung, the inhalation and exhalation processes 
were described by Eqs. 1.25 and 1.26, respectively, and the elimination rate for the 
lung was characterized by Eq. 1.27.

Inhalation:

� (1.25)

Exhalation:

� (1.26)

� (1.27)

For the lower dead space of the lung, the inhalation and exhalation processes were 
also described separately using Eqs. 1.28 and 1.29, respectively:

Inhalation:

� (1.28)

Exhalation:

� (1.29)

For the alveolar region, the volume of the alveoli is described by a sinusoidal func-
tion, given that the volume of the alveoli changes with the breathing pattern:

� (1.30)

And the corresponding inhalation process was characterized by coupled differential 
Eqs. 1.31 and 1.32:

� (1.31)

�
(1.32)

The exhalation process was also defined by coupled differential Eqs. 1.33 and 1.34:

V
dC
dt

Q CUPD air UPD
UPD = −

V
dC
dt

Q C CUPD
UPD

air LPD UPD= −( )

rex Q CLU air UPD= .

V
dC
dt

Q C CLWD
LWD

air UPD LWD= −( )

V
dC
dt

Q C CLWD
UPD

air alv LWD= −( ).

,0 0.5· (1 cos( )).alv alvV V TV tω= + −

dV C
dt

Q C PA C
C
P

alv alv
air LWD b out

alv

air

= + −




,

V
dC
dt

Q C C PA C
C
PbLu

b out
b in b out b out

alv

air

,
, , ,( ) .= − − −






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�
(1.33)

� (1.34)

The breathing frequency is 2 fω π= , where, f is the number of breaths/per minute. 
Valv,0  is the functional residual capacity of alveoli; Q  is the cardiac output; PA  is 
the product of membrane permeability and area of membrane transfer. The sub-
scripts refer to the following: UPD—upper dead space; LWD—lower dead space; 
alv—alveolar; b,in—blood entering the lung; b,out—blood leaving the lung; and 
VbLu is the blood volume in the lung tissue.

1.3.7 � Sensitivity Analysis in PBPK Modeling

As shown in the example above, there are several different types of parameters in 
a PBPK model. Parameter values for tissue volume, blood volume, and blood flow 
rates were obtained from published results (Brown et al. 1997). These values usual-
ly represent a typical male or female individual. Other parameters such as partition 
coefficient of a compound between blood and the tissue are often estimated based 
on in vitro or scaled-up studies from animals to human. The remaining unknown 
parameters are then estimated by fitting the model to the observed data. Given the 
large number of parameters, it is critical to evaluate the impact of the uncertainty of 
those parameters on the disposition of the compound in the body. This is often done 
through a local (derivative) and global (Monte Carlo method) sensitivity analysis. 
We used the first example to illustrate the importance of this analysis.

In Example 1, the anatomical and physiological parameters related to the lung 
such as the volume of the alveoli, the dead space inside the lung, the functional 
residual capacity, the tidal volume, and the breathing frequency were obtained from 
Guyton’s textbook of physiology (Guyton and Hall 1996; Hall and Guyton 2011). 
The partition coefficient, Pft = Cfat/Cblood, of 50, was estimated based on the oil/water 
partition ratio of the compound. According to the results reported for other lipophilic 
compounds such as dioxin or thiopental (Bischoff and Dedrick 1968; Wang et al. 
1997), the partition coefficient for nonfatty tissue is approximately 10 % of that of the 
fat tissue. Therefore, the partition coefficients of other nonfatty tissue were assumed 
to be Pt = 5. Table 1.2 listed the parameter values for a typical 70-kg healthy subject.

There are three remaining unknown parameters, the partition coefficient between 
air and blood, Pair, and the two permeability values, PAair and PAt. Both individual fit-
ting and mean value fitting were conducted. Figs. 1.6 and 1.7 present the fitting of the 
mean values at 0.3 mg/kg dose level. The fitted parameter values are given below:

dV C
dt

Q C PA C C
P

alv alv
air alv b

alv

air

= − + −




,out

,
, , ,

air

( ) .b out alv
bLu b in b out b out

dC C
V Q C C PA C

dt P
 

= − − −  

3
air,PA = 42.0 4.2 (m /min)±

air gas bloodP = C /C = 106 50.±
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Table 1.2   PBPK model parameters for a 70-kg healthy subject. (Parameter values from Guyton 
and Hall 1996)
Body weight = 70,000 g
Male: cardiac output = 1.3 × Body weight0.75 (mL/min)
Coronary blood flow = 0.0455 × cardiac output (mL/min)
Total blood volume = 6.3 L
Blood volume in pulmonary circulation and cardiac circulation = 30 % of the total
Blood volume
Rest of the blood = 70 % of the total blood volume
Blood volume in pulmonary circulation and 
cardiac circulation (mL)

Parameters for the lung model

Pulmonary vein = 315
Lung capillary = 150
Pulmonary artery = 290
Right heart chamber = 340
Left heart chamber = 340
Vena cava = 340
Aorta = 100

Breathing frequency = 15 (No/min)
Tidal volume (excluding dead space) = 350 mL
Total dead space = 150 mL
Upper dead spacea = 50 mL
Lower dead spacea = 100 mL
Functional residual capacity = 2300 mL

Compartmentsb Tissue volume as frac-
tion of body weightb

Tissue blood volume 
as fraction of the total 
blood volumeb

Blood flow rate as 
fraction of cardiac 
outputb

Lung 0.0105 As shown above 1
Heart 0.0103 1
Viscera 0.05 0.0051/VBc 0.56
Adipose 0.214 0.0043/Vbc 0.065
Lean Rest of the part Rest of the part Rest of the part

a Parameter values were obtained from Liguras and Bischoff (unpublished data), Frank (1982), 
and Bernards (1986)
b Values from Brown et al. (1997)

Fig. 1.6   Mean observed and fitted blood concentrations following bolus injection (dose of 0.3 mL/
kg; solid line is model-fitted values, symbols are observed concentrations, error bars represent SD)
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The ratio of PA to the blood flow rate through that tissue were such that
PAt/Q = 0.53 ± 0.15 (for the heart, the lung, and the viscera compartment)
PAt/Q = 1.80 ± 0.22 (for the lean compartment and the fat tissue).
To assess the impact of parameters on the PK of the agent, Monte Carlo simu-

lation was conducted. The low, median, and high values of a parameter based on 
physiological reality were selected. For example, the total cardiac output range of 
0.975–1.625 indicates that the low value of the total cardiac output is 0.975 with a 
median value of 1.3 and an upper range of 1.625. The results of Monte Carlo simu-
lation demonstrated that only cardiac output, tidal volume of the lung and perme-
ability have a significant impact on the concentration in the left heart of the agent. 
Other parameters such as the coronary blood flow rate, the fat content (though it is 
a lipophilic compound), the total blood volume, the breathing frequency, and func-
tional residual volume have negligible effects on the concentration in the left heart. 
This analysis suggested that fixing a large number of parameter values using pub-
lished data would have little impact on the fitted values of those three parameters 
(Table 1.3). This sensitivity analysis also provided information on potential source 
of interindividual variability.

1.3.8 � Application of PBPK Modeling

There are many similarities in the anatomy and physiology of mammalian spe-
cies; for example, many physiological processes vary as the 0.7–0.8 power of body 
weight and the anatomic variables are proportional to the body weight (Hu and 

Fig. 1.7   Mean cumulative lung elimination (%) following bolus administration (dose of 0.3 mL/
kg; solid line is model-fitted values, symbols are observed values of the elimination via the lung, 
error bars represent SD)
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Hayton 2001; Peters 1986; Savage et al. 2004; West et al. 1997, 1999). As such, 
the physiological process per unit body weight or organ weight tends to decrease as 
body size increases. Physicochemical parameters, such as blood-to-tissue partition 
coefficient and plasma protein binding, are not expected to have a great variation 
across species. Hence, a major application of PBPK model was in the field of spe-
cies scaling (Boxenbaum 1982; Boxenbaum and Ronfeld 1983; Dedrick 1973; De-
drick and Bischoff 1980; Mordenti and Chappell 1989). One of the main limitations 
in the extrapolation of a PBPK model, from one species to another, is when signifi-
cant difference in metabolic pathways and enzyme activities exist. Since the first 
PBPK model with flow-limited assumption for thiopental (Bischoff and Dedrick 
1968), extensive application has been seen in drug development and environmental 
toxicology (Dedrick 1973; Peters 2012; Reddy et al. 2005; Rowland et al. 1973).

Peters presented a generic 14-compartment PBPK model that includes one 
compartment for the stomach, seven compartments to describe the absorption of a 
substance from the small intestine, and another compartment for the colon (Peters 
2008). The dissolution of an orally administered substance from the GI tract is de-
pendent on the product of the dissolution parameter and the difference between the 
solubility of the drug and its concentration. The model, being used for the in vivo 
prediction based on in vitro measurements, requires parameter for solubility, the pH 
of the buffer that was used for solubility measurement, and the in vitro absorption 
rate constant from Caco-2 permeability. For the estimation of drug concentration 
leaving a specific organ, the model utilizes plasma protein-binding information and 
tissue: plasma partition coefficients based on the work by Poulin and Theil (Poulin 
et  al. 2001; Poulin and Theil 2000, 2002a, b; Theil et  al. 2003). Peters used the 
model to predict the PK parameters of several compounds (Peters 2008; Peters and 
Hultin 2008). The measure to assess the quality of fitting was based on the reduced 

2χ -statistics and mean fold error. The author concluded that a “generic and inte-
grative PBPK approach of drug disposition as a tool for a priori simulations and 
mechanistic evaluations of pharmacokinetics has the potential to improve the selec-
tion and optimization of new drug candidates” (Peters 2008).

In recent years, PBPK modeling has been applied to drug development and regu-
lation (Zhao et al. 2009, 2011, 2012). A comprehensive review on the application of 
PBPK modeling in drug development and regulatory review/submission was pro-
vided in a number of articles from the Food and Drug Administration (FDA; Huang 
2012; Huang and Rowland 2012; Leong et  al. 2012; Rowland et  al. 2011; Zhao 
et al. 2011, 2012). The articles summarized the major advances in the predictability 
of key PK parameters in human from in vitro data, the availability of dedicated 

Table 1.3   Parameter effect of the contrasting agent disposition after sensitivity analysis
Parameters having significant effect Parameters having negligible effect
Cardiac output (QTOTC)
Permeability (PA)
Tidal volume (TVC)

Coronary blood flow rate (QCORC)
Fraction of the fat (Wfc)
Total blood volume (VBTOTC)
Breath No/min (BN)
Functional residual volume (VAV0C)
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software platforms, and associated databases. Specific advances and contemporary 
challenges with respect to predicting the processes of drug absorption, distribution 
and clearance were reviewed, together with the ability to anticipate drug–drug in-
teractions and the impact of age, genetics, diseases, and formulations on the PK of 
a drug. The value of this capability in selecting and designing appropriate clinical 
studies, its implications for cost-effective strategies, and a more holistic view of the 
application of PK across the preclinical and clinical drug development processes are 
considered. Finally, there is a greater focus on positioning PBPK within the drug 
development and approval paradigm, as well as its future application in personal-
ized medicine.

1.4 � Relationship Between Systemic and Tissue Clearance 
with PBPK Modeling Approach

1.4.1 � Clearance Definition

Clearance is one of the most important concepts in PK. As Benet stated, “it allowed 
the field to develop a basic understanding and to make predictions as to how patho-
logical and physiological changes would influence drug kinetics and drug dosing” 
(Benet 2010). By October 2009, there were more than 47,827 references found in 
PubMed under “drug clearance” (Benet 2010). The clearance concept was origi-
nally developed to quantify the functional efficiency of the kidney in the removal 
of urea (Grehant 1904a, b) and was then extended to describe the elimination of 
xenobiotics through the liver (Lewis 1948). Early contributions on developing the 
clearance concept for the whole body were made by Benet, Rowland, and Wilkin-
son (Benet and Galeazzi 1979; Rowland 1972; Rowland et  al. 1973; Wilkinson 
1987; Wilkinson and Shand 1975).

Using the definition provided by Wilkinson (1987), “the most general defini-
tion of clearance is that it is a proportionality constant describing the relationship 
between a substance’s rate of transfer in amount per unit time, and its concentration, 
in an appropriate reference fluid.” This is illustrated in Fig. 1.8 for an elimination 
organ.

The mathematical expression for clearance (CL) is given as follows:

�
(1.35)CL r C

Cin
=

( ) .

V, C
Q

Cin

r(C)

Cout

Fig. 1.8   Schematic represen-
tation of an eliminating organ
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The extraction ratio reflecting the efficiency of an organ to remove a drug was 
defined as:

� (1.36)

where r C( )  is the elimination rate, C  is the drug concentration inside the compart-
ment, Cin  is the drug concentration entering the organ, and Q is the blood flow rate 
through the organ.

The instantaneous clearance and extraction ratio from a blood or plasma con-
centration–time profile can be derived by applying mass balance to the eliminating 
organ, as in Fig. 1.8. Assuming that the organ is a homogeneous compartment such 
that C Cout = , where Cout  is the drug concentration leaving the organ, the mass bal-
ance equation is then

� (1.37)

given that C = 0 at t = 0.
By dividing Eq. 1.37 by · inQ C , the resulting expression is

� (1.38)

The third term on the right side of Eq. 1.38 is the definition of extraction ratio. The 
expression for instantaneous extraction ratio and clearance can be derived as fol-
lows:

� (1.39)

� (1.40)

Both Eqs. 1.39 and 1.40 show that, in general, instantaneous extraction ratio and 
organ clearance are time-dependent variables. Therefore, they have no definitive 
meaning unless the time when clearance is estimated is specified, or steady state is 
achieved.

At steady state, both C  and Cin are constant, such that dC
dt

= 0. The steady-state 

extraction ratio and clearance can be derived from Eqs. 1.39 and 1.40:

� (1.41)

� (1.42)

,CLE
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Since instantaneous clearance is of not much value for nonsteady-state situation, 
the mean clearance over time is more useful and can be derived by rearranging 
Eqs. 1.35 and 1.36 and integrating from 0 to infinity with respect to time:

Applying the mean integration theorem to the equations above, there exists a value 
θ for clearance such that 

0 0
·  in inCL C dt C dtθ

∞ ∞
=∫ ∫ . The value θ is the mean clear-

ance over time from 0 to infinity. Equations for the computation of mean clearance 
and mean extraction ratio are shown in Eqs. 1.43 and 1.44:

�

(1.43)

�
(1.44)

Using the example of an eliminating organ in Fig. 1.8, integration of the mass bal-
ance Eq. 1.37 from t = 0 to infinity,

� (1.45)

For limited dosage regimens, if t → ∞ , Cin → 0 and therefore C → 0. Together 
with the initial condition that C = 0  at t = 0, the left side of Eq. 1.45 is 0. Thus,

� (1.46)

By rearranging and dividing Eq. 1.46 by 
0

· inQ C dt
∞

∫ , we obtain

�

(1.47)
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The left side of Eq. 1.47 is the term for the mean extraction ratio (see Eq. 1.44). 
From Eq. 1.47, one can derive the relationship between mean extraction ratio and 
clearance:

�
(1.48)

� (1.49)

For an eliminating organ, C dt C dtin 
0 0

∞ ∞

∫ ∫<  holds true. One can deduce that the 
mean clearance is always smaller than the blood flow rate and the extraction ratio 
is smaller than one.

It has been observed that for some xenobiotics, the estimated extraction is great-
er than one, which is impossible as the amount of drug being removed cannot be 
greater than the amount supplied to the organ. Using the same eliminating organ 
shown in Fig. 1.8, if clearance is calculated using the blood samples leaving the 
specific organ, we would divide Eq. 1.46 by 

0
·  Q C dt

∞

∫ , where C is the drug con-
centration in the blood stream leaving the elimination organ. Following the same 
steps to derive Eq. 1.48, we obtain Eq. 1.50:

�

(1.50)

As one can see that for a high extraction drug, it is possible that 0

0

1
inC dt

C dt

∞

∞ −∫
∫
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greater than 1. And if 0

0

1 1
inC dt

C dt

∞

∞ − >∫
∫

, the extraction ratio defined in Eq. 1.48 is 

larger than 1, and the estimated clearance will exceed the blood flow rate. The con-
version between CLout  and CL  can be derived from Eqs. 1.48 and 1.50, such that

�

(1.51)

where CLout  refers to the clearance computed from the blood samples taken from the 
blood leaving the organ and CL is the clearance estimated from the blood entering 
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the organ. The equation for extraction ratio, which is the left-hand side of Eq. 1.51, 
can be rearranged to obtain CLout  such that

�
(1.52)

We can extrapolate the result to total body clearance (TBC) in relation to cardiac 
output. The TBC, in this case, can also be greater than cardiac output for a com-
pound that is rapidly eliminated through the lungs.

1.4.2 � Establishing a General Relationship between TBC 
and Organ Clearance

It is often misunderstood that TBC is the sum of the individual organ clearance. 
The contribution of the organ clearance to the TBC depends on the anatomy of the 
body. In this section, we derived a general mathematical expression of the TBC with 
the individual organ clearance through PBPK modeling (Wang, Lam and Bischoff, 
unpublished work).

Figure 1.9 illustrates a representative PBPK model. This model consists of seven 
tissues, namely vein, artery, lung, GI tract, liver, kidney, and the rest of the body. 

CL CL
E

out =
−1

.

Rest of body (6)

Q4-Q7

C3o

Artery (2)

Lung (3)

Vein (1)

Liver (4)

GI tract (7) 

Kidney (5)

Q1

C1

C7o

C4o

C5o

C6o

C0

Q5

Q6

Q4

Fig. 1.9   A representative 
PBPK model used to illus-
trate total body clearance and 
organ clearance
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The first compartment C1 represents the vein, second C2 for the artery, third C3 the 
lung, fourth C4 the liver, fifth C5 the kidney, sixth C6 for the rest of the body, and 
seventh C7 for the GI tract. In this example, an intravenous administration was 
utilized for the simplicity of the mathematical derivation. Assuming a flow-limited 
mass transfer, the equations representing the model based on mass balance are as 
shown in Eq. 1.53.

�

(1.53)

where K tI ( )  is the drug input function, r Ci i( )  represents the rate of elimination 
from an eliminating organ, and the subscript o  for out symbolizes the concentra-
tion leaving the organ. The initial conditions were assumed such that Ci = 0 at t = 0. 
The drug concentration at the joint point where the blood stream leaves the organ is 
represented by Eq. 1.54:

� (1.54)

Given the relationship above, we solve for the venous compartment C1 (see Appen-
dix for details), assuming that the input function K tI ( ) = 0  and Ci → 0  as t → ∞ :

�
(1.55)

where 4 7 7 4 7 2· · ( )p oQ C Q C Q Q C= + − .
Using Eq. 1.49 to compute the mean organ clearance, the generalized expression, 

except for the lung and liver, is shown in Eq. 1.56:
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�

(1.56)

For the lung and liver compartments (C3 and C4), the resulting expressions for mean 
organ clearance are as follows:

� (1.57)

�
(1.58)

The total amount of drug elimination from the body, derived from solving the mass bal-
ance equations over the entire body, is r t dt Q C C dt K t dtii I( ) ( ) ( )∑∫ ∫ ∫= − =

∞ ∞ ∞

10 1 00 0 . 
Following the expression in Eq. 1.43 for mean clearance, TBC or systemic clear-
ance is derived as

� (1.59)

By substituting Eqs. 1.56–1.58 into Eq. 1.55, the relationship between TBC and 
organ clearance can be obtained as shown in Eq. 1.60 (see Appendix for derivation 
of Eq. 1.60):

� (1.60)

where E CL
Qi

i

i

= . A generalized relationship between TBC and organ clearance can 

then be established by extrapolating Eq. 1.60 to multiple eliminating organs:

�
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where CL CL E CLliver channel liver liver jj_ ( )= + − ∑1 , and j  indicates other organs ex-
cept the liver in the liver channel. The subscript i  in Eq. 1.61 includes all other 
body organs except the lungs and organs in the liver channel.

The mathematical equation in Eq. 1.61 is broadly applicable not only to the linear 
systems but also to the nonlinear systems because the assumption made in the deri-
vation of Eq. 1.61 was flow-limited mass transfer. From Eq. 1.61, one can deduce 
that the contribution of organ clearance to the systemic clearance can be derived by 
following the circulation scheme starting from the arteries. For those organs con-
nected in parallel, the contribution of organ clearance to systemic clearance is addi-
tive. For the organs connected in series, the contribution of the ith organ clearance 
to systemic clearance needs to be corrected by a factor of ( )1− Enext organ . For ex-
ample, following the blood circulation starting from the artery, the whole body can 
be viewed as consisting of two components connected in series, the rest of the body 
and the lung. Hence, in Eq. 1.61, the clearance of the portion that represents the rest 
of the body needs a correction factor of ( )1− Elung , as illustrated in Fig. 1.10a. The 
same is true for the liver channel such that the clearance of the GI tract or spleen 
also requires a correction factor ( )1− Eliver , as represented in Fig. 1.10b.

The PBPK model used in this discussion is a lumped total body model but rep-
resents a rather general description of the anatomical structure of the mammalian 
system. The expression describing TBC and the individual organ clearances can be 
easily derived based on the location of the eliminating organ by following the cir-
culation starting from the arteries. For these organs that are connected in series, the 
contribution of the first organ clearance to TBC equals ( )1 1− +E CLi i, whereas for 
organs connected in parallel, the contribution of organ clearance to TBC is additive. 
Even though the current discussion only considered the example of an intravenous 
administration, the conclusions derived from this scenario are broadly applicable to 
other routes of administration.

LiverGI Tract

other organs
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H-L-HEliminating organ
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b

Fig. 1.10   Schematic illus-
tration of a the left heart–
lung–right heart ( H–L–H) 
circulatory system and b the 
liver channel
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1.5 � Population PK

PBPK models provide the quantitative information between the dose and the con-
centration of the xenobiotic agent at different regions of the body. Interindividual 
variability in PK can be quantified based on the physiological/biological difference 
among the target population. However, it is often impractical to apply PBPK mod-
els directly to humans. The nonlinear mixed effect model (also commonly referred 
to as population PK) incorporating both fixed effect (identified covariates repre-
senting the known source of variability) and random effect (unidentified source 
of variability) was introduced in the 1970s by Sheiner et al. (1977). This approach 
adopts the simplicity of the classical PK models but correlates the PK parameters 
to covariates such as body weight, age, gender, etc. to quantify the source of vari-
ability in PK. For example, the volume of distribution is often correlated to the 
body size, and clearance to body weight, creatinine clearance, and enzyme activi-
ties. Covariate analysis is primarily performed through statistical analysis, together 
with the information on physiology, pathology, metabolism, and clinical relevance. 
The population PK modeling has been widely applied to the analysis of clinical PK 
data, especially to the sparse PK samples from phase 2/3 trials. With this approach, 
the source of variability in PK can be identified using large pooled datasets. More 
importantly, population PK modeling has innovated the drug development through 
model-based approach (Bhattaram et al. 2005). From what used to be an unusable 
sparsely sampled blood concentration from phase 2/3 trials, population PK model-
ing made it possible to identify the PK characteristics in patients based on their de-
mographic information, metabolic status, liver/kidney function, and disease status 
to support labeling. This ability to hone into a specific factor responsible for drug 
response is what makes population PK a valuable tool for personalized medicine. In 
a survey from the US FDA between 2000 and 2004, they reported that pharmaco-
metric analyses were pivotal in regulatory decision making in more than half of the 
42 new drug applications (NDA; Bhattaram et al. 2005). In the case of a failed trial 
of nesiritide, they concluded that “dose selection based on pharmacometric analysis 
could have saved 3 years of drug development time and 1 clinical trial.”

1.5.1 � Population PK Model Development

A population PK model consists of the structural model and the covariate models. 
The structural model takes the form of the classical compartment model to describe 
the concentration profile for a typical subject, whereas the covariate model quanti-
fies the sources of intersubject variability: the known (covariates) and unknown 
(first level random effect term) source of variability (Sheiner and Ludden 1992; 
Sheiner et al. 1977). The second level of variability is within-subject variability that 
is often described by additive or proportional error model. Sometimes, a third level 
variability, called inter-occasion variability, is introduced to describe the variability 
for the same individual when replicate samples were taken following different dos-
ing occasions.
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Population PK model development and key considerations were clearly dis-
cussed in Meibohm et  al. (2005) and regulatory documents (EMA 2007; FDA 
1999), which include base model and covariate model development, internal and/
or external model validation. The base model development follows the same prin-
ciples as classical compartmental PK model development. Covariate model devel-
opment and model validation will be described briefly in the following sections.

1.5.2 � Covariate Models

Covariate models quantify the source of intersubject variability contributing to a PK 
parameter. For continuous covariates, the covariate model usually takes the form of 
a linear or power function, which probably originated from the allometric scaling 
concept. Different ways of parameterization of the covariate model are often done 
using the reference value of the covariate such as the median value, as shown in 
Eqs. 1.62 and 1.63:

� (1.62)

�
(1.63)

where TVP  is the typical value of a model parameter, Cov  represents the covari-
ates, m  is the number of covariates, and iθ  is the coefficient.

For categorical covariates such as binary, ordered, or nonordered, an indicator 
function I Covi i( ) is introduced such that if the covariate has a specific dummy vari-
able value, a separate coefficient is designated:

� (1.64)

� (1.65)

and

� (1.66)

Random effect is usually assumed to be log-normally or normally distributed, as 
given in Eq. 1.67, where jn  follows a normal distribution with mean 0 and covari-
ance matrix Ω:

� (1.67)
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1.5.2.1 � Allometric Scaling

One of the approaches for covariate model development is by applying allometric 
scaling principle. Thus, the body weight often contributes to clearance to the power 
of 0.75 and to the volume of distribution to the power of 1. The allometric scaling 
is also often used for scaling PK parameters obtained from the adult to the pediatric 
population.

1.5.2.2 � Stepwise Regression

Stepwise regression is a common statistical method used in covariate model build-
ing. The algorithm includes forward addition, backward elimination, or combina-
tion of forward addition and backward deletion in stepwise fashion. This process is 
automated in Perl-Speaks-NONMEM. Each step of the model building process in 
the forward inclusion involves testing the effect of each covariate on the appropri-
ate model parameter in a separate model run, such that the statistical significance 
of each covariate–parameter relationship is screened individually (univariate analy-
sis). Covariates that reduce the objective function above a predefined significance 
level are added to the PK model. The backward elimination step starts with the final 
model from the forward inclusion step; the subsequent removal of each covariate 
is also based on a predefined difference in the objective function. The hypothesis 
testing to discriminate alternative hierarchical models is based on the likelihood 
ratio test, often at preset p-values for the forward inclusion and backward elimina-
tion of, e.g., 0.05 and 0.01, respectively. The differences in the objective function 
values of two alternative models is equivalent to − 2 log-likelihood, which follows a 
chi-squared distribution with n degrees of freedom, where n is the difference in the 
number of parameters in the hierarchical models. A difference of 3.84 and 6.64, for 
example, in the value of the objective function is considered significant under the 
likelihood-ratio test for n = 1 and p-values of 0.05 and 0.01, respectively.

1.5.2.3 � Full Covariate Model

Because covariates often have collinearity and depending on the degree of correla-
tion between covariates, the statistical inference approach such as stepwise methods 
could include a covariate that is not preferential. An algorithm of using full covari-
ate model approach was proposed as an alternative for covariate model building 
(Agoram et al. 2006; Ravva et al. 2009). The decision on which covariate to in-
clude is based on exploratory graphics, scientific and clinical interest, mechanistic 
plausibility, or previous knowledge of these relationships. Covariates that are both 
statistically insignificant and clinically irrelevant can be dropped during covariate 
model development. The inferences on which covariate has clinical importance are 
then based on the magnitude of the estimated effect and the precision (Agoram et al. 
2006). This approach is a simplification of the global model approach (Burnham 
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and Anderson 2002) and is claimed to be the preferred choice when the goal is to 
estimate the magnitude of an effect (Harrell 2001). A hybrid approach can also be 
implemented, starting with a full covariate model from which covariates are tested 
using stepwise backward deletion.

1.5.2.4 � Case Deletion to Determine Influential Individual

The statistical inferences based on maximum likelihood or likelihood ratio test are 
easily influenced by outliers or a few individuals (not necessarily outliers) in the 
data. Influential individual or a group of influential individuals can be evaluated 
using case-deletion diagnostics. The jackknife method evaluates how removing a 
specific individual affects the objective function values of the base model and the 
one with covariate, both models with all the data versus the one with the specific 
individual removed (Sadray et al. 1999):

� (1.68)

The algorithm fits both the covariate model and the base model to the dataset con-
taining all the individuals and the dataset with the specific individual removed. The 

,jackknife iOFV∆  value in Eq. 1.72 is obtained for each individual of the dataset. The 
“shark” plot with the number of subjects removed on the x-axis and the change in 
OFV on the y-axis and curves showing both positive and negative ∆OFVi  can be 
used as visual inspection for case-deletion diagnostics.

1.5.2.5 � Covariate Identification Through PBPK Modeling

As mentioned in the section of PBPK modeling, lumping has been used to simplify 
the complicity of a PBPK model without losing the key physiological reality of 
the model. During the lumping process, covariates having impact on the PK can 
be identified. This approach requires a PBPK model that can be developed using 
preclinical data. Sensitivity analysis of the PBPK model can also assist in identify-
ing the factors that could have significant impact on the disposition of a xenobiotic.

The example below demonstrating the advantage of using PBPK modeling to 
identify the covariate was from a collaboration between Bischoff and Stanski in the 
early 1990s (Bischoff 1992). It was observed that the amount of thiopental needed 
to be administered to elderly patients (about 70–80 years old) was much less than 
that used for a standard 30-year-old healthy male. Therefore, age  could be consid-
ered as a covariate for dose adjustment for thiopental based on the classical PK and 
population PK models. To investigate the age effect on thiopental PK, a PBPK mod-
el (Bischoff and Dedrick 1968) was applied to the PK data obtained from clinical 
studies. An adipose tissue compartment was included in the PBPK model for thio-
pental, as this compound is highly lipophilic. The differences in cardiac outputs be-
tween young adult subjects at 30 years of age versus the geriatric patients at 70 years  

, , , , 1 , 1( ) ( ).jackknife i final n basic n final n basic nOFV OFV OFV OFV OFV− −∆ = − − −
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were taken into account in the PBPK model. By incorporating the physiological 
difference in cardiac output between the two age groups, the PBPK model captured 
well the difference in the exposure of thiopental for patients at age 30 versus those 
at 70 years, without having to incorporate age as a covariate of the model. This work 
was continued by Wada and colleagues to demonstrate the underlying mechanism 
behind the observed age effect in thiopental PK (Wada et al. 1997). Their results 
showed that the difference were due to the decline in cardiac output, followed by the 
increase in fat content with age. Since the cardiac output starts to decline at approxi-
mately 40 years of age, a nonlinear covariate equation to link clearance with age 
would be necessary. However, using the known data of age and gender differences 
in cardiac output and BMI (Brandfonbrener et al. 1955; Freedson et al. 1979; Guy-
ton and Hall 1996), the change in clearance and volume of distribution of thiopental 
with age can be derived from these relationships.

1.5.2.6 � Clinical Relevance in Covariate Model Development

Clinical relevance is a key consideration in covariate model assessment. In general, 
if the contribution of a covariate to the PK parameters resulted in less than 20 % dif-
ference in systemic exposure using the bioequivalence (BE) criteria, this covariate 
can be ignored or dropped even though it is shown to be statistically significant. 
Sometimes, if a drug has a large therapeutic window and the influential covariate 
determined from the PK analysis does not have any significant impact on clinical 
endpoints, this covariate can be removed. In contrasting situations, the lack of sta-
tistical significance does not necessarily indicate that the covariate tested is lacking 
impact on the clinical endpoints. For example, due to limited sample size (< 10 % of 
the subjects with a specific co-medication) or limited range of the covariate tested 
such as age, the impact of co-medication or age effect on the PK may not be statisti-
cally significant.

1.5.2.7 � Power and Sample Size Calculation

Sample size (the total number of subjects and the sampling time per subject) is 
critical for population PK development. To be able to detect the interindividual and 
intraindividual variability, a minimum of two PK samples per subject is necessary. 
Ogungbenro and Aaron have demonstrated the minimal samples size requirement 
for a one- or two-compartmental PK model (Ogungbenro and Aarons 2008) based 
on the confidence interval of the PK parameters estimated.

Another statistical methodology called the Monte Carlo Mapped Pow-
er (MCMP) to determine the power and sample size calculation for covariate 
model development was introduced by Vong et  al. (2012). Using the difference 
in individual’s objective function values between the reduced and full models 
(∆iOFV iOFV iOFVreduced full= − ), the MCMP analysis tests for drug or covariate 
effect by the summation of the individual’s contribution to the overall objective 
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function value in the likelihood ratio test (Vong et al. 2012). The MCMP uses the 
sum of the n ∆iOFV  instead of the overall ∆OFV  to base its statistical inference. 
The algorithm maps the statistical power over a specified sample size range. The 
MCMP method is simple to run without the need for correcting for type I error that 
is associated with stochastic simulations and estimations (Ette et al. 1998; Kowalski 
and Hutmacher 2001; Lee 2001).

1.5.2.8 � Model Evaluation

Model evaluation is a key step in population PK model development. Diagnostic 
plots, bootstrap, shrinkage in the η (Savic and Karlsson 2009), prediction-corrected 
visual predictive check, internal validation through dataset split are often used to 
evaluate the model. In addition to those approaches, external validation with addi-
tional datasets is a preferable method when feasible.

1.5.3 � Application of Population PK Model

Since Sheiner’s first and subsequent publications that established the population 
PK model methodology, population PK modeling and simulation together with in-
formation on disease progression, placebo response, dropout rates, as well as expo-
sure–response (ER) of drug treatment, have been used in regulatory decision mak-
ing, clinical trial waiver, as well as identification of design flaws and trial imple-
mentation problems prior to running a trial. These strategies have shown to decrease 
costs, improve the likelihood of achieving the trial goals, and generate conclusive 
findings (Brindley and Dunn 2009; Holford et al. 2010). Kimko and Peck recently 
edited a textbook on clinical trial simulation that encompasses diverse areas rel-
evant to drug development such as metabolic disease, cardiovascular, infectious 
disease, oncology, and many other fields (Kimko and Peck 2011).

Yang et al. took an approach of incorporating a case–control comparison in the 
ER analysis to reduce the bias introduced by confounding risk factors when evaluat-
ing the recommended dosing regimen for trastuzumab in a registration trial (Yang 
et al. 2012). Their analysis suggested that patients with the lowest quartile of trastu-
zumab exposure did not benefit from addition of trastuzumab treatment to chemo-
therapy. However, contrary to the nonresponder hypothesis for this subgroup with 
the lowest quartile of tratuzumab, this subgroup appeared to be more sensitive to a 
higher trastuzumab exposure than the remaining 75 % population, suggesting that 
increasing trastuzumab exposure in the low-exposure subgroup may result in better 
overall survival (OS) benefit.  This analysis justified the FDA recommendation of 
conducting postmarketing clinical trials to investigate a dosing regimen with higher 
exposure and acceptable safety in the identified subgroup and to prospectively eval-
uate whether this regime will result in acceptable OS benefit.
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Other examples can be found from the approval of the 0.8 mg/kg once-weekly 
regimen of etanerceptin pediatric patients with juvenile rheumatoid arthritis. The 
clinical trial simulation confirmed that the 0.8 mg/kg once weekly yielded over-
lapping steady-state time–concentration profiles with that of 0.4 mg/kg SC twice 
weekly, leading to equivalent clinical outcomes (Yim et al. 2005).

The author (Wang) utilized model-based approach to apply for waiver of clinical 
pharmacology trial for a novel tyrosine kinases inhibitor that was under develop-
ment in oncology. The absolute bioavailability of the tablet was required in the NDA 
submission. However, to conduct a clinical trial to obtain the absolute bioavailabil-
ity was difficult, since the intravenous dosage formulation needed to be developed, 
and the study can only be conducted in cancer patients due to genotoxicity. A popu-
lation PK model of the PK datasets obtained from several phase I dose escalation 
trials with either oral solution or tablet was developed with the formulation as one 
of the covariates. Covariate model test demonstrated that the formulation was not a 
statistically significant covariate. The health authority accepted this approach and a 
standalone absolute bioavailability trial was no longer required. The example listed 
above demonstrates how the model-based approach can cut development costs, as 
well as improve trial designs to come to conclusive findings.

1.6 � PD Models for Continuous Response Variables

PD often refers to as the body’s response to drug. Derendorf et al. defined PD as “a 
broad term that is intended to include all pharmacological actions, pathophysiologi-
cal effects and therapeutic responses, both beneficial and adverse, of an active drug 
ingredient, therapeutic moiety, and/or its metabolite(s) on the various systems of the 
body from subcellular effects to clinical outcomes. Pharmacodynamic studies can 
provide information about a drug’s mechanism of action or about its dose-response 
relationship where response can be expressed as a direct or indirect measure of ef-
ficacy and/or safety of the drug” (Derendorf et al. 2000). As collecting biomarker 
information is becoming common in clinical trials, modeling the exposure and bio-
marker responses has become critical in model-based drug development.

PK/PD studies intend to link the dose–exposure profile relationship with the PD 
response, in particular, the time course of the pharmacological/pathophysiological 
effects (Derendorf et al. 2000). Integrated PKPD models are categorized accord-
ing to the manner in which the PK and PD data are related. The two types of basic 
PD models that are often used to establish PKPD relationships are the direct and 
indirect response models. Based on receptor theory, the response of a drug is trig-
gered by the free drug concentration at the site of action. Since the systemic blood 
or plasma drug concentration samples were collected during a trial, while the effect 
or response is dependent on the concentration at the effect site, a delay in response 
might be observed when linking the blood/plasma concentration to the drug re-
sponse. If the effect is further downstream in the process, a longer delay in response 
could be observed.
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1.6.1 � Direct response PD Model

In the direct response model, the linear, Emax, or sigmoidal Emax models are often 
used. Equation 1.69 is the expression for the sigmoidal Emax model. When γ equals 
1, it is the called the Emax model:

� (1.69)

where E0  is the baseline of the response and Emax  is the maximum response. C  is 

the concentration of drug and Dose( ) e
CLt
VC t

V
−

=  is the drug concentration at which 

50 % of the maximum response is achieved and γ  is the sigmoidicity factor that 
determines the steepness in the linear portion of the curve. The direct response rela-
tionship assumes that the processes involved in the drug transfer to the site of action 
and eliciting the response is rapid enough compared to the disposition of a drug. 
Thus, for the same drug concentration, the response elicited by the drug is the same, 
regardless of the time to reach that drug concentration. As shown in the left panel 
of Fig. 1.11, the concentration C1 in the ascending phase of the concentration–time 
profile with the equivalent concentration level at C2 in the descending phase has a 
corresponding response R1 in the ascending phase of the response profile and the 
equivalent response level R2 in the descending phase. In other words, there is only 
one value for the response corresponding to one value for the drug concentration, as 
shown in the right panel of Fig. 1.11.

1.6.2 � Indirect Response Model

It is often the case in pharmacology that the effect of the pharmacological agent is 
lagging behind the drug concentration–time course, where, the response versus con-
centration does not exhibit a one-to-one relationship, often called a hysteresis loop 
(counterclockwise hysteresis), as shown in the right panel of Fig. 1.12. The tempo-
ral dissociation between the time courses of drug concentration and effect results in 
the hysteresis pattern and is likely caused by a distributional delay between the drug 
concentrations in the plasma and the effect site (Derendorf et al. 2000).
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The two different approaches often used to describe the observed delay in the 
plasma concentration and drug response are the effect compartment model origi-
nally proposed by Sheiner et al. (1979) and the indirect response model with dif-
ferential equation by Jusko (Dayneka et al. 1993; Jusko and Ko 1994).

1.6.2.1 � Effect-Compartment PD Model

The effect-compartment model links the drug effect to the drug concentration of 
a hypothetical effect compartment (Sheiner et al. 1979), instead of the drug con-
centration in the systemic circulation. In the effect-compartment model, it was as-
sumed that the drug amount entering the effect compartment is negligible, so that 
the plasma concentration of the central compartment can be described without the 
mass transfer between the central compartment and the effect compartment. The 
drug concentration in the effect compartment is at equilibrium with that of the cen-
tral compartment. The equilibration process between the plasma drug concentra-
tion and the effect site is determined by the first-order rate constant ke0  that also 
describes the loss of drug from the effect compartment (Derendorf et al. 2000). The 
illustration in Fig. 1.13 shows a schematic representation of the link model, where 
EC refers to the effect compartment. When the drug response links to the drug 
concentration of the effect compartment, the hysteresis observed will be collapsed.

Equations for calculating the effect compartment concentration can be found in 
Gabrielsson and Weiner (2000). For example, for a one-compartment model with 
bolus injection, the plasma concentration can be calculated using Eq. 1.4, and the 
effect compartment concentration can be expresses as:

�
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where Ce  is the drug concentration in the effect compartment, Ve  is the volume of 
the effect compartment.

1.6.2.2 � Indirect Response Models

The indirect response models was developed based on the receptor theory and sig-
nal transduction, where a series of delay could occur during those processes caused 
by indirect-response mechanism such as a synthesis or dissipation of an endogenous 
substance or response mediator. Dayneka et al. proposed four basic models for indi-
rect PD response (Dayneka et al. 1993; Jusko and Ko 1994). The generalized form 
of the indirect response models in the absence of drug is described as follows:
�

(1.71)

where kin  is the zero-order constant for the production of the response, and kout 
refers to the first-order rate constant for the dissipation of response. A biological 
system should stay at steady state under normal condition when no drug interven-

tion is applied. Therefore, at baseline R
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The four indirect response models under drug intervention are shown below:
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The indirect response model was used to fit to the data of the inhibition of pro-
thrombin complex activity by warfarin, an oral anticoagulant used in thrombo-
phlebities and pulmonary embolism (Jusko and Ko 1994). It blocks the vitamin K 
epoxide reductase, an enzyme that reduces vitamin K epoxide to vitamin K, which 
is a cofactor for carboxylation of the clotting factor such as factor II, VII, IX, and 
X. The blockade of the reductase activity by warfarin leads to the inhibition of co-
agulation, measured by the prothrombin time. It is assumed that the clotting factors 
are synthesized with a zero-order rate constant, kin , and degraded with a first-order 
rate constant, kout .

1.7 � PD Models for Noncontinuous Response

Data collected from clinical trials, which are not continuous but categorical vari-
ables, can be dichotomous, ordinal scaled (e.g., none/mild/moderate/severe), or cen-
sored data (e.g., time to recurrence of a disease). Logistic regression and survival 
models are usually applied to describe the probability of events. Recently, Markov 
chain models to estimate event probability were also applied in pharmacometrics 
(Bizzotto et al. 2011; Lacroix et al. 2009; Sy et al. 2013a).

1.7.1 � Time to Event

In the time to event analysis, the time of origin in pharmacometric analysis is usu-
ally the start of treatment. If the endpoint is some events, such as the occurrence of 
an adverse event, relapse of a disease, death, etc., the observations, which are the 
difference between the time of the specific event and the time from the origin, are 
referred to as time to event data or survival times. The distribution of time to event 
data is usually not normal and the data are often “censored.” Right censoring refers 
to data that the specific event of interest has not yet occurred when the subjects 
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leave the study. Left censoring can occur in clinical studies when we know that the 
event of interest has already occurred at the observation time, but it is not known 
exactly when. For example, a patient may be tested positive for a specific disease 
but the exact time of the disease onset is unknown.

The survivor function, S(t), is defined as the probability that the event of interest 
has not occurred by duration t, such that

� (1.76)

where T denotes the time of an event; Pr stands for probability. The probability that 
the event has occurred by duration t, F(t), is defined as the complement of the survi-
vor function, which is 1-S(t). The survivor function is related to the hazard function 
h t( )  and the cumulative hazard H t( ) , as defined in Eqs. 1.77–1.79 (Collett 1994). 
One can obtain the hazard function by dividing the event density function f t( )  by 
the survivor function. 

� (1.77)

�
(1.78)

� (1.79)

Figure 1.15 shows representative examples of cumulative distribution, probability 
density, survival, and hazard functions.

With nonparametric and semi-parametric methods, namely the Kaplan–Meier 
estimate of the survivor function and the Cox proportional hazard model, which is 
an extension of the Kaplan–Meier method, the form of the baseline hazard is not 
specified. The form of the covariate relationship, however, is specified in the Cox 
proportional hazard model.

With parametric models, both the hazard function and the effect of covariates are 
explicitly defined. Holford argued for using a parametric model for the hazard func-
tion because “hazard is the way to introduce biological mechanism to the survival 
model and understanding the variability of time to event distributions” (Holford 
2013). Table 1.4 lists the density, hazard, and survivor functions for the commonly 
used parametric models. Figure 1.15 shows the example of the probability density 
function and the corresponding hazard function for the exponential and Weibull 
distributions. In the exponential example, the hazard is a constant over time. This 
may not be the case in most clinical situations.

The Weibull model is more flexible as well as more generalized than the expo-
nential model; the hazard rates are monotonic in the sense that the hazard is either 
increasing, decreasing, or constant over time. The hazard for a Weibull cannot be 

S t t( ) = Pr T >{ }

[ ]( ) exp ( )S t H t= −

h t
t T t T t f t

S t
S t
t

( ) lim
Pr | ( )

( )
log ( )

=
< ≤ + >{ }

= = −
∂

∂→∆

∆
∆0

H t S t( ) log ( ).= −
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a combination of increasing and decreasing trends. The shape parameter, p , deter-
mines the trend. When p < 1, the hazard is decreasing monotonically. For p > 1, 
the hazard is increasing with time. With p = 1, the Weibull becomes an exponential 
function and the hazard is constant. The log-logistic model allows for nonmono-
tonic hazards. The shape parameter, p , determines the trend such that if p > 1, then 
the hazard increases and then declines whereas if p < 1, the hazard has a decreasing 
trend.

The Kaplan–Meier type estimate is useful for determining the appropriate hazard 
function to use. The ratio of the number of events ( jδ ) and the number of individu-
als at risk at the time (njτj) is the hazard in the time interval from t j  to t j+1:

� (1.80)

where nj  is the number of individual who has not had the event and therefore at 
risk of the event and jτ  is the time interval computed as t tj j+ −1 . The plot of time 
versus h t( )  provides a visual inspection of the trend of the hazard function.

The proportional hazard is one of the methodologies to introduce and evalu-
ate a nontime-varying covariate effect, the other being accelerated failure time, 
which will not be discussed. Assuming a set of nontime-varying covariate vector 

[ ]1 2, , , nX X X X= 
, the proportional hazard function can be setup as

�
(1.81)

( ) ,j

j j

h t
n
δ
τ

=

0( , ) ( ) exp( ),Th t X h t Xβ=

Fig. 1.15   Example of baseline hazard and the corresponding probability density functions for 
exponential and Weibull distribution
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where h t0 ( )  is the baseline hazard that depends on t  but not X  and T Xβ  is 
1 1 2 2 n nX X Xβ β β+ + + . A covariate, for example the presence of a specific dis-

ease, has an effect on the hazard and the coefficient, 1.39diseaseβ = . The relative risk 
for individuals with the disease is approximately fourfold (since exp( . )1 39 4= ) 
that of the healthy individual. We recently applied the proportional hazard model 
in pharmacogenomics to evaluate the influence of CYP3A5 and ABCB1 polymor-
phisms on the renal transplant patient’s relative risks for adverse events associated 
with tacrolimus (Sy et al. 2013b). The study used a marginal proportional hazard 
model with common baseline hazard to adjust for possible correlations between 
multiple incidents of adverse events, given that each patient can have multiple ad-
verse events which were considered competing risks (Sy et al. 2013b; Wei et al. 
1989; Wei and Glidden 1997). The marginal semi-parametric model is not without 
its criticism. The most frequent concern being raised is its assumption that each 
individual is considered to be at risk of all recurrent events from the start (Metcalfe 
and Thompson 2007). This assumption apparently would result in estimates that ex-
ceed those provided by alternative approaches. However, the marginal approach is 
considered to be the lesser of the two evils, with the alternative being one that does 
not consider a marginal model for repeated events from the same individual. For the 
parametric approach, the frailty model where the random effect has a multiplica-
tive effect on the hazard can be used to handle recurrent events coming from the 
same individual. As pointed out by Hougaard, the limitation of the frailty model is 
the standard assumption of using a gamma distribution for frailty which puts more 
importance on late events (Hougaard 1995).

One can treat frailty as multiplicative of the hazard term such that

� (1.82)

where j  refers the individual and i is the subgroup, and the frailty term is 
exp( )i jWν ψ= . Wj  is the “frailty” sampled from a distribution with mean 0 and 

a variance 1. If ψ  is 0, we have a standard proportional hazard. The hazard rate 
above is conditional on both the covariates and the frailty term and so is the survivor 
function,

� (1.83)

Before we obtain the marginal survivor function, we shall introduce the gamma 
distribution. The density for the gamma distribution is given by

� (1.84)

where 1
θ

∝= , β θ= , and the gamma integral is given by 1

0
( ) e νν

∞ ∝− −Γ ∝ = ∫ . By 

adopting the gamma distribution, ( )g ν , the expected survivor function can be derived:

0( | , ) ( ) exp( ),ij ij i ij i ijh t h tν ν β=X X

( ) ( ) ( )( )0 0
| , exp ( | ) exp .

t t

ij ij iS t h u du h u duν ν ν= − = −∫ ∫X

1 /1( , , ) ,
( )

g e ν β
αν α β ν

β
∝− −=

Γ ∝
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�
(1.85)

where L is the Laplace transformation to integrate out the distribution of the frailty 
term.

Using the Weibull model as an example, the marginal Weibull survivor function 
with gamma frailty is such that

� (1.86)

and the Weibull hazard with gamma frailty is equal to

� (1.87)

The frailty model is applicable in the clinical setting. For example, when a popula-
tion is heterogeneous, it is likely that the population composition over time will 
consist of the more robust individuals as the frail ones failed. In such case, the 
overall population hazard is declining while individual hazards increase. The frailty 
term allows for the overall population hazard to decrease regardless of the indi-
vidual hazard shape. The frailty model is more suited for the population approach 
in this respect.

For time-varying covariates, which are very applicable in the pharmacometric 
setting wherein the effect of drug concentration on the risk or hazard is a dynamic 
variable, the hazard should vary over time. Holford provided a tutorial explaining 
how the treatment effect can be incorporated to the hazard function to evaluate the 
dynamic drug time course on the hazard over time (Holford 2013).

1.7.2 � Logistic Regression

A logistic regression is suitable for establishing relationship between the outcome 
of binary response data and explanatory variables (predictors). The probability of 
having an event is defined as:

� (1.88)

where ( )xπ  is called logistic function with values between 0 and 1. L x( )  is a linear 
function of predictors, 0 1( ) i iL x x xβ β β= + + + , where 0β  is the intercept and 

1, iβ β…  are the coefficients, and x  represents the predictors, such as drug concen-
tration (Heiberger and Holland 2004; Venables et al. 1994).

We take the probability of no event, which is one subtract the previous prob-
ability, ( )xπ :

( ) ( ) ( )( )0 0
( ) , exp ( | ) L exp ,

t t

ij iijS t E S t E h u du h u duν ν    = = − =        ∫ ∫X

1/
( ) 1 ( ) pS t t

θ
θ λ

−
 = + 

[ ]1( ) ( ) ( ) .ph t p t S t θλ λ −=

exp( ( ))( )
1 exp( ( ))

L xx
L x

π =
+
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�
(1.89)

The odds describe the relative risk such that:

�
(1.90)

Taking the natural logarithm of the odds above gives the logit L( ) :

�
(1.91)

The logit is no longer bounded and its value can take from – ∞ to + ∞. It is important 
to note that the error around the logit follows a binomial distribution rather than a 
normal distribution.

The generalized logistic regression model extends the analysis to multiple cat-
egorical response data or multinomial responses (Agresti 1999). The approach is to 
model cumulative logits by comparing each response category with baseline such 
that

�
(1.92)

where the subscript i  represents the i −1  levels of response categories plus the 
baseline, ( ) ( )i P Y iπ = =x x  and ( ) 1ii

π =∑ x . This approach is often called the 
proportional odds assumption (McCullagh 1980; Peterson and Harrell 1990):

� (1.93)

The comparison between two responses is then

�
(1.94)

Sheiner in 1994 used the proportional odds model with individual specified random 
effects for the analysis of a 4-degree pain scale. The nonlinear mixed-effects model 
of ordered categorical PD data is mostly based on the proportional odds model and 
has been widely used for the evaluation of both efficacy and adverse events (Cull-
berg et al. 2005; Gomeni et al. 2001; Gupta et al. 1999; Johnston et al. 2003; Knibbe 
et al. 2002; Kowalski et al. 2003; Lunn et al. 2001; Mandema and Stanski 1996; 
Mould et al. 2001, 2002; Olofsen et al. 2005; Xie et al. 2002; Zingmark et al. 2003).

Kjellsson et al. presented a differential odds model to circumvent the assump-
tion with the proportional odds model that the size of the predictor effect is the 
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same for the log odds for all categories (Kjellsson et al. 2008). They argued that 
the assumption is valid for categories on a continuous scale but would not hold for 
categories based on ranking scale. Even though historically, the partial proportional 
odds model has been used to allow for variable sizes of predictor effect, some of the 
categories within the model have odds that are proportional to each other. While the 
predictor function is identical for the proportional odds model, the differential odds 
model allowed this function to vary. The model was implemented using cumulative 
probabilities so that the correct probability value can be allocated to a specific score 
or category (for example, mild score is more likely than severe score for a response 
such as sedation). Figure 1.16 illustrates the predictor versus log cumulative odds in 
proportional and differential odds model. In the upper left-hand corner, the slopes of 
the log cumulative odds versus the predictor graph are the same for the proportional 
odds model. The remaining graphs illustrate the log-cumulative odds versus pre-
dictor trend with differential odds model. The Emax-shaped predictor effects in the 
upper right all had positive slopes whereas mixtures of positive and negative slopes 
are possible with the alternative implementation.
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Fig. 1.16   Logit functions based on proportional odds versus differential odds models and their 
effects on the cumulative log odds. Examples include proportional odds model with linear predic-
tor effects of the same slope ( upper left), differential odds model using Emax-shaped predictor with 
variable Emax values ( upper right), linear predictor with variable but positive slopes ( lower left), 
and linear function with both positive and negative slopes ( lower right). α2 for baseline logit with 
score ≥ 2, α3 and α2 for baseline-shifted logit with score ≥ 3 and ≥ 4, respectively. (Image from 
Kjellsson et al. 2008, used with permission)
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1.7.3 � Markov Chain

Another methodology in pharmacometrics that is gaining popularity for the analysis 
of categorical response variable is the Markov chain model, which has been applied 
in clinical studies. A Markov chain process is a probability model in which the dis-
tribution of future outcomes depends only on the current state and not on the whole 
history; this is often referred to as the memoryless property of a Markov chain (Bass 
2011). In other words, the probability of a certain state to occur in the following 
time interval is only dependent on the state in the current time frame. With this defi-
nition, we suppose that a process in state i  has a fixed probability Pij  that it will be 
in the next state j , such that

� (1.95)

where the set X nn , , , ,={ }0 1 2  is a stochastic process of finite possible outcomes 
and Pij  is often referred to as transition probability.

For this discussion, we shall use the example of early and late tacrolimus-related 
adverse event occurrence in stable pediatric renal allograft recipients after trans-
plantation (Sy et al. 2013a). The transition probabilities were defined based on two 
states: without (state 0) and with (state 1) adverse event. A Markov chain model was 
chosen in that study because the observations may not be independent since it was 
assumed that the occurrence of an adverse event is related to the drug concentration. 
The current state of the patient was conditioned on his previous visit. The transition 
probabilities were: P00  for those who did not report an adverse event at a particular 
visit given no adverse event in the previous visit; P01  if the patient without adverse 
event in the previous visit reported an adverse event in the current visit; P10  for pa-
tients with an adverse event in the previous visit but no adverse event in the current 
one; and P11  if an adverse event occurred on both visits. The transition probabilities 
adhered to Markov properties such that the sum of the transition probabilities from 
the specific state is 1:

�
(1.96)

The function that is utilized for the estimation of the transition probabilities varies 
depending on the study needs. Kemp and Kamphuisen simulated human hypno-
grams using a Markov chain model (Kemp and Kamphuisen 1986). Karlsson et al. 
parameterized the transition probabilities through binary logistic function to de-
scribe sleep data (Karlsson et al. 2000). Bizzotto et al. utilized a multinomial logis-
tic function to characterize the time course of transition probabilities between sleep 
stages in insomniac patients (Bizzotto et al. 2010, 2011). Ouellet et al. used a logis-
tic regression wherein the logit function is linear to estimate the transition probabil-
ity of having an adverse event due to dizziness in subjects who were administered 
a selective glycine transporter 1 inhibitor (Ouellet et al. 2011). An example in Ross 
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probability textbook adopted Poisson probability density function (pdf) for count-
ing process in the estimation of transition probability (Ross 2006). The Poisson 
pdf assumes that the magnitude of the variance is identical to its mean. However, 
many counting processes show greater variability than that predicted by the Pois-
son model. Troconiz et al. explored mixed Markov elements and Poisson distribu-
tion to evaluate overdispersion in the variance of a Poisson distribution (Troconiz 
et al. 2009). There are numerous other implementations of the transition probability 
which we cannot possibly list all of them in this introductory chapter. When select-
ing whether or not to use a Markov model, Karlsson suggested that the Markov 
model is more suitable for consecutive same-state observations, which are typical 
for sleep patterns, as an example (Karlsson et al. 2000).

1.8 � Disease Progression Model

The natural time course of a disease is often not one that is static but becomes pro-
gressively worse if left untreated. The disease trajectory is not constant, unlike the 
common assumption that is taken when using the Emax model wherein the baseline 
E0 is static. Even as early as the 1970s, investigators reported longitudinal studies 
of the natural history of non-Hodgkin’s lymphoma stages and coronary artery ste-
nosis (Fuller et al. 1975; Rosch et al. 1976). A disease progression model describes 
how an indicator for the disease or a clinically relevant endpoint changes in time. 
For the purpose of modeling disease progression, the approach has been applied in 
degenerative diseases such as Alzheimer’s disease (Holford and Peace 1992a, b), 
schizophrenia (Kimko et  al. 2000), and diabetic neuropathy (Bakris et  al. 1996; 
Bjorck et al. 1992; Crepaldi et al. 1998; Gall et al. 1993; Lewis et al. 1993; Parving 
et al. 1995).

Most of the disease progression models are empirical that describe the disease 
trajectory rather than its physiological background. The linear model has the fol-
lowing general form of equation that characterizes the disease as changing linearly 
with time:

� (1.97)

where S t( )  represents the disease status at a specific time t , S0 is the baseline 
that can be constant or a time-dependent function (e.g., sinusoidal function to char-
acterize circadian rhythm), and ∝  is the slope of the linear process. Therapeutic 
interventions, including placebo, can change the trajectory of a disease process. 
Interventions are generally classified as either symptomatic or disease modifying. 
Let f T( )  be the function to characterize the effect of treatment or intervention. In 
the case of symptomatic treatment, the effect of intervention would shift the disease 
baseline but not change the slope whereas disease-modifying interventions would 
change the rate of disease progression, as shown in Eqs. 1.98 and 1.99, respectively 
(Mould 2007; Mould et al. 2007; Schmidt et al. 2011):

0( ) ,S t S tα= +
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� (1.98)

� (1.99)

From the two equations above, the symptomatic interventions have different effect 
on the disease status from disease-modifying interventions. The disease trajectory 
will revert to its natural progression rate α  once the treatment is discontinued, 
regardless of the type of treatment. A third type of intervention is one that exerts 
completely cure and reverses the disease status back to pre-disease state. This type 
of intervention may best be characterized by a model that incorporates both symp-
tomatic and disease-modifying effect:

� (1.100)

In the examples listed previously of applications of disease progression modeling 
approach in specific therapeutic areas, the linear disease progression was used by 
Kimko et al. to study the effect of quetiapine fumarate, an antischizophrenic agent, 
on schizophrenia status based on the Brief Psychiatric Rating Scale (Kimko et al. 
2000).

Nonlinear functions have also been used as disease progression model. Pors-
Nielsen and Friberg used an exponential model to describe the effect of estrogen/
progestin treatment on osteoporosis (Pors Nielsen et al. 1994). Grantham et al. also 
used a similar model to describe the increase in renal volume in autosomal domi-
nant polycystic kidney disease (Grantham et al. 2008). Pillai et al. utilized an indi-
rect response type model to investigate biomarker response to ibandronate (Pillai 
et al. 2004).

1.9 � Systems Pharmacology

Molecular biology evaluates single genes and proteins while systems biology com-
bines the complex interactions at all levels of a biological system. By viewing all 
levels of biological information in the process, scientists are able to determine im-
portant properties of the system. Mathematical models of biological processes help 
describe time-dependent kinetic behavior and causality. The mechanistic approach 
to modeling systems’ biological processes is based on sound biological principles 
with prior knowledge about the biochemical network involved. The variables and 
parameters are related to a physiological or cellular process where the information 
is obtained from an in vitro or physiological experiment. This approach gives the 
scientist a holistic view of the biological system. The study of mechanism of drug 
action on the system itself also becomes more precise.

One of the systems level models applied in drug development is that of the regu-
lation of glucose. Landersdorfer and Jusko provided an excellent review of applica-
tion of modeling in diabetes, with a specific focus on modeling drug effects (Land-

0( ) ( )S t S f T tα= + +

0( ) ( ( ) )S t S f T tα= + +

0 1 2( ) ( ) ( ( ) )S t S f T f T tα= + + +



49

ersdorfer and Jusko 2008). In 1979, Bergman et al. developed a minimal model that 
included three coupled differential equations to describe the intravenous glucose 
tolerance test (Bergman et al. 1979). Using several feedback control mechanisms, 
the model couples insulin I  and glucose G  regulation and also introduces an ad-
ditional unobserved insulin component X  to describe the delay between insulin 
release and the response characterized by the reduction in blood glucose (Fig. 1.17):

�

(1.101)

The baseline values were h, GB  and IB  and parameters were SG, p2 , p3, γ , and 
n . The initial conditions were such that

2 3
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Fig. 1.17   Structure and equations of the minimal model of insulin-glucose feedback and control 
( top) and example of glucose and insulin concentrations after an IV glucose tolerance test fitted by 
the minimal model. (Image from Landersdorfer and Jusko 2008, used with permission)
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�

(1.102)

Though this model is widely used, it is not without its problems. The model does 
not allow both insulin and glucose to be fitted simultaneously (Pacini and Bergman 
1986). The additional unobserved insulin effect compartment X  is unbounded and 
can increase indefinitely when both glucose and insulin parts of the model were 
estimated simultaneously (De Gaetano and Arino 2000). Another issue with the 
model is that it does not take into account the first and second insulin phases (Ag-
erso and Vicini 2003). This model is applicable for diagnostic test but limited for 
drug evaluation.

In the study of glucagon-like peptide-1 analog NN221, Agerso and Vicini in-
troduced a Gaussian term to describe the first-phase insulin secretion (Agerso and 
Vicini 2003). The resulting equation for I  was such that

�
(1.103)

where ( )tβ  is an empirical Gaussian function that accounts for the amplitude of the 
first-phase insulin as well as duration of this process. Mager et al. (2004) further 
modified the γ  parameter to an Emax model to include a drug effect for another 
GLP-1 analog, exenatide (Mager et al. 2004). This model was used in the analysis 
of data from hyperglycemic clamp study in healthy subjects and diabetic patients.

Indirect response type models have been applied to study the effects of various 
antidiabetic agents on glucose and insulin. Benincosa and Jusko evaluated rosi-
glitazone effects wherein both fasting plasma glucose (FPG) and hemoglobin A1c 
(HbA1c) were measured (Benincosa and Jusko 1999). The glycosylation of hemo-
globin was described by a second-order process that is proportional to the FPG con-
centrations and is dependent on the ratio of the steady-state HbA1c and FPG. The 
elimination of HbA1c is a first-order process. Hamren et al. modified the model for 
tesaglitazar such that the glycosylation process also takes into account the erythro-
cyte lifespan and utilizes several transit compartments to describe the aging process 
of erythrocytes (Hamren et al. 2008).

Given that diabetes is a chronic disease that becomes progressively worse, 
the models should also examine disease progression for long-term studies of 
antidiabetic drugs. Frey et al. investigated the effect of sustained-release gliclazide 
on FPG over 10 weeks to 1 year period (Frey et al. 2003). In patients who responded 
to the treatment, FPG levels initially declined and then slowly increased whereas 
the nonresponders’ FPG levels continued to increase in the natural disease progres-
sion process. The authors utilized an empirical linear model with an intercept and 
a positive slope to describe the disease progression, measured by FPG over time:
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� (1.104)

where α is the slope of the disease progression process, Et  is the predicted treat-
ment effect at the time when the treatment was administered, and baseline is the pre-
dicted baseline FPG. Since gliclazide was assumed to only alleviate the symptoms 
of the disease without modifying the disease itself, the effect of the drug was to shift 
the curve without affecting the rate of disease progression that is characterized by 
the α term.

De Winter et al. modeled the worsening of β cell activity (B) and insulin sensitiv-
ity (S ) using a different disease progression model approach (de Winter et al. 2006):

�

(1.105)

where baselines were b0  and s0  and rates of disease progression were rb and rs. 
Their investigation also included a model for HbA1c, which was fitted simultane-
ously along with FPG and insulin levels.

More sophisticated models of the whole body have been developed and focused 
on tissues and organs that are relevant in diabetes. These models were used to simu-
late virtual patients and predict clinical trial outcomes. As these complex models are 
relatively difficult to develop, many assumptions are made and model parameters 
are often taken from literature. Examples of these models include the Archime-
des, the Entelos Metabolism, and T1Dm PhysioLab®. As these models are propri-
etary, there is a lack of transparency in the model equations and parameter values 
(Herman 2003).

Another therapeutic area where systems biology and pharmacology models are 
extensively used is in oncology. Biochemical reactions and signaling pathways are 
often described by differential equations that characterize a chemical reaction. Most 
of these processes involve a complex network of chemical and biochemical reac-
tions. The law of mass action is the common convention that is used to describe 
the rate at which chemical entities interact to form a different combination. The 
computational model for heregulin-induced p-ErBB3 signaling and the effect of 
antibody inhibitors pertuzumab and lapatinib utilizes such convention (McDonagh 
et al. 2012; Schoeberl et al. 2009). The following chemical reactions were listed for 
ErbB2/3-bispecific antibody binding and receptor cross-linking:

� (1.106)

� (1.107)

� (1.108)
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� (1.109)

where E2 and E3 represent ErbB2/3, respectively, and BsAb refers to a bi-specific 
antibody. The chemical reactions listed in Eqs. 1.106–1.109 are reversible processes 
and the reaction schema can be generalized:

� (1.110)

where k is the forward reaction rate and k’ is the reversible rate. The rate of change 
for each of the above species can be written as follows:

�

(1.111)

As one can see, writing out the differential equations for the chemical reaction in 
Eq. 1.111 becomes a tedious effort, especially when the biological system has many 
players. Some systems biology tools allow user to create reaction processes and 
will automatically create the corresponding differential equations in the background 
(Maiwald and Timmer 2008).

In identifying targets, McDonagh et al. utilized computation modeling and cell 
signaling insights to develop specific targeted antibodies that are capable to de-
stabilize the over expression of ErbB2 by inhibiting ErbB3 signaling (McDonagh 
et al. 2012). They identified that ErbB3/heregulin activation plays a critical role in 
ErbB2-positive refractory disease and that the synergy can be achieved in combi-
nation therapies involving ErbB3 inhibitor and ErbB2 therapies (McDonagh et al. 
2012). System pharmacology models are slowly being adopted in drug develop-
ment settings and the examples show promising prospect for systems pharmacology 
to become part of mainstream pharmacometric analyses.

1.10 � Software

As software facilitates PKPD modeling and simulation, we will discuss the avail-
able software packages that have been used for different types of analyses. For 
noncompartmental analysis (or statistical moment approach), WinNonlin is most 
commonly used in the pharmaceutical industry. Alternately, the PK package in R is 
a basic PK package that performs noncompartmental analysis of PK data as well. 
A brief description of this tool can be found on the CRAN project website (http://
cran.r-project.org/web/views/Pharmacokinetics.html). For nonlinear mixed effect 
modeling, NONMEM is the most commonly used software in the drug development 
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setting. The Non-Parametric Adaptive Grid algorithm using NPAG (USC*PACK) 
is common for modeling population PK data in the therapeutic drug monitoring 
setting. The other software for mixed effect modeling are ADAPT that is based on 
important sampling algorithm, MONOLIX with the Markov Chain Monte Carlo 
(MCMC) stochastic approximation expectation maximization (SAEM). BUGS is 
a software package for performing Bayesian inference using Gibbs sampling. The 
user specifies a statistical model by stating the relationships between related vari-
ables. The software determines an appropriate MCMC scheme (based on the Gibbs 
sampler) for analyzing the specified model. The user then controls the execution of 
the scheme. There are two main versions of BUGS, namely WinBUGS and Open-
BUGS. The recent release of NONMEM has incorporated the algorithms in the 
other software packages mentioned above. SimCyp includes a population-based 
simulation system using PBPK model.

    For systems biology modeling, the Matlab platform and specialized toolboxes 
that were built on top of the Matlab platform can handle large and complex mod-
els that may contain hundreds of coupled differential equations. The large models 
can be slow in Matlab. Specialized Matlab toolbox such as Potterswheel (URL: 
potterswheel.de) utilizes chemical reaction scheme and builds the corresponding 
differential equations in C language to speed up the analysis and fitting processes 
(Maiwald and Timmer 2008). Curated systems biology models are available from 
library consortiums that are publicly accessible (e.g., http://www.ebi.ac.uk/biomod-
els-main) and can be ported to specialized software packages through Systems Biol-
ogy Markup Language (SBML).

1.11 � Conclusion

Over the past decade, pharmacometrics has become a discipline that is frequently 
utilized in academia, worldwide regulatory agencies, and the biopharmaceutical in-
dustry. Cost cutting and improvement in drug development will come from creative 
application of pharmacometric modeling approach.

The US FDA has emphasized the importance of model-based drug develop-
ment wherein PK/PD models to characterize drug efficacy and safety are being 
developed for both preclinical and clinical data. The agency strongly supports this 
program, “Pharmacometric analyses, we believe, are valuable to gain insights into 
the data across drugs and to plan future development. The model and simulation 
approaches should not be viewed as substitutes to conducting clinical trials in all 
instances. Also, such quantitative analyses should not be primarily used to ‘rescue’ 
failed trials for seeking approval. Where appropriate, the FDA accepted simulation 
results” (Bhattaram et al. 2005).
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Appendix

Derivation of Eq. 1.55

Implicit in the assumption that the concentration of drug in the system that is being 
cleared is constant or at steady state, we assumed that the rate of change in the drug 
concentration is 0 and thus set all the left-hand sides in the list of equations in Eq. 
1.53 to 0.

� (1.112)

� (1.113)

� (1.114)

� (1.115)

� (1.116)

� (1.117)

� (1.118)

From Eq. 1.112, we integrate

� (1.119)

By applying Eq. 1.54 and substituting 1 0·Q C  with 4 4 5 5 6 6· · ·o o oQ C Q C Q C+ +  to 
Eq. 1.119, the resulting expression is

�
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Rearrangement of Eq.  1.120 by adding and subtracting 7 7 4 7( · ( )oQ C Q Q+ −  
2 5 5 6 2· · )oC Q C Q C+ +  to Eq. 1.120 such that the net result is 0 will yield the follow-

ing expression:

�

(1.121)

From Eq. 1.117, 6 2 6 60
( · · ) 0oQ C Q C dt

∞
− =∫ . Given that 7 7 4 7 2· ( )oQ C Q Q C+ −  rep-

resents the total amount of drug entering the liver from the artery and the gut which 
is also Cp, wherein 4 7 7 4 7 2· · ( )p oQ C Q C Q Q C= + − , we can then simplify Eq. 1.121 
as follows:

�

(1.122)

Furthermore, 4 5 6 2 1 20 0
( )Q Q Q C dt Q C dt

∞ ∞
+ + =∫ ∫ , since 1 4 5 6Q Q Q Q= + +  and 

from Eq. 1.113, 1 30 oQ C dt
∞

∫ , then Eq. 1.122 can be rewritten as Eq. 1.55:

Derivation of Eq. 1.60

Using the expression for mean clearance, the rearrangement of Eqs. 1.55 through 
1.59 will result in the following:

�

(1.123)

We set 4 7 7 4 7 2· ( )p oQ C Q C Q Q C= + −  to Q C C Q C Cp o4 2 7 2 7( ) ( )− = − . Then inte-
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1 1 3 1 1 20 0
3

1 10 0

( ) ( )oQ C C dt Q C C dt
CL

C dt C dt

∞ ∞

∞ ∞

− −
= =∫ ∫

∫ ∫
. Thus,

� (1.125)

In the following step, multiply Eq. 1.124 by A125:

�
(1.126)

Since  7 7 7·CL Q E= . In the following step, we substitute Eqs. 1.126 and 1.125 to 
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