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Preface

Modeling and simulation tools have long been used in engineering and aerospace 
industries to develop products that would be prohibitively expensive to optimize 
through iterative improvement of prototypes. Modern drug development is now 
adapting and integrating analogous tools based on information from all phases of 
the development process. This integrative approach is now recognized as the disci-
pline of pharmacometrics. With the increased regulatory burden and high expecta-
tions from prescribers and patients, it is neither cost-effective nor time-efficient to 
tackle all open questions experimentally. An increasing number of decisions are 
now based on appropriate modeling and simulation, which allows integration of all 
available knowledge in a quantitative and objective way.

This book provides an update on the current state of pharmacometrics in drug 
development. After an introduction of the basic and underlying pharmacokinetic 
and pharmacodynamic concepts of pharmacometrics in drug development, the book 
presents numerous specific applications as examples that utilize pharmacometrics 
with modeling and simulations over a variety of therapeutic areas. These chapters 
were contributed and written by leading scientists from academia, the pharmaceuti-
cal industry, and regulatory agencies. The examples illustrate how results from all 
phases of drug development can be integrated in a more timely and cost-effective 
process. The process of applying pharmacometric decision tools during drug de-
velopment can allow data-based objective decision making. At the same time, the 
process can identify redundant or unnecessary experiments as well as some costly 
clinical trials that can be avoided. In addition to cost savings by the expedited devel-
opment of successful drug candidates, pharmacometrics has an important economic 
impact in drug product selection. Unsuccessful drug candidates can be identified 
early and discontinued without expending efforts required for additional studies 
and allocating limited resources. Hence, pharmacometric modeling and simulation 
has become a powerful tool to bring new and better medications to the patients at a 
faster pace and with greater probability of success. We hope that this book will help 
to spread modeling and simulation activities in drug development and that it will 
initiate many more applications in the future.

We thank all of our colleagues who contributed to this book and were most gen-
erous in devoting their time and effort to make this envisioned project a reality. We 
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deeply appreciate the priority given to this project by these leaders in their field who 
have numerous demands on their professional expertise. Prof. Daan Crommelin 
provided the initial seed for this book and deserves a special thanks. We also thank 
the team at Springer Science+Business Media for the pleasant, professional, and 
uncomplicated collaboration on this project. And finally, we thank our families for 
their patience and understanding.

Orlando, FL, USA
Gainesville, FL, USA

Stephan Schmidt, PhD
Hartmut Derendorf, PhD
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Chapter 1
Introduction to Pharmacometrics and 
Quantitative Pharmacology with an Emphasis 
on Physiologically Based Pharmacokinetics

Sherwin K. B. Sy, Xiaofeng Wang and Hartmut Derendorf

© American Association of Pharmaceutical Scientists 2014
S. Schmidt, H. Derendorf (eds.), Applied Pharmacometrics, AAPS Advances  
in the Pharmaceutical Sciences Series 14, DOI 10.1007/978-1-4939-1304-6_1

H. Derendorf ()
Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
e-mail: hartmut@ufl.edu

S. K. B. Sy
Department of Pharmaceutics, University of Florida, Gainesville, FL, USA

X. Wang
Clinical Pharmacology, Otsuka Pharmaceuticals, Princeton, NJ, USA

1.1  Introduction

Pharmacometrics has become a term that encompasses modeling and simulation 
for pharmacokinetics (PK), exposure–response relationship, and disease progres-
sion. Mechanistic models that describe the biochemical processes involved in a 
physiological system have become more utilized in drug development. The mod-
els of complex systems are generally classified as systems pharmacology. A quote 
from William Jusko describes the role of pharmacometrics in drug development: 
“Pharmacometrics lies at the heart of what drug companies do: collecting data from 
animals, normal volunteers, and patients; quantifying it, and then being able to de-
termine what that data mean for optimizing drug efficacy and minimizing toxicity” 
(Nielsen and Friberg 2013). Pharmaceutical and biotech companies have invested 
heavily in establishing pharmacometrics expertise to utilize the preclinical, clinical, 
as well as human genomic data to understand the disease progression, the drug be-
havior, and its effect on individual patients and to personalize medicine to specific 
groups of patient population. The purpose of this chapter is to provide an overview 
of different approaches that were used in pharmacometrics in the context of phar-
maceutical drug development.
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1.2  Classical PK Analysis

There are two primary approaches in the classical PK analysis: the compartmental 
modeling and the noncompartmental analysis. Compartmental modeling is based on 
the mass balance equations on the compartment and the noncompartmental model-
ing is based on the statistical moments derived from the time course of the drug 
concentration data.

Compartmental PK models are widely used to characterize the disposition of a 
drug using its concentration–time profiles sampled from body fluid such as plasma, 
serum, or whole blood following an administered dose. The general expression of 
the compartmental model is given in Eq. 1.1, where a series of exponential terms 
are used to fit to the drug concentration–time profile:

 (1.1)

where i  indicates each compartment, n is the total number of compartment, and Ai 
and iα  are called macroconstants reflecting the amount of the drug administered, 
the mass transfer between the compartments, and the elimination of the drug from 
the body. The number of compartments (n) determined by curve fitting is a rather 
abstract mathematical construct. The interpretation of Eq. 1.1 is that the body is a 
series of compartments; the drug is distributed between compartments, and is elimi-
nated from the body. It was recognized that Eq. 1.1 was the solution of a series of 
ordinary differential equations derived by mass balance of each compartment.

The simplest compartmental model has one compartment with a bolus injection. 
The differential equation for the one-compartment model can be derived from mass 
balance; that is, the rate of change of the drug amount in the compartment equals the 
rate of the input minus the rate of output:

 
(1.2)

where V  is the volume of the compartment, C  is the drug concentration of the 
compartment, and ke is the first-order elimination rate constant. C0 is the initial 
condition of the differential equation, which is the drug concentration prior to drug 
administration. For a bolus injection, when using the delta function to represent the 
rate of input, the solution to the above equation, assuming V is a constant, is:

 
(1.3)

where Dose  is the input amount of the drug. Comparing Eq. 1.1 with Eq. 1.3, it is 
obvious that A Dose V= / , ekα = , and n = 1.

Because Eq. 1.1 is first-order kinetics, the half-life ( t1/2) can be estimated as 

t
ke

1 2
2

/
ln( )

= . Keep in mind that only for first-order kinetics, the half-life is a con-

stant. Equation 3 is often reparameterized to

( ) i

n
t

i
i

C t A e α−= ∑

0, at 0,e
dVC rate of input k VC t C C
dt

= − = =

C t Dose
V

e k te( ) = −



31 Introduction to Pharmacometrics and Quantitative Pharmacology …

 (1.4)

where k CL Ve = /  and CL  refers to clearance. Clearance is one of the most im-
portant concepts introduced in PK. Additional information on clearance will be dis-
cussed in the section on the clearance definition.

In many cases, the disposition of a drug in the body follows a multi-exponential 
decline, which shows as multi-linear phases in the log concentration versus time 
profile shown in Fig. 1.1. This type of drug concentration profile is often character-
ized by two or more compartments. For a two-compartmental model with a bolus 
injection, Eq. 1.1 becomes

 (1.5)

The half-life of the α phase and the β phase (or called the terminal phase) of the drug 
can be estimated as

 (1.6)

To estimate the overall half-life of a drug in the body following multi-exponential 
decline, the concept of “effective half-life” was introduced and the calculation is 
given in Eq. 1.7, e.g. for a two-compartment model:

 (1.7)

where AUC  is the area under the concentration–time profile.
The differential equations for a two-compartmental model can be derived through 

mass balance on each compartment:

 

(1.8)

where Ac and Ap refer to the drug amounts in the central and peripheral compart-
ments, respectively; k12 and k21 are the mass transfer rate constants between the 

C t Dose
V

e
CL
V
t

( ) =
−

C t Ae Bet t( ) = +−∝ −∝

1/2, 1/2,
ln(2) ln(2),t tα βα β

= =

1/2 1 1, ,
2 2

1 ,A Beffective t t t
AUC α βα β

 
= +  

12 21

12 21

c
c e c p

p
c p

dA Input rate k A k A k A
dt

dA
k A k A

dt

= − − +

= −

time

Lo
g 

C
on

c.

Fig. 1.1  Log concentration–
time profile that follows a 
bi-exponential decline
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central and the peripheral compartments, also called microconstants. The analytical 
solution to Eq. 1.8 for a bolus injection can be expressed in the same manner as 
Eq. 1.5, with the following micro- and macroconstant conversion:

Re-parameterization for a two-compartment model in terms of CL, intercompart-

mental clearance (Q), Vc, and Vp can be expressed as k
CL
V

k Q
Ve

c c

= =, 12 , k Q
Vp

21 = . 

For more detailed discussions of commonly used PK models including intravenous 
infusion and extravascular routes, the reader may refer to the textbooks on PK and 
pharmacodynamic (PD) analysis (Derendorf and Hochhaus 1995; Gabrielsson and 
Weiner 2000; Gibaldi and Perrier 1999; Rowland and Tozer 1989).

The compartmental models are often used to simulate concentration profiles from 
one dosing regimen to another, or from a single dose to a steady-state concentration 
profile. The compartmental model has its limitation, however. First, the number of 
compartments and the property of the compartments are rather abstract mathemati-
cal constructs. The underlying physiology of the model and the resulting model 
representation is subject to the analyst’s interpretation. Second, the parameters do 
not have a clear physiological meaning, and so the source of the variability of the 
parameters cannot be clearly identified and be correlated to physiological reality.

A noncompartmental model is based on statistical moments of the concentra-
tion–time data (Dunne 1993; Yamaoka et al. 1978). The nth-order statistical mo-
ment has the following mathematical form:

 
(1.9)

where t  is time, n  is the order of moment, and C t( )  is the drug concentration as a 
function of time. The area under the concentration–time curve (AUC), the moment 
curve (AUMC), and subsequently the mean residence time (MRT) can then be com-
puted through integrating the concentration–time profile:

 (1.10)

12 21ek k kα β+ = + +

21·ek kα β× =

21( )
( )c

Dose kA
V β

∝ −=
∝ −

21( ) .
( )c

Dose kB
V

β
β
−=

∝ −

t C t dtn ( ) ,
0

∞

∫

AUC t C t dt C t dt= =
∞ ∞

∫ ∫0

0 0
( ) ( )
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 (1.11)

 (1.12)

In practice, the computations of the above parameters are carried out using numeri-
cal integrators such as the linear or log-linear trapezoidal rule on the discrete con-
centration–time data. PK parameters such as CL, Vss, and t1 2/  can be derived from 
those statistical moments:

 (1.13)

 (1.14)

The terminal half-life can be calculated using the slope, λz, of the log concentra-

tion curve, 1/2
ln(2)

z

t
λ

= . If the concentration profile shows mono-exponential de-

cline, the terminal half-life can also be calculated using the t MRT1 2/ *= ln(2) . If 

the concentration profile shows multi-exponential decline, the half-life calculated 
using 1/2 ln(2)* = t MRT  will be the “effective half-life,” the same as the solution us-
ing Eq. 1.7 in the compartmental modeling approach. The underlying assumption 
of the noncompartmental modeling is that the PK of a drug is linear (Gibaldi and 
Perrier 1999). A special case is that the noncompartmental model is equivalent to 
a one-compartment PK model, where the PK parameters derived through noncom-
partmental analysis can also be obtained from a one-compartment model through 
integration of Eq. 1.2.

The advantage of a noncompartmental method compared to the compartmen-
tal model is that the results from the moment approach are less subjective on the 
analysts’ bias of their model of choice (Yamaoka et al. 1978). From a numerical 
analysis point of view, noncompartmental analysis is using numerical integration 
over the time course of drug concentration to derive PK parameters rather than 
optimization on either algebraic or differential equations. Thus, the “noise” in the 
drug concentration–time profile has less impact on the PK parameters than that 
of compartmental modeling. For example, when calculating the effective half-life 
using Eq. 1.7, an unrealistically long effective half-life could be generated when 
the terminal phase slope cannot be accurately estimated. In that situation, the effec-
tive half-life estimated using ln( )*2 MRT  is more reliable. The noncompartmental 
analysis is often the choice for computing PK parameters of a drug for regulatory 
submission.

AUMC t C t dt tC t dt= =
∞ ∞

∫ ∫1

0 0
( ) ( )

0

0

( )
.

( )

tC t dt AUMCMRT
AUC

C t dt

∞

∞
= =

∫

∫

CL Dose
AUC

=

V CL MRTSS = * .

1 Introduction to Pharmacometrics and Quantitative Pharmacology …



6 S. K. B. Sy et al.

1.3  Physiologically Based PK Modeling

The physiologically based pharmacokinetic (PBPK) model was developed to over-
come the limitations of the compartmental modeling. The structure of the model, 
the property of the compartments, and the parameters are based on the underlying 
physiological and biological processes that are responsible for drug disposition.

1.3.1  History and Methodology of PBPK Approach

The concept of predicting the effect of a xenobiotic on a living organism based on 
mathematical models that incorporate real physiological parameters such as organ 
functions and flow rates was initially proposed by Teorell in (1937a, b). No prog-
ress was made in PBPK since Teorell’s postulation of using mathematical models 
to describe xenobiotic disposition until the late 1950s, possibly due to the limita-
tion in computational power. The most comprehensive development was made by 
Bellman and colleagues in the early 1960s (Bellman et al. 1963). The depiction of 
a PBPK model proposed by Bellman and his colleagues is shown in Fig. 1.2 with 
modifications. In the model, the tissue or lumped tissue was connected through 
blood flow. Blood flow through the main arteries and veins was assumed to be simi-
lar to a plug flow, that is, the drug concentration during the circulation was changing 

Fig. 1.2  An illustration of a 
PBPK model for a mamma-
lian circulation system
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with time and longitude. The interstitial fluid and intracellular region were treated 
as perfectly mixed compartments. Based on those assumptions, the mathematical 
expression for the model was a set of difference-differential equations. The assump-
tion of the plug flow leads to computational difficulties, as the entire past history 
of the drug concentration at each region of the body needs to be retained for the 
calculation of the successive time interval. Their work was discussed in detail and 
summarized by Bischoff and Brown in 1966 (Bischoff 1966). In the same publi-
cation, Bischoff and Brown discussed the application of mass transfer concept at 
great length at the levels of capillary, interstitial, and intracellular region. They also 
discussed the time needed for “mixed” drug concentration in the blood circulation 
versus the transient time of a typical human (~ 1 min). Based on the physiological 
reality and transport phenomena, the compartment property including the capillary, 
interstitial, and cellular region in Fig. 1.2 was characterized without accounting for 
every detail. They turned a set of difference-differential equations into differential 
equations such as Eqs. 1.15 and 1.16. Using a delta function to represent a bolus 
injection, the drug concentration profiles in different regions of the body were simu-
lated.

To illustrate the mathematical expression and the parameters of a general PBPK 
model, for simplicity, if we assume that the interstitial and cellular regions are at 
equilibrium, a compartment in Fig. 1.2 can be illustrated as shown in Fig. 1.3. The 
differential equations describing the compartment were given in Eqs. 1.15 and 1.16:

 (1.15)

 (1.16)

where Qj is the blood flow rate for the j  compartment, PA is the product of the 
membrane permeability and the membrane area; subscript b  is for blood, t  for 
tissue, and f  for free drug concentration. The free and the total drug concentration 
can be correlated based on linear or nonlinear binding. The term rj  represents the 
elimination rate (metabolism and/or excretion) of the drug from compartment j; it 
can occur at different regions of the compartment. The drug can be administered 
through oral, intravenous, or intramuscular routes. The route of administration can 
be incorporated to the PBPK model.

V dC
dt

Q C C PA C Cb j b j
j b j bf j tf j

, ,
, , ,( ) ( )= − − −

V dC
dt

PA C C rt j t j
bf j tf j j

, ,
, ,( ) ,= − −

Vb, Cb

Vt, Ct

r

P

Compartment j

Qi, CFig. 1.3  A representative 
compartment with lumped 
interstitial and cellular 
regions
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As shown in Eqs. 1.15 and 1.16, there are three types of information required to 
solve a PBPK model: (1) the anatomy and physiology of a specific species; (2) the 
physicochemical properties, such as binding and membrane permeability, that are 
drug specific; (3) metabolism and excretion that are both drug- and species-specific. 
The anatomical and physiological parameters are usually available. Extensive data 
such as weight and blood flow rate through each tissue for different species were 
provided by Brown et al. (1997). However, physicochemical data and metabolism 
information are limited and often rely on in vitro studies or in vivo tests that were 
carried out in different species.

1.3.2  Number of Compartments in a PBPK Model

The two questions that an analyst needs to ask himself/herself when developing a 
PBPK model are: (1) how many compartments are needed and (2) how much detail 
is required for that compartment? Extensive work from a typical four-compartment 
model with flow-limited assumption with or without extensive details for a particu-
lar targeted organ to more than ten compartments describing the whole body can 
be found in the literature (Andersen et al. 1984, 1987; Bischoff et al. 1968, 1970, 
1975; Liu et al. 2005; Peters 2008; Peters and Hultin 2008; Ramsey and Andersen 
1984; Wang et al. 1997). A general consideration of the number of compartments to 
choose from and the details of the model depend on these information: the target or-
gan, the physicochemical and pharmacologic properties of the drug that determine 
the drug transfer in the body, and the PK time scale (Bischoff 1975).

1.3.3  Target Organ

The structure of a PBPK model starts with the anatomy of the body. As the drug 
concentration in a target organ or at the site of action is of interest, single compart-
ment is often used to represent the target organ. A significant amount of work using 
the PBPK approach has been done for anticancer drugs, central nervous system, 
hepatic metabolism and xenobiotic inhalation (Andersen et al. 1984, 1987; Baxter 
et al. 1994; Chen and Gross 1979; Collins and Dedrick 1983; Pang and Durk 2010; 
Ramsey and Andersen 1984; Reddy et al. 2005).

1.3.4  Mass Transfer Phenomenon

Lumping is often used for PBPK model reduction. There are two levels of lump-
ing: (1) at the organ level and (2) at the cellular level. Lumping at the cellular level 
was originally discussed in details by Bischoff and Brown in their work mentioned 
above (Bischoff 1966). Lumping at the organ level was extensively discussed from 
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the late 1960s to the 1990s (Bischoff 1987; Bischoff and Dedrick 1968; Coxson and 
Bischoff 1987a, b; Gerlowski and Jain 1983; Nestorov et al. 1998). The basis for 
lumping is dependent on the mass transfer process and the physicochemical proper-
ties of a drug. The following section discusses the types of mass transfer function 
and the conditions for their applications.

1.3.4.1  Flow-Limited Assumption

The flow-limited assumption was made primarily due to the lack of information 

on membrane permeability. The criterion of flow limited was given as 1j

j

PA
Q
  

(Bischoff 1975), that is, the membrane transfer is much faster than convection (from 
blood flow). Under this assumption, the free drug concentration in the tissue and in 
the blood is at equilibrium, C Ctf j bf j, ,= . Therefore,

 
(1.17)

For linear binding, Eq. 1.16 can be simplified as C R Ct b= * , where R  is called the 
tissue to blood partition coefficient. Under flow-limited assumption, Eqs. 1.15 and 
1.16 become

 (1.18)

Or if it is expressed using Cb, Eq. 1.18 becomes

 
(1.19)

Equations 1.18 and 1.19 demonstrate that the concentration of a drug in a particular 

organ, Cb j,  or Ct j, , is determined by the value of 
Q

V R V
j

b j j t j, ,+
 and the elimination 

of that organ, 
r

V R V
j

b j j t j, ,+
. As such, lumping different organs or body regions de-

pends on the blood flow rate through the organ, the partitioning of the drug between 
the blood and the tissue levels, and the elimination process of the organ (for an 
eliminating organ).

For noneliminating organs connected in parallel, the blood concentration en-
tering those organs, C , is the same. Therefore, the blood concentration leaving 

the organ, Cb j, , and the concentration of the tissue, is determined by the ratio of 
Q

V R V
j

b j j t j, ,+
. The richly perfused organs with similar partition coefficient of the 

C C
R C
K Ct j bf j

j bf j

d j bf j
, ,

, ,

, ,

.= +
+

tot

, , ,
,

b j t j t j
t j j j

j j

V dC C
V Q C r

R dt R
   

+ = − −   
   

( ) ( ), ,
,

,V R V
dC
dt

Q C C rb j j t j
b j

j b j j+ = − −
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drug are usually lumped into a single compartment. The blood flow rate through the 
compartment is Qjj

n

=∑ 1
, and the volume of the compartment is , ,

n
b j j t jj 1

V R V
=

+∑ . 
The same principle can be applied to poorly perfused organs with similar partition 
coefficient. For a lipophilic compound, higher partition coefficient in the adipose 
versus the lean tissue resulted in different profiles of the concentration of the drug 
in the tissue, and therefore, a separate compartment for the lean tissue or the adipose 
tissue is often required. In addition, an organ or a body region with significantly 
low blood flow rate and low partition coefficient of the drug in those regions can 
be omitted in the PBPK model. Whether an eliminating organ can be lumped with 
a noneliminating organ depends on the ratio of the blood flow rate to the clearance 
of that organ (Bischoff 1975; Nestorov et al. 1998).

For organs that are connected in series, such as the venous–lung–artery channel 
or the splanchnic organs, the blood concentration profile leaving the channel and 
returning to the vein is determined by the organ that has the longest transient time, 
or the organ that eliminates the xenobiotics. If the partition coefficient between the 
plasma and the lung tissue is small, the transient time of the lung is much smaller 
than those of the vein and the artery. The vein and the artery often can be lumped to 
one compartment without including the lung, V V Vartery vein= + , if the lung is not an 
eliminating organ. In the splanchnic channel, the splanchnic organs are often omit-
ted, since the liver is the primary eliminating organ and the blood concentration leav-
ing the channel is approximately represented by the liver. The gastrointestinal tract 
(GI) tract may be included to describe the absorption and/or reabsorption of the drug.

In general, a four-compartment lumped PBPK model, consisting of the blood 
compartment, the richly perfused compartment such as liver or kidney, the poorly 
perfused compartment such as the muscle, and a compartment representing the adi-
pose tissue can adequately describe the drug disposition in the body. Other compart-
ments may be added to describe the specific target organ as in the PBPK model to 
study tumor, wherein a separate compartment was incorporated to represent that 
organ where the tumor resides.

If the drug transfer across the membrane is fast enough compared to the mass 
transfer through convection (blood flow), the entire body can be modeled as a sin-
gle-compartment model assuming that the blood concentration is at equilibrium 
with tissues at different regions. See the elimination-limited case below for the 
mathematical expression.

1.3.4.2  Membrane Limited

The opposite situation contrasting to the flow-limited mass transfer is the case 
wherein the membrane transfer is slow enough compared to the rate of the drug 

supply by blood flow, 1j

j

PA
Q


, so that the gradient of the drug concentration in 

the blood entering and leaving the compartment is negligible (Bischoff 1975). 
Therefore, C Cb j, ≈ . Equations 1.15 and 1.16 for the compartment with membrane-
limited transfer can be simplified as:
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(1.20)

If the drug transfer across the membrane of all regions of the body is slow enough 
that it can be considered negligible, the entire body can be modeled as a single-
compartment model by only including the blood pool:

 (1.21)

1.3.4.3  Elimination Limited

In their publication on the general solution of a two-compartment model, Bischoff 
and Dedrick introduced the concept of the elimination-limited assumption, where 
the mass transfer is much more rapid than the total elimination rate (Bischoff et al. 
1970). The importance of introducing the elimination-limited concept is to simplify 
a PBPK model to a one-compartment model. The criteria for when a system follows 
the elimination-limited profile is given in their study through a two-compartment 
open model under a flow-limited assumption, that is, the drug distribution to the 
tissue through the blood flow rate (mass transfer through convection) is much faster 
than the rate of elimination. In the elimination-limited situation, the entire body can 
be lumped into a one-compartment model:

 
(1.22)

Equation 1.21 has the same mathematical expression as the one-compartment mod-
el in classical compartmental modeling. The difference is that Eq. 1.5 derived from 
PBPK model gives the meaning to Vd , which is equivalent to V R Vb j t jj

n
+ ∑ , . In fact, 

the elimination-limited case does not necessary require flow-limited assumption. 
As long as the elimination rate is slow enough compared to both convection and 
membrane transfer, the elimination-limited case stands. This also explains why in 
covariate analysis in the population PK modeling, the volume of distribution often 
is related to body weight, as tissue volume is proportional to the body weight. The 
tissue concentration then can be easily calculated as C

R
b

t j,

, where Cb is the blood 

concentration and Rt j,  is the partition coefficient of the organ. A typical example can 
be found for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), since TCDD is known 
to remain in the biological system for a very long time. The half-life in human 

is around 5–10 years. Table 1.1 lists the physiological data for a standard human 

with body weight of 70 kg and the estimated value of 1
λ

 with ,lip bi
i

el b lip

VQ
k V V

λ ≈  for a  

V
dC
dt

PA C C rt j
t j

tf j j,
,

,( ) .= − −

V dC
dt

Input rb j= − .

.
n

b
b j tj j

j

dCV R V Input r
dt

 
+ = − 

 
∑

1 Introduction to Pharmacometrics and Quantitative Pharmacology …



12 S. K. B. Sy et al.

flow-limited case, or ,lip bi
i

el b lip

VPA
k V V

λ ≈  for a membrane-limited case, where the sub-

script lip refers to lipid content.
The lipid contents of each organ in Table 1.1 were calculated based upon the 

values from the literature (van der Molen et al. 1996). The elimination rate constant 
kel  was estimated conservatively assuming a half-life of 5 years. The values shown 
in Table 1.1 suggested that the elimination-limited assumption was satisfied for 
TCDD. This one-compartment model through PBPK reduction was adopted in hu-
man risk assessment in the environmental toxicology (Thomaseth and Salvan 1998; 
van der Molen et al. 1996).

1.3.5  PK Time Scale

The PK time scale plays an important role in PBPK model development (Bischoff 
1975; Dedrick and Bischoff 1980; Nestorov et al. 1998; Oliver et al. 2001). For 
a standard male or female, the time it takes to complete one blood circulation is 
about 1 min. For most of the drug acting in the scale of several minutes, hours, 
days or longer, it can be assumed that the blood in the circulation is a uniform pool. 
However, more details are required in the model for the rapidly eliminated drug, in 
a time scale of minutes. The sampling site could also be important. The following 
example illustrates the methodology in the selection of the number of compartments 
to use for building a PBPK model for a short-acting drug.

1.3.6  Example 1: A PBPK Model for a Contrast Agent 
for Ultrasound Imaging

The PBPK model developed for a contrast agent for ultrasound imaging (Wang 
et al. in preparation) is shown in Fig. 1.4. The model has detailed information on 
the cardiovascular circulation and pulmonary circulation, which included the vena 
cava, right heart, pulmonary vein, lungs, pulmonary artery, left heart, and aorta. The 
actual sampling site and the administration site had to be specified in the model to 

Table 1.1  Physiological parameters of TCDD for a standard 70-kg human
Weight 
(kg)

Blood flow 
(L/day)

Partition 
coefficient

PA (mL/h) Lipid con-
tent (kg)

1
λ

Lung 1.17 8064 6 Flow-limited 0.057 4.03 × 10−10

Spleen 0.182 111 5 Flow-limited 0.0089 2.93 × 10−8

Kidney 0.308 1786 6 9 0.015 3.49 × 10−7

Adipose 14.994 374 100 30 12.9 1.08 × 10−7

Liver 1.799 2088 6 731 0.088 4.45 × 10−9

Skin 2.597 432 10 39 0.52 8.36 × 10−8

Rest of the body 44.388 3273 1.5 98 2.84 3.31 × 10−8
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accurately describe the concentration of the agent in the blood circulation, the left 
and the right heart. Such detailed information became necessary due to the short 
time scale in its PK profile. For example, within 3 min following injection, blood 
concentration of the agent dropped tenfold. The left and the right sides of the heart 
are the target tissues for this contrasting agent. The lung is the eliminating organ. 
The adipose tissue and the lean tissue compartments were specified in the model, as 
the agent is a lipophilic compound. Coronary circulation was included in the model 
to evaluate whether coronary artery disease would have an impact on the PK of this 
agent. The viscera tissues consist of the kidney, the brain, the liver, etc. The blood 
flow rate per volume in these tissues is much faster than those of either adipose or 
lean tissues. Except for the lung, each compartment includes vascular and extravas-
cular sub-compartments.

The lung is the primary eliminating organ for this compound. A heterogeneous 
compartment for the agent based on the anatomy of the lung and mass transfer is 
depicted in Fig. 1.5. As a static homogeneous lung compartment overpredicted the 
concentration in the alveolar gas phase during the absorption and under-predicted 
the concentrations during the elimination phase (Hutter et al. 1999), a heteroge-
neous lung model developed by Liguras and Bischoff (unpublished data), Frank 
(1982), and Bernards (1986) was adopted instead, as the one shown in Fig. 1.5.

Fig. 1.4  Illustration of the PBPK model of the human body for a contrast agent used in ultrasound 
imaging
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The lung was modeled using three compartments based on the physiology of 
the lungs, consisting of an upper dead space plus a lower dead space in series and a 
perfectly mixed alveolar region. The dead space is taken to be that of the large bron-
chial vessels, such that there is no mass transfer between the air in the lung and the 
capillary blood. The volume of the alveolar compartment changes with inhalation 
and exhalation. The mass transfer between the air in the lung and the capillary blood 
occurs across the alveolar-capillary membrane. Mathematical equations describing 
the PBPK model including the lung compartment are given in Eqs. 1.23–1.32.

1.3.6.1  Whole-Body PBPK Model

For the left and right sides of the heart, and other compartments except the lung, the 
mass balance equations have the following form:

 (1.23)

where Vb j,  is the tissue blood volume, Ctb j,  refers to the concentration in the tissue 
blood, and Ca  is the drug concentration in the blood entering the tissue. For other 
tissues, the mass balance equations take the form of a flow-limited case.

1.3.6.2  Lung Compartment

The breathing pattern is described by the following equation:

 (1.24)

where Qair > 0  indicates an inhalation process, Qair < 0  represents exhalation. In the 
following equations, all Qair  are absolute values, and the inhalation and exhalation 

,
, ,( ),tb j

b j j a tb j

dC
V Q C C

dt
= −

air 0.5·  sin( ),Q TV tω ω=

Fig. 1.5  Structure of the 
physiological model of the 
lung
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processes are identified by either a positive or a negative sign, respectively. The 
total dead space was modeled using two compartments.

For the upper dead space of the lung, the inhalation and exhalation processes 
were described by Eqs. 1.25 and 1.26, respectively, and the elimination rate for the 
lung was characterized by Eq. 1.27.

Inhalation:

 (1.25)

Exhalation:

 (1.26)

 (1.27)

For the lower dead space of the lung, the inhalation and exhalation processes were 
also described separately using Eqs. 1.28 and 1.29, respectively:

Inhalation:

 (1.28)

Exhalation:

 (1.29)

For the alveolar region, the volume of the alveoli is described by a sinusoidal func-
tion, given that the volume of the alveoli changes with the breathing pattern:

 (1.30)

And the corresponding inhalation process was characterized by coupled differential 
Eqs. 1.31 and 1.32:

 (1.31)

 
(1.32)

The exhalation process was also defined by coupled differential Eqs. 1.33 and 1.34:

V
dC
dt

Q CUPD air UPD
UPD = −

V
dC
dt

Q C CUPD
UPD

air LPD UPD= −( )

rex Q CLU air UPD= .

V
dC
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air UPD LWD= −( )

V
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Q C CLWD
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(1.33)

 (1.34)

The breathing frequency is 2 fω π= , where, f is the number of breaths/per minute. 
Valv,0  is the functional residual capacity of alveoli; Q  is the cardiac output; PA  is 
the product of membrane permeability and area of membrane transfer. The sub-
scripts refer to the following: UPD—upper dead space; LWD—lower dead space; 
alv—alveolar; b,in—blood entering the lung; b,out—blood leaving the lung; and 
VbLu is the blood volume in the lung tissue.

1.3.7  Sensitivity Analysis in PBPK Modeling

As shown in the example above, there are several different types of parameters in 
a PBPK model. Parameter values for tissue volume, blood volume, and blood flow 
rates were obtained from published results (Brown et al. 1997). These values usual-
ly represent a typical male or female individual. Other parameters such as partition 
coefficient of a compound between blood and the tissue are often estimated based 
on in vitro or scaled-up studies from animals to human. The remaining unknown 
parameters are then estimated by fitting the model to the observed data. Given the 
large number of parameters, it is critical to evaluate the impact of the uncertainty of 
those parameters on the disposition of the compound in the body. This is often done 
through a local (derivative) and global (Monte Carlo method) sensitivity analysis. 
We used the first example to illustrate the importance of this analysis.

In Example 1, the anatomical and physiological parameters related to the lung 
such as the volume of the alveoli, the dead space inside the lung, the functional 
residual capacity, the tidal volume, and the breathing frequency were obtained from 
Guyton’s textbook of physiology (Guyton and Hall 1996; Hall and Guyton 2011). 
The partition coefficient, Pft = Cfat/Cblood, of 50, was estimated based on the oil/water 
partition ratio of the compound. According to the results reported for other lipophilic 
compounds such as dioxin or thiopental (Bischoff and Dedrick 1968; Wang et al. 
1997), the partition coefficient for nonfatty tissue is approximately 10 % of that of the 
fat tissue. Therefore, the partition coefficients of other nonfatty tissue were assumed 
to be Pt = 5. Table 1.2 listed the parameter values for a typical 70-kg healthy subject.

There are three remaining unknown parameters, the partition coefficient between 
air and blood, Pair, and the two permeability values, PAair and PAt. Both individual fit-
ting and mean value fitting were conducted. Figs. 1.6 and 1.7 present the fitting of the 
mean values at 0.3 mg/kg dose level. The fitted parameter values are given below:

dV C
dt

Q C PA C C
P

alv alv
air alv b

alv

air

= − + −




,out

,
, , ,

air

( ) .b out alv
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3
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Table 1.2  PBPK model parameters for a 70-kg healthy subject. (Parameter values from Guyton 
and Hall 1996)
Body weight = 70,000 g
Male: cardiac output = 1.3 × Body weight0.75 (mL/min)
Coronary blood flow = 0.0455 × cardiac output (mL/min)
Total blood volume = 6.3 L
Blood volume in pulmonary circulation and cardiac circulation = 30 % of the total
Blood volume
Rest of the blood = 70 % of the total blood volume
Blood volume in pulmonary circulation and 
cardiac circulation (mL)

Parameters for the lung model

Pulmonary vein = 315
Lung capillary = 150
Pulmonary artery = 290
Right heart chamber = 340
Left heart chamber = 340
Vena cava = 340
Aorta = 100

Breathing frequency = 15 (No/min)
Tidal volume (excluding dead space) = 350 mL
Total dead space = 150 mL
Upper dead spacea = 50 mL
Lower dead spacea = 100 mL
Functional residual capacity = 2300 mL

Compartmentsb Tissue volume as frac-
tion of body weightb

Tissue blood volume 
as fraction of the total 
blood volumeb

Blood flow rate as 
fraction of cardiac 
outputb

Lung 0.0105 As shown above 1
Heart 0.0103 1
Viscera 0.05 0.0051/VBc 0.56
Adipose 0.214 0.0043/Vbc 0.065
Lean Rest of the part Rest of the part Rest of the part

a Parameter values were obtained from Liguras and Bischoff (unpublished data), Frank (1982), 
and Bernards (1986)
b Values from Brown et al. (1997)

Fig. 1.6  Mean observed and fitted blood concentrations following bolus injection (dose of 0.3 mL/
kg; solid line is model-fitted values, symbols are observed concentrations, error bars represent SD)
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The ratio of PA to the blood flow rate through that tissue were such that
PAt/Q = 0.53 ± 0.15 (for the heart, the lung, and the viscera compartment)
PAt/Q = 1.80 ± 0.22 (for the lean compartment and the fat tissue).
To assess the impact of parameters on the PK of the agent, Monte Carlo simu-

lation was conducted. The low, median, and high values of a parameter based on 
physiological reality were selected. For example, the total cardiac output range of 
0.975–1.625 indicates that the low value of the total cardiac output is 0.975 with a 
median value of 1.3 and an upper range of 1.625. The results of Monte Carlo simu-
lation demonstrated that only cardiac output, tidal volume of the lung and perme-
ability have a significant impact on the concentration in the left heart of the agent. 
Other parameters such as the coronary blood flow rate, the fat content (though it is 
a lipophilic compound), the total blood volume, the breathing frequency, and func-
tional residual volume have negligible effects on the concentration in the left heart. 
This analysis suggested that fixing a large number of parameter values using pub-
lished data would have little impact on the fitted values of those three parameters 
(Table 1.3). This sensitivity analysis also provided information on potential source 
of interindividual variability.

1.3.8  Application of PBPK Modeling

There are many similarities in the anatomy and physiology of mammalian spe-
cies; for example, many physiological processes vary as the 0.7–0.8 power of body 
weight and the anatomic variables are proportional to the body weight (Hu and 

Fig. 1.7  Mean cumulative lung elimination (%) following bolus administration (dose of 0.3 mL/
kg; solid line is model-fitted values, symbols are observed values of the elimination via the lung, 
error bars represent SD)
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Hayton 2001; Peters 1986; Savage et al. 2004; West et al. 1997, 1999). As such, 
the physiological process per unit body weight or organ weight tends to decrease as 
body size increases. Physicochemical parameters, such as blood-to-tissue partition 
coefficient and plasma protein binding, are not expected to have a great variation 
across species. Hence, a major application of PBPK model was in the field of spe-
cies scaling (Boxenbaum 1982; Boxenbaum and Ronfeld 1983; Dedrick 1973; De-
drick and Bischoff 1980; Mordenti and Chappell 1989). One of the main limitations 
in the extrapolation of a PBPK model, from one species to another, is when signifi-
cant difference in metabolic pathways and enzyme activities exist. Since the first 
PBPK model with flow-limited assumption for thiopental (Bischoff and Dedrick 
1968), extensive application has been seen in drug development and environmental 
toxicology (Dedrick 1973; Peters 2012; Reddy et al. 2005; Rowland et al. 1973).

Peters presented a generic 14-compartment PBPK model that includes one 
compartment for the stomach, seven compartments to describe the absorption of a 
substance from the small intestine, and another compartment for the colon (Peters 
2008). The dissolution of an orally administered substance from the GI tract is de-
pendent on the product of the dissolution parameter and the difference between the 
solubility of the drug and its concentration. The model, being used for the in vivo 
prediction based on in vitro measurements, requires parameter for solubility, the pH 
of the buffer that was used for solubility measurement, and the in vitro absorption 
rate constant from Caco-2 permeability. For the estimation of drug concentration 
leaving a specific organ, the model utilizes plasma protein-binding information and 
tissue: plasma partition coefficients based on the work by Poulin and Theil (Poulin 
et al. 2001; Poulin and Theil 2000, 2002a, b; Theil et al. 2003). Peters used the 
model to predict the PK parameters of several compounds (Peters 2008; Peters and 
Hultin 2008). The measure to assess the quality of fitting was based on the reduced 

2χ -statistics and mean fold error. The author concluded that a “generic and inte-
grative PBPK approach of drug disposition as a tool for a priori simulations and 
mechanistic evaluations of pharmacokinetics has the potential to improve the selec-
tion and optimization of new drug candidates” (Peters 2008).

In recent years, PBPK modeling has been applied to drug development and regu-
lation (Zhao et al. 2009, 2011, 2012). A comprehensive review on the application of 
PBPK modeling in drug development and regulatory review/submission was pro-
vided in a number of articles from the Food and Drug Administration (FDA; Huang 
2012; Huang and Rowland 2012; Leong et al. 2012; Rowland et al. 2011; Zhao 
et al. 2011, 2012). The articles summarized the major advances in the predictability 
of key PK parameters in human from in vitro data, the availability of dedicated 

Table 1.3  Parameter effect of the contrasting agent disposition after sensitivity analysis
Parameters having significant effect Parameters having negligible effect
Cardiac output (QTOTC)
Permeability (PA)
Tidal volume (TVC)

Coronary blood flow rate (QCORC)
Fraction of the fat (Wfc)
Total blood volume (VBTOTC)
Breath No/min (BN)
Functional residual volume (VAV0C)
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software platforms, and associated databases. Specific advances and contemporary 
challenges with respect to predicting the processes of drug absorption, distribution 
and clearance were reviewed, together with the ability to anticipate drug–drug in-
teractions and the impact of age, genetics, diseases, and formulations on the PK of 
a drug. The value of this capability in selecting and designing appropriate clinical 
studies, its implications for cost-effective strategies, and a more holistic view of the 
application of PK across the preclinical and clinical drug development processes are 
considered. Finally, there is a greater focus on positioning PBPK within the drug 
development and approval paradigm, as well as its future application in personal-
ized medicine.

1.4  Relationship Between Systemic and Tissue Clearance 
with PBPK Modeling Approach

1.4.1  Clearance Definition

Clearance is one of the most important concepts in PK. As Benet stated, “it allowed 
the field to develop a basic understanding and to make predictions as to how patho-
logical and physiological changes would influence drug kinetics and drug dosing” 
(Benet 2010). By October 2009, there were more than 47,827 references found in 
PubMed under “drug clearance” (Benet 2010). The clearance concept was origi-
nally developed to quantify the functional efficiency of the kidney in the removal 
of urea (Grehant 1904a, b) and was then extended to describe the elimination of 
xenobiotics through the liver (Lewis 1948). Early contributions on developing the 
clearance concept for the whole body were made by Benet, Rowland, and Wilkin-
son (Benet and Galeazzi 1979; Rowland 1972; Rowland et al. 1973; Wilkinson 
1987; Wilkinson and Shand 1975).

Using the definition provided by Wilkinson (1987), “the most general defini-
tion of clearance is that it is a proportionality constant describing the relationship 
between a substance’s rate of transfer in amount per unit time, and its concentration, 
in an appropriate reference fluid.” This is illustrated in Fig. 1.8 for an elimination 
organ.

The mathematical expression for clearance (CL) is given as follows:

 
(1.35)CL r C

Cin
=

( ) .

V, C
Q

Cin

r(C)

Cout

Fig. 1.8  Schematic represen-
tation of an eliminating organ
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The extraction ratio reflecting the efficiency of an organ to remove a drug was 
defined as:

 (1.36)

where r C( )  is the elimination rate, C  is the drug concentration inside the compart-
ment, Cin  is the drug concentration entering the organ, and Q is the blood flow rate 
through the organ.

The instantaneous clearance and extraction ratio from a blood or plasma con-
centration–time profile can be derived by applying mass balance to the eliminating 
organ, as in Fig. 1.8. Assuming that the organ is a homogeneous compartment such 
that C Cout = , where Cout  is the drug concentration leaving the organ, the mass bal-
ance equation is then

 (1.37)

given that C = 0 at t = 0.
By dividing Eq. 1.37 by · inQ C , the resulting expression is

 (1.38)

The third term on the right side of Eq. 1.38 is the definition of extraction ratio. The 
expression for instantaneous extraction ratio and clearance can be derived as fol-
lows:

 (1.39)

 (1.40)

Both Eqs. 1.39 and 1.40 show that, in general, instantaneous extraction ratio and 
organ clearance are time-dependent variables. Therefore, they have no definitive 
meaning unless the time when clearance is estimated is specified, or steady state is 
achieved.

At steady state, both C  and Cin are constant, such that dC
dt

= 0. The steady-state 

extraction ratio and clearance can be derived from Eqs. 1.39 and 1.40:

 (1.41)

 (1.42)
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Since instantaneous clearance is of not much value for nonsteady-state situation, 
the mean clearance over time is more useful and can be derived by rearranging 
Eqs. 1.35 and 1.36 and integrating from 0 to infinity with respect to time:

Applying the mean integration theorem to the equations above, there exists a value 
θ for clearance such that 

0 0
·  in inCL C dt C dtθ

∞ ∞
=∫ ∫ . The value θ is the mean clear-

ance over time from 0 to infinity. Equations for the computation of mean clearance 
and mean extraction ratio are shown in Eqs. 1.43 and 1.44:

 

(1.43)

 
(1.44)

Using the example of an eliminating organ in Fig. 1.8, integration of the mass bal-
ance Eq. 1.37 from t = 0 to infinity,

 (1.45)

For limited dosage regimens, if t → ∞ , Cin → 0 and therefore C → 0. Together 
with the initial condition that C = 0  at t = 0, the left side of Eq. 1.45 is 0. Thus,

 (1.46)

By rearranging and dividing Eq. 1.46 by 
0

· inQ C dt
∞

∫ , we obtain
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The left side of Eq. 1.47 is the term for the mean extraction ratio (see Eq. 1.44). 
From Eq. 1.47, one can derive the relationship between mean extraction ratio and 
clearance:

 
(1.48)

 (1.49)

For an eliminating organ, C dt C dtin 
0 0

∞ ∞

∫ ∫<  holds true. One can deduce that the 
mean clearance is always smaller than the blood flow rate and the extraction ratio 
is smaller than one.

It has been observed that for some xenobiotics, the estimated extraction is great-
er than one, which is impossible as the amount of drug being removed cannot be 
greater than the amount supplied to the organ. Using the same eliminating organ 
shown in Fig. 1.8, if clearance is calculated using the blood samples leaving the 
specific organ, we would divide Eq. 1.46 by 

0
·  Q C dt

∞

∫ , where C is the drug con-
centration in the blood stream leaving the elimination organ. Following the same 
steps to derive Eq. 1.48, we obtain Eq. 1.50:

 

(1.50)
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, the extraction ratio defined in Eq. 1.48 is 

larger than 1, and the estimated clearance will exceed the blood flow rate. The con-
version between CLout  and CL  can be derived from Eqs. 1.48 and 1.50, such that

 

(1.51)

where CLout  refers to the clearance computed from the blood samples taken from the 
blood leaving the organ and CL is the clearance estimated from the blood entering 
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the organ. The equation for extraction ratio, which is the left-hand side of Eq. 1.51, 
can be rearranged to obtain CLout  such that

 
(1.52)

We can extrapolate the result to total body clearance (TBC) in relation to cardiac 
output. The TBC, in this case, can also be greater than cardiac output for a com-
pound that is rapidly eliminated through the lungs.

1.4.2  Establishing a General Relationship between TBC 
and Organ Clearance

It is often misunderstood that TBC is the sum of the individual organ clearance. 
The contribution of the organ clearance to the TBC depends on the anatomy of the 
body. In this section, we derived a general mathematical expression of the TBC with 
the individual organ clearance through PBPK modeling (Wang, Lam and Bischoff, 
unpublished work).

Figure 1.9 illustrates a representative PBPK model. This model consists of seven 
tissues, namely vein, artery, lung, GI tract, liver, kidney, and the rest of the body. 
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Fig. 1.9  A representative 
PBPK model used to illus-
trate total body clearance and 
organ clearance
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The first compartment C1 represents the vein, second C2 for the artery, third C3 the 
lung, fourth C4 the liver, fifth C5 the kidney, sixth C6 for the rest of the body, and 
seventh C7 for the GI tract. In this example, an intravenous administration was 
utilized for the simplicity of the mathematical derivation. Assuming a flow-limited 
mass transfer, the equations representing the model based on mass balance are as 
shown in Eq. 1.53.

 

(1.53)

where K tI ( )  is the drug input function, r Ci i( )  represents the rate of elimination 
from an eliminating organ, and the subscript o  for out symbolizes the concentra-
tion leaving the organ. The initial conditions were assumed such that Ci = 0 at t = 0. 
The drug concentration at the joint point where the blood stream leaves the organ is 
represented by Eq. 1.54:

 (1.54)

Given the relationship above, we solve for the venous compartment C1 (see Appen-
dix for details), assuming that the input function K tI ( ) = 0  and Ci → 0  as t → ∞ :

 
(1.55)

where 4 7 7 4 7 2· · ( )p oQ C Q C Q Q C= + − .
Using Eq. 1.49 to compute the mean organ clearance, the generalized expression, 

except for the lung and liver, is shown in Eq. 1.56:
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(1.56)

For the lung and liver compartments (C3 and C4), the resulting expressions for mean 
organ clearance are as follows:

 (1.57)

 
(1.58)

The total amount of drug elimination from the body, derived from solving the mass bal-
ance equations over the entire body, is r t dt Q C C dt K t dtii I( ) ( ) ( )∑∫ ∫ ∫= − =

∞ ∞ ∞

10 1 00 0 . 
Following the expression in Eq. 1.43 for mean clearance, TBC or systemic clear-
ance is derived as

 (1.59)

By substituting Eqs. 1.56–1.58 into Eq. 1.55, the relationship between TBC and 
organ clearance can be obtained as shown in Eq. 1.60 (see Appendix for derivation 
of Eq. 1.60):

 (1.60)
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= . A generalized relationship between TBC and organ clearance can 

then be established by extrapolating Eq. 1.60 to multiple eliminating organs:
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where CL CL E CLliver channel liver liver jj_ ( )= + − ∑1 , and j  indicates other organs ex-
cept the liver in the liver channel. The subscript i  in Eq. 1.61 includes all other 
body organs except the lungs and organs in the liver channel.

The mathematical equation in Eq. 1.61 is broadly applicable not only to the linear 
systems but also to the nonlinear systems because the assumption made in the deri-
vation of Eq. 1.61 was flow-limited mass transfer. From Eq. 1.61, one can deduce 
that the contribution of organ clearance to the systemic clearance can be derived by 
following the circulation scheme starting from the arteries. For those organs con-
nected in parallel, the contribution of organ clearance to systemic clearance is addi-
tive. For the organs connected in series, the contribution of the ith organ clearance 
to systemic clearance needs to be corrected by a factor of ( )1− Enext organ . For ex-
ample, following the blood circulation starting from the artery, the whole body can 
be viewed as consisting of two components connected in series, the rest of the body 
and the lung. Hence, in Eq. 1.61, the clearance of the portion that represents the rest 
of the body needs a correction factor of ( )1− Elung , as illustrated in Fig. 1.10a. The 
same is true for the liver channel such that the clearance of the GI tract or spleen 
also requires a correction factor ( )1− Eliver , as represented in Fig. 1.10b.

The PBPK model used in this discussion is a lumped total body model but rep-
resents a rather general description of the anatomical structure of the mammalian 
system. The expression describing TBC and the individual organ clearances can be 
easily derived based on the location of the eliminating organ by following the cir-
culation starting from the arteries. For these organs that are connected in series, the 
contribution of the first organ clearance to TBC equals ( )1 1− +E CLi i, whereas for 
organs connected in parallel, the contribution of organ clearance to TBC is additive. 
Even though the current discussion only considered the example of an intravenous 
administration, the conclusions derived from this scenario are broadly applicable to 
other routes of administration.

LiverGI Tract

other organs

Vein

H-L-HEliminating organ

Noneliminating organ

Vein

a

b

Fig. 1.10  Schematic illus-
tration of a the left heart–
lung–right heart ( H–L–H) 
circulatory system and b the 
liver channel
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1.5  Population PK

PBPK models provide the quantitative information between the dose and the con-
centration of the xenobiotic agent at different regions of the body. Interindividual 
variability in PK can be quantified based on the physiological/biological difference 
among the target population. However, it is often impractical to apply PBPK mod-
els directly to humans. The nonlinear mixed effect model (also commonly referred 
to as population PK) incorporating both fixed effect (identified covariates repre-
senting the known source of variability) and random effect (unidentified source 
of variability) was introduced in the 1970s by Sheiner et al. (1977). This approach 
adopts the simplicity of the classical PK models but correlates the PK parameters 
to covariates such as body weight, age, gender, etc. to quantify the source of vari-
ability in PK. For example, the volume of distribution is often correlated to the 
body size, and clearance to body weight, creatinine clearance, and enzyme activi-
ties. Covariate analysis is primarily performed through statistical analysis, together 
with the information on physiology, pathology, metabolism, and clinical relevance. 
The population PK modeling has been widely applied to the analysis of clinical PK 
data, especially to the sparse PK samples from phase 2/3 trials. With this approach, 
the source of variability in PK can be identified using large pooled datasets. More 
importantly, population PK modeling has innovated the drug development through 
model-based approach (Bhattaram et al. 2005). From what used to be an unusable 
sparsely sampled blood concentration from phase 2/3 trials, population PK model-
ing made it possible to identify the PK characteristics in patients based on their de-
mographic information, metabolic status, liver/kidney function, and disease status 
to support labeling. This ability to hone into a specific factor responsible for drug 
response is what makes population PK a valuable tool for personalized medicine. In 
a survey from the US FDA between 2000 and 2004, they reported that pharmaco-
metric analyses were pivotal in regulatory decision making in more than half of the 
42 new drug applications (NDA; Bhattaram et al. 2005). In the case of a failed trial 
of nesiritide, they concluded that “dose selection based on pharmacometric analysis 
could have saved 3 years of drug development time and 1 clinical trial.”

1.5.1  Population PK Model Development

A population PK model consists of the structural model and the covariate models. 
The structural model takes the form of the classical compartment model to describe 
the concentration profile for a typical subject, whereas the covariate model quanti-
fies the sources of intersubject variability: the known (covariates) and unknown 
(first level random effect term) source of variability (Sheiner and Ludden 1992; 
Sheiner et al. 1977). The second level of variability is within-subject variability that 
is often described by additive or proportional error model. Sometimes, a third level 
variability, called inter-occasion variability, is introduced to describe the variability 
for the same individual when replicate samples were taken following different dos-
ing occasions.
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Population PK model development and key considerations were clearly dis-
cussed in Meibohm et al. (2005) and regulatory documents (EMA 2007; FDA 
1999), which include base model and covariate model development, internal and/
or external model validation. The base model development follows the same prin-
ciples as classical compartmental PK model development. Covariate model devel-
opment and model validation will be described briefly in the following sections.

1.5.2  Covariate Models

Covariate models quantify the source of intersubject variability contributing to a PK 
parameter. For continuous covariates, the covariate model usually takes the form of 
a linear or power function, which probably originated from the allometric scaling 
concept. Different ways of parameterization of the covariate model are often done 
using the reference value of the covariate such as the median value, as shown in 
Eqs. 1.62 and 1.63:

 (1.62)

 
(1.63)

where TVP  is the typical value of a model parameter, Cov  represents the covari-
ates, m  is the number of covariates, and iθ  is the coefficient.

For categorical covariates such as binary, ordered, or nonordered, an indicator 
function I Covi i( ) is introduced such that if the covariate has a specific dummy vari-
able value, a separate coefficient is designated:

 (1.64)

 (1.65)

and

 (1.66)

Random effect is usually assumed to be log-normally or normally distributed, as 
given in Eq. 1.67, where jn  follows a normal distribution with mean 0 and covari-
ance matrix Ω:

 (1.67)

0
1

( )
m

i i i
i

TVP Cov Refθ θ
=

= + −∑

0
1

im
i

i i

Cov
TVP

Ref

θ

θ
=

 
=   ∏

0
1

( )
m

i i i
i

TVP I Covθ θ
=

= + ∑

0
1

( ) i

m

i i
i

TVP I Cov θθ
=

= ∏

I Cov
i i

i i( )
,

,
=

=



1
0

if
otherwise

exp( ) or .j j j jP TVP P TVPη η= × = +

1 Introduction to Pharmacometrics and Quantitative Pharmacology …



30 S. K. B. Sy et al.

1.5.2.1  Allometric Scaling

One of the approaches for covariate model development is by applying allometric 
scaling principle. Thus, the body weight often contributes to clearance to the power 
of 0.75 and to the volume of distribution to the power of 1. The allometric scaling 
is also often used for scaling PK parameters obtained from the adult to the pediatric 
population.

1.5.2.2  Stepwise Regression

Stepwise regression is a common statistical method used in covariate model build-
ing. The algorithm includes forward addition, backward elimination, or combina-
tion of forward addition and backward deletion in stepwise fashion. This process is 
automated in Perl-Speaks-NONMEM. Each step of the model building process in 
the forward inclusion involves testing the effect of each covariate on the appropri-
ate model parameter in a separate model run, such that the statistical significance 
of each covariate–parameter relationship is screened individually (univariate analy-
sis). Covariates that reduce the objective function above a predefined significance 
level are added to the PK model. The backward elimination step starts with the final 
model from the forward inclusion step; the subsequent removal of each covariate 
is also based on a predefined difference in the objective function. The hypothesis 
testing to discriminate alternative hierarchical models is based on the likelihood 
ratio test, often at preset p-values for the forward inclusion and backward elimina-
tion of, e.g., 0.05 and 0.01, respectively. The differences in the objective function 
values of two alternative models is equivalent to − 2 log-likelihood, which follows a 
chi-squared distribution with n degrees of freedom, where n is the difference in the 
number of parameters in the hierarchical models. A difference of 3.84 and 6.64, for 
example, in the value of the objective function is considered significant under the 
likelihood-ratio test for n = 1 and p-values of 0.05 and 0.01, respectively.

1.5.2.3  Full Covariate Model

Because covariates often have collinearity and depending on the degree of correla-
tion between covariates, the statistical inference approach such as stepwise methods 
could include a covariate that is not preferential. An algorithm of using full covari-
ate model approach was proposed as an alternative for covariate model building 
(Agoram et al. 2006; Ravva et al. 2009). The decision on which covariate to in-
clude is based on exploratory graphics, scientific and clinical interest, mechanistic 
plausibility, or previous knowledge of these relationships. Covariates that are both 
statistically insignificant and clinically irrelevant can be dropped during covariate 
model development. The inferences on which covariate has clinical importance are 
then based on the magnitude of the estimated effect and the precision (Agoram et al. 
2006). This approach is a simplification of the global model approach (Burnham 
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and Anderson 2002) and is claimed to be the preferred choice when the goal is to 
estimate the magnitude of an effect (Harrell 2001). A hybrid approach can also be 
implemented, starting with a full covariate model from which covariates are tested 
using stepwise backward deletion.

1.5.2.4  Case Deletion to Determine Influential Individual

The statistical inferences based on maximum likelihood or likelihood ratio test are 
easily influenced by outliers or a few individuals (not necessarily outliers) in the 
data. Influential individual or a group of influential individuals can be evaluated 
using case-deletion diagnostics. The jackknife method evaluates how removing a 
specific individual affects the objective function values of the base model and the 
one with covariate, both models with all the data versus the one with the specific 
individual removed (Sadray et al. 1999):

 (1.68)

The algorithm fits both the covariate model and the base model to the dataset con-
taining all the individuals and the dataset with the specific individual removed. The 

,jackknife iOFV∆  value in Eq. 1.72 is obtained for each individual of the dataset. The 
“shark” plot with the number of subjects removed on the x-axis and the change in 
OFV on the y-axis and curves showing both positive and negative ∆OFVi  can be 
used as visual inspection for case-deletion diagnostics.

1.5.2.5  Covariate Identification Through PBPK Modeling

As mentioned in the section of PBPK modeling, lumping has been used to simplify 
the complicity of a PBPK model without losing the key physiological reality of 
the model. During the lumping process, covariates having impact on the PK can 
be identified. This approach requires a PBPK model that can be developed using 
preclinical data. Sensitivity analysis of the PBPK model can also assist in identify-
ing the factors that could have significant impact on the disposition of a xenobiotic.

The example below demonstrating the advantage of using PBPK modeling to 
identify the covariate was from a collaboration between Bischoff and Stanski in the 
early 1990s (Bischoff 1992). It was observed that the amount of thiopental needed 
to be administered to elderly patients (about 70–80 years old) was much less than 
that used for a standard 30-year-old healthy male. Therefore, age  could be consid-
ered as a covariate for dose adjustment for thiopental based on the classical PK and 
population PK models. To investigate the age effect on thiopental PK, a PBPK mod-
el (Bischoff and Dedrick 1968) was applied to the PK data obtained from clinical 
studies. An adipose tissue compartment was included in the PBPK model for thio-
pental, as this compound is highly lipophilic. The differences in cardiac outputs be-
tween young adult subjects at 30 years of age versus the geriatric patients at 70 years  

, , , , 1 , 1( ) ( ).jackknife i final n basic n final n basic nOFV OFV OFV OFV OFV− −∆ = − − −

1 Introduction to Pharmacometrics and Quantitative Pharmacology …



32 S. K. B. Sy et al.

were taken into account in the PBPK model. By incorporating the physiological 
difference in cardiac output between the two age groups, the PBPK model captured 
well the difference in the exposure of thiopental for patients at age 30 versus those 
at 70 years, without having to incorporate age as a covariate of the model. This work 
was continued by Wada and colleagues to demonstrate the underlying mechanism 
behind the observed age effect in thiopental PK (Wada et al. 1997). Their results 
showed that the difference were due to the decline in cardiac output, followed by the 
increase in fat content with age. Since the cardiac output starts to decline at approxi-
mately 40 years of age, a nonlinear covariate equation to link clearance with age 
would be necessary. However, using the known data of age and gender differences 
in cardiac output and BMI (Brandfonbrener et al. 1955; Freedson et al. 1979; Guy-
ton and Hall 1996), the change in clearance and volume of distribution of thiopental 
with age can be derived from these relationships.

1.5.2.6  Clinical Relevance in Covariate Model Development

Clinical relevance is a key consideration in covariate model assessment. In general, 
if the contribution of a covariate to the PK parameters resulted in less than 20 % dif-
ference in systemic exposure using the bioequivalence (BE) criteria, this covariate 
can be ignored or dropped even though it is shown to be statistically significant. 
Sometimes, if a drug has a large therapeutic window and the influential covariate 
determined from the PK analysis does not have any significant impact on clinical 
endpoints, this covariate can be removed. In contrasting situations, the lack of sta-
tistical significance does not necessarily indicate that the covariate tested is lacking 
impact on the clinical endpoints. For example, due to limited sample size (< 10 % of 
the subjects with a specific co-medication) or limited range of the covariate tested 
such as age, the impact of co-medication or age effect on the PK may not be statisti-
cally significant.

1.5.2.7  Power and Sample Size Calculation

Sample size (the total number of subjects and the sampling time per subject) is 
critical for population PK development. To be able to detect the interindividual and 
intraindividual variability, a minimum of two PK samples per subject is necessary. 
Ogungbenro and Aaron have demonstrated the minimal samples size requirement 
for a one- or two-compartmental PK model (Ogungbenro and Aarons 2008) based 
on the confidence interval of the PK parameters estimated.

Another statistical methodology called the Monte Carlo Mapped Pow-
er (MCMP) to determine the power and sample size calculation for covariate 
model development was introduced by Vong et al. (2012). Using the difference 
in individual’s objective function values between the reduced and full models 
(∆iOFV iOFV iOFVreduced full= − ), the MCMP analysis tests for drug or covariate 
effect by the summation of the individual’s contribution to the overall objective 
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function value in the likelihood ratio test (Vong et al. 2012). The MCMP uses the 
sum of the n ∆iOFV  instead of the overall ∆OFV  to base its statistical inference. 
The algorithm maps the statistical power over a specified sample size range. The 
MCMP method is simple to run without the need for correcting for type I error that 
is associated with stochastic simulations and estimations (Ette et al. 1998; Kowalski 
and Hutmacher 2001; Lee 2001).

1.5.2.8  Model Evaluation

Model evaluation is a key step in population PK model development. Diagnostic 
plots, bootstrap, shrinkage in the η (Savic and Karlsson 2009), prediction-corrected 
visual predictive check, internal validation through dataset split are often used to 
evaluate the model. In addition to those approaches, external validation with addi-
tional datasets is a preferable method when feasible.

1.5.3  Application of Population PK Model

Since Sheiner’s first and subsequent publications that established the population 
PK model methodology, population PK modeling and simulation together with in-
formation on disease progression, placebo response, dropout rates, as well as expo-
sure–response (ER) of drug treatment, have been used in regulatory decision mak-
ing, clinical trial waiver, as well as identification of design flaws and trial imple-
mentation problems prior to running a trial. These strategies have shown to decrease 
costs, improve the likelihood of achieving the trial goals, and generate conclusive 
findings (Brindley and Dunn 2009; Holford et al. 2010). Kimko and Peck recently 
edited a textbook on clinical trial simulation that encompasses diverse areas rel-
evant to drug development such as metabolic disease, cardiovascular, infectious 
disease, oncology, and many other fields (Kimko and Peck 2011).

Yang et al. took an approach of incorporating a case–control comparison in the 
ER analysis to reduce the bias introduced by confounding risk factors when evaluat-
ing the recommended dosing regimen for trastuzumab in a registration trial (Yang 
et al. 2012). Their analysis suggested that patients with the lowest quartile of trastu-
zumab exposure did not benefit from addition of trastuzumab treatment to chemo-
therapy. However, contrary to the nonresponder hypothesis for this subgroup with 
the lowest quartile of tratuzumab, this subgroup appeared to be more sensitive to a 
higher trastuzumab exposure than the remaining 75 % population, suggesting that 
increasing trastuzumab exposure in the low-exposure subgroup may result in better 
overall survival (OS) benefit.  This analysis justified the FDA recommendation of 
conducting postmarketing clinical trials to investigate a dosing regimen with higher 
exposure and acceptable safety in the identified subgroup and to prospectively eval-
uate whether this regime will result in acceptable OS benefit.

1 Introduction to Pharmacometrics and Quantitative Pharmacology …
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Other examples can be found from the approval of the 0.8 mg/kg once-weekly 
regimen of etanerceptin pediatric patients with juvenile rheumatoid arthritis. The 
clinical trial simulation confirmed that the 0.8 mg/kg once weekly yielded over-
lapping steady-state time–concentration profiles with that of 0.4 mg/kg SC twice 
weekly, leading to equivalent clinical outcomes (Yim et al. 2005).

The author (Wang) utilized model-based approach to apply for waiver of clinical 
pharmacology trial for a novel tyrosine kinases inhibitor that was under develop-
ment in oncology. The absolute bioavailability of the tablet was required in the NDA 
submission. However, to conduct a clinical trial to obtain the absolute bioavailabil-
ity was difficult, since the intravenous dosage formulation needed to be developed, 
and the study can only be conducted in cancer patients due to genotoxicity. A popu-
lation PK model of the PK datasets obtained from several phase I dose escalation 
trials with either oral solution or tablet was developed with the formulation as one 
of the covariates. Covariate model test demonstrated that the formulation was not a 
statistically significant covariate. The health authority accepted this approach and a 
standalone absolute bioavailability trial was no longer required. The example listed 
above demonstrates how the model-based approach can cut development costs, as 
well as improve trial designs to come to conclusive findings.

1.6  PD Models for Continuous Response Variables

PD often refers to as the body’s response to drug. Derendorf et al. defined PD as “a 
broad term that is intended to include all pharmacological actions, pathophysiologi-
cal effects and therapeutic responses, both beneficial and adverse, of an active drug 
ingredient, therapeutic moiety, and/or its metabolite(s) on the various systems of the 
body from subcellular effects to clinical outcomes. Pharmacodynamic studies can 
provide information about a drug’s mechanism of action or about its dose-response 
relationship where response can be expressed as a direct or indirect measure of ef-
ficacy and/or safety of the drug” (Derendorf et al. 2000). As collecting biomarker 
information is becoming common in clinical trials, modeling the exposure and bio-
marker responses has become critical in model-based drug development.

PK/PD studies intend to link the dose–exposure profile relationship with the PD 
response, in particular, the time course of the pharmacological/pathophysiological 
effects (Derendorf et al. 2000). Integrated PKPD models are categorized accord-
ing to the manner in which the PK and PD data are related. The two types of basic 
PD models that are often used to establish PKPD relationships are the direct and 
indirect response models. Based on receptor theory, the response of a drug is trig-
gered by the free drug concentration at the site of action. Since the systemic blood 
or plasma drug concentration samples were collected during a trial, while the effect 
or response is dependent on the concentration at the effect site, a delay in response 
might be observed when linking the blood/plasma concentration to the drug re-
sponse. If the effect is further downstream in the process, a longer delay in response 
could be observed.
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1.6.1  Direct response PD Model

In the direct response model, the linear, Emax, or sigmoidal Emax models are often 
used. Equation 1.69 is the expression for the sigmoidal Emax model. When γ equals 
1, it is the called the Emax model:

 (1.69)

where E0  is the baseline of the response and Emax  is the maximum response. C  is 

the concentration of drug and Dose( ) e
CLt
VC t

V
−

=  is the drug concentration at which 

50 % of the maximum response is achieved and γ  is the sigmoidicity factor that 
determines the steepness in the linear portion of the curve. The direct response rela-
tionship assumes that the processes involved in the drug transfer to the site of action 
and eliciting the response is rapid enough compared to the disposition of a drug. 
Thus, for the same drug concentration, the response elicited by the drug is the same, 
regardless of the time to reach that drug concentration. As shown in the left panel 
of Fig. 1.11, the concentration C1 in the ascending phase of the concentration–time 
profile with the equivalent concentration level at C2 in the descending phase has a 
corresponding response R1 in the ascending phase of the response profile and the 
equivalent response level R2 in the descending phase. In other words, there is only 
one value for the response corresponding to one value for the drug concentration, as 
shown in the right panel of Fig. 1.11.

1.6.2  Indirect Response Model

It is often the case in pharmacology that the effect of the pharmacological agent is 
lagging behind the drug concentration–time course, where, the response versus con-
centration does not exhibit a one-to-one relationship, often called a hysteresis loop 
(counterclockwise hysteresis), as shown in the right panel of Fig. 1.12. The tempo-
ral dissociation between the time courses of drug concentration and effect results in 
the hysteresis pattern and is likely caused by a distributional delay between the drug 
concentrations in the plasma and the effect site (Derendorf et al. 2000).
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The two different approaches often used to describe the observed delay in the 
plasma concentration and drug response are the effect compartment model origi-
nally proposed by Sheiner et al. (1979) and the indirect response model with dif-
ferential equation by Jusko (Dayneka et al. 1993; Jusko and Ko 1994).

1.6.2.1  Effect-Compartment PD Model

The effect-compartment model links the drug effect to the drug concentration of 
a hypothetical effect compartment (Sheiner et al. 1979), instead of the drug con-
centration in the systemic circulation. In the effect-compartment model, it was as-
sumed that the drug amount entering the effect compartment is negligible, so that 
the plasma concentration of the central compartment can be described without the 
mass transfer between the central compartment and the effect compartment. The 
drug concentration in the effect compartment is at equilibrium with that of the cen-
tral compartment. The equilibration process between the plasma drug concentra-
tion and the effect site is determined by the first-order rate constant ke0  that also 
describes the loss of drug from the effect compartment (Derendorf et al. 2000). The 
illustration in Fig. 1.13 shows a schematic representation of the link model, where 
EC refers to the effect compartment. When the drug response links to the drug 
concentration of the effect compartment, the hysteresis observed will be collapsed.

Equations for calculating the effect compartment concentration can be found in 
Gabrielsson and Weiner (2000). For example, for a one-compartment model with 
bolus injection, the plasma concentration can be calculated using Eq. 1.4, and the 
effect compartment concentration can be expresses as:

 
(1.70)0

0

0

·
exp · exp( · ) ,e

e e

e e

Dose k CLC t k t
CL VV k
V

  = − − −     −  

Fig. 1.13  Schematic 
representation of the effect 
compartment linking to a 
pharmacodynamic model

 

Fig. 1.12  Relationship 
between drug concentration 
and response in an indirect 
response relationship
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where Ce  is the drug concentration in the effect compartment, Ve  is the volume of 
the effect compartment.

1.6.2.2  Indirect Response Models

The indirect response models was developed based on the receptor theory and sig-
nal transduction, where a series of delay could occur during those processes caused 
by indirect-response mechanism such as a synthesis or dissipation of an endogenous 
substance or response mediator. Dayneka et al. proposed four basic models for indi-
rect PD response (Dayneka et al. 1993; Jusko and Ko 1994). The generalized form 
of the indirect response models in the absence of drug is described as follows:
 

(1.71)

where kin  is the zero-order constant for the production of the response, and kout 
refers to the first-order rate constant for the dissipation of response. A biological 
system should stay at steady state under normal condition when no drug interven-

tion is applied. Therefore, at baseline R
k
ko
in

out

= .

The four indirect response models under drug intervention are shown below:

 (1.72)

 
(1.73)

 (1.74)

 (1.75)

where 
50
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p

p
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= −

+
 represents the classical inhibitory function and 
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p
p
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+
 is the stimulation process using an Emax model. The 

schematic representations of the indirect response models showing effect on the 
synthesis and dissipation processes are presented in Fig. 1.14.

dR
dt

k k Rin out= − ,

( )in p out
dR k I C k R
dt

= −

( )in out p
dR k k I C R
dt

= −

( )in p out
dR k S C k R
dt

= −

( ) ,in out p
dR k k S C R
dt

= −

1 Introduction to Pharmacometrics and Quantitative Pharmacology …



38 S. K. B. Sy et al.

The indirect response model was used to fit to the data of the inhibition of pro-
thrombin complex activity by warfarin, an oral anticoagulant used in thrombo-
phlebities and pulmonary embolism (Jusko and Ko 1994). It blocks the vitamin K 
epoxide reductase, an enzyme that reduces vitamin K epoxide to vitamin K, which 
is a cofactor for carboxylation of the clotting factor such as factor II, VII, IX, and 
X. The blockade of the reductase activity by warfarin leads to the inhibition of co-
agulation, measured by the prothrombin time. It is assumed that the clotting factors 
are synthesized with a zero-order rate constant, kin , and degraded with a first-order 
rate constant, kout .

1.7  PD Models for Noncontinuous Response

Data collected from clinical trials, which are not continuous but categorical vari-
ables, can be dichotomous, ordinal scaled (e.g., none/mild/moderate/severe), or cen-
sored data (e.g., time to recurrence of a disease). Logistic regression and survival 
models are usually applied to describe the probability of events. Recently, Markov 
chain models to estimate event probability were also applied in pharmacometrics 
(Bizzotto et al. 2011; Lacroix et al. 2009; Sy et al. 2013a).

1.7.1  Time to Event

In the time to event analysis, the time of origin in pharmacometric analysis is usu-
ally the start of treatment. If the endpoint is some events, such as the occurrence of 
an adverse event, relapse of a disease, death, etc., the observations, which are the 
difference between the time of the specific event and the time from the origin, are 
referred to as time to event data or survival times. The distribution of time to event 
data is usually not normal and the data are often “censored.” Right censoring refers 
to data that the specific event of interest has not yet occurred when the subjects 

kin
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kout
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C

+/-

kin
R

kout

T

C
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Fig. 1.14  Schematic rep-
resentation of an indirect 
response—stimulation or 
inhibition of synthesis ( top) 
and dissipation rates ( bottom)
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leave the study. Left censoring can occur in clinical studies when we know that the 
event of interest has already occurred at the observation time, but it is not known 
exactly when. For example, a patient may be tested positive for a specific disease 
but the exact time of the disease onset is unknown.

The survivor function, S(t), is defined as the probability that the event of interest 
has not occurred by duration t, such that

 (1.76)

where T denotes the time of an event; Pr stands for probability. The probability that 
the event has occurred by duration t, F(t), is defined as the complement of the survi-
vor function, which is 1-S(t). The survivor function is related to the hazard function 
h t( )  and the cumulative hazard H t( ) , as defined in Eqs. 1.77–1.79 (Collett 1994). 
One can obtain the hazard function by dividing the event density function f t( )  by 
the survivor function. 

 (1.77)

 
(1.78)

 (1.79)

Figure 1.15 shows representative examples of cumulative distribution, probability 
density, survival, and hazard functions.

With nonparametric and semi-parametric methods, namely the Kaplan–Meier 
estimate of the survivor function and the Cox proportional hazard model, which is 
an extension of the Kaplan–Meier method, the form of the baseline hazard is not 
specified. The form of the covariate relationship, however, is specified in the Cox 
proportional hazard model.

With parametric models, both the hazard function and the effect of covariates are 
explicitly defined. Holford argued for using a parametric model for the hazard func-
tion because “hazard is the way to introduce biological mechanism to the survival 
model and understanding the variability of time to event distributions” (Holford 
2013). Table 1.4 lists the density, hazard, and survivor functions for the commonly 
used parametric models. Figure 1.15 shows the example of the probability density 
function and the corresponding hazard function for the exponential and Weibull 
distributions. In the exponential example, the hazard is a constant over time. This 
may not be the case in most clinical situations.

The Weibull model is more flexible as well as more generalized than the expo-
nential model; the hazard rates are monotonic in the sense that the hazard is either 
increasing, decreasing, or constant over time. The hazard for a Weibull cannot be 
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a combination of increasing and decreasing trends. The shape parameter, p , deter-
mines the trend. When p < 1, the hazard is decreasing monotonically. For p > 1, 
the hazard is increasing with time. With p = 1, the Weibull becomes an exponential 
function and the hazard is constant. The log-logistic model allows for nonmono-
tonic hazards. The shape parameter, p , determines the trend such that if p > 1, then 
the hazard increases and then declines whereas if p < 1, the hazard has a decreasing 
trend.

The Kaplan–Meier type estimate is useful for determining the appropriate hazard 
function to use. The ratio of the number of events ( jδ ) and the number of individu-
als at risk at the time (njτj) is the hazard in the time interval from t j  to t j+1:

 (1.80)

where nj  is the number of individual who has not had the event and therefore at 
risk of the event and jτ  is the time interval computed as t tj j+ −1 . The plot of time 
versus h t( )  provides a visual inspection of the trend of the hazard function.

The proportional hazard is one of the methodologies to introduce and evalu-
ate a nontime-varying covariate effect, the other being accelerated failure time, 
which will not be discussed. Assuming a set of nontime-varying covariate vector 

[ ]1 2, , , nX X X X= 
, the proportional hazard function can be setup as

 
(1.81)
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j j
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n
δ
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Fig. 1.15  Example of baseline hazard and the corresponding probability density functions for 
exponential and Weibull distribution
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where h t0 ( )  is the baseline hazard that depends on t  but not X  and T Xβ  is 
1 1 2 2 n nX X Xβ β β+ + + . A covariate, for example the presence of a specific dis-

ease, has an effect on the hazard and the coefficient, 1.39diseaseβ = . The relative risk 
for individuals with the disease is approximately fourfold (since exp( . )1 39 4= ) 
that of the healthy individual. We recently applied the proportional hazard model 
in pharmacogenomics to evaluate the influence of CYP3A5 and ABCB1 polymor-
phisms on the renal transplant patient’s relative risks for adverse events associated 
with tacrolimus (Sy et al. 2013b). The study used a marginal proportional hazard 
model with common baseline hazard to adjust for possible correlations between 
multiple incidents of adverse events, given that each patient can have multiple ad-
verse events which were considered competing risks (Sy et al. 2013b; Wei et al. 
1989; Wei and Glidden 1997). The marginal semi-parametric model is not without 
its criticism. The most frequent concern being raised is its assumption that each 
individual is considered to be at risk of all recurrent events from the start (Metcalfe 
and Thompson 2007). This assumption apparently would result in estimates that ex-
ceed those provided by alternative approaches. However, the marginal approach is 
considered to be the lesser of the two evils, with the alternative being one that does 
not consider a marginal model for repeated events from the same individual. For the 
parametric approach, the frailty model where the random effect has a multiplica-
tive effect on the hazard can be used to handle recurrent events coming from the 
same individual. As pointed out by Hougaard, the limitation of the frailty model is 
the standard assumption of using a gamma distribution for frailty which puts more 
importance on late events (Hougaard 1995).

One can treat frailty as multiplicative of the hazard term such that

 (1.82)

where j  refers the individual and i is the subgroup, and the frailty term is 
exp( )i jWν ψ= . Wj  is the “frailty” sampled from a distribution with mean 0 and 

a variance 1. If ψ  is 0, we have a standard proportional hazard. The hazard rate 
above is conditional on both the covariates and the frailty term and so is the survivor 
function,

 (1.83)

Before we obtain the marginal survivor function, we shall introduce the gamma 
distribution. The density for the gamma distribution is given by

 (1.84)

where 1
θ

∝= , β θ= , and the gamma integral is given by 1

0
( ) e νν

∞ ∝− −Γ ∝ = ∫ . By 

adopting the gamma distribution, ( )g ν , the expected survivor function can be derived:
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(1.85)

where L is the Laplace transformation to integrate out the distribution of the frailty 
term.

Using the Weibull model as an example, the marginal Weibull survivor function 
with gamma frailty is such that

 (1.86)

and the Weibull hazard with gamma frailty is equal to

 (1.87)

The frailty model is applicable in the clinical setting. For example, when a popula-
tion is heterogeneous, it is likely that the population composition over time will 
consist of the more robust individuals as the frail ones failed. In such case, the 
overall population hazard is declining while individual hazards increase. The frailty 
term allows for the overall population hazard to decrease regardless of the indi-
vidual hazard shape. The frailty model is more suited for the population approach 
in this respect.

For time-varying covariates, which are very applicable in the pharmacometric 
setting wherein the effect of drug concentration on the risk or hazard is a dynamic 
variable, the hazard should vary over time. Holford provided a tutorial explaining 
how the treatment effect can be incorporated to the hazard function to evaluate the 
dynamic drug time course on the hazard over time (Holford 2013).

1.7.2  Logistic Regression

A logistic regression is suitable for establishing relationship between the outcome 
of binary response data and explanatory variables (predictors). The probability of 
having an event is defined as:

 (1.88)

where ( )xπ  is called logistic function with values between 0 and 1. L x( )  is a linear 
function of predictors, 0 1( ) i iL x x xβ β β= + + + , where 0β  is the intercept and 

1, iβ β…  are the coefficients, and x  represents the predictors, such as drug concen-
tration (Heiberger and Holland 2004; Venables et al. 1994).

We take the probability of no event, which is one subtract the previous prob-
ability, ( )xπ :

( ) ( ) ( )( )0 0
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(1.89)

The odds describe the relative risk such that:

 
(1.90)

Taking the natural logarithm of the odds above gives the logit L( ) :

 
(1.91)

The logit is no longer bounded and its value can take from – ∞ to + ∞. It is important 
to note that the error around the logit follows a binomial distribution rather than a 
normal distribution.

The generalized logistic regression model extends the analysis to multiple cat-
egorical response data or multinomial responses (Agresti 1999). The approach is to 
model cumulative logits by comparing each response category with baseline such 
that

 
(1.92)

where the subscript i  represents the i −1  levels of response categories plus the 
baseline, ( ) ( )i P Y iπ = =x x  and ( ) 1ii

π =∑ x . This approach is often called the 
proportional odds assumption (McCullagh 1980; Peterson and Harrell 1990):

 (1.93)

The comparison between two responses is then

 
(1.94)

Sheiner in 1994 used the proportional odds model with individual specified random 
effects for the analysis of a 4-degree pain scale. The nonlinear mixed-effects model 
of ordered categorical PD data is mostly based on the proportional odds model and 
has been widely used for the evaluation of both efficacy and adverse events (Cull-
berg et al. 2005; Gomeni et al. 2001; Gupta et al. 1999; Johnston et al. 2003; Knibbe 
et al. 2002; Kowalski et al. 2003; Lunn et al. 2001; Mandema and Stanski 1996; 
Mould et al. 2001, 2002; Olofsen et al. 2005; Xie et al. 2002; Zingmark et al. 2003).

Kjellsson et al. presented a differential odds model to circumvent the assump-
tion with the proportional odds model that the size of the predictor effect is the 

1 exp( ( )) exp( ( )) 11 ( ) .
1 exp( ( )) 1 exp( ( ))

L x L xx
L x L x

π + −− = =
+ +

[ ]
[ ]

exp( ( )) / 1 exp( ( ))( ) exp( ( )).
1 ( ) 1/ 1 exp( ( ))

L x L xx L x
x L x

π
π

+
= =

− +

( )( ) log ( ).
1 ( )

xlogit L L x
x

π
π

 
= =  − 

( )
0log ,

( )
i

i
baseline

'
π

β
π

= + i

x
x

x
β

0logit ( iP Y i β ≤  = + x xβ′

( ) ( ) ( )
log log log .

( ) ( ) ( )
a a b

b baseline baseline

π π π
π π π

= −
x x x
x x x



45

same for the log odds for all categories (Kjellsson et al. 2008). They argued that 
the assumption is valid for categories on a continuous scale but would not hold for 
categories based on ranking scale. Even though historically, the partial proportional 
odds model has been used to allow for variable sizes of predictor effect, some of the 
categories within the model have odds that are proportional to each other. While the 
predictor function is identical for the proportional odds model, the differential odds 
model allowed this function to vary. The model was implemented using cumulative 
probabilities so that the correct probability value can be allocated to a specific score 
or category (for example, mild score is more likely than severe score for a response 
such as sedation). Figure 1.16 illustrates the predictor versus log cumulative odds in 
proportional and differential odds model. In the upper left-hand corner, the slopes of 
the log cumulative odds versus the predictor graph are the same for the proportional 
odds model. The remaining graphs illustrate the log-cumulative odds versus pre-
dictor trend with differential odds model. The Emax-shaped predictor effects in the 
upper right all had positive slopes whereas mixtures of positive and negative slopes 
are possible with the alternative implementation.
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Fig. 1.16  Logit functions based on proportional odds versus differential odds models and their 
effects on the cumulative log odds. Examples include proportional odds model with linear predic-
tor effects of the same slope ( upper left), differential odds model using Emax-shaped predictor with 
variable Emax values ( upper right), linear predictor with variable but positive slopes ( lower left), 
and linear function with both positive and negative slopes ( lower right). α2 for baseline logit with 
score ≥ 2, α3 and α2 for baseline-shifted logit with score ≥ 3 and ≥ 4, respectively. (Image from 
Kjellsson et al. 2008, used with permission)
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1.7.3  Markov Chain

Another methodology in pharmacometrics that is gaining popularity for the analysis 
of categorical response variable is the Markov chain model, which has been applied 
in clinical studies. A Markov chain process is a probability model in which the dis-
tribution of future outcomes depends only on the current state and not on the whole 
history; this is often referred to as the memoryless property of a Markov chain (Bass 
2011). In other words, the probability of a certain state to occur in the following 
time interval is only dependent on the state in the current time frame. With this defi-
nition, we suppose that a process in state i  has a fixed probability Pij  that it will be 
in the next state j , such that

 (1.95)

where the set X nn , , , ,={ }0 1 2  is a stochastic process of finite possible outcomes 
and Pij  is often referred to as transition probability.

For this discussion, we shall use the example of early and late tacrolimus-related 
adverse event occurrence in stable pediatric renal allograft recipients after trans-
plantation (Sy et al. 2013a). The transition probabilities were defined based on two 
states: without (state 0) and with (state 1) adverse event. A Markov chain model was 
chosen in that study because the observations may not be independent since it was 
assumed that the occurrence of an adverse event is related to the drug concentration. 
The current state of the patient was conditioned on his previous visit. The transition 
probabilities were: P00  for those who did not report an adverse event at a particular 
visit given no adverse event in the previous visit; P01  if the patient without adverse 
event in the previous visit reported an adverse event in the current visit; P10  for pa-
tients with an adverse event in the previous visit but no adverse event in the current 
one; and P11  if an adverse event occurred on both visits. The transition probabilities 
adhered to Markov properties such that the sum of the transition probabilities from 
the specific state is 1:

 
(1.96)

The function that is utilized for the estimation of the transition probabilities varies 
depending on the study needs. Kemp and Kamphuisen simulated human hypno-
grams using a Markov chain model (Kemp and Kamphuisen 1986). Karlsson et al. 
parameterized the transition probabilities through binary logistic function to de-
scribe sleep data (Karlsson et al. 2000). Bizzotto et al. utilized a multinomial logis-
tic function to characterize the time course of transition probabilities between sleep 
stages in insomniac patients (Bizzotto et al. 2010, 2011). Ouellet et al. used a logis-
tic regression wherein the logit function is linear to estimate the transition probabil-
ity of having an adverse event due to dizziness in subjects who were administered 
a selective glycine transporter 1 inhibitor (Ouellet et al. 2011). An example in Ross 
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probability textbook adopted Poisson probability density function (pdf) for count-
ing process in the estimation of transition probability (Ross 2006). The Poisson 
pdf assumes that the magnitude of the variance is identical to its mean. However, 
many counting processes show greater variability than that predicted by the Pois-
son model. Troconiz et al. explored mixed Markov elements and Poisson distribu-
tion to evaluate overdispersion in the variance of a Poisson distribution (Troconiz 
et al. 2009). There are numerous other implementations of the transition probability 
which we cannot possibly list all of them in this introductory chapter. When select-
ing whether or not to use a Markov model, Karlsson suggested that the Markov 
model is more suitable for consecutive same-state observations, which are typical 
for sleep patterns, as an example (Karlsson et al. 2000).

1.8  Disease Progression Model

The natural time course of a disease is often not one that is static but becomes pro-
gressively worse if left untreated. The disease trajectory is not constant, unlike the 
common assumption that is taken when using the Emax model wherein the baseline 
E0 is static. Even as early as the 1970s, investigators reported longitudinal studies 
of the natural history of non-Hodgkin’s lymphoma stages and coronary artery ste-
nosis (Fuller et al. 1975; Rosch et al. 1976). A disease progression model describes 
how an indicator for the disease or a clinically relevant endpoint changes in time. 
For the purpose of modeling disease progression, the approach has been applied in 
degenerative diseases such as Alzheimer’s disease (Holford and Peace 1992a, b), 
schizophrenia (Kimko et al. 2000), and diabetic neuropathy (Bakris et al. 1996; 
Bjorck et al. 1992; Crepaldi et al. 1998; Gall et al. 1993; Lewis et al. 1993; Parving 
et al. 1995).

Most of the disease progression models are empirical that describe the disease 
trajectory rather than its physiological background. The linear model has the fol-
lowing general form of equation that characterizes the disease as changing linearly 
with time:

 (1.97)

where S t( )  represents the disease status at a specific time t , S0 is the baseline 
that can be constant or a time-dependent function (e.g., sinusoidal function to char-
acterize circadian rhythm), and ∝  is the slope of the linear process. Therapeutic 
interventions, including placebo, can change the trajectory of a disease process. 
Interventions are generally classified as either symptomatic or disease modifying. 
Let f T( )  be the function to characterize the effect of treatment or intervention. In 
the case of symptomatic treatment, the effect of intervention would shift the disease 
baseline but not change the slope whereas disease-modifying interventions would 
change the rate of disease progression, as shown in Eqs. 1.98 and 1.99, respectively 
(Mould 2007; Mould et al. 2007; Schmidt et al. 2011):

0( ) ,S t S tα= +
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 (1.98)

 (1.99)

From the two equations above, the symptomatic interventions have different effect 
on the disease status from disease-modifying interventions. The disease trajectory 
will revert to its natural progression rate α  once the treatment is discontinued, 
regardless of the type of treatment. A third type of intervention is one that exerts 
completely cure and reverses the disease status back to pre-disease state. This type 
of intervention may best be characterized by a model that incorporates both symp-
tomatic and disease-modifying effect:

 (1.100)

In the examples listed previously of applications of disease progression modeling 
approach in specific therapeutic areas, the linear disease progression was used by 
Kimko et al. to study the effect of quetiapine fumarate, an antischizophrenic agent, 
on schizophrenia status based on the Brief Psychiatric Rating Scale (Kimko et al. 
2000).

Nonlinear functions have also been used as disease progression model. Pors-
Nielsen and Friberg used an exponential model to describe the effect of estrogen/
progestin treatment on osteoporosis (Pors Nielsen et al. 1994). Grantham et al. also 
used a similar model to describe the increase in renal volume in autosomal domi-
nant polycystic kidney disease (Grantham et al. 2008). Pillai et al. utilized an indi-
rect response type model to investigate biomarker response to ibandronate (Pillai 
et al. 2004).

1.9  Systems Pharmacology

Molecular biology evaluates single genes and proteins while systems biology com-
bines the complex interactions at all levels of a biological system. By viewing all 
levels of biological information in the process, scientists are able to determine im-
portant properties of the system. Mathematical models of biological processes help 
describe time-dependent kinetic behavior and causality. The mechanistic approach 
to modeling systems’ biological processes is based on sound biological principles 
with prior knowledge about the biochemical network involved. The variables and 
parameters are related to a physiological or cellular process where the information 
is obtained from an in vitro or physiological experiment. This approach gives the 
scientist a holistic view of the biological system. The study of mechanism of drug 
action on the system itself also becomes more precise.

One of the systems level models applied in drug development is that of the regu-
lation of glucose. Landersdorfer and Jusko provided an excellent review of applica-
tion of modeling in diabetes, with a specific focus on modeling drug effects (Land-

0( ) ( )S t S f T tα= + +

0( ) ( ( ) )S t S f T tα= + +

0 1 2( ) ( ) ( ( ) )S t S f T f T tα= + + +
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ersdorfer and Jusko 2008). In 1979, Bergman et al. developed a minimal model that 
included three coupled differential equations to describe the intravenous glucose 
tolerance test (Bergman et al. 1979). Using several feedback control mechanisms, 
the model couples insulin I  and glucose G  regulation and also introduces an ad-
ditional unobserved insulin component X  to describe the delay between insulin 
release and the response characterized by the reduction in blood glucose (Fig. 1.17):

 

(1.101)

The baseline values were h, GB  and IB  and parameters were SG, p2 , p3, γ , and 
n . The initial conditions were such that

2 3

( ( ))· ( ) ·

·( ( ) ) · ( )

·( ( ) ) · ( )

G G B

B

dG S X t G t S G
dt
dX p I t I p X t
dt
dI G t h t n I t
dt

γ

= − + +

= − −

= − −

Minimal model of glucose disappearance

Minimal model of insulin kinetics

Example of glucose and insilin concentrations after an IVGTT fitted by the minimal model

Plasma
insulin (I)

P2

P2 • (I – IB) – P3 • X
–(SG+ x)

X(0) = 0

I(0) = IB

SI = 

–(SG+ x)

P3
Remote insulin
compartment

(x)

Liver Glucose
space (G)

Insulin
distribution spaceSpcretion

400 250

200

150

1.0
0.8
0.6
0.4
0.2
0.0

In
su

lin
 a

ct
io

n 
(x

 1
00

)

100

P
la

sm
a 

in
su

lin
 (U

/d
L)

P
la

sm
a 

gl
uc

os
e 

(m
g/

dL
)

50

0

300

200

100

0
0 20 40 60 80 120 140 160 180 0 20

Time (min)
40 60 80 120 140 160 180

Peripheral
tissues

SG • GB

– (SG + X) • G + SG • GB 

γ •  G – h) • t γ •  G – h) • t – n • I–n • I(t)

=dG

dX

dI

dt

dt

=

=

dt

G(0) = Dose
Vd

GB+

P2
P3

a

b

) )

Fig. 1.17  Structure and equations of the minimal model of insulin-glucose feedback and control 
( top) and example of glucose and insulin concentrations after an IV glucose tolerance test fitted by 
the minimal model. (Image from Landersdorfer and Jusko 2008, used with permission)

 

1 Introduction to Pharmacometrics and Quantitative Pharmacology …



50 S. K. B. Sy et al.

 

(1.102)

Though this model is widely used, it is not without its problems. The model does 
not allow both insulin and glucose to be fitted simultaneously (Pacini and Bergman 
1986). The additional unobserved insulin effect compartment X  is unbounded and 
can increase indefinitely when both glucose and insulin parts of the model were 
estimated simultaneously (De Gaetano and Arino 2000). Another issue with the 
model is that it does not take into account the first and second insulin phases (Ag-
erso and Vicini 2003). This model is applicable for diagnostic test but limited for 
drug evaluation.

In the study of glucagon-like peptide-1 analog NN221, Agerso and Vicini in-
troduced a Gaussian term to describe the first-phase insulin secretion (Agerso and 
Vicini 2003). The resulting equation for I  was such that

 
(1.103)

where ( )tβ  is an empirical Gaussian function that accounts for the amplitude of the 
first-phase insulin as well as duration of this process. Mager et al. (2004) further 
modified the γ  parameter to an Emax model to include a drug effect for another 
GLP-1 analog, exenatide (Mager et al. 2004). This model was used in the analysis 
of data from hyperglycemic clamp study in healthy subjects and diabetic patients.

Indirect response type models have been applied to study the effects of various 
antidiabetic agents on glucose and insulin. Benincosa and Jusko evaluated rosi-
glitazone effects wherein both fasting plasma glucose (FPG) and hemoglobin A1c 
(HbA1c) were measured (Benincosa and Jusko 1999). The glycosylation of hemo-
globin was described by a second-order process that is proportional to the FPG con-
centrations and is dependent on the ratio of the steady-state HbA1c and FPG. The 
elimination of HbA1c is a first-order process. Hamren et al. modified the model for 
tesaglitazar such that the glycosylation process also takes into account the erythro-
cyte lifespan and utilizes several transit compartments to describe the aging process 
of erythrocytes (Hamren et al. 2008).

Given that diabetes is a chronic disease that becomes progressively worse, 
the models should also examine disease progression for long-term studies of 
antidiabetic drugs. Frey et al. investigated the effect of sustained-release gliclazide 
on FPG over 10 weeks to 1 year period (Frey et al. 2003). In patients who responded 
to the treatment, FPG levels initially declined and then slowly increased whereas 
the nonresponders’ FPG levels continued to increase in the natural disease progres-
sion process. The authors utilized an empirical linear model with an intercept and 
a positive slope to describe the disease progression, measured by FPG over time:
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 (1.104)

where α is the slope of the disease progression process, Et  is the predicted treat-
ment effect at the time when the treatment was administered, and baseline is the pre-
dicted baseline FPG. Since gliclazide was assumed to only alleviate the symptoms 
of the disease without modifying the disease itself, the effect of the drug was to shift 
the curve without affecting the rate of disease progression that is characterized by 
the α term.

De Winter et al. modeled the worsening of β cell activity (B) and insulin sensitiv-
ity (S ) using a different disease progression model approach (de Winter et al. 2006):

 

(1.105)

where baselines were b0  and s0  and rates of disease progression were rb and rs. 
Their investigation also included a model for HbA1c, which was fitted simultane-
ously along with FPG and insulin levels.

More sophisticated models of the whole body have been developed and focused 
on tissues and organs that are relevant in diabetes. These models were used to simu-
late virtual patients and predict clinical trial outcomes. As these complex models are 
relatively difficult to develop, many assumptions are made and model parameters 
are often taken from literature. Examples of these models include the Archime-
des, the Entelos Metabolism, and T1Dm PhysioLab®. As these models are propri-
etary, there is a lack of transparency in the model equations and parameter values 
(Herman 2003).

Another therapeutic area where systems biology and pharmacology models are 
extensively used is in oncology. Biochemical reactions and signaling pathways are 
often described by differential equations that characterize a chemical reaction. Most 
of these processes involve a complex network of chemical and biochemical reac-
tions. The law of mass action is the common convention that is used to describe 
the rate at which chemical entities interact to form a different combination. The 
computational model for heregulin-induced p-ErBB3 signaling and the effect of 
antibody inhibitors pertuzumab and lapatinib utilizes such convention (McDonagh 
et al. 2012; Schoeberl et al. 2009). The following chemical reactions were listed for 
ErbB2/3-bispecific antibody binding and receptor cross-linking:

 (1.106)

 (1.107)

 (1.108)
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 (1.109)

where E2 and E3 represent ErbB2/3, respectively, and BsAb refers to a bi-specific 
antibody. The chemical reactions listed in Eqs. 1.106–1.109 are reversible processes 
and the reaction schema can be generalized:

 (1.110)

where k is the forward reaction rate and k’ is the reversible rate. The rate of change 
for each of the above species can be written as follows:

 

(1.111)

As one can see, writing out the differential equations for the chemical reaction in 
Eq. 1.111 becomes a tedious effort, especially when the biological system has many 
players. Some systems biology tools allow user to create reaction processes and 
will automatically create the corresponding differential equations in the background 
(Maiwald and Timmer 2008).

In identifying targets, McDonagh et al. utilized computation modeling and cell 
signaling insights to develop specific targeted antibodies that are capable to de-
stabilize the over expression of ErbB2 by inhibiting ErbB3 signaling (McDonagh 
et al. 2012). They identified that ErbB3/heregulin activation plays a critical role in 
ErbB2-positive refractory disease and that the synergy can be achieved in combi-
nation therapies involving ErbB3 inhibitor and ErbB2 therapies (McDonagh et al. 
2012). System pharmacology models are slowly being adopted in drug develop-
ment settings and the examples show promising prospect for systems pharmacology 
to become part of mainstream pharmacometric analyses.

1.10  Software

As software facilitates PKPD modeling and simulation, we will discuss the avail-
able software packages that have been used for different types of analyses. For 
noncompartmental analysis (or statistical moment approach), WinNonlin is most 
commonly used in the pharmaceutical industry. Alternately, the PK package in R is 
a basic PK package that performs noncompartmental analysis of PK data as well. 
A brief description of this tool can be found on the CRAN project website (http://
cran.r-project.org/web/views/Pharmacokinetics.html). For nonlinear mixed effect 
modeling, NONMEM is the most commonly used software in the drug development 
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setting. The Non-Parametric Adaptive Grid algorithm using NPAG (USC*PACK) 
is common for modeling population PK data in the therapeutic drug monitoring 
setting. The other software for mixed effect modeling are ADAPT that is based on 
important sampling algorithm, MONOLIX with the Markov Chain Monte Carlo 
(MCMC) stochastic approximation expectation maximization (SAEM). BUGS is 
a software package for performing Bayesian inference using Gibbs sampling. The 
user specifies a statistical model by stating the relationships between related vari-
ables. The software determines an appropriate MCMC scheme (based on the Gibbs 
sampler) for analyzing the specified model. The user then controls the execution of 
the scheme. There are two main versions of BUGS, namely WinBUGS and Open-
BUGS. The recent release of NONMEM has incorporated the algorithms in the 
other software packages mentioned above. SimCyp includes a population-based 
simulation system using PBPK model.

    For systems biology modeling, the Matlab platform and specialized toolboxes 
that were built on top of the Matlab platform can handle large and complex mod-
els that may contain hundreds of coupled differential equations. The large models 
can be slow in Matlab. Specialized Matlab toolbox such as Potterswheel (URL: 
potterswheel.de) utilizes chemical reaction scheme and builds the corresponding 
differential equations in C language to speed up the analysis and fitting processes 
(Maiwald and Timmer 2008). Curated systems biology models are available from 
library consortiums that are publicly accessible (e.g., http://www.ebi.ac.uk/biomod-
els-main) and can be ported to specialized software packages through Systems Biol-
ogy Markup Language (SBML).

1.11  Conclusion

Over the past decade, pharmacometrics has become a discipline that is frequently 
utilized in academia, worldwide regulatory agencies, and the biopharmaceutical in-
dustry. Cost cutting and improvement in drug development will come from creative 
application of pharmacometric modeling approach.

The US FDA has emphasized the importance of model-based drug develop-
ment wherein PK/PD models to characterize drug efficacy and safety are being 
developed for both preclinical and clinical data. The agency strongly supports this 
program, “Pharmacometric analyses, we believe, are valuable to gain insights into 
the data across drugs and to plan future development. The model and simulation 
approaches should not be viewed as substitutes to conducting clinical trials in all 
instances. Also, such quantitative analyses should not be primarily used to ‘rescue’ 
failed trials for seeking approval. Where appropriate, the FDA accepted simulation 
results” (Bhattaram et al. 2005).
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Appendix

Derivation of Eq. 1.55

Implicit in the assumption that the concentration of drug in the system that is being 
cleared is constant or at steady state, we assumed that the rate of change in the drug 
concentration is 0 and thus set all the left-hand sides in the list of equations in Eq. 
1.53 to 0.

 (1.112)

 (1.113)

 (1.114)

 (1.115)

 (1.116)

 (1.117)

 (1.118)

From Eq. 1.112, we integrate

 (1.119)

By applying Eq. 1.54 and substituting 1 0·Q C  with 4 4 5 5 6 6· · ·o o oQ C Q C Q C+ +  to 
Eq. 1.119, the resulting expression is
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Rearrangement of Eq. 1.120 by adding and subtracting 7 7 4 7( · ( )oQ C Q Q+ −  
2 5 5 6 2· · )oC Q C Q C+ +  to Eq. 1.120 such that the net result is 0 will yield the follow-

ing expression:

 

(1.121)

From Eq. 1.117, 6 2 6 60
( · · ) 0oQ C Q C dt

∞
− =∫ . Given that 7 7 4 7 2· ( )oQ C Q Q C+ −  rep-

resents the total amount of drug entering the liver from the artery and the gut which 
is also Cp, wherein 4 7 7 4 7 2· · ( )p oQ C Q C Q Q C= + − , we can then simplify Eq. 1.121 
as follows:

 

(1.122)
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∞ ∞
+ + =∫ ∫ , since 1 4 5 6Q Q Q Q= + +  and 

from Eq. 1.113, 1 30 oQ C dt
∞

∫ , then Eq. 1.122 can be rewritten as Eq. 1.55:

Derivation of Eq. 1.60

Using the expression for mean clearance, the rearrangement of Eqs. 1.55 through 
1.59 will result in the following:

 

(1.123)
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In the following step, multiply Eq. 1.124 by A125:
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Since  7 7 7·CL Q E= . In the following step, we substitute Eqs. 1.126 and 1.125 to 

Eq. 1.123, 
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2.1  Introduction

Historically, therapeutic agents were dosed using the same dose for all patients 
(“flat dosing”), sometimes dosed on body size (weight or body surface area, BSA), 
or adjusted based on key patient factors (covariates), such as degree of renal impair-
ment. For some agents such as warfarin, the risks associated with both over and 
underdosing are substantial, and genetic markers can be used to refine the starting 
dose and the dose increments in order to safely achieve the international normal-
ized ratio (INR) target range and subsequent clinical effect. However, owing to 
differences in tolerance such as with antineoplastic agents, or effects, such as with 
antihypertensive agents, adaptive dosing where doses are adjusted based on ob-
served response (“adaptive dosing”) is also used. Individualizing drug therapy, or 
tailoring the selection of both the drug and the dose for a specific patient, has been 
a long-held objective of physicians and other health-care providers. As stated in a 
recent review of the history of individualized medicine (Lesko and Schmidt 2012), 
“personalized medicine is an evolution, not a revolution.”

Personalized medicine is expected to optimize the benefit and minimize the 
harm of medical interventions on a patient-by-patient basis. Thus, the goal of per-
sonalized medicine is to identify patient characteristics predictive of response to 
therapy and to use this information to provide a therapeutically optimal dose for 
each patient, or patient subgroups, based on their individual characteristics (Conti 
et al. 2010). Examples of patient characteristics that may affect drug exposure and 
response, and subsequently require individualization of treatment and dose include 
age, body weight, race, sex, organ function (e.g., hepatic and renal function), and 
various types of biomarkers, such as biochemical, disease markers, and genomic 
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markers. The goal of personalized medicine aligns well with that of population 
pharmacokinetic and pharmacodynamic (PK/PD) modeling, which includes identi-
fication of covariate factors that are predictive of heterogeneity and uncertainty in 
drug exposure and/or response.

The utilization of biomarkers for patient care decisions has been limited by the 
lack of decision-support tools for practitioners to facilitate integration of biomarker 
data with other patient specific information to generate a treatment recommendation 
(Zineh and Huang 2011). PK/PD modeling enables integration of multiple patient 
characteristics in a drug-specific framework, and recently has been combined with 
web-based applications that provide a user-friendly interface, or “dashboard” for 
including patient-specific inputs, updating the associated models, and summariz-
ing and visualizing the data and model-based dose predictions (Barrett et al. 2008). 
Such dashboard systems have the potential to offer an improved and convenient 
means for health-care provider to tailor treatment for an individual patient, particu-
larly for drugs with high variability in exposure or a narrow therapeutic window.

2.1.1  Current Dosing Paradigms

There are numerous approaches to developing dose regimens for therapeutic agents, 
but the most common are the “flat” dose (e.g., all patients receive the same dose), 
with dosing based on body size also being a common dose metric. In addition, 
dosing is often stratified based on covariates, such as genotype or organ function. 
Adaptive dosing, where doses are increased or decreased based on observed effect 
is also used.

One of the issues with the flat dose option is that the exposure and/or response 
to a given dose is often highly variable. This variability can arise from differences 
in the PK, such as in genetic subpopulations, that rapidly clear a drug, or can be due 
to differences in the PD related to a given plasma drug concentration. If there are 
factors, such as an effect of weight on clearance, then small patients will tend to be 
overdosed and patients with high weight will be underdosed using this dose adjust-
ment strategy. Figure 2.1 depicts two hypothetical patients’ response to the same 
dose of a drug. Depending on the therapeutically desired response, these patients 
may need to receive higher (in the case of the patient with a weaker response) or 
lower (in the case of the patient with a greater response) doses.

Dosing based on body size is a common approach. However dosing on a mg/kg 
basis often results in subtherapeutic exposures in low weight patients, particularly 
pediatric patients (Anderson and Holford 2013; Xu et al. 2013) because the rela-
tionship between drug clearance and weight (if it exists) is rarely linear due to the 
differences in the ratio of clearance organ size to overall body weight. This finding 
has been confirmed for many compounds, including infliximab (Xu et al. 2012; 
Fasanmade et al. 2011). The US Food and Drug Administration (FDA) has written 
a guidance document for industry on dose selection for the minimum recommended 
dose for first time in humans (FTIH) studies (Guidance 2014) that suggests selec-
tion of initial doses based on body weight (e.g., mg/kg) in order to scale exposure 
observed in nonclinical studies to safe levels in humans. While this document is 
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not specifically aimed at providing guidance for dose selection, many marketed 
monoclonal antibodies (mAbs) are labeled for dosing on a mg/kg basis. A recent 
review (Mould and Green 2010) found that only three of 26 marketed mAbs had 
a clearance that was linearly related to weight, eight were dosed on a mg/kg basis 
and two of these had no weight effect identified on the clearance. Doses based on 
BSA are similarly problematic. Egorin published a review on BSA-based dosing 
for antineoplastic agents (Egorin 2003). The variability in exposure with this dosing 
approach is not always improved as compared to “flat” dosing.

A stratified dose approach where flat doses are administered over specified rang-
es of body weight, or over and under a given mg/kg weight, is often the best way to 
ensure appropriate dosing when body size impacts clearance, and may be particu-
larly relevant for pediatric patients (Xu et al. 2013). This approach has the benefit 
of reducing the overdosing and underdosing seen with flat dosing and dosing based 
on body size, either weight or BSA.

Some compounds such as epoetin (a biologic agent used to treat anemia) are 
dosed based on specific hemoglobin measurement. The dose algorithm is complex 
however, and although the approach works well to control hemoglobin, the com-
plexity of the dose strategy can give rise to dose errors, and dose adjustments takes 
time to determine. Computer-based dose support has been shown to improve the 
percentage of patients staying within the target range of hemoglobin, often with 
a lower dose than the manual adjustment provided (Ho et al. 2010), and with sub-
stantially increased staff efficiency without having a negative impact on safety 

Fig. 2.1  Examples in differences between patients in response to a specific dose. In this figure, 
two hypothetical patients were administered the same dose of drug with the goal of lowering the 
measured response indicator. The patient response represented by the black line is a patient with 
a strong response while the patient whose response is represented by the red line has a weak 
response. Thus the latter patient may need a higher dose or a different treatment for their disease
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(Miskulin et al. 2009). Thus, computer-guided dosing may have a substantial im-
pact on optimizing patient management of their therapies.

2.1.2  Definition of a Dashboard

A dashboard is a user interface that, like a dashboard in a car, organizes and pres-
ents information so that is easy and quick to read and interpret. Software pack-
ages that integrate information from multiple components into a unified display 
are referred to as dashboards. For example, patient management dashboards might 
obtain information from electronic medical records, laboratories, and through cli-
nician and patient input and present it as though it all came from the same source. 
Hewlett Packard (HP) developed the first dashboard system, which began as a tool 
for customizing Windows desktops. Called “Dashboard,” the HP product was later 
acquired by Borland and then a company called Starfish (Dashboard 2014).

“Dose calculators” have been in existence since the late 1950s, although the 
majority of these early systems were to calculate radiological doses (Sivyer 1959). 
Until recently, the computational needs of individualized dosing were limited, 
 although the application of Bayesian forecasting has been shown to result in thera-
peutic improvements. For example, application of Bayesian-based dosing substan-
tially increased the number of patients whose trough phenytoin levels were within 
the target range (63.6 % of the phenytoin troughs from the Bayesian forecasting 
group, compared with 34.0 % in the conventional dose adjustment group) (Tobler 
and Mühlebach 2013). One of the earlier dashboard systems in clinical use focused 
on antineoplastic dosing for pediatrics (Barrett et al. 2008), and the number of dash-
board systems has grown over time.

A related topic that will not be covered in detail here is the emergence of com-
puterized clinical decision support systems (CDSS). Papier (2012) defined these as 
“an interactive system allowing input of patient-specific information and providing 
customized medical knowledge-based results via automated reasoning, for exam-
ple, via a set of rules and/or an underlying logic, and associations.” These systems 
generally are not based on an underlying population model but embody collected 
clinical expertise which is compared to a patient’s symptoms using methods such 
as rule-based or fuzzy logic algorithms (Domínguez Hernández et al. 2013). Like 
dashboard systems, they are a growing area of research seeking to maximize the use 
of prior knowledge for an individual patient.

2.1.3  Relationship to Population Models

Dashboard systems are generally built around a population model (Mould and  Upton 
2012). The population model is essentially an embodiment of the current state of 
knowledge about the PK or PD of a drug and generally includes three key components:

1. The structural (base) model (e.g., a one-compartment PK model) that provides a 
(ideally) mechanistic description of the time course of a measured response.
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2. Stochastic (probability) models that describe the distribution of unexplained 
variability in the observed population, such as between-subject variability (BSV) 
or residual variability (RUV).

3. Covariate models that quantitate the influence of explainable factors such as 
demographics or disease on individual time course of the response.

The dashboard system is intended to be a user-friendly system for accessing the 
model to forecast exposure or response for an individual patient, with the  predictions 
of the model refined by incorporating information about each individual patient into 
the model. The greater the size and diversity of the database used to construct the 
underlying model, the greater the chance that the model will be able to return use-
ful and accurate individual predictions for most patients. However, it should be 
recognized that there are limitations to forecasting using population models. The 
underlying assumption is always that a particular population model will continue to 
describe data from a patient into the future, and that the model captures all important 
sources of variability (both explainable and unexplainable). When the underlying 
assumptions do not apply to a given patient, the model predictions have the potential 
to be in substantial error. For example, a given model of drug PK may have been 
appropriate for a patient in the past, but if the patient has a cardiac infarct (with 
major reductions in cardiac output with a subsequent impact on drug clearance), the 
forecast concentrations from the model may be substantially underestimated.

2.2  Individualized Forecasts

There are two main mechanisms by which individual data can be used to refine the 
predictions of a population for a particular patient. These are via covariate relation-
ships identified during the model building process, and by Bayes updating on model 
parameters based on individual data. Figure 2.2 shows an example of how both 
methods can work together to improve the forecast for an individual patient.

2.2.1  Covariate Effects

Covariates (e.g., age, sex, renal function) modify the value of a model parameter 
(e.g., clearance, CL) depending on the value of the covariate (e.g., body weight on CL 
in Fig. 2.2). The inclusion of a covariate relationship in a model will generally imply 
that the model provides a better description of the data and that the  unexplained BSV 
of the associated parameter is reduced. Thus, covariate factors effectively convert 
unexplainable variability to explainable variability at the population level, and re-
duce the uncertainty in the values of the model parameters for individual patients for 
whom covariate values are known (Fig. 2.2). However, depending on the drug and 
the dataset used to develop the model, the contribution of covariates to reductions 
in unexplainable variability can vary from nothing (i.e., no covariates identified) to 
modest or substantial contributions. When no covariates are found, this implies that 
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Fig. 2.2  An example of the contribution of individual data to Bayes forecasts. Below is an exam-
ple model to determine steady-state drug concentration ( Css) of a chronically administered drug: 
Css = DoseRate/(CL*(WT/70)0.75). CL is a log-normally distributed population parameter with a 
population value of 2 L/h and BSV of 25 %. Patient body weight (WT) is a covariate affecting 
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the factors causing variability between patients have either not been identified, were 
not possible to measure in sufficient numbers of individuals, or were not available 
at all in the analysis dataset. It is important to note that the ability to identify predic-
tive covariates is dependent on both the method used to evaluate the data (Wählby 
U, Jonsson EN, Karlsson MO. Assessment of actual significance levels for covariate 
effects in NONMEM. J Pharmacokinet Pharmacodyn. 2001; 28(3):231-52) and the 
approaches used during modeling (Mould and Upton 2013). However, even when 
covariates are identified, many agents still have considerable unexplained variabil-
ity, which limits the use of patient covariates in individualizing dosing.

2.2.2  Bayes Update of Models with Individual Data

Most of the currently available software packages for individualizing therapy uti-
lize Bayesian methods to help predict future response to a given dose regimen. In 
general, such software packages use a mixture of Bayesian updating, Bayesian fore-
casting, and Bayesian model averaging. Bayesian inference is a method in which 
Bayes’ rule is used to update the probability estimate for a hypothesis as additional 
data are obtained. Bayesian updating is particularly important in the dynamic analy-
sis of data collected sequentially over time.

Bayesian updating uses a model that not only describes the time course of ex-
posure and response but also includes terms describing the unexplained (random) 
variability of exposure and response. It involves applying a “prior” (which is 
called a prior because it reflects the underlying information derived from previous 
evaluations) to form the underlying hypothesis. The prior distribution is the distri-
bution of the parameter(s) before any new data are observed and is usually devel-
oped in a separate analysis. The prior therefore is the series of mathematical models 
describing exposure and response following administration of a drug. The sampling 
distribution is the distribution of the observed data conditional on its parameters. 
This is also termed the likelihood, especially when viewed as a function of the 
parameter(s). The marginal likelihood (also called a “posterior”) is the distribution 

 

CL via an allometric relationship, where the standard body weight is 70 kg. DoseRate is the aver-
age steady-state dose rate—set at 10 mg/h, proportional residual error for the model was 20 %. 
We wish to forecast the clearance of the drug (so that individual Css can be estimated). Panel A 
shows the probability densities for CL for the case where no individual patient information is 
known (densities are normalized to the same peak value for clarity). There are a variety of possible 
distributions for CL, depending on the unknown body weight of the patient. Panel B shows the 
distribution of CL with covariate data. The patient has a weight of 60 kg, eliminating other can-
didate distribution curves. Panel C shows the distribution of CL with covariate data and a single 
observation of Css in the patient. In this case, Css was found to be 4 mg/L, which was lower than 
the expected value of 5.6 mg/L for a 60-kg subject. The distribution therefore moves to the right, 
reflecting higher individual clearance and becomes narrower, reflecting more certainty about the 
individual patent value of CL. Panels D and E show the distribution of CL with covariate data, 
and 3 and 6 observations of Css in the patient, respectively. Note that as more individual data are 
available, the uncertainty in the distribution of CL reduces (i.e., the distributions are narrower) 
via Bayesian learning. Adapted from Mould DR, Upton R, Wojciechowski J. Dashboard Systems: 
Implementing Pharmacometrics from Bench to Bedside. AAPS J ePub June 2014 with permission
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of the observed data marginalized over the parameter(s). Thus, Bayes’ rule can be 
applied iteratively. That is, after observing data, the resulting posterior probability 
can then be treated as a prior probability, and a new posterior probability computed 
from the next set of new evidence. This procedure is termed Bayesian updating or 
sometimes “Bayesian learning” (Gill 2008).

However, rather than estimate the parameters for the model based solely on the 
patients data, Bayes’ theorem is implemented to balance the contribution of new 
data and prior knowledge in the estimation of the model parameters for the indi-
vidual (see Table. 2.1). Thus, a single data point in an individual is given less weight 
in the fitting process if it deviates substantially from what has happened before, 
but is given more weight as additional data points support the finding. Similarly, a 
parameter value is given less weight in the fitting process if it deviates substantially 
from the prior values inherent in the population model (see Fig. 2.2). From a Bayes 
perspective, the interpretation of a data point is seen to have contributions respec-
tively from the truth (the underlying process, described by a model), the errors 
(intraindividual, interindividual, interstudy, residual, etc.), and the prior knowledge:

The updating process involves sampling parameters from the prior distribution and 
calculating the expected response based on the model, then comparing the differ-
ence between the model expectation and the observed data. This difference is re-
ferred to as the objective function. The parameters are then adjusted based on the 
objective function and the new parameters are tested. This process runs iteratively 
until the objective function is as low as possible (referred to as “minimizing the 
objective function”) suggesting that the parameters are the best to describe the cur-
rent data. The result of Bayesian updating is a set of parameters conditional to the 
observed data balanced by the application of the principles of Bayes’ theorem.

Bayesian model averaging (Hoeting et al. 1999) offers a systematic method for 
checking the robustness of one’s results to alternative models. The standard practice 
of selecting a single model from some class of models, and then making inferences 
based on this model ignores model uncertainty, can impair predictive performance 
and overestimate the strength of evidence for predicting dose–exposure relation-
ships. Bayesian model averaging allows model uncertainty to be incorporated into 
inference. The basic idea behind Bayesian model averaging is to make inferences 
based on a weighted average over model space which includes several models. This 
approach accounts for model uncertainty in both predictions and parameter esti-
mates. The resulting estimates incorporate model uncertainty and thus may better 
reflect the true uncertainty in the estimates.

data truth error prior knowledge.= + +

Factors that favor the prior Factors that favor the data
Few data points Many data points
High residual error Low residual error
Low population variability High population variability

Table 2.1  The balance 
between the prior and the 
data
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Bayesian forecasting (Elliott et al. 2006) then involves using the updated indi-
vidual parameters to forecast the likely exposure and response that a given patient 
will exhibit with varying dose regimens based on the individual parameter estimates 
obtained via Bayesian model averaging and Bayesian updating. However, when the 
software does not have the capacity to do Bayesian updating, then the forecasting is 
generally based on the patient covariates which is generally less precise.

The majority of dashboard systems available are for use with aminoglycoside 
antibiotics and warfarin although there is one (Knowledgebase) that deals with 
dosing pediatric oncology. A list of several currently available systems is provided 
in Table 2.2. As can be seen, these systems utilize varying aspects of Bayesian 
methods to determine an individualized dose.

Software Bayesian 
updating

Bayesian 
forecasting

Bayesian 
averaging

Dose Drugs Website

Abbottbase (Wong 
et al. 2013)

Yes Yes No Yes, to an 
AUC

Aminogly-
cosides

NA

Drugcalc (García 
et al. 1994)

Yes No No Yes to an 
AUC

Aminogly-
cosides

http://www.
testandcalc.
com/drugcalc/
index.asp

Dosecalc (Mohan 
et al. 2004)

No No No Yes to an 
AUC

NA

MW/Pharm 
(Usman et al. 
2013)

Yes Yes No Yes 180 drugs http://www.
mwpharm.nl/
main.htm

CHOP Pediatric 
Knowledgebase 
Dashboard (Barrett 
et al. 2008)

Yes Yes No Yes through 
forecast

Pediatric 
oncology 
(methotrex-
ate)

http://pkb.
chop.edu/
index.php

NZ FirstDose 
Dashboard (Hol-
ford et al.)

No Yes No Yes Amika-
cin and 
vancomycin

http://www.
firstdose.org/

TCIworks (Wong 
et al. 2013)

Yes No No No Gentamy-
cin and 
enoxaparin

http://www.
tciworks.info/

Warfarin dosing No No No Yes 
based on 
covariates

Warfarin http://www.
warfarin-
dosing.org/
Source/Home.
aspx

Baysient dose 
evaluation system 
(Mould et al. 
2013)

Yes Yes Yes Yes, 
multiple

Any http://www.
baysient.com 

NA not applicable

Table 2.2  Overview of selected dashboard systems 
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2.3  Dashboard Systems

In general, dashboard systems have several components including: (1) patient data 
management, (2) updating/forecasting, and (3) dose recommendations. Figure 2.3 
shows screen shots of the results from Bayesian updating and forecasting as well 

Fig. 2.3  Common dashboard screens. Panel A shows the agreement between the model with 
Bayesian updated parameters ( blue lines) and the observed data ( blue dots). Note that the concen-
trations are within the red shaded region suggesting that this patient is not at or above the target 
level. Panel B shows the patients individually estimated clearance over time. The green region is 
± 3 standard deviations of a typical patient with those covariates. The fact that this patient’s clear-
ance is in the yellow shaded area suggests that the doses and frequency needed to maintain this 
patient at the target level will probably exceed the labeled recommendations. Panel C shows the 
dose optimization screen where the clinician can determine either an appropriate regimen (e.g., 
dose and interval), or can enter the next patient visit to ensure the patient is adequately covered 
during the interval. Panel D shows the expected troughs from all of the recommended dose regi-
mens to ensure they are high enough to achieve a desirable response (https://www.baysient.com)
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as the dose recommendation screens. These screens can also be used as a basis for 
communicating with various health-care providers and patients as the results of 
delayed or missed doses can be readily shown, potentially improving compliance 
and an understanding of why medicine responses vary. The output from the Bayes-
ian updating also can be a useful diagnostic for patients whose clearance is so high 
that maintaining an effective concentration will require very high doses and/or very 
short dose intervals.

2.3.1  A PK System: Infliximab

In clinical use, infliximab is administered in two “phases”: an induction phase 
where doses are administered frequently (e.g., at weeks 0, 2, and 6) and a mainte-
nance phase where doses are given every 8 weeks. More than one third of patients 
show no or little response to induction therapy (primary nonresponders) and in up to 
50 % of responders, tumor necrosis factor (TNF) antagonist therapy becomes inef-
fective over time (secondary nonresponders; Peyrin-Biroulet et al. 2008). Loss of 
response to infliximab, which is often due to development of neutralizing antidrug 
antibodies (ADAs) and subtherapuetic drug concentrations, is an ongoing challenge 
in managing of patients with chronic inflammatory disease.

There is a strong relationship between serum drug concentrations and response. 
Studies conducted in both rheumatoid arthritis (RA) and inflammatory bowel dis-
ease (IBD), have shown that patients with higher trough drug concentrations achieve 
superior outcomes without added safety risks (Seow et al. 2010; Maser et al. 2006; 
Radstake et al. 2009). These findings suggest that therapeutic drug monitoring may 
be used to direct dose adjustment and support clinical decision making. Infliximab 
concentrations ≥ 12 µg/ml at 4 weeks after infusion and/or > 1.4 µg/ml at dosing 
trough are considered to be predictive of therapeutic response (Baert et al. 2003). 
Following dosing, infliximab concentrations have been shown to be highly variable 
between individuals and differ over time even within an individual patient. The dif-
ferences in the observed concentration–time profiles can be partially explained by 
patient covariates and disease characteristics (Nestorov 2005).

The formation of ADAs can profoundly affect drug clearance, resulting in low 
or nonmeasurable drug concentrations and subsequent loss of therapeutic response. 
In addition, other factors can affect infliximab PK including concomitant use of 
immunosuppressive agents, serum albumin concentration, body weight, the degree 
of systemic inflammation (e.g., serum albumin concentration and TNF burden), 
and disease pathophysiology (e.g., type of IBD, RA or psoriasis). The effect of 
weight on infliximab clearance is not linear (Xu et al. 2012) although clearance 
increases as weight increases. Thus, dosing based on weight (e.g., mg/kg) does not 
always provide efficacious drug exposure. Consequently, monitoring of serum drug 
 concentrations is particularly important in patients with both low weight and high 
inflammatory burden. Gender has been shown to influence infliximab, with clear-
ance being higher in males (Ternant et al. 2008; Fasanmade et al. 2009) although 
the fact that clearance is higher in males may also be related to weight as males 
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 generally have a higher body weight than females. In addition, an inverse relation-
ship exists between serum albumin concentration and infliximab clearance (Fasan-
made et al. 2009). The impact of albumin translates to lower response rates (Fasan-
made et al. 2010). Patients with a baseline serum albumin concentration below the 
normal range (a common finding associated with severe inflammation) have lower 
remission rates following treatment with infliximab.

Recently, a study of patients with rheumatoid arthritis treated with infliximab has 
shown that a high body mass index (BMI) negatively influences clinical response 
to anti-TNF agents (Klaasen et al. 2011). Research into the role of mesenteric fat in 
chronic inflammatory diseases has intersected with investigations into the impor-
tance of adipose tissue as a metabolically active source of inflammatory cytokines 
(e.g., TNF; Coppack 2001) in patients with insulin resistance. Therefore, obese pa-
tients would be expected to have higher circulating TNF than patients with normal 
weight, suggesting that obese patients may require higher drug doses than those 
currently recommended.

Given the complexity and number of patient factors affecting infliximab PK, 
together with the large remaining unexplained variability and the high rate of loss 
of response (Ordás et al. 2012), dashboard systems could provide needed clarity in 
making dosing decisions (Mould et al. 2013). A retrospective evaluation of a dash-
board system (Mould et al. 2013) demonstrated that the dashboard system designed 
for infliximab was able to accurately predict dose regimens that would provide 
therapeutically appropriate exposure and that the time of identification of the regi-
men was substantially shorter than via clinical (“manual”) adjustment of the dose 
(Fig. 2.4).

2.3.2  A PD System: Warfarin

Warfarin is one of the most frequently prescribed oral anticoagulants and is used 
to prevent thromboembolic events. Warfarin exerts its anticoagulant effect through 
inhibition of vitamin K epoxide reductase, interfering with the recycling of re-
duced vitamin K. The time course of warfarin’s anticoagulant activity depends on 
the clearance of vitamin K-dependent clotting factors (e.g., factors II, VII, IX, and 
X). The earliest changes in the INR, a measure of the sum of the activity of the 
coagulation factors II, VII, and X, are typically noted at 1–2 days after the admin-
istered dose. Warfarin is a racemic mixture; S-warfarin is approximately three to 
five times more potent than R-warfarin (Breckenridge et al. 1974). S-warfarin is 
metabolized by CYP2C9, a polymorphic enzyme, which results in large BSV in Pk 
and subsequent drug exposure (Takahashi and Echizen 2003). Genetic variants in 
vitamin K epoxide reductase complex 1 (VKORC1) have also been identified (Rost 
et al. 2004), which further contributes to variability in PD response (INR) to war-
farin and thus the dosing. Perlstein et al. (2012) proposed an adaptive dose strategy 
with starting doses determined on genotype. Hamberg et al. (2007) developed a 
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PK and PD model that took into account patient age and genotype to relate doses, 
concentrations, and INR. This model was subsequently used to guide dosing in pe-
diatric patients (Hamberg et al. 2013) with generally good success.

Investigating the models proposed by Hamberg et al. (2007) shows the large 
impact of both age and genotype on the PK and PD of warfarin (Figs. 2.5 and 
2.6). Simulated results of model-guided dosing show that INR can be con-
trolled well in a wide range of patients, regardless of age or genotype (Fig. 2.7), 

Fig. 2.4  Infliximab dashboard guided dosing. This figure compares conventional and dashboard 
guided dosing (Mould et al. 2013). The patient is an ulcerative colitis patient with severe dis-
ease, managed with infliximab, which is available as 100 mg increments, and dose is typically 
rounded up to use the entire vial. For conventional dosing: The induction doses (which were 
started at 6.8 mg/kg (500 mg) owing to the severity of disease), the dose was increased to 8.3 mg/
kg (600 mg) every 4 weeks, rather than the labeled 8-week interval. The C-reactive Protein 
reduced to 30 mg/L and the patient’s condition improved to moderate disease activity. A final 
dose adjustment was made to increase the dose to 11 mg/kg (800 mg). The patient became ADA 
positive. Plots show the predicted time course of infliximab concentrations ( panel a solid line, 
left) and the concurrent infliximab trough concentrations ( panel b filled circles right). For the 
dashboard guided dosing: The first dose was given as per the conventional dosing scenario, and 
observed concentration data from that patient’s first dose were subjected to Bayesian updating 
and forecasting. The remaining information is forecast using the dashboard. A dose of 10 mg/kg 
(700 mg), administered every 4 weeks was found to be likely to maintain therapeutic exposure. 
The use of a dashboard shortened the time necessary to identify an appropriate dose regimen (2 
weeks as compared to 20 weeks for conventional dose selection). Plots show the predicted time 
course of infliximab concentrations ( panel c solid line, left) and the concurrent infliximab trough 
concentrations ( panel d filled circles right)
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suggesting that a dashboard approach to warfarin therapy could result in better 
INR control and fewer bleeding events. There is currently a web application 
available to improve the safety and efficacy of warfarin developed by Brian 
F. Gage (Table 2.2). While representing an improvement in safety and effi-
cacy over current dose approaches for warfarin, this application makes use of 
only the patient factors (genotype and age), there is considerable BSV remain-
ing even after accounting for these factors. Thus, Bayesian-based approaches 
could further improve safety and efficacy.

Fig. 2.6  The impact of genotype on warfarin PK and PD. Panel A is the range of expected con-
centrations following a 5 mg QD dose of warfarin in a 50-year-old individual. As can be seen here, 
there are distinct differences in the CYP2C9 status for concentrations but the remaining variability 
is high, resulting in substantial overlap between these subpopulations. Panel B shows the INR 
based on VKORC1 genotype. Partly owing to the substantial remaining variability in the INR 
model and the variability in exposure, the expected range of INR values is quite wide

 

Fig. 2.5  PK and PD of warfarin: CYP2C9 1*1 VKORC1 GG 5 mg QD. Panel A shows the long 
time to steady state following administration of 5 mg daily administration. Patients with advanced 
age develop very high warfarin concentrations. Panel B shows the expected INR, and again the 
time to reach a stable response is several days. Owing to the very high concentrations in the 
elderly, the resulting INR is extremely high in this group
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2.4  Conclusions

Decision makers in many different fields are increasingly confronted with greater 
and greater amounts of information from diverse sources, which renders difficult 
choices when it comes to making the best decisions. Individualizing drug selection 
and dose choices by health-care providers is no exception. However, dashboard 
systems for personalized medicine, while still in their infancy, are evolving rapidly 
and are appealing as evidenced by the first-generation examples discussed in this 
chapter. Personalized medicine in the future will be characterized by the necessity 
to have decision support systems to aggregate and clinically interpret next-genera-
tion sequencing data, premarketing clinical trial data, and postmarketing clinical re-
search findings in order to tailor medicines to individual patients. Dashboard-based 
data analytic platforms designed for individual selection of drugs and doses are 
clearly needed for faster and more informed decision making in therapeutics. The 
ability to add new patient data to the dashboard, visualize dose-PK/PD-outcome 
relationships, and drill down into the data to identify patient covariates and explore 
“what if” scenarios will be critical attributes of effective dashboard systems.

In the future, new drug development programs should consider data collection 
during the clinical phases that would facilitate development of dashboard software 
(Mould et al. 2013). This approach would facilitate the use of model-based drug 
development (MBDD) in the pharmaceutical industry with important benefits. The 
use of dashboard systems would be analogous to the gathering of information to 
support the codevelopment of molecular diagnostics and targeted medicines, but 
it would take the concept of personalized medicine one step further by equipping 
practitioners with not only the diagnostic–drug pair but also a qualified support 

Fig. 2.7  The impact of individualized treatment on international normalized ratio ( INR) levels. 
The panels below show the impact on the variability of INR in elderly patients with two differ-
ent genotype combinations. Panel A shows the expected range of INR following individualized 
warfarin dosing for a 91-year-old subject with CYP2C91*1 and VKROC1 GG. Panel B shows 
the expected range of INR in a 91-year-old subject with CYP2C93*3 and VKORC1 AA. In both 
panels, the majority of patients are within the target range and the INR values do not exceed 3
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system to deliver individualized treatment for each patient at the point of care. One 
remaining issue is to what extent the FDA would regulate dashboards as devices, 
as standalones, or as an accessory for usage with a specific medicine, as a clinical 
decision support tool.

2.5 Summary

In summary, the following issues have been discussed:

• A description of personalized medicine.
• An outline of current dosing paradigms.
• A brief history of the use of decision support tools in health care.
• A description of the dashboard concept and overview of how they work.
• Potential benefits of using dashboards in clinical care.
• Two example systems (infliximab and warfarin) have been presented.
• Other possible uses of such systems (e.g., drug development).
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3.1  Introduction

Pediatric clinical pharmacology is an essential discipline that facilitates the de-
velopment of new medicines for children and also the management of pharmaco-
therapy in children requiring medicine. While many of the challenges in pediatric 
clinical pharmacology are similar to those faced in adults (e.g., disease progression, 
dose selection, therapeutic window definition), others are more specific to children 
and driven to a large extent by the dynamics of the developing child and specifi-
cally by changing physiologic processes and conditions that may alter both phar-
macokinetics (PK) and pharmacodynamics (PD). Likewise, the application of phar-
macometric approaches to these challenges is essential to ensure the appropriate 
design of pediatric clinical trials, the interpretation of PK/PD data based on sparse 
sampling, and the recommendations for dosing and dose adjustments in pediatric 
subpopulations including critically ill children (Zuppa and Barrett 2008). Recent 
efforts also point to the growing use of pharmacometrics to aid caregivers in the 
provision of real-time guidance to their patients (Gardner 2002; Barrett et al. 2008b; 
Dombrowsky et al. 2011). Hence, a new frontier for pharmacometrics facilitating 
pharmacotherapy in children would seem to be upon us.

The marketplace attests to the economic reality that children are not the “target 
population” for most new drug development candidates. This reality, in part, guided 
the assignment of pediatrics as a “special population” in the recent past. The notion 
that a single study design will be sufficient to extend the data generated in adults 
to pediatrics is flawed even if the adult and pediatric indications are similar. While 
opinions differ regarding the upper age boundary, the age window from birth to 17, 
18, or 21 years is extremely broad and represents approximately one fourth of the 
average human life expectancy. Of course, there are subcategories which further 
differentiate this general classification, but the key notion and the basis for much of 
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the current pediatric study design requirements at least from a regulatory perspec-
tive are that pediatrics represents a developmental continuum over which younger 
individuals mature into fully developed adults. While clinical experience over the 
entire continuum is sought, the value of information collected across this continuum 
is not equal and pediatric development plans should be guided by both the expected 
utilization in the various age subgroups, the drug molecule attributes (Laer et al. 
2009), and the target attributes (PD) which may individually or in conjunction de-
fine age strata where developmental trajectories are nonlinear.

There are several key questions addressed in this chapter as we consider the 
strategy and implementation of pharmacometrics in the study of pediatric popula-
tions. These include the following:

• What are the essential physiologic processes most affected in the developing 
child?

• How do these processes impact key PK/PD parameters used to describe the dose-
exposure and exposure-response relationships?

• How does time affect maturation and ontogeny as well as represent a covariate 
of interest for key parameters?

• How specifically is pharmacometrics implemented to advance pediatric re-
search?

• How does the choice of appropriate analysis techniques change based on the 
availability of prior knowledge?

In answering these, we must also answer one additional question that affects all oth-
ers as well as the underlying assumptions that frame pediatric research in general. 
If pharmacometrics performed for pediatric trials is fundamentally the same as in 
adults, what are the key differences (between adults and pediatrics) and how do we 
address them in the design and implementation of prospective and retrospective 
analyses?

While there are many recent published examples of pharmacometrics focused in 
pediatrics (Crom et al. 1994; Shi et al. 2001; Läer et al. 2005; Mondick et al. 2008; 
Wade et al. 2008), the occasion to consider pharmacometric support of pediatric 
R&D continues to increase largely motivated by regulatory considerations from 
the European Medicines Agency (EMA) and the US Food and Drug Administra-
tion (FDA). The most common application is the standard PK/safety trial employed 
when adult and pediatric indications are perceived to be similar and there are in-
formation/data to support such assumptions. The primary goal in this setting is to 
ensure an adequate sample size and an informative sampling scheme that considers 
the potential shift in PK across age strata or temporal changes in PD response. More 
uncommon but perhaps increasing is the interest in pediatric efficacy trials.

Drug developers and pediatric caregivers have different objectives when it comes 
to evaluating the relevant clinical pharmacologic principles that underlie their que-
ry. The drug developer ultimately must contend with the dosing of the “typical” pe-
diatric patient, keeping in mind that a recipe for dosing within the usual constraints 
of an otherwise normal developing child must be provided in the labeling if they 
expect to market the drug in pediatrics. The caregiver must address the individual 
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patient, regardless of how the patient presents. Thus, while the typical patient may 
represent the normal scenario (hopefully) for caregivers, the critically ill child, the 
child on extracorporeal membrane oxygenation (ECMO), the hypothermic child, 
the obese child, and the child on multiple medications with some degree of interac-
tion potential must all be treated with the best medical judgment the caregiver can 
provide. Hence, the availability of source data in these categories is invaluable to 
the caregiver. When data are not available, some level of extrapolation occurs (usu-
ally empirically). Individual patient forecasting (simulation based on prior knowl-
edge and perhaps some individual patient data) is becoming a desirable tool for the 
caregiver (Barrett et al. 2011).

Differences between children and adults with respect to PK and PD are often 
influenced by physiologic factors such as changes in body composition, total body 
water, protein binding, cytochrome P450 ontogeny, gastrointestinal motility and 
pH, and organ (e.g., renal and hepatic) function all of which can produce signifi-
cant changes in absorption, distribution, metabolism, and elimination throughout 
childhood (Kearns et al. 2003a). By overlaying the PK and PD attributes of tar-
get drug molecules, we can get a sense of the susceptibility for the underlying PK 
(absorption, distribution, metabolism, and elimination) and PD (receptor affinities, 
dissociation, enzyme kinetics, signal transduction, cascade events, etc.) processes to 
be affected by changes in the aforementioned physiologic factors. Likewise, knowl-
edge of pediatric clinical pharmacology is essential to the design and conduct of in-
formative pediatric trials. More than ever, pharmaceutical sponsors are required to 
plan for the pediatric investigation as an essential part of their clinical development 
plans. For older drugs on the market, National Institutes of Health (NIH) and FDA 
collectively administrate the appropriation of funds that support pediatric research 
for off-patent drugs through the Best Pharmaceuticals for Children Act (BPCA; 
Ward and Kauffman 2007). The landscape for support of pediatric research initia-
tives is thus strongly reliant on pharmacometrics.

3.2  Dosing Considerations in the Developing Child

As children are often not the population in which formal dose-finding studies are 
conducted, dosing requirements for children are predominantly achieved by extrap-
olation from the adult clinical experience. Historically, dosing in children has been 
viewed as a scaling exercise with a simple normalization of bodyweight (BW) for 
the intended age (or weight) of the child (P, pediatric) applied to the adult (A) dose:

In this manner, we need not understand the developing child, only trust that the linear 
scaling of body weight would be a reasonable means to adjust dose. Of course, this 
approach under-predicts dose requirements across the pediatric continuum though 

P
P A

A

BW
Dose Dose

BW
= ×
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it is not equally bad in all age/weight ranges. The fatal flaw with this approximation 
is that it does not acknowledge that the relationship between dose requirement and 
weight is nonlinear. Substituting body surface area (BSA) for BW in a similar man-
ner is used quite extensively in pediatric oncology settings under the assumption 
that similar “geometry” can be achieved with this transformation:

While nonlinearity is introduced into the dose relationship through the transforma-
tion of BSA with weight and height (e.g., for Mosteller formula, BSA (m2) = ([Height 
(cm) × Weight (kg)]/3600)½), there is sufficient experience to know that this expres-
sion under-predicts infant and neonate dosing requirements (Johnson 2005, 2008). 
Allometric or power models are used in various biological settings to adjust for 
size dependencies of growing/developing systems. The value of the exponent varies 
with the type of biologic variable and there is certainly no consensus on the numeric 
validity of these generalized constants:

It is relevant, however, that we recognize that the adjustments are focused on size 
and not the more complex biology of a whole living system. If we apply this ap-
proach to dose adjustment for children recognizing the relationship among clear-
ance, volume of distribution, and dose, we arrive at the following expression which 
over-predicts requirements in children less than 1 year of age although it is superior 
to BSA in this age range (Johnson 2008; Anderson and Lynn 2009):

The result of this endeavor is the recognition that there is no simple way to gen-
eralize dose adjustment in pediatric populations from an adult dosage. This is not 
surprising given that the adult continuum over which fixed dosing is often recom-
mended typically excludes elderly and obese populations treating them as “special” 
as well. A PK model is required to serve as the backbone of such consideration. Ul-
timately, the model for the developing child must span the relevant ages of the target 
population with the goal being to “match” exposures as close as possible with the 
adult reference population under the assumption that similar safety and efficacy will 
be conferred if such matching is achieved. The challenge in the end is to achieve a 
compromise between the potentially complex and nonlinear model used to describe 
the PK time course across the target age strata and the desire for simple dosing 
instructions that do not promote prescribing errors. Simple, in this context refers to 
(1) the dose in milligram or milliliter (assuming a weight-based (e.g., mg/kg) target 
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given a liquid formulation or suspension), (2) no calculation requiring a transforma-
tion (i.e., no exponent button on a calculator), and (3) the fewest possible changes 
to dose across age strata (typically not more than three). In the end, we are often 
left with dose recommendations that vary across two or three age strata essentially 
approximating the nonlinear relationship between weight and dose. The transition 
across age strata is better if weight-normalized dosing is possible within the age 
strata (as will a liquid or suspension) but still can be abrupt on age transition points 
(e.g., the day your child year turns 12 and requires a 50 % increase in dose). As we 
search for simple dosing instructions, we must reflect that all of the previously men-
tioned approaches focus on size only, though functional effects (enzyme ontogeny 
and maturation) are often masked in additional age dependencies requiring further 
dose adjustments in children less than 2 years and/or neonates.

3.3  Time Considerations

Time is a critical factor in the assessment of pediatric PK/PD relationships. It serves 
as an index over which response to a dosing event is captured and as an index over 
which an organism, in this case a child, develops and matures. Coding time for use 
in a model likewise differs based on the objectives of the modeling and how we 
intend to express time. For PK purposes, clock time or time-after-dose is defined as 
an independent variable that tracks exposure or drug actions (PD) to the most recent 
dosing event and/or cumulative dosing events. The time scale for an organism can 
be defined as both a time-dependent or time-independent covariate depending on 
how we will define functions that define maturation. Broadly speaking, then clear-
ance is the primary population parameter for which time considerations are critical. 
We will start with clearance to see how time-dependent phenomenon in the devel-
oping child is defined.

Both maturation (MF) and organ/ontogeny functions (OF) are time-dependent 
phenomena that require consideration when adjusting for pediatric populations. 
Maturation is defined as the process of becoming mature; the emergence of per-
sonal and behavioral characteristics through growth processes. OF generally refers 
to the health status of an organ where the fraction of otherwise “normal” function 
can be quantified as one would have to consider for a critically ill child with, for 
example, impaired renal function. Consider the generalized population expression 
for clearance:

Maturation is generally considered a continuous function which achieves an as-
ymptote at the adult value (MF = 1) at some finite point in development. Usually, 
the maturation function (MF) is derived from a time index related to birth. Expres-
sions for MF based on postconceptual age (Barker et al. 2005), postmenstrual age 
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(PMA), postnatal age (PNA), and gestational age (GA) have all been considered 
(Anderson and Holford 2008). Inconsistent use of terminology has limited the ac-
curate interpretation of data on health outcomes for newborn infants, especially 
for those born preterm or conceived using assisted reproductive technology (Engle 
2004), so one must be careful when trying to derive these relationships from the 
literature. Figure 3.1 illustrates the relationship between the various age indices. 
“Gestational age” or “menstrual age” is the time elapsed between the first day of the 
last normal menstrual period and the day of delivery. The first day of the last men-
strual period occurs approximately 2 weeks before ovulation and approximately 
3 weeks before implantation. Because most women know when their last period 
began but not when ovulation occurred, this definition traditionally has been used 
when estimating the expected date of delivery. “Chronological age” or “postnatal” 
age is the time elapsed after birth (Fig. 3.1). “Postmenstrual age” is the time elapsed 
between the first day of the last menstrual period and birth (gestational age) plus 
the time elapsed after birth (chronological age). “Corrected age” (or “adjusted age”) 
is a term used to describe children up to 3 years of age who were born preterm 
(Fig. 3.1). This term is preferred to “corrected gestational age” or “gestational age” 
and represents the age of the child from the expected date of delivery. Corrected age 
is calculated by subtracting the number of weeks born before 40 weeks of gestation 
from the chronological age. Corrected age and chronological age are not synony-
mous in preterm infants. “Conceptional age” is the time elapsed between the day of 
conception and the day of delivery.

For the purpose of modeling, a key requirement is that the same time index is 
used when pooling data and that the accurate transformations of time are ensured. 
MF expressions vary from very simple relationships (Tod et al. 2008) as below:

POSTMENSTRUAL  AGE

GESTATIONAL  AGE CHRONOLOGICAL  AGE

First Day of Last
Menstrual Period

Concep�on
(Implanta�on/Fer�liza�on)

Birth Expected Date
of Delivery

Date of
Assessment 

CORRECTED  AGE

Fig. 3.1  Age terminology during perinatal period adopted from the American Academy of Pediat-
rics policy statement. (Adapted from data from Engle 2004)

 



893 Pharmacometrics in Pediatrics

to more complex expressions in which estimate the time to maturation as a param-
eter (Potts et al. 2009) with a cutoff point that designates a different slope on the 
MF (Hill_A vs. Hill_B):

Based on these expressions it is clear that the most common MFs are empirically 
and not physiologically defined. As a result, their predictive value is closely linked 
to range of the observed data from which they are defined. As more of these rela-
tionships are reported for various drug attributes, it may be possible to generalize 
these empirical relationships. An important future consideration will be the extent 
to which these functions align with more physiologically based relationships (i.e., 
so-called bottom-up approaches). The shape of the general MF is shown in Fig. 3.2.

OF is typically 1 for healthy children but can be higher or lower for ill children. 
Again, we are typically expressing these relationships as sigmoidal or hyperbolic 
functions with a predetermined biomarker for OF (e.g., serum creatinine or creati-
nine clearance for kidney function) but these factors can also be treated as covari-
ates on clearance as either continuous or dichotomous variables depending on the 
target population. Often a more immediate consideration is necessary to addressing 
the age-dependent expression of metabolizing enzyme activity. Much is now know 
about the ontogeny of many of the cytochrome P450 family of enzymes (Kearns 
et al. 2003b; Stevens et al. 2008) and recent efforts have incorporated ontologic 
functions into drug clearance expressions (Johnson et al. 2006, 2008). As comple-
mentary data become available for phase-II metabolism and transporters, these too 
can be considered when relevant. The manner in which ontogeny relationships are 
accommodated in the clearance expressions is similar to that defining maturation 
functions. Specifically, age-related functions which define the fraction of adult en-
zyme expression are factored into the overall clearance expression. Many of these 
(ontogeny functions, OF) have been defined for the P450 family (Johnson et al. 
2006). A generalized expression would look like the following:

Variations of this generalized expression are used for some enzymes; these typically 
involve the addition of a power function (exponent) on age. It should be appreciated 
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that even within the P450 family of enzymes there is great variability in the half-
time of adult expression ranging from 3.5 days for hepatic CYP2C9 to 2.4 years for 
gut CYP3A (Johnson et al. 2006) as well as the functional activity (expression) at 
birth. This is especially relevant when dealing with drugs that have multiple elimi-
nation pathways and/or involve multiple enzymes for drug clearance. Some func-
tional expressions derived by Johnson et al. (2006) are shown in Fig. 3.3.

3.4  Physiologic Considerations for the Developing Child

The appropriate incorporation of developmental considerations is an active area of 
research for many engaged in pediatric clinical pharmacology research. As the ex-
perimental data are generated, it is likewise important that model-based  approaches 
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evolve to accommodate the new knowledge. Important gaps exist in phase-II met-
abolic pathways (Blake et al. 2005) and transporter ontogeny considerations al-
though research in these areas look promising (Strolin Benedetti and Baltes 2003; 
Ge et al. 2007).

An important parallel effort involves the derivation of physiologic relation-
ships that define important developmental considerations. Current physiologically 
based pharmacokinetic (PBPK) models incorporate age/size dependencies that 
permit “scaling” of dose in a manner analogous to compartmental approaches. An 
important milestone in this process has been the development of the underlying 
physiologic parameter databases that permit such age-dependent projections. The 
extension of PBPK models beyond adjusting for size likewise must incorporate 
developmental and age-dependent physiologic factors to further improve their gen-
eralizability and utility for individualizing exposure prediction beyond the plasma 
compartment (Ginsberg et al. 2004; Yang et al. 2006). Table 3.1 lists several known 
relationships between age-dependent physiologic parameters and PK attributes and 
parameters. Additional detail is provided in the “Bottom-up Approaches” section.

While the relationship between developing physiology and PK attributes is gen-
erally at least qualitatively appreciated, far less emphasis has been placed on the 
relationships between developmental considerations and pharmacologic pathways. 
As these represent the target mechanisms of action and/or the off-target affects that 
govern toxicity, they are often critical in the assessment of the pediatric therapeutic 
window. These relationships likewise have been absent in the discussion of pedi-
atric development plans and decision trees used to define regulatory expectations 
for such plans. Table 3.2 shows several examples of systems known to exhibit age-
dependent physiologic factors at least theorized to explain differences between pe-
diatric and adult exposure targets or expectations in clinical response.
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3.5  Leveraging Adult Data (The Classic Top-Down 
Approach)

The most common situation envisioned for the modeler when initiating pediatric 
development program occurs after significant investigation has been completed in 
adults and the team must assess what pediatric indications are possible, what target 
populations require clinical investigation to support these indications, whether the 
PK, PD, and disease progression in adults translates into the potential pediatric 
population, and what data from the adult program are available to address these 
questions. Table 3.3 provides a common list of bridging questions to be considered 
based on the availability of adult data. The utility of the eventual pediatric popu-
lation pharmacokinetics (PPK), PPK/PD, or trial simulation models derived from 
the adult data and the experience is that it can be used to examine extrapolation 
assumptions.

From this stage the next step is usually the construction of adult population-
based PK/PD models from which the pediatric situation can be extrapolated. For the 
modeler, the main challenge is how best to develop a credible model that defines 
the pediatric condition and how to test assumptions that define the extent of the 

Table 3.1  Physiologic changes that correlate with the time course of PK attributes (ADME)
Pharmacokinetics Physiologic considerations
Attributes Parameters Time course Relationships
Absorption Ka, Fabs, F, MRTabs, 

Cmax, Tmax

Typically occurs 
rapidly
Gastric emptying 
changes with age

Mucosa changes with age;
length/surface area changes with age 
(Kearns et al. 2003a)
Ontogeny of pre-systemic enzymes/
transporters

Distribution Vd (Vdss, etc.), 
fu, BBB, RBC 
partition

Changes are rapid 
during the first weeks 
and months of life

Fat, water partition changes with age/
development
Change in protein composition and 
concentration with age
Permeability changes with age/devel-
opmental status; lung capacity; skin 
penetration

Metabolism CL, CLm, formation 
rate constants

Varied time to near 
adult expression 
ranging from < 1 
month (CYPs 2C9 
and 2C8) to > 2 years 
(gut 3A4; Johnson 
and Thomson 2008)

Ontogeny of systemic and organ-
specific enzymes/transporters

Excretion CL, CLr Varied time to adult 
function (Rodman 
1994)

Kidney function maturation and 
ontogeny of renal transporters

BBB blood–brain barrier, RBC red blood cell, ADME absorption, distribution, metabolism, and 
excretion
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 extrapolation. The steps to achieve a credible pediatric model are typically evalu-
ated against data (perceived or observed) consistent with “bridging” assumptions 
and the pediatric population relative to the adult reference (e.g., adult to adolescent 
PK only vs. adult to neonatal PK/PD). The vast majority of applications deal with a 
PK extrapolation (exposure matching emphasis) under the assumption that the adult 
and pediatric diseases are similar. Table 3.4 illustrates the progression of modifica-
tions made to the adult population PK model to approximate the age continuum. 
These expressions account for differences in size and maturation or ontogeny. These 
expressions are likewise used together to account for the various contributions to 
the overall clearance expression. In addition, the expressions defined in Table 3.4 
represent common expressions but are by no means the only relationships available 
to the modeler to account for age/developmental factors that impact PK behavior 
(Johnson et al. 2006, 2008; Alcorn and McNamara 2008; Anderson and Holford 

Table 3.2  Examples of developmental considerations for physiologic processes that may affect 
the PD of certain drug classes
Pathway or 
system

Developmental 
considerations

Drug classes poten-
tially affected

PD response

Coagulation Changes in hemostatic 
response—number and nature 
of platelet membrane recep-
tors, clotting factors (Revel-
Vilk and Chan 2003)

Antithrombotics, 
antiplatelet agents, 
vitamin K antagonists

Antifactor-Xa activity, 
IPA (%), bleeding rate 
and extent, etc.

Pulmonary 
system

Vascular wall composition 
of pulmonary and systemic 
capacitance vessels and 
their intravascular pressure 
changes through development 
(Belik et al. 2000)

Corticosteroids, cal-
cium channel blockers, 
prostacyclins, endothe-
lin-1 inhibitors

Collagen, major 
growth factors (TGF-
beta, IGF-2, and 
bFGF), and cytokine 
gene expression

Immune system Development of the immune 
system is a partial expla-
nation for the increase in 
the incidence of infectious 
sequelae (Clapp 2006)

Antibiotics, antiinfec-
tives, antiretrovirals, 
etc.

MIC determination, 
cell-kill curves, etc.

Cutaneous 
system

Newborns have an immature 
cellular immune defense 
system that leads to increased 
susceptibility to infections 
(Dorschner et al. 2003)

Topical antibacterials Infection susceptibility

Brain stem Developmental aspects of 
phasic sleep parameters, 
REM density and body 
movement, and the execu-
tive system (Kohyama and 
Iwakawa 1990)

Drugs which promote 
loss of sleep as side 
effect or agents to 
treat disorders such as 
ADHD

Correlation of sleep 
parameters with age 
likely reflects brain-
stem maturation

IPA inhibition of platelet aggregation, MIC minimum inhibitory concentration, REM rapid eye 
movement, ADHD Attention deficit hyperactivity disorder
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2008). Developmental factors impacting PD behavior is still really at the frontier of 
research and there are no published examples of models used for this purpose as of 
yet. Future investigation will hopefully address this knowledge void.

3.6  In Silico Approaches Reliant on PBPK

The use of PBPK modeling to describe drug disposition in children has become 
increasingly more utilized. There are many attractive features to this approach but 
the primary advantage over conventional adult-scaled PPK is the incorporation of 
physiologic parameters which more appropriately accommodate the developing 
child and more specifically developing organ systems, metabolic pathways, and 

Table 3.3  The linkage between the availability of data from an adult drug development program 
and bridging questions that can be addressed for potential pediatric indications
Adult drug development data Pediatric bridging challenges
Pre-IND/IND
In vitro metabolism, protein bind-
ing, absorption studies
Animal ADME data

Are the elimination pathways likely to invoke the need to 
adjust clearance due to maturation?
Are there CYP P450 enzymes involved that necessitate 
ontogeny considerations for clearance?
Any concerns for pediatric formulation development based 
on absorption in the developing child?

Phase I
Single/multiple dose PK/PD
Lifestyle effects (e.g., food, DDI, 
time of day studies)
Margin of safety—MTD

Is there a well-defined dose-response for toxicity that can 
be expected in children?
Is there a dose threshold that should be avoided?
Are the safety signals in adults translatable to the proposed 
pediatric indications?
What is the likely DDI potential in children? Food effect 
concerns?

Phase II
Dose-finding in patients
Therapeutic window
Activity measures and surrogate 
markers linked to efficacy

Do we expect the same therapeutic window in children?
Is there a likely starting dose or dose range for children 
based on an exposure matching strategy?
Do the adult bio/surrogate markers translate to the pro-
posed pediatric indications?

Phase III
Proof-of-efficacy/safety
Basis for approval
Adult indication and target 
population(s)

Is the adult indication similar to the proposed pediatric 
indication(s)?
Are the metrics that demonstrate efficacy for the adult 
approval reasonable for children?
Is the duration of treatment in the adult experience reason-
able for the pediatric trial?

Phase IV
Marketplace performance relative 
to competitors
Medical surveillance—safety/ADR 
signals

Are there safety considerations from the post market-
ing adult experience that would be a concern for chronic 
administration in children?
Are there concerns regarding switching medications in 
children within the same class?

ADR adverse drug reactions, MTD  maximum tolerated dose, DDI  drug-drug interaction
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dynamic pathophysiologic states. The use of the PBPK approach particularly when 
adult PK/PD data are not available has been increasing over the past few years and 
improvement in methodologies as well as the incorporation of enzyme ontogeny 
(Johnson et al. 2006, 2008; Alcorn and McNamara 2008; Anderson and Holford 
2008), more systematic workflow (Edginton et al. 2006a, 2006b; Maharaj et al. 
2013), and more physiologic consistency with relationships driven by drug physio-
chemical properties has improved the clinical validity and ultimately the usefulness 
of recent pediatric applications.

Table 3.5 provides a template for the inputs and outputs needed for a typical 
PBPK model (Barrett et al. 2012). Schematically, a PBPK model is a multi-com-
partment model in which the compartments represent actual organs and other physi-
ological spaces. Mass balance equations for each organ describe drug appearance in 
the organ from arterial blood and its exit into venous blood. The PBPK model is also 
constructed to incorporate relevant physiological, pharmacogenetic, biochemical, 
and thermodynamic parameters in a way that organizes much of the knowledge of 
the drug-body system (Edginton et al. 2006a, 2006b; Barrett et al. 2012).

Thus, PBPK models are more comprehensive than the empirical models used to 
analyze routine PK data because they not only incorporate drug properties but are 
built on a system-specific structure that is independent of the drug (Edginton et al. 
2006a; Barrett et al. 2012). The model parameters need to include physiological and 
drug-specific parameters, in vitro predictions for distribution and elimination, and 

Table 3.4  Progression of parameter descriptions used to convert an adult-defined PPK model to a 
credible pediatric PPK model (one compartment model reference)
Model/structure NONMEM syntax Comments
Adult reference TVCL = THETA(1)

CL = TVCL*EXP(ETA(1))
TVV2 = THETA(2)
V = TVV2*EXP(ETA(2))

More complex expressions are 
fine; model can be extended

Allometric scaling 
of CL and V

TVCL = THETA(1)*(BWT/70)**TH
ETA(6)
CL = TVCL*EXP(ETA(1))
TVV2 = THETA(2)*(BWT/70)**TH
ETA(7)
V = TVV2*EXP(ETA(2))

Adult reference weight of 70 kg; 
median of pediatric population 
also reasonable
Similar expressions for V3 and Q 
used for 2 CPM
THETA(6) usually fixed to 0.75; 
THETA(7) fixed to 1

Maturation function 
on CL
or
Enzyme ontogeny 
on CL

PNA = 52; 52 weeks = 1- year-old child
PMA = PNA + 40
MT = 46; Maturation time (weeks)
HCL = 2.5; Hill coefficient
MTHCL = MT**HCL
PMAHIL = PMA**HCL
CLAGE = PMAHIL/
(PMAHIL + MTHCL)
CL = THETA(1)*EXP(ETA(1))* 
(WT/70)**0.75*CLAGE
V = THETA(2)*EXP(ETA(2))*
(WT/70)**1.0

Code for simulation shown; MT 
and HCL could be estimated 
depending on the dataset
Other indices of age (e.g., ges-
tational age) could be similarly 
evaluated
Often helpful to bound parameters 
with such expressions
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perhaps results from in vivo studies in adult animals (Barrett et al. 2012). The com-
mon approach in developing a pediatric PBPK model is to modify a PBPK model 
that has been validated with adult PK data, and then to incorporate the  differences 

Table 3.5  Hierarchy of PBPK model inputs and outputs based on intended use in supporting 
pediatric research and development
Intended use Model inputsa Outputs
Candidate screening 
(CS)

User: MW, lipophilicity, solubility, 
protein binding, pKa
In vitro metabolism data ( Vmax, KM, etc.) 
and experimental details
Database info: organ weight, blood 
flow, CL ontogeny, fu ontogeny
Study population (healthy volunteers); 
clearance pathways (CLR and CLH)
Dosing (usually single dose but can vary 
to incorporate simple phase-I designs)

DDI potential (magnitude and 
shift of C-t profiles relative to 
a standard (e.g., single agent 
relative to combination)
Dose-exposure relation; 
evaluation of profiles against 
TPP expectations

FTIP dose finding 
(FTP)

CS inputs
Pediatric-specific demographics (age, 
BW, height, etc.) of study population; 
clearance pathways
Dosing (various “rules” can be 
evaluated)

Dose-exposure relation; 
evaluation of profiles and PK 
metrics across age/develop-
mental strata and relative to 
adult exposures
Comparison of exposure from 
fixed vs. weight-adjusted 
dosing

Trial design evaluation 
(CTS)

FTP inputs
Design features (e.g., parallel vs. cross-
over), sampling scheme, sample size/
strata, population, etc.
Replication details

Probability of success for 
scenarios or trial designs to 
achieve clinical milestones or 
study objectives

Target organ exposures 
(TOE)

FTP inputs
Species (if comparing animal biodistri-
bution to pediatric predictions)
Target organs identified (with data/mea-
sured levels) if available

Overlays of observed vs. pre-
dicted exposures for animal 
studies
In pediatrics, predicted 
exposures in target organs; 
correlation with toxicity or 
PD measures

Real-time PK-Safety FTP inputs
Measured levels (sampling/
observations)
Response measures (SAEs, ADRs, PD, 
etc.)

Overlays of observed vs. 
predicted exposures with 
comparisons across age strata 
and relative to adult data

Targeted drug delivery 
(TDD)

TOE inputs
Delivery inputs (extravascular route, 
input rate, duration, etc.)
Cellular constituent targets
Imaging data (if relevant)

Overlays of observed vs. 
predicted exposures (or 
equivalent metrics) with 
comparisons across age strata 
and relative to adult data

TPP target product profile, MW molecular weight, ADR adverse drug reactions, AE serious adverse 
effects, TOE target organ exposures, TDD targeted drug delivery, DDI drug-drug interaction, CLR  
renal clearance, CLH  hepatic clearance, FTP  first time in pediatrics, CTS clinical trial simulation, 
SAE serious adverse events, PD pharmacodynamic, CS candidate screening 
a Derived parameters include partition coefficients and permeabilities
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Fig. 3.4  Proposed workflow for scaling adult PBPK models towards children. (Reprinted with 
permission; Maharaj et al. 2013)
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in growth and maturation that can affect all relevant aspects of drug disposition and 
PD. Figure 3.4 shows a schematic of a typical  workflow for converting a PBPK 
model defined for adults into a credible pediatric PBPK model (Maharaj et al. 2013).

As total clearance of a compound is calculated as the sum of individual clear-
ance pathways, clearance in children can be calculated as the sum of scaled hepatic 
and renal clearances using a PBPK approach. Physiologic hepatic clearance scaling 
relies on the following underlying assumptions (Maharaj et al. 2013):

1. Pathways of hepatic clearance in children are the same as those observed in 
adults.

2. Well-stirred model conditions hold (hepatic uptake of the compound is a func-
tion of blood flow—not permeability across cell membranes).

3. Enzyme metabolism follows first order kinetics (concentrations are within linear 
range—no enzyme saturation).

The effects of maturation and growth on OF can be accommodated using the ap-
proach of Hayton (Hayton 2000). For the estimation of renal function parameters as 
an example (e.g., glomerular filtration rate (GFR) and active secretion), clearance 
in children can be described as a function of age and weight. Edginton has proposed 
to scale adult renal clearance values towards pediatric patients with the following 
equation (Edginton et al. 2006a, 2006b):

whereCLGFR child( )  is the child’s clearance due to glomerular filtration, GFR child( )  is 
the estimated GFR of the child, GFR adult( )  is the GFR in adults (assumed to be 
110 ml min−1), and CLGFR adult( )  the clearance due to glomerular filtration in adults. 
Several excellent examples of PBPK approaches applied to pediatrics have been re-
cently published [refs]. While the PBPK approach has great promise for the future, 
the upfront investment required to refine physiochemical properties via experimen-
tation and parameter “tuning” based on uncertainty in input parameters is not trivial.

3.7  Simulation as a Tool for Design Constructs  
and Analysis Plans

Any model generated to describe the PK, PD, or outcomes in children is only useful 
when it is used to examine scenarios, conditions, and subpopulation characteristics 
that challenge us to adjust medications, dosages or both. Simulation is defined as, 
“the imitation of the operation of a real-world process or system over time” and is 
the critical step in this transfer of knowledge. Simulations allow us to explore the 
validity of our assumptions and provide us with confidence when designing a pe-
diatric trial. There are many levels of simulation and the choice of rigor around the 
simulations depends on our purpose and value we place on prediction.

CL
GFR
GFR

x
fu
fu

x CLGFR child
child

adult

p child

p adult
( )

( )

( )

( )

( )

=  GGFR adult( )
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A simulation plan allows us to articulate the questions to be explored via the 
model, the manner in which we answer these questions via a particular simulation 
scenario and the development of Go/No criteria based on the outcomes of the simu-
lation. The common uses of simulation to support pediatric research and develop-
ment include the following:

• Determination of acceptable/optimal study design constructs such as dose, sam-
pling scheme (number and timing of blood collections for PK and or PK/PD 
analyses), and sample size.

• Performance and suitability of study-stopping rules, dosing adjustments, and/or 
enrollment strategies.

• Sensitivity of screening criteria, population characteristics (demographics, dis-
ease status, impairment), drop-outs, compliance, and placebo effect on response 
and/or outcomes.

The pharmacometrician, in conjunction with the project team, decides the  boundaries 
of each scenario, the degree of replication required and various output (tables and 
graphs) to convey the interpretation. Each of these is essential to achieve the desired 
impact. Comparisons between age strata and adults are common but it is also impor-
tant to evaluate the extremes of the population. While we have the visual predictive 
check to tell us how well the data fit the model, we use simulation at population ex-
tremes or condition boundaries as a further QC that our model performs operation-
ally as expected. A case study which illustrates the iterative nature of modeling and 
simulation as well as the use of simulation to support pediatric research is provided 
in the final section.

3.7.1  Case Study: Sample Size and Sampling Scheme in Children

This first example examined the planning of a pediatric trial to examine the success-
ful management of low molecular weight heparin (LMWH) dalteparinin pediatric 
cancer patients. While multiple disease foci are relevant, LMWH therapy in these 
patients was judged based on the ability to keep a patient’s anti-Xa activity within 
a perceived therapeutic window. An important objective of this trial was the in-
vestigation of the PK/PD behavior in these patients with the goal of characterizing 
dose-exposure and exposure-response relationships. The ability to define such rela-
tionships quantitatively is, of course, governed by both the timing and frequency of 
sampling as well as the number of samples obtained per patient. Hence, sampling 
scheme and sample size are important design elements to be considered relative 
to practical issues of sampling (timing and volume) as well as enrollment (in very 
young patients) constraints. To this end, modeling and simulation strategies are use-
ful and often recommended by FDA to ensure that the information content of the 
trial is sufficient.

For the trial in question, a population-based PK/PD model developed from an 
open-label, dose-finding trial in children (> 36 weeks gestational age-16 years) with 
objectively confirmed thromboembolism (TE) was available as prior information 
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(Barrett et al. 2008a). A total of 31 children contributed PK data to the original anal-
ysis data set. The population PK/PD model was based on a two-compartment model 
(2-CPM) with first order absorption (ADVAN4 TRANS4 used as the NONMEM-
specified PREDPP library model) with allometrically scaled clearance (CL) and 
central compartment volume of distribution (V), a proportional CV error model and 
endogenous anti-Xa activity. The first-order conditional method (FOCE) with η–ε 
interaction was used for method/estimation of final parameter estimates. Analysis 
suggested that the median maintenance dose to achieve the target anti-Xa level var-
ied and correlated with indices of body size (age and weight). The population model 
parameter estimates from this model are shown in Table 3.6. The diagnostic plots 
from the final model fit are shown in Fig. 3.5.

The primary assumption relevant to the proposed pediatric oncology trial was 
that the PK/PD response to LMWH in children with TE was similar to the target 
population for the prospective trial, principally children with cancer. As the target 
age range (neonates to 18 years) was similar, demographic alignment was expected 
as well. Hence, the final population model and parameter estimates from the TE 
trial were used to construct simulation scenarios to evaluate the impact of sampling 
scheme (timing of blood sample collection for anti-Xa activity) and sample size 
within and across age strata in the oncology trial.

There were two primary objectives for the simulation exercise:

1. Evaluate total N of 10, 20, 30, 40, and 50 (2, 4, 6, 8, 10 per age strata) pediatric 
patients.

2. Evaluate single and two-point sample densities and impact of randomization 
across strata.

Table 3.6  Final population PK/PD model parameter estimates generated in 31 pediatric patients 
with objectively confirmed TE receiving LMWH for prophylaxis ( N = 31). (Adapted from data 
from Barrett et al. 2008a)

Estimate SE % RSE % CV
Final model parameter
CL (mL/h) θCL 1410 165 11.7 –
V (mL) θV 9470 1310 13.8 –
Q (mL/h) θQ 202 10.7  5.3 –
V2 (mL) θV2 42.3 24.8 58.6 –
KA (IU/mL) θKA  0.511  0.127 24.9 –
ENDO (IU/mL) θENDO  0.0342  0.00226  6.6 –
Inter-individual variance
ETA1 ω2

CL 0.436 0.106 24.3  66.0
ETA2 ω2

V 0.123 0.0967 78.6  35.1
ETA3 ω2

KA 0.458 0.207 45.2  67.7
ETA4 ω2

Q 7.93 5.96 75.2 281.6
EPS1 ω2

prop 0.0999 0.0166 16.6  31.6
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Single-point designs were analyzed and performed poorly with an unacceptable 
number of trial evaluations (based on the simulated sampling) and unable to con-
verge in NONMEM. Two-point designs with patients randomized to different sam-
pling designs (2, 6, and 4, 10 h or 3, 8, and 5, 12 h) were proposed. Each of the ten 
scenarios (five sample size categories x two sampling schemes) was evaluated with 
100 trial simulations per design examined. Each of the ten sampling scheme—sam-
ple size combinations required a unique dataset to be created in the NONMEM-re-
quired format. Matching population demographics (age, weight, gender, etc.) were 
obtained from the population dataset of the TE pediatric trial in order to mimic 
the “to-be-evaluated” target population. Representative file structure for the source 
simulation datasets is shown in Table 3.7.

The key elements of the source data file are the dosing records denoted by the 
EVID = 1 records and the “AMT” field which contains the dose in amount admin-
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Fig. 3.5  Goodness-of-fit plots for the final model: diagnostic plots confirm the suitability of the 
model to describe sources of variation in LMWH PK across pediatric subpopulations: a PRED vs. 
DV, b IPRED vs. DV, c WRES vs. PRED, d WRES vs. TIME
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istered (International Units or “IU” in the case of LMWH). The DSKG field is the 
weight-normalized dose in IU per kilogram which is a carry-along variable used for 
grouping in the post evaluation but not used in the simulation. The DV column with 
placeholder (temporarily missing) values (coded as “.”) indicates that a simulated 
concentration should be generated at each of the prescribed collection times (denot-
ed in the TIME field). The generation of the 100 replicate datasets is accomplished 
by the control file. The basic process involves refitting each of the 100 simulated 
data files in NONMEM using the historical population model. Comparison of the 
population parameter estimates from the simulated data with the original model 
parameters used to generate the source data is made to examine if the scheme and 
sample size is adequate. The calculation of bias is based on these deviations and 
calculated on a percentage scale. The entire workflow for the simulation analysis is 
described in Fig. 3.6. Batch processing of the NONMEM simulation jobs is accom-
plished via PERL scripts (separate.p and databatch.p) and the calculation of bias 
for key parameters (CL, V, and KA) is performed by a SAS script. The precision of 
the scenario about each parameter is obtained by examining the distribution of the 
individual deviations about the expected value of 0 % bias. Box-n-whisker plots of 
the model prediction error were used to assess bias and precision and were gener-
ated using SPLUS (graph.ssc described).

The single-point designs (4, 7, 12, or 24 h) had difficulty with respect to run 
convergence in NONMEM and yielded unacceptable bias in CL and/or Vd when 
convergence was attained as previously discussed. It was also suggestive of con-
founding of effects due to blocking of sample collection within age strata. Box-n-
whisker plots showing the precision and bias about key parameters generated from 
the simulated datasets for each of the two-point, sample size designs were generated 
for all scenarios. Figure 3.7a–c shows the impact of sample size (total N of 20, 30, 
and 40 patients shown in a, b, and c, respectively) on model prediction error for key 
PK parameters based on the 3, 8 and 5, 12 h scheme. This result clearly supports 
increasing the sample size to at least 40 patients (eight per strata) to ensure that re-
estimation of the PK parameters is accurate and precise. This assessment is made 
primarily from the impact on clearance as this is typically the primary parameter of 
interest with respect to dosing in general.

Table 3.7  NONMEM-formatted dataset structure for two-sample design employed to generate 
100 replicate datasets with sampled observations generated via simulation
C SID ID Time DSKG AMT DV EVID Age AGID Sex Race WT
. 2 1 0 125 5225 . 1 11.68 4 1 1 41.8
. 2 1 2 . . . 0 11.68 4 1 1 41.8
. 2 1 6 . . . 0 11.68 4 1 1 41.8
. 4 2 0 125 4287.5 . 1  7.41 4 2 2 34.3
. 4 2 4 . . . 0  7.41 4 2 2 34.3
. 4 2 10 . . . 0  7.41 4 2 2 34.3
. 6 3 0 125  612.5 . 1  0.3 2 1 4  4.9
. 6 3 2 . . . 0  0.3 2 1 4  4.9
. 6 3 7 . . . 0  0.3 2 1 4  4.9
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Figure 3.8a, b illustrates the impact of sampling scheme design on the model 
prediction error with a 40-patient sample size ( n = eight per age strata) shown for 
illustration purposes. The a and b designation for each of the plots discriminates 
between the two proposed sampling schemes.

In all cases (sample sizes), when evaluating the 2, 6 and 4, 10 h vs. 3, 8 and 5, 
12 h randomized two-sample designs, the 3, 8 and 5, 12 h design performed more 
efficiently with respect to estimation of CL and V. The 2, 6 and 4, 10 design was 
better for estimation of Ka. The choice of designs clearly favors the 3, 8 and 5, 12 
design reflective of the 3–5 h, 8–12 h sampling windows proposed in the actual 
protocol. The choice of design and sampling design is easily defended from such 
an approach. It should also be appreciated that this approach can accommodate the 
practical negations that occur when planning such trials. It is quite common that 
the combination of patient convenience, availability and/or cost of staff to draw 
samples limits the ability to draw samples after say 8 h. This approach allows a 
data-driven conversation around the “value” of such data in light of study objectives 
and regulatory recommendations as opposed to more opinion-based discussion.

To complete the example illustrated above, it should be appreciate that in the 
end the sponsor agreed to a sample size of 50 patients ( n = 10/sage strata) based on 
the simulation results shown in Fig. 3.9. The sample size of 50 would seem to be 
well supported by the analysis as gains in precision which are evident even from 
a sample size increment of 40–50 subjects. This analysis was submitted to FDA 
as a technical appendix supporting the sample size and sampling scheme proposal 

Scenario 
Simula�on 

Data Separa�on 

NONMEM 
batch fi�ng 

Bias calcula�on 
– SAS script 

Plot Summary – 
SPLUS script 

Dataset 
Crea�on 

Step 1: Randomly sample 2, 4, 6, 8 and 10 subjects from the pediatric TE trial 
(replica�on required). Create NONMEM datasets (CSV files) for each of the 10 different 
scheme-sample size combina�ons.  

Step 2: Run NONMEM using the simula�on control stream. (LMWHsim.ctl) A 
simula�on file is run for each of the 10 scenarios (i.e. 10 simula�on datasets). Each 
control stream generates 100 simulated trials. 

Step 3: Use the SEPARATE.p PERL script to break the output tab file FRAGSIM.tab 
generated by the above NONMEM run.  This separates each of the 100 simulated 
concentra�on-�me datasets into a separate study (and unique data file). 

Step 4: Batch fit each of the 100 datasets using the DATABATCH.p PERL script which 
will use the NONMEM control file. The LMWHEST.ctl es�mates unique parameter fits 
for each trial.  

Step 5: RUN THE SAS SCRIPT to calculate the bias. 

 

Step 6: DRAW THE GRAPH using the SPLUS script (graph.ssc) and output it as a WMF. 

 

Fig. 3.6  Workflow for simulation execution to evaluate sample size and sampling scheme con-
siderations for the pediatric oncology trial
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and was accepted as an appropriate justification. While recent proposals for sample 
size seem to focus on more traditional inference testing of adjacent age groups 
(Wang et al. 2012), the use of simulation from an adult-scaled, allometric (with 
appropriate adjustments for ontogeny or maturation as needed), or an appropriate 
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Fig. 3.8  Box-n-whisker plots of MPE for CL, Vd, and Ka based on a 100 trial simulations explor-
ing limited randomized sampling schemes and effect of sample size. The comparison between 
randomized two-sample designs (a = 2, 6 and 4, 10 h and b = 3, 8 and 5, 12 h) is illustrated at a 
sample size of 40 patients (eight patients per age strata)
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Fig. 3.9  Justification for sampling scheme (3, 8 and 5, 12 h) and sample size ( n = 50) based on 
box-n-whisker plots of MPE for CL, Vd, and Ka (100 trial simulations exploring limited random-
ized sampling schemes and effect of sample size)
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PBPK model would seem to make more sense for the overall support of design 
constructs. It is seldom possible to decouple dose, sampling scheme, and sampling 
design. The power of simulations is easily demonstrated in this setting as these 
factors can be accommodated and specific nuances evaluated via scenario testing.
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4.1  Introduction

Chronic kidney disease (CKD) is a general term for heterogeneous disorders af-
fecting both structure and function of the kidney. Coupled with aging population 
and higher prevalence of diabetes mellitus and hypertension, CKD has become a 
leading public health concern worldwide. National Health and Nutrition Examina-
tion Survey suggested the prevalence is 38 % in elderly (age ≥ 65 years) and 13 % in 
the overall US population (Coresh et al. 2007). A similar inexorable increase in the 
number of patients receiving chronic renal replacement therapy (RRT) by dialysis 
or transplant is seen in the past decade (Kidney Disease Statistics for the United 
States [Internet] 2013). CKD is a common and deadly disease (Levey et al. 2007).

The kidney performs endocrine functions (erythropoietin, renin, calcitriol), me-
tabolizes small peptide hormones, produces glucose via gluconeogenesis, main-
tains homeostasis (solutes, water), and eliminates endogenously produced “waste 
products” (uremic toxins). Pathophysiologic changes associated with CKD affect 
other organ systems in the body and have pronounced effects on the pharmacology 
of many drugs. Rational drug therapy in subjects with CKD must take into ac-
count changes in the absorption, distribution, metabolism, and excretion (ADME) 
of drugs and their active or toxic metabolites due to impaired kidney. To complicate 
the matter further, a majority of subjects with CKD receive multiple drugs for the 
treatment of underlying diseases such as hypertension, diabetes mellitus, infection-
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related or autoimmune diseases (e.g., systemic lupus erythematosus). Some of these 
treatments have renoprotective effects; others are associated with nephrotoxic ef-
fects.

The learning for clinical efficacy/safety balance of emerging medicines is vastly 
based on a general population. Quantitatively extrapolating the knowledge and indi-
vidualizing such balance for subjects with CKD are not straightforward. Why? The 
interactions between CKD and treatment are not just unidirectional. Multifaceted 
factors need to be considered when medicines for subjects with CKD are developed 
and utilized: (1) altered renal and non-renal clearance can affect drug exposure and 
effects in CKD, (2) drugs for comorbidities or underlying diseases can have neph-
rotoxic effects and accelerate progression of CKD, (3) progression of CKD requires 
careful monitoring and frequent adjustments of treatments, (4) RRT by dialysis or 
transplant can impact drug exposure and effects, and (5) RRT can change a patient’s 
behavior (e.g., drug non-adherence), which in turn can affect drug exposure and 
clinical outcomes (Fig. 4.1).

This complex interplay between CKD-related multifaceted factors that interact 
with therapeutics calls for quantitative approaches to optimize therapies for subjects 
with CKD. Pharmacometrics is a quantitative scientific discipline that uses mathe-
matical models based on biology, pharmacology, physiology, and knowledge in dis-
ease for quantifying interactions between disease, drugs, and patients (Zhang et al. 

Fig. 4.1  Complex interplay between therapies and CKD

 



1114 Pharmacometrics in Chronic Kidney Disease

2008; Pfister and D’Argenio 2010). Pharmacometric approaches have been increas-
ingly applied to understand and characterize interactions between CKD-related fac-
tors and therapeutics in the recent years (Pfister et al. 2012).

The goal of this book chapter is to review and discuss opportunities for applying 
pharmacometrics for facilitating research and development of new drugs in CKD, 
optimizing development and utilization of medicines in CKD and managing RRT 
such as dialysis and kidney transplant. A background on CKD and the interactions 
between CKD, RRT, and therapeutics is given before the introduction of case stud-
ies for the application of pharmacometrics in these areas.

4.2  Background on CKD

This section provides an overview of stages, risk factors, and consequences of 
CKD, assessment of kidney function, effects of CKD on drugs, effects of drugs on 
CKD, and interactions between drugs and RRT by dialysis or transplant.

4.2.1  Define CKD and its Five Stages

All individuals with kidney damage or a glomerular filtration rate (GFR) < 60 mL/
min/1.73 m2 for 3 months are classified as having CKD. Kidney damage is de-
fined as pathologic abnormalities or markers of damage, including abnormalities in 
blood or urine tests or imaging studies. Five stages of CKD are classified based on 
the presence of kidney damage or GFR level (Table 4.1; KDOQI Clinical Practice 
Guidelines for Chronic Kidney Disease: Evaluation, Classification, and Stratifica-
tion [Internet] 2013).

4.2.2  Risk Factors and Consequences of CKD

CKD is a silent disease. It is critical to screen for CKD and its risk factors to detect 
any kidney damage early (Fig. 4.2). Cardiovascular risk factors, such as old age, hy-
pertension, dyslipidemia, smoking, and diabetes mellitus promote the development 

Table 4.1  Five stages of CKD
Stage Description GFR

(mL/min/1.73 m2)
1 Kidney damage with normal ↑ GFR ≥ 90
2 Kidney damage with mild ↓ GFR 60–89
3 Moderate ↓ GFR 30–59
4 Severe ↓ GFR 15–29
5 Kidney failure < 15 (or dialysis)
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and progression of both CKD. A direct relationship was observed between the prev-
alence of CKD and markers of insulin resistance, such as levels of serum insulin, 
C-peptide, and glycosylated hemoglobin A1c. Family history, low birth weight, race 
(African Americans), and gender (male) are also shown to be risk factors for CKD. 
Meanwhile, patients in all stages of CKD are considered at risk for development of 
cardiovascular disease and CKD is recognized as a cardiovascular risk equivalent. 
Not only uremic toxins but also homocysteine, lipoproteins, and markers of inflam-
mation and oxidative stress are elevated in CKD.

4.2.3  Assess and Monitor Kidney Function

Filtration markers such as inulin, iohexol, and iothalamate are considered the gold 
standards for measuring GFR. However, GFR is more commonly estimated using 
equations for practicality reason. The Cockroft–Gault (C–G) equation was devel-
oped in 1976 to estimate urinary creatinine clearance (in units of ml/min) with data 
from 249 Caucasian men with a mean creatinine clearance of 73 ml/min (Cockcroft 
and Gault 1976):

In 1999, the modification of diet in renal disease (MDRD) study equation was de-
veloped to estimate GFR measured with data from 1628 men and women, including 
African Americans and Caucasians with a mean GFR of 40 ml/min/1.73 m2 (Levey 
et al. 1999).

GFR ml/min 140 age weight/ Scr  for female sub( ) ( ) ( ) ( .= − × × ×72 0 85 jjects)

GFR ml/min/ m Scr age  for fema( . ) . . ( .1 73 186 1 154 0 203 0 7422 = × − × − × lle subjects
 for African Americans

)
( . )

×
1 212

Fig. 4.2  CKD: a silent deadly disease. GFR glomerular filtration rate
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Comparing with C–G equation, which is a measure of kidney filtration on an ab-
solute scale, the MDRD study equation is normalized to body surface area (BSA) 
of 1.73 m2 and is more suitable to judge renal impairment because it adjusts for the 
expected normal increase in absolute filtration with body size. However, the MDRD 
study equation underestimates measured GFR at levels >  60 mL/min/1.73 m2, with 
variable accuracy among subgroups ( Stevens et al. 2010). For this reason, a new 
GFR-estimating equation, the CKD epidemiology collaboration (CKD-EPI) equa-
tion, was developed (Levey et al. 2009). The CKD-EPI equation was found to be 
more accurate than the MDRD study equation overall and across most subgroups. 
The CKD-EPI creatinine equation is based on the same four variables as the MDRD 
study equation, but uses a 2-slope “spline” to model the relationship between esti-
mated GFR (eGFR) and serum creatinine, and a different relationship for age, sex, 
and race. The CKD-EPI creatinine equation was reported to be more accurate than 
the MDRD study equation across a wide variety of populations and clinical condi-
tions (Levey et al. 2009; Levey and Stevens 2010; Stevens et al. 2011).

In the future, other GFR estimating equations may be developed that outperform 
CKD-EPI. The CKD-EPI creatinine equation is:

A recent meta-analysis of data from 1.1 million adults (aged ≥ 18 years) indicat-
ed that the new CKD-EPI equation classified fewer individuals as having CKD 
and more accurately categorized the risk for mortality and end-stage renal disease 
(ESRD) than did the MDRD study equation across a broad range of populations 
(Matsushita et al. 2012).

Recently, new biomarkers were evaluated to detect and monitor kidney injury/dis-
ease, including cystatin C for drug-induced kidney toxicity, urinary β2-microglobulin 
for earlier and more sensitive measure of kidney tubular toxicity, and kidney injury 
molecule-1 for detecting early kidney injury in adults and pediatrics (Parikh et al. 2011; 
Mårtensson et al. 2012). These new biomarkers were additional to the routinely used 
biomarkers including levels of serum creatinine, BUN, and urinary N-acetyl-glucos-
amine, glycosuria, and proteinuria. Research, development, and use of new drugs for 
therapeutic targets associated with diseases associated with deterioration in kidney 
function, such as diabetes mellitus, hypertension, obesity, heart failure, hyperlipidemia, 
and transplant rejection may benefit from measuring and modeling such biomarkers.

1.209 AgeGFR 141 min(Scr / ,1) max(Scr / ,1) 0.993
1.018 if female 1.159 if black

0.7 if female
0.9 if male

0.329 if female
0.411 if male

min The minimum of Scr/ or 1
max The maximum or Scr/ or 1
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4.2.4  Understand Impact of CKD on Exposure and Effects of 
Drugs and Biologics

A progressive decline in kidney function, a hallmark of CKD, often leads to a 
wide array of the pathophysiologic changes that affect the absorption, distribution, 
metabolism, and excretion (ADME) characteristics of drugs (Table 4.2), including 
decreased glomerular filtration and/or renal transport, altered absorption, bioavail-
ability, and/or protein binding (Naud et al. 2012; Joy 2012).

Evidence is also emerging on the impact of CKD on the non-renal clearance of 
many drugs, specifically affecting uptake and efflux transporters as well as meta-
bolic enzymes in the liver and gastrointestinal tract (Nolin and Unruh 2010). Recent 
studies suggest that accumulated uremic toxins in subjects with CKD can cause 
either transcriptional or translational modifications or direct inhibition of these en-
zymes (e.g., CYP2C11, CYP3A1, CYP3A2) and transporters (e.g., organic anion 
transporting peptide, OATP; Nolin et al. 2008; Dreisbach 2009). Such pathophysi-
ological changes can explain altered exposure and response of renally and some 
non-renally eliminated drugs in subjects with CKD.

Protein therapeutics (biologics) are eliminated from the body nearly exclusively 
by proteolysis. Theoretical considerations and clinical evidence suggest that the 
kidneys play a relevant role in the catabolism and thus elimination of biologics 
that have a size below the cutoff for glomerular filtration of approximately 60 kDa. 
Thus, the effect of CKD on biologics seems to be predictable and only relevant for 
compounds below this molecular weight cutoff. This is supported by clinical evi-
dence that shows a lack of effect of kidney function on large proteins such as mono-
clonal antibodies, whereas smaller proteins below the cutoff such as interleukin-10, 
growth hormone and erythropoietin experience a gradual decrease of their clearance 
and increase of their systemic exposure with increasing degree of impaired kidney 
function (Kim et al. 1995; Meibohm and Zhou 2012).

4.2.5  Understand Effects of Drugs on CKD

Much of the differences between drug responses in CKD patients and regular 
population can be explained by the exposure difference between the two. Altered 
ADME property of drugs in subjects with CKD leads to different exposure in ac-
tive drug or metabolites (Table 4.2), which in turn causes difference in responses. 
Perhaps for this reason, in the Guidance for Industry Pharmacokinetics in Patients 
with Impaired Renal Function—Study Design, Data Analysis, and Impact on Dos-
ing and Labeling issued by Food and Drug Administration (FDA; Tortorici et al. 
2012; Draft Guidance: Pharmacokinetics in Patients with Impaired Renal Func-
tion—Study Design, Data Analysis, and Impact on Dosing and Labeling [Internet] 
2010), the guidance listed detailed instruction for pharmacokinetic (PK) testing but 
only vaguely mentioned pharmacodynamic (PD) assessment should be included in 
the testing when appropriate. Dose for subjects with CKD are typically adjusted to 
produce a comparable range of unbound plasma concentrations of drug of active 
metabolites in the patients with normal kidney function.
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CKD-related 
pathophysiological changes

Effect on drugs Impact

Absorption Formation of ammonia 
in the presence of gastric 
urease and buffers gastric 
acid

Decreased absorption of drugs 
that are best absorbed in an 
acidic environment, prolongs 
gastric emptying, and delays 
drug absorption

More variable bio-
availability in patients 
with renal impairment 
than in patients with 
normal renal function

Increase in gastric pH Increased amounts of active 
drugs in the systemic circula-
tion and enhanced bioavail-
ability of some drugs

Decrease in first-pass 
hepatic metabolism and 
biotransformation

More unbounded drugs to 
be available at the site of 
hepatic metabolism, thereby 
increasing the amount of drug 
removed during the hepatic 
first pass

Decrease in protein binding
Distribution Formation of edema and 

ascites
Increased apparent volume of 
distribution of highly water 
soluble or protein bound

Lower plasma 
concentrations after a 
given dose

Decrease in albumin 
concentration

Decreased affinity for the drug 
reduces protein binding in 
patients with uremia, making 
the unbound fraction of acidic 
drugs substantially increased

More abundant drug 
available at the site of 
drug action or toxicity

Removal of fluid during 
dialysis

Altered distribution volume of 
drugs and change during the 
dialysis cycle

Different concentra-
tion within dialysis 
cycle

Metabolism Accumulation of uremic 
toxins

The rate of reduction and 
hydrolysis reactions and 
microsomal oxidation are 
reduced

Accumulated active 
drug

Glucuronidation to polar, 
water-soluble metabolites is 
impaired due to decreased 
clearance of blucuronide from 
plasma

Slows down the 
removal of soluble 
metabolite

Alternations of intestinal, 
hepatic, and renal transporters, 
and metabolic enzymes such 
as reduced OATP expression 
and altered CYP expression

Higher incidence 
of adverse drug 
reactions

May also alter the disposi-
tion of drugs metabolized by 
the liver through changes in 
plasma protein binding while 
the unbound intrinsic meta-
bolic clearance declines with 
creatinine clearance

Table 4.2  Impact of CKD on absorption, distribution, metabolism, and excretion (ADME) of 
drugs
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In epidemiology studies, CKD has been shown to be a risk factor for cardiovas-
cular diseases, hematologic diseases, endocrine diseases, neurologic disease, and 
may lead to mineral bone disorders (MBDs; Briasoulis and Bakris 2013; Levin 
2013). It is foreseeable that the efficacy and safety of these diseases could be dif-
ferent in subjects with CKD and subjects with a different degree of CKD. For drugs 
that rely on kidney function to exert its effect, the responses in subjects with CKD 
are expected to be different. Sodium-glucose cotransproter-2 (SGLT2) inhibitors 
developed for the treatment of type 2 diabetes mellitus (T2DM) by decreasing glu-
cose reabsorption in kidney are shown to rely on a close-to-normal kidney function 
to exert its full pharmacological effect on glucose (Komoroski et al. 2009; Kasi-
chayanula et al. 2012).

The kidneys are vulnerable to injury due to their high filtration capacity and 
high metabolic activity, and most drugs, especially hydrophilic drugs and their 
metabolites, are eliminated largely by kidneys in urine, thus increasing the risk of 
drug-induced nephrotoxicity (DIN). DIN accounts for approximately 20 % of com-
munity- and hospital-acquired episodes of acute kidney injury (AKI), and AKI is a 
risk factor for the future development or accelerated progression of CKD (Goldstein 
et al. 2013).

Manifestations of DIN include acid–base abnormalities, electrolyte imbalances, 
urine sediment abnormalities, proteinuria, pyuria, hematuria, and decrease in GFR. 
Aminoglycoside antibiotics, nonselective nonsteroidal anti-inflammatory drugs 
(NSAIDs), and radio-contrast media have been frequently associated with DIN, 
especially in patients with CKD. Anti-hypertensive drugs such as angiotensin-
converting enzyme (ACE) inhibitors and angiotensin II receptor inhibitors (ARBs) 

CKD-related 
pathophysiological changes

Effect on drugs Impact

Excretion Decrease in GFR Clearance of drugs eliminated 
primarily by glomerular 
filtration

Increased plasma 
concentration and 
prolonged half-life in 
drug that are elimi-
nated primarily by 
glomerular filtration

Decrease in protein binding Decreased filtration of drugs; 
may also increase the amount 
secreted by the renal tubule

The excretion of 
drugs eliminated by 
active organic ion 
transport systems in 
the renal tubules is 
prolonged in patients 
with CKD and may 
become saturated 
upon multiple drug 
administration

Decrease in enzymatic 
capacity

Decreased metabolism, 
including many protein and 
small peptides

Increased concentra-
tion and prolonged 
half life

Table 4.2 (continued) 
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have renoprotective effects by lowering both blood pressure and proteinuria and 
are the preferred treatment option in CKD with T2DM. At the same time, the use 
of ACE inhibitors and ARBs can result in adverse effects, which are more common 
in CKD. The most common side effects-early decrease in GFR, hypotension, and 
hyperkalemia-require careful monitoring of therapy, but can usually be managed 
without discontinuation of the agent.

In a recent study in subjects with T2DM and CKD, bardoxolone methyl, an oral 
antioxidant inflammation modulator, was not lowering proteinuria, but was associ-
ated with an increase in eGFR (Pergola et al. 2011).

4.2.6  Understand Effects of Drugs on Kidney Transplants

In transplant medicine, the standard immunosuppressive treatment paradigm for 
prophylaxis of organ rejection in kidney transplant can be classified into the follow-
ing three stages (Halloran 2004): (1) induction of immunosuppression (usually with 
immune-cell-depleting agents), (2) pre-adaptive maintenance therapy (with a com-
bination of a calcinurin inhibitor (CNI; cyclosporin or tacrolimus), an antimetabo-
lite (azothioprene) or nucleotide synthesis inhibitor (mycophenolatemofetil, MMF), 
and a glucocorticoid), and (3) post-adaptive maintenance therapy with lower dose 
of the three pre-adaptive therapy drugs. Ironically, CNIs such as cyclosporine are 
associated with nephrotoxic effects: Acute nephrotoxicity caused by vascular dys-
function and a more chronic fibrotic form. CNIs therefore require therapeutic drug 
monitoring due to their narrow therapeutic window (Schiff et al. 2007). As noted 
above, CNIs are often given in combination with MMF, the dose of which is also 
adjusted based on therapeutic drug monitoring (Kuypers et al. 2010). To compli-
cate matters further, CNIs exhibit time-dependent PK, are eliminated primarily by 
CYP3A4, and are therefore prone to interactions with other drugs that affect the 
activity of this enzyme (Lukas et al. 2005; Park et al. 2007), and mycophenolic acid 
(MPA, the active moiety of MMF) undergoes enterohepatic recycling, the biliary 
excretion of which is inhibited by cyclosporine A (CsA) (Hesselink et al. 2005). 
The area under curve (AUC) of MPA for a given dose of MMF can vary by tenfold, 
and increasingly sophisticated PK models describing the enterohepatic recycling 
of MPA have been proposed to explain the source of this variability (Sherwin et al. 
2011), to enable more precise dose adjustment for this narrow therapeutic window 
drug.

4.3  Applications of Pharmacometrics in CKD

CKD presents a wide array of treatment-related challenges that are associated with 
high costs and poor outcomes. Pharmacometric approaches have been frequently 
applied to understand the interactions between CKD and therapeutics spanning 
from basic research into disease and mechanisms of drug action to the rational use 
of medicines in patient care. Innovative and strategic application of quantitative 
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methods in conjunction with well-designed trials for characterizing drug exposure, 
efficacy, and toxicity, will benefit patients with CKD. Pharmacometrics provides the 
foundation for this multidisciplinary effort that involves basic and applied university 
researchers, industry drug development scientists and decision makers, government 
regulatory scientists, clinicians, and other health professionals. An appreciation and 
understanding of opportunities for pharmacometrics in CKD (Table 4.3) call for a 
sustained collaborative effort between all stakeholders involved in developing and 
utilizing therapeutics for CKD and related comorbidities.

4.3.1  Quantify the Impact of CKD on Exposure and Effects  
of Drugs

Pharmacometric approaches are widely used to characterize the impact of CKD on 
exposure and effects of drugs and biologics. Both mechanism-based and empirical 
models are developed and applied, given modeling objectives. In the mechanistic 
models, the function formats of the models are elucidated by the understanding 
of underlying drug, disease, and CKD physiologic mechanisms. The models in-
clude knowledge, data, and scientific perspective from many relevant aspects and 
are constantly updated. Predictability is the key model performance requirement. In 
the empirical models, the influence of CKD on drug exposure and effects are typi-
cally expressed by including renal function as a covariate on the parameter(s) of the 
conventional exposure and response models. Treating renal function as a continu-
ous variable, such as using eGFR values in the analysis, is usually preferred to an 
analysis which treats it as a categorical variable per degree of CKD.

A recently published physiologically based, multi-scale model of calcium ho-
meostasis and bone remodeling describes the impact of progressive loss of kidney 
function over a typical 10-year course of CKD, including the evolution of secondary 
hyperparathyroidism, a sequel of which is Mineral Bone Disorder (MBD) (Riggs  
et al. 2012). This multi-scale physiologic model described CKD-MBD-related 
clinical changes in phosphate, parathyroid hormone, and calcitriol and linked bone 
remodeling markers with bone mineral density (BMD) elimination and formation 
rates. The composite multi-scale model was able to predict lumbar spine BMD 
losses up to 10 years in various renal function groups (Fig. 4.3) and simulate in-
terventions with a hypothetical calcimimetic agent and calcitriol. This multi-scale 
mechanism-based model is a quantitative summary on the changes in CKD-MBD 
from signal to organs and to clinical outcomes. It provided a platform for projecting 
the CKD disease response and for evaluating therapeutics.

Zhang et al. (2010) provided another example of mechanistic model in CKD, 
which characterized the exposure and response of the SGLT2 inhibitor, a thera-
peutic agent developed for the treatment of T2DM. SGLT2 inhibition leads to de-
creased glucose reabsorption which in turn results in glucose excretion in theurine. 
This is expected to lower plasma glucose concentrations and urinary loss of excess 
calories at the same time. The relationship between plasma glucose concentration, 
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Opportunities Approaches
Understand interactions 
between CKD and 
Therapeutics

Describe progression of CKD 
and characterize its effect on 
other organs

Develop mechanism-based 
disease models (e.g., model 
that describes effects of CKD 
on bone mineralization)

Facilitate design, conduct, 
and interpretation of trials in 
subjects with CKD

Stage kidney function by 
eGFR (rather than by creati-
nine clearance)
Complement trials with 
integrated pharmacometric 
analyses

Investigate impact of drugs on 
CKD outcomes

Apply model-based meta-
analysis to investigate relation-
ships between drugs and CKD 
outcomes

Characterize impact of 
impaired CKD on drugs

Understand impact of CKD on 
non-renal drug clearance
Integrate exposure, efficacy, 
and safety data from phase 
1, 2, and/or 3 studies to 
characterize efficacy/safety in 
patients with impaired kidney 
function
Quantify and understand 
exposure-efficacy/safety bal-
ance (i.e., therapeutic utility) 
in subjects with CKD

Understand interactions 
between RRT and Therapeutics

Quantify impact of RRT on 
drugs

Consider factors that impact 
removal of drugs in adult and 
pediatric patients receiving HD
Apply model-based trial simu-
lation (i.e., pharmacometric 
approaches) to guide use of 
drugs in patients receiving HD

Fine-tune RRT in adults and 
pediatrics

Explore alternative HD sched-
ules, such as daily short HD or 
long nocturnal HD
Define new metrics for 
assessing and fine-tuning 
conventional and newer HD 
modalities

Understand interactions 
between Kidney Transplant 
and Therapeutics

Characterize drug effects in 
kidney transplantation

Utilize pharmacometric 
approaches to characterize 
time-dependent drug exposure 
and effects

Explore drug non-adherence 
on kidney transplantation 
outcomes

Explore patient characteris-
tics (e.g., underlying disease, 
comorbidities, co-medications) 
and behavior such as drug 
adherence

Table 4.3  Opportunities for pharmacometrics in CKD
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renal glucose excretion threshold, and the amount of glucose in urine can be directly 
measured in a small number of patients through a well-designed hyperglycemic 
clamp study (Polidori et al. 2013); however, a modeling approach provided a way 
to use more data collected in clinical development, sample across a much larger 
and more heterogeneous population, and link the mechanism-specific biomarkers to 
long-term disease end points. The model encompassed the factors that could disturb 

Opportunities Approaches
Optimize use of Therapeutics 
in subjects with CKD

Evaluate and optimize dose 
adjustments in subjects with 
CKD

Determine relationships 
between drug exposure and 
kidney function in order to 
report renal dosing adjustment 
recommendations

Enhance labels for subjects 
with CKD

Apply pharmacometric 
approaches to identify safe and 
efficacious dosing in subjects 
with CKD

Table 4.3 (continued) 
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the homeostasis of glucose metabolism, including endogenous glucose production, 
carbohydrate load, and plasma exposure to an SGLT2 inhibitor and predicted glu-
cose amount in urine and glucose concentration and insulin concentration in urine 
(Fig. 4.4). The projected exposure of SGLT2 inhibitor and the response of glucose 
excretion at various levels of GFR can also be predicted.

The SGLT2 inhibitor dapagliflozin is metabolized by uridine diphosphate gluc-
uronosyltransferase (UGT) 1A9 to dapagliflozin 3-O-glucuronide. As UGT1A9 is 
expressed in the kidney and the liver, both impaired hepatic and kidney function may 
impact the metabolic clearance of dapagliflozin. A semi-mechanistic model was de-
veloped for dapagliflozin and its inactive metabolite dapagliflozin 3-O-glucuronide 
(D3OG) with emphasis on renal and hepatic contribution to dapagliflozin metabo-
lism (van der Walt et al. 2013). Impaired hepatic and kidney function decreased the 
clearance of dapagliflozin to D3OG and the clearance of D3OG. The fraction of 
D3OG formed via the renal route decreased from 40 to 55 % in subjects with nor-
mal kidney function (creatinine clearance CrCL > 80 mL/min) to 10 % in subjects 
with severely impaired kidney function (CrCL = 13 mL/min). Model-based simula-
tions suggested that the increase of systemic exposure (AUCss) of dapagliflozin 
and D3OG was less than twofold in subjects with mild or moderate impairment of 
kidney function. This semi-mechanistic model presents a useful approach to evalu-
ate the impact of kidney and hepatic function on the PK of dapagliflozin (Fig. 4.5).

Semi-mechanistic models were also applied to quantify non-renally eliminated 
drugs such as sildenafil, repaglinide, and telithromycin in subjects with CKD (Zhao 
et al. 2012) or to generate insight into the likely mechanism (inter-conversion) of 
the increased exposure of tesaglitazar in subjects with CKD (Hamrén et al. 2008).

Fig. 4.4  Modeling urinary glucose excretion upon SGLT2 inhibition
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4.3.2  Quantify the Impact of Dialysis on Drug Exposure

Treatments for stage V of CKD encompass four types of life-supporting RRT: he-
modialysis (HD), peritoneal dialysis, hemofiltration, and kidney transplantation. 
HD is the most common RRT option. Quantifying the impact of HD on drugs is 
often a regulatory requirement as well as a clinical practice necessary for optimiz-
ing dosing regimen and dialysis prescription. The increased use of more intensive, 
nonstandard HD regimens other than the conventional three times a week for 3- to 
4-h treatments presents additional need for quantification of the impact of dialysis 
on Drug exposure.

A pharmacometric approach was applied to quantify the impact of CKD and 
HD on the removal of saxagliptin and its active metabolite 5-hydroxy saxagliptin 
(Zhang et al. 2012a). Exposures of saxagliptin and its active metabolite 5-hydroxy 
saxagliptin were predicted at different dose levels during and between HD sessions 
(Fig. 4.6). A similar approach was used to quantify the dialysis impact on entecavir 
(Bifano et al. 2010) and candesartan (Pfister et al. 1999). The entecavir work was 
directly related to the approved label of entecavir for use in subjects with CKD, 

Fig. 4.5  Modeling renal and non-renal elimination of dapagliflozin and D3OG in T2DM subjects 
with impaired kidney and/or hepatic function (van der Walt et al. 2013). Covariates connected to 
compartments affect the relevant volume, those connected to pathways affect the relevant clear-
ance. BCRCLIBW baseline creatinine clearance calculated using ideal body weight (IBW), CLM 
renal clearance of D3OG, BIO  bioavailability, CLPM15 metabolic clearance of dapagliflozin to 
D3OG, CLPother metabolic clearance of dapagliflozin to unmeasured metabolites, CLPrenal renal 
clearance of unchanged dapagliflozin to urine, MTT  mean transit time, N  number of transit com-
partments, QP inter-compartmental clearance of dapagliflozin, T2DM type 2 diabetes mellitus, 
V2P central volume of distribution of dapagliflozin, V3P peripheral volume of distribution of 
dapagliflozin, V2M central volume of distribution of D3OG. Dashed lines a priori scaling, shaded 
areas covariates selected during step-wise covariate model building, unshaded areas added based 
on previous modeling experience
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including regimens that were never clinically tested. This case study is intensively 
discussed later in this chapter. In addition to the predictions of dug exposure un-
der conventional HD regimens, simulations can also be performed to predict drug 
PK profiles under alternative treatment scenarios, such as novel dialysis modalities 
(e.g., daily short HD instead of three-time weekly dialysis for 4 h each). These 
successful applications of pharmacometrics to saxagliptin and other drugs demon-
strated its utility in the development and review of new therapeutics.

Subject with CrCL of 10 mL/min, 2.5 mg QD
saxagliptin; 4-hr HD in Day 1 

Subject with CrCL of 10 mL/min; 2.5 mg QD
saxagliptin; without HD 

Subject with CrCL of 100 mL/min; 5 mg QD saxagliptin 
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Fig. 4.6  Simulated saxagliptin ( panel a) and 5-hydroxy saxagliptin ( panel b) concentrations in 
subjects with creatinine clearance (CrCL) of 10 mL/min receiving 2.5 mg once daily saxagliptin 
with or without 4-h HD session starting at 2-h post-dose on day 1, and in subjects with CrCL of 
100 mL/min receiving 5 mg once daily saxagliptin. Simulated steady state area under curve ( AUC) 
ratio ( panel c) between subjects with CrCL of 10 mL/min receiving 2.5 mg once daily saxagliptin 
and 4-h HD session on day 1 vs. subjects with CrCL of 100 mL/min receiving 5 mg once daily 
saxagliptin. (Zhang et al. 2012a)
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4.3.3  Quantify the Impact of Dialysis on Endogenous Molecules

Similar pharmacometric approaches have also been applied to quantify the impact 
of dialysis on endogenous molecules and offer the potential of guiding and fine-tun-
ing dialysis prescriptions. Individualized Bayesian urea kinetic modeling (IBKM) 
has been recently introduced (Pfister et al. 2004). The IBKM method is proposed 
as a potential method to quantify and predict HD adequacy. The IBKM method can 
also be used to continuously adjust and optimize individual HD treatment in both 
adults and children (Marsenic et al. 2010). Based on a Bayesian framework, IBKM 
is a model-based approach that can predict equilibrated post-rebound BUN concen-
tration using only BUN measures pre-HD and immediately post-HD. In addition, 
IBKM is able to assess and project individual urea kinetic parameters and profiles 
for various HD schedules, takes inter-compartmental clearance into account, and 
can incorporate individual patient data, such as dry weight (Fig. 4.7).

The IBKM method has the potential to be useful at the bedside to inform and 
guide individual HD prescriptions, particularly when a patient receiving long con-
ventional HD is transitioned to daily ultrashort or nocturnal dialysis (Fissell et al. 
2012). Finally, such Bayesian kinetic modeling approach offers the possibility 
of testing the clearance of solutes other than urea, such as β2-microglobulin and 
phosphorus.

4.3.4  Evaluate and Fine-Tune Dialysis Treatment in Adults  
and Pediatrics

Incorporating urea rebound using equilibrated urea concentration ( Ceq) after a HD 
session is essential for accurate assessment of HD efficiency. It is impractical to 
measure Ceq in clinical settings, and there are no recommended methodologies to 
predict Ceq in children. The objective of this work is to assess the ability of an 
IBKM for predicting Ceq in children on HD. Developed based on adult HD data, 
the IBKM is a two-pool urea kinetic model that calculates Bayesian estimates of 
individual Ceq. Blood urea nitrogen (BUN) samples from 30 HD sessions in 13 
children (age 12-18 years) were taken at pre-HD, immediately post-HD, and 60 min 
post-HD ( Ceq). The IBKM was fitted to the observed data to predict Ceq. In compari-
son with observed Ceq (9.5 ± 3.8 mmol/L), the average individual predicted Ceq was 
9.4 [ ± 3.8] mmol/L, with absolute individual prediction error of 6.2 ± 4.4 %. For a 
given dialysis goal and desired dialysis duration, the required blood flow rate and 
dialyzer size are predicted by IBKM (Fig. 4.8) and confirmed by the analysis data. 
This study suggests that the IBKM can be applied in a pediatric HD setting and 
accurately predict Ceq in children using only pre- and immediately post-HD BUN. 
The IBKM provides a promising approach to assess HD efficiency and its optimal 
prescription in adults and children; it would be an obvious choice to forecast the 
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removal of solutes other than urea (e.g., creatinine, uric acid) and medications in 
individual patients as well.

The variables considered are dialyzer size (mass/transfer coefficient, Ko; mem-
brane area, A), blood flow, and treatment time. For an individual with pre-dialy-
sis weight of 40 kg and BUN concentration of 30 mmol/L, the BUN concentra-
tions during the dialysis are simulated with dialyzer mass transfer area coefficient 
(KoA) KoA ranging from 400 to 800 mL/min, and blood flow ranging from 150 to 
300 mL/min. The time to reach 75 % urea reduction ratio (% URR) are obtained 
from the simulation and used in constructing the plot. The lines in the contour plots 
indicate the time to reach 75 % URR for a given combination of dialyzer KoA and 
blood flow. Dialyzer KoA from three commonly used dialyzers (F4HPS, F5HPS, 
and Gambro 14S) are indicated in the plot for illustration purpose.
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4.3.5  Characterize Exposure-Response in Kidney Transplant 
Patients

Given the complexities of Calcineurin inhibitor (CNI)-containing immunosup-
pressive therapies, there is an increasing interest in CNI-free or sparing-treatment 
regimens (Giessing et al. 2007), and alternatives to CNI, such as CTLA-4 Ig (El-
Charabaty et al. 2012). One of the difficulties of determining a therapeutic window 
is that it is not ethical to do a true dose-ranging study that includes suboptimal dos-
es. Recently, model-based analyses of pooled data from phase 2 and 3 studies were 
employed to determine the clinical pharmacology profile of belatacept, a CTLA4-
4 fusion protein, and to support dose recommendations based upon exposure-re-
sponse of efficacy (control of acute rejection) and safety (serious infections and 
risk of lymphoproliferative events) (Zhou et al. 2012). Belatacept dose amount and 
frequency are highest during induction of immunosuppression in the peri-transplant 
period, and the dose intensity is gradually decreased to the currently recommended 
maintenance dose regimen of 5 mg/kg every 4 weeks, starting at the end of week 16 
(Belatacept Prescribing Information (US FDA) [Internet] 2013). Belatacept expo-
sures are therefore highest during the 3 months post-transplantation when the risk 
of acute rejection is greatest, and steady-state exposures are not reached until after 
the start of the maintenance period. A time-to-event exposure-response analysis was 
employed to characterize the efficacy of belatacept, to account for the time-varying 
nature of the belatacept exposures and of the risk of acute rejection. As shown in 
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Fig. 4.9, the risk of an acute rejection decreases dramatically after 3-months post-
transplant, thereby justifying decreased doses of immunosuppressive agents for 
maintaining prophylaxis of graft rejection.

4.3.6  Quantify Impact of Drug Non-adherence on Kidney 
Transplant

Lack of adherence to immunosuppressive drugs, given post-transplant, is a serious 
problem, the prevalence of which does not appear to have changed very much over the 
past 30 years. A recent study found that approximately 26 % of renal transplants were 
non-adherent to their prescribed immunosuppressive medication (Schmid-Mohler 
et al. 2010), which is consistent with the median non-adherence of 22 % reported in a 
comprehensive review of the studies published between 1980 and 2001 (Butler et al. 
2004). As noted above, therapeutic drug monitoring (TDM) is required for many im-
munosuppressive drugs due to their narrow therapeutic windows (Schiff et al. 2007; 
Kuypers et al. 2010). Prolonged exposure to drug levels above or below the therapeu-
tic range is known to be associated with excess toxicity or reduced efficacy. However, 
the impact of transient deviations from the therapeutic window is less obvious.

A novel model-based analysis was employed to quantify the impact of non-ad-
herence on clinical outcomes by developing and applying a model for non-adher-
ence to CsA to predict variability in drug exposure, which was then linked to out-
comes (Maclean et al. 2011). Specifically, a drug adherence model was developed 
to describe the drug adherence behavior of patients who were categorized according 

Fig. 4.9  Belatacept exposure-response of efficacy (probability of acute rejection (AR); Zhou et al. 
2012). Visual predictive check of the time-to-acute rejection with less intensive ( LI) and more 
intensive ( MI) dosing regimens
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to the following five previously reported clusters (Russell et al. 2006): Cluster 1 
(32 %), patients who almost always took their medication on time; Cluster 2 (18 %), 
sometimes missed doses or were late; Cluster 3 (14 %), frequently late in taking 
doses; Cluster 4 (9 %), often missed both doses; and Cluster 5 (27 %), other. Specifi-
cally, the drug adherence model described the frequency with which the morning 
and evening doses were taken on time, late/early, or missed. The drug adherence 
model was applied together with a PK model of CsA (Lukas et al. 2005), to predict 
variability in CsA exposures, which was then linked to clinical outcome based on 
previously reported associations between variability in CsA exposure and long-term 
renal function, chronic rejection, and health-care costs based on logistic regression 
and receiver operating curve analysis (Waiser et al. 2002; Kahan et al. 2000). As 
shown in Fig. 4.10, the within patient variability in time-averaged trough concen-
tration (Cavg) of patients in Clusters 1, 2, and 3 did not exceed level of variability 
associated with poor outcomes (30-36 % coefficient of variation CV), and therefore 
the occasional non-adherence characterized by Clusters 2 and 3 are not expected to 
have an impact on clinical outcome. In contrast, all patients in Clusters 4 had CV 
higher than the thresholds associated with poor outcome, and approximately 76 % 
of the patients in Cluster 5 had a CV greater than 30 %, suggesting that subjects in 
these groups were at high risk for having poorer outcomes.

Fig. 4.10  Distribution of cyclosporin time-averaged trough concentration ( Cavg) variability in 
kidney transplant patients, by adherence behavior category (Cluster 1: patients who almost always 
took their medication on time; Cluster 2: sometimes missed doses or were late, Cluster 3: fre-
quently late in taking doses, Cluster 4: often missed both doses, and Cluster 5: all other behav-
iors). The vertical line represents the threshold of 28 % CV in Cavg, above which chronic rejection 
rates and health-care costs are higher
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4.3.7  Evaluate and Fine-Tune Therapeutic Doses for CKD

The FDA encourages to (1) understand multitude of interrelated factors that can 
affect systemic exposure and response, (2) carefully design trials in subjects with 
impaired kidney disease, and (3) apply quantitative pharmacometric methods for 
characterizing drug exposure and evaluating in therapeutic doses in subjects with 
impaired kidney (Fig. 4.11; Draft Guidance: Pharmacokinetics in Patients with Im-
paired Renal Function-Study Design, Data Analysis, and Impact on Dosing and 
Labeling [Internet] 2010; Huang et al. 2009; Zhang et al. 2012b). Compared to 
the 1998 FDA guidance, there are three new recommendations in the 2010 FDA 
draft guidance “Pharmacokinetics in Patients with Impaired Renal Function-Study 
Design, Data Analysis, and Impact on Dosing and Labeling”: (1) PK studies in 
patients with impaired kidney function are conducted for drugs that are eliminated 
via non-renal route, in addition to those via renal route (Fig. 4.11), (2) staging of 
kidney function be conducted using the eGFR (e.g., the four-parameter modifica-
tion of diet in renal disease (MDRD) equation), in addition to the C–G equation, and 
(3) conduct of studies in HD patients be performed during dialysis (on dialysis) and 
inter-dialysis (off dialysis) periods.

Investigational Drug1

Chronically administered oral, iv,
sc and likely to be administered

to target population

Study recommended

Non-renal predominates

Reduced PK study
(in ESRD patients)3

Negative
results

Negative
results

Positive
results4

Full PK study5

Label

No study recommended

Single-dose use
Volatile Inhalation

Unlikely to be used in renal impaired patients

Positive
results4

Label as such -
No dose adjustment

Label as such -
No dose adjustment

Label with dose
adjustments

Renal clearance predominates2

Fig. 4.11  Decision tree for use in determining when a study in subjects with impaired kid-
ney funtion is appropriate (Draft Guidance: Pharmacokinetics in Patients with Impaired Renal 
Function-Study Design, Data Analysis, and Impact on Dosing and Labeling [Internet] 2010). 1 
Metabolites (active/toxic) follow the same decision tree. 2 The sponsor has the option of conduct-
ing a reduced study in end-stage renal disease (ESRD) patients or a full study. 3 To be conducted 
in ESRD patients not yet on dialysis. 4 The results are “positive” when pharmacokinetic (PK) 
changes are clinically significant based on exposure-response of the drug. 5 See guidance for the 
full PK study design, or additional studies can be conducted including a population PK evaluation
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To optimize drug therapy for individuals and subgroups, it is critical to under-
stand how various intrinsic (e.g., age, gender, race, genetics, organ impairment) and 
extrinsic factors (e.g., diet, smoking, concomitantly administered drugs) affect drug 
exposure, dosing, and response. PK data in subjects with impaired kidney function 
are used to determine appropriate drug dosing in subjects with impaired kidney func-
tion in comparison to subjects with normal kidney function. Besides being evaluated 
in dedicated PK studies, the effect of impaired kidney function on a drug’s PK can 
also be evaluated in phase 2 or phase 3 clinical studies with sparse PK sampling if a 
sufficient number of patients with various degrees of renal impairment is included in 
these studies. Pharmacometric analyses can help rationalize a need for dosage adjust-
ment in this specific population based on exposure–response relationship of the drug.

For example, dabigatran represents one of the recent instances where renal func-
tion influenced dosing decisions (Hariharan and Madabushi 2012; Lehr et al. 2012). 
Dabigatran etexilate mesylate, a direct oral thrombin inhibitor, was approved by the 
FDA in October 2010 for the prevention of stroke and systemic embolism in pa-
tients with nonvalvular atrial fibrillation (AF). The pivotal efficacy trial supporting 
the approval, randomized evaluation of long-term anticoagulant therapy (RE-LY), 
compared two blinded doses of dabigatran, 110 mg and 150 mg, with open-label 
warfarin (Table 4.4). Based on the efficacy (reduction in incidence of stroke and 
systemic embolism) and safety (bleeding risk) findings, the FDA-approved dabiga-
tran 150 mg given orally twice daily in patients with CrCL > 30 mL/min. The FDA 
also approved dabigatran 75 mg administered twice daily in patients with severe 
renal impairment (defined as CrCL between 15 and 30 mL/min).

To ensure that subgroups with severe impaired kidney function would have 
access to an appropriate dose of dabigatran, a pharmacometric approach was ap-
plied to evaluate dosing regimens of interest in ‘virtual’ subjects with various levels 
of kidney function. Results from model-based simulation of various doses of inter-
est indicated that (1) a dosing regimen of 150 mg QD leads to significantly higher 
average exposures beyond the range studied in RE-LY, (2) a dosing regimen of 
75 mg QD regimen results in lower average exposures and was considered to be 
less effective for stroke reduction, and (3) a dosing regimen of 75 mg twice daily 
is the preferred dose for subjects with severely impaired kidney function as it pro-
vides similar exposures to that expected in subjects with moderately impaired kid-
ney function, for whom a 150-mg twice-daily regimen produced substantial benefit 
in pivotal clinical trials.

Table 4.4  Hazard ratio and 95 % confidence interval (CI) for stroke/systemic embolic event 
(SEE) and major bleeds comparing dabigatran etexilate (DE) 150 mg twice daily to warfarin by 
kidney function. (Hariharan and Madabushi 2012)
Creatinine clearance, 
mL/min

Fold increase in 
dabigatran trough 
plasma concentration 
in RE-LY

Hazard ratio (95 % CI) 
for stroke/SEE, DE 
150 mg vs Warfarin

Hazard ratio (95 % CI) 
for major bleeds, DE 
150 mg vs Warfarin

Moderate, 30 ≤ and < 50 2.29 0.46 (0.29–0.73) 0.97 (0.74–1.27)
Mild, 50 ≤ and < 80 1.47 0.67 (0.49–0.91) 0.88 (0.71–1.07)
Healthy, ≥ 80 1.00 0.71 (0.44–1.15) 0.81 (0.59–1.11)

RE-LY Randomized Evaluation of Long-term Anti-Coagulant Therapy
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In another case, a pharmacometric approach was applied to quantify apixaban’s 
therapeutic utility in prevention of venous thromboembolism in subjects with nor-
mal or moderately impaired kidney function (Leil et al. 2010). A therapeutic utility 
index (TUI) was assessed by integrating efficacy and safety predictions to quantify 
apixaban’s efficacy/safety balance as a function of steady-state AUC. Of the apixa-
ban dosage regimens tested in phase 2, the 2.5-mg twice-daily dosage regimen had 
the highest TUI (86.2 %). This was also higher than the TUI for either 30-mg twice-
daily enoxaparin (82.5 %) or for warfarin (71.8 %). Difference in apixaban’s TUI in 
subjects with moderately impaired kidney function and those with normal kidney 
function was marginal indicating that dose adjustment is not needed in subjects with 
mild or moderate impairment of kidney function.

4.3.8  Enhance Drug Label for CKD

There are several additioned examples where pharmacometric approaches, includ-
ing physiologically based modeling and simulation (in conjunction with well-de-
signed studies) were used to characterize CKD-related changes in drug exposure 
and optimize dose selection in CKD: amikacin (De Cock et al. 2012) argatroban 
(Madabushi et al. 2011), fondaparinux (Turpie et al. 2009), gentamicin (Lanao et al. 
1989), panipenem/betamipron (Tajima et al. 2006), pefloxacin (Bruno et al. 1991), 
piperacillin/tazobactam (Tornøe et al. 2007), ribavirin (Bruchfeld et al. 2002), and 
telbivudine (Zhou et al. 2009).

Model-based trial simulation can predict drug exposures for alternative dosing 
regimens, compare simulated drug exposures with a predefined target range (i.e., 
therapeutic window), and thus identify doses that produce safe and efficacious con-
centrations in a large portion of patients (i.e., 75 % of subjects). This quantitative 
approach was applied to optimize dosing of entecavir in subjects with CKD (Bifano 
et al. 2010). Entecavir is predominantly eliminated by the kidney with urinary re-
covery of unchanged drug at steady state ranging from 62 to 73 % of the adminis-
tered dose. Renal clearance is independent of dose and ranges from 360 to 471 mL/
min suggesting that entecavir undergoes both glomerular filtration and net tubular 
secretion. The PK of entecavir following a single 1-mg dose were studied in 34 sub-
jects (without chronic hepatitis B virus infection) with various degrees of impaired 
kidney function, including subjects whose CKD was managed by HD or continuous 
ambulatory peritoneal dialysis (CAPD). In subjects with CKD, the apparent oral 
clearance of entecavir decreased as creatinine clearance decreased.

A pharmacometric approach was applied to (1) characterize the relationship be-
tween a measure of kidney function (CrCL) and apparent oral clearance of ente-
cavir, (2) simulate steady-state exposure of entecavir for various alternative dose 
regimens, (3) calculate the fraction of subjects with exposure of entecavir within a 
predefined target range, and (4) identify dose regimens that produce target exposure 
levels in 75 % or more subjects with normal and reduced kidney function. Output 
from this model-based simulation indicated that the following dose adjustments 
(percentage of starting dose) provide consistent steady-state exposures in subjects 
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with impaired kidney function: mild impairment (no adjustment, 100 %), moderate 
impairment (50 %), severe impairment four (30 %), and subjects on dialysis (20 %). 
These results provided a quantitative rational for a detailed dose recommendation in 
the drug label (Baraclude Prescribing Information. US Food and Drug Administra-
tion [Internet] 2012):

Dosage adjustment is recommended for patients with creatinine clearance less than 50 mL/
min, including patients on hemodialysis or continuous ambulatory peritoneal dialysis 
(CAPD), as shown in Table 4.5 (Baraclude Prescribing Information. US Food and Drug 
Administration [Internet] 2012). The once-daily dosing regimens are preferred.

4.4  Opportunities for Pharmacometrics in CKD

Pharmacometric approaches are useful to characterize drug effects on kidneys and 
effects of kidneys on drugs. Current pharmacometric activities are focused on in-
dividual compounds for their search, prevention, and treatment of CKD. Examples 
of the applications include: (1) assess and compare efficacy/safety profiles of en-
tire drug classes with model-based meta-analyses (e.g., effects of ACE inhibitors, 
ARBs, and renin inhibitors on hypertension, proteinuria, and GFR in CKD), (2) 
characterize relationships between biomarkers/imaging endpoints and clinical end-
point (e.g., relationships between changes in total kidney volume (TKV) and GFR 
in polycystic kidney disease), (3) develop disease progression models to project 
long-term cardiovascular and CKD outcomes (e.g., relationships between protein-
uria and GFR and time to RRT in T2DM subjects with CKD), (4) optimize design 
of clinical trials in subjects with CKD (in conjunction with new regulatory guidance 
documents), and (5) evaluate new metrics for novel dialysis modalities to further 
optimize RRT in adults and pediatrics (e.g., use bedside computer models to evalu-
ate, monitor, and fine-tune “dose” of dialysis).

Table 4.5  Recommended dosage of entecavir (BARACLUDE) in subjects with CKD
Creatinine clearance
(mL/min)

Usual dose (0.5 mg) Lamivudine—refractory or decomposed 
liver disease (1 mg)

≥50 0.5 mg once daily 1 mg once daily
30-< 50 0.25 mg once dailya

OR
0.5 mg every 48 h

0.5 mg once daily
OR
1 mg every 48 h

10-50 < 30 0.15 mg once dailya

OR
0.5 mg every 72 h

0.3 mg once dailya

OR
1 mg every 72 h

 <10
Hemodialysisb or CAPD

0.05 mg once dailya

OR
0.5 mg every 7 days

0.1 mg once dailya

OR
1 mg every 7 days

a For doses less than 0.5 mg. BARACLUDE Oral Solution is recommended
b If administered on a hemodialysis day. administer BARACLUDE after the hemodialysis session
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A sustained collaborative effort between key stakeholders involved in research, 
development, and use of medicines in CKD, is required to bring pharmacometrics 
to its full potential. Initiatives such as the C-Path consortium (Critical Path Institute 
[Internet] 2013) and the Drug Disease Model Resources (DDMoRe) consortium 
(DDMoRe: Innovative Medicines Initiative [Internet] 2013) can advance pharma-
cometrics and facilitate scientific partnerships between academic institutes, biotech/
pharma companies and societies such as the International Society of Nephrology 
(International Society of Nephrology (ISN) Gateway [Internet] 2013) and the Inter-
national Society of Pharmacometrics (ISoP International Society of [Internet] 2013).

The Polycystic Kidney Disease (PKD) Outcomes consortium is an example of a 
successful collaboration between Critical Path Institute (C-Path), the PKD Founda-
tion (PKD Foundation [Internet] 2013), Clinical Data Interchange Standards Con-
sortium (CDISC), and four leading academic medical centers (Tufts University, 
University of Colorado—Denver, Emory University, and Mayo Clinic). Autoso-
mal dominant PKD (ADPKD) is a debilitating genetic disease affecting more than 
600,000 Americans and 12 million people worldwide and for which there is cur-
rently no known cure or effective treatment (Helal et al. 2012).

The primary goals of the PKD Outcomes consortium are to use and model clini-
cal data from ADPKD patients to characterize the relationship between early chang-
es in TKV and long-term CKD outcomes, and support the regulatory qualification 
of TKV as an accepted measure for assessing the progression of ADPKD in clinical 
trials, with the ultimate goal to facilitate development and approval of new medi-
cines for subjects with ADPKD. Similar efforts are needed for other kidney diseases 
such as Fabry nephropathy.

Innovative pharmacometric approaches for facilitating research, development, 
and use of new medicines will help us to fight the silent, deadly kidney disease.

4.5  Take-Home Messages

• Know that CKD is a common and deadly disease
• Use eGFR rather than creatinine clearance to stage CKD
• Understand how drugs can affect kidneys and how kidneys can affect renal and 

non-renal elimination of drugs and response to drugs
• Apply pharmacometric approaches (including semi-mechanistic models) to 

characterize relationships between measures of kidney function and drug expo-
sure-response

• Utilize model-based simulations to optimize dose regimens and enhance drug 
labels for CKD

• Innovate pharmacometric approaches to evaluate and fine-tune RRT by dialysis 
or transplantation

• Facilitate partnerships between academic institutes, biotech/pharma companies 
and scientific societies to fight the silent, deadly kidney disease
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5.1  Introduction

Diabetes is a chronic, progressive disease that is estimated to be one of the top ten 
leading causes of death globally (WHO fact sheet number 310). Type 2 diabetes is 
the most common type of diabetes, affecting 90–95 % of the US diabetes popula-
tion. According to the latest International Diabetes Federation (IDF) report, about 
8.3 % of the global adult population, or 382 million people, have diabetes. The 
number of newly diagnosed cases worldwide continues to grow every year and 
the global figure is expected to rise to 595 million by 2035. The majority of the 
382 million people with diabetes are aged between 40 and 59, and 80 % of them 
live in low- and middle-income countries. The economic burden of diabetes is ap-
proximately 548 billion US $ in health spending (11 % of the total spent worldwide) 
in 2013 (IDF report 2013). Therefore, improving the treatment and management of 
diabetes, its comorbidities, and associated complications continue to be an impor-
tant focus of pharmaceutical research and development (R&D).

Diabetes is a metabolic disease that is rich with quantitative biomarkers and well 
understood regulatory and counter-regulatory processes. For these reasons, diabetes 
is one of the therapeutic research areas rapidly gaining R&D efficiencies with the 
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use of predictive drug and disease models. The mathematical modeling of glucose–
insulin homeostasis has provided significant insights into the underlying mecha-
nisms of the disease and is becoming a critical component of the pharmaceutical 
R&D program (Ajmera et al. 2013). Driven by the increasing cost of drug develop-
ment and the high rate of late-stage failures (over 90 % of clinical candidates never 
make it to market), the scientific leaders and regulators, advocated for the incor-
poration of model-based approaches into drug development processes (Woodcock 
and Woosley 2008) to improve the efficiency and the quality of decision-making: to 
select targets, predictive biomarkers, drug candidates, clinical trial designs, dosing 
range or regimens, and development programs with high probabilities of success 
in all the stages of drug discovery and development. Fueled by the recent techni-
cal advances in computational power, aided by the arsenal of predictive drug and 
disease models and study design efficiency-enhancing tools, pharmacometricians 
have been able to contribute more effectively in the early terminations of the “bad” 
drugs and the optimization of the development program to expedite the delivery of 
the “good” drugs to the patient.

All drug-disease models developed should be fit for purpose, specifically, pro-
vide answers to the questions of interest. Models should be developed with well-
characterized basic physiology and biochemical regulatory aspects of the disease in 
mind in order to have predictive fidelity. It is consequently important that the phar-
macometricians have a basic understanding of the disease, including that the term 
“diabetes” does not characterize a single, homogenous disease but rather encom-
passes a group of metabolic disorders, which are all characterized by hyperglycemia 
that result from defects in insulin secretion, insulin action, or both (American Dia-
betes Association 2008). It is a condition in which a person has higher than normal 
blood glucose levels either because the body does not produce enough insulin in 
response to meal intake (impaired beta cell functions), or because the body does not 
properly respond to the insulin that is produced (insulin resistance). Insulin is a hor-
mone produced by the beta cells in the Islets of Langerhans located in the pancreas 
which promotes the uptake of glucose by tissues such as muscles and adipose there-
by mediating the clearance of glucose. If there is a diminished uptake of glucose by 
tissues due to resistance to insulin, the beta cell will compensate by secreting just 
enough insulin to normalize glucose level (euglycemia). Over time, the acute insu-
lin secretory response to glucose is exhausted and the homeostatic feedback control 
diminishes progressively, leading to hyperglycemia and ultimately diabetes melli-
tus. A persistent state of hyperglycemia is associated with complications, including 
an increased susceptibility to infections, ketoacidosis, microvascular diseases, such 
as nephropathy or retinopathy and may lead to early macrovascular complications, 
such as heart attack and stroke (Morghissi et al. 2007). In recent years, there has 
been a significant emergence of type 2 diabetes driven by lifestyle factors leading 
to increased body weight and obesity.

Type 2 diabetes can be controlled with various treatment modalities. Regimented 
treatment of diabetes is important and, generally, a holistic approach that includes 
blood glucose and blood pressure control, and lifestyle changes, such as maintain-
ing a healthy body weight is recommended. Therefore, the choice of treatments 
depends on the disease status and often includes more than one antihyperglycemic 
medication.
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5.2  Therapeutic Interventions

An important component in developing drug–disease models of diabetes is that 
soon after diagnosis, patients with type 2 diabetes mellitus may be able to manage 
their glucose levels on diet and exercise alone for a few years. However, the disease 
usually progresses over time requiring multiple drugs to be prescribed concomi-
tantly. Numerous drugs of different mechanisms of action are available by oral or 
subcutaneous routes of administration. The therapeutic combination for the treat-
ment of type 2 diabetes may include insulin, to provide better glycemic control in 
combination with the more convenient oral agents. The antihyperglycemic medi-
cines that are available in the market by pharmacologic class include:

• Biguanides for inhibition of hepatic gluconeogenesis (metformin)
• Insulin secretagogues (sulfonylureas)
• Insulin sensitizers (thiazolidinedione)
• Alpha-glucosidase inhibitors for glucose or starch absorption (acarbose)
• Incretin mimetics for glucose-dependent insulin secretion (glucagon-like-

peptide-1, or GLP-1 anlogues)
• Dipeptidyl peptidase-4 (DPP-4) inhibitors
• Sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors
• Insulins (including long-acting basal insulins)

In addition, there are many investigational agents in various stages of drug discov-
ery and development, which are targeting different pathways for glucose control 
(Verspohl 2012), such as glucagon receptor antagonist, glucokinase activator, incre-
tin hormones, sodium-dependent glucose co-transporters, G-protein-coupled recep-
tor agonists, etc. Many newer agents are designed to have pleiotropic effects and 
have beneficial attributes in addition to glucose lowering to provide the additional 
benefit in the management of multiple facets of this complex metabolic disorder.

5.3  Biomarkers and Clinical Surrogates

Diabetes disease models are developed using a plethora of quantitatively predictive 
and clinically relevant biomarkers. The standard biomarker panel is not limited to 
fasting blood glucose (FBG) and postprandial glucose (PPG). There are numerous 
biomarkers and pharmacodynamic measurements available to assess glycemic sta-
tus and pancreatic beta cell health as well as to evaluate the effects of pharmacolog-
ic interventions. The pancreas releases insulin which is produced in the pancreatic 
beta cells, and glucagon is produced in the alpha cells. Glucagon is an antagonist 
to insulin causing hepatic glucose output to increase either by gluconeogenesis or 
glycogen breakdown—its effect detectable following prolonged hypoglycemia. In 
addition, hormones (somatostatin, growth hormone, cortisol, gastrointestinal hor-
mones, etc.), amino and fatty acids also play roles in this complex metabolic system.
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The choice of a pharmacodynamic biomarker in model development is depen-
dent on the drug’s mechanism of action, the duration of the trial or the stage of de-
velopment and the objective of the assessment. In addition, during the translational 
phase of development, the choice of animal models of disease is important and is 
often dependent on the mechanism of action of the pharmacologic agent and known 
inter-species differences in the target expression and biomarker response (Shafrir 
2007, 2010).

Acute biomarkers (measured in minutes, hours, or days) are measured in pre-
clinical and early clinical phases of drug development in trials of short duration 
(e.g., in phase 1). The most common biomarkers assessed in early trials are FBG, 
PPG, C-peptide, or insulin, in response to meals or glucose challenges. Biomarkers 
of the target engagement may include glucagon, dipeptidyl peptidase-4 [DPPIV] 
enzyme inhibition, glucagon-like peptide-1 (GLP-1), gastric inhibitory polypeptide 
(GIP), and other hormones. In addition, complex systems pharmacology models of 
diabetes may also incorporate information based on biomarkers of pleiotropic ef-
fects, such as, cholesterols, free fatty acids and hemodynamic measures (e.g., blood 
pressure and heart rate) as well as standard laboratory assessment of cardio-renal 
functions.

Glycosylated hemoglobin (HbA1c) is formed through a nonenzymatic and ir-
reversible reaction between glucose and hemoglobin. HbA1c is a clinical surrogate 
for long-term disease progression and treatment effects and is, thus, well accepted 
as an efficacy endpoint in long-term trials (e.g., months to years). Fasting insu-
lin and C-peptide levels, on the other hand, are measures of endogenous insulin 
production and are used to assess insulin resistance and beta cell function as well 
as markers of disease progression. Long-term outcomes of diabetes and diabetes 
complications, such as strokes, coronary heart disease, neuropathy or nephropathy, 
might take several years to present themselves. Outcomes are often assessed using 
empirical or Bayesian probability models, rather than drug–disease models.

Each of these biomarkers, whether fast or slow turnover markers, carry impor-
tance at different stages of the drug discovery and development process. It is im-
portant to have a good understanding of the translatability and reproducibility of 
these biomarkers such that the use of these biomarkers is reliable and has predictive 
fidelity.

To evaluate the drug effects, pharmacokinetics-pharmacodynamics relationships 
are developed in the forms of models linking the concentration of drug to biomark-
ers of interest or outcomes, as shown in Fig. 5.1.

Diabetes is well known as a risk factor for cardiovascular disease. Despite glu-
cose control, the risk of cardiovascular mortality and morbidity remains high in 
patients with diabetes. Drug and disease modeling approaches may incorporate 
cardiovascular biomarkers in combination with glycemic parameters to assess the 
impact of a new therapeutic intervention on both diabetes and cardiovascular out-
comes (Vlasakakis and Pasqua 2013).

Due to increasing awareness in the holistic treatment of the comorbidities of 
diabetes, namely, obesity and cardiovascular diseases, novel therapies not only treat 
hyperglycemia but also aim to manage the symptoms of these comorbidities, often 
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referred to as “diabetes plus”. Therefore, the biomarker panels have been expanded 
to include measures of cardiometabolic health (e.g., body mass index, waist circum-
ference, body fat composition, lipids, triglycerides), assessment of hemodynamics 
(e.g., blood pressure, heart rate), and risk of arrhythmias (ECG changes). This chap-
ter focuses on the modeling of glycemic parameters; however, similar modeling 
concepts may be applied to cardiovascular biomarkers.

5.4  Drug–Disease Models of Diabetes

Leveraging the range of available biomarkers, computational models play an in-
creasingly important role in understanding the dynamic behaviors and the mecha-
nisms underlying diverse and complex biological systems, leading to better drug 
candidate selection, study design, dose and dosing regimen decision, and ultimately, 
better control and treatment for diabetes.

Computational models of diabetes, either mathematical or statistical, in the pub-
lished literature can broadly be classified into clinical and nonclinical categories, 
based on complexity, depth of biological description, and the type of data (individu-
al or population level; Landersdorfer and Jusko 2008; Ajmera et al. 2013). Analysis 
models of clinical data are mostly empirical in nature and emulate clinical data by 
considering only essential biological descriptors. Due to the purpose of their uses, 
these models are useful in understanding effects of dose (concentration) of new 
treatments, time course in changes of response, understanding disease progression, 
and predicting risks for complications. Nonclinical physiologically based models 
are more complex in nature and account for the mechanistic description of the bio-
logical systems, eventually, through translational sciences, aimed at being used for 
simulating clinical scenarios. Recently, semi-mechanistic and mechanistic systems 
pharmacology models have also been used in clinical setting as described later in 
this chapter.
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As emphasized earlier, the choice of the model really depends on the questions 
that need to be answered and the nature of available data. For example, simple 
models without mechanistic understanding that are developed to describe observed 
clinical data can be used for retrospective hypothesis testing and clinical trial opti-
mization using simulations. On the other hand, a mechanistic model may be neces-
sary to generate prospective hypothesis to be evaluated where changes in biomark-
ers can be assessed by altering specific biochemical pathways.

In the following section, we summarize key types of models that have to be 
utilized with nonclinical and clinical data to describe the dynamics of biomarkers 
of interest. Most of these models can be adequately modified to characterize and 
predict different biomarkers data and their interactions.

5.4.1  Systems Pharmacology Models

Conceptually, the systems approach is a mathematical representation of the per-
tinent physiology that comprise of the key pathways or targets of interest. Sys-
tems pharmacology models usually employ a “bottom up” modeling approach to 
represent the physiology and disease states. The approach requires physiological 
or systems-level information as well as the biological pathways and mechanisms. 
These physiologically based models aimed to quantitatively integrate relevant biol-
ogy across the systems, with targets or pathways, are expressed as state variables 
and parameters. The parameters in these complex models typically include those 
reported in the literature and those calibrated to match subsystem and/or system-
level behaviors. Each unique set of model parameterization represents one “virtual 
patient,” and each virtual patient response is qualified by comparing simulated re-
sponses to experimentally observed or published data. This approach focuses on 
finding biologically feasible parameterizations that reproduce critical behaviors, 
rather than on exact characterization of numerous difficult-to-measure parameters 
(Kansal 2004; Klinke 2008; Shoda et al. 2010; Schaller et al. 2013). The PK and PD 
properties of the drug(s) of interest are subsequently evaluated on specific pathways 
or targets in a systematic fashion. Together, these integrated drug–disease models 
are used to simulate the expected physiological and pharmacological responses to 
a novel therapy or combination of therapies or clinical trial simulations in virtual 
patient populations (Waters et al. 2009). A detailed case study is presented at the end 
of this chapter to describe the development and application of systems pharmacol-
ogy models using a glycogen phosphorylase inhibitor (GPi) for the treatment of 
type 2 diabetes.

5.4.2  Models for Glucose–Insulin Interaction

An advanced model of glucose–insulin regulation was developed using data from 
both healthy and type 2 diabetic subjects in glucose provocation experiments 
(Jauslin et al. 2007, 2011; Silber et al. 2007). Briefly, the glucose model is described 
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using a two-compartment model with a glucose absorption component. As shown 
in Fig. 5.2, the glucose model also includes two effect compartments accounting 
for effects on glucose production and insulin secretion. The model for insulin in-
corporates both secretion and distribution. Baseline glucose and insulin values are 
represented as population values with inter-subject variability terms.

One application of this model is for evaluation of combination of treatments with 
different mechanisms of action. An example of this application is the prediction of 
glucose response to investigational insulins or incretin mimetics, when added to 
metformin (a drug that affects hepatic glucose production) in combination with sul-
fonylurea (a drug that increases insulin secretion). The pharmacokinetic component 
of drug treatment can be introduced into the model by linking to the site of action. 
This model characterizes the fast biomarkers, thus the application of this model to 
predicting long-term steady-state biomarker response is limited. For such an appli-
cation, the placebo response with respect to inter-occasion glycemic variability and 
links to HbA1c response will need to be considered. As glucose input is the driver 
for the biomarker dynamics, this model requires reliable details about the glucose 
(as OGTT, IVGTT, MGTT or meals) intake.

5.4.3  Models for Glucose–Insulin–Glucagon Interaction

The first models exploring the glucagon counter-regulation (GCR) mechanism were 
proposed by Farhy and McCall (2009) based on rodent studies. As all the compo-
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nents of these models were clinically measurable, these models identify the role 
of delayed feedback illustrating the relationship between basal glucagon level and 
different aspects of GCR responses to insulin-induced hypoglycemia in T1DM con-
ditions. Hetherington et al. (2011) and Sumner et al. (2011) developed a composite 
model for glucagon/insulin driven liver glucose homeostasis by linking a series of 
sub-system models corresponding to different aspects of physiology. This model 
has been used further to explore the behavior of glucose homeostasis systems by 
modulating the liver insulin sensitivity and diet glucose level. Kim et al. (2007) 
developed a multi-scale model illustrating hormonal control of whole-body glucose 
homeostasis during exercise and can be envisioned as a roadmap towards achieving 
a holistic mechanistic view of the glucose homeostasis system from sub-cellular to 
a “whole-body” level.

Schneck et al. (2013) extended the insulin–glucose interaction model described 
in previous section to incorporate the key counter-regulatory hormone glucagon; 
this model was utilized to investigate the effect of a novel glucokinase activator 
on glycemic control. Baseline glucagon secretion, the inhibitory influence of glu-
cose and insulin, and the stimulatory influence of ingested exogenous protein on 
glucagon secretion were combined in a differential equation to describe glucagon 
dynamics. An effect compartment was utilized to represent a delayed effect of glu-
cagon within the system. This model describes the dynamics of fast biomarkers 
(e.g., glucose, insulin, and glucagon), thus limits the ability to utilize this model for 
predicting long-term HbA1c effects. As glucose input is the driver for the biomarker 
dynamics, this model requires reliable details about the glucose intake.

5.4.4  Time Course Models—Fasting Blood Glucose or HbA1c

In clinical trials, glycemic parameters (fasting blood glucose or HbA1c) are mea-
sured at intervals during the course of the trial. These time courses of the glycemic 
parameters are used to evaluate the effects of an intervention relative to placebo 
or an active comparator. A typical profile of FBG as a function of time is shown 
in Fig. 5.3. The time course profile of HbA1c or any other biomarker can also be 
generated and modeled in similar fashion.

At randomization, prior antidiabetic treatments may be washed out to allow bet-
ter evaluation of the active treatments. Wash-out of prior medication may cause a 
baseline excursion in fasting glucose. Specifically, trials to evaluate a new agent 
for a monotherapy indication may include a lead-in phase, during which patients 
discontinue and washout their previous antidiabetic agents. In these trials, during 
the lead-in phase, FBG levels will rise as shown by the placebo response curve in 
Fig. 5.3. Upon treatment, FBG decreases from baseline to reach a maximum possi-
ble effect ( Emax) for the assigned dose. The following model can be used to describe 
the rise in FBG in the placebo group and the fall in FBG levels with drug treatment.

Change in FBG Placebo effect Drug effect= +
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There are various ways of describing the placebo and drug effects. One of the ways 
we can describe this relationship is by the following equation:

where Pmax is the maximum change in FBG for placebo; Emax is the maximal drug 
effect, EC50 is the drug exposure that produces half maximal effect. Exposure is 
the drug exposure (which may be the area-under-curve or average concentration 
during a doing interval, or dose); FBGBase is the baseline FBG; keff  is a rate con-
stant of glucose turnover in determining the time required to achieve the maximum 
treatment or placebo effect; γ is a concentration–response steepness parameter (Hill 
coefficient); OAD stands for oral antidiabetic drug which is the excursion between 
initiation of washout of antihyperglycemic medications to baseline FBG.

In some cases, when the time-course of biomarker response may not be critical, 
for example, when the dose (exposure)–response relationship to be evaluated is at 
steady state, a model describing the changes at a predefined endpoint (for example, 
at 12 or 26 weeks) may be sufficient. The equation described above may be modi-
fied to:

where all the terms are as described earlier. It should be noted that the term that 
characterized the time course (with keff  and time) has been removed in this equa-
tion.
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In longer clinical trials, where HbA1c values are measured to evaluate the effects 
of a therapeutic intervention, the time course model described in this section for 
FBG can be easily applied to HbA1c.

In trials of add-on therapy during which patients continue taking their antihy-
perglycemic medications, without washout, FBG levels are stabilized at baseline.

5.4.5  Indirect Response Models—Insulin, Glucose, and HbA1c

As previously described, the biomarkers that are frequently measured in clinical tri-
als for antidiabetic medications are fasting serum insulin (FSI), FBG, and HbA1c. 
A generalized approach can be taken to link FSI, FBG, and HbA1c to describe the 
time courses of these biomarkers. Figure 5.4 shows a representation of the key com-
ponents and the relationships that can be used in the model.

Møller et al. (2013) used a similar approach of linking glucose to HbA1c where 
the mean plasma glucose (from 24-h glucose measurements) instead of FBG was 
used to develop an indirect response model and predict long-term HbA1c changes 
based on short-term mean plasma glucose data.

5.4.6  Physiological Linked Fasting Glucose and HbA1c Model

Hamrén et al. (2008) published a model that linked fasting glucose and HbA1c us-
ing a transit compartment model informed by physiology which is a mechanistically 
better approach versus using an indirect response relationship between these two 
biomarkers (as described in Sect. 5.4.5). In this model, a series of four transit com-
partments describe red blood cell (RBC) aging with a zero-order release of RBCs 
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into the circulation. A first-order rate constant defines the transition of RBCs from 
one stage to the next until the cell dies as shown in Fig. 5.5.

5.4.7  Models for Progression

Efforts towards the development of novel antidiabetic agents are directed at the 
drugs that can alter diabetes progression. In studies of greater than 1 year duration, 
it is important to include disease progression in the model in order to study the 
long-term effect of antidiabetic agent at different stages of progression. Disease 
progression models specific for diabetes incorporating long-term population stud-
ies with antidiabetic agents have been developed (Frey et al. 2003; de Winter et al. 
2006). De Winter et al. (2006) utilized clinical data with pioglitazone, metformin, 
and gliclazide to assess the disease progression and drug effect using indirect re-
sponse model linking FSI, FBG, and HbA1c as described in Sect. 5.4.5 (Fig. 5.6). 
The model described the rate of disease progression through the drugs effect on beta 
cell function and insulin sensitivity.

Topp et al. (2000) developed a model of disease progression by considering beta 
cell mass together with insulin and glucose concentrations. This model was de-
scribed by three nonlinear ordinary differential equations, where glucose and insu-
lin dynamics were fast relative to beta cell mass dynamics. Extending this model, 
Ribbing et al. (2010) proposed a semi-mechanistic pharmacokinetic/pharmacody-
namic model, illustrating the dynamics of fasting plasma glucose, fasting insulin, 
insulin sensitivity, and beta-cell function in a heterogeneous population.

5.4.8  Models for Diagnostic Tests

In order to evaluate the diabetic and prediabetic condition in an individual, different 
glucose tolerance tests, such as intravenous glucose tolerance test (IVGTT), oral 
glucose tolerance test (OGTT), and mixed meal glucose tolerance test (MMTT) have 
been devised. The aims of these tests are to obtain estimates of insulin sensitivity 
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(IS), glucose effectiveness (potency or potentiation), insulin secretion, and beta cell 
function. Since the liver metabolizes more than half of the secreted insulin before 
it is utilized by other body tissues, accurate estimation of pre-hepatic insulin secre-
tion, hepatic insulin extraction and clearance are essential for evaluating insulin 
secretion and beta cell function under normal and diseased conditions. Plasma C-
peptide, a part of preproinsulin peptide and therefore secreted in equimolar amounts 
as insulin by beta cell, acts as an indicator for insulin secretion. However, peripheral 
C-peptide has a longer half-life and can limit the accurate estimation of insulin se-
cretion. Consequently, a model-based approach may be recommended for greater 
accuracy.

The assessment of insulin sensitivity has been conducted using either the 
glucose clamp technique or the minimal models (Bergman et al. 1979, 1989) 
which had insulin sensitivity and glucose effectiveness as the main parameters. 
Cobelli et al. (2009) incorporated peripheral compartment for glucose distribu-
tion which modeled the glucose and insulin data simultaneously. These models 
do not take into account dynamic control mechanisms and were not ideal for 
predictive purposes. Significant improvement over the minimal models was 
achieved incorporating an additional compartment for glucose kinetics and 
data from labeled IVGTT experiments. Although these bi-compartment models 
allow precise estimation of IS and potency, the additional cost and technol-
ogy involved in using labeled IVGTT make it impractical for application in 
large clinical trials or patient care settings. Silber et al. (2007, 2010) proposed 
an integrated insulin–glucose model to describe IVGTT data from healthy as 
well as diabetic individuals, using an insulin–glucose feedback mechanism. As 
OGTT closely resembles the physiological condition, this model was extended 
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further by incorporating the description for glucose absorption and incretin ef-
fects following a meal or 24-h glucose and insulin profile following multiple 
test meals.

5.5  Case Study: Systems Pharmacology Model

A case example of systems pharmacology model aims to assess the therapeutic po-
tential of a glycogen phosphrylase inhibitor (GPi) for treatment of type 2 diabetes. 
Glycogen phosphorylase is the rate-limiting enzyme in glycogenolysis and thus is 
responsible for roughly 50 % of hepatic glucose output (HGO). Glycogenolysis is 
thought to be elevated in type 2 diabetes and several publications have described 
GPi as a promising therapeutic strategy for type 2 diabetes (Martin et al. 1998; 
Baker et al. 2005; Torres et al. 2011). The general approach to describe the pertinent 
physiology is to start with a “core” model of fundamental mechanisms that have 
been well characterized clinically. An example of such a systems or physiological 
model that would enable evaluation of various targets of glucose regulation is pre-
sented in Fig. 5.7.

As illustrated in Fig. 5.7, glucose enters the blood from the gastrointestinal tract 
following a meal (SGLT-1 transporter mediated absorption) or through hepatic glu-
cose production (via G6Pase enzyme). The regulation of HGO has been well char-
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acterized, which can be completely suppressed by high glucose, high insulin, or 
low glucagon levels. Conversely, low glucose, low insulin, or high glucagon can 
increase HGO by about fourfold. Glucose is utilized by major tissues of the body, 
most notably the brain, muscle, and abdominal organs (splanchnic tissue). The brain 
takes up glucose at a roughly constant rate via GLUT2 transporter. Muscle glucose 
uptake occurs via GLUT4 and GLUT1 transporters. Splanchnic glucose uptake is 
thought to be glucose dependent (via GLUT2 transporter). Finally, glucose is fil-
tered, and then reabsorbed at the kidney via SGLT-1 and SGLT-2 transporters. How-
ever, the reabsorption process begins to saturate when glucose rises above 180 mg/
dl resulting in urinary glucose excretion.

This core model of glucose regulation is coupled to simple models of insulin and 
glucagon dynamics. Insulin secretion is driven largely by plasma glucose levels and 
incretin hormones (GLP-1, GIP, etc.). It should also be noted that insulin is secreted 
directly into the liver via the portal vein where about 50 % is cleared on first pass 
through the liver. Thus, hepatic insulin levels are roughly twice as high as plasma 
levels. Muscle insulin levels are similar to plasma, but there is a time delay required 
for insulin to diffuse through the tight capillary junctions. Glucagon is a counter-
regulation hormone that increases three- to fourfold during the development of hy-
poglycemia. A schematic of simple insulin model is represented in Fig. 5.8.

Baseline parameters for this mechanistic model of glucose and insulin dynam-
ics represent the estimated population mean value for healthy volunteers derived 
from a meta-analysis of public literature. Virtual patients with type 2 diabetes are 
created by incorporating a real-world distribution of insulin resistance (muscle and 
liver), and insulin secretory defects. As a specific example, if the therapy of interest 
targets liver, then the core model can be expanded to include target specific liver 
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physiology; in this case the glycogenolysis, glycogen synthesis, gluconeogenesis, 
and glycolysis (Fig. 5.9).

Available data suggest that glycogenolysis and gluconeogenesis contribute 
roughly equally to total HGO. Glucose, insulin, glucagon and carbohydrate metabo-
lites (represented in this model by G6Pase process) all contribute to the regulation 
of glycogenolysis and glycogen synthesis. Glycolysis is thought to be a substrate 
driven process while gluconeogenesis is thought to be roughly constant throughout 
the day. However, gluconeogenesis has been shown to increase during prolonged 
fast and has been linked to glycogenolysis via hepatic auto-regulation.

After representing the physiology mechanistically, the next step is to link the 
drug effect to a PK/PD model. For representative purpose, we can assume the new 
drug (GPi) exhibits a 100 % inhibition of GP for the entire 24-h interval in a typical 
patient. The maximally effective GPi is projected to have a dramatic effect on gly-
cogenolysis (and thus HGO) overnight, but minimal impact during the day (as gly-
cogenolysis is highly inhibited by postprandial glucose and insulin excursions). As 
a result, GPi is projected to display impressive glucose lowering overnight but little 
to no effect during the day (Fig. 5.10). Overall, chronic dosing with a maximally 
effective GPi is projected to result in noncompetitive HbA1c reductions (Fig. 5.10).

In addition to limited efficacy, chronic GPi therapy may be associated with meta-
bolic adverse events. Following an acute dose, glycogen accumulates during the 
day but does not decrease overnight. Thus, following multiple doses, liver glycogen 
levels will likely increase to a point where they inhibit glycogen synthesis. At this 
point, the glucose that is normally converted to glycogen will be redirected to either 
lactate (risk of lactic-acidosis) or be converted to triglyceride via de novo lipogen-
esis (risk of hepatic steatosis). These pathways also suggest that GPi may not com-
bine well with metformin (inhibition of gluconeogenesis may exacerbate lactate 
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or triglyceride change) or sulfonylureas (GPi may impede the counter-regulatory 
response to hypoglycemia). Since these drugs are the two most commonly pre-
scribed diabetes therapies, there is a chance that GPi therapy may be limited to a 
small subset of the diabetes population.

Overall, this analysis, together with expert knowledge of metabolism and physi-
ology, illustrated using a systems pharmacology model of diabetes, suggests that 
GPi would be unlikely to become a viable therapy for type 2 diabetes. Thus, detailed 
mechanistic modeling, although tedious and resource intensive, provides a rigorous 
methodology for integrating our present knowledge of human pathophysiology and 
extrapolating to expected clinical outcomes. While the predictions using such com-
plex models may not always have high predictive accuracy, making decisions based 
on a rigorous analysis of the available data, informed by expert knowledge, is likely 
to be more effective, and less costly in the long run, than a trial-and-error method 
of discovery. In addition, mechanistic models can identify key knowledge gaps for 
strategic expansion of our knowledge.

As described in this case study, mechanistic modeling can effectively inform 
both efficacy and safety aspects of therapeutic interventions. Lesko et al. (2013) 
described how systems approaches can be leveraged for understanding adverse drug 
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events and ability to predict them, thus taking a step towards personalized medicine 
by enabling better identification of risk factors for an individual or subgroup.

5.6  Applications of Drug–Disease Models

The drug–disease models and the associated simulations that include parameter un-
certainty and variability are powerful tools in decision-making in drug discovery 
and development. After the drug–disease models are developed based on accruing 
experimental data and informed by expert knowledge, simulations are performed 
to explore alternative or expanded scenarios of patient populations, clinical trial 
designs or disease outcome. The common questions or what-if scenarios that can 
be addressed through model-based analysis or simulations in diabetes R&D may 
include:

• What is the predicted efficacy in patients based on in vitro or animal data?
• What is the appropriate biomarker of pharmacology, based on variability, sensi-

tivity, and time course of response?
• What is the power or sample size of the study to detect a target response (differ-

ence from placebo at endpoint) for a specific biomarker or mechanism of action?
• What is the minimum study duration to demonstrate the target response?
• What is the dose to differentiate or achieve superiority to placebo?
• What is the dose to demonstrate competitive or target response to marketed com-

parators?
• What is the probability of demonstrating superiority to marketed comparator at 

the selected dose?
• Are there subpopulations of responders or nonresponders based on the mecha-

nism of action (for efficacy or safety)?
• What is a clinically relevant drug–drug interaction or food effect?

An example application of patient response simulation was illustrated previously 
using a systems pharmacology model to support compound “go/no-go” decision. 
Example applications of trial simulations to support design optimization have been 
extensively published (Chien and Sinha 2010; Zhang et al. 2013). Figure 5.11 
shows a conceptual example of application of modeling and simulation to support 
optimum dose selection.

Based on Fig. 5.11, Table 5.1 shows the probability of each dose meeting the 
predefined target criteria (superiority to comparator). The dose selected to advance 
to phase 3 confirmatory trial was selected based on a combination of high probabil-
ity of competitive success and low probability of safety risk (e.g., cardiovascular or 
dose-limiting adverse events).

Pharmacometricians have been developing drug–disease models of diabetes to 
facilitate “rational target selection.” This is akin to “rational drug design” where 
high throughput trial-and-error methods for identifying chemicals that bind to re-
ceptors or enzymes have been replaced with methods that use knowledge of target 
structure to build ideal inhibitors or activators. For target selection, the current strat-
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egy is to replace trial-and-error methods of testing all reasonable targets preclini-
cally (and many clinically) with an approach that leverages our knowledge of inte-
grated human physiology, and strategically expand our knowledge of physiology, 
to identify therapeutic strategies that have a higher probability of success. A central 
part of this approach is mathematical models of human physiology. These ideas can 
be expanded to include the identification of optimal combination therapy, responder 
populations, and even personalized medicine (rational drug development). Philo-

Table 5.1  An example statistical analysis output of simulated trial responses
Druga Predicted HbA1c change from 

baseline at 12 months (%)
Probability of meeting efficacy 
target against comparator

Placebo (studied) − 0.08 0.0
Comparator (simulated) − 0.88 NA
Dose 1 (simulated) − 0.26 0.01

Dose 2 (studied) − 0.45 0.2

Dose 3 (simulated) − 0.61 0.38
Dose 4 (studied) − 0.87 0.62
Dose 6 (simulated)b − 1.25 0.87
Dose 7 (studied) − 1.5 0.99
Dose 8 (simulated) − 1.9 0.99

HbA1c glycosylated hemoglobin
a Indicates if the drug or dose was included in the previous study that generated the data for the 
model building (studied) or was included only in the simulation exercise (simulated)
b Indicates the dose that would be selected for phase 3 confirmatory trial and marketing
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sophically, this approach represents a shift from “discovery” to “design.” Ultimate-
ly, the model-based approaches, through the use of predictive biomarkers, basic 
science and expert disease knowledge, aim to improve the efficiency and the quality 
of decision-making in selecting the right targets, drug candidates, dosing range and 
regimens, optimal clinical trial designs, and a more efficient, more cost-effective 
development programs with high probabilities of success in drug discovery and 
development for the treatment and management of diabetes and its comorbidities.

5.7  Key Highlights of the Chapter

• Diabetes is a chronic progressive disease with robust quantitative biomarkers 
and well understood regulatory/counter-regulatory processes.

• Drug–disease models of varying degrees of complexity can be employed to de-
scribe fast biomarkers, slow biomarkers and clinical outcomes with high predic-
tive ability at different stages of drug development.

• Antidiabetic therapies target specific pathways, thus enabling application of 
mechanistic systems pharmacology models to inform novel therapies.

• Drug–disease models can effectively inform both efficacy and safety aspects of 
therapeutic interventions.

• Development of drug–disease models should start early in the development pro-
gram to answer key questions or address uncertainties from early discovery to 
clinical development in the evaluation of a novel therapy.

References

Ajmera I, Swat M, Laibe C, Le Novère N, Chelliah V (2013) The impact of mathematical model-
ing on the understanding of diabetes and related complications. CPT: Pharmacometrics Syst 
Pharmacol 2:e54

American Diabetes Association (2008) Diagnosis and classification of diabetes mellitus. Diabetes 
Care 31(1):562

Baker DJ, Timmons JA, Greenhaff PL (2005) Glycogen phosphorylase inhibition in type 2 diabe-
tes therapy—a systematic evaluation of metabolic and functional effects in rat skeletal muscle. 
Diabetes 54:2453–2459

Bergman RN, Ider YZ, Bowden CR, Cobelli C (1979) Quantitative estimation of insulin sensitiv-
ity. Am J Physiol 236:E667–E677

Bergman RN, Hope ID, Yang YJ, Watanabe RM, Meador MA, Youn JH, Ader M (1989) Assess-
ment of insulin sensitivity in vivo: a critical review. Diabetes Metab Rev 5:411–429

Chien JY, Sinha VP (2010) The application of drug-disease models in the development of anti-
hyperglycemic agents. In: Kimko HHC, Peck CC (eds) Clinical trial simulations: applications 
and trends (AAPS advances in the pharmaceutical sciences series) Springer, USA 175–198

Cobelli C, Dalla Man C, Sparacino G, Magni L, De Nicolao G, Kovatchev BP (2009) Diabetes: 
models, signals, and control. IEEE Rev Biomed Eng 2:54–96

de Winter W, DeJongh J, Post T, Ploeger B, Urquhart R, Moules I, Eckland D, Danhof M (2006) 
A mechanism-based disease progression model for comparison of long-term effects of piogli-



158 P. Garhyan et al.

tazone, metformin and gliclazide on disease processes underlying type 2 diabetes mellitus. J 
Pharmacokinet Pharmacodyn 33:313–343

Farhy LS, McCall AL (2009) Pancreatic network control of glucagon secretion and counter regula-
tion. Meth Enzymol 467:547–581

Frey N, Laveille C, Paraire M, Francillard M, Holford NH, Jochemsen R (2003) Population PKPD 
modelling of the long-term hypoglycaemic effect of gliclazide given as a once-a-day modified 
release (MR) formulation. Br J Clin Pharmacol 55:147–157

Hamrén B, Björk E, Sunzel M, Karlsson MO (2008) Models for plasma glucose, HbA1c, and 
hemoglobin interrelationships in patients with type 2 diabetes following tesaglitazar treatment. 
Clin Pharmacol Ther 84(2):228–235

Hetherington J, Sumner T, Seymour RM, Li L, Rey MV, Yamaji S, Saffrey P, Margoninski O, 
Bogle ID, Finkelstein A, Warner A (2011) A composite computational model of liver glucose 
homeostasis. I. Building the composite model. J R Soc Interface 9(69):689–700

IDF Report (2013) IDF diabetes atlas, 6th edn. http://www.idf.org/diabetesatlas. Accessed 7 May 
2014

Jauslin PM, Silber HE, Frey N, Gieschke R, Simonsson US, Jorga K, Karlsson MO (2007) An 
integrated glucose-insulin model to describe oral glucose tolerance test data in type 2 diabetics. 
J Clin Pharmacol 47:1244–1255

Jauslin PM, Frey N, Karlsson MO (2011) Modeling of 24-hour glucose and insulin profiles of 
patients with type 2 diabetes. J Clin Pharmacol 51:153–164

Kansal AR (2004) Modeling approaches to type 2 diabetes. Diabetes Technol Ther 6(1):39–47
Kim J, Saidel GM, Cabrera ME (2007) Multi-scale computational model of fuel homeostasis dur-

ing exercise: effect of hormonal control. Ann Biomed Eng 35:69–90
Klinke DJ (2008) Integrating epidemiological data into a mechanistic model of type 2 diabetes: 

validating the prevalence of virtual patients. Ann Biomed Eng 36(2):321–334
Landersdorfer CB, Jusko WJ (2008) Pharmacokinetic/Pharmacodynamic modelling in diabetes 

mellitus. Clin Pharmacokin 47(7):417–448
Lesko LJ, Zheng S, Schmidt S (2013) Systems approaches to risk assessment. Clin Pharmacol 

Ther 93(5):413
Martin WH, Hoover DJ, Armento SJ, Stock IA, McPherson RK, Danley DE, Stevenson RW, Bar-

rett EJ, Treadway JL (1998) Discovery of a human liver glycogen phosphorylase inhibitor that 
lowers blood glucose in vivo. Proc Natl Acad Sci U S A 95:1776–1781

Møller JB, Overgaard RB, Kjellsson MC, Kristensen NR, Klim S, Ingwersen SH, Karlsson MO 
(2013) Longitudinal modeling of the relationship between mean plasma glucose and HbA1c 
following antidiabetic treatments. CPT Pharmacometrics Syst Pharmacol 2:e82

Morghissi ES, Korytkowski MT, DiNardo M, Einhorn D, Hellman R, Hirsch IB, Inzucchi SE, 
Ismail-Beigi F, Kirkman MS, Umpierez GE (2007) American association of clinical endocri-
nologists and American diabetes association consensus statement on inpatient glycemic con-
trol. Diabetes Care 30(suppl 1):S42–S47

Ribbing J, Hamrén B, Svensson MK, Karlsson MO (2010) A model for glucose, insulin, and 
beta-cell dynamics in subjects with insulin resistance and patients with type 2 diabetes. J Clin 
Pharmacol 50:861–872

Schaller S, Willmann S, Lippert J, Schaupp L, Pieber TR, Schuppert A, Eissing T (2013) A generic 
integrated physiologically based whole-body model of the glucose-insulin-glucagon regulatory 
system. CPT Pharmacometrics Syst Pharmacol 2(e65):1–10

Schneck KB, Zhang X, Bauer R, Karlsson MO, Sinha VP (2013) Assessment of glycemic response 
to an oral glucokinase activator in a proof of concept study: application of a semi-mechanistic, 
integrated glucose-insulin-glucagon model. J Pharmacokinet Pharmacodyn 40:67–80

Shafrir E (2007) Animal models of diabetes, frontiers of research. CRC, Boca Raton, p 365
Shafrir E (2010) Contribution of animal models to the research of the causes of diabetes. World J 

Diabetes 1(5):137–140
Shoda L, Kreuwel H, Gadkar K, Zheng Y, Whiting C, Atkinson M, Bluestone J, Mathis D, Young 

D, Ramanujan S (2010) The type 1 diabetes physioLab® platform: a validated physiologically 



1595 Drug–Disease Model-Based Development of Therapeutic Agents …

based mathematical model of pathogenesis in the non-obese diabetic mouse. Clin Exp Immu-
nol 161(2):250–267

Silber HE, Jauslin PM, Frey N, Gieschke R, Simonsson US, Karlsson MO (2007) An integrated 
model for glucose and insulin regulation in healthy volunteers and type 2 diabetic patients fol-
lowing intravenous glucose provocations. J Clin Pharmacol 47:1159–1171

Silber HE, Frey N, Karlsson MO (2010) An integrated glucose-insulin model to describe oral glu-
cose tolerance test data in healthy volunteers. J Clin Pharmacol 50:246–256

Sumner T, Hetherington J, Seymour RM, Li L, Varela Rey M, Yamaji S, Saffrey P, Margoninski O, 
Bogle ID, Finkelstein A, Warner A (2011) A composite computational model of liver glucose 
homeostasis. II. Exploring system behaviour. J R Soc Interface 9(69):701–706

Topp B, Promislow K, deVries G, Miura RM, Finegood DT (2000) A model of beta-cell mass, 
insulin, and glucose kinetics: pathways to diabetes. J Theor Biol 206:605–619

Torres TP, Sasaki N, Donahue EP, Lacy B, Printz RL, Cherrington AD, Treadway JL, Shiota M 
(2011) Impact of a glycogen phosphorylase inhibitor and metformin on basal and glucagon-
stimulated hepatic glucose flux in conscious dogs. J Pharmacol Exp Ther 337(3):610–620

Verspohl EJ (2012) Novel pharmacological approaches to the treatment of type 2 diabetes. Phar-
macol Rev 64(2):188–237

Vlasakakis G, Pasqua OD (2013) Cardiovascular disease: the other face of diabetes. CPT Pharma-
cometrics Syst Pharmacol 2:e81

Waters SB, Topp BG, Siler SQ, Alexander CM (2009) Treatment with sitagliptin or metformin 
does not increase body weight despite predicted reductions in urinary glucose excretion. J 
Diabetes Sci Technol 3(1):68–82

WHO fact sheet number 310. http://www.who.int/mediacentre/factsheets/fs310/en/. Accessed 7 
May 2014

Woodcock J, Woosley R (2008) The FDA critical path initiative and its influence on new drug 
development. Ann Rev Med 59:1–12

Zhang X, Schneck K, Bue-Valleskey J, Yeo KP, Heathman M, Sinha V (2013) Dose selection using 
a semi-mechanistic integrated glucose-insulin-glucagon model: designing phase 2 trials for a 
novel oral glucokinase activator. J Pharmacokinet Pharmacodyn 40:53–65



161

Chapter 6
Applied Pharmacometrics in  
the Obese Population

Anne van Rongen, Margreke J. E. Brill, Jeroen Diepstraten  
and Catherijne A. J. Knibbe

© American Association of Pharmaceutical Scientists 2014
S. Schmidt, H. Derendorf (eds.), Applied Pharmacometrics, AAPS Advances  
in the Pharmaceutical Sciences Series 14, DOI 10.1007/978-1-4939-1304-6_6

C. A. J. Knibbe () · A. van Rongen · M. J. E. Brill · J. Diepstraten
Department of Clinical Pharmacy, St. Antonius Hospital, P.O. Box 2500,  
3430 EM Nieuwegein, The Netherlands
e-mail: c.knibbe@antoniusziekenhuis.nl

6.1 Introduction

Obesity (body mass index, BMI > 30 kg/m2) and morbid obesity (BMI > 40 kg/m2) 
are associated with several (patho)physiological changes, such as increased cardiac 
output, circulating blood volume and liver blood flow, decreased pulmonary func-
tion reflected by forced vital capacity and expiratory volume and an initial increase 
but later on a decrease in renal function (Lemmens et al. 2006; Maric-Bilkan 2013; 
Marik and Varon 1998; Wehrmeister et al. 2012). As a result of all these (patho)
physiological changes, the pharmacokinetic (PK) and/or pharmacodynamic (PD) 
profile of drugs in obese individuals may be altered, thereby necessitating adapt-
ed dosing algorithms. Until recently, the obese population was hardly studied in 
pharmacometric analyses. The influence of obesity on PK and PD parameters has 
received more attention, given the strong rise in obesity incidence and prevalence 
across the world.

In order to derive evidence-based dosing guidelines for morbidly obese and 
obese individuals, the influence of obesity on both the PK and PD parameters 
should be considered. The PK parameter clearance (CL) should especially receive 
much attention, as clearance determines the maintenance dose. Volume of distribu-
tion ( V) determines the loading dose and is of interest when peak concentrations are 
known to be related to efficacy or safety endpoints. Concerning the PD parameters, 
only a very limited number of studies are available. PD parameters of interest may 
include drug concentration at half-maximal effect (EC50), maximal effect ( Emax) 
and/or baseline ( E0).

PK studies have shown that the impact of obesity on drug clearance differs large-
ly, and is dependent on the metabolic or elimination pathway of the investigated drug 
(Brill et al. 2012; Kotlyar and Carson 1999). More specifically, CYP3A4-mediated 
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drug elimination was found to be consistently lower in obese subjects compared 
to non-obese subjects, while UGT-, CYP2E1-, arylamine N-acetyltransferase type 
2- and xanthine oxidase-mediated drug metabolism was consistently higher among 
obese subjects as compared with non-obese subjects. Clearance mediated by CY-
P1A2, CYP2C9, CYP2C19 and CYP2D6 show trends towards higher clearance val-
ues in obese individuals. Studies on drug clearance mediated by liver blood flow are 
somewhat inconclusive, although, on the basis of a few highly extracted drugs, an 
increase in liver blood flow can be noted in obese patients. Regarding drug elimi-
nation, the reviewed studies show an increase of glomerular filtration and tubular 
secretion in obese patients. The influence of obesity on tubular reabsorption is un-
known (Brill et al. 2012; Kotlyar and Carson 1999).

While the impact of obesity on PD parameters has typically received less atten-
tion, there are indications that the PD profile of the drug and/or the disorder may 
be altered in obese individuals. For instance, obese patients showed increased pain 
experience as compared to non-obese patients (Stone and Broderick 2012), and the 
relative risk for pulmonary embolism in hospitalized patients was more than two 
times higher in obese patients compared to non-obese patients (Stein et al. 2011).

Despite a general idea on how the PK and PD profiles of drugs change with 
obesity, many aspects remain unknown. More specifically, the exact quantifica-
tion of these changes with increasing body weight is lacking, which is of particular 
relevance, given the fact that body weights of (morbidly) obese patients are still 
increasing. Moreover, from the covariates that are often considered, such as BMI, 
total body weight (TBW) or lean body weight (LBW), it is unknown which covari-
ate is the most predictive for obesity-related changes in PK and PD parameters for a 
specific drug. As the identification of predictive covariates for variability provides 
the scientific basis for rational and individualized dosing schemes, studies in which 
these covariates are identified and quantified are of utmost relevance.

Therefore, in this chapter we aim to provide general information on the cur-
rently used body size descriptors for obesity together with a literature overview of 
currently published equations to quantify obesity-related changes in PK and PD 
parameters including how they were validated. Finally, future directions are given 
for the execution of clinical trials in (morbidly) obese patients and the modelling of 
obesity-related changes in population PK and PD studies.

6.2 Body Size Descriptors

Various body size descriptors are available to characterize the influence of obesity 
on PK and PD parameters. In Table 6.1, an overview of the different size descriptors 
can be found including the equation(s) used to calculate the body size descriptor. 
BMI is the international metric recommended to classify obesity, e.g. BMI higher 
than 30 kg/m2 is obese and higher than 40 kg/m2 is morbidly obese (World Health 
Organisation 1997). However, as BMI cannot differentiate adipose tissue from mus-
cle mass and has only an approximate relationship to excess body fat, BMI should 
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not be considered as measure of body composition but rather as descriptor of body 
shape (Green and Duffull 2004). While TBW is mostly used to dose drugs, it is 
influenced by age, sex, height, muscles and obesity, and therefore should be used 
with caution as body size descriptor of obesity. LBW is calculated by subtracting 
body fat weight from TBW and represents the weight of bones, muscles, tendons 
and organs without body fat (i.e. fat-free mass). To calculate LBW, not only body 
weight but also height and gender are required. As such, LBW has been suggested 
as measure of changes in body composition (Han et al. 2007). The most recent 
LBW equation as published by Janmahasatian et al. was reported to provide good 
predictive performance of the fat-free mass measured with bioelectrical impedance 
analysis (BIA) or dual-energy x-ray absorptiometry (DXA) (Janmahasatian et al. 
2005). Therefore, it is proposed to use the Janmahasatian equation when LBW is 
considered (Table 6.1). In addition to BMI, TBW and LBW, many more size de-
scriptors, such as ideal body weight (IBW) and adjusted body weight (ABW) have 
been used in obesity pharmacology, albeit using different definitions. For IBW, the 
equation of Devine is mainly applied (Table 6.1). The equation to calculate ABW 
is an empirical formula in which different correction factors can be used and was 
originally developed for dosing of aminoglycosides (Bauer et al. 1983).

It is emphasized that other covariates such as age and race may interfere with 
body size descriptors, i.e. elderly and Asians may have lower body weights and 
heights compared to young adult Caucasians. Therefore, it is important to consider 
the type of population when using the body size descriptors of Table 6.1.

6.3 Quantification of Obesity-Associated Changes in  
PK and PD Parameters

6.3.1 Aim

In this paragraph, we aim to provide an overview of reported functions quantifying 
obesity-related changes in PK and PD parameters of different drugs with specific 
emphasis on model evaluation in terms of predictive value, internal validation and 
external validation.

6.3.2 Methods

The PubMed database was used for a literature search for PK/PD modelling in the 
obese adult population. The following search terms were used:

• Obesity [MeSH Terms] AND population pharmacokinetics [All Fields]. Limits: 
Humans and English, yielding 167 results on August 6, 2012.
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• Obesity [All Fields] AND model [All Fields] and human [All Fields] resulted in 
229 hits on November 5, 2012.

• Obesity [All Fields] AND pharmacokinetics [All Fields] AND Nonmem [All 
Fields] resulted in 17 hits on November 5, 2012.

Individual papers were retrieved from the results and completed with studies re-
ferred to in the review by Brill et al. (Brill et al. 2012). Then, the following inclusion 
and exclusion criteria were applied.

• Inclusion criteria:

− (Morbidly) obese patients in the studied population
− Application of population PK–PD software (NONMEM, Monolix, Adapt 5)
− English language
− Adult population

• Exclusion criteria: 

− Absence of a covariate analysis quantifying obesity-associated influence on 
PK and/or PD parameters

− Children and adolescents

6.3.3 Results

In Tables 6.2 and 6.3 an overview of 20 published studies of which 19 PK analyses, 
two PK/PD analyses and one PD analysis in obese subjects is presented. The PK 
studies are divided by the metabolic- or renal-elimination pathway of the studied 
drug, and separate columns for equations for clearance and volume of distribution 
are provided. For all models, model evaluation in terms of predictive value, internal 
validation and external validation are summarized (Tables 6.2 and 6.3).

6.3.3.1 Obesity-Related Changes in Clearance

In this section, the influence of obesity on clearance subdivided by metabolic or 
elimination pathway (CYP3A, liver blood flow, glomerular filtration rate (GFR) 
and other metabolic pathways) is discussed. Subsection ‘other metabolic pathways’ 
consists of studies of drugs metabolized by a pathway for which only one study was 
available.

CYP3A-mediated Clearance

Clearance of the CYP3A substrate, taranabant, was found to decrease with BMI 
according to a power function with an exponent of − 1.11 in a study evaluating 
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patients between 50 and 151 kg (Li et al. 2010). However, the covariates found 
for taranabant clearance and volume of distribution were not considered clinically 
relevant. Total clearance of amiodarone, which is primarily metabolized through 
CYP3A but for which CYP2C8 is involved as well, was 22 % lower in overweight 
patients (BMI > 25), while within the same equation a linear increase with total 
body weight was reported (Fukuchi et al. 2009). It is emphasized, however, that 
this amiodarone study was performed in obese Japanese patients with substantially 
lower BMIs than in most obese Caucasian studies (Table 6.2). Even though only 
two studies were found on the influence of obesity on CYP3A-mediated drug clear-
ance, the results indicate that the clearance of CYP3A substrates may decrease with 
increasing BMI or TBW.

Liver Blood Flow-Dependent Clearance

Three studies were found on drugs for which clearance is mainly dependent on liver 
blood flow (Table 6.2). Both reports on propofol identified an increase in propofol 
clearance with TBW in an allometric manner. Van Kralingen et al. estimated an 
exponent of 0.67, while Cortinez et al. used a fixed exponent of 0.75 (van Kralingen 
et al. 2011; Cortinez et al. 2010). Both studies included both non-obese and (mor-
bidly) obese individuals in their analyses.

For sufentanil, only a nonsignificant trend towards a positive influence of BMI 
on clearance was found in a population with a wide range in TBW (82–155 kg). 
However, this analysis only included 11 obese subjects.

Clearance Through Glomerular Filtration Rate (GFR)

A total of ten studies on drugs primarily cleared via glomerular filtration were iden-
tified and presented in Table 6.2. Seven papers found a significant influence of a 
body size descriptor on drug clearance of which six identified an increase and one 
a decrease. For enoxaparin, in two studies a linear increase in clearance with LBW 
was identified in patients varying in bodyweight between 41 and 160 kg (Barras 
et al. 2009; Green and Duffull 2003). However, for tinzaparin, a decrease in clear-
ance with percent above IBW (% IBW-median % IBW) was found even though this 
result was not considered clinically relevant according to the authors (Barrett et al. 
2001). For ethambutol, clearance was found to increase with TBW in an allometric 
manner with a fixed exponent of 0.75. For metformin, which is usually dosed based 
on GFR even though it is primarily cleared via active tubular secretion (Somogyi 
et al. 1987), clearance was found to increase with LBW using an allometric func-
tion with an exponent of 0.75. It is emphasized, however, that there was only a very 
small difference in the criterion values, and that the authors did not check whether 
another value for the exponent would improve the performance of the model. For 
carboplatin, both an increase of clearance with TBW according to a power equa-
tion (apart from age, serum creatinine and cysC) (Schmitt et al. 2009) and a linear 
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increase of clearance with excess body weight (TBW–IBW) and IBW was reported 
(Benezet et al. 1997). A third analysis on carboplatin, however, did not find a signif-
icant influence of a body size descriptor (Ekhart et al. 2009). Also for vancomycin 
and oseltamivir, no significant influence of a body size descriptor for clearance was 
found, even though for vancomycin creatinine clearance calculated using TBW was 
a significant covariate for vancomycin clearance in a linear function (Pai and Lodise 
2011; Thomson et al. 2009).

Other Metabolic Pathways

Clearance of garenoxacin, which is influenced by both glucuronidation and sulpha-
tion, showed a linear increase with IBW and a 10.9 mL/min increase in clearance 
if a patient was obese (defined as IBW > 130 %) (Van Wart et al. 2004). Clearance 
of busulfan which is cleared through glutathione S-transferase A1 was found to in-
crease in a linear manner with body surface area (BSA) (Nguyen et al. 2006). While 
remifentanil is metabolized in blood and tissue by nonspecific esterases (Egan 
1995), clearance was reported to increase in a linear manner with LBM (Egan et al. 
1998). Micafungin clearance (various metabolic pathways) was found to increase 
with TBW using an allometric function with an exponent of 0.75 (Table 6.2) (Hall 
et al. 2011).

6.3.3.2 Obesity-Related Changes in Volume of Distribution

As depicted in Table 6.2, volume of distribution ( V) is reported to increase with 
various size descriptors for different drugs. In addition, many different relationships 
between the size descriptor and volume of distribution have been described. Volume 
of distribution of taranabant, garenoxacin and metformin was shown to increase in a 
nonlinear manner with BMI (Li et al. 2010), TBW (Van Wart et al. 2004) and LBW 
(Bardin et al. 2012), respectively. A linear increase with TBW was reported for ami-
odarone, busulfan and propofol (Fukuchi et al. 2009; Cortinez et al. 2010; Nguyen 
et al. 2006). Both a linear increase with LBW (Barras et al. 2009) and TBW (Green 
and Duffull 2003) have been shown for enoxaparin and a linear increase with LBM 
was seen for remifentanil (Egan et al. 1998). Five PK models, i.e. on propofol, os-
eltamivir, ethambutol, sufentanil and micafungin found no influence of body size 
descriptors on the volume of distribution (van Kralingen et al. 2011; Pai and Lodise 
2011; Hall et al. 2011, 2012; Slepchenko et al. 2003). In the analysis of four other 
PK models, volume of distribution was not included due to either uninformative 
data about initial drug distribution or because the primary aim of the investigation 
was not related to volume of distribution (Barrett et al. 2001; Benezet et al. 1997; 
Ekhart et al. 2009; Schmitt et al. 2009). For vancomycin, Thomson et al. reported 
that TBW was a significant covariate for the central and peripheral volume of dis-
tribution; however, the exact relationship was not reported (Thomson et al. 2009).



6 Applied Pharmacometrics in the Obese Population 179

6.3.3.3 Obesity-Related Changes in Pharmacodynamic Parameters

Only three population PD papers have been reported and are included in Table 6.3. 
For none of the studied drugs, any of the body size descriptors were reported to in-
fluence any of the PD endpoints studied, which may be a result of the small sample 
size. For sevoflurane, BMI was not of influence on depth of narcosis measured with 
Bispectral index (BIS) (Cortinez et al. 2011). Also no significant influence of TBW, 
BMI, LBW or IBW was found for the depth of narcosis for propofol (van Kralin-
gen et al. 2011). For enoxaparin no body size descriptor (TBW, LBW or IBW) was 
found for the probability of a bleeding event (Barras et al. 2009).

6.3.4 Discussion

Based on the results as presented in Table  6.2, it can be concluded that, to date, 
many different size descriptors (TBW, BMI, LBW, IBW, % IBW and ABW) in 
many different equations (linear or nonlinear) have been identified as predictors 
of the PK parameters clearance and volume of distribution. In addition, the final 
model equations included also a large number of other covariates, particularly for 
clearance, resulting in complex equations. It is emphasized that this may increase 
the risk on correlation between the covariates and on a biased covariate selection 
process (Han et al. 2009). Sixteen of the 19 PK studies show a change in clearance 
or volume of distribution with obesity. Except for CYP3A-mediated clearance and 
tinzaparin clearance, which seem to decrease with obesity, most other elimination 
pathways seem to increase with obesity or remain unchanged.

Differences in outcome within pathways may in part be explained by the popula-
tion studied, which varied largely. Some studies did not use the standard definition 
for obesity (BMI ≥ 30 kg/m2), but used TBW > 100 kg (Barras et al. 2009), IBW 
> 130 % (Van Wart et al. 2004), > 20 % over IBW (Benezet et al. 1997) or BMI 
≥ 25 kg/m2 (Fukuchi et al. 2009) instead. While these differences in definitions may 
be explained by the relatively new population studied, the variety in definitions 
highly complicates the comparison between the studies. Furthermore, it raises the 
question whether the study population as presented in some of the studies (Benezet 
et al. 1997; Van Wart et al. 2004) are really obese. Moreover, a substantial number 
of papers included only a small percentage of obese patients, ranging from 6.3 % to 
19 % of the total number of patients (Barras et al. 2009; Barrett et al. 2001; Schmitt 
et al. 2009; Ekhart et al. 2009; Thomson et al. 2009). In these studies, the major-
ity of the patients had a normal weight and as a result the contribution of obesity 
to the covariate analyses of size descriptors may be small. Finally, differences in 
age and race have to be recognised. Some studies also included patients with a 
high age (Fukuchi et al. 2009; Barras et al. 2009; Barrett et al. 2001; Schmitt et al. 
2009; Thomson et al. 2009; Bardin et al. 2012), which may lead to confounding 
of age with weight, as elderly patients are expected to be less obese than younger 
patients. In addition, metabolic and elimination pathways may reduce with age. 
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Also race may be of concern in these analyses, as obese Asian subjects may be less 
heavy than ‘equally obese’ Caucasian subjects. It therefore seems that conclusions 
can only be justified when obesity is either analysed among a non-elderly popula-
tion of otherwise healthy patients, or obesity is analysed as one of the covariates 
among other covariates such as age, critical illness or other known covariates in a 
systematic covariate analysis. In the latter case, the analysis will be complicated by 
the fact that an a priori relation between age and weight such as described above 
cannot be excluded. Until more data are available, obesity should be studied across 
a wide range in bodyweight, preferably within one race and age group to prevent a 
biased covariate selection process (Han et al. 2009). In addition, it seems that uni-
formly accepted equations should be used to calculate for instance LBW and IBW, 
as different equations were used in the described studies of tabel 6.2. For LBW we 
propose to use the equation of Janmahasatian et al. as this measure was found to 
correlate well with the fat-free mass measured with BIA or DXA (Janmahasatian 
et al. 2005). For IBW, we propose to use the equation of Devine (Devine 1974) and 
for BSA the equation of Dubois and Dubois (DuBois and DuBois 1916).

In some of the studies of Table 6.2, an allometric function with an exponent of 
0.75 has been implemented on total body weight (Cortinez et al. 2010; Hall et al. 
2011; Hall et al. 2012; Bardin et al. 2012). While this may refer to the frequently 
debated allometric scaling theory (van Kralingen et al. 2011), from the results in 
Table 6.2 there seems no basis to a priori apply this 0.75 function in future analy-
ses. Similarly, there is no basis to a priori scale with LBW with an exponent of 2/3 
(McLeay et al. 2012).

Besides the identification of predictive covariates for variability in PK and PD 
parameters, the final model including the covariates should be adequately evaluated 
and validated. From the 19 PK studies in Table 6.2, only in six papers the predictive 
value of the models was evaluated and reported by observed values versus popula-
tion predicted values (DV vs. PRED) plots. From the three PD studies in Table 6.3, 
one paper reported DV versus PRED and DV versus IPRED plots. Evaluations re-
garding the appropriateness of the identified covariate (e.g. Eta vs. covariate plots) 
was solely reported by Barras et al. (enoxaparin; Barras et al. 2009) and Hall et al. 
(micofungin) (Hall et al. 2011), although Van Kralingen et al. did plot individual 
post hoc parameters of the simple model against the most predictive covariates (van 
Kralingen et al. 2011). Regarding internal model validation, only a small number 
of studies reported visual predictive checks (VPC) (Li et al. 2010; Cortinez et al. 
2010; Barras et al. 2009; Bardin et al. 2012) or posterior predictive check (PPC) 
(Pai and Lodise 2011), while some reported the use of a bootstrap analysis (van 
Kralingen et al. 2011; Barras et al. 2009; Schmitt et al. 2009; Thomson et al. 2009) 
and one study used normalised prediction distribution errors (NPDE) as an internal 
validation method (Bardin et al. 2012). External validation using independent data 
were conducted in three studies (Barrett et al. 2001; Van Wart et al. 2004; Nguyen 
et al. 2006). As such, of the 19 PK studies, 11 did not perform an internal validation 
procedure and 16 did not perform an external validation procedure. Of the three 
PD studies, one study did not perform an internal validation procedure and none 
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performed an external validation procedure. Even though it has been reported be-
fore that most PK and PD modelling papers do not adequately describe all available 
evaluation steps (Brendel et al. 2007), model misspecification, if not captured by 
model validation, may have far-reaching consequences when PK and PD models 
are used as a basis for dosing algorithms in obese patients. Therefore, the accuracy 
of the covariate relationships across the entire range in covariate values should be 
evaluated during model building and evaluation. In line with a previous report in 
paediatric studies (Krekels et al. 2011), in our opinion at least five evaluation cri-
teria for the covariate model in the obese adult population should be evaluated. 
These criteria concern objective function value, goodness of fit (in particular DV 
vs. PRED), uncertainty in parameter estimates, eta distribution versus incorporated 
covariates of the simple model, and two validation methods (NPDE, VPC and/or 
bootstrap) and will be explained in more detail in Sect. 6.4.

From Table 6.3, it can be extracted that very few studies have been performed on 
the PD profile of drugs in obese patients. While it is unknown whether all PD end-
points can be used in the obese population, as they are usually not validated in the 
obese population, also the disorder or disease status may change as a consequence 
of obesity. It therefore seems that more future research should concern the PK, PD 
and disease status in obese patients.

6.4 Future Directions and Conclusions

In this chapter, we have aimed to provide a literature overview of obesity-related 
body size measures and currently published equations to quantify obesity-related 
changes in PK and PD parameters including how these equations were validated. 
The results show that the PK studies vary largely in level of obesity, other covariates 
such as race and age, and obesity definitions while very little information is avail-
able on the PD profile of drugs in the obese population. Depending on the elimina-
tion pathway and the available data, a decrease, increase or unchanged clearance 
was reported as a function of a variety of body size descriptors such as TBW, LBW, 
IBW or BMI. Given the limited data to identify this parameter, volume of distribu-
tion was found to increase or to remain unchanged.

A key issue in obesity population modelling lies in the wide range of body sizes 
of this population. Obesity as a term may be used for patients and subjects with a 
BMI ≥ 30 kg/m2, without a clearly defined upper limit. Because of this wide range, 
we propose to aim for a large variety of body sizes by means of TBW or BMI strati-
fication of patients in PK/PD studies. In addition to stratification, the inclusion of 
non-obese patients in the population analysis is highly recommended, as this will 
put parameter estimates found for the obese population into perspective and may 
yield a covariate relationship, which includes an even wider range of body sizes. 
These studies should preferably be performed in a non-elderly population from one 
race, thereby allowing for exact quantification of the obesity-related changes with 
clearance while preventing a biased covariate modelling process.
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Another important phenomenon in the obesity pharmacology field is the large 
number of body size descriptors (Table 6.1) while researchers are still coming up 
with more equations including various factors to explain interindividual variabil-
ity observed in their model parameters. However, some size descriptors bear some 
physiologic meaning, which may be relevant for the PK and PD of drugs. LBW (or 
fat-free mass) represents the mass or organs and other tissue (excluding adipose 
tissue). As such, it may be a plausible size descriptor of drug clearance, because 
clearance is, in most cases, mediated by physiologic processes occurring in the lean 
tissues. The LBW equation presented by Janmahasatian et al. has shown to predict 
the fat-free mass of obese patients and is currently the most applied LBW equation. 
However, from Table 6.2, we cannot conclude that there is enough basis to use 
LBW in obesity, even though this may be explained by the limitations of the stud-
ied population in terms of level of obesity, concurrent covariates or other reasons. 
Therefore, the other body size measures as depicted in Table 6.2, such as TBW or 
BMI need to be studied as well.

In addition, the current results do not provide any basis to use the recently pro-
posed scaling factor of 2/3 for LBW (McLeay et al. 2012) or the more outdated 0.75 
for TBW (Cortinez et al. 2010). In view of the fact that the CYP3A-mediated clear-
ance seemed to decrease instead of increase with obesity, it may be more appropriate 
to evaluate different ‘model’ drugs, which represent a specific elimination pathway, 
in properly designed studies. Potentially, between drugs that share the elimination 
pathway, similar body size descriptors and equations may be anticipated.

From these results, it seems that more studies on obese individuals should be per-
formed to gather data and that until more results have become available, data should 
be analysed with an open mind evaluating different covariates, preferably across 
a wide range of body weights and LBWs. This also applies to the function that is 
identified, which should be chosen from a variety of linear and nonlinear functions 
including those with different allometric exponents. A systematic table as depicted 
in Table 6.4 may be instrumental in this respect.

Ideally, physiologically based PK (and PD) models should be developed for the 
(morbidly) obese population. Based on body size-dependent alterations in physi-
ologic functions, appropriate clearance and volume of distribution values may be 
predicted and individual dosing regimens be derived. However, until now, available 
physiologically based pharmacokinetic models for the obese population are very 
limited and if available, many assumptions regarding organ size and function are in-
corporated. Therefore, all empirical population models currently available for drugs 
in the obese population are still of high value (Table 6.2). Combining knowledge 
from drugs that were eliminated or metabolised by the same pathway may ulti-
mately lead to development of more physiological models with predictive functions 
for the whole range of overweight and obese population.

Before models can be used to derive dosing guidelines, the models should be 
properly evaluated and validated. In line with the published framework for paediat-
ric covariate models (Krekels et al. 2011), we propose the use of five evaluation cri-
teria for covariate modelling in the obese adult population. The first is the objective 
function value of the covariate model in comparison with the simple model without 
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covariates. More specifically, the influence of each covariate on the parameters is 
examined separately for significance in comparison with the simple model without 
covariates (Table 6.4). While typically, a significance level of p < 0.05, correspond-
ing to a decrease of 3.8 in objective function value is considered statistically signifi-
cant, for a covariate analysis we propose to use more stringent criteria ( p < 0.01 or 
p < 0.001) in order to prevent accepting statistically correct but clinically insignifi-
cant covariates. In addition to the use of the objective function value, the goodness 
of fit plots including individual and population-predicted concentrations (or PD 
endpoint values) plotted versus the concentrations (or PD endpoint values) should 
improve upon the covariate model versus the simple model. If combined data sets 
are analysed, for example non-obese and obese data, goodness-of-fit plots should 
be stratified per data set and evaluated separately. The most important goodness-
of-fit plot to evaluate the covariate model is the observed concentrations versus 
population-predicted concentrations (DV vs. PRED), because it provides informa-
tion on the ability of the model to predict concentrations for a new individual with-
out considering measured concentrations. As population-predicted concentrations 
are based on structural parameters solely, Eta values (parameters for interindividual 
variability), which may suffer from high shrinkage, are excluded and therefore this 
plot may be more reliable than individual predicted versus observed values. As a 
third evaluation tool, the uncertainty on parameter estimates should be reported. 
These uncertainties should also include estimations for inter- and intra-individual 
variability (eta and residual error estimates). As a fourth evaluation tool, Eta val-
ues versus incorporated covariate plots should be evaluated. Incorporated covari-
ates need to describe the relationship with the parameter across the entire range in 
covariate values. To demonstrate the relationship between the covariate and the 
structural parameter (e.g. clearance or volume of distribution) the Eta distribution 
of the structural parameter with covariates should be plotted against this covariate. 
Figure 6.1 provides an example of post hoc estimates of parameters of the simple 

Table 6.4  Results of covariate analysis for the pharmacokinetic model of propofol in the data-
set of morbidly obese patients and in the combined dataset of morbidly obese and lean patients. 
(Reproduced from van Kralingen et al. 2011)
Model Relationship of covari-

ate with CL
No. of 
structural 
parameters

OFV
Morbidly obese Morbidly obese 

and lean patientsa

Simple – 6 − 643 − 1557
LBW CLi=CLpop·(LBWi/55) 6 − 638 − 1563

IBW CLi=CLpop·(IBWi/50) 6 − 640 − 1543
BMI CLi=CLpop·(BMIi/23)z 7 − 651 − 1596

TBW CLi=CLpop·(TBWi/70)z 7 − 653 − 1599
BMI   body mass index, BMIi BMI of the ith individual, CL clearance from the central compart-
ment, CLi  CL in the ith individual, CLpop population mean CL value, IBW ideal body weight, 
IBWi  IBW of the ith individual, LBW  lean body weight, LBWi  LBW of the ith individual, NA  
not applicable, OFV  objective function value, TBW  total body weight, TBWi  TBW of the ith 
individual, z  allometric scaling factor
a 40 lean patients in whom height data were available
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model without covariates versus the covariate to clearly show whether there is a 
correlation. Finally, the model should be evaluated using at least one simulation-
based validation tool such as VPC (Holford 2005) or NPDE (Brendel et al. 2006), 
in addition to for example a bootstrap or a jackknife procedure.

In conclusion, many body size descriptors in different functions have been re-
ported for different PK parameters. When subdividing the drugs according to their 
primary elimination pathway different patterns for different pathways emerge which 
may provide a basis to derive more physiologically based pharmacokinetic models. 
Until then, data in obese populations should be gathered and analysed, both on PK 
and PD of drugs, after which the models are properly validated and used in clinical 
practice to derive evidence-based dosing guidelines.

6.5 Summary 

• A large number of body size descriptors in different equations to characterize the 
influence of obesity on PK and PD parameters is available

• Depending on the elimination pathway and studied population, a decrease, in-
crease or unchanged clearance was reported as a function of a variety of body 
size descriptors such as TBW, LBW, IBW or BMI in different functions (linear, 
power or allometric)

• There is no basis to a priori scale clearance according to TBW or LBW with a 
fixed exponent (an exponent of 0.75 for TBW (allometric scaling) or an expo-
nent of 2/3 for LBW)

• Even though limited data were available to identify this parameter, volume of 
distribution was found to increase or remained unchanged

• There is a paucity of studies about the PD of drugs in the obese population

Fig. 6.1  Individual post hoc estimates for clearance and central volume of distribution of propofol 
versus total body weight in 20 obese and morbidly obese children and adolescents with Pearson’s 
correlation coefficient ( r). (Reproduced from Diepstraten et al. 2012, with permission from Adis, 
© Springer International Publishing AG 2011. All Rights reserved)
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• More PK and PD studies in obesity are needed. Important issues for the design 
of the study are:

− Stratification for total bodyweight
− Restriction to a non-elderly patient group from one race to prevent a biased 

covariate modelling process
− Focussing studies on model drugs that are representative for a metabolic or 

elimination pathway, which may aid the development of more physiologically 
based PK models for (morbidly) obese populations

• Models should be properly evaluated and validated by use of five evaluation 
criteria for covariate modelling to avoid model misspecification:

− Objective function value
− Goodness of fit (in particular DV vs. PRED)
− Uncertainty in parameter estimates
− Eta distribution versus incorporated covariate plots
− Two validation methods (VPC, NPDE and/or bootstrap)
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7.1  Introduction

Approximately one third of all drug discontinuation from preclinical discovery to 
postapproval stage is caused by drug safety (Kola and Landis 2004; Laverty et al. 
2011). Within this category, cardiovascular (CV) safety is a major cause of attrition 
(Redfern et al. 2010), with drug-induced prolongation of cardiac repolarization and 
proarrhythmic liabilities being the main reasons for labeling restrictions and drug 
withdrawals (Darpö 2007; Gwathmey et al. 2009; Redfern et al. 2010). Table 7.1 
shows an impact of CV adverse effect throughout the pharmaceutical drug devel-
opment life cycle. In the case of late-stage adverse events, it can lead to termina-
tion of the program, labeling restrictions, prescribing restrictions, requirements for 
postmarketing studies and in a worst-case scenario, to drug discontinuation or with-
drawal. It is therefore not surprising that the assessment of CV liabilities, especially 
drug-induced prolongation of cardiac repolarization and QT interval have become 
a primary focus of both pharmaceutical industry and regulatory agencies. These is-
sues were addressed by International Conference on Harmonisation (ICH), which 
released S7B and E14 documents that address methods of preclinical and clinical 
assessment of cardiac repolarization (Anon 2005a, b). Table 7.2 shows a list of these 
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preclinical and clinical models, which are currently used in evaluation of CV safety 
during pharmaceutical drug development.

Since CV liabilities, especially drug-induced delayed repolarization and QT in-
terval prolongation, became a great concern for both pharmaceutical industry and 
regulatory agencies, it also became increasingly important to assess these liabilities 
early in the drug development process. Ideally, these liabilities should be assessed 
before the new chemical entity (NCE) is tested in humans for the first time, how-
ever, it is also beneficial at other stages of clinical drug development, for example, 
before the drug is tested in patients or before it is tested in larger population. The 
main purpose of the assessment in preclinical stages is to select the right compound, 
i.e., the one that can be safely administered to humans. In the clinical stages, it is 
important to have the correct quantitative understanding via the right clinical study 
design to understand the right dose and schedule that are safe to patients. To this 
end, pharmacometric (model-based) tools have become increasingly beneficial in 
achieving this goal; they allow making predictions under new circumstances, for 
example during new dosing regimen or in the alternative patient population, and 
also allow extrapolating across different systems, for example from in vitro or in 
vivo to clinical. This is particularly important along the value chain in pharmaceuti-
cal industry as it helps to select and progress the best compounds. In addition, it is 
also beneficial for the regulatory submissions, where pharmacometric tools can be 
used to describe the observed data and predict risk for a particular compound. Op-
portunities to use pharmacometric models in various stages of drug life cycle are 
provided in Table 7.2.

In this chapter, we will review how pharmacometrics can be used to assess the 
risk of CV liabilities with the main focus on QT interval. We will explain how 
mathematical models can be used to gain understanding of the drug-induced CV 
effects using either descriptive or mechanism-based modeling, where underlying 
mechanisms of action are taken into account, as well as how they can be used for 
extrapolation and prediction of real-life population and to inform clinical trials. 

Table 7.1  Relative contributions and frequency of different toxicities by organ function during 
preclinical and clinical drug development as well as postapproval stage. (Adapted from Redfern 
et al. 2010)
Phase “Nonclinical” Phase I Phase I–III Phase III/

marketing
Postmarketing

Impact Causes of 
attrition

Serious ADRs Causes of 
attrition

ADRs on label Withdrawal 
from sale

Source Car (2006) Sibille et al. 
(1998)

Olson et al. 
(2000)

BioPrint® 
(2006)

Stevens and 
Baker (2009)

Number of 
drugs assessed

88 (stopped) 23 82 (stopped) 1138 47

Cardiovascular 27 % 9 % 21 % 36 % 45 %
Hepatotoxicity 8 % 7 % 21 % 13 % 32 %
Haematology/
BM

7 % 2 % 4 % 16 % 9 %
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Technique Summary Reference Opportunities for 
pharmacometric 
analysis

QSAR Quantitative structure–activity 
relationship (QSAR) models 
relate physicochemical proper-
ties of a compound to its ability 
to block hERG

(Gavaghan et al. 2007; 
Inanobe et al. 2008; 
Clark and Wiseman 
2009)

Predictive models 
of hERG blockage 
based on fragment 
descriptors

hERG assay Measurement of inhibition of 
the potassium current through 
hERG; usually few ascending 
concentrations of NCE and 
major metabolites are tested to 
determine a concentration–effect 
relationship; preparations are 
made using human cells express-
ing hERG channel

(Brown 2004; Pollard 
et al. 2010)

In silico APD models; 
mechanism-based 
modeling of QT pro-
longation, e.g., using 
operational model of 
agonism

Other cardiac 
ion channel 
assays

Measurement of inhibition of ion 
channels other than hERG, such 
as: hNav1.5, hCav1.2, hKv4.3/
hKChIP2.2, hKv7.1/hminK, and 
hKv11.1

For example: Harmer 
et al. (2008)

In silico APD models; 
mechanism-based 
modeling of QT and 
other CVS parameters, 
e.g., blood pressure

Purkinje fibers 
assay

Drug-induced changes in repo-
larization of action potentials are 
measured using isolated Purkinje 
fibers; species used in prepara-
tions include dog, rabbit, and 
guinea pig

(Terrar et al. 2007) Reverse modeling for 
predicting ion channel 
pharmacology

Lagendorff 
heart model

APD, conduction, triangulation, 
reverse-use dependency, and 
instability are measured using 
isolated, perfused animal heart; 
species used in preparations 
include rabbit and guinea pig

(Szilágyi et al. 2004; 
Valentin et al. 2004; 
Wu et al. 2004; Suter 
2006)

Ventricular 
wedge

CVS measurements are taken in 
the arterially perfused isolated 
left ventricular wedge prepara-
tion; species used in preparations 
include rabbit and dog

(Chen et al. 2006; 
Benson et al. 2008)

“Virtual ventricular 
wedge”

Anaesthetized 
animal model

ECG measurements and cardiac 
contractility are measured, while 
animals are kept under anesthe-
sia (usually to prevent unwanted 
events such as seizures); it is 
possible to relate the observed 
CV effects to the drug concen-
tration using PK/PD modeling; 
species used in studies include 
dog and guinea pig

(Ollerstam et al. 
2007b; Heath et al. 
2011)

PK/PD modeling of 
CVS parameters such 
as QT, HR, BP and 
others for: (1) analysis 
of preclinical data, 
(2) optimal preclini-
cal study design, (3) 
predicting clinical 
liabilities, and (4) 
clinical study design

 Table 7.2  Summary of techniques and models used in evaluation as well as opportunities for phar-
macometric modeling in cardiovascular safety during pharmaceutical drug development
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Technique Summary Reference Opportunities for 
pharmacometric 
analysis

Conscious 
animal model

ECG measurement, heart rate, 
and blood pressure are measured 
in conscious animals that are 
free to move; it is possible to 
relate the observed CV effects 
to the drug concentration using 
PK/PD modeling; species used 
in studies include dog, monkey, 
and minipig

(Ando et al. 2005; 
Ollerstam et al. 2006, 
2007a, b; Markert 
et al. 2009; Watson 
et al. 2011)

First time in 
human (FTIH)

ECG measurement, heart rate 
and blood pressure are mea-
sured, usually in healthy males; 
it is a placebo-controlled trial, 
with strict inclusion/exclu-
sion criteria (with exclusion of 
females, elderly and volunteers 
with underlying CV diseases or 
those taking additional medica-
tions that may interact with the 
tested drug), where escalating 
doses of drug are tested

(Patat 2000; Buoen 
et al. 2005)

Nonlinear mixed-
effects PK/PD 
modeling; Bayesian 
modeling for (1) 
analysis of clinical 
data, (2) clinical trial 
simulations, (3) “not-
in-trial” simulation

Thorough QT 
study (TQT)

Clinical trial introduced in 2005 
by ICH to assess QT prolonga-
tion risk; it requires positive 
control treatment arm (using 
moxifloxacin) and manually 
read ECG; QT prolongation 
risk is assessed using “double-
delta” method with a threshold 
of 10 ms

(Anon 2005b)

Pharmacovigi-
lance

Postmarketing safety data moni-
toring, including adverse event 
reporting

FDA Adverse Event 
Reporting System 
(FAERS, http://www.
fda.gov/Drugs/Guid-
anceComplianceRegu-
latoryInformation/
Surveillance/Adverse-
DrugEffects/default.
htm), VigiBase from 
Uppsala Monitoring 
Centre (http://who-
umc2010.phosdev.se/), 
(Dumouchel 1999; 
Clark and Wiseman 
2009)

Bayesian data mining; 
significance analysis 
using relative report-
ing ratio

Table 7.2 (continued) 
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The first section of this chapter provides a summary of CV end points, which are 
collected during preclinical and clinical studies. The following section is dedi-
cated to the modeling of QT interval and contains a description of modeling and 
simulation approaches as well as examples of their application in both preclini-
cal and clinical stages of drug life cycle. This will include (1) early discovery 
phase, where in silico methods are implemented, (2) in vivo studies, where mod-
eling can be beneficial, for example, in optimizing study design as well as (3) in 
clinical trials, and (4) in large patient populations. The remaining sections of this 
chapter are dedicated to CV parameters other than QT interval—namely heart 
rate (HR) and blood pressure (BP), and the application of pharmacometric tools 
in their assessment.

The work presented here is focused on CV safety; however, there are also numer-
ous examples of the use of pharmacometrics in CV diseases. In this case, changes in 
CV parameters are treated as a desired effect, rather than unwanted events that need 
to be avoided, as it is treated here. For more information on the pharmacometrics in 
CV diseases, we refer readers to the book chapter by Mould et al. (2011).

7.2  CV Parameters

There are various undesired CV effects that can be induced by drugs. These include 
signs such as palpitations, hypo and hypertension, arrhythmias, stroke or sudden 
cardiac death, and can range between relatively minor to potentially fatal events. 
To assess the risk of these effects, it is important to monitor biomarkers that can 
provide useful information about changes within the CV system. In this chapter, we 
provide a list of CV biomarkers that are commonly measured during the in vitro, in 
vivo, and clinical tests as listed in Table 7.2.

7.2.1  QT Interval

QT interval is an index of ventricular cell action potential durations (APD; 
Fig. 7.1a) in the heart’s sinus rhythm (Shah 2002). On the electrocardiogram 
(ECG), it is defined as a distance between two distinct waves—Q (onset of ven-
tricular excitation) and T (end of repolarization), as can be seen in Fig. 7.1b, and 
it is usually expressed in milliseconds (ms). Prolongation of QT interval repre-
sents a delay in ventricular repolarization and it can lead to a potentially fatal 
arrhythmia Torsades de Pointes (TdP; Fig. 7.1c; Moss 1999). QT prolongation 
has been used as a surrogate biomarker of TdP and it is currently mandatory to 
assess NCE’s liability to prolong QT interval in preclinical models (Anon 2005a). 
TdP is rare; however, it can degenerate into ventricular fibrillation and can cause 
sudden cardiac death. Risk of drug-induced TdP is one of the major reasons for 
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drug discontinuation and withdrawals and therefore, a primary concern for the 
pharmaceutical industry.

Normal QT interval in healthy humans is defined as ≤ 430 ms for men and 
≤ 450 ms for women. However, it is known that QT interval may be affected by 
many factors other than drug concentrations, for example, changes in HR, circadian 
rhythm, potassium levels, glycemia, food intake, and age (Molnar et al. 1996; Nagy 
et al. 1997; Piotrovsky 2005; Christensen et al. 2010; Chain et al. 2012). It is there-
fore important to take this into account in order to accurately assess the QT prolon-
gation risk. QT interval is routinely corrected for changes in the HR using standard 
methods such as Bazzet’s (1920), Fridericia’s (1920), Van de Water’s et al. (1989) 

R

a

b

c

P

S
Q

QT interval

QRS
complex

PR interval

Torsades de Pointes

Fig. 7.1  a Schematic representation of action potential ( solid line) and its changes due to hERG 
inhibition ( dotted line). b ECG with distinct waves ( P, Q, R, S, T), with normal ( solid line) and 
prolonged ( dotted line) QT interval. c Electrocardiogram of Torsades de Pointes
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formulae, or individual correction factors (Ollerstam et al. 2007a). Also, circadian 
rhythm effects can be adjusted for, for example, by including oscillatory component 
which describes circadian variation in the modeling of drug-induced QT changes 
(Piotrovsky 2005; Chain et al. 2011).

7.2.2  Heart Rate

HR can be measured from a pulse rate or directly from ECG, as an inverse of a dis-
tance between two consecutive R waves. Normal range for resting HR is between 
60 and 100 beats per min (defined by the American Heart Association, www.heart.
org) and it depends on various factors such as age, body weight, and level of fitness. 
Rapid increases in HR, for example, induced by drugs can lead to ventricular tachy-
cardia and potentially cause sudden cardiac death; therefore, it is an important pa-
rameter measured during safety assessment. Decrease in HR, bradycardia, is also a 
common clinical problem, although its relevance is poorly understood (Ovsyshcher 
and Barold 2004).

7.2.3  Blood Pressure

Along with the HR, BP is the main vital sign measurement taken during clinical 
trials. It is usually measured on the upper arm in humans and expressed as systolic 
over diastolic pressure, with normal range being less than 120 mmHg for systolic 
pressure and less than 80 mmHg for diastolic pressure (defined by the American 
Heart Association, www.heart.org). Increased BP (hypertension) has been associ-
ated with an increased risk of age-specific death from a stroke, ischemic heart dis-
ease, and other vascular diseases (Prospective Studies Collaboration 2002). Low 
BP (hypotension) is less dangerous; a common form of hypotension is orthostatic 
(postural) hypotension, which occurs during sudden changes of position and is of-
ten associated with various medications. Although the symptoms are usually limited 
to dizziness, orthostatic hypotension can lead to falls and injuries, which can be 
especially hazardous in elderly patients (Tonkin and Wing 1992; Verhaeverbeke and 
Mets 1997; Shibao et al. 2007).

7.2.4  QRS Complex

Similar to QT, QRS complex can be measured directly from ECG (see Fig. 7.1b) 
and it includes ventricular activation, depolarization, and contraction (John and 
Fleisher 2006). Normal duration of QRS complex is usually less than 120 ms (John 
and Fleisher 2006). Prolongation of QRS interval has been associated with inhibi-
tion of Na+ channel (hNav1.5), which is responsible for the depolarization of car-
diomyocytes. Inhibition of this cardiac channel results in a decrease in the rate of 
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depolarization and consequently slows the velocity of excitation conduction. Al-
though QRS prolongation is not currently addressed in the ICH guidelines, phar-
maceutical industry is recognizing its importance and there is an increasing need to 
better understand drug-induced effects on Na+ channel (Gintant et al. 2011; Harmer 
et al. 2011; Erdemli et al. 2012). QRS prolongation is thought to be associated with 
proarrhythmic risk, especially in patients with underlying cardiac diseases (Kashani 
and Barold 2005; Adesanya et al. 2008; Sumner et al. 2009). The risk in healthy 
humans however, is still not fully understood (Seger 2006).

7.2.5  PR Interval

PR interval can be measured on the ECG as the interval between the beginning of 
the P wave and the beginning of the QRS complex (see Fig. 7.1b) and it represents 
atrial activity. Normal values range between 120 and 200 ms and prolongation of 
the interval of more than 200 ms is known as first-degree atrioventricular block 
(John and Fleisher 2006). It has been suggested that prolongation of PR interval 
can be linked to an increased risk of atrial fibrillation (Cheng et al. 2009). PR inter-
val prolongation can be caused by inhibition of Na+ or Ca2+ channels (Nav1.5 and 
hCav1.2, respectively).

7.2.6  Beat-to-Beat Variability

Beat-to-beat variability of the QT interval is a measure of repolarization instabil-
ity. It has been shown that beat-to-beat variability predicts the risk of TdP well 
and it was suggested that it can be potentially used as a complementary marker 
of proarrhythmic risk (Hondeghem et al. 2001; Hinterseer et al. 2008; Jacobson 
et al. 2011; Varkevisser et al. 2012). New approaches have been developed to assess 
this temporal variability, for example tangent method (Dota et al. 2002), template 
matching (Berger et al. 1997), and delta T50 method (Abrahamsson et al. 2011).

7.2.7  Cardiac Contractility

Cardiac contractility represents the capacity of the muscular tissue of the heart to 
contract (see for example, Mason et al. 1971). Cardiac contractility modifications 
can lead to clinical signs such as hypo or hypertension, orthostatic deficit or palpita-
tions, which have been reported in 43 % of phase I studies (Moors et al. 2007; Lainee 
2009). Currently, there are no defined guidelines for the assessment of cardiac con-
tractility; however, the importance of screening for the potential contractility issues 
has been recognized by pharmaceutical industry and recently its assessment became 
a standard within preclinical development (Moors et al. 2007; Norton et al. 2009;  
Cooper et al. 2011; Bazan et al. 2012).
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7.3  Modeling of QT Interval

7.3.1  PK/PD models

QT effects in clinical trials can be quantified in relation to the unbound plasma con-
centration of the drug through the use of pharmacokinetic and pharmacodynamic 
(PK/PD) modeling (see for example, Derendorf and Meibohm 1999; Gabrielsson 
and Weiner 2000; van der Graaf and Gabrielsson 2009). In this approach, QT re-
sponse is related to the concentration of the drug by describing concentration–QT 
relationship. Common PD models used to describe QT response include linear 
(Eq. 7.1), log–linear (Eq. 7.2), simple and sigmoid Emax (Eq. 7.3):

 (7.1)

 (7.2)

 
(7.3)

where E is the effect, C is the concentration of drug, SL is a slope of a linear con-
centration–effect relationship, m is the slope of the linear segment of the concentra-
tion–effect curve, Emax is the maximum effect, EC50 is the concentration at which 
the effect is half of Emax, and γ is Hill exponent, which in a simple Emax model is 
equal to 1. It is also possible to use alternative parameterization of the Emax models 
(see for example, Gabrielsson and Weiner 2000; Piotrovsky 2005; Groth 2008).

The QT interval can be affected by factors such as changes in HR, circadian 
rhythm, gender, or age. Therefore, in order to accurately evaluate the effect of the 
drug, these factors need to be taken into account. An example of a comprehensive 
PK/PD model, which implements drug effect as well as changes in HR and circa-
dian rhythm is shown in Eq. (7.4) below (Piotrovsky 2005):

 (7.4)

where E is a drug-induced effect and can be replaced by any PD models shown in 
Eqs. (7.1–7.3), QT0 is a QT baseline parameter, which may differ between males 
and females, RRα is a correction term for RR change, and CIRC represents the 
circadian rhythm, which can be described in terms of multiple cosine functions 
with different periods. An example of circadian rhythm function, which consists of 
three cosine functions with periods of 24, 12, and 6 h is shown in Eq. (7.5) below 
(Piotrovsky 2005):
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where Ax correspond to individual amplitudes and xφ  represent phases of the circa-
dian variation component. Similar implementation was also presented recently by 
Chain et al. and is shown in Eq. (7.6; Chain et al. 2011):

 

(7.6)

where QT0 is the intercept of the QT–RR relationship and α is the correction factor 
for HR.

Drug-induced QT response can be instantaneous, i.e., in a situation where a max-
imum QT effect is observed at the time of maximum drug concentration. In such 
cases, QT effect can be directly linked to the drug exposure. However, often a time 
delay between plasma concentration and effect (hysteresis) is observed. It is then 
necessary to account for this time delay, which can be done by applying effect com-
partment or indirect response models (Holford and Sheiner 1981; Dayneka et al. 
1993; Jusko and Ko 1994; Gabrielsson and Weiner 2000).

In recent years, population PK/PD models have become increasingly popular in 
the assessment of concentration–effect relationship in CV safety. The advantage of 
using population models is the ability to estimate the between-subject variability 
(BSV) i.e., in order to understand how PK and PD parameters may vary across sub-
jects. Additionally, it is also possible to characterize “unexplained” variability in the 
population, which is the remaining variability, still observed after all other sources 
have been taken into account. This may include, for example, variability due to the 
measurement error. In addition to the estimation of various sources of variability, 
population models also allow to relate covariates such as gender, body weight, renal 
function, to PK/PD parameters. The approach that is commonly used in population 
modeling is the nonlinear mixed effect method, which is valuable especially if only 
sparse data are available. In this method, the population parameters are estimated 
as well as Bayesian estimates of individual subject parameters. One of the limita-
tions in this method can be lack of identifiability of some parameters, especially if 
complex models are applied with very sparse data that may not always cover suffi-
cient dynamic range. As a result, it may not be possible to estimate parameters with 
confidence or alternatively, the analysis may result in parameters that are physi-
cally implausible. Detailed information about population modeling and nonlinear 
mixed effect methods can be found in Sheiner and Beal (1980, 1982), Karlsson 
et al. (1995), Yano et al. (2001), Tornøe et al. (2004), and Pillai et al. (2005).

Interestingly, the use of Bayesian hierarchical models has been rather limited 
in the field of PK/PD modeling of QT effects. These methods are computationally 
intensive and run times may take much longer when compared to the maximum 
likelihood methods. However, since the introduction of the Markov chain Monte 
Carlo techniques, they have gained popularity thanks to their many advantages. One 
of them is the fact that there is no requirement for linearity or normality in the data 
and so inference is based directly on the desired model. Additionally, the posterior 
distribution, which is obtained in the form of a random sample, fully reflects all ac-
knowledged sources of uncertainty. In the Bayesian approach, the uncertainty about 
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a parameter is expressed in terms of probability and it can be interpreted in a natural 
and transparent manner. In the case of QT interval, it can be for example, expressed 
as a probability of 10 ms increase at a given drug concentration. An example of such 
probability curves produced using Bayesian modeling of QT prolongation can be 
found in Fig. 7.2. Another advantage is the ability to incorporate prior information 
into an analysis. For QT modeling, this can be, for example, prior results from an 
earlier clinical trial or information about QT–RR relationship and circadian vari-
ability. In depth review about the Bayesian approach and its use in PK/PD modeling 
can be found in Lunn et al. (2002).

7.3.2  Preclinical Models for Predicting Human QT Liability

Since QT prolongation is an important concern in drug development, it is beneficial 
to detect it as early as possible, ideally before the compound is tested in humans. If 
a compound is associated with QT prolongation and torsadogenic risk, it would be 
advantageous to exclude it from the pipeline early and avoid further costly develop-
ment. Also, most importantly, it would be beneficial from a safety point of view, as 
it would avoid unnecessary exposure of human volunteers to potentially harmful 
drugs.

Pharmaceutical companies have employed a range of preclinical assays and tests 
to eliminate torsadogenic risk and to support the selection of the most appropriate 
candidate for testing in human trials. The main techniques employed during pre-
clinical development are listed in Table 7.2. In the subsequent paragraphs of this 

Fig. 7.2  a Concentration–QT effect relationships for three QT prolongers: sotalol, moxifloxacin, 
and grepafloxacin and b corresponding probability curves for QTc prolongation ≥ 10 ms, obtained 
through Bayesian modeling. (Reprinted with permission from (Chain et al. 2011)
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section, we provide a description of various mathematical methods that utilize data 
provided during these tests and which can be used to predict human QT liability.

7.3.2.1  In Silico Modeling Using In Vitro Data

The mechanism underlying QT prolongation and the occurrence of TdP is complex 
at cellular tissue and organ level. QT interval is determined by a balance between 
inward and outward ion currents, and its prolongation is primarily caused by a 
blockage of the delayed rectifier potassium current (IKr), encoded by human ether-
a-go-go-related gene (hERG; Curran et al. 1995). When hERG is blocked, it causes 
a reduction in repolarizing currents and hence an increase in the time during which 
membrane voltage remains at elevated levels. This can be seen as an increase in 
cell’s APD, as it is schematically represented in Fig. 7.1a. Subsequently, an increase 
in APD gives rise to QT prolongation (Fig. 7.1b). However, the occurrence of TdP 
cannot be explained purely by an inhibition of a single ion channel. Some drugs 
can block other channels, in addition to hERG, which may affect QT response (Bril 
et al. 1996; Martin et al. 2004). For example, if drug inhibits both hERG and other 
channel that carry currents which oppose repolarization (such as fast sodium chan-
nel, INa), it may result in a situation, where a drug is a hERG blocker; however, it 
does not cause QT prolongation (Schmitt et al. 2008). For this reason, most pharma-
ceutical companies include other ion channels, in addition to hERG, in their in vitro 
high-throughput screens (Harmer et al. 2011; Wible et al. 2008; Chen et al. 2009).

Various mathematical models have been developed to gain an understanding of 
the underlying processes in ion channel kinetics and action potential (AP) proper-
ties. These include models developed by: Winslow et al. (1999), Fox et al. (2002), 
Hund and Rudy (2004), Mahajan et al. (2008), and Grandi et al. (2010). Figure 7.3 
shows a schematic representation of one of the models, a mathematical canine ven-
tricular cell model developed by Hund and Rudy (2004). These mathematical mod-
els have been adapted by the pharmaceutical industry to simulate drug-induced ef-
fect on AP using experimental in vitro data from various ion channels. For example, 
Bottino et al. demonstrated how IC50 values from five ion channels (hERG, INa, sus,  
ICaL, IKs, Ito1, INaCa) can be used to simulate canine transmural ECG, which was 
used as an analog for the human ECG (Bottino et al. 2006). More recently, Davies 
et al. presented an in silico AP (isAP) model, which was able to predict changes in 
canine myocyte APD using concentration–effect curve data from five ion channels 
(hNav1.5, hCav1.2, hKv4.3/hKChIP2.2, hKv7.1/hminK, and hKv11.1). Authors 
showed that they were able to account for physiological inter-dog variability within 
the model; they also considerably reduced variation within the dataset by using only 
one source to generate all ion channel data, IonWorks (Schroeder et al. 2003). The 
developed isAP model was validated using 53 compounds, which included both 
ion channel inhibitors and simulators, as well as both single and multi-ion channel 
blockers. Predictions made by isAP were compared to the experimental measure-
ments of APD performed using canine left ventricular midmyocardial myocytes and 
the model was found to be 81 % predictive (Davies et al. 2012). A similar approach 
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has been also adapted by Mirams et al. (2011). These authors used IC50 data from 
three ion channels: hERG, INa, and ICaL from 31 drugs to perform in silico modeling 
of ventricular cells and predict changes in APD. Simulations were performed for 
rabbit, dog, and human ventricular myocytes using various pacing protocols. The 
predictive power was then quantified by comparing predictions from the in silico 
models to the risk of TdP, using risk classification introduced by Redfern et al. 
(2003). These authors showed that they were able to accurately predict TdP risk 
for both pure hERG and multi-ion channel blockers, and demonstrated that APD 
prolongation correlated best with the torsadogenic risk out of all evaluated in silico 
markers (Mirams et al. 2011).

The examples presented above show that in silico models can be successfully 
used for compound selection through the assessment of the putative QT liability in 
early stages of drug discovery, namely during lead identification and optimization, 
along with the generation of the high-throughput screening of ion channel activity. 
Mathematical calculations can be performed in a short time, e.g., by using a distrib-
uted computing server, and thus such in silico models can be treated as an additional 
virtual high-throughput screen. It is clear that the use of in silico models can be 
highly beneficial during drug development: From an ethical point of view, it enables 
replacement and reduction of animals (thus addressing the 3R concept: replacement, 
refinement, and reduction, see for example, Fink et al. 2009 or www.nc3rs.org.uk); 
additionally, it can result in cost and time reduction. They can provide additional 

Fig. 7.3  Schematic representation of mathematical canine ventricular cell model developed by 
Hund and Rudy (2004). Symbols: CaMKII Ca2+/calmodulin-dependent protein kinase, JSR junc-
tional sarcoplasmic reticulum, NSR network sarcoplasmic reticulum, PLB phospholamban, CTNaCl 
Na+–Cl− cotransporter, CTKCl K

+–Cl− cotransporter, Iup Ca2+ uptake from myoplasm to NSR, Ileak 
Ca2+ leak from NSR to myoplasm, Irel Ca2+ release from JSR to myoplasm, Ix specific ion currents. 
(Reprinted with permission from Hund and Rudy 2004)
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information about cardiac liability and can therefore help select the most appropri-
ate compounds to be taken forward to the preclinical testing. However, when using 
in silico methods, one should be aware of their underlying assumptions and limita-
tions. For example, predictions are made using in vitro data from cell lines express-
ing cardiac ion channels, which may not always accurately reflect the native state 
of ion channels in vivo. Additionally, the accuracy of the in silico models to predict 
QT risk depends on the complexity of the mathematical model—for example on the 
number of ion channels used, inclusion of G-protein-coupled receptors (GPCRs), 
or kinases, all of which may be affected by a compound and as a consequence have 
an effect on the QT interval. There are also many other “in vivo modulators,” i.e., 
factors that are present in the whole organism but are not accounted for in the in 
silico model. This may include, for example, hormonal regulation, signals from the 
nervous system, or underlying CV diseases.

7.3.2.2  Mechanism-Based Modeling Using In Vitro Data

The discovery of a link between QT prolongation and the inhibition of hERG potas-
sium channel resulted in an establishment of an in vitro hERG assay (see Table 7.2). 
Currently, this screening method is widely used to detect a delayed repolarization 
risk (Brown 2004; Anon 2005a) and usually few ascending concentrations of NCE 
are tested to determine a concentration–effect relationship. Safety margins are gen-
erally calculated as a 30–40-fold difference between hERG IC50 and maximum free 
plasma concentration reached in in vivo or clinical studies (Redfern et al. 2003; 
Gintant 2011). Although these calculations are useful, they do not allow to quanti-
tatively assess the extent of QT prolongation. Such assessment, i.e., a quantifica-
tion of the relationship between in vitro channel inhibition and in vivo/clinical QT 
outcome is possible using mechanism-based PK/PD approach. In this approach, it 
is possible to characterize specific processes that take place between the adminis-
tration of the drug and observed response, such as (1) PKs of a drug, (2) potential 
delays in target site distribution (hysteresis), (3) receptor binding, and (4) activation 
as well as (5) transduction.

With mechanism-based models, it is possible to distinguish between drug-specif-
ic (such as receptor binding) and system-specific parameters (signal transduction) 
and consequently to extrapolate from in vitro to in vivo as well as between species 
(for a review, see Danhof et al. 2005; Ploeger et al. 2009). Even though these mod-
els do not include all complexity of the actual physiological and pharmacological 
processes, they incorporate receptor theory concepts and thus allow predicting ef-
fects in vivo based on the parameters derived from in vitro assays.

The mechanism-based approach was used by Jonker et al., where operational 
model of pharmacologic agonism (Black and Leff 1983) was applied to relate the 
magnitude of hERG inhibition to the clinical QT response for a selective hERG 
blocker, dofetilide (Jonker et al. 2005). The authors linked in vitro properties of the 
drug, i.e., affinity and activity and the unbound plasma concentration to the QT ef-
fect by using the following operational model of agonism:
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(7.7)

where QT0 corresponds to the average QT baseline, QTm is the maximum QT pro-
longation, τ is the transducer ratio, KI is the dofetilide concentration resulting in 
50 % hERG current inhibition, and n represents a slope factor (Jonker et al. 2005). 
The dimensionless parameter τ corresponds to the half-maximum response in the 
hERG assay and it is defined as a ratio of the maximum current inhibition ( Imax) 
to the fraction of inhibited hERG channels. The final model included additional 
parameters, such as system specific development of tolerance with long-term ad-
ministration and the implementation of an effect compartment to account for hyster-
esis. The authors applied a population PK/PD approach to perform calculations and 
therefore were able to estimate the inter- and intraindividual variability. As a result, 
they were able to describe the relationship between the in vitro inhibition of hERG 
and the extent of the QT prolongation in human. This relationship can be seen in 
Fig. 7.4. According to the model, 10 % inhibition of hERG corresponds to 20 ms 
change in QT interval. Similar relationships were reported in a presentation at the 
Modeling and Simulation (M&S) workshop between European Medicines Agency 
(EMA) regulators and European Federation of Pharmaceutical Industries and As-
sociations industry (EFPIA; Visser et al. 2013).

Such model is an important step forward in predicting in vivo and clinical QT 
liabilities using parameters derived from in vitro screens. It provides a potential to 
quantitatively assess proarrhythmic risk in humans at relevant drug concentrations. 
However, since the model was developed using a pure hERG blocker, it is important 
to note that one should be cautious when extrapolating this model to other drugs, 
specifically ones that may potentially affect multiple ion channels. As it was men-
tioned in the previous section, and also highlighted by the authors themselves, in-
hibition or simulation of many channels may affect QT response. Therefore, future 
models need to be developed, that can relate inhibition of multiple ion channels to 
the clinical QT response.
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7.3.2.3  Descriptive and Semi-mechanistic PK/PD Modeling  
Using In Vivo Data

QT interval, along with other ECG parameters and vital signs is often measured 
during in vivo studies using anesthetized and/or conscious animal models (see 
Table 7.2). Since plasma samples are also taken during the studies, it is possible 
to apply PK/PD modeling to describe the concentration–effect relationship. This 
type of analysis in preclinical studies has become increasingly popular in recent 
years and has been used, for example, to describe drug-induced QT changes in rats, 
marmosets, dogs, and monkeys (Ohtani et al. 2000; Ollerstam et al. 2006, 2007a, 
b; Komatsu et al. 2010; Dubois et al. 2011; van der Graaf et al. 2011; Watson et al. 
2011; Chain 2012; Parkinson et al. 2013). This section will provide examples of 
how the application of PK/PD modeling has led to improvements in preclinical 
study design (Sect. 2.2.3.1) as well as development of methods to predict clinical 
QT outcomes based on preclinical data (Sect. 2.2.3.2).

Application to Optimal Study Design

As mentioned in Sect. 2.1, many drugs exhibit a temporal difference between plasma 
concentration and QT response (Le Coz et al. 1995; Hanada et al. 1999; Ohtani et al. 
2000; Ollerstam et al. 2006). This situation can occur, for example, when (1) target 
space is in a separate compartment than plasma, (2) the response is driven by turn-
over, or (3) there is slow on/off target binding (Danhof et al. 2008; Gabrielsson et al. 
2010). The presence of hysteresis can significantly affect the interpretation of study 
results. For example, if it is ignored, it may lead to incorrect calculations of safety 
margins and consequently incorrect predictions of safe clinical doses as illustrated 
by Gabrielsson et al. (2011). It is therefore necessary to account for hysteresis, for 
example by applying an effect compartment model or indirect response models (see 
Sect. 2.1). However, these models can be used only when meaningful data are avail-
able, i.e., when QT measurements are taken at informative time points after drug 
administration. Such meaningful data can be obtained using “time series approach,” 
where measurements are taken during both upswing and downswing of the concen-
tration and response time curves. It can then be used to fit a PK/PD model and fully 
characterize onset, intensity, and duration of response. This type of experimental 
design is thought to have more statistical power in terms of calculating variability 
and confidence intervals (Gabrielsson et al. 2010). It also allows for discrimination 
of system specific properties, such as turnover parameters and drug-specific prop-
erties (for example, Emax, EC50). An example of optimizing experimental design to 
obtain informative data was presented by Ollerstam et al., where authors recom-
mended the use of slow, continuous intravenous (IV) infusions followed by a wash 
out, instead of a rapid, stepwise infusion or a single oral dose (Ollerstam et al. 2006, 
2007a). The authors showed that the concentration range produced by such slow 
infusions was similar to the range obtained after rapid infusions or multiple bolus 
injections regimen; however, in the former approach the increase in concentration 
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was more gradual and therefore less likely to exhibit transient fluctuations, which 
may result in higher variability. As a consequence, the estimation of concentration–
QT effect relationship can be more precise. The authors also highlighted the need 
to collect measurements not only during the infusions but also during the wash-out 
period as these data may provide useful information in case of a delayed QT effect 
(Ollerstam et al. 2007a). Another advantage of using slow infusions is a reduction 
in the unwanted hemodynamic effects. It has been previously shown that the risk 
of TdP and the presence of hemodynamic effects, such as rapid increase in HR 
and tachycardia are related to the rate of infusion (Kleinbloesem et al. 1987; van 
Harten et al. 1988; Carlsson et al. 1993; Detre et al. 2005). These effects have been 
observed in relation to rapid-rise regiments; therefore, the use of slow infusions that 
produce gradual concentration increase is more favorable. Additionally, such slow 
and gradual rise in concentration can also be quickly terminated in cases when seri-
ous adverse effects occur.

Once the preclinical study is optimally designed and the meaningful data are 
collected, the next step is to perform PK/PD analysis in the most appropriate way. 
In another work published by Ollerstam and colleagues, the authors investigated 
various approaches in data processing in order to develop the most optimal method. 
As a result, it was recommended that QT interval should be corrected individually 
for HR and vehicle effects, and the linear correction was found to be most appropri-
ate for this purpose (Ollerstam et al. 2007a). Additionally, the authors highlighted 
the need to exclude from the analysis the QT measurements which follow rapid 
increases in HR. This recommendation is associated with the fact that there is of-
ten a time delay between sudden HR changes and changes in QT interval. It was 
shown that it may take up to few minutes for the QT interval to adapt (Lau et al. 
1988; Batchvarov et al. 2002; Malik 2004; Pueyo et al. 2004). Although the QT/RR 
hysteresis is a known phenomenon, it is often ignored in the analysis of QT data. 
This can potentially lead to an under- or overestimation of the QT response after 
drug administration, therefore it is important to take the abrupt HR changes into 
consideration. This is especially important in preclinical studies where conscious 
animals are used. During these studies, animals are free to move while the CV mea-
surements are taken which can often lead to sudden changes in HR.

Application to In Vivo: Clinical Predictions

An accurate PK/PD description of drug-induced QT effect in preclinical species is 
a first step in translational research. It is a basis for extrapolation of preclinical PK/
PD models into humans and predicting clinical effects at the intended drug expo-
sures. The next step is to understand and quantify the translational link between two 
species. The rationale behind this type of translational analysis is to describe and 
quantify PK/PD relationship in preclinical animal and in human and then compare 
drug-specific PK/PD parameters between two species. For example, if both animal 
and human concentration–QT response relationships are described using a linear 
PD model (see Eq. 7.1), the resulting slope parameters can be directly compared 
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between two species. Similarly, if the Emax model is used (see Eq. 7.3), it is then pos-
sible to compare the respective EC50 values. Consequently, if the drug-specific pa-
rameters are consistent across two species, this knowledge can be then used to make 
clinical predictions for future compounds using preclinical PK/PD parameters.

An example of such translational analysis between conscious dog and human 
was recently presented by Parkinson et al. using four drugs—two proprietary com-
pounds along with moxifloxacin and dofetilide (Parkinson et al. 2013). The authors 
used PK/PD modeling to (1) establish a relationship between QT response in dog 
and man at matching free concentrations of the drug and to (2) investigate whether 
such a relationship is consistent across all compounds or if it depends on the under-
lying mechanism(s) of action. The results showed that although there was high vari-
ability in the data, the translational relationship was similar for both pure hERG and 
multi-ion channel blockers at low delta-QTc intervals. The developed translational 
relationship between dog and human can be found in Fig. 7.5 and according to this 
analysis, a QTc change of 2.5–8 ms in dog corresponds to a 10-ms change in man 
(Parkinson et al. 2013). Although this analysis was limited to four compounds and 
more examples are needed in order to fully understand the translational relationship 
between two species, it is nevertheless an important step forward in development of 
quantitative predictive method for the assessment of clinical QT liabilities.

Fig. 7.5  Translational relationship between absolute QT change in dog ( x-axis) and human 
( y-axis). Data from four compounds are plotted, and each compound is represented by a different 
symbol. Lines correspond to 95 % confidence interval. The insert represents a zoomed in initial 
section of the plot. (Reprinted from Parkinson et al. 2013, with permission from Elsevier)
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The translation between dogs and humans was also assessed recently by Dubois 
et al. using moxifloxacin (Dubois et al. 2011) and by Chain et al. using moxifloxa-
cin, sotalol, and cisapride (Chain 2012). In this work, a Bayesian PK/PD approach 
was used to predict clinical QT effects. Preclinical and clinical outcomes were ex-
pressed as a probability of QT prolongation greater than or equal to 10 ms at a 
given exposure level. Using this method, the authors showed that it was possible to 
distinguish between drug- and system-specific properties, which can allow direct 
comparison of drug-specific properties across two species. The results showed that 
dogs were less sensitive to the QT prolongation than humans, as judged by the 
slopes of their concentration–effect relationship and the concentration range of QT 
prolongation probability (Dubois et al. 2011).

Similar translational analyses were performed for other preclinical species. For 
example, Watson et al. applied PK/PD modeling to describe QT response induced 
by moxifloxacin in monkeys. The authors used a direct linear relationship between 
plasma concentration and QT response, described earlier in this chapter in Eq. (7.1), 
and then compared the slope of developed relationship to the slope values reported 
for humans in literature. The comparison revealed that although the slope of the 
concentration–QT response relationship in monkeys was lower than in humans, 
the parameters from both species were within threefold of mean estimate. There-
fore, it was concluded that there is a good agreement between two species. In ad-
dition, this work confirmed the conclusion drawn earlier by Jonker et al. (2005) 
that 10 ms increase in QTc can be induced by systemic exposures which give rise 
to less than 10 % blockage of the hERG channel in vitro (van der Graaf et al. 2011;  
Watson et al. 2011).

When performing such translational analyses, it is important to remember that the 
translational relationship between preclinical animal and human may be different 
depending on the preclinical species used. For example, monkeys were found to 
be more sensitive than dogs to QT prolongation caused by moxifloxacin (Dubois 
et al. 2011). On the other hand, their sensitivity to QT prolongation was very similar 
to that of marmosets (Komatsu et al. 2010; Watson et al. 2011). Furthermore, the 
translational relationship between a given preclinical animal and human may also 
be influenced by a measurement method or other factors such as anesthesia. For 
example, Ollerstam et al. demonstrated that QT response in dogs may be signifi-
cantly different depending on the type of dog model used. Specifically, the authors 
compared concentration–QT responses from three types of dog models, namely 
conscious, paced, and anesthetized, using four known QT prolongers (dofetilide, 
moxifloxacin, cisapride, and terfenadine). The analysis demonstrated that anesthe-
tized dogs had much lower sensitivity to QT prolongation than either conscious or 
paced dogs. The authors suggested that these differences can be attributed to the 
influence of anesthesia on the metabolic processes in animals and/or a direct effect 
of anesthetics on the QT interval (Ollerstam et al. 2007b).

The overview presented in this section shows that there is a growing body of 
evidence that thorough preclinical QT (TpQT) evaluation could provide an effec-
tive and efficient quantitative decision framework for derisking of QT liability in 
man (van der Graaf et al. 2011). A combination of in vitro assays and in vivo studies 



208 J. Parkinson et al.

together with sophisticated mathematical approaches such as in silico models and 
PK/PD offer a comprehensive package to assess cardiac liabilities. These meth-
ods can help not only in detection and early discontinuation of potentially harmful 
substances before they are tested in humans but alsocan provide information about 
more subtle CV effects, which could potentially cause issues later in clinical devel-
opment.

7.3.3  Clinical QT Modeling

7.3.3.1  QT Modeling in Clinical Studies

Given the potentially fatal consequences of QTc prolongation, a concentration-de-
pendent adverse drug reaction, regulatory authorities have reacted to this relatively 
recent “pharmacoepidemic” by denying or delaying the approval of a number of 
new drugs and placing severe restrictions on the use of many old and some new 
drugs because of concerns arising from their potential to prolong the QT/QTc in-
terval. For the implications for public health, scientific efforts have faced a parallel 
movement driven by health authorities, which have imposed the introduction of 
supposedly effective measures for the approval of novel compounds (Chain 2012). 
In 2005, the guidance introduced and mandated the performance of thorough QT 
(TQT) studies as the basis to systematically evaluate and demonstrate a compound’s 
liability to cause QTc prolongation (ICH E14 guideline). In addition to outlining 
the assessment procedures for evaluating prolonged ventricular repolarization, the 
ICH E14 document requires the use of a positive control and supratherapeutic doses 
of the investigational drug to ensure accuracy and sensitivity of the experimental 
protocol (Anon 2005b). Suggestions are also given regarding the timing of the stud-
ies as well as the methodologies and interpretations used in the evaluation of QT 
measurements.

The primary analysis of a TQT study is not a pharmacometric analysis, but an 
analysis based on the “double-delta” method, where the time-matched mean QTc 
interval difference between active and placebo treatments, both adjusted for base-
line, is taken. The result of the assessment must exclude 10 ms to be deemed safe, 
i.e., a negative study (Anon 2005b). Requiring that the largest time-matched mean 
difference between the drug and placebo QTc interval to be around 5 ms or less 
implies that the one-sided 95 % confidence interval (95 %-CI) should exclude an ef-
fect of > 10 ms for every single measurement. This analysis has some issues, which 
is reviewed in more detail by Boos et al. (2007), Tsong et al. (2008), and Chain 
(2012). For example, the drug exposure and hence the underlying concentration–ef-
fect relationship, which determines the clinical relevance of drug-induced effects 
are not taken into an account (Rohatagi et al. 2009; Chain et al. 2011). Many au-
thors have previously highlighted the importance of establishing the relationship 
between drug concentrations and changes in QTc interval and provided examples 
that illustrate how this type of assessment has been useful during regulatory review 
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(Gobburu 2007; Garnett et al. 2008; Zaręba 2007; Bloomfield and Krishna 2008). 
Such assessment can therefore be a powerful alternative method to the double delta 
or any time point-based analysis. In particular, nonlinear mixed effects modeling of 
the concentration–QT relationship, mentioned in the previous section, allows the 
integration of data across all time points as well as all available treatment groups. 
Moreover, it relies on individual responses, instead of averaging the QT response at 
each time point, which enables better understanding of the uncertainty in response 
as well as the impact of outliers (Bloomfield and Krishna 2008).

Along with modeling and simulation techniques, one additional proposal is to 
consider the integration of ECG measurements in other mandatory clinical trials 
to generate additional evidence in support of establishing the CV safety profile of 
the compound. Given the statistical and scientific issues, the ethical burden and fi-
nancial consequences of a TQT study, which is currently mandatory, the feasibility 
of using first time in human (FTIH) studies as the basis for evidence synthesis to 
investigate the propensity for proarrhythmic effects is a valuable alternative. FTIH 
studies (see Table 7.2) are a mandatory step in the drug development process. As 
it was reviewed by Chain (2012), in principle, the doses or dose range evaluated 
during escalation could enable the evaluation of the concentration–effect curve, 
providing evidence for drug effects not only at therapeutic level but also at suprath-
erapeutic levels. From a safety and tolerability perspective, PD measures are moni-
tored frequently or continuously throughout the dosing interval in parallel to PK 
sampling. In addition, the possibility of including a benchmark or positive control 
arm in a typical FTIH trial is not entirely excluded. The many historical studies with 
moxifloxacin (Florian et al. 2011) can be used in an integrated manner as bench-
mark or as priors during data analysis. Finally, in the instance where a TQT study is 
not feasible due to ethical considerations (see for example, Rock et al. (2009), regu-
latory authorities often rely heavily on FTIH studies as well as preclinical studies 
where QT prolongation was assessed. Thus, the limited information available can 
be enhanced by the incorporation of modeling and simulations results.

7.3.3.2  PK/PD Simulations in Clinical Studies

In Sect. 2.2, we have provided examples of the use of pharmacometric tools in pre-
clinical development, where they can be applied to describe, explain, and predict 
clinical QT liabilities, improve decisions on compound selection during drug de-
velopment, and to help design of clinical trials. Model based methods, which have 
increased in popularity in recent years, have also led to generation of new tools that 
can be used in clinical drug development. Here, modeling can be used to analyze 
study results, as it was mentioned in the previous section, but more importantly, it 
can also be applied to perform extrapolations to new situations. This can be benefi-
cial for regulatory reviews and approvals after late phase clinical studies.

These extrapolations are possible through the computer simulations of clinical 
trials (CTS). In this approach, the existing knowledge of PK and PD properties 
of the drug is gathered and then used to simulate various hypothetical scenarios 
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of clinical trials (for a review, see Aarons et al. 2001; Girard 2005; Holford et al. 
2010). This approach provides an opportunity to explore various study designs 
prior to actual experiments—for example, to investigate scenarios such as vari-
ous population size with different sets of demographic features (e.g., only females, 
only patients at a certain age, or with a certain average HR value), various dose 
range and regimen, sampling scheme, etc. Additionally, it is possible to evaluate 
the consequences of protocol deviations, e.g., by simulating dropout and treatment 
compliance. In the case of QT prolongation, CTS can be valuable for a design of the 
most appropriate dosing regimen that may reduce drug-induced QT prolongation or 
to select the maximal dose at which the QT prolongation is absent. However, it is 
important to remember that CTS must be based on an accurate PK/PD model, sup-
ported by existing data. If the underlying model is not informative, e.g., in a case 
when appropriate data were not collected (for example, if there are no data available 
from females or elderly patients), extrapolating to many hypothetical scenarios will 
not be possible. The requirement for high-quality data that support CTS is empha-
sized by a common expression “garbage in, garbage out” and should always be 
remembered when performing extrapolations.

An example of application of PK/PD simulation in management of QT prolonga-
tion was presented by Isbister et al. The authors performed computer simulations 
using a previously developed PK/PD model, in order to establish guidelines for the 
management of citalopram overdose, a drug that is known to cause QT prolongation 
at high exposures (Isbister et al. 2006). As a result, they were able to (1) establish 
a minimum dose after which decontamination with single-dose activated charcoal 
was recommended, (2) establish a minimum dose, after which additional cardiac 
monitoring was needed, as well as (3) determine minimum monitoring time for 
patients who overdosed the drug. In addition, simulations provided information to 
develop guidelines for dose adjusting in elderly patients, women, and patients with 
underlying cardiac diseases. This study illustrated how mathematical simulations 
can be utilized to help clinicians to decide which patients require treatment after 
drug overdose, e.g., in the form of decontamination and/or additional cardiac moni-
toring. Similar approach was also used to establish guidelines for reducing risk of 
QT prolongation and TdP in methadone users (Florian et al. 2012). Simulations 
were proven successful in finding maximal dose below which QT interval was not 
prolonged above a certain threshold. It was also possible to identify factors that may 
contribute to the methadone-induced QT prolongation, such as gender or use of 
concomitant medications or substances that can additionally affect hERG channel, 
such as cocaine (Florian et al. 2012).

Clinical trial simulations can also be valuable in choosing the most optimal 
method of QT data analysis. This approach has been presented by Bonate et al., 
where the authors explored the power of various metrics that can be used to analyze 
QT data, such as maximal QT change from baseline, maximal QT interval or inclu-
sion of QT baseline as a covariate. Simulations using different metrics revealed that 
area under the QT interval time curve with baseline QT interval as a covariate was 
the most powerful test to detect drug-induced QT changes (Bonate 2000).
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7.3.3.3  Prediction of CV Risk in Patient Population

Despite numerous efforts aimed at improving signal detection of CV events for 
new medicines (Haverkamp et al. 2000; Netzer et al. 2001; Shah and Hondeghem 
2005), none of them have focused on what actually happens after the drug has been 
approved and released into the general population. Although many postmarket-
ing surveillance trials and spontaneous adverse events reporting have been used 
to monitor the incidence of supraventricular arrhythmias, TdP, and other safety 
events (Dekker et al. 1994; de Bruyne et al. 1999; Montanez et al. 2004), there is 
still an important advantage in knowing what can be expected so that mitigation 
plans can be made in advance. Furthermore, inclusion and exclusion criteria are 
imposed on clinical trial protocols to mitigate risk and prevent the most vulnerable 
patients from exposure to an experimental agent for which the risk to benefit ratio 
is unknown at the time of the investigation. Subsequently, however, drug prescrip-
tion is not restricted or contraindicated for those patients who were excluded dur-
ing the clinical development phase. Implicitly, the current practice imposes the 
assumption that such inclusion/exclusion criteria do not alter treatment outcome. 
Inferential methods offer an opportunity to address this issue in a more quantitative 
and systematic manner.

Many other causal factors are often present, which significantly affect the ob-
served QTc values in the real-life patient population. In fact, previous publications 
showed that heart failure, hypertension, diabetes and myocardial infarction all 
increase the risk of QTc prolongation (Makkar et al. 1993; Choy et al. 1999; Now-
inski et al. 2002; Torp-Pedersen et al. 1999). In addition to comorbidities, concomi-
tant medications can also be a major contributor in prolonging the QTc intervals. 
The crucial question from the regulatory perspective is “How efficient and reliable 
are the pre-approval clinical trials in identifying the clinical risk of TdP, given the 
patient population enrolled, background noise arising from spontaneous intraindi-
vidual variability in QTc interval and the relatively low frequency of the clinically 
significant drug-induced effect?” (Bonate and Russell 1999).

Primarily, safety trial designs are highly efficacy oriented. The number of sub-
jects exposed to the NCE is powered to show benefit rather than to pick up signals 
from rare but potentially fatal adverse events and no formal procedures exist to 
mitigate the impact of such differences or support the management of CV risk in 
the target population. Many subgroups of patients, especially those most at risk of 
TdP during the uncontrolled clinical use, exposed to the drug in question are usually 
excluded from these trials. These include: (1) females, (2) the elderly, (3) those with 
predisposing cardiac or noncardiac diseases associated with diminished repolariza-
tion reserve and therefore greater susceptibility to prolongation of the QT interval, 
(4) those with pharmacogenetic defects of drug metabolizing enzymes or pharma-
cological targets such as the potassium channels, (5) those susceptible to bradycar-
dia or electrolyte imbalance, or (6) those receiving drugs with a potential for PK or 
PD interactions (Shah 2004, 2005). Therefore, the scope for detecting drug–drug or 
drug–disease interactions in clinical trials is very limited.
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Given the patient population enrolled, the background noise (arising from spon-
taneous intraindividual variability in QTc interval) and the relatively low frequency 
of clinically significant drug-induced effects, clinical trials may or may not accu-
rately detect the frequency and intensity of QTc interval prolongation. In fact, it is 
known that the proarrhythmic threshold can vary across compounds with frequency 
of such events ranging from approximately 1 in 100 (for halofantrine) to 1 in 50,000 
(for terfenadine; Shah 2004). The evolving concepts in risk management will inevi-
tably lead sponsors, regulatory agencies, and other stakeholders to consider how 
to best evaluate causality and identify the contribution of other factors determin-
ing increases in QTc interval and consequently in CV risk in the target population. 
Thus, there is a need to widen the views on risk management beyond the evolving 
perspective from clinical pharmacology experts and regulators, i.e., that the liability 
for QTc interval prolongation cannot be assessed accurately without an assessment 
of the concentration–effect relationships (Garnett et al. 2008). The concept of “not-
in-trial simulation,” in theory, enables quantitative evaluation of the implication of 
all factors contributing to QTc interval prolongation in the real-life population, in 
addition to the observed drug effects investigated during clinical trials.

Model-based drug development (MBDD) principles offer advantages in the de-
velopment and the application of pharmacostatistical models of drug efficacy and 
safety from preclinical and clinical data, to improve drug development knowledge 
management and decision making (Kola and Landis 2004; Food and Drug Ad-
ministration 2004). It is also possible to utilize the techniques to make inferences 
about drug exposure in patients and evaluate in an integrated manner, how different 
covariates and sources of variability affect the observed QTc values in real-life pa-
tients. In contrast to typical clinical trial simulations (Chan and Holford 2001; Gob-
buru and Marroum 2001), “not-in-trial” simulations allow the integration of PK/PD 
relationships. It can be applied to characterize the role of design factors, which have 
been omitted or excluded from a randomized trial. Thus, this novel approach will 
represent a natural extension of ongoing efforts within the pharmaceutical industry 
to improve safety signal detection where pharmacological basis is established for 
the assessment of causality, discriminating drug-induced from other (drug-unrelat-
ed) effects (Pater 2005; Lalonde et al. 2007; Pollard et al. 2008; DiMasi et al. 2010; 
Laverty et al. 2011). Specifically, safety data can be derived from epidemiological 
or pharmacoepidemiological studies, which are planned and performed after drug 
approval. It is feasible to consider integrating clinical trial and epidemiological data 
for the purpose of signal detection and improve risk management. As Black ex-
plained, “the false conflict between those who advocate randomized trials in all 
situations and those who believe observational data provide sufficient evidence 
needs to be replaced with mutual recognition of the complementary roles of the two 
approaches” (Black 1996). Others have also advocated the synergistic potential for 
using both kinds of data to aid decision making (Atkins 2007; Landewe and van der 
Heijde 2007; Hannan 2008; Yang et al. 2010).

In summary, simulation techniques can play an important role in the integration 
of clinical trial and epidemiological data for the prediction and interpretation of 
safety findings. The assessment of estimating the overall increase in QTc intervals 
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must take into account different sources and contributors. Information of nondrug 
induced causal factors can be quantified using epidemiological techniques and in-
corporated with the drug-induced evaluation for the assessment of the overall effect.

7.4  Pharmacometrics in the Assessment of HR

7.4.1  Preclinical Models for Predicting Human HR 
Liability

Previous sections of this chapter provided multiple examples of the use of modeling 
and simulation in the assessment of QT prolongation in both preclinical and clini-
cal drug development. Such extensive work resulted in great improvements in the 
understanding of the underlying mechanisms of QT prolongation and development 
of new methods in its assessment as well as in predicting the clinical outcome. Un-
fortunately, a lot less work has been done on other CV parameters, such as BP or HR 
(Howgate 2013). As a consequence, we have a limited knowledge on the mecha-
nisms that underlie changes in these parameters and hence limited tools to assess 
their liability in humans. For example, it was recently highlighted that dog is a poor 
preclinical model for predicting changes in HR and BP in human, even though it is 
very valuable in predicting QT prolongation (Ewart et al. 2013).

In fact, only very recently researchers started to apply PK/PD modeling tech-
niques to understand the concordance between preclinical species and man for HR. 
An example of such work was presented by Langdon et al., where authors used 
PK/PD modeling to describe drug-induced HR changes in dogs and humans and 
performed an analysis of the predictive value of the preclinical model (Langdon 
et al. 2010). The approach used was similar to the semi-mechanistic method de-
scribed in Sect. 3.3.2—i.e., a direct linear model (Eq. 7.1) was applied along with 
the implementation of circadian rhythm to account for daily variation in HR. The 
resulting concentration–HR response profiles were then compared between two 
species. The analysis revealed that both dogs and humans were equally sensitive 
to HR changes; additionally, the authors were able to successfully predict human 
HR response using slope (i.e., drug-specific parameter) of the concentration–effect 
relationship from the dog (Langdon et al. 2010). Although this work was limited to 
only one compound, with unknown mechanism that underlie CV changes, it is an 
important step toward integrating the use of PK/PD modeling in the assessment of 
HR changes in preclinical species and building a translational model to predict the 
clinical outcome.

Other examples of the application of PK/PD modeling in the assessment of HR 
include the development of preclinical turnover model of biorhythms in rats pub-
lished by Sällström et al. (2005). The complex model described baseline values for 
HR, BP, and temperature and their characteristic changes during the 24-h period, 
taking into account the asymmetric patterns and differences between day and night. 
The final model also included hypothermic response, tolerance development, and 
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the effects due to animal handling. Such model is of great value as it can help to 
separate the actual drug effect from biorhythms. This is especially important in 
preclinical studies, where animal handling (for example, during drug administration 
or while changing water bottles) can introduce disturbances in CV measurements. 
An understanding of asymmetric patterns and differences between day and night in 
biorhythms is also valuable for optimal study design, for example, when planning 
a dosing regimen or laboratory settings, such as 12:12 light–dark cycle (Sällström 
et al. 2005).

7.4.2  Application in Clinical Studies

In recent years, some effort has been made in the development of a global model 
that could describe basic control mechanisms and systems in the CV system, such as 
baroreceptor loop or systemic and pulmonary circulation. Such model could be used 
to simulate CV parameters—HR and BP. Complex mathematical models have been 
developed which includes, for example, work by Kappel and Peer (1993), Franche-
teau et al. (1993), Hentschel (2008), Choi and Sun (2005), and van de Vooren et al. 
April (2007). However, a common problem with complex models such as global 
models of circulatory system described above is structural identifiability of param-
eters. If the parameters are unidentifiable globally or locally, the model cannot be 
used to estimate unique parameters in the case when experimental data are available 
(see for example, Bellman and Åström 1970; Cobelli and DiStefano 1980). In or-
der to apply such complex physiological models in the analysis of real data, mod-
els need to be simplified, for example, by using reparameterization techniques. An 
example was provided by Cheung et al., who reparameterized circulatory system 
model (Cheung et al. 2012). In this approach, the authors proved that it is pos-
sible to reduce number of parameters in the model and uniquely estimate them, 
without compromising mechanistic interpretation of the model. The parameters in 
their final, reparameterized model included: (1) PK parameters of the drug, such as 
clearance and volume of distribution, (2) PD parameters, such as Emax and EC50, 
(3) physiological parameters, such as steady-state values of HR, mean arterial pres-
sure, and total peripheral resistance, (4) parameters representing controls acting on 
HR, mean arterial pressure, and total peripheral resistance, and (5) time constant 
parameters. A schematic representation of this model can be found in Fig. 7.6. This 
example shows that it is possible to use even complex mechanistic models and 
implement them in practice.

Also, much simpler, semi-mechanistic models can be used in the clinical assess-
ment of HR. A practical example was shown by Chaubaud et al., who used clinical 
trial simulation approach to assess the best design for phase III trial in patients with 
angina pectoris (Chabaud et al. 2002). The authors used experimental data to de-
velop a complex PK/PD model, which included the presence of active metabolites, 
partial competitive agonists, and hysteresis. The final model was then used to simu-
late a large number of hypothetical trials. HR changes were used as simulated end 
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point, and were then used to derive a binary clinical outcome—chest pain/attack of 
angina. The rationale behind this approach was an assumption that reduction in HR 
in patients with coronary artery disease will result in a decrease of angina pectoris 
risk. In addition, the model also included simulation of bradycardia as an unwanted 
adverse effect in the case when HR was below a certain threshold. The results from 
the simulations provided information about a minimum dose, below which no effi-
cacy would be observed, as well as a maximum dose, above which large number of 
adverse effects would be present. In addition, it was also possible to recommend the 
most optimal dosing regimen, i.e., a single dose taken in the morning was found to 
be more effective when compared to twice-daily treatment. The authors suggested 
that this could be explained by variations of HR between day and night.

7.5  Pharmacometrics in the Assessment of BP

7.5.1  Preclinical Models for Predicting Human BP 
Liability

Modeling and simulation of BP is often closely connected with HR. As it was 
mentioned in the previous section, complex physiological models of circulatory 
system include BP as one of the simulated parameters. There are, however, ex-
amples where BP is the primary focus of the analysis; this is the case when changes 

Fig. 7.6  A schematic representation of a circulatory system model. Aa, A1, A2, HR, SV, CO, TPR 
correspond to the depot, central, peripheral, HR, stroke volume, cardiac output, and total periph-
eral resistance, respectively. MAP, HR, SV, and CO represent mean aerial pressure, HR, stroke 
volume, and cardiac output, respectively. (Reprinted from Cheung et al. (2012), with permission 
from Elsevier)
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in BP can be linked to the underlying pharmacological mechanism. For example, 
it is known that the inhibition of calcium channels can produce a reduction of 
BP, therefore calcium agonists are used in the treatment of hypertension (Goa and 
Sorkin 1987; Liau 2005; Yasunari et al. 2005). In order to link this known mecha-
nism of action to the clinical response, Shimada and coworkers performed PK/
PD analysis of eight calcium channel blockers (CCB; Shimada et al. 1996). The 
authors successfully applied an effect compartment model to explain long lasting 
and slow response of several agents; they were also able to relate in vitro findings 
from calcium channel binding studies to the clinical effect observed in hyperten-
sive patients. They found a significant correlation between in vitro dissociation 
constant and estimated in vivo EC50 values, which can be beneficial for future 
predictions (Shimada et al. 1996). Another translational study was presented by 
Snelder et al. (2011)—in this work, a mechanism-based PK/PD approach was used 
to establish a translational link between preclinical data and clinical response. It 
was demonstrated that changes in BP, which are regulated by the CV system can be 
effectively described by a mathematical model. The model included feedback be-
tween BP, cardiac output, and total peripheral resistance and was evaluated using 
marketed drugs with different mechanisms of action. The authors showed that their 
approach can be successfully used in predicting clinical response and simulation of 
new conditions (Snelder et al. 2011).

7.5.2  Application in Clinical Studies

In clinical studies, PK/PD modeling methods can be used to assess changes in BP, 
for example, in order to select the most optimal dosing regimen. Kleinbloesem et al. 
applied modeling techniques to demonstrate the effects of slow and rapid IV infu-
sions of nifedipine (Kleinbloesem et al. 1987). It was shown that the rate of increase 
of the drug is related to the observed changes in BP; this phenomenon was also 
reported by others (for example, Nakaya et al. 1983; van Harten et al. 1988).

The importance of mathematical models for the assessment of BP during clinical 
development and regulatory submissions was also recently highlighted in a com-
munication published by FDA which presented the impact of pharmacometrics on 
regulatory decisions (Lee et al. 2011). One example presented in this work included 
a calcium channel antagonist, which was developed for the management of BP. It 
was shown that the original clinical trial submitted to the FDA employed an aggres-
sive dosing regimen which resulted in unwanted BP overshoot and its oscillations. 
After a regulatory enquiry into these undesired effects, a clinical trial simulation 
was performed, where a PK/PD model developed using experimental data from the 
actual clinical trial was used to explore alternative, less aggressive dosing regimens. 
As a result, it was possible to simulate an alternative dosing regimen, where the tar-
get BP reduction was achieved without the presence of unwanted side effects (Lee 
et al. 2011). Thanks to the computer simulation, it was therefore possible to address 
regulatory concerns without having to perform costly clinical trials.
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Another example was provided by Bhattaram et al. in a similar publication from 
FDA (Bhattaram et al. 2005). In this case, the evaluated drug was reported to cause 
hypotension as a side effect. Initially the submission was not approved, partly due 
to the unwanted side effects on BP. Similar to the previous example, clinical trial 
simulations were performed in order to address the regulatory concerns. An alterna-
tive dosing regimen was explored and proved to minimize the risk of hypotension. 
In this case, the clinical trial simulation was followed by the actual study; however, 
the results from simulation were directly used to design the clinical study. The re-
sults from the study were in close agreement with the simulation and consequently, 
the drug was approved (Bhattaram et al. 2005).

7.6  Conclusions

This chapter provided multiple examples of the use of pharmacometric methods in 
the assessment of QT prolongation as well as other CV parameters, namely HR and 
BP. It is clear that modeling and simulation can be valuable in the assessment of CV 
safety during preclinical and clinical drug development as they can aid decision mak-
ing (e.g., selection of compounds, go/no-go decisions), the design of clinical trials 
and ensure the safety of human volunteers. Additionally, they can also be benefi-
cial in regulatory submissions—for example, the application of clinical trial simula-
tions can result in approval of doses or dosing regimens that have not been directly 
assessed during the actual clinical trials. PK/PD modeling can also be valuable in 
providing confirmatory evidence of effectiveness or safety of tested drugs. In fact, 
FDA has reported recent increase in submissions where pharmacometric tools have 
been used and has highlighted their significance by noting that such methods were of-
ten crucial in the regulatory decision making (Bhattaram et al. 2005; Lee et al. 2011).

7.7  Summary

• CV safety is a major cause of drug attrition, with drug-induced prolongation of 
cardiac repolarization and proarrhythmic liabilities being the main reasons for 
labeling restrictions and drug withdrawals.

• The assessment of cardiac liabilities is crucial in the drug development process. 
It is important to detect potential liabilities early, ideally before drug is tested in 
humans for the first time to protect safety of human volunteers and to stop unsuc-
cessful compounds early.

• Pharmacometric (model-based) tools can be beneficial in preclinical assessment, 
for example, through the use of (1) in silico APD models, (2) descriptive and 
semi-mechanistic PK/PD models of CV parameters (e.g., QT interval, HR, BP), 
or (3) mechanism-based models of QT prolongation (e.g., operational model of 
agonism).
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• Preclinical models can be used to aid clinical trial design as well as extrapolating 
across different systems (e.g., from in vitro or in vivo to clinical) and hence pre-
dicting clinical outcomes. For example, it has been established that 10 ms change 
in QTc in human is associated with drug exposures that give rise to:

− ~ 5 % blockage of hERG in vitro assay
− ~ 5 ms QTc change in monkeys
− ~ 2.5–8 ms QTc change in dogs

• Pharmacometric tools can be used in clinical drug development, where they al-
low making predictions under new circumstances, for example, during new dos-
ing regimen or in the alternative patient population (clinical trial simulations), as 
well as aid the design of clinical studies, or even predicting QT effects in real-life 
population (not-in-trial simulation).
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8.1  Introduction

The issue of bacterial resistance to antimicrobial agents, which is evident by a di-
minishing therapeutic value of many commercially available antimicrobials, has 
reached an alarming height of imminent danger to the general population. The rapid 
emergence of bacterial resistance to antimicrobial agents has rendered many of 
the commercially available antibiotics useless at the clinically tolerable dose. The 
resistance to treatment has also rapidly increased hospital mortality due to oppor-
tunistic infections (De Kraker et al. 2011). To combat this crisis, there are two op-
tions: (1) the development of new antimicrobials, which requires developing a new 
class of drugs and/or (2) preserving the value of existing ones by tackling bacterial 
resistance mechanisms. The first option can prove extremely costly and lengthy; 
the pharmaceutical industry has no incentive in developing new class of antibiot-
ics due to a small return on the investment. The second option can be addressed 
in two ways: first, development of new drugs that counter the resistance mecha-
nisms in bacteria for example the use of β-lactamase inhibitor in combination with 
a β-lactam agent; and second, optimizing treatment of existing antibiotics. The need 
for an optimized treatment, whether it is for new or existing drugs, in order to limit 
the chance of bacterial resistance, has prompted the use of quantitative approaches 
to guide dosing regimens.

The application of pharmacokinetic–pharmacodynamic (PKPD) modeling and 
simulation has been proven useful in the selection of dosing regimens that over-
come resistance development and achieve the desired clinical outcome (Drusano 
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2004). Even with a good track record of optimizing antimicrobial dosages, how-
ever, the PKPD model and simulation is still underutilized in managing bacterial 
infections. This chapter focuses on the available PKPD models that were derived 
from in vitro, animal, and clinical data. The discussion separates two major model-
ing approaches applied to antimicrobial PKPD, namely, the minimum inhibitory 
concentration (MIC)-based and the in vitro time-course-based approaches. We ex-
plore how each approach handles monotherapy and combination therapy, as well as 
in the context of emergence of drug-resistant infections.

8.2  MIC-based Approaches

The PKPD properties of antibiotics to guide dosing schedules were conceived as 
early as the 1950s by Eagle who demonstrated the time-dependent nature of peni-
cillin antibacterial activity, the concentration-dependent pattern for streptomycin 
and bacitracin, and a characteristic mixture of both patterns for tetracyclines (Eagle 
et al. 1950a, b; 1953a, b). With this knowledge, Eagle suggested that the efficacious 
way to administer penicillin was to give continuous infusion and regimens that gave 
the highest peak concentrations, such as an intravenous bolus, and would provide 
an effective cure for drugs that are concentration dependent (Eagle et al. 1950a).

It was not until much later, when Craig rediscovered and expanded the PKPD 
concepts in antimicrobial therapy using rodent studies (Craig 1998), that the PKPD 
relationship of new antibiotics was evaluated routinely. This information provides 
the basis for deciding the dose and dosing interval of antimicrobial agents, as well 
as determination of susceptibility breakpoints.

This first part of characterizing the PKPD properties of antibiotics is generally 
classified as the MIC-based approaches. This section will discuss how the MIC-
based approaches are utilized to optimize dosing strategies, as well as their limita-
tions.

8.2.1  In Vitro Susceptibility Tests

The MIC has been the primary tool for determining bacterial susceptibility to an 
antibiotic. This test is carried out by either an agar diffusion or broth dilution; both 
methods are most commonly used for MIC determination, since they are easy to 
perform (Jorgensen and Ferraro 2009). In the agar diffusion method, the bacte-
rial culture is spread uniformly across the agar plate and then grown overnight; a 
rectangular strip impregnated with a gradient amount of drug is laid on top of the 
agar plate. This test is commonly known as the Epsilometer test (or Etest). Be-
cause MICs are typically based on twofold dilution, the drug concentrations on the 
Etest strip also increases exponentially. In post-24-h incubation, an elliptical zone 
of bacteria-free area resulted along the strip where the drug concentrations were 
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sufficient against the specific bacteria. The point at which the bacteria-free ellipse 
intersects with the Etest strip is the MIC. Older agar diffusion test utilizes disk 
diffusion wherein circular wafers impregnated with fixed concentrations of antibi-
otic are placed on a plate full of bacteria.

The broth dilution method utilizes a liquid medium usually Mueller-Hinton 
broth inoculated with specific bacterial colony forming unit (5 × 105 CFU/mL) and 
specific drug concentration is pre-added in twofold dilutions (e.g., 0.125, 0.25, 
0.5,1, 2, 4, 8,…μg/mL). The mixture is incubated for 24 h at 37 °C. The lowest drug 
concentration of antibiotic allowing no visible bacterial growth in the media is the 
MIC. Positive controls containing only the bacteria and negative controls contain-
ing only MHB are observed simultaneously. Because the MIC is determined by 
visual inspection, it does not necessarily mean that there are no bacteria remaining 
in the media. Rather in most cases, the bacteria level is below a CFU size that is 
detectable by the human eye (≤ 106 CFU/mL). For large MIC values (MIC ≥ 100 μg/
mL), it is advisable to evaluate susceptibility using a linear increase (e.g., 100, 200, 
300,…µg/mL) than an exponential increase (i.e., twofold) in drug concentration.

The macrodilution and microdilution methods differ in the volume of the media 
wherein macrodilution method is often between 1 and 2 mL and microdilution is 
≤ 500 μL. The bacteria inoculum should be the same for both methods. The volume 
of bacteria solution to add to the mixture should be adjusted to achieve a final in-
oculum of 5 × 105 CFU/mL.

For the past several decades, the MIC has been used extensively to define the 
susceptibility of a specific bacterial species or strain to an antibiotic agent. In the 
hospital setting where multiple strains of a specific bacterial species are available, 
MIC50 and MIC90, representing the concentration of the antimicrobial agents where-
in 50 and 90 % of the bacterial population do not show visible growth after 24-h 
incubation, are often reported (Walkty et al. 2011). The ease of use, rapid turnover 
of results, and cost effectiveness have made the MIC approach the testing of choice 
in the clinical setting.

8.2.2  PKPD Indices

The current approach in the treatment of microbial infection in the clinic is primar-
ily based on the relationships between drug exposure and MIC (Drusano 2004; 
Schmidt et al. 2008). The three standard PKPD indices are fT > MIC, fCmax/MIC, 
and fAUC/MIC. The duration of time in the 24-h period wherein the drug concen-
tration is above the MIC is f T > MIC. The percentage of time above MIC over the 
24-h period is often used instead (% f T > MIC). AUC refers to the area under the 
drug concentration–time curve over the 24-h period and Cmax is the peak drug con-
centration. The prefix f refers to the free drug concentration. The indices are based 
on the free and unbound drug concentration, as only the unbound drug can exert its 
pharmacological effect. If the relationship is time dependent, the dosing strategy 
is simply to maintain the free drug concentrations above the MIC value for an ex-



232 S. K. B. Sy and H. Derendorf

tended period of time. On the other hand, if the efficacy is concentration dependent, 
the goal is to attain sufficient peak drug concentrations or drug exposure above 
MIC (Mueller et al. 2004). The β-lactams are commonly associated with the term 
“concentration-independent kill” or “time-dependent kill.” That is because the ef-
ficacy of the β-lactams is associated with the time that the free drug concentration of 
these agents is maintained above MIC. The quinolones and aminoglycosides, on the 
other hand, are “concentration dependent” in their effects. Whether these agents are 
above MIC for an extended period or not do not seem to have a significant impact 
on the observed antimicrobial effect but rather the magnitude of the peak concentra-
tion is associated with a more efficient bacterial kill. The third type of antibiotics 
which include azithromycin and vancomycin is not concentration dependent but 
their efficacy is linked to the fAUC/MIC ratio (Drusano et al. 2004; Rybak et al. 
2009a, b). The 24-h exposure, measured by the AUC-to-MIC ( fAUC/MIC) ratio, is 
related to the observed effect. The action of many antimicrobial agents has gener-
ally been classified based on these PKPD indices.

The determination of which indices best characterize the drug action is based 
on fitting a sigmoidal Emax model to the PD endpoint such as the bacterial log10 
CFU/mL at 24 h or the log change in CFU/mL against the three PK/PD indices 
(Dudhani et al. 2010). The PD endpoint is often taken from animal studies where-
in several live mouse thighs or lungs were injected with specific bacteria with 
predetermined MIC. The mice were then administered antibiotic at different drug 
doses and regimens in dose fractionation studies. The pharmacokinetic parame-
ters ( fT > MIC, fCmax/MIC, fAUC/MIC) were then determined for each animal. At 
the end of the experiments, the bacterial CFU/mL was determined from the tissues 
injected with bacteria. The 24-h log10 CFU/thigh against the PKPD indices was 
used to evaluate which PKPD index best characterizes the activity of the specific 
antimicrobial agent being tested (Dudhani et al. 2010). The relationship between 
the PD endpoints and PKPD indices are plotted and the best fits for the relation-
ships were determined by R2 (coefficient of determination). It was suggested that 
the PKPD index determined in mice could be extrapolated to clinical efficacy 
(Ambrose et al. 2007). Many of the current dosing regimens in the clinic were 
based on the PKPD indices determined from animal studies. Vancomycin dosing 
regimens, for example, were determined based on the target of AUC/MIC ratio of 
approximately 325 in treating ventilator-associated Staphylococcus aureus pneu-
monia (Moise-Broder et al. 2004a, b; Sakoulas et al. 2004; Rybak et al. 2009b). 
The vancomycin nomogram was designed to achieve a target trough concentra-
tion of 15–20 mg/L (Kullar et al. 2011).

Drusano provided an explanation of how the shape of the drug profile affects 
the type of cell kill for drugs that are concentration dependent versus those that 
are time dependent (Drusano 2004; Jumbe and Drusano 2011). The rate of kill 
in concentration-dependent drugs is different at each segment of the concentra-
tion–time profile and the total number of organisms killed can be approximated 
as an expectation which is the summation of the kill rate and time period over the 
specific kill rate. For time-dependent drugs, the kill rate is constant and the total 
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cell kill is the rate constant multiplied by the time period that the drug concentra-
tion is above the MIC.

8.2.3  Probability of Target Attainment and Clinical Breakpoints

The probability of target attainment (PTA) is often determined from simulation of 
1000–10,000 individual drug concentration–time profiles using a population phar-
macokinetic model and the proportion of the population above a specific target 
(Drusano et al. 2001; de Kock et al. 2014). The simulation generates a distribution 
of PKPD index (e.g., fAUC24/MIC) which becomes the basis for determining the 
likelihood of achieving a certain target attainment. The fAUC24/MIC will be used 
as an example because it is easier to generate than fT > MIC or fCmax/MIC, as AUC 
can be estimated by integrating the population-PK model or estimated from the 
clearance values without running secondary pharmacokinetic analysis (e.g., non-
compartmental analysis) of the generated profiles. The PTA is determined as the 
proportion of simulated individual profiles that are above a specific target, such 
as fAUC24/MIC, to achieve greater than or equal to 2 log10 kill from animal stud-
ies, for a range of increasing MIC values and is usually evaluated using several 
dosing regimens in dose fractionation studies. In the study of tigecycline against 
E. coli, Ambrose et al. (2009) determined the potential tigecycline–Enterobacteria-
ceae susceptibility using both PTA and clinical response expectation as responses. 
The steady-state AUC24 was simulated from the distribution of clearance parameter 
from a population pharmacokinetic model of tigecycline. In the example in Fig. 8.1, 

Fig. 8.1  Probability of target attainment (PTA, open triangles) based on AUCss,24h/MIC ratio, 
clinical response expectation ( open circles), and tigecycline MIC distribution ( bars), showing a 
trend of decreasing PTA and median clinical response expectation in increasing MIC. (Image from 
Ambrose et al. 2009; used with permission)
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PTA is plotted as a function of MIC, represented by triangle symbols. The clinical 
response expectation versus MIC, represented by circular symbol, was determined 
from a logistic regression model that describes the PKPD relationship for efficacy 
in patients with complicated intra-abdominal infections (Meagher et al. 2007; Pas-
sarell et al. 2008). As shown in their study, the two metrics, namely PTA and clinical 
response expectation, may not necessarily correlate with each other. However, both 
metrics indicate a trend towards less favorable outcome with increasing MIC.

A natural extension of the PTA is to categorize the antimicrobial activity of spe-
cific treatment against a microorganism population. The European Committee on 
Antimicrobial Susceptibility Testing (EUCAST) has provided definitions to catego-
rize microorganisms’ antibiotic phenotype based on the quantitative antimicrobial 
susceptibility evaluation (Kahlmeter et al. 2003, 2006). Mouton et al. (2012) pro-
vided this categorical description:

A microorganism is defined as susceptible by a level of antimicrobial activity associated 
with a high likelihood of therapeutic success. A microorganism is categorized as susceptible 
by applying the appropriate breakpoints in a defined phenotypic test system. Conversely, 
resistance is defined as a high likelihood of therapeutic failure. Ideally, clinical breakpoints 
should therefore distinguish between patients that are likely or unlikely to respond to anti-
microbial treatment.

The clinical breakpoints are determined from (1) statistical approach such as clas-
sification and regression tree (CART) analysis or multivariate logistic regression to 
look for a value of PKPD index that best differentiate failures and successes in treat-
ment outcome and (2) probabilistic approach of PTA that considers the variability in 
patients’ pharmacokinetic and the MIC of the microorganism population. With the 
probabilistic approach of PTA, the microorganism with MIC values that result in the 
PKPD index value lower than the target are considered resistant, which translates to 
a lower probability of cure whereas those that result in a larger PKPD index values 
than a specific target are considered susceptible. This target value that separates the 
PKPD index for the two-microorganism phenotype is the clinical MIC breakpoint. 
It is noted that the clinical breakpoint may be dependent on the dosing regimen. A 
case is illustrated by Mouton et al. (2005, 2012) wherein the relationship between 
fT > MIC and MIC of ceftazidime for two different dosing regimens produces two 
separate and distinct PTA–MIC curves as shown in Fig. 8.2. Assuming that the tar-
get is 60 % fT > MIC, the dosing of 500 mg thrice daily and 1 g thrice daily resulted 
in breakpoints of 4 and 8 mg/L MIC.

Ambrose et al. (2007) provided an excellent review to show how rodent studies 
translate to humans. The studies in rodent infection models showed that a total le-
vofloxacin AUC24:MIC value of 88 in immunosuppressed mice was associated with 
favorable microbiological response (Jumbe et al. 2003). Levofloxacin fAUC24:MIC 
value of 62 determined from patients with hospital-acquired pneumonia separates 
those patients with 90 and 43 % response to therapy (Drusano et al. 2004).The two 
studies show a good correlation between rodent studies and humans, given that the 
PKPD indices in animal studies are closely related to that in humans.
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8.2.4  Limitations of the MIC-based Approach

Though this approach has been used to guide dosing for various classes of anti-
microbials, several shortfalls of the MIC-guided approach are discussed here. The 
determination of the MIC of the patient’s infection often takes several days follow-
ing the initial treatment and consequently the drug concentration and duration may 
not be optimal without the prior knowledge of the MIC, particularly when using the 
relationship between pharmacokinetic properties of the drug and the MIC-based 
PKPD indices to guide treatment. This simplification of dosing scheme is believed 
to potentially lead to treatment failure and may foster the emergence of resistant 
bacterial populations (Hoffman and Stepensky 1999).The utility of MIC assumes 
that this value is stationary. This is not the case because MIC within a bacteria spe-
cies can change. When bacteria are exposed to a low concentration of drug, which 
is not enough to eradicate them, the bacteria will acquire resistance, resulting in a 
shift towards a higher MIC level (Tam et al. 2007a). Also depending on the spe-
cies and strain of bacteria, the MIC may not be consistent across the species and 
strains. This scenario renders a “nonstationary” MIC. With an increasing rate of 
treatment failure, MIC is more likely to be changing over time due to develop-
ment of resistance. For example, the AmpC β-lactamase is induced when exposed to 
low β-lactam concentration. The ampC expression is repressed by three AmpD ho-
mologues, including the previously described AmpD protein (Langaee et al. 1998, 
2000) plus two additional proteins AmpDh2 and AmpDh3 (Juan et al. 2006). The 
two additional homologues are responsible for the stepwise ampC upregulation that 
results in hyper-expression of cephalosporinase and high level of β-lactam resis-
tance (Juan et al. 2006).

The rate of bactericidal activity or bacteriostatic effect with different drug con-
centrations cannot be determined from the MIC approach. Several killing patterns 
can converge to the same MIC value when only the 24-h time point is measured. 
Relying on a “snapshot” view of MIC for defining the PKPD relationship for the 
entire treatment duration can be misleading.
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Because only unbound drug concentration can exert its pharmacological effect, 
ignoring protein binding and tissue distribution of the drug can have serious impli-
cation in extrapolating in vitro efficacy results to human studies. When the drug en-
ters the blood stream, it can bind to proteins such as albumin, α-, β-, or γ-globulins, 
α1-acid glycoprotein, lipoproteins, and/or erythrocytes (Dasgupta 2007; Trey-
aprasert et al. 2007; Mouton et al. 2008). The percentage of drug binding can be 
constant (linear) or nonconstant (nonlinear) depending on the drug concentration; 
characterization of protein binding across a range of drug concentrations can pro-
vide important information on its protein binding properties. Since anti-infective 
drugs need to get to the infection sites, for example, in skin infection, the unbound 
fraction of drug crosses the membrane to the infected tissue. Microdialysis proce-
dures have been used to determine the free fraction of drug at a specific tissue (e.g., 
adipose and skin; Li et al. 2006). It is important to consider protein binding when 
translating in vitro results to the clinic.

8.2.5  Resistance Problem in Antimicrobial Therapy

The number of new bacterial strains with more efficient resistance mechanisms has 
emerged over the past decade. From the year 2000 through 2004, the percentages 
of methicillin susceptible and resistant S. aureus (MSSA and MRSA) isolates with 
vancomycin MIC of 1 μg/mL increased from 40 to > 70 % and from 10 to > 60 %, 
respectively (Wang et al. 2006). Within the span of 5 years, S. aureus clinical iso-
lates have evolved towards decreasing vancomycin susceptibility. The resistance 
problem is not isolated to just one class of antimicrobials. Various newly discovered 
β-lactamases can rapidly inactivate β-lactams and some β-lactamases such as the 
variant of TEM-1 are resistant to β-lactamase inhibitors, for example clavulanic 
acid (Sideraki et al. 2001).

There are experimental evidences that the efflux pump upregulation is a first-
line defense for microorganisms when challenged with antimicrobial agents (Jumbe 
et al. 2006; Louie et al. 2007; Drusano et al. 2009). The MexCD-OprJ, not typically 
expressed under noninduced conditions, exports fluoroquinolones and a number 
of β-lactams (Poole et al. 1996; Masuda et al. 2000b). MexXY-OprM contributes 
to resistance to fluoroquinolone, aminoglycoside, and some β-lactam (Aires et al. 
1999; Mine et al. 1999; Masuda et al. 2000b; Sobel et al. 2003); this efflux pump is 
induced by tetracycline and aminoglycosides (Aires et al. 1999; Mine et al. 1999; 
Masuda et al. 2000a). β-Lactam resistance in clinical isolates of Pseudomonas ae-
ruginosa has been shown to interplay between diminished production of OprD (an 
outer membrane protein that regulates the entry of carbapenems) and an increased 
AmpC β-lactamase activity (Quale et al. 2006).

The choice of dosing regimen affects the extent of resistance development. Tam 
et al. (2007a) demonstrated that the relationship between quinolone exposure and 
resistance amplification is characterized by an inverted U-shaped curve. This in-
dicates that development of resistance is minimal at low antimicrobial challenge 
and rapidly increases over a range of drug concentration unless a sufficiently high 
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drug concentration kills both the susceptible and resistant populations. These re-
sults prompted recommendations for increasing doses, shorter treatment period, and 
combining several antimicrobials with different mechanisms of action to counter 
the emergence of drug-resistant bacteria (Mouton et al. 2011).

8.2.6  Combination Therapies

The resistance to treatment has also rapidly increased hospital mortality due to op-
portunistic infections (De Kraker et al. 2011). Administering two antibiotic drugs 
with different mechanisms of action can potentially restore the utilities of these 
agents. This approach is called combination therapy. The action of many antimi-
crobial agents has generally been classified based on the PKPD indices, previously 
described. These indices, however, are relevant primarily to monotherapy. When 
evaluating combination therapy that includes multiple antibiotics, the pattern may 
no longer be relevant. This renders the classification of combination therapy and the 
determination of optimal dosing strategies nontrivial.

Drugs of different mechanisms of action may act synergistically, resulting in 
greater than fourfold decrease in the MIC of each drug in the same pathogen in 
vitro (Paul et al. 2004). The use of aminoglycoside/β-lactam combination was prac-
ticed in the past (Piccart et al. 1984; Hoepelman et al. 1988a, b; Mondorf et al. 
1989). However, the benefits from the combination were later questioned based on 
a meta-analysis study (Bliziotis et al. 2005). The likely reason could be that the pa-
tients who received combination therapy had a higher propensity for mortality since 
combination antibiotics are more commonly prescribed for the critically ill patients 
than the single-agent antibiotics. The one subgroup of Gram-negative pathogens, 
for which the question of combination therapy is currently being investigated in 
more and more studies, is P. aeruginosa (Louie et al. 2013). This bacterial species is 
also more common in patients who are severely ill, including the late stage of mor-
bidity in cystic fibrosis (CF) patients (Breen and Aswani 2012). In fact, the Cystic 
Fibrosis Foundation guidelines recommend that an antipseudomonal β-lactam with 
an aminoglycoside be used in the treatment of acute pulmonary exacerbations of CF 
(Flume et al. 2009). CF patients were thought to have higher clearance and larger 
volumes of distribution, which makes dosing more challenging due to lower expo-
sure (Spino 1991). In a matched control study, no difference was found in aztreo-
nam volume of distribution between CF patients and matched healthy subjects but 
total body clearance was 30 % higher in CF patients due to enhanced renal clearance 
as CF patients had 20 % higher free fraction of the drug (Vinks et al. 2007).

The synergy of activities from combination of β-lactam and aminoglycoside 
would be particularly beneficial in these difficult-to-treat populations. The combi-
nation of an aminoglycoside and a β-lactam seems to be the most frequently used 
combination against P. aeruginosa. Louie et al. (2013) showed that tobramycin in 
combination with meropenem suppressed resistance amplification in P. aeruginosa 
at all combination regimens that were tested in the murine pneumonia model.
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Safdar et al. (2004) performed a meta-analysis on combination antimicrobial 
therapy for bacteremia due to Gram-negative bacilli. Their overall results, combin-
ing all types of bacteria that were found in their literature search, indicated that 
combination therapy does not reduce mortality in patients with Gram-negative bac-
teremia. One limitation of their study was that the literature that they used did not 
stratify the outcome by the severity of illness. The patients with multiple comorbidi-
ties were also more likely to die due to their underlying conditions. In a stratified 
analysis, they found a significant survival benefit with combination therapy in P. 
aeruginosa bacteremia, translating to an approximately 50 % mortality reduction 
(CI: 32–79 %). This specific result provided the rationale for the hypothesis that 
the combination of aminoglycoside and β-lactam may provide synergism in vivo 
in a setting where the suspected infection is predominantly P. aeruginosa or other 
multiresistant Gram-negative bacilli where more than one drug would assure sus-
ceptibility to at least one of the antimicrobial agents.

The exact mechanism of action of aminoglycosides is not fully known. It was 
suggested that aminoglycosides could be either bacteriostatic and/or bactericidal 
(Bakker 1992). The bacteriostatic effect stops the growing of bacteria by inhibiting 
protein synthesis as the aminoglycoside binds to the 16S rRNA. The mechanism 
for its bactericidal effect is by disrupting the integrity of bacterial cell membrane 
(Shakil et al. 2008). In contrast, the mechanism of action of β-lactam antibiotics 
is completely known. β-Lactam antibiotics are bactericidal and act by an irrevers-
ible inhibition of the penicillin-binding proteins, which normally catalyze the cross-
linking of bacterial cell walls. The drug binding to the penicillin-binding proteins 
kills the bacteria due to the disruption of the cell wall synthesis (Fisher et al. 2005).

The PKPD indices for combination therapy have not been explored yet. It is 
likely more challenging to develop since the evaluation would require a much larger 
set of dose fractionation studies especially combining two drugs. The in vitro time-
course-based approach may provide a simpler methodology to evaluate dosing regi-
mens for combination therapies than the summary PKPD variables that are MIC 
based.

8.3  In Vitro Time-Course-Based Approaches

8.3.1  Time-Kill Kinetic Studies

The advancement of PKPD modeling approach came with more defined in vitro 
methodologies. The in vitro time course of drug–bacterial response characterized by 
the kill-curve assays has been used as the basis for developing PKPD models to de-
scribe bacterial population dynamics, drug effects, and the emergence of resistance. 
Depending on the objective of the study, the drug concentration in these in vitro 
time-kill experiments can be relatively constant in the static situation (Garrett et al. 
1966; Mielck and Garrett 1969; Garrett and Nolte 1972) or dynamically changing 
to mimic the in vivo half-life of the drug in humans (Sanfilippo and Morvillo 1968; 
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Sanfilippo and Schioppacassi 1973; Grasso et al. 1978). The data from static time-
kill experiments are often used to develop a mathematical model that links the free 
drug concentrations to the bacterial response whereas dynamic time-kill data are 
used to validate the model and to predict the outcome in the clinic. The dynamic 
kill-curve provides an alternative for evaluating PKPD relationships; it simulates 
the time course of the unbound drug concentrations at the site of action based on a 
preset half-life. Using multiple pumps, the hollow fiber infection model is used to 
simulate concentration-time profiles of free drug concentration that mimics the in 
vivo profiles (Crandon et al. 2012). The effects of different dosing regimens, drug 
half-lives and even starting inocula can be simulated to study their effects on the 
bacterial population dynamics over a time period, for example 24 or 48 h.

8.3.2  PKPD Models of In Vitro Time-Kill Kinetics

The Logistic Growth Models The PKPD models currently used to describe the in 
vitro bacterial population dynamics came from models used to study human popu-
lation dynamics. In 1838, Pierre-François Verhulst described the logistic growth 
model that many of the modern antimicrobial PKPD models were based on:

 

(8.1)

where N is the population number, r is the growth rate, and K is the carrying capac-
ity or the maximum number of individuals that is supported by the environment 
(Gershenfeld 1999). The analytical solution to Eq. (8.1) is:

 
(8.2)

where N0 is the initial population number at time t = 0. The important property of 
this model is that the limit of this function as time goes to infinity is the carrying 
capacity: lim ( )
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→∞
= . In an in vitro time-kill curves of both static and dynamic 

systems, the bacterial CFU is restricted from growing indefinitely and usually 
reaches a plateau, where the net growth is zero. For this reason, the logistic growth 
model suitably describes this behavior.

The Compartmental Models The second type of antimicrobial PKPD model can 
be described in simplistic terms consisting of the natural self-replication and death 
of bacteria (Eq. 8.3):
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where N is the bacterial population with the initial count of N0, kgrowth is the first-
order rate constant for bacterial synthesis, and kdeath is the first-order rate constant 
for bacterial death. This common structure to describe bacterial growth is also used 
in other disease areas such as tumor dynamic models, where a first-order self-rep-
lication rate is implemented (Jusko 1971). This model assumes that the bacteria are 
from a homogeneous population with the same growth and death rate constants, 
which may not reflect the true population of microbes, which is known to select for 
resistant strain in the presence of an antimicrobial challenge. The variations based 
on the compartmental model have improved on this limitation and will be described 
more thoroughly in later sections of this chapter.

The Mechanistic Models The third type of antimicrobial models considers the 
bacterial growth cycle, states of bacterial susceptibility, drug–receptor interaction, 
and the mechanisms of drug action. This type of models utilized many concepts 
of mathematical modeling in biology, including the two modeling approaches dis-
cussed above. Each of the mechanistic models will be discussed separately as there 
is no common mathematical approach across these models that can be summarized 
briefly.

8.3.3  Modifications on the Logistic Growth Model

To incorporate drug action to the capacity limited growth model, Eq. (8.1) can be 
modified to include a function to describe the drug effect:

 

(8.4)

where the added fdeath (drug) describes the effect of an antimicrobial agent (Nolting 
et al. 1996; Mouton et al. 1997; Yano et al. 1998; Mouton and Vinks 2005). In this 
equation, as N approaches Nmax, the growth term approaches a plateau or stationary 
condition, where there is no net change in the bacterial population. The drug effect 
is often represented by an Emax or a sigmoidal Emax model such that,

 

(8.5)

where C is the drug concentration at any specific time, Emax is the maximum drug 
effect, and ECmax is the concentration at which the half-maximum effect is achieved. 
The shape parameter γ is 1 in the Emax model and is a parameter in the sigmoidal 
Emax model.

During the initial growth phase where N N<< max and the growth is linear, 
Eq. (8.4) can be simplified to the following equation (Nolting et al. 1996):
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(8.6)

By solving for the analytical solution to Eq. (8.6), one can determine the number of 
bacteria at time ( t) through the following equation:

 
(8.7)

Mouton and Vinks proposed that the stationary concentration (SC), which is defined 
as the concentration at which the growth rate equals the kill rate and is also the point 
at which no net change in the number of bacteria is observed, can be derived from 
Eq. (8.7) (Mouton and Vinks 2005). By taking the natural log of the ratio N t N( )/ 0 
divided by time, which is equivalent to max

50
growth

E C

EC C
k

+
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γ

γ γ , one can obtain the equation 
for C:

 

(8.8)

When there is no net change in the number of bacteria, the term 1
0t

N t
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0 and the SC is defined as:

 

(8.9)

The SC is not to be confused with the MIC, as SC refers to the concentration where 
no net bacterial growth occurs. It is often assumed that bacterial growth occurs 
when the drug concentration is below the MIC. Mouton and Vinks had shown that a 
correction factor to the SC equation might be required to estimate the MIC (Mouton 
and Vinks 2005):

 
(8.10)

The value 0.29 is obtained from the kill curves such that N( t) reached 108 CFU/
mL at 18 h, assuming an initial inoculum of 5 × 105 CFU/mL. This correction factor 
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is therefore dependent on the specific system that is being tested. The relationship 
between MIC and SC is described in greater detail in Mouton and Vinks (2005).

Tam et al. (2008) modified the logistic growth model to study the effects of 
gentamicin and amikacin on the in vitro time-kill kinetics of P. aeruginosa ATCC 
27853 and Acinetobacter baumannii ATCC BAA 747, respectively, by introducing 
an adaptation factor to the EC50 parameter:

 (8.11)

α is defined as:

 (8.12)

where τ is the exponent of the adaptation factor and β is the maximal adaptation. 
The range of values for the function 1 C te−− τ  is between 0 and 1. The adaptation 
function α starts from a baseline EC50 and increases over time to a maximal value 
of β, if τ is positive.

Delay functions were applied to both the growth rate and the drug effect function 
to describe the population dynamics of Streptococcus pneumoniae, Haemophilus 
influenzae, and Moraxella catarrhalis in the presence of azithromycin (Treyaprasert 
et al. 2007). The delay function has the following form:

 

(8.13)

One can see that the delay function has a similar form to the adaptation function 
discussed above. The two equations, 1− −e xt  and 1− −e yt  (Mouton et al. 1997), 
behave like a cumulative density function starting from 0 at t = 0 to a maximum 
value of 1 as t → ∞. The delay function acts as a modulator to allow the curves to 
conform to the S-shaped pattern of bacterial growth which is often observed during 
the first couple of hours of the time-kill kinetic experiments in the presence of low 
antimicrobial agent concentrations. The two functions also shape the transition to 
plateau after a decrease then increase in bacterial population at the antimicrobial 
concentrations that allow for bacterial regrowth to occur. An example of model 
using the delay function is shown in Fig. 8.3. Another modification introduced a 
second compartment for the persistent bacterial population to differentiate from the 
first compartment of susceptible bacteria; this alteration was used to model the ef-
fect of oxazolidinone on Staphylococcus aureus (Schmidt et al. 2009).

Bulitta et al. (2009) linked the bacterial population dynamic to cell wall synthe-
sis, and drug effect of ceftazidime on cell wall synthesis to describe the lag time in 
bactericidal effect of β-lactams. The study examines the inoculum effect of ceftazi-
dime against P. aeruginosa. The natural first-order death rate was dependent on the 
number of existing CFU in the system and the logistic growth part of the model 
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was dependent on both the cell wall synthesis and CFU. The drug effect acts on the 
compartment representing the cell wall dynamics, since the primary mode of action 
of ceftazidime is to inhibit cell wall synthesis:

 
(8.14)

 
(8.15)

where CW represents a hypothetical cell wall measurement, whose synthesis is 
expressed as a fraction of the baseline value. The IC CW50,  is the concentration of 
ceftazidime in the broth that inhibits 50 % of cell wall synthesis and k CWout ,  is the 
first-order rate constant for the cell wall turnover. The investigators claimed that 
this model accounts for the slow onset due to the delay between ceftazidime binding 
to the penicillin-binding proteins and the depletion of cell wall components (Bulitta 
et al. 2009).
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Fig. 8.3  Time-kill kinetics and model prediction of aztreonam-avibactam effect against K. 
pneumoniae

 



244 S. K. B. Sy and H. Derendorf

8.3.4  Examples of the Compartmental Model

During the linear growth phase just before reaching the plateauing phase, the popula-
tion dynamics can be described by simple first-order growth and death rates that are 
dependent on the bacterial burden present at the specific time. In addition to the logis-
tic growth model, other strategies had been utilized to describe the decrease in the net 
growth rate as the system approaches the plateau wherein the net bacterial growth is 
zero. One approach is to implement a phenotypic switch between susceptible and per-
sistent population such that the persisters have a markedly reduced growth rate (Balaban 
et al. 2004). The overall change in the total number of bacteria would then be the sum of 
those in susceptible ( S) and in persistent resting ( R) states, such that:

 (8.16)

The transition between the two states is defined by their respective rate constants. 
Nielsen et al. presented an example of compartmental model wherein a two-com-
partment model was used to describe the in vitro effect of a number of antibiotics, 
including moxifloxacin, vancomycin, benzylpenicillin, cefuroxime, and erythromy-
cin against Streptococcus pyogenes (Nielsen et al. 2007). The delay in the effect of 
drugs was modeled using an effect compartment model for the drug. The following 
assumptions were made: (1) The drug effect is to increase the death rate of the sus-
ceptible state and (2) the antimicrobials have no effect on the persistent population. 
The differential equations for the two bacterial populations are shown in the follow-
ing equations:

 (8.17)

 (8.18)

As the persistent population is unlikely to return to the susceptible state for the 
duration of the experiment, the transfer rate for the return to the susceptible state 
was assumed to be negligible and kRS  was fixed to 0. The transfer rate constant that 
indicates the rate of change from the susceptible to the persistent states, kSR, dictates 
the growth-limited capacity using the following equation:

 
(8.19)

where Bmax is the maximum number of bacteria supported by the system.
The investigators evaluated whether the drug decreases the growth rate or in-

creases the rate of death. The later scenario, increase in death rate, was examined 
as either an additive or a proportional effect. The equations to describe the three 
different scenarios are shown below:
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 (8.20)

 (8.21)

 (8.22)

where f (drug) is a sigmoidal Emax model to account for the effect of various drug 
concentrations.

In a follow-up study, the same group described a mechanism for adaptive resis-
tance in E. coli due to gentamicin by introducing two additional compartments that 
regulate resistance development (Mohamed et al. 2012):

 (8.23)

 
(8.24)

where ARoff represents the adaptive resistance in dormant stage and ARon is for the 
active state; the transfer between states is represented by koff and kon; and C refers 
to gentamicin concentration. A greater flexibility was achieved by the two addi-
tional compartments as can be seen in how the model adapted to the data trend. 
The investigators noted that the model is suitable for gentamicin in the context of 
compartmental models.

8.3.5  Examples of Mechanistic Models

A similar approach to the compartment model involving three-state susceptibility 
was used to study colistin effect in P. aeruginosa (Bulitta et al. 2010). In this model, 
the states of susceptibility included susceptible ( S), intermediate ( I), and resistant 
( R). A fourth compartment or state ( ),CFUS lag  was introduced to account for the dif-
ference between the initial total bacterial burden, CFUALL, and the initial conditions 
of the susceptible, intermediate and the resistant populations.

 (8.25)

The intermediate and resistant populations were assumed to be fractions of the ini-
tial total bacterial burden, CFU0:

 (8.26)
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(8.27)

 
(8.28)

 
(8.29)

where VGmax refers to the maximal rate of bacterial growth in the unit of CFU/
(mL.h), CFUm  is the bacterial density that produces 50 % of the maximal growth 
rate, kd is the natural death rate, klag represents the first-order growth rate constant 
associated with the slower initial growth phase of the susceptible population in the 
lag compartment, INHKill and INHRep are represented by the following equations:

 
(8.30)

 (8.31)

INHKill  and INHRep are inhibition of killing and of replication by signal molecules, 
Csignal. The synthesis of freely diffusible signal molecules CSignal by the bacteria was 
assumed to inhibit or to slow down the killing effects of colistin. The Imax,Kill and 
Imax,Rep were the maximum inhibition of killing and of replication; the concentration 
of signal molecules to achieve 50 % of the maximum inhibition is the IC50. The 
kinetic behavior of the hypothetical signal molecule is described by the following 
differential equation:

 (8.32)

where kdeg  is the degradation rate constant.
The assumption was made that the effect of colistin is to displace competitively 

both Mg2+ and Ca2+ from the binding sites in the outer membrane and the resulting 
displacement is responsible for colistin killing effect. The model utilizes receptor 
occupancy model to describe the competitive inhibition of colistin with Mg2+ and 
Ca2+ for the membrane binding sites. The fractional occupancy of these cations as 
a function of the molar sum of Mg2+ and Ca2+ concentrations as well as colistin 
concentration in mg/L is defined such that:

 

(8.33)
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where Kd Cations,  and Kd Colistin,  are the dissociation constants for the two cations and 
colistin, respectively; Mm  is the average molecular mass of colistin A and B, which 
are the two primary components of colistin; and C refers to the concentration of 
the respective components in the broth. The fraction of the receptors that were not 
bound to Mg2+ or Ca2+ was used to compute the effective colistin concentration at 
the target site. The effective colistin concentration, CColistin,eff , was a Hill function 
dependent on the FrCations  and colistin concentration in broth, CColistin:

 
(8.34)

An important difference between this model and the logistic growth or the compart-
ment models is that it assumes that the drug has an effect on all types of bacteria 
from the susceptible to the intermediate to the resistant ones. The limitation of such 
a complex model is that the data from an in vitro time-kill study will not be suf-
ficient to characterize the model parameters and that many of the parameter values 
will have to be derived from the literature.

Another compartmental-type model incorporated mechanisms involved in the 
life cycle of bacterial replication, autolysis, and ceftazidime effect against P. ae-
ruginosa (Bulitta et al. 2009). The model utilizes a two-compartment model for 
the bacteria population and a turnover model to describe the time-kill behavior in 
the presence of antimicrobial agents. The bacterial life-cycle model utilizes two 
states for the susceptible population, wherein the first state, S1, describes the cycle 
immediately after cell replication whereas the second state, S2, occurs just before 
replication:

 (8.35)

 (8.36)

where k12 and k21 are first-order transition rates between the first and second states. 
k12  is determined from the mean generation time (MGT) such that k MGT12 121= /
. The MGT is discussed later in this section. Inhk12  is identical to Eqs. (8.30) and 
(8.31). The factor 2 was used to represent bacterial doubling during cell replication. 
The autolysin activity ALysS  is stimulated by ceftazidime and is described by a 
turnover model:

 (8.37)

The S Smax,  value limits the maximum value of ALysS  to 1, indicating that a high 
drug concentration can completely inhibit replication. SC50  refers to the drug con-
centration at which autolysin is half maximally stimulated. Smax,loss  represents the 
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maximum extent of the inoculum effect at high signal molecule concentrations. In 
contrast to the previous model, the current one assumes two signal molecules with 
the following behavior:

 (8.38)

where the initial conditions for CSig1  and CSig2  were CFU0  and CFU k kS S0 12 21⋅ / . 
The role of the first signal molecule CSig1  is to slow down the replication rate and 
CSig1  is in equilibrium with CSig2 .

The life-cycle growth model involving two-stage susceptibility was applied to 
the study of linezolid against vancomycin-resistant enterococci and S. aureus (Tsuji 
et al. 2012a, b). Linezolid effect was assumed to inhibit protein synthesis; a turn-
over-type model was used to describe its effect:

 
(8.39)

where P  represents the protein pool whose steady-state maximum value is 1, IC50 is 
the linezolid concentration that produces half-maximum inhibition of protein syn-
thesis and kprot is the turnover rate constant of the protein pool. The probability of 
death due to lack of protein represented by (Lack P= −1 ) was defined by the fol-
lowing function:

 (8.40)

The Emax-type model was used to describe the plateau phase of the primary sus-
ceptible bacterial population. A two-state susceptibility bacterial population was 
described for S1 and S2, similar to the model described in Eqs. (8.35) and (8.36), 
with the function 1− Probdeath replacing the 1− ALyss  and Inh12  was fixed to 1. The 
number of sensitive alleles (NSen) was a covariate to determine the IC50  of linezolid 
in inhibiting protein synthesis:

 (8.41)

where IC50Sen0 refers to the IC50  for a strain with no sensitive alleles, Imax,Sen refers 
to the maximum fractional decline for IC50, fHFIM  refers to the ratio of IC50  in the 
hollow fiber infection model compared with the static time-kill model, and HSen 
is the hill coefficient.
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The MGT is defined as the doubling time required for the bacteria to double in 
number and is computed from the net growth rate, similar to the computation of 
half-life (Garrett 1978):

 (8.42)

where k k knet growth death= − . In the model, the number of resistant alleles ( )Nres  was 
used as a covariate to compute the MGT (MGT12) wherein k12 was computed as 
1 12/MGT :

 
(8.43)

where N Res50,  refers to the number of resistant alleles that produce 50 % of Smax Res, , 
which is the maximum fractional increase in MGT12 due to resistant alleles, and 
HRes is the Hill coefficient.

The goal of anti-infective therapy is to administer an effective dose of drug to 
a patient with a high probability of achieving therapeutic success while minimiz-
ing toxicity. Mechanistic models are believed to better describe the processes and 
subtleties of nature that may not be apparent in an empirical model (Lo et al. 2011). 
Whether mechanistic models are better predictors of clinical outcome over the em-
pirical and semi-mechanistic models is yet to be proven.

8.3.6  Models of Combination Therapy

We have recently modified the logistic growth model to study the enhanced po-
tency of aztreonam by avibactam using a shift in EC50 that approximates the reduc-
tion in MIC values at increasing avibactam concentrations against K. pneumoniae 
(Fig. 8.3; Sy et al. 2013). The reduction in aztreonam EC50 as a function of avibac-
tam concentration was approximated by an empirical bi-exponential decay equa-
tion. Avibactam, being a β-lactamase inhibitor, has no antimicrobial activity against 
K. pneumoniae, but rather restores the potency of aztreonam by inhibiting aztreo-
nam removal and degradation by the β-lactamase enzymes. The advantages of this 
simple approach are that the model-predicted aztreonam EC50 closely mimicked the 
MIC value and the generated curves described well the observed bacterial dynamics 
in response to the combination therapy.

The Loewe additivity was utilized to evaluate the effect of combination therapy 
consisting of a novel aminoglycoside, vertilmicin, and ceftazidime on P. aerugi-
nosa (Zhuang et al. 2013). The bacterial population model was based on a two-state 
logistic growth model. In contrast to the aztreonam–avibactam study, both agents 
have antimicrobial effects with different mechanisms of action. Greco et al. pro-
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posed a generalized sigmoidal Emax equation to describe Loewe additivity of the 
combined effect of two agents (Greco et al. 1995):

 

(8.44)

The additive effect of the two agents is described by the sum of the first two terms 
and the third term is an interaction term, wherein γ  is a parameter that indicates syn-
ergism–antagonism interaction. The interaction is additive if the 95 % confidence 
interval of the γ  estimate overlaps the zero value. If 0>γ  or 0<γ , the interaction 
is either synergistic or antagonistic, respectively. In the model, m1 and m2  were as-
sumed to be equal. An additional interaction term λ  was incorporated to the effect 
of an initial killing rate of both agents ( kmax ) such that:

 (8.45)

The resulting Emax model to evaluate the combination of vertilmicin and ceftazidime 
was:

 

(8.46)

where i∝  refers to the adaptation factor mentioned in Eq. (8.12). This empirical ap-
proach described well the combined effects of an aminoglycoside and a β-lactam 
against P. aeruginosa.

8.3.7  Models Estimating Resistant Subpopulation

To quantify the resistant bacterial subpopulation in an in vitro time-kill experiment, 
one can plate the bacteria in agar plates that contained the antimicrobial agent at 
three times the MIC or greater. This approach ensures that susceptible bacteria are 
removed by the drug. The choice for at least thrice the MIC is that twice the MIC 
level is still within the error measurement of susceptibility determination. An alter-
native method to determine resistance development is to determine the MIC after 
the 24-h time-kill experiment.
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The subpopulation of resistant bacteria is a very small fraction of the total bacterial 
population that is predominantly drug-susceptible wild-type population. The prob-
ability of detecting the resistant subpopulation is dependent on the inoculum size or 
total bacterial burden and the frequency of mutation to the drug-specific resistance 
(Jumbe and Drusano 2011). For a resistant subpopulation to amplify effectively, both 
the fitness of the mutant and the selection pressure presented by the antimicrobial 
agent are important determining factors. Jumbe and Drusano proposed equations that 
incorporate probability estimates to a general model that governs the natural replica-
tion of bacteria and the death due to antimicrobial effect (Jumbe and Drusano 2011):

 
(8.47)

 

(8.48)

where S  and R  represent susceptible and resistant bacterial population, Gζ  and 
ΨK  are rates related to the natural replication and bacterial death, and E a tR ( )  and 
E a tD ( )  refer to antimicrobial effects on replication and death. P is the probability 
related to mutation occurrence and Γ  determines the relative fitness of the suscep-
tible to resistant population. This modeling strategy of estimating the proportion 
of each subpopulation was adopted in the model used to study colistin effect in P. 
aeruginosa that was previously discussed (Bulitta et al. 2010). Tam et al. (2005, 
2007b) applied the PKPD model to describe the dynamics of garenoxacin-sensitive 
and -resistant subpopulations of P. aeruginosa and S. aureus in response to fluctuat-
ing concentrations of quinolone drugs. Their study showed that exposure below a 
specific breakpoint allowed resistant subpopulation to grow rapidly. Jumbe et al. 
(2003) showed the predictive value of modeling and simulation in determining the 
proliferation of resistant population in insufficient antimicrobial therapy.

8.3.8  Models Incorporating Host Defense

Rodent studies provide a good model to evaluate the effect of the host’s immune 
system on the time course of antimicrobial effect by chemotherapeutic agents, as 
well as the antimicrobial effect imposed by the immune system. The effect of the 
immune system can be quantified by comparing the immune-competent mice and 
the neutropenic mice. To evaluate the contribution of granulocytes on bacterial kill, 
studies performed in the mouse thigh-infection model and the murine model of 
pneumonia showed that granulocytes alone are potent in eradicating bacteria at a 
low inoculum size whereas for bacterial burden of ≥ 107 CFU/g of tissue, a net bac-
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terial growth was observed after 24 h (Drusano et al. 2010, 2011a, b). The model 
incorporating host defense has similar mathematical form as that of drug effects and 
combination study (Jumbe and Drusano 2011):

 

(8.49)

where EP  and EI  refer to the humoral and cellular response of the host and the in-
nate adaptive immunity interaction is characterized by P IE E⋅ . When the combined 
effect of the two host’s defense processes is greater than the microorganism natural 
proliferation rate, K GC >> ζ , the host immunity can remove the infection without 
therapeutic intervention (Jumbe and Drusano 2011).

8.3.9  Linking In Vitro Models to PKPD Indices

The concentration–effect relationship of ceftazidime established from in vitro time-
kill curves was used to explain the PKPD index that % f T > MIC of 40 % is required 
for a static effect in vivo (Mouton et al. 2007). The logistic-growth model was used 
to simulate the bacterial kill over time in dosing regimens of 1 mg every 2 h to 
256 mg every 8 h. The pharmacokinetic profiles were simulated using parameters 
for mice and humans. The dosing regimens that resulted in a predicted static ef-
fect (i.e., CFU at 24 h ≤ CFU at 0 h) were then evaluated and the corresponding 
% fT > MIC for the dosing regimen was determined. For a 2 log10 decrease after 
24 h, the authors estimated that % fT > MIC of at least 50 % is required. Neilsen et al. 
(2011) used a semi-mechanistic PKPD model based on the compartment approach 
to predict the PKPD indices of several antibiotics. They have shown that simulation 
studies using the information from in vitro studies can be used to predict the PKPD 
indices of antimicrobial agents but cautioned that the determination of the suitable 
PKPD index for a particular drug is sensitive to the study conditions including dos-
ing frequency as well as uncertainty in the MIC values.

8.4  Summary

Due to rapid evolution of bacterial resistance to many of the commercially avail-
able antimicrobial agents, many investigators have called for drug discovery and 
development programs that target suppression of resistance selection and eradica-
tion of drug-resistant infections (Jumbe and Drusano 2011; Nielsen and Friberg 
2013). Pharmacometrics has an important role in developing dosing strategies to 
effectively achieve these two goals. The search for regimens and drug combinations 
in anti-infectives has benefitted tremendously from modeling and simulation. Many 
of the current dosing regimens were based on understanding of the PK–PD relation-
ship between antimicrobial agents and bacterial infection.
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In this chapter, we have summarized the pharmacometric models that were used 
to derive the current state-of-the-art treatment paradigm. More progress can still 
be made to maximize patients’ benefits through implementing treatment programs 
based on sound analysis of all available information from in vitro studies, animal 
models of infections, and clinical data.
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9.1  Introduction

The overall goal of antiviral therapy is to reduce morbidity and mortality from viral 
infections by preventing viral replication and spread. Successful antiviral therapy 
can lead to viral eradication in afflicted patients as well as preventing long-term 
complications that can arise from these infections. Thus, antiviral therapy is an im-
portant tool in our therapeutic arsenal for combating and managing viral-related 
infections. This chapter will focus on antiviral drugs used to treat three viruses that 
have a significant impact on human public health: human immunodeficiency virus 
(HIV), influenza virus, and hepatitis C virus (HCV).

Despite the many benefits that antiviral therapy has to offer, there are several 
challenges associated with this form of treatment. Patient adherence to therapeutic 
regimens is arguably one of the greatest challenges that threatens antiviral effi-
cacy. In order for an antiviral regimen to achieve maximal efficacy, the patient must 
strictly adhere to the prescribed dosage regimen. Missed doses and early cessation 
of treatment are two factors that lead to therapeutic failure of antiviral regimens. 
This is especially evident for chronic viral infections, such as HIV and HCV, which 
require a long duration of therapy.

Drug-related toxicities are a second barrier to antiviral success and often play a 
major role in patient adherence. Unfortunately, toxicity due to antiviral treatment, 
particularly long-term treatment, is a relatively common occurrence. Adverse side 
effects are typical manifestations of antiviral toxicity and can be severe. One ex-
ample of antiviral-related toxicity is demonstrated by the treatment of HCV with 
pegylatedinterferon in combination with ribavirin, the accepted standard of care for 
HCV infections. This therapeutic regimen has been reported to cause depression, 
anemia, and influenza-like symptoms in patients throughout the course of treatment 
which spans 24–48 weeks (Fried 2002; Fried et al. 2002). Oftentimes the side ef-
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fects from therapy are so debilitating that the patient will stop therapy all together. 
Similar examples of toxicity can be cited for HIV therapeutic regimens (Apostolova 
et al. 2011a, b; Johnson et al. 2001; Lee et al. 2003).

In addition to patient adherence and drug-related toxicity, antiviral drug resis-
tance is a major obstacle to successful therapeutic outcomes in patients with viral 
infections. The emergence and spread of drug-resistant HIV, influenza, and HCV 
poses a significant threat to human public health. The development of drug-resistant 
viruses is influenced by two factors: viral replication and drug therapy. HIV, influ-
enza, and HCV replicate rapidly to high titers in humans via virally encoded pro-
teins, such as the RNA-dependent RNA polymerase for influenza and HCV or re-
verse transcriptase for HIV. Both the RNA-dependent RNA polymerase and reverse 
transcriptase proteins are error-prone in nature and lack a proof-reading mechanism, 
allowing for the frequent misincorporation of nucleotides during the robust replica-
tion of the viral genome. Mutation rates for these RNA viruses have been reported 
to be in the range of one nucleotide misincorporation per every 104–105 nucleotides 
polymerized (Drake 1993; Holland et al. 1992). These misincorporations some-
times result in amino acid changes which can affect viral susceptibility to a drug. 
Viruses harboring drug-resistant mutations may be selected when drug pressure is 
applied during therapy. Additionally, these viral mutants have great potential to am-
plify in the presence of suboptimal therapeutic regimens due to either inappropriate 
dose or dosing interval selection for a specific compound or missed doses stemming 
from a lack of patient adherence for a prescribed regimen.

The application of pharmacometrics to antiviral therapy can help alleviate some 
of the challenges associated with therapy. Pharmacometric methods can be employed 
to predict dosage regimens for antiviral agents that will provide optimal therapeutic 
outcome. In this case, therapeutic success is defined by the ability of the antiviral 
regimen to yield maximal inhibition of viral replication and prevent the amplifica-
tion of drug-resistant mutants with minimal toxicity. In order for pharmacometrics to 
be used productively in the guidance of intelligent design of antiviral regimens, the 
pharmacokinetic (PK) and pharmacodynamic (PD) properties for each compound 
must be well understood. For antivirals, in vitro PD model systems have been utilized 
to provide valuable information regarding PK/PD interactions for antiviral agents 
active against HIV, influenza, and HCV (Brown et al. 2010, 2011a, b, 2012; Drusano 
et al. 1998, 2001, 2002a; McSharry et al. 2009b). In this chapter, we will discuss the 
use of in vitro PD model systems to evaluate the PDs of antiviral agents and how this 
information is applied to the design of optimal antiviral regimens for clinical use.

9.2  HIV PDs

Virtually, all of the bench PD studies for this virus were performed with the hollow 
fiber infection model (HFIM). The picture of this apparatus is provided in Fig. 9.1.

For these experiments, a mixture of infected and uninfected CEM-ss cells are 
placed in the extra-capillary space (ECS) of the hollow fiber unit. Medium is 
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circulated around, allowing the cells to grow and HIV to propagate. The antiviral 
agent of interest is administered into the central reservoir of the system via comput-
er-controlled syringe pumps and circulated throughout the hollow fiber cartridge. 
The use of programmable syringe pumps allows for the freedom to simulate any in-
fusion rate and dosing interval desired in an in vitro setting. Antiviral-free medium 
is introduced in the afferent loop and an equivalent volume of antiviral-containing 
medium is withdrawn from the efferent part of the loop, providing a fixed volume 
system that is diluted at a constant rate per unit time. The ratio of dilution rate to to-
tal system volume is the rate constant of elimination. These methods permit for the 
simulation of any desired half-life in the HFIM system. The HFIM system can also 
be modified to simulate two- or three-compartment models, although this is a bit 
more technologically challenging. It is important to note that only free drug concen-
trations are simulated in HFIM system, since only free drug (drug that is not bound 
to human serum proteins) is efficacious in vivo. Because of the large surface area 
of the hollow fibers and the molecular weight cutoff of the pores (circa 20,000 Da), 
cells and virus (including viral proteins, such as p24 protein) are retained in the 
ECS. Medium containing cells and virus are harvested from the ECS through the 
sampling ports on the hollow fiber cartridge at various time points throughout the 
duration of the study and the amount of virus is quantified in these samples. Ad-
ditionally, serial drug concentrations are determined from medium harvested from 

Fig. 9.1  The hollow fiber infection model (HFIM) system. (Reproduced with permission from 
McSharry et al. 2009a)
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the central reservoir of the HFIM system. These measurements allow for the char-
acterization of the dose–response relationship for the antiviral agent under evalua-
tion. Moreover, one has the ability to assess the impact of the dosing interval on the 
inhibition of viral replication and the emergence of resistance.

9.3  Nucleoside Analogues

The first PD studies performed with antiviral agents in the HFIM system was with the 
nucleoside analogue stavudine (d4T; Bilello et al. 1994). In this evaluation, the HFIM 
correctly predicted the clinical dose of d4t in a period of several months, whereas 
clinical trials required approximately 18 months to identify the appropriate dose.

The nucleoside analogue abacavir was then examined in the HFIM (Drusano 
et al. 2002a). The goal of these studies was to determine if 600 mg of abacavir ad-
ministered once-daily (QD) was as efficacious as 300 mg given twice-daily (BID). 
The rationale for these experiments was based on previous findings regarding the 
dosing interval for the nucleoside analogue zidovudine. Initially, zidovudine was 
administered to patients every 4 h in the clinic. As zidovudine use progressed and 
further research was conducted, it was determined that longer dosing intervals, such 
as BID dosing, were as effective as the shorter dosing intervals (Mulder et al. 1994). 
Since longer dosing intervals promote better patient adherence, the sponsors for 
abacavir were hopeful that QD dosing would yield optimal therapeutic outcomes.

Two separate experiments were performed in the HFIM system. The first experi-
ment was to examine the efficacy of abacavir as a continuous infusion (CI) versus 
daily pulse dosing every 24 h (Q24). For the Q24 dosing, abacavir was removed 
from the HFIM system at a rate to simulate the “correct” human half-life. The re-
sults from this study are shown in Fig. 9.2.

The second experiment was to administer the drug QD versus BID with the same 
half-life. The results from this experiment are shown in Fig. 9.3. It should be noted 
that the ultimate clinical dose for abacavir was 600 mg QD and that 300 mg BID 
was also being considered. At the time these experiments were performed, it was 
thought that the clinical dose would be 500 mg QD or 250 mg BID. Thus, these 
regimens were evaluated in the study.

Figures 9.2 and 9.3 both show that the dosing interval for abacavir did not influ-
ence the antiviral effect over time in the HFIM system, as viral suppression was con-
sistent between the Q24 and CI treatment arms and the Q24 and every 12 h (Q12) 
treatment arms. However, the sponsor wished to prolong the experiment and to 
document a failure arm. Therefore, a third study was conducted. The result from this 
experiment, which was conducted over a course of 30 days, is displayed in Fig. 9.4.

These data were all published in Antimicrobial Agents and Chemotherapy 
(AAC; Drusano et al. 2002a). As shown in Fig. 9.4, the Q24 and Q12 dosage reg-
imens consistently suppressed viral replication throughout the entire duration of 
the experiment. In contrast, abacavir treatment failed when the dosing interval was 
extended to every 48 h, as viral burden in this treatment arm was similar to that 
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reported in the no-treatment control by day 24 post exposure. These findings sug-
gest that QD dosing for abacavir is as efficacious as BID dosing and that a QD regi-
men would be successful in the clinic. A clinical trial (the ZODIAC trial) was later 
performed to determine if abacavir administered QD in patients was noninferior to 
BID dosing (Moyle et al. 2005). The ZODIAC trial confirmed the findings of the 
HFIM system, as the QD dosage regimen for abacavir was deemed noninferior to 
the BID dosage regimen in HIV-infected patients (Moyle et al. 2005). This example 
illustrates the clinical applicability of data derived from the HFIM system.

Since QD dosing for abacavir is as efficacious as BID dosing, the sponsors 
wished to determine if zidovudine could also be administered once a day, as zid-
ovudine and abacavir both belong to the nucleoside analogue drug class. Thus, a 
study was conducted with zidovudine in the HFIM system to answer this question. 
The results from this study are displayed in Fig. 9.5.

The Q12 zidovudine regimen provided continuous suppression of HIV through-
out the duration of the 14-day study. The Q24 regimen, on the other hand, had 
significantly higher viral burden relative to the Q12 by day 10 and viral levels were 
similar to those of the no-treatment control by day 14. These findings show that, 
unlike abacavir, zidovudine Q24 is not as efficacious as the Q12 regimen in the 
HFIM system, suggesting that QD dosing of zidovudine will not be successful in 
a clinical setting. A clinical trial was later conducted in HIV-infected patients as-
sessing the efficacy of QD versus BID dosing for zidovudine. The findings of this 
trial showed that QD dosing of zidovudine was in fact not as efficacious as BID 
dosing in infected patients (Ruane et al. 2004). These study results provide an addi-

Q24

C.I.

Control

Fig. 9.2  The effect of abacavir on HIV replication in the HFIM system. Abacavir was adminis-
tered into hollow fiber cartridges as a continuous infusion (CI) or as pulse dosing via computer-
controlled syringe pumps once every 24 h (Q24). Hollow fiber cartridges were sampled at various 
times throughout the study and the amount of p24 viral antigen was quantified from sample super-
natants by ELISA. (Used with permission from Drusano et al. 2002a)
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tional example in which predictions made by the HFIM system have been validated 
through human clinical trials.

The conclusions from studies performed in the HFIM system and the clinical 
trials clearly show that abacavir can be administered QD without compromising 
efficacy but zidovudine must be dosed BID, even though these two compounds be-
long to the same drug class. Why is this so? In an effort to answer this question, one 
must consider the mechanism of action for these compounds. Nucleoside analogues 
are prodrugs and must be triphosphorylated by host cellular enzymes to be potent. 
Zidovudine and abacavir, once triphosphorylated, compete with deoxynucleoside 
triphosphates during reverse transcription and act as chain terminators, preventing 
viral RNA from reverse transcribing into DNA. Thus, in order to understand the 
dosing interval for zidovudine or abacavir, one must analyze the PKs of the triphos-
phorylated active form of both compounds. Earlier, Slusher et al. (1992) examined 
the anabolites of zidovudine intracellularly. The data were clear-cut. There was a 
Michaelis–Menten step between the monophosphate and diphosphate anabolites. 
The importance of this is that no matter how much zidovudine is administered, 
only a certain amount of triphosphate anabolite (the active moiety) can be pro-

250 mg Q12

500 mg Q24

Control

Fig. 9.3  The effect of Q24 versus Q12 dosing on the efficacy of abacavir against HIV in the HFIM 
system. Abacavir was administered into hollow fiber cartridges as the total daily dose once every 
24 h (500 mg Q24) or half the daily dose every 12 h (250 mg Q12). Hollow fiber cartridges were 
sampled every other day. The amount of HIV was quantified in sample supernatants using a p24 
ELISA. (Used with permission from Drusano et al. 2002a)
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duced. However, the monophosphate just keeps increasing with increasing dose. 
The rate of fall of the monophosphate then determines the dosing interval. As long 
as the amount of monophosphate is sufficient to saturate the enzyme, there will be 
a steady amount of triphosphate anabolite (and, hence, stable antiviral effect). If the 
dosing interval is too long, the monophosphate ceases to saturate the enzyme and 
the amount of triphosphate falls, leading to decreased antiviral effect and ultimate 
regimen failure. Higher dosing levels for zidovudine would not increase efficacy in 
this circumstance, as maximum metabolic conversion has already been reached, and 
would only cause increased risk of toxicity and adverse side effects. This explains 
the ability to prolong zidovudine’s dosing interval from every 4 h to BID dosing 
with success, followed by the failure with the attempted extension to daily dosing. 
Michaelis–Menten kinetics for zidovudine are illustrated pictorially in Fig. 9.6.

When patient samples were examined, a broad range of zidovudine monophos-
phate concentrations were observed, spanning from 0.7 to 4.0 pmol/106 cells. In 
contrast, a very limited range of zidovudine triphosphate concentrations were seen 
(0.5–0.14 pmole/106 cells). These data are depicted in Fig. 9.7. Thus, these findings 
demonstrate that regardless of how much zidovudine monophosphate is inside the 

600 mg Q24

1200 mg Q48

Control

300 mg Q12

Fig. 9.4  The effect of dosing interval on the efficacy of abacavir against HIV in the HFIM sys-
tem. Abacavir was administered into hollow fiber cartridges as twice the daily dose every 48 h 
(1200 mg Q48), the daily dose every 24 h (600 mg Q24), or half the daily dose every 12 h (300 mg 
Q12). Hollow fiber cartridges were sampled at various times during the study and HIV was quanti-
fied from supernatants by ELISA. (Used with permission from Drusano et al. 2002a)
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cell, only a certain amount of triphosphate will be produced. This is consistent with 
the hypothesis discussed above.

So what of abacavir? It has no Michaelis–Menten step, but can be administered 
QD without compromising efficacy. Piliero et al. (2003) examined carbovir triphos-
phate (active moiety of administered abacavir) in patients already receiving the 
drug. The PKs of intracellular carbovir triphosphate are displayed in Fig. 9.8.

The half-life of carbovir triphosphate is quite prolonged (about 20.6 h with a 
95 % confidence interval from 16.4–26.0 h). Consequently, the carbovir triphos-
phate is able to be maintained in an effective range over the full 24 h dosing interval, 
explaining why QD dosing for abacavir is successful in patients. These findings 
demonstrate that the dosing interval for nucleoside analogues can be altered by the 
presence or absence of a Michaelis–Menten step as well as by the terminal half-life 
of the triphosphate. Thus, one must consider the PKs of the active moiety of the 
compound when determining the appropriate dosing interval that is associated with 
maximal efficacy.

9.4  Aspartyl Protease Inhibitors

For nucleoside analogues, the PD index that is best linked to efficacy tends to be 
the free drug area under the concentration–time curve ( fAUC), that is until the dos-
ing interval becomes too long (i.e., Q24 for zidovudine or every 48 h (Q48) for 

Fig. 9.5  The effect of dosing interval on the efficacy of zidovudine against HIV in the HFIM sys-
tem. Zidovudine was administered into hollow fiber cartridges as the total daily dose once every 24 h 
(600 mg Q24) or half the daily dose every 12 h (300 mg Q12). Hollow fiber cartridges were sampled 
every other day. The amount of HIV was quantified in sample supernatants using a p24 ELISA
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abacavir) resulting in treatment failure. However, for aspartyl protease inhibitors 
(hereafter called protease inhibitors or PIs) the PD index linked with effect was be-
lieved to be the amount of time free drug concentrations remain above a threshold 
( fTime > threshold). This difference in PD indices between these two drug classes 
is attributed to the limited mean residence time of the PI in the active site of the 
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Fig. 9.7  The concentration of intracellular zidovudine monophosphate versus intracellular zid-
ovudine triphosphate in patients treated with zidovudine. (Data from Slusher et al. 1992)

 

Fig. 9.6  Michaelis–Menten kinetics for zidovudine ( ZDV). The phosphorylation kinetics for ZDV 
are illustrated by the dashed line. ZDV is phosphorylated by host cellular enzymes and converted 
to high levels of ZDV-monophosphate ( ZDV-MP) which accumulates in the cell after administra-
tion. Despite high levels of ZDV-MP, only a fraction of ZDV-MP is converted to ZDV-diphosphate 
( ZDV-DP) due to the saturation of the phosphorylating enzyme, representing the Michaelis–Men-
ten step in ZDV phosphorylation kinetics. ZDV-DP is then phosphorylated to yield the active moi-
ety, ZDV-triphosphate ( ZDV-TP). (Reproduced with permission from Slusher et al. 1992)
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viral protease. PD indices offer great insight into the optimal dosing interval for 
a compound. For example, the efficacy of fAUC driven compounds is not influ-
enced by dosing interval and, consequently, QD dosing is often employed for these 
compounds. In contrast, fTime > threshold driven drugs often require more frequent 
dosing intervals (i.e., CI, BID, or thrice-daily (TID) dosing) to achieve maximal ef-
fect. It is important to correctly identify the PD index of antiviral agents to guide the 
design of optimal dosage regimens, as a misidentification may lead to suboptimal 
dosing and ultimately result in therapeutic failure.

The PI amprenavir was evaluated in the HFIM system to determine the PD index 
linked with viral inhibition for this compound (Preston et al. 2003). The results of 
this study are illustrated below in Fig. 9.9. The figure shows that more frequent dos-
ing intervals of amprenavir, including CI and every 8 h (Q8; TID) regimens, were 
required to maximally suppress HIV replication. The longer dosing interval (Q12) 
resulted in viral breakthrough as early as 7 days post therapy. These findings indi-
cate that fTime > EC95 is the PD index that is best linked to viral suppression for the 
PI amprenavir, thereby confirming the hypothesis stated above.

Consequently, the dosing interval has a major impact on the amount of viral sup-
pression noted. In the case of amprenavir, the drug concentrations were “boosted” 
by the coadministration of ritonavir, which markedly lowers the clearance of am-
prenavir. An inhibitory sigmoid Emax effect model, which allows identification of an 
exposure target, is shown in Fig. 9.10.

It is apparent by inspection that the minimal coverage necessary to reap the full 
benefit of amprenavir effect is approximately 80 % of the dosing interval. Using 
this information, a Monte Carlo simulation was performed using patient-derived PK 
studies with amprenavir/ritonavir to examine the impact of EC95 on target attain-
ment for a fixed dose of amprenavir/ritonavir (Fig. 9.11). In this instance, the EC50 
is plotted. It has been previously demonstrated that EC95is approximately 4 × EC50 
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Fig. 9.8  The intracellular pharmacokinetics of carbovir triphosphate (CBV-TP; the active moiety 
of abacavir) in patients receiving abacavir. (Data from Piliero et al. 2003)
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for nonprotein-bound drug. The Fig. 9.11 shows that 90 % target attainment is main-
tained to approximately an EC50 of 50 nM.

Haas et al. (2000) studied TID versus BID dosing for patients receiving the PI 
indinavir. They showed that of the first 87 patients reaching 24 weeks of treatment, 
91 % had achieved < 400 copies/ml with TID dosing versus 64 % receiving BID 
dosing ( p < 0.01). These clinical findings also suggest that more frequent dosing 
intervals are required to obtain maximal efficacy with PIs, thereby validating the 
results from the HFIM studies with amprenavir.

The PI Atazanavir was also examined in the HFIM system and demonstrated the 
same finding of fTime > EC95 as the dynamically linked index for the nonritonavir 
boosted drug (Drusano et al. 2001).

9.5  Nonnucleoside Reverse Transcriptase Inhibitors

Because of the success of employing Monte Carlo simulation to identify robust 
doses of drug with PIs, we wished to examine this issue for a nonnucleoside re-
verse transcriptase inhibitor (NNRTI), GW420867X. Population PK analysis was 

Control

C.I.

Q12

Q8

Fig. 9.9  The influence of dosing interval on the efficacy of amprenavir against HIV-1 in the HFIM 
system. Amprenavir was administered into hollow fiber cartridges as half the daily dose every 12 h 
(Q12), one third the daily dose every 8 h (Q8), or as a continuous infusion ( C.I.). Hollow fiber car-
tridges were sampled every other day. The amount of HIV was quantified in sample supernatants 
using a p24 ELISA. (Reproduced with permission from Preston et al. 2003)
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(Reproduced with permission from Preston et al. 2003)
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performed for three doses (50–200 mg daily) of GW420867X. A 3000-subject 
Monte Carlo simulation was performed for each dose evaluated. EC50 values were 
corrected for protein binding and for the difference between EC50 and EC90. The 
fraction of patients with free drug trough concentrations that were above the EC90 
was determined. It should be noted that the highest EC50 was 7 nM in a large clini-
cal collection (Drusano et al. 2002b). The target attainment is shown in Fig. 9.12.

Given that the highest EC50 value in the clinical collection of HIV was 7 nM, 
it is clear that a short-term clinical evaluation would not be expected to show any 
differences in treatment effect (resistance emergence is another issue). Figure 9.13 
shows the results of a phase I/II clinical trial with these three doses of GW420867X. 
For the 1st week of the study, GW420867X was administered as monotherapy and 
combination therapy was initiated (GW420867X + zidovudine + 3TC) in the 2nd 
week (designated by the vertical line at day 8) of the trial.

At the end of monotherapy, as predicted, the viral load decline was essentially 
identical among the three arms. In the clinic, Marzolini et al. (2001) were able to 
demonstrate a significantly higher rate of virological failure in patients with lower 
concentrations of the NNRTI efavirenz, as would be predicted from this analysis.

It should be noted that for HIV, we have a number of clinically validated pre-
dictions from the HFIM: (1) d4T (dose and dosing interval), (2) abacavir (dosing 
interval), (3) amprenavir (dosing interval), (4) atazanavir (dose and dosing inter-
val), and (5) zidovudine (failure of QD dosing). Monte Carlo simulation was also 
demonstrated to be a valuable tool for identification of a robust dose: (1) atazanavir 
and (2) the NNRTI GW420867X.
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Fig. 9.12  Monte Carlo simulations for 50, 100, and 200 mg doses of GW420867X. 3000-subject 
Monte Carlo simulations were conducted for all three doses to determine the percentage of patients 
that would have free trough concentrations of GW420867X that were 10 times greater than the 
EC50 of HIV. GW420867X was administered QD by mouth. (Reproduced with permission by 
Drusano et al. 2002b)
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As with bacteria and fungi, it is straightforward to link a measure of drug expo-
sure relative to a measure of potency to desired outcomes for a number of different 
agents against HIV.

9.6  Combination HIV Chemotherapy

As in the therapy of tuberculosis, combination chemotherapy is de rigeur for the 
therapy of HIV disease. Generally, selection of drugs as well as their doses and 
schedules of administration are empirical. By examining mathematically how drugs 
interact and understanding the variability of their PK profiles, it is possible to gain 
insight on potential clinical utility.

When one examines drug effect interaction, the first requirement is to have a 
definition of additivity. There are many extant in the literature, but the two most 
common are Loewe additivity and Bliss independence. Understanding additivity 
allows rational definition of synergy and antagonism, with synergy being signifi-
cantly more effective than additivity and antagonism being significantly less active 
than additivity. This topic is well reviewed by Greco et al. (1995). Here there will 
be an examination of a method for evaluating drug interaction employing Loewe 
additivity.

Fig. 9.13  Phase I/II clinical trial results of GW420867X. Three different doses of GW420867X 
(50, 100 mg, and 200 ng) were administered to patients QD orally as monotherapy for the first 8 
days, followed by combination therapy with zidovudine and 3TC thereafter. The decline in viral 
load was determined in patients at various times throughout the study. (Reproduced with permis-
sion from Drusano et al. 2002b)
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The combination of abacavir (a nucleoside analogue) plus amprenavir (a prote-
ase inhibitor) was examined in a 96-well format (Drusano et al. 1998). The three-
dimensional effect surfaces are displayed in Fig. 9.14. Figure 9.14a shows the full 
effect surface and in Fig. 9.14b, the theoretical additive surface has been removed 
and the remaining is true significant synergy.

By applying the Greco equation, we can identify a point estimate of the interac-
tion parameter α and its 95 % confidence interval. In this case, the estimate is 1.144 
with a confidence interval of 0.534–1.754. As the estimate is positive and the lower 
bound does not cross zero, the interaction is defined as statistically significant syn-
ergy. Because the approach is fully parametric, we can employ Monte Carlo simula-
tion to examine the impact of dosing interval on antiviral effect. Giving both agents 
on a Q12 basis was compared to Q12 administration for the nucleoside analogue 
and Q8 administration for the PI (Drusano et al. 2000).

Figure 9.15a shows the concentration–time profiles for amprenavir and abaca-
vir when administered on a Q8/Q12 schedule. In Fig. 9.15c, the Greco equation 
has been employed to turn a concentration–time triplet (time, drug1 concentration, 
drug2 concentration) into an effect–time doublet. Figures 9.15b and d show the 
same type of data, with the exception that amprenavir and abacavir are both admin-
istered as Q12.

Performing Monte Carlo simulation demonstrated that there was a significant 
difference between the two dosing intervals (total daily doses were identical) as 
shown in Table 9.1.

Fig. 9.14  The three-dimensional effect surface for combination therapy of abacavir (nucleoside 
analogue) and amprenavir (a protease inhibitor). The interaction between abacavir and amprenavir 
was evaluated using a 96-well format. The full effect surface (a) and the true effect synergy plot (b) 
are shown for the combination. (Reproduced with permission from Drusano et al. 1998)
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Thus, these findings effectively illustrate that it is quite possible to employ pre-
clinical techniques to gain insight on how to optimize combination chemotherapy.

9.7  Influenza Virus

9.7.1  The Adamantanes

The first effective agents against influenza were amantadine and rimantadine. In-
fluenza virus has been shown to emerge resistant to both drugs rapidly. Amantadine 
was studied in the HFIM against an influenza A virus and the antiviral activity as 
well as resistance emergence was quantified (Brown et al. 2010). In the first experi-
ment, amantadine was administered as a CI in a dose ranging design. As can be seen 
in Fig. 9.16, there was modest antiviral effect, regardless of the level of exposure.

The M2 gene was sequenced from viral samples harvested between 48 and 120 h 
post exposure to look for emergence of resistance to amantadine. The sequencing 
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time curves for amprenavir 800 mg Q8 and abacavir 300 mg Q12 at steady state for one randomly 
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effect–time curves for the amprenavir (1200 mg Q12) and abacavir (300 mg Q12) combination 
therapeutic regimen. (Reproduced with permission from Drusano et al. 2000)
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results are presented in Table 9.2. Increasing pressure from increasing drug expo-
sure results in rapid resistance emergence. Of equal interest, differing levels of anti-
viral pressure selects for different resistance mutations. At a CI of 6 mg/L resistance 
is partially suppressed, being 70 % wild type at 120 h. It is important to mention 
that 6 mg/L is equivalent to a supraphysiological dose in humans due to the toxicity 
associated with amantadine therapy. Therefore, these data show that even at toxic 
exposures of amantadine, the emergence of resistant viruses was not prevented.

To better mimic the clinical circumstance, orally administered profiles of aman-
tadine were generated (66 mg daily = subtherapeutic dose; 200 mg daily = clini-
cal daily dose; 660 mg daily = supratherapeutic regimen). Again, antiviral activity 
(Fig. 9.17a) and resistance emergence (Fig. 9.17b) were quantified.

As previously, it was not possible to counterselect resistance emergence. As 
stated above, it should be noted again that many of the exposures generated in these 
experiments, either as CIs or as orally administered profiles, are nontolerable, or 
toxic, in humans. This rapid resistance emergence has essentially wiped out the 
clinical utility of amantadine and rimantadine. Today, 100 % of circulating influ-
enza A viruses are resistant to the adamantanes (Bright et al. 2006; CDC 2006; 
Deyde et al. 2007).

The findings demonstrated by the HFIM system explain the clinical failure of 
amantadine as a therapeutic option against influenza. The EC50 values for aman-
tadine against wild-type influenza viruses that retain susceptibility to this drug are 
approximately 0.05 µg/ml. However, influenza viruses that are resistant to amanta-
dine have EC50 values that are greater than 10 µg/ml (Krumbholz et al. 2009). Since 
the clinical dose of amantadine (200 mg per day) is equivalent to a CI of 0.45 µg/
ml, it is impossible to prevent the amplification of drug-resistant mutants which 
display EC50 values that are 22 times greater than the clinical exposure. Thus, it is 
not clinically feasible to dose amantadine at exposures high enough to suppress the 
viral resistant mutants due to toxicity-related issues associated with this compound. 
These findings clearly show that widespread amantadine resistance could not have 
been prevented when administered as monotherapy for the treatment of influenza, 
even if different doses or dosing intervals were employed.

Table 9.1  Mean percentages of the antiviral suppressive effect and the fractions of the simulated 
population ( n = 500) exceeding the 70 and 90 % maximal suppressive effects over a 24-h steady-
state-dosing interval for two regimens of abacavir plus amprenavir differing only in the dosing 
interval for amprenavir. (Reproduced with permission from Drusano et al. 2000)
Parameter Value for regimen

Abacavir at 300 mg orally ql2h 
plus amprenavir at 800 mg 
orally q8h

Abacavir at 300 mg orally ql2h 
plus amprenavir at 1200 mg 
orally q12h

Mean effect ± SD (%) 90.9 ± 11.4 80.9* ± 18.6
Fraction ≥ 70 % of maximal 
effect

459/500 354/500**

Fraction ≥ 90 % of maximal 
effect

344/500 230/500**

*P < 0.001 (paired t test)
**P < 0.001 (Fisher exact test)
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9.7.2  Neuraminidase Inhibitors

Neuraminidase inhibitors work to block the release of newly formed influenza vi-
rions from the host cell membrane. The first neuraminidase inhibitor available for 
oral administration was oseltamivir. Oseltamivir is a prodrug that is rapidly con-
verted in the blood to the active form (oseltamivir carboxylate). The clinical dose of 
oseltamivir is 75 mg BID, but doses of 1000 mg per day have been shown to be well 
tolerated in people (Massarella et al. 2000). Since toxicity is not of great concern 
for this compound, we wished to determine if higher doses of oseltamivir would 
yield greater therapeutic outcomes relative to the current clinical dosage regimen 
and if QD dosing is as efficacious as the clinically employed BID dosing. To answer 
these questions, the PDs of oseltamivir were evaluated in the HFIM (McSharry 
et al. 2009b). For all PD studies performed in the HFIM system, the active form 
of oseltamivir, oseltamivir carboxylate, was employed. Dose ranging studies were 
conducted in which oseltamivir was administered into the HFIM system as a CI at 
various concentrations. The results are shown in Fig. 9.18.
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Fig. 9.16  Dose-ranging study with amantadine against an influenza A viral isolate in the HFIM 
system. Influenza-infected MDCK cells were mixed with uninfected MDCK cells at a ratio of 
1:106 and inoculated into the HF cartridges. Amantadine at various concentrations was adminis-
tered into hollow fiber cartridges as a continuous infusion. Hollow fiber cartridges were sampled 
daily. Viral burden was quantified from clarified supernatants by plaque assay on MDCK cells. 
Viral burden determinations were performed in duplicate. The mean values are represented by the 
symbols, and error bars correspond to one standard deviation. (This figure contains data modified 
from Brown et al. 2010)
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A clear exposure–response relationship was observed for oseltamivir against 
influenza A virus. This is in contrast to the amantadine CI experiment (Fig. 9.16) 
where the exposure–response relationship is not evident because of different rates 
of outgrowth of resistant viral mutants. The clinical exposure of oseltamivir (75 mg 
BID) is equivalent to a CI of 400 ng/ml. From Fig. 9.18, it is evident that the maxi-
mal effect ( Emax) of oseltamivir occurs at a CI of 100 ng/ml. Thus, these results 
demonstrate that higher clinical doses of oseltamivir are unlikely to be more effica-
cious, as Emax is achieved at the current clinical dosage regimen.

In order to determine if oseltamivir administered QD is as efficacious as the cur-
rent clinical BID dosage regimen, a dose fractionation study was performed with 
oseltamivir in the HFIM system. For this experiment, oseltamivir administered 
as a CI, Q8h, Q12h, and Q24h dosage regimens (with the same total 24-h AUC) 
were contrasted. The PK profiles and the relative antiviral effect are illustrated in 
Figs. 9.19a and b, respectively.

There are no statistically significant differences in antiviral activity across any 
of the modes of administration (dosing intervals). It is important to note that these 
data were developed with an oseltamivir terminal half-life of 8 h. These data imply 
that the PD index linked to antiviral effect is fAUC/EC50, suggesting that QD dosing 
for oseltamivir would not compromise efficacy in the clinic. This is an important 
finding as QD dosing would promote higher patient adherence, thereby minimizing 

Table 9.2  The influence of concentration on the percentage and type of M2 mutations selected in 
an influenza-A isolate under continuous amantadine pressure. (Reproduced with permission from 
Brown et al. 2010)
Arm Time point (h) Percent wild type Mutant genotype
Control 48 100

120 100
Continuous infusion
0.3 µg/ml 48 100

72 80 S3IN
96 70 S3IN

120 80 S3IN
0.8 µg/ml 48 100

72 100
96 40 20% V27A, 40 %

A30T
120 60 20% V27A, 20 %

A30T
2 µg/ml 48 90 I32S

72 80 I32S
96 60 I32S

120 70 I32S
6 µg/ml 48 100

72 90 V27A
96 100

120 70 V27A
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the danger of suboptimal dosing stemming from missed doses of oseltamivir which 
could contribute to the emergence and spread of oseltamivir-resistant influenza.

Oseltamivir-resistant influenza has been well documented during seasonal and 
pandemic outbreaks and has been described most frequently in the pediatric popula-
tion, where half-lives are considerably shorter, and in immunosuppressed patients 
(Besselaar et al. 2008; CDC 2009a, b, c; Collins et al. 2008; Dharan et al. 2009; 
Ghedin et al. 2011, 2012; Hauge et al. 2009; de Jong et al. 2005; Matsuzaki et al. 
2010; Moscona 2005). Several attempts were made to identify oseltamivir-resistant 
mutants from both dose ranging and dose fractionation studies using Sanger se-
quencing and pyrosequencing methods to determine if oseltamivir exposure or dos-
ing interval influences the emergence of drug-resistant viruses. All of these attempts 
were unfortunately unsuccessful. These results indicate that oseltamivir resistance 
is less likely to emerge relative to the adamantines. However, further studies are 
underway to evaluate optimal oseltamivir dosage regimens that will prevent the 
emergence of resistance.

Resistance to oseltamivir was described in the pandemic influenza outbreak of 
2009 (CDC 2009a, b; Dharan et al. 2009; Ghedin et al. 2011). The primary isolate 
was influenza A/Hong Kong virus which contained a H275Y mutation in the viral 
neuraminidase. The EC50 for oseltamivir increased in excess of 200-fold with this 
mutation, abrogating the antiviral activity. Because of the locale of the mutation, 
the neuraminidase inhibitor zanamivir still retained activity against this isolate. The 
binding sites for zanamivir relative to oseltamivirin, the active site of the neuramini-
dase protein, explain this observation.

Control
66 mg Q24
200 mg Q24
600 mg Q24

a b

Fig. 9.17  Dose ranging study with amantadine administered Q24 against an influenza A viral 
isolate in the HFIM system. Influenza-infected MDCK cells were mixed with uninfected MDCK 
cells at a ratio of 1:106 and inoculated into the HF cartridges. Amantadine at exposures equivalent 
to QD doses of 66, 200, or 600 mg was administered into hollow fiber cartridges as a 1-h infusion 
Q24. Hollow fiber cartridges were sampled daily. a Viral burden was quantified from clarified 
supernatants by plaque assay on MDCK cells. Each symbol corresponds to the mean viral titer, 
as viral burden quantifications were performed in duplicate. Error bars represent one standard 
deviation. b Viral RNA was extracted from supernatant samples harvested between 48 and 120 h 
post exposure and the influenza M2 gene was sequenced and the number of viral isolates harbor-
ing known amantadine-resistant mutations was determined. (Reproduced with permission from 
Brown et al. 2010)
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Fig. 9.19  The influence of dosing interval on the antiviral efficacy of oseltamivir against influ-
enza A in the HFIM system. a The pharmacokinetic profiles simulated for oseltamivircarboxylate 
in the HFIM system and the EC50 value of the influenza A viral isolate examined in the experiment. 
All dosage regimens yielded a 24-h AUC value of 24 µg h/L, and a half-life of 8 h was simulated. 
b The viral burden detected in each hollow fiber cartridge over time. Viral burden in clarified 
supernatants harvested from hollow fiber cartridges was quantified in duplicate by plaque assay on 
MDCK cells. Symbols represent mean viral titer values and error bars correspond to one standard 
deviation. (Data modified from McSharry et al. 2009b)

 

Fig. 9.18  The antiviral effect of oseltamivir, administered as a continuous infusion, on influenza 
A virus in the HFIM system. Influenza-infected MDCK cells were mixed with uninfected MDCK 
cells at a ratio of 1:106 and inoculated into the HF cartridges. Oseltamivir carboxylate at various 
concentrations was administered into hollow fiber cartridges as a continuous infusion. Hollow 
fiber cartridges were sampled daily and viral burden was quantified from clarified supernatants by 
plaque assay on MDCK cells. Viral burden determinations were performed in duplicate. The mean 
values are represented by the symbols, and error bars correspond to one standard deviation. (Data 
modified from McSharry et al. 2009b)
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Zanamivir was first introduced as an inhaled product. It could not be admin-
istered orally because of its low bioavailability. This limited its utility for osel-
tamivir-resistant influenza, especially in populations such as the very young, the 
elderly, and patients with severe structural lung damage. Consequently, in response 
to the resistance seen in the pandemic, the sponsor (Glaxo Smith-Kline) produced 
an intravenous (IV) formulation of zanamivir. While the H275Y mutation conferred 
a major shift in susceptibility to oseltamivir, there was no statistically significant 
change in the EC50 for zanamivir. Consequently, this agent was required for seri-
ously ill patients infected with an oseltamivir-resistant isolate.

We examined zanamivir against the parent A/Mexico (wild-type) influenza strain 
as well as the oseltamivir-resistant mutant A/Hong Kong [H275Y] strain (Brown 
et al. 2011a, b). In Fig. 9.20, the growth characteristics of both isolates in the HFIM 
system are depicted.

The mutant isolate grew slightly better than the wild-type strain, so the H275Y 
mutation in the A/Hong Kong strain does not compromise viral biofitness. Zanami-
vir efficacy was also evaluated for both the wild-type A/Mexico and the oseltami-
vir-resistant A/Hong Kong [H275Y] isolates. These results are shown in Fig. 9.21. 
It is clear that zanamivir has a substantial inhibitory effect on both the wild-type 
(Fig. 9.21a) and oseltamivir-resistant (Fig. 9.21b) isolates, as viral burden in the 
zanamivir treatment arms were lower relative to those observed for the no-treatment 
control (control) arms. These results show that, in fact, the H275Y mutation does not 
affect viral susceptibility to zanamivir, despite conferring resistance to oseltamivir.

Since zanamivir is efficacious against both wild-type and oseltamivir-resistant 
influenza viral isolates, we wanted to determine if lower doses of zanamivir or less 
frequent dosing intervals could be administered without compromising efficacy. 
Thus, adose fractionation study (Q12 vs. Q24) and dose ranging study was per-
formed simultaneously in the HFIM system with zanamivir against the oseltamivir-
resistant A/Hong Kong [H275Y] isolate. The oseltamivir-resistant strain was cho-
sen for these experiments because IV zanamivir is likely to be used only in patients 
exhibiting influenza infection with oseltamivir-resistant viruses. The results from 
these studies are shown in Fig. 9.22.
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Greater viral inhibition resulted at all dose levels when the agent was adminis-
tered Q12 versus Q24. These findings suggest that the PD index for zanamivir that 
is best linked with viral suppression is fTime > EC50. This is in contrast to oseltami-
vir, which instead has a PD-linked index of fAUC/EC50, as discussed above. This 
raises the immediate question of why the dynamic driver would be different for two 
agents within the same therapeutic group.
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Fig. 9.21  Efficacy of the clinical IV dose of zanamivir (600 mg Q12) against a wild-type A/
Mexico and b oseltamivir-resistant A/Hong Kong [H275Y] influenza in the HFIM system. Hollow 
fiber cartridges were sampled in duplicate and viral burden was determined from clarified viral 
supernatants by plaque assay. Each symbol represents the mean viral titer value and error bars 
correspond to one standard deviation. (Reproduced (a) and modified (b) with permission from 
Brown et al. 2011b)

 

Fig. 9.22  Dose fractionation and dose-ranging studies with zanamivir against oseltamivir-resis-
tant A/Hong Kong [H275] influenza virus in the HFIM system. Zanamivir was administered into 
hollow fiber cartridges at exposures equivalent to 1200, 600, or 300 mg daily doses either as a the 
total daily dose given once daily (Q24) or b half the daily dose administered twice daily (Q12). 
Hollow fiber cartridges were sampled daily in duplicate, and viral burden was quantified from 
clarified supernatants by plaque assay. Symbols correspond to mean viral titers and error bars 
represent one standard deviation. (Reproduced with permission from Brown et al. 2011b)
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The hypothesis set forth had to do with the different half-lives observed with 
these agents, with oseltamivir having an 8-h half-life and zanamivir having a 2.5-h 
half-life in man. To test this hypothesis, a set of experiments were performed where 
zanamivir was administered into hollow fiber cartridges at exposures that had the 
same 24-h AUC, but a 2.5-h half-life was simulated in one set of experimental arms 
and an 8-h half-life (the half-life reported for oseltamivir) was simulated in the other 
set of experimental arms. We examined the total daily dose of 1200 mg/day (the 
clinical dose) and fractionated it as one third the total dose Q8, one half the total 
daily dose Q12, and the whole dose Q24. The PK profiles of all dosage regimens 
evaluated in this experiment are shown in Fig. 9.23.

The PD results for this experiment are displayed in Fig. 9.24.
When the clinical 2.5 h half-life is simulated, the PD driver for zanamivir is 

fTime > EC50, as greater viral suppression was observed in treatment arms with 
more frequent dosing intervals (Fig. 9.24a). When the half-life was prolonged to 
an oseltamivir-like 8 h (Fig. 9.24b), the dynamic driver switches to fAUC/EC50. We 
sought to explain these findings through use of a mathematical model. The form of 
the model is displayed in Fig. 9.25.

This model was applied to all the data illustrated in Figs. 9.22 and 9.24 simulta-
neously. The individual model fits are shown in Fig. 9.26.

The fit of the model to the data was excellent, with pre-Bayesian predicted–ob-
served plots of 0.99 for zanamivir concentrations and 0.87 for viral burden. The 
post-Bayesian fits were 0.99 for zanamivir concentration and 0.97 for the viral bur-
den.

The point estimates and measures of dispersion for the parameter values are 
displayed in Table 9.3.

The values for the delay time to viral release, mean survival time for infected 
cells, and for extracellular virus are clinically plausible. Of utmost importance, the 

Fig. 9.23  The pharmacokinetic profiles for the study in the HFIM system evaluating the influence 
of half-life on the pharmacodynamic index (dosing interval) for zanamivir that is best linked to 
suppression of A/Hong Kong [H275Y] influenza virus. For this study, a the clinical 2.5-h half-life 
and b a prolonged 8-h half-life were simulated. Dosing intervals of Q24, Q12, and Q8 were evalu-
ated at each half-life. (Data from Brown et al. 2011a)
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maximum extent of inhibition is 99 %, meaning that if enough zanamivir gets to the 
site of infection (in this case the lungs) it is possible to inhibit virtually all rounds 
(99 %) of viral replication. Finally, the zanamivir concentration causing 50 % of 
maximal inhibition is low and in accordance with other independent in vitro testing.

We employed the model to run simulations to identify the extent of viral inhibi-
tion at the end of the each dosing interval evaluated in this study. The results of the 
simulations are shown in Table 9.4.

Fig. 9.25  Mathematical 
model for zanamivir against 
oseltamivir-resistant A/Hong 
Kong [H275Y] influenza 
virus. The model describes 
the inhibitory effect of zana-
mivir on the release of newly 
synthesized virions from 
the host cell over time. For 
enabling equations, please 
refer to the original publica-
tion (Brown et al. 2011a). 
(Reproduced with permission 
from Brown et al. 2011a)
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Fig. 9.24  The effect of half-life on the pharmacodynamic index of zanamivir against A/Hong 
Kong [H275Y]. Zanamivir, at an exposure equivalent to the total daily clinical dose of 1200 mg/
day, was administered into hollow fiber cartridges as 1200 mg Q24 (Q24), 600 mg Q12 (Q12), or 
400 mg Q8 (Q8) via a 1-h infusion. a The clinical 2.5-h half-life and b a prolonged 8 h half-life 
were simulated for each dosage regimen evaluated. Hollow fiber cartridges were sampled daily in 
duplicate, and viral burden was quantified from clarified supernatants by plaque assay. Symbols 
correspond to mean viral titers and error bars represent one standard deviation. (Reproduced with 
permission from Brown et al. 2011a)
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The 8-h half-life provides a high percent of maximal suppression (> 96 %), irre-
spective of the dosing interval. In contrast, when the 2.5-h half-life is simulated, the 
Q12 and Q8 dosing intervals provide high percent of maximal inhibition at trough 
(94 and 96.3 %, respectively), but this is not true at the QD administration schedule 
(Q24), where percent of maximal inhibition shows a substantial decline (71.8 %).

These findings show that the mathematical model described above (Fig. 9.25) is 
a powerful tool for predicting influenza viral load over time for any zanamivir dos-
age regimen, as the model provided physiologically plausible parameter estimates 
and, more importantly, explained the cause for the switch in PD-linked indices from 
fTime > EC50 to fAUC/EC50 when the half-life extends to 8 h. Since zanamivir is 
almost exclusively eliminated via renal excretion, such a change in half-life would 
likely be seen in renal failure patients. Thus, one can conclude that patients with 
renal failure would exhibit a PD-index of fAUC/EC50 for zanamivir and individuals 
with normal renal function would have a PD-index of fTime > EC50. These findings 
suggest that alternative dosing strategies for zanamivir regimens in renal failure 
patients may be warranted. Our model can be utilized to predict the efficacy of any 
desired zanamivir dosage regimen, thereby providing guidance to the selection of 
the most optimal regimen.

The HFIM allows insight into different drug classes to optimize dose and dos-
ing interval in order to maximize antiviral activity and minimize the emergence of 
drug-resistant viruses.

Fig. 9.26  The individual-fitted viral burdens for zanamivir against oseltamivir-resistant A/
Hong Kong [H275Y] in the HFIM system, as determined by the mathematical model depicted in 
Fig. 9.25. a and b Graphs are based on the pharmacodynamic studies illustrated and described in 
Fig. 9.24. c and d Graphs are based on the dose fractionation and dose-ranging studies illustrated 
and described in Fig. 9.22. (Reproduced with permission from Brown et al. 2011a)
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Parameter Symbol unit Population mean 
estimates

Estimate for 
between-curve 
variability

Mean % CV 
uncertainty

Variance % CV 
uncer-
tainty

PK/PD parameters
Log10 of 2nd-order infec-
tion rate constant

Log10 Kinfect −2.49 6.1 0.0834 90

Synthesis rate constant 
of virus

Ksyn (1/h) 3.49 19.8 0.0045 145

Mean delay time until 
release of virus in the 
absence of reading

MDTdelay = 5/Kdeath (h) 37.6 2.6 0.0067 82

Mean survival time of 
infected cells

MSTinfected = 1/Kloss, 

virus (h)
7.4 5.3 0.0054 74

Mean survival time for 
extracellular virus

MSTvirus = 1/Kloss, virus 
(h)

12.4 6.9 0.0183 87

Maximum extent of 
inhibition

Imax (normal scale) 0.990

Maximum extend of 
inhibition (on trans-
formed scale)

Imax (transformed scale) 4.6a,b 9.6 0.133a,b 140

Zanamivir concentration 
causing 50 % of Imax

IC50 (mg/L) 0.0168 26.1 0.0114 285

Hill coefficient Hill 0.0885 9.7 0.0017 136
clearance CL (L/h) 16.0 2.1 0.0041 51
Volume of distribution 
for 8.0-h half-life

V18-h half-life (L) 170 15.0 0.0399 282

Volume of distribution 
for 2.5-h half-life

V12.5-h half-life (L) 69.8 0.4 < 0.0001 872

Log10 of initial no. of 
uninfected cells

LogU 8 0 (fixed)

Log10 of initial no. of 
infected cells

Logl 2 0 (fixed)

Residual error parameters
Additive error for viral 
load on log10 scale

SDin 0.224 6.9

Additive error for zana-
mivir concentration

PKin (mg/L) 0.092 20.6

Proportional error for 
zanamivir concentration

Pksl 0.071 14.8

a Imax was assumed to be normally distributed on the transformed scale ( Imaxtransformed). The follow-
ing logistics was used to constrain Imax between 0 and 1: Imax = 1/[1 + exp(−Imaxtransformed)]
b Individual Imax estimates (on the normal scale) ranged from 0.988 to 0.991 for all curves

Table 9.3  Parameter estimates for the population PK/PD mathematical model for zanamivir 
against oseltamivir-resistant A/Hong Kong [H275Y] influenza virus in the HFIM system. (Repro-
duced with permission by Brown et al. 2011a)
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9.8  HCV

Little has been done with PDs for HCV. The inability to grow this virus well in 
vitro leads to a paucity of information about optimizing therapy. We developed a 
new in vitro model system (BelloCell system) to examine this issue. For a more in 
depth description of the BelloCell system or the HCV replicon used in these studies, 
please refer to the original publication (Brown et al. 2012). Briefly, in the BelloCell 
system, HCV genotype 1b replicon-bearing cells are allowed to adhere to plastic 
flakes contained within each BelloCell bottle. Drug is circulated in the system. As 
with the HFIM, virtually any PK exposure profile can be achieved. Flakes (gener-
ally 36 per sampling time) are removed and replicon replication is quantitated by 
two different assays: a luciferase reporter assay and real-time quantitative reverse 
transcriptase PCR (qRT-PCR).

The serine protease inhibitor MK-4519 was examined in this system (Brown 
et al. 2012). In the first of a series of experiments, a dose ranging study was con-
ducted in which a CI of the drug at various concentrations was administered into 
BelloCell bottles. The results of this dose ranging study are shown in Fig. 9.27.

Table 9.4  Percent inhibition ( Imax) at the end of different dosing intervals with identical total daily 
doses (1200 mg/day). (Data from Brown et al. 2011a)
Regimen 2.5-h half-life (%) 8-h half-life (%)
Q24 71.8 96.2
Q12 94.0 97.4
Q8 96.3 97.7
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Fig. 9.27  Dose-ranging study with MK-4519 against a HCV genotype 1b replicon-bearing cell 
line in the BelloCell system. MK-4519 was delivered into BelloCell bottles as a continuous infu-
sion at various concentrations. Throughout the 13-day study, six sets of six flakes were harvested 
from each BelloCell bottle at the time points indicated in the graph. Antiviral activity of MK-4519 
was measured by a Renilla luciferase assay for three sets of six flakes and b real-time qRT-PCR for 
the three remaining sets of six flakes. Each data point corresponds to the mean value of the three 
samples measured and error bars represent one standard deviation. (Reproduced with permission 
from Brown et al. 2012)
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These data show a clear exposure–response relationship between MK-4519 and 
the replicon, irrespective of the method of quantitation employed. In the clinic, use 
of a serine protease inhibitor as monotherapy often results in the selection and am-
plification of resistant HCV isolates (Sarrazin et al. 2007). We examined whether 
or not HCV replicons harboring known serine protease-resistance mutations were 
selected under the pressure of MK-4519 as a CI in the BelloCell system. These 
results are shown in Fig. 9.28.

These results show that drug-resistant replicons were selected for under MK-
4519 pressure (essentially all the mutations have been identified in the clinic as 
producing drug resistance), irrespective of the intensity of the drug therapy. Indeed, 
the resistance emergence continuous to be a larger problem with increasing drug 
concentration. There is also a time dependency seen, with later times showing a 
higher proportion of the total population being mutants.

Since it is clear from the data above (Fig. 9.28) that drug exposure influences 
both the genotype and frequency of mutant populations amplified under pressure, a 
separate experiment was conducted to determine if dosing interval played a role in 
mutant amplification. For these studies, a dose fractionation was performed evalu-
ating three different dosing intervals: CI, Q24, and Q12. For all regimens, a 24-h 
AUC of 240 nM h, equivalent to a CI of 10 nM (10 nM × 24 h = 240 nM h), was 

Fig. 9.28  Selection of serine protease-resistant HCV replicons as a result of MK-4519 pressure in 
BelloCell dose ranging studies. Cellular RNA was extracted from replicon-bearing cells harvested 
from BelloCell bottles in which MK-4519 was administered as a continuous infusion. The NS3/4a 
protein from the replicon RNA was evaluated for mutations by clonal sequencing on day 6 ( top 
panels) and day 13 ( bottom panels) post exposure. Pie charts show the genotype and frequency of 
mutant replicon populations for the 6-nM (a and d), 10-nM (b and e), and 30-nM (c and f) treat-
ment arms. (Reproduced with permission from Brown et al. 2012)
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simulated for MK-4519. The results from this study are shown in Fig. 9.29. The 
outcome was clear-cut. The least amount of antiviral activity was seen with Q24 
dosing, whereas the Q12 and CI dosing intervals provided significantly greater an-
tiviral effect. This indicates that fTime > EC50 (or EC90) is the PD index most closely 
linked to effect for MK-4519.

Resistance emergence was also examined in replicons harvested from the dose 
fractionation study. As described above, a time dependency for resistance emergence 
was seen. For this study, a single exposure (24 h AUC = 240 nM h) was examined, 
albeit at three different dosing intervals. The Q24 dosing interval yielded the lowest 
frequency of drug resistant replicons. This is likely due to the fact that this dosage 
regimen produced the least amount of drug pressure over the 24 h dosing interval. 
Of interest, while the total antiviral activity was quite similar between CI and Q12 
dosing interval, there was a significant difference in the resistance emergence, with 
CI causing more ultimate resistance (CI at 6 and 13 days: 35 and 20 % wild type, 
respectively; Q12 at 6 and 13 days: 40 and 41 % wild type, respectively). Despite 
the fact that the total viral decline was not different between the Q12 and CI regi-
mens, the CI did exert more antiviral pressure, allowing for greater resistant mutant 
amplification over time. This provides further evidence regarding fTime > EC50 (or 
EC90) as being the pharmacodynamically linked index for MK-4519.

We also fit a mathematical model to all system outputs simultaneously (drug 
exposure, total viral burden, mutant viral burden). The equations for the model are 
shown below:

 (9.1)d X dt R 1 B 1 CL V X1 1( ) / ( ) ( ) ( / )= + − × [ ]
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Fig. 9.29  Dose fractionation study with MK-4519 against an HCV genotype 1b replicon-bearing 
cell line in the BelloCell system. MK-4519 was delivered into BelloCell bottles as a continuous 
infusion ( C.I.) or at dosing intervals of Q24 or Q12. All dosage regimens had a 24-h AUC of 
240 nM h and a half-life of 3.6 h was simulated for MK-4519. Throughout the 13-day study, six 
sets of six flakes were harvested from each BelloCell bottle at the time points indicated in the 
graph. Antiviral activity of MK-4519 was measured by a Renilla luciferase assay for three sets of 
six flakes and b real-time qRT-PCR for the three remaining sets of six flakes. Each data point cor-
responds to the mean value of the three samples measured and error bars represent one standard 
deviation. (Reproduced with permission from Brown et al. 2012)
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(9.2)

 

(9.3)

where X1, X2, and X3 are amounts of drug, wild-type luciferase activity and mutant 
luciferase activity. R(1) is a piecewise input function for MK-4519. B(1) is a bolus 
of MK-4519. CL is the clearance of MK-4519. V is the volume of the central com-
partment. Kturn-s and Kturn-r are the first order turnover rate constants for wild-type 
and mutant replicons. C50-s and C50-r are the concentrations of MK-4519 for wild-
type and mutant replicons at which the turnover rate constants are reduced by half. 
Hs and Hr are Hill’s constants for the two populations. POPMAX is the maximal 
amount of total luciferase activity and is part of the logistic carrying function. Kloss 
is the first order rate of loss of the replicon from the cells.

It was assumed that MK-4519 did not “kill” cells or replicons, but rather de-
creased the rate of turnover towards zero. It was further assumed that the rate of loss 
of replicons from cells was the same for both wild-type and mutant replicons. The 
fit of the model to the data was acceptable. The simulated time profiles for the total 
viral burden and the mutant viral burden over time is shown below in Fig. 9.30. As 
can be seen, the fit of the model to the data was excellent and the model described 
the viral dynamics well. For the drug concentration (data not shown) the observed 
predicted plot had a relationship of:

Observed = 0.982 × Predicted + 0.305; r2 = 0.998; p << 0.001
For the post-Bayesian step, the relationship was:
Observed = 0.993 × Predicted + 0.140; r2 = 0.999; p << 0.001
The model can then be said to have accurately described all system outputs for 

all regimens simultaneously. The parameter values determined from the analysis are 
shown in Table 9.5.

There are a number of take-home messages from this analysis:

1. The mutants have a slower turnover rate.
2. The C50 is much higher for the mutants relative to wild type.
3. Replicon loss rate is relatively stable and independent of amount of drug pressure.

Perhaps most importantly continuous pressure with MK-4519 at more than 7 × EC50 
(30 nM) only accelerated the rate of resistance emergence. This strongly suggests 
that combination chemotherapy is required for therapy of Hepatitis C.
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9.9  Conclusions

While antiviral PDs pose some challenges, it is clear that it is straightforwardly 
possible to perform experiments to delineate the PD index that is best linked with 
viral inhibition/suppression of resistance emergence (dosing interval) and optimal 
exposure needed to optimize antiviral therapy, as has been done for nearly three 
decades in the realm of bacterial and fungal therapy.

The challenge for the future, particularly for very plastic viruses like HCV and 
HIV is to identify optimal combination regimens that will maximize viral suppres-
sion as well as suppress resistance emergence with minimal toxicity.
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Fig. 9.30  Fitted luciferase activities for MK-4519 against a HCV genotype 1b replicon-bearing 
cell line in dose-ranging and dose fractionation studies conducted in the BelloCell system. a–d 
Luciferase activity determined from dose ranging studies in the BelloCell system described in 
Fig. 9.27 in which MK-4519 was administered into BelloCell bottles as a continuous infusion at 
various concentrations. a, b, d, and f Luciferase activity determined from dose fractionation stud-
ies in the BelloCell system described in Fig. 9.29 in which MK-4519 was administered into Bello-
Cell bottles at a 24-h AUC exposure equivalent to 240 nM·h by Q24, Q12, or continuous infusion 
dosing. A half-life of 3.6 h was simulated for MK-4519. The lines correspond to luciferase activity 
simulated by the mathematical model, and the symbols represent the luciferase activity measured 
from cells harvested from the BelloCell bottles at the specified time points. Blue signifies total rep-
licon activity, and red represents activity from only the mutant replicon population. (Reproduced 
with permission from Brown et al. 2012)
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9.10  Summary

• Pharmacometrics, including PK/PD principles, can be employed to guide the de-
sign of optimal dosage regimens for antiviral compounds to minimize the chal-
lenges associated with antiviral therapies.

• In vitro PD model systems are powerful tools that can be utilized to predict op-
timal dose(s) and dosing interval(s) for antiviral compounds that will maximize 
viral suppression, prevent the emergence of resistance, and minimize toxicity.

• PD data derived from in vitro PD model systems and mathematical models have 
been used successfully for antiviral agents to:
− Prospectively predict optimal dosage regimens for antiviral compounds both 

as monotherapy and combination therapy.
− Explain the failure of suboptimal regimens.
− Understand resistance emergence and elucidate whether or not resistance can 

be counter selected.
− Evaluate the efficacy of clinically administered dosage regimens to determine 

if the optimal exposure is utilized.
− Determine whether alternative dosing intervals, such as QD dosing that pro-

motes better patient adherence, can be administered without compromising 
efficacy.
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10.1  Introduction

Pharmacometrics is the science of quantitative pharmacology. More specifically, 
it can be defined as the multidisciplinary science that facilitates drug development 
and identification of optimal treatment strategies by integrating pharmacology, 
pharmacokinetics–pharmacodynamics (PK–PD), disease pathogenesis, mathemati-
cal modeling, and statistics with patient data and outcomes. An early example of 
the power of pharmacometrics to improve the outcomes of infectious diseases was 
afforded by a clinical trial of daptomycin against complicated skin and soft tis-
sue infections. In this study, an alteration of the daptomycin dosing schedule based 
on a PK–PD target identified in preclinical studies resulted in good outcomes and 
averted musculoskeletal toxicity (Arbeit et al. 2004).

Candida bloodstream infections (candidemia) and other forms of invasive candi-
diasis are the most common fungal infections among hospitalized patients in the de-
veloped world. Fluconazole revolutionized the treatment of candidiasis, offering a 
safe and effective alternative to the highly toxic frontline agent amphotericin B (Rex 
et al. 1994; Clancy and Nguyen 2012). Echinocandin antifungals are now accepted 
by many experts as preferred agents against most cases of candidemia and invasive 
candidiasis (Andes et al. 2012; Cornely et al. 2012; Ullmann et al. 2012). Despite 
the advantages that fluconazole and echinocandins have brought over the past two 
decades, treatment failures are observed in a significant minority of patients with 
invasive candidiasis (Andes et al. 2012), and resistance is emerging among clini-
cal Candida strains (Shields et al. 2012, 2013a, b; Alexander et al. 2013). In recent 
years, pharmacometric principles have been applied to the study of invasive candi-
diasis. In this chapter, we will review the clinical manifestations and microbiology 
of Candida infections, pharmacology of fluconazole and echinocandins, PK–PD of 
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the drugs against invasive candidiasis, and the application of pharmacometric data 
to the treatment of infected adults.

10.2  Clinical Manifestations and Microbiology 
of Candidiasis

Candida species (spp.) cause a wide range of human infections that necessitate an-
tifungal therapy. Mucosal diseases include oropharyngeal, esophageal, and vulvo-
vaginal candidiasis, which commonly manifest as “thrush”—creamy white, slightly 
raised, and often painful lesions that typically look like cottage cheese. Oropha-
ryngeal and esophageal candidiasis are generally encountered among persons with 
immune system deficiencies, in particular AIDS or other defects in cell-mediated 
immunity (Egusa et al. 2008). Vulvovaginal candidiasis, on the other hand, is a 
common disease among healthy women, likely stemming from changes in pH, mi-
croflora, hormonal balance, and/or local host defenses (Sobel 1992). Mucosal can-
didiasis causes significant morbidity, especially if oral or esophageal pain limits 
ingestion of food, fluids, or medications, but it does not result directly in mortality. 
Treatment responses to antifungal agents are generally prompt, although recurrent 
disease occurs in about 15 % of women with vulvovaginal candidiasis (Sobel 1992; 
Sobel et al. 1994). In the era before immune reconstitution was possible with highly 
active antiretroviral therapy (HAART), most persons with AIDS developed recur-
rent oropharyngeal candidiasis (Egusa et al. 2008).

Invasive candidiasis includes candidemia and infections of tissues beneath mu-
cosal surfaces (deep-seated candidiasis; Clancy and Nguyen 2013). Studies sug-
gest that about half the episodes of candidemia are complicated by deep-seated 
infections, as Candida spp. invade organs during hematogenous dissemination 
(Maksymiuk et al. 1984; Leroy et al. 2009). The liver, spleen, kidney, and eye are 
particular targets, although virtually any organ may become infected. Deep-seated 
candidiasis also occurs in the absence of active candidemia, as a result of either 
prior blood-borne seeding or direct inoculation into a sterile site. The most common 
portal of entry in the latter scenario is leakage or disruption of the gastrointesti-
nal (GI) tract or hepatobiliary tree, which results in intra-abdominal diseases like 
peritonitis, abscesses, and cholangitis. Risk factors for invasive candidiasis include 
neutropenia or functional neutrophil defects, receipt of broad-spectrum antibiot-
ics, presence of intravenous catheters, disruption of GI mucosa, hemodialysis, and 
Candida colonization of body sites (Clancy and Nguyen 2013). In contrast to mu-
cosal candidiasis, mortality rates for invasive candidiasis are as high as 40 % despite 
antifungal therapy (Andes et al. 2012; Clancy and Nguyen 2012). In large part, 
the poor outcomes stem from the severity of underlying diseases and delays in the 
administration of antifungal agents due to the poor sensitivity of diagnostic tests 
(Clancy and Nguyen 2012).

Almost all cases of mucosal and invasive candidiasis are caused by five Candida 
spp.: C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and C. krusei (Nguyen 
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et al. 1995, 1996). The overwhelming majority of mucosal disease is caused by 
C. albicans. C. albicans is also the most common cause of invasive candidiasis, al-
though C. glabrata has emerged as the leading agent of candidemia at many centers 
(Nguyen et al. 1996).

10.3  Fluconazole and Echinocandins: Pharmacology 
and Roles in Treating Candidiasis

Fluconazole is a triazole agent that exerts fungistatic activity against Candida spp. 
by inhibiting 14-α-sterol-demethylase (CYP51), an enzyme in the ergosterol bio-
synthetic pathway (Zonios and Bennett 2008). The depletion of ergosterol and accu-
mulation of toxic 14-α-methylsterols in the plasma membrane perturbs cell growth 
and division. Fluconazole is active against each of the “big 5” Candida spp. except 
C. krusei, which is intrinsically resistant due to diminished target enzyme affinity 
(Orozco et al. 1998). In the pre-HAART era, stepwise emergence of resistance was 
well recognized in cases of recurrent oropharyngeal candidiasis due to C. albicans 
and other spp. (White 1997). In the present era, the emergence of resistance is most 
common among C. glabrata strains causing invasive candidiasis in patients with 
prior fluconazole exposure (Alexander et al. 2013). Overall, about 1/3 of C. gla-
brata bloodstream isolates are fully resistant to fluconazole, and a sizeable minor-
ity exhibit diminished susceptibility (Pfaller et al. 2012a; Alexander et al. 2013). 
Resistance among other spp. is relatively rare. There are multiple mechanisms by 
which Candida become fluconazole resistant, several of which may interact in a 
given strain (Clancy and Nguyen 2011).

Fluconazole is water-soluble and available in orally administered and intra-
venous formulations. It is very well absorbed from the GI tract (bioavailability 
> 90 %), which is not impacted by food, gastric pH, or disease state (Bellmann 
2007). As such, oral and intravenous doses are equivalent. Fluconazole exhibits 
highly linear plasma concentration–dose relationships (Debruyne 1997). Protein 
binding in serum is 12 %. Eighty percent is excreted unchanged in the urine; 11 % 
is metabolized in the liver. In general, distribution into tissue and body fluids is ex-
cellent. Cerebrospinal fluid (CSF) concentrations, for example, are 70 % of serum, 
and urine concentrations are 10 to 20-fold higher than serum (Debruyne 1997). 
Terminal plasma elimination half-life following oral administration is 22–31 h, and 
steady-state conditions are reached on day 6 of treatment (Bellmann 2007). The 
recommended regimen for the treatment of candidemia and invasive candidiasis 
is an 800-mg loading dose, followed by 400 mg each day. Doses are reduced by 
50 % for creatinine clearance < 50 mL/min; a full dose is administered after hemo-
dialysis. Fluconazole inhibits hepatic CYP450 system enzymes, and interactions 
with agents like cisapride and antihistamines, cyclosporine, tacrolimus, sirolimus, 
calcium channel blockers, phenytoin, benzodiazepines, warfarin, rifabutin, statins, 
and steroids are important considerations (Zonios and Bennett 2008). On the whole, 
fluconazole is well tolerated, and serious adverse events are rare. The most severe 
event is liver toxicity.
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Based on results from numerous clinical trials, fluconazole is the drug of choice 
for the treatment of oropharyngeal, esophageal, vulvovaginal, and urinary candidia-
sis (Pappas et al. 2009). Fluconazole demonstrated efficacy similar to echinocan-
dins and amphotericin B deoxycholate in randomized clinical trials for the treat-
ment of candidemia (Rex et al. 1994, 2003; Mora-Duarte et al. 2002; Reboli et al. 
2007). Clinical practice guidelines from the Infectious Diseases Society of America 
(IDSA) recommend fluconazole or an echinocandin for nonneutropenic patients 
with candidemia, but favor the latter for the treatment of more severe disease, pa-
tients with neutropenia, or prior azole exposure, and C. glabrata or C. krusei infec-
tions (Pappas et al. 2009).

The echinocandin agents (anidulafungin, caspofungin, and micafungin) exert 
fungicidal activity against Candida spp. by inhibiting the synthesis of β-1.3-d-
glucan, which is an essential component of the cell wall (Kauffman and Carver 
2008). The target enzyme, glucan synthase, is encoded by the FKS1, 2, and 3 genes. 
The echinocandins are highly active against C. albicans, C. glabrata, C. tropicalis, 
and C. krusei. C. parapsilosis carries an FKS polymorphism that results in glucan 
synthase with decreased echinocandin affinity, which manifests as higher minimum 
inhibitory concentrations (MICs) than against other common Candida spp. Dimin-
ished susceptibility of C. parapsilosis has been corroborated in mouse models of 
hematogenously disseminated candidiasis (Barchiesi et al. 2006). Breakthrough C. 
parapsilosis infections among patients receiving an echinocandin are well reported 
(Moudgal et al. 2005; Kabbara et al. 2008), but conclusive evidence of poorer out-
comes in clinical trials of treatment for invasive candidiasis is lacking.

With increased use of the echinocandins, recent reports have documented the 
emergence of resistance (Shields et al. 2012, 2013a, b; Alexander et al. 2013; 
Eschenauer et al. 2013). As for fluconazole, resistance is most common among C. 
glabrata strains, and remains rare for other spp. Diminished susceptibility is medi-
ated by mutations in hot spots of FKS genes, with specific mutations conferring 
higher or lower levels of resistance. At some major centers, approximately 10 % 
of C. glabrata strains recovered from sterile sites are fks mutants (Shields et al. 
2012, 2013a, b; Alexander et al. 2013). Molecular resistance is seen in the setting of 
extensive prior echinocandin exposure (Shields et al. 2012, 2013a, b). Particularly 
worrisome is the emergence of C. glabrata that are resistant to both fluconazole and 
echinocandins, as recently reported for 12–14 % of fluconazole-resistant strains at 
several centers (Pfaller et al. 2012a; Alexander et al. 2013).

Echinocandins have poor oral bioavailability, and are only available in intrave-
nous formulations (Kauffman and Carver 2008). They exhibit linear concentration–
dose relationships, although caspofungin may accumulate as doses are increased 
(Kofla and Ruhnke 2011). Plasma protein binding is 97 to > 99 % (lowest for caspo-
fungin). Following initial distribution, caspofungin and micafungin are taken up by 
the liver and red blood cells (the latter for micafungin only), where they are slowly 
degraded to inactive metabolites that are largely excreted via bile (Kauffman and 
Carver 2008). Anidulafungin is degraded almost entirely in the plasma rather than 
liver. The agents distribute well into tissues like liver, spleen, lungs, and kidneys, 
but their large molecular weight and high protein-binding limit penetration into 
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urine, CSF, brain, and ocular fluid. Elimination half-lives range from 9 to 11 h for 
caspofungin, from 11 to 17 h for micafungin, and from 24 to 26 h for anidulafun-
gin; each of the drugs is dosed once daily (Kauffman and Carver 2008). Standard 
dosages for the treatment of candidemia and invasive candidiasis are anidulafungin 
(200 mg loading dose, followed by 100 mg daily), caspofungin (70 mg loading 
dose, followed by 50 mg daily), and micafungin (100 mg daily). No renal dose 
adjustments are necessary, and the drugs are not dialyzed. Hepatic dose adjustments 
are not needed for anidulafungin. Dose reductions of caspofungin, but not mica-
fungin, are recommended for moderate hepatic dysfunction; data are lacking for 
both agents in severe hepatic dysfunction. None of the agents are major substrates, 
inducers, or inhibitors of CYP450 enzymes, and drug interactions are minimal. In 
general, the echinocandins are well tolerated and similar in types of adverse events. 
Infusion-related reactions, thrombophlebitis, and mild GI symptoms may occur in 
< 5 % of patients (Kofla and Ruhnke 2011).

IDSA practice guidelines consider the echinocandins to be therapeutically equiv-
alent (Pappas et al. 2009). All three agents achieved response rates similar to fluco-
nazole in trials against esophageal candidiasis, but relapse rates were greater (with 
the exception of high-dose micafungin, which was comparable to fluconazole; Vil-
lanueva et al. 2002; de Wet et al. 2004; Krause et al. 2004). These findings and 
the availability of fluconazole as an oral formulation make it the preferred agent 
against mucosal candidiasis. The echinocandins are most useful in the treatment 
of candidemia and invasive candidiasis, as established in a series of randomized, 
blinded, controlled trials. Regardless of the comparator agent in the trials, success 
rates for the echinocandins were similar to each other (Mora-Duarte et al. 2002; 
Kuse et al. 2007; Pappas et al. 2007; Reboli et al. 2007). Individual studies, pow-
ered for noninferiority, have shown echinocandins to be comparable to fluconazole, 
amphotericin B deoxycholate, and liposomal amphotericin B (Mora-Duarte et al. 
2002; Kuse et al. 2007; Reboli et al. 2007). More recently, a patient-level review 
of data pooled from seven randomized antifungal treatment trials against invasive 
candidiasis found that echinocandin treatment was associated with improved sur-
vival and greater clinical success rates than treatment with an azole or ampothericin 
B (Andes et al. 2012). In subgroup analysis, improved outcomes were evident for 
patients infected with C. albicans and non-C. albicans spp.

The latest clinical practice guidelines from the European Society of Clinical Mi-
crobiology and Infectious Diseases (ESCMID), which were published more recent-
ly than the IDSA guidelines, strongly recommend an echinocandin as initial treat-
ment against most cases of candidemia (Cornely et al. 2012; Ullmann et al. 2012). If 
patients demonstrate a clinical response to an echinocandin, step-down therapy with 
fluconazole can be used to complete a treatment course. It is important to recognize 
that published experience with echinocandins against deep-seated candidiasis is 
less extensive than candidemia, and the drugs may be limited by PK considerations 
in the treatment of diseases like endophthalmitis, meningitis, and urosepsis (Clancy 
and Nguyen 2012). There is no consensus about the use of echinocandins versus 
fluconazole for the treatment of C. parapsilosis bloodstream infections.
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10.4  Fluconazole and Echinocandin Pharmacometrics

A stepwise paradigm has been proposed for applying pharmacometrics to inva-
sive fungal infections in humans (Hope and Drusano 2009), which we will use as 
a framework for our review. The underlying assumption in the paradigm is that 
antifungal exposure–response relationships are primarily shaped by the pathogen, 
rather than host. This assumption is reasonable because the site of antifungal activ-
ity is within the pathogen (Craig 1998). The host, of course, must be considered 
in assessing drug tolerance and toxicity, variations in PK, and the impact of fac-
tors such as immune function and severity of illness on outcomes. The first ele-
ments in the stepwise model are a reproducible method for measuring antifungal 
susceptibility of strains in vitro, and an experimental system (most often an animal 
model) that mimics the pathogenesis of infection in humans and provides chang-
ing antifungal exposure. Dose–responses in the animal model are used to identify 
PK–PD targets (area under the dose–response curve (AUC)/MIC ratio, maximum 
serum concentration ( Cmax)/MIC ratio or time above MIC) that are associated with 
successful outcomes. Indeed, studies of a growing number of bacteria, viruses, and 
fungi have shown that PK–PD targets identified in clinically relevant animal mod-
els predict outcomes in humans, despite differences in PK between animal species 
(Craig 1998; Hope and Drusano 2009). With PK–PD targets defined, the likelihood 
of target attainment for various dosing regimens is estimated in particular patient 
groups by using fully parametric population PK models and Monte Carlo simula-
tions. Finally, treatment regimens identified as optimal can be validated in clinical 
studies. At the same time, pharmacometric data can be used to validate interpretive 
breakpoint MICs and understand how they can best be incorporated into therapeutic 
decision making.

10.4.1  Fluconazole and Echinocandin Susceptibility  
Testing In Vitro

A decade of collaborative research culminated in the development of standard-
ized macrobroth and microbroth dilution methods for measuring fluconazole MICs 
against Candida spp., which have been endorsed by the Clinical and Laboratory 
Standards Institute (CLSI, previously known as the National Committee for Clini-
cal Laboratory Standards (NCCLS); Rex et al. 1997; Rex and Pfaller 2002; Pfaller 
et al. 2006). The reference methods distinguish between Candida strains with dif-
ferent susceptibilities to fluconazole, and demonstrate good intra-laboratory re-
producibility and interlaboratory agreement. Clinical strains of spp. other than C. 
krusei exhibit a broad range of MICs, molecular mechanisms of fluconazole resis-
tance confer higher MICs, and the accumulation of resistance mechanisms results 
in stepwise increases in MICs. The European Committee on Antimicrobial Sus-
ceptibility Testing (EUCAST) developed a broth microdilution reference method 
that generates fluconazole MICs similar to the CLSI standard (EUCAST 2008a). 
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Commercially available adaptations of the reference methods, such as Sensititre 
YeastOne and Etest, yield comparable results (Espinel-Ingroff et al. 1999; Pfaller 
et al. 2003). As a standardized and reproducible measure of fluconazole’s potency 
against Candida strains, the MIC determined by reference and comparable methods 
facilitates comparisons between studies and serves as a normalizer in defining the 
PK–PD relationships that determine outcomes.

In contrast, the development of reproducible methods for measuring echinocan-
din MICs against Candida species has proved challenging. CLSI and EUCAST 
reference microbroth dilution methods are limited by significant interlaboratory 
variability in caspofungin MICs against C. albicans, C. glabrata, C. tropicalis, and 
C. krusei (Espinel-Ingroff et al. 2013). The reference methods have performed more 
reliably between laboratories when testing anidulafungin and micafungin. In gen-
eral, commercialized tests like YeastOne or Etest generate echinocandin MICs that 
show high levels of essential agreement (defined as MICs within two doubling dilu-
tions) with the reference methods (Arendrup and Pfaller 2012; Pfaller et al. 2012b). 
However, in a recent international, multicenter study of hospital clinical microbiol-
ogy laboratories using the YeastOne assay, modal caspofungin MIC variability was 
low against each species (Eschenauer et al. 2014). The findings suggest that the 
shortcomings of CLSI/EUCAST reference assays may be overcome with alterna-
tive methods. Until uncertainties about caspofungin testing are resolved, research-
ers and EUCAST have suggested that laboratories report anidulafungin or mica-
fungin MICs as a surrogate for the class, rather than caspofungin MICs (Arendrup 
et al. 2011; Shields et al. 2013a). This recommendation is less than satisfactory from 
clinical and scientific perspectives, as accurate caspofungin MICs are essential for 
determining differences in efficacy among the agents, and for performing epidemi-
ology and PK–PD studies.

10.4.2  Defining PK–PD Targets in Animal Models  
of Invasive Candidiasis

A simple-to-perform and highly reproducible mouse model of hematogenously 
disseminated candidiasis is the standard laboratory tool for studying pathogenesis, 
antifungal treatment, and PK–PD. In the model, immunocompetent or immunosup-
pressed mice are infected with a Candida strain via lateral tail vein injection. The 
major target organ is the kidneys; invasive infections are also consistently achieved 
in liver, spleen, and other organs. In this regard, the disease in mice resembles can-
didemia in humans that is complicated by deep-seated candidiasis. There is a hier-
archy of virulence among Candida spp. in the model ( C. albicans > C. tropicalis > 
C. glabrata > C. parapsilosis > C. krusei), which does not impact PK–PD studies 
since each species reliably infects the kidneys of immunocompetent mice (Aren-
drup et al. 2002). In general, tissue burdens are preferred as the primary end point 
for PK–PD studies because they quantitate the effects of antimicrobial exposure on 
the pathogen, and yield results that are readily amenable to statistical analysis and 
mathematical modeling.

10 Applied Antifungal Pharmacometrics 



304

Two studies using the mouse model of hematogenously disseminated candidiasis 
were designed to specifically identify fluconazole PK–PD targets that correlated 
with treatment responses among C. albicans strains (Table 10.1; Louie et al. 1998; 
Andes and van Ogtrop 1999). The studies employed a classic dose-fractionation 
design, in which a range of doses and dosing schedules was used to optimize AUC/
MIC, Cmax/MIC, or time above MIC. AUC/MIC was the parameter that best pre-
dicted the efficacy of fluconazole among neutropenic and nonneutropenic mice, 
as defined by ED50 (effective dose that achieved 50 % of the maximal drug effect, 
measured as C. albicans burdens within the kidneys after 24 h). AUC/MIC targets 
against individual strains ranged from 12 to 45. Reanalysis of data from earlier 
experiments in a nonneutropenic rat model of disseminated C. albicans infection 
found that fluconazole AUC/MIC of 18 resulted in 80 % survival (Rogers and Gal-
giani 1986). Moreover, ED50s of ravuconazole, voriconazole, and posaconazole 
against a wide range of C. albicans strains in the neutropenic mouse model were 
achieved at free-drug (f) AUCs/MICs of 10–36, 11–58, and 6–27, respectively  
(Andes et al. 2003b, c, 2004). Note that fluconazole studies measured total-drug 

Table 10.1  Fluconazole pharmacokinetic–pharmacodynamic (PK–PD) targets identified by dose-
ranging and dose-fractionation studies in mice with hematogenous disseminated candidiasis
Study Design Strain(s) Primary end 

point
PK–PD 
targeta

Comments

Louie et al. 
(1998)

Immunocom-
petent mice, 
treatment 
started 5 h 
post infection

C. albicans 
ATCC 36082
MIC: 0.5 µg/
mL

ED50 in kid-
neys at 24 h 
of treatment

AUC/MIC: 
45

Maximal sup-
pression of 
tissue burden 
at AUC/MIC 
≥ 75

Andes and 
van Ogtrop 
(1999)

Neutropenic 
mice, treat-
ment started 
2 h post 
infection

3 C. albicans 
clinical 
strains
MICs: 0.5, 
16, 32 µg/mL

ED50 in kid-
neys at 24 h 
of treatment

AUC/MIC: 
24, 12, 20, 
respectively

Maximal sup-
pression of 
tissue burden 
at AUC/MIC 
≥ 100

Andes et al. 
(2006a, b)

Neutropenic 
mice, treat-
ment started 
2 h post 
infection

C. albicans 
clinical strain
MIC: 0.5 µg/
mL

Prevention of 
fluconazole 
resistance and 
expression 
of resistance 
genes

T 
 MIC: ≥ 40 %
AUC> 
MIC: ≥ 32

T > MIC was 
most strongly 
correlated 
with end 
points

Gumbo et al. 
(2006)

Neutropenic 
mice, treat-
ment started 
4 h post 
infection

3 C. glabrata 
clinical 
strainsMICs: 
2, 32, 128 µg/
mL

EDmax in kid-
neys at 24 h 
of treatment

Not identified No responses 
among strains 
against which 
MIC = 32 or 
128 µg/mL

ED50 effective dose required to achieve 50 % of maximal suppression of kidney tissue burdens at 
24 h
AUC/MIC area under the concentration curve/minimum inhibitory concentration ratio
T > MIC time above the MIC, as percentage of dosing interval
aPK–PD target that best correlates with primary end point. Fluconazole AUCs reflect total-drug 
concentrations
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AUCs, which closely approximate fAUCs due to the drug’s low protein binding. In 
contrast, fAUC was appropriate for the newer, more highly protein-bound azoles.

Across studies, a median fAUC/MIC target of approximately 20–25 was identi-
fied for the azole class. The consistency of these findings is not surprising, as nu-
merous studies have demonstrated that PK–PD targets are similar for antimicrobials 
within a class, provided free-drug concentrations are considered (Andes and Craig 
1998; Craig 1998). Azole PK–PD targets are comparable in immunocompetent and 
immunosuppressed mice infected with susceptible C. albicans and strains exhibit-
ing a variety of resistance mechanisms, which is also in keeping with studies of 
other agents and pathogens (Craig 1998).

There are several important caveats to the fluconazole PK–PD data. First, PK–
PD targets are impacted dramatically by the definition of treatment efficacy. For ex-
ample, if EDmax was used instead of ED50, the target AUC/MIC of fluconazole was 
≥ 75 rather than 20–25. Furthermore, relative reduction of tissue burdens is not the 
only clinically relevant end point of fluconazole treatment. The PK–PD target that 
best correlated with suppression of fluconazole resistance and efflux pump expres-
sion in neutropenic mice was time above MIC ≥ 40 % (Andes et al. 2006a, b). AUC/
MIC ≥ 32 was also linked with these end points, albeit less strongly. Second, fluco-
nazole is purely fungistatic in vivo. Kidney burdens at 24 h are often higher than 
at the start of an experiment, even among mice treated with EDmax. ED end points 
should not be misinterpreted as signifying reductions in infectious burdens. Third, 
growth suppression by antifungal agents, in general, is greater in immunocompetent 
than neutropenic mice (Hope et al. 2007). Therefore, PK–PD targets based on ED 
end points may appear similar in mice with differing immune status, but the effects 
of a given fluconazole dose on absolute Candida burdens may vary significantly. 
Finally, PK–PD data in mice usually are based on measurements of drug exposure 
in serum, and they are not validated for entities other than hematogenously dissemi-
nated candidiasis. The relationships between outcomes and drug concentrations in 
serum and tissue subcompartments are complex and poorly understood (Warn et al. 
2009); it is reasonable to be cautious in extrapolating PK–PD findings from one site 
of disease to another (Hope and Drusano 2009; Warn et al. 2009).

The mouse model of hematogenously disseminated candidiasis has been em-
ployed extensively to characterize echinocandin PK–PD against C. albicans, C. gla-
brata, C. parapsilosis, and C. tropicalis strains (Table 10.2). In comparative studies, 
caspofungin and anidulafungin were more active than fluconazole against the same 
C. albicans and C. glabrata strains, respectively (Louie et al. 2005; Gumbo et al. 
2006). Across studies, Cmax/MIC and AUC/MIC ratios were the PK–PD parameters 
that best predicted echinocandin efficacy. These parameters are closely related, and 
the identification of one versus the other in a particular study likely reflects differ-
ences in strains or experimental design. Cmax/MIC is optimized by administering 
high drug doses at infrequent intervals; AUC/MIC reflects cumulative drug dose, 
regardless of dosing frequency. Along these lines, once-weekly dosing in mice was 
at least as effective as daily dosing in independent studies of different agents against 
different Candida species (Andes et al. 2003a; Gumbo et al. 2007). Due to the sig-
nificant protein binding of each echinocandin, fAUC measurements are needed to 
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normalize results. fAUC/MIC targets for the class were comparable across studies, 
ranging from ~ 5 to 20. In one study, species-specific PK–PD targets were identi-
fied, as the three agents were effective against C. glabrata and C. parapsilosis at 
lower fAUC/MIC than C. albicans (~ 7 vs. ~ 20; Andes et al. 2010). The mouse data 
support clinical findings that echinocandins can be used to treat C. parapsilosis 
infections successfully, despite higher MICs than against other species. Moreover, 
echinocandins were also effective against fks mutant C. glabrata strains that exhib-
ited elevated MICs, provided PK–PD targets were achieved (Lepak et al. 2012). On 
the whole, responses in mice were closely linked to MIC, even for strains in which 
resistance mutations conferred a fitness cost.

PK modeling in mice demonstrated that caspofungin and anidulafungin accu-
mulated within the kidneys, which served as a reservoir from which the biologi-
cally active drug slowly returned to the bloodstream (Louie et al. 2005; Gumbo 
et al. 2006). Tissue persistence correlated with ongoing antifungal activity, even 
after serum concentrations decreased below MIC. Of course, a major advantage for 
echinocandins over fluconazole is the potential for fungicidal activity, which is reli-
ably achieved in vitro (Clancy et al. 2006; Nguyen et al. 2009). In mice, however, 
exposure–response relationships for each echinocandin are partitioned into fungi-
static and fungicidal components at lower and higher doses, respectively (Howard 
et al. 2011). Furthermore, dosing regimens that mimicked PK in humans receiving 
currently recommended treatment regimens resulted in fungistatic, rather than fun-
gicidal activity.

Certain Candida clinical strains demonstrate increased growth in the presence 
of elevated echinocandin concentrations in vitro, a phenomenon mediated through 
activation of various cell wall stress response pathways (Shields et al. 2011a, b). 
Mouse data suggest that this paradoxical growth is of limited clinical significance, 
as the overwhelming majority of studies have not validated the observation. More-
over, paradoxical growth in vitro is eliminated in human serum and poorer out-
comes were not reported among patients receiving higher echinocandin doses in 
clinical trials (Pappas et al. 2007; Betts et al. 2009; Shields et al. 2011a).

10.4.3  Cross-Validation of PK–PD Targets with Clinical Data 
from Humans

Fluconazole AUC/MIC ratios were estimated and correlated with outcomes in 
several studies of candidemia and oropharyngeal candidiasis. Mean fluconazole 
AUCs in healthy adults with normal renal function are virtually identical to the 
daily dose, a relationship that holds for dosages up to 2000 mg/day (Grant and Clis-
sold 1990). Estimated AUC/MIC ratios or fluconazole dose/MIC associated with 
successful outcomes among patients with candidemia ranged from > 11.5 to > 75  
(Table 10.3). The data are difficult to interpret conclusively due to the small numbers 
of strains (especially strains with higher fluconazole MCs), differences in Candida 
spp., and variations in patient populations and end points. Studies of oropharyngeal 

C. J. Clancy
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candidiasis are more homogeneous, since C. albicans is the predominant pathogen, 
most patients are HIV-infected, and successful clinical and microbiologic outcomes 
are more easily assessed (in general, resolution of oral lesions and culture-nega-
tivity, respectively). Estimated AUC/MIC targets or dose/MIC for successful out-
comes of oropharyngeal candidiasis ranged from ≥ 25 to > 75 (Rex and Pfaller 2002; 
Pfaller et al. 2006; Rodriguez-Tudela et al. 2007; Cuesta et al. 2009, 2010). Taken 
together, therefore, the human data were broadly in keeping with AUC/MIC targets 
identified in the animal models.

The obvious limitation of the human studies is that AUCs were extrapolated 
from fluconazole dose or from dose normalized by body weight, estimated protein 
binding, or renal function. The studies do not account for differences in drug expo-
sure that result from PK variability among patients with invasive candidiasis, and 
which impact the probability that a given AUC/MIC target is attained. Population 
PK models use drug measurements and data from small, but carefully chosen pa-
tient cohorts to quantify expected variations in exposure at particular dosages and 
dosing schedules. The models can then be employed in Monte Carlo simulations, in 
which likelihood of PK–PD target attainment is estimated for a large population of 
patients by a process of random sampling from a known distribution of exposures 
(Hope and Drusano 2009). These powerful techniques have not been widely used 
to study fluconazole exposures among at-risk patient groups, but the small amount 
of published data from several populations suggest that there is an extremely high 
probability that AUC/MIC targets > 25 will be achieved for fluconazole daily dose/
MIC ≥ 50–100 (Table 10.4). The data predict that fluconazole daily dose/MIC ≥ 100 
will reliably achieve AUC/MIC targets > 50.

Table 10.4  Probability of fluconazole AUC/MIC target attainment (PTA) against invasive candi-
diasis in various adult patient populations
Study Design and patient 

population
AUC/MIC target Simulated PTA Comments

Rodriguez-
Tudela et al. 
(2007)

Fluconazole dose–
AUC relationships 
defined by linear 
regression, using 
published data

> 75 99 % for daily 
fluconazole dose/
MIC ≥ 100

Simulated 
400 mg/day 
dosing vs. MICs 
of 1–32 µg/mL

Patel et al. 
(2011)

Population PK 
study of 10 
critically ill, 
anuric patients on 
CVVHD

> 25 Almost 100 % for 
dose/MIC ≥ 50

Simulated vari-
ous regimens 
vs. MICs of 
0.06–32 µg/mL

Han et al. 
(2013)

Population PK 
study of 60 burn 
patients

 > 25

 > 50

Almost 100 % for 
dose/MIC ≥ 100
Almost 100 % for 
dose/MIC ≥ 200

Simulated vari-
ous regimens 
vs. MICs of 
0.25–2 µg/mL

AUC/MIC targets reflect total-drug concentrations
CVVHD continuous veno-venous hemodialysis

C. J. Clancy
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There are limited clinical data validating echinocandin PK–PD targets in hu-
mans. In one study, 493 patients enrolled in phase 3 clinical trials of micafungin 
for the treatment of invasive candidiasis were analyzed (Andes et al. 2011). Pa-
tients were infected with C. albicans (44 %, n = 218), C. tropicalis (20 %, n = 99), C. 
parapsilosis (16 %, n = 77), C. glabrata (13 %, n = 62), C. krusei (3 %, n = 17), and 
other spp. (4 %, n = 20). Micafungin exposures were estimated using a population 
PK model. Overall, total-drug AUC/MIC ratio ≤ 3000 or > 12,000 was the most 
strongly predictive factor for treatment failure by multivariate analysis ( p = 0.005). 
For patients infected with C. parapsilosis, there was a trend toward poorer respons-
es for total-drug AUC/MIC < 285 ( p = 0.11). For patients infected with species other 
than C. parapsilosis, total-drug AUC/MIC ≤ 5000 or > 12,000 was an independent 
risk factor for treatment failure ( p = 0.01).

A subsequent study assessed data from 262 patients who were treated with an-
idulafungin in four phase 2/3 trials (Liu 2013). A population PK model was used 
to fit serum drug concentration data from each of the patients. There was a trend 
toward an association between anidulafungin exposure and efficacy among patients 
with esophageal candidiasis, as stepwise improvements in response rates at 2 weeks 
were evident at total-drug AUC/MIC of 0–300, > 300–600, and > 600. Definitive 
targets could not be established for the smaller number of patients with invasive 
candidiasis/candidemia, or for the entire cohort. fAUC/MIC values were not avail-
able in either of the two studies. Based on typical protein binding for each of the 
agents, however, estimated fAUC/MIC targets were broadly similar to those found 
using the mouse model. Furthermore, the first study supported a target for C. parap-
silosis that is lower than other species, similar to data from mice. The reasons for an 
association between highest AUC/MIC and poorer outcomes in the first study were 
not clear. The observation raises the question of possible paradoxical effects, but 
similar findings were not described in other echinocandin clinical studies. As men-
tioned earlier, the preponderance of experimental data does not support paradoxical 
effects in vivo; nevertheless, the issue merits further investigation.

In general, echinocandin PK is similar in patients with invasive fungal infec-
tions, bone marrow and peripheral blood stem cell transplant recipients, patients 
with hematologic malignancies, ICU residents, and patients undergoing continu-
ous veno-venous hemodialysis (CVVHD; Dowell et al. 2004; Hiemenz et al. 2005; 
Gumbo et al. 2008; Leitner et al. 2011; Wurthwein et al. 2012; Liu et al. 2013; 
Maseda et al. 2014). Drug clearance may be higher in obese patients and those with 
candidemia or other forms of invasive candidiasis, but these covariates account for 
a minority of inter-patient variability in PK (Dowell et al. 2004; Nguyen et al. 2007; 
Hall et al. 2011). PK modeling suggests that fAUC/MIC targets will be exceeded 
in > 90 % of patients who are treated with standard micafungin dosages, if they are 
infected with C. albicans or C. glabrata strains against which MICs are < 0.03 µg/
mL (Andes et al. 2011). Comparable levels of target attainment are predicted for C. 
parapsilosis strains with MICs < 0.5 µg/mL.

10 Applied Antifungal Pharmacometrics 
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10.5  Putting It All Together: Implications for Treating 
Invasive Candidiasis

Data for fluconazole are synthesized in Table 10.5. In summary, mouse model and 
human clinical studies suggest that fluconazole AUC/MIC ≥ 25 is an acceptable, 
minimum target for the treatment of invasive candidiasis. This target is predicted 
to be reliably achieved at fluconazole daily dose/MIC ≥ 50. Fluconazole AUC/MIC 
ratios ≥ 75 afford optimal antifungal activity against at least some Candida strains 
in the mouse model. The clinical significance of the enhanced antifungal activity at 
higher AUC/MIC is not clear; however, it seems reasonable to shoot for the higher 
target in treating certain patients, such as those who are immunosuppressed or espe-
cially ill. Higher AUC/MIC targets and more frequent dosing intervals may also be 
useful in limiting emergence of fluconazole resistance in cases in which prolonged 
treatment is necessary, but these hypotheses are unproven in humans. Fluconazole 
daily dose/MIC ≥ 100 is predicted to reliably achieve higher targets. Therefore, stan-
dard dosing (800 mg loading dose, followed by 400 mg/day) is anticipated to attain 
the optimal and acceptable AUC/MIC targets against strains for which MICs are 
≤ 4 µg/mL and ≤ 8 µg/mL, respectively (Table 10.6). For strains with higher MICs, 
fluconazole at dosages > 400 mg/day may achieve AUC/MIC targets. However, 
there are limited clinical data supporting such regimens (Rex et al. 2003; Torres 
et al. 2004), and the echinocandins (or amphotericin B formulations) offer clini-
cians fungicidal therapeutic alternatives.

Interpretive breakpoint MICs of fluconazole against Candida spp., as established 
by CLSI and EUCAST, are shown in Table 10.6. The current CLSI breakpoints 
were developed by applying the “90/60” rule to clinical data from patients treated 
with fluconazole (i.e., approximately 90 and 60 % of infections due to susceptible 
and resistant strains should respond to treatment, respectively; Rex et al. 1997; Rex 
and Pfaller 2002). Susceptibility and resistance were defined as MICs ≤ 8 µg/mL 
and ≥ 64 µg/mL, respectively. MICs of 16 and 32 µg/mL were assigned a novel 
designation as susceptible-dose dependent (S-DD), based upon observations that 
infections due to such strains responded to higher fluconazole dosages. Subse-
quently, EUCAST developed species-specific breakpoints by considering wild-type 

C. J. Clancy

Table 10.5  Summary of fluconazole PK–PD data against invasive candidiasis
End point PK–PD Target

Acceptable target Optimal target
Antifungal activity in mouse 
model

AUC/MIC ≥ 25 AUC/MIC ≥ 75

Prevention of fluconazole 
resistance in mouse model

AUC/MIC ≥ 32 Time above MIC ≥ 40 %

Successful clinical outcomes 
in humans

Estimated AUC/MIC ≥ 25 Estimated AUC/MIC ≥ 75

Probability of PK–PD target 
attainment in humans

Daily dose/MIC ≥ 50 to 
achieve target AUC/MIC > 25

Daily dose/MIC ≥ 100 to 
achieve target AUC/MIC > 50
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MIC distributions for strains with no acquired or genetic resistance, PK–PD pa-
rameters, and correlations between MICs and clinical outcomes (EUCAST 2008b). 
C. albicans, C. parapsilosis, and C. tropicalis strains were defined as susceptible, 
intermediate, and resistant at MICs ≤ 2 µg/mL, 4 µg/mL, and > 4 µg/mL, respec-
tively. The corresponding breakpoints for C. glabrata strains were ≤ 0.002 µg/mL, 
0.002–32 µg/mL, and ≥ 64 µg/mL, respectively. Most recently, CLSI has proposed 
harmonizing breakpoints with EUCAST (Pfaller et al. 2010). In effect, EUCAST 
and revised CLSI breakpoints define C. albicans, C. parapsilosis, and C. tropicalis 
strains as resistant if fluconazole is not likely to reliably achieve an optimal AUC/
MIC target unless dosages ≥ 800 mg/day are administered (Table 10.6). For C. gla-
brata strains in which MICs are 2–32 µg/mL, EUCAST suggests that clinicians use 
alternative antifungal agents; if these are not options, higher dosages of fluconazole 

Table 10.6  Fluconazole interpretive breakpoint MICs against Candida spp., and probability of 
PK–PD target attainment
FLU 
MIC 
(µg/
mL)

Candida spp. Interpretation of MIC Daily fluconazole doses
CLSI BPs 
(current)

CLSI BPs 
(proposed)

EUCAST Likely 
to attain 
AUC/
MIC > 25 
(mg/day)

Likely 
to attain 
AUC/
MIC > 50 
(mg/day)

≤ 2 C. albicans, 
C. parapsilosis, 
C. tropicalis, 
C. glabrata

S

S

S

S-DD

S
I
(S ≤ 0.002)

≥ 100 ≥ 200

4 C. albicans, 
C. parapsilosis, 
C. tropicalis, 
C. glabrata

S

S

S-DD

S-DD

I

I

≥ 200 ≥ 400

8 C. albicans, 
C. parapsilosis, 
C. tropicalis, 
C. glabrata

S

S

R

S-DD

R

I

≥ 400 ≥ 800

16 C. albicans, 
C. parapsilosis, 
C. tropicalis, 
C. glabrata

S-DD

S-DD

R

S-DD

R

I

≥ 800 ≥ 1600

32 C. albicans, 
C. parapsilosis, 
C. tropicalis, 
C. glabrata

S-DD

S-DD

R

S-DD

R

I

≥ 1600 Not likely 
to be 
reliably 
attaineda

 ≥ 64 C. albicans, 
C. parapsilosis, 
C. tropicalis, 
C. glabrata

R

R

R

R

R

R

Not likely 
to be 
reliably 
attaineda

Not likely 
to be 
reliably 
attaineda

BPs breakpoints, S susceptible, S-DD susceptible-dose dependent, I intermediate, R resistant
a AUC/MIC target not likely to be reliably attained unless daily doses significantly > 2000 mg are 
used
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may be suitable. By definition, C. krusei strains are fluconazole-resistant, and alter-
native agents are recommended for treatment.

Echinocandins are agents of choice against most cases of candidemia and inva-
sive candidiasis, in the absence of prior drug exposure or PK concerns at particular 
sites of deep tissue infection. Mouse data suggest that administration of higher-
than-recommended doses at less frequent intervals will optimize the probability 
of PK–PD target attainment, and the likelihood of achieving fungicidal activity. 
Pooled data from two multicenter, double-blind, randomized clinical trials of adults 
with esophageal candidiasis showed strong trends toward better treatment respons-
es (87.1 vs. 78.8 %; p = 0.056) and fewer relapses (5.6 vs. 12.2 %; p = 0.051) among 
patients treated with 300 mg of micafungin every other day than 150 mg every 
day (Andes et al. 2013). Predicted median micafungin total-drug Cmax values with 
the two dosing regimens were 23.5 and 14.2 µg/mL, respectively. Predicted me-
dian total-drug AUCs were almost identical (311 and 310 µg h/mL, respectively), 
suggesting that Cmax was the most important PK determinant of outcome. Safety 
studies have not defined maximal tolerated doses of the echinocandins; in general, 
micafungin doses as high as 600 mg have been well tolerated (Hiemenz et al. 2005; 
Sirohi et al. 2006). Clinical studies of large, infrequent echinocandin dosing regi-
mens against candidemia and other forms of invasive candidiasis are warranted.

Table 10.7  Echinocandin interpretive breakpoint MICs against Candida spp.
Candida 
spp.

Agent CLSI breakpoint MICS EUCAST breakpoint 
MICs

Susceptible 
(µg/mL)

Intermediate 
(µg/mL)

Resistant 
(µg/mL)

Susceptible 
(µg/mL)

Resistant 
(µg/mL)

C. albicans Anidulafungin ≤ 0.25 0.5 > 0.5 ≤ 0.03 > 0.03
Caspofungin ≤ 0.25 0.5 > 0.5 Not 

proposed
Not 
proposed

Micafungin ≤ 0.25 0.5 > 0.5  ≤ 0.016 > 0.016
C. glabrata Anidulafungin ≤ 0.125 0.25 > 0.25 ≤ 0.06 > 0.06

Caspofungin ≤ 0.125 0.25 > 0.25 Not 
proposed

Not 
proposed

Micafungin  0.06 0.125 > 0.125 ≤ 0.03 > 0.03
C. tropicalis, 
C. krusei

Anidulafungin ≤ 0.25 0.5 > 0.5 ≤ 0.06 > 0.06
Caspofungin ≤ 0.25 0.5 > 0.5 Not 

proposed
Not 
proposed

Micafungin ≤ 0.25 0.5 > 0.5 Not 
proposed

Not 
proposed

C. 
parapsilosis

Anidulafungin ≤ 2 4 > 4 ≤ 0.002 > 4
Caspofungin ≤ 2 4 > 4 Not 

proposed
Not 
proposed

Micafungin ≤ 2 4 > 4 ≤ 0.002 > 2
EUCAST has not proposed caspofungin interpretive breakpoint MICs due to interlaboratory varia-
tion in results. 
EUCAST has not proposed micafungin interpretive breakpoint MICs against C. tropicalis or C. 
krusei due to insufficient data
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CLSI and EUCAST interpretive breakpoint MICs of the echinocandins against 
Candida spp. are shown in Table 10.7. Both groups considered wild-type MIC dis-
tributions, PK–PD data, and published clinical experience in setting their criteria 
(Pfaller et al. 2011; Arendrup et al. 2014). EUCAST did not propose caspofungin 
breakpoints due to the interlaboratory variability in MICs obtained by the refer-
ence microbroth dilution method. For each spp., EUCAST breakpoints are lower 
than CLSI breakpoints. The discrepancies speak to a lack of conclusive data. In 
particular, clinical data about the value of MICs in guiding treatment are conflict-
ing. In the largest study, a relationship was not apparent between caspofungin MICs 
and outcomes among patients with oropharyngeal or invasive candidiasis ( n = 292 
and 114, respectively; Kartsonis et al. 2005). In fact, outcomes were better among 
the small number of patients infected with Candida strains for which MICs were 
> 2 µg/mL than among those infected with strains for which MICs were < 1 µg/mL. 
A major problem in interpreting breakpoints is that very few non-C. glabrata strains 
exhibit higher MICs. Moreover, patients with invasive candidiasis not uncommonly 
fail antifungal therapy despite being infected with highly sensitive strains, which 
is in keeping with the importance of host factors such as immune status and acuity 
of illness in determining outcomes. Single-center studies have demonstrated that 
MICs for each of the agents against C. glabrata strains causing invasive candidiasis 
correlate with outcomes, particularly among patients who had prior echinocandin 
exposure (Shields et al. 2012, 2013a, b). However, institution-specific breakpoints 
were not necessarily consistent with CLSI or EUCAST interpretive criteria. Fur-
thermore, most hospital laboratories that offer testing do not employ the reference 
broth microdilution methods that were used by CLSI and EUCAST in establishing 
their breakpoints (Eschenauer et al. 2014). The detection of FKS mutations that 
confer higher MICs may identify strains likely to fail to respond to therapy, but 
molecular assays remain a research tool (Shields et al. 2012).

On balance, current data do not support the routine use of echinocandin MICs 
in clinical decision making. Indeed, only ~ 50 % of major medical centers routine-
ly perform echinocandin susceptibility testing on Candida strains recovered from 
the bloodstream or sterile sites (Eschenauer et al. 2014). Since FKS mutations are 
not detected in the absence of previous echinocandin exposure or breakthrough in-
fections, treatment-naïve patients can be assumed to be infected with susceptible 
strains (Shields et al. 2012, 2013a, b; Alexander et al. 2013). In treating patients 
with extensive past exposure or breakthrough infections, the judicious course is to 
use an alternative agent.

10.6  Questions for Future Studies of Fluconazole 
and Echinocandins

The pharmacometrics data for fluconazole and echinocandins against invasive can-
didiasis raise a number of issues that merit near-term attention. Several of the most 
pressing clinical questions are presented in Table 10.8.
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10.7  Conclusions

Historically, pharmacotherapy against infections has been devised in an ad hoc 
fashion using data from disparate laboratory studies and clinical trials. The sys-
tematic use of pharmacometrics promises more rational and efficient antimicro-
bial development and utilization (Ambrose et al. 2007; Hope and Drusano 2009; 
Davies et al. 2013). The pharmacometric paradigm employs many techniques that 
are currently required for the drug development process, but integrates them in a 
more formalized manner (Hope and Drusano 2009). The principles outlined in this 
chapter can be applied to other antimicrobials and infectious diseases, as well as 
particular subtypes of invasive candidiasis. Indeed, elegant studies have defined 
micafungin PK–PD in experimental hematogenous Candida meningoencephalitis, 
and demonstrated that much larger doses (10–15 mg/kg) were required than against 
other forms of invasive candidiasis (Hope et al. 2008; Hope et al. 2010). As a result, 
a randomized clinical trial of high-dose micafungin versus amphotericin B in the 
treatment of premature infants with hematogenous Candida meningoencephalitis 
has been initiated (Hope and Drusano 2009). This bench-to-bedside approach is the 
evolving model for the fields of infectious diseases and medical mycology.

C. J. Clancy

Table 10.8  Key questions about fluconazole and echinocandins
Fluconazole Echinocandins Fluconazole and 

echinocandins
What is the role of high-dose 
fluconazole (≥ 800 mg/day) in 
the treatment of candidemia 
and invasive candidiasis?

What is the role of less fre-
quent, higher-dose echinocan-
din treatment regimens?

Will resistance to these agents 
continue to emerge (particu-
larly among C. glabrata)?

Will more frequent adminis-
tration of fluconazole limit 
the emergence of resistance 
among Candida spp.?

Is there any clinical signifi-
cance to higher echinocandin 
MICs against C. parapsilosis 
or paradoxical effects against 
certain Candida clinical 
strains?

What will be the clinical 
impact of resistance, includ-
ing multidrug resistance?

How does limited echino-
candin penetration into sites 
like urinary tract, central 
nervous system, or eye impact 
the treatment of invasive 
candidiasis?
Will a reproducible methodol-
ogy for measuring caspofun-
gin MICs be developed?
Is there a role for echinocan-
din susceptibility testing or 
FKS mutation detection in 
guiding treatment decisions?
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10.8  Summary

• Echinocandin antifungals are increasingly recognized as agents of first choice 
against candidemia and many other types of invasive candidiasis in adults.

• Fluconazole is the agent of choice against mucosal candidiasis, and remains 
an effective alternative agent against candidemia and invasive candidiasis. In 
particular, fluconazole may be preferred for the treatment of patients with prior 
echinocandin exposure or infections in which echinocandins are limited by PK 
considerations (e.g., urosepsis and endophthalmitis).

• Fluconazole is also useful as a step-down agent after a clinical response to initial 
treatment with an echinocandin.

• Data from the mouse model of hematogenously disseminated candidiasis iden-
tify fluconazole AUC/MIC and echinocandin Cmax/MIC as PK–PD parameters 
that are most closely associated with successful treatment.

• Fluconazole AUC/MIC ≥ 25 and ≥ 75 are acceptable and optimal targets, respec-
tively, for achieving successful outcomes in mouse models and humans.

• Simulation models predict that acceptable and optimal AUC/MIC will be reli-
ably achieved in patients if daily fluconazole dose/MIC ratio is ≥ 50 and ≥ 100, 
respectively.

• Echinocandins are more active than fluconazole against C. albicans and C. gla-
brata strains in the mouse model.

• Echinocandin MICs are higher against C. parapsilosis than other spp., but PK–
PD targets are lower and echinocandins have been used successfully against C. 
parapsilosis candidemia in clinical trials.

• PK–PD data suggest that echinocandins will be most effective if administered 
infrequently at high doses, but such regimens must be validated in clinical trials 
and the impact on paradoxical effects, resistance, and toxicity must be defined.
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11.1  The Available TB Drugs

This chapter will focus on the drugs that are used to treat tuberculosis (TB), and 
some of the key features to using them properly. TB is a contagious, airborne bac-
terial disease, caused by Mycobacterium tuberculosis (Mtb; Peloquin and Namdar 
2011). After infection, Mtb can remain dormant (“latent”) for decades within an 
individual, only to reactivate later. Current estimates hold that one third of all the 
people on earth are latently infected with TB. Once reactivated from latency, TB 
diseases manifest most commonly as a cavitating form of pneumonia, with fever, 
night sweats, cough, and weight loss. The World Health Organization (WHO) es-
timates that there are more than 9 million incident cases of TB globally each year, 
leading to an estimated 1.5 million deaths annually. TB causes more deaths than 
HIV and malaria combined, and is the leading cause of death among HIV-infected 
individuals. TB is not distributed evenly across the world, with the largest con-
centrations of the disease found in China, India, and sub-Saharan Africa. TB is as-
sociated with poverty and crowded living conditions, and has been called “a social 
disease with medical consequences.” Currently, the world has arrived at a tipping 
point. Either better procedures are implemented to deal with the emerging plaque 
of drug-resistant TB or we will see a dramatic reversal of the progress made against 
TB since the discovery of the TB drugs (Heifets 2012).

There are only a limited number of drugs that are US Food and Drug Admin-
istration (FDA) approved for treatment of TB in the USA, roughly ten old and 
one new (bedaquiline; Peloquin and Namdar 2011; Diacon et al. 2012). Very simi-
lar lists of drugs are available in countries around the world (see CDC treatment 
guidelines at http://www.cdc.gov/mmwr/PDF/rr/rr5211.pdf, and WHO treatment 
guidelines at http://whqlibdoc.who.int/publications/2010/9789241547833_eng.
pdf). Some countries have more limited formularies, and the second-line drugs are 

http://whqlibdoc.who.int/publications/2010/9789241547833_eng.pdf
http://whqlibdoc.who.int/publications/2010/9789241547833_eng.pdf
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available through programs offered by the WHO. Para-aminosalicylic acid (PAS), 
also known as amino-salicylate or PAS, is the oldest of the TB drugs, discovered 
in the early 1940s in Sweden. That discovery was followed soon thereafter by the 
discovery of streptomycin (SM), the first of the aminoglycosides. The third TB drug 
to be introduced was isoniazid (INH). With the introduction of INH, truly effective 
combination therapy was available for TB by the early 1950s (American Thoracic 
Society/Centers for Disease Control/Infectious Disease Society of America 2003). 
Only the more recent discovery of combination anti-HIV therapy in the mid-1990s 
can rival the global importance of this emerging therapy. Continuing with the list 
of available TB drugs, capreomycin (CM) is a polypeptide, and it is an injectable 
drug like SM. There are no oral dosage forms for these two drugs. Cycloserine (CS) 
is considered a second-line drug, as is ethionamide (ETA). In contrast, along with 
INH, ethambutol (EMB), pyrazinamide (PZA), rifampin (RIF), and the closely re-
lated rifapentine (RPNT) can be considered first-line TB drugs.

11.2  Alternative and Investigational TB Drugs

Other drugs that can be used for TB but that do not have FDA approval for that indi-
cation include other aminoglycosides. In particular, amikacin (AK) and kanamycin 
(KM) can be used in cases of SM-resistant TB. Most of the isolates that are SM re-
sistant remain susceptible to AK and KM. Further, several of the fluoroquinolones, 
especially moxifloxacin (MOXI) and levofloxacin (LEVO), are the most active and 
the most useful for the management of TB (American Thoracic Society/Centers for 
Disease Control/Infectious Disease Society of America 2003; Peloquin and Namdar 
2011; Loeffler et al. 2012). There are other drugs in this class, such as ciprofloxacin, 
that were used initially because the newer ones were not available yet. Currently, 
ciprofloxacin is considered a weaker drug for TB, and it is no longer recommended. 
LEVO is the l-isomer of ofloxacin, and it is preferred over ofloxacin, since it is 
more potent in vitro. Gatifloxacin (GATI) no longer is available in the USA. It is 
available in other countries around the world, and it could be considered a drug for 
the treatment of TB. It may be more likely than other “TB quinolones” to cause 
hypo- or hyperglycemia.

There are additional drugs that could be considered for the treatment of TB, but 
they also do not bear FDA approval for this indication (Loeffler et al. 2012; Dooley 
et al. 2013). Macrolides, and in particular, azithromycin and clarithromycin, are not 
very good TB drugs based upon the data available. They are used more or less in 
desperate cases, when one is scraping the bottom of the barrel for potentially useful 
drugs. It is not a class of drugs that one would consider initially for the treatment 
of TB. Macrolides are very good drugs for non-tuberculous mycobacteria (NTM) 
including Mycobacterium avium complex (MAC), but for TB, they are not reli-
able. Amoxicillin-clavulanate acid has been used sporadically for TB cases that are 
multidrug resistant (MDR-TB) and extremely drug resistant (XDR-TB). However, 
its exact role in the management of such cases has yet to be defined. Clofazimine 
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is a drug that is considered a leprosy drug, as we understand it right now. There 
are some new studies looking at clofazimine in animal models of TB, and it seems 
to be synergistic with a wide variety of TB drugs. Clofazimine could reenter our 
list of preferred TB drugs, but at this point in time, it is a reserve drug for cases of 
XDR-TB.

Rifabutin (RBN) is a chemical cousin of RIF and RPNT, and it is used in cases 
where drug–drug interactions are particularly problematic (Namdar and Peloquin 
2011). Linezolid is a drug designed for Gram-positive infections. It is an oxazolidi-
none, as are sutezolid (PNU-100480) and AZD 5847. These drugs do seem to have a 
very interesting and potentially useful activity for the treatment of MDR-TB. They 
also have, at least in the case of linezolid, some fairly serious side effects, including 
bone marrow suppression, and both ocular and peripheral neuropathies (Loeffler 
et al. 2012; Dooley et al. 2013). Those need to be considered, and for now these 
drugs are reserve agents for more drug-resistant TB. Outside of the USA, prothi-
onamide is the propyl derivative of ETA. The two drugs have similar potency and 
toxicity. Thiacetazone, historically used in developing countries because it was 
available at a very low price, also has some very serious side effects. These include 
Stevens–Johnson syndrome in patients who are immunocompromised, especially 
HIV-infected patients. Therefore, thiacetazone is no longer used. Viomycin is very 
similar to CM, and does not appear to have any particular advantage over CM. Much 
more often, CM is used as an injectable agent, as compared to viomycin (Peloquin 
1991; Namdar and Peloquin 2011; Loeffler et al. 2012; Dooley et al. 2013).

PA-824 is a chemical derivative of metronidazole with a unique activity against 
TB (Diacon et al. 2012). It does not have activity against a wide-range of myco-
bacteria; rather, it is focused on TB. It appears to be bactericidal both in the mouse 
model and in clinical trials to date. PA-824 has a minimal inhibitory concentration 
(MIC) against a laboratory isolate known as H37RV that is comparable to RIF’s 
MIC. RIF, of all the TB drugs, is the most potent from the standpoint of sterilizing 
activity. Sterilizing activity is a term that is relatively unique to TB, and it refers 
to the ability of a drug to prevent posttreatment relapses. Unlike the postantibiotic 
effect, which typically is measured in vitro as a lag time to bacterial regrowth, steril-
izing activity is the in vivo elimination of persisters. It is hoped that PA-824 also can 
show that activity, but at this point, we know that it is at least bactericidal. In other 
words, it can kill TB in vitro, inside of a mouse model, and in humans.

OPC 67683, also known as delamanid, is chemically related to PA-824 (Lauzardo 
and Peloquin 2012; Skripconoka et al. 2012). In vitro, it is about 20 times more po-
tent than PA 824. It does show cross-resistance with PA 824, so in part or in total, 
their mechanisms of action are very similar. At this time, delamanid also has com-
pleted phase two clinical trials. The MIC for delamanid is similar to or lower than 
that for INH, making it extremely potent on a milligram basis. MICs will vary from 
laboratory to laboratory, and they will vary depending on liquid versus solid media, 
and the particular type of solid media or the particular type of liquid media that is 
used resulting in a wide range of reported MIC values. Attention to the methodol-
ogy that was used often explains why one would observe a difference. In this case, 
regardless of the method used, delamanid is a very potent drug, and it is hoped that 
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this will translate into high clinical efficacy. Delamanid also has received regulatory 
approval with the European Medicines Agency (EMA).

TMC207, now known as bedaquiline, is a very unique drug (Diacon et al. 2012; 
Lauzardo and Peloquin 2012). It is diarylquinoline, and it is chemically related to 
the malaria drug chloroquine. Its chlorine atom has been replaced by a bromine, 
which is essential for the unique properties of this molecule. The median MIC is 
very low, at 0.06 mcg/ml, making bedaquiline comparable in vitro to the potency of 
RPNT or to RBN. It has a unique target, ATP synthase, and that target is not shared 
by any of the other TB drugs. Bedaquiline is active against a wide variety of isolates 
in vitro, and clinically, good responses have been seen in phase 2 trials in patients 
infected with MDR-TB. This indicates that isolates resistant to other categories of 
TB drugs currently remain quite susceptible to bedaquiline. At the end of 2012, 
bedaquiline received regulatory approval from the FDA.

The ultimate goal is to develop entirely novel, multidrug regimens that can be 
used regardless of preexisting drug resistance. Such regimens would be the equiva-
lent of pressing a “reset” button on the history of TB treatment. Parts of the world 
currently experiencing high rates of MDR- and XDR-TB would start over with a 
clean slate. New drugs, plus much better drug administration systems, are needed in 
high-burden countries in order to stem the tide of TB.

11.3  Detailed Description of TB Drug Pharmacology

INH, as mentioned, was brought into clinical practice in the early 1950s. INH is 
one of the two primary, first-line TB drugs, along with RIF (American Thoracic 
Society/Centers for Disease Control/Infectious Disease Society of America 2003; 
Peloquin and Namdar 2011). It is an inactive pro-drug, and its reactive intermedi-
ates are inhibitors of cell wall synthesis, specifically, the inhibitors of the formation 
of mycolic acids. Available data suggest that the best measure for activity is the 
free drug (i.e., not protein bound) area under the concentration versus time curve 
(AUC) divided by the MIC ( fAUC/MIC; Gumbo et al. 2007). In some models, 
this PK/PD index can be rivaled by the free drug maximum concentration ( fCmax) 
divided by the MIC ( fCmax/MIC) as the preferred measure of INH’s dose concen-
tration–response relationship. The standard daily dose of INH is 300 mg orally. 
There is a dosage form available for intramuscular (i.m.) use that has been further 
extended for intravenous (i.v.) use, even though the package labeling does not in-
dicate i.v. administration. Nevertheless, there is accumulated clinical experience 
with INH with i.v. administration of the standard 300 mg dose in about 25 ml of 
normal saline, as a slow bolus over about 5 min. There are oral regimens, given 
three times or two times weekly, where the standard adult INH dose is increased to 
900 mg. The usual dose for children is 10–20 mg/kg. The excellent work done in 
South Africa by Peter Donald and colleagues has now shown that doses should be 
at the higher end of this range (Thee et al. 2011). Children tend to have lower serum 
concentrations and more rapid clearance of the TB drugs as compared to adults. 
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INH is cleared significantly more by the liver than by the kidneys, although INH 
metabolites are eliminated via the kidneys. There are genetic polymorphisms in N-
acetyl transferase 2 (NAT2), which is the enzyme responsible for metabolizing INH 
to acetyl-INH. This means that there are fast acetylators and slow acetylators of 
INH (Peloquin 1991; Peloquin et al. 1997). The toxicities of greatest concern with 
INH include hepatotoxicity, which can require dose interruptions, and peripheral 
neuropathies (American Thoracic Society/Centers for Disease Control/Infectious 
Disease Society of America 2003). The latter when found, typically occur in the 
stocking and glove distribution. Patients often take vitamin B6 (pyridoxine) in an 
attempt to minimize or eliminate this particular toxicity.

RIF is the most important TB drug (American Thoracic Society/Centers for Dis-
ease Control/Infectious Disease Society of America 2003; Peloquin and Namdar 
2011). The initial regimen, mentioned at the beginning of this chapter, was a three-
drug regimen of PAS plus SM plus INH. That did work, but one had to take it for 
about 18 months for it to be reasonably effective. Shorter regimens had much higher 
failure rates. The introduction of RIF reduced the duration of treatment from 18 to 
9 months. With the addition of PZA, the regimen could be further reduced to only 
6 months. So, the current 6-month regimen is considered “short-course treatment” 
of TB. It is “long-course” compared to just about any other bacterial infection, but 
for TB, 6 months is currently the shortest regimen offering cure rates in excess 
of 95 %. However, achieving those 95 % cure rates remains a very big challenge. 
RIF is clearly the most important drug in the regimen. The current dose is 600 mg 
daily, and this dose also is used with intermittent regimens, either twice or three 
times weekly (American Thoracic Society/Centers for Disease Control/Infectious 
Disease Society of America 2003; Peloquin and Namdar 2011). RIF inhibits DNA-
dependent RNA polymerase. It is generally dosed orally, although there is an i.v. 
dosage form available. That dosage form can be infused in 100 ml of dextrose 5 % 
water (D5W) over about 30 min (Peloquin 1991). RIF is cleared by arylacetamide 
deacetylase, predominantly in the liver, with about 10 % or less cleared by the kid-
neys (Nakajima et al. 2011). RIF can produce hepatotoxicity at a rate that appears to 
be less than those seen with either PZA or INH (American Thoracic Society/Centers 
for Disease Control/Infectious Disease Society of America 2003; Peloquin and 
Namdar 2011). RIF’s hepatotoxicity seems to be additive with that of INH. With 
intermittent regimens, especially when given at higher doses (ex. 1200 mg twice 
weekly), flu-like symptoms can be observed. A couple of hours after the dose, the 
patient will start to feel nauseated, they may or may not be febrile, and in extreme 
cases, the patient may be hypotensive. Some flu-like syndrome patients may have 
anemia or renal failure, and in such extreme cases, RIF should not be reintroduced.

RBN is a cousin of RIF, and is generally used instead of RIF for HIV-positive 
patients (American Thoracic Society/Centers for Disease Control/Infectious Dis-
ease Society of America 2003; Namdar and Peloquin 2011; Peloquin and Namdar 
2011). The reason is that, compared to RIF, RBN has less of an effect on hepatic 
enzyme induction, and therefore has lower extents of drug–drug interactions with 
the HIV drugs. RBN has the same mechanism of action as RIF, so there is no ad-
vantage against the vast majority of RIF-resistant isolates. There might be a small 
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number of isolates that are RBN susceptible while being RIF resistant. By and large, 
however, resistance is a class effect, and you will see resistance to RIF, RPNT, and 
RBN simultaneously. RBN currently is administered only orally. The typical dose is 
300 mg. Because RBN can be the object of drug–drug interactions, in a manner not 
seen with RIF or RPNT, sometimes the RBN dose must either be increased or de-
creased to be used compatibly with some of the other drugs. This is particularly true 
with some of the HIV drugs. RBN is cleared, in part, by esterases, similarly to RIF. 
However, unlike RIF and RPNT, RBN is cleared by cytochrome P450 3A4 (CYP 
3A4), and its desacetyl metabolite is completely cleared by CYP 3A4 (Namdar and 
Peloquin 2011). That is the reason why RBN not only is an inducer of enzymes, 
causing drug–drug interactions, but also can be the object of drug–drug interactions 
because of its clearance mechanism. Therefore, RBN is a little bit tricky to use. 
RBN also has concentration-related toxicities, and these further distinguish it from 
the other drugs in its class. RBN can produce neutropenia, thrombocytopenia, and 
anterior uveitis, in particular when its concentrations or the combined concentra-
tions of the parent and desacetyl-metabolite exceed 1 mcg/ml. This is a concentra-
tion-related effect making RBN different than RIF or RPNT, and it is something that 
can be managed by dose reduction when it occurs.

It is possible to compare key features of the rifamycins (Burman et al. 2001; 
Namdar and Peloquin 2011). First, RBN and RPNT have comparable in vitro activ-
ity (MIC around 0.6 mcg/ml), and they are on the order of two to four times more 
potent than RIF based on mcg/ml MIC. If we look at the total (protein-bound plus 
protein-unbound) maximum concentration [Cmax] in plasma, both RIF and RPNT 
are in the teens (perhaps 12 and 16 mcg/ml, respectively). Both are much higher 
than the Cmax seen with RBN in humans, which is around 0.5 mcg/ml. The to-
tal drug Cmax/MIC ratio makes it appear that RPNT is substantially more potent 
than RIF. But this is the total drug, not the active free drug. RPNT is the highest 
protein-bound drug, more than 98 % in the literature, and about 99 % observed in 
our laboratory studies. RIF is about 80–85 % protein bound, which may more than 
compensate for the higher RIF MIC when one calculates fCmax/MIC. Thus, the 
most potent rifamycin is still a matter of debate and study (Rosenthal et al. 2007; 
Dutta et al. 2012).

Finally, we see differences among the rifamycin elimination half-lives (Peloquin 
1991; Peloquin et al. 1997; Burman et al. 2001). RBN has biphasic elimination, and 
the longest terminal elimination half-life, around 36 h. RIF and RPNT generally 
show monophasic decays. RPNT’s half-life is about five times longer than RIF’s 
(15 h vs. ≤ 3 h, respectively). So, with single daily dosing of RIF, nearly all the drug 
is eliminated within 24 h. That is not the case for either RBN or RPNT (Weiner et al. 
2004; Boulanger et al. 2009).

The rifamycins also have some unique features. Protein binding was mentioned 
above. The rifamycins have a varying degree of potential for hepatic enzyme induc-
tion, and in particular, the induction of CYP3A4 (Burman et al. 2001; Namdar and 
Peloquin 2011). As most readers know too well, CYP3A4 is responsible for the 
metabolism of about half of all drugs that are eliminated hepatically. So, we are par-
ticularly concerned about drug interactions at that enzyme. RIF is one of the most 
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potent enzyme inducers known to man, and RPNT is very similar in its potency. 
Whether RPNT is somewhat less potent, equally potent, or more potent than RIF 
depends on the dosing regimen studied for RPNT. Initially, RPNT was studied for 
once-weekly or twice-weekly dosing. Under those conditions, it seemed to be less 
potent than RIF. However, now that RPNT is being tested for daily dosing, it appears 
to be at least as potent as RIF as a hepatic enzyme inducer. There is no advantage 
of RPNT relative to RIF in that regard. However, there is an advantage with RBN, 
and that is why it is used (American Thoracic Society/Centers for Disease Control/
Infectious Disease Society of America 2003; Namdar and Peloquin 2011; Peloquin 
and Namdar 2011). If you must use a rifamycin along with other drugs, be they HIV 
drugs or antifungal drugs or cardiovascular drugs, then there is profound potential 
for drug–drug interactions. Those interactions are going to affect the therapy upon 
which a patient is already established. RBN may be the preferred rifamycin in that 
case. Looking at additional unique features, we can see that, of the three drugs, the 
flu-like syndrome is best described with high, intermittent doses of RIF, such as 
1800 mg once weekly or 1200 mg twice weekly. There is some signal for flu-like 
syndrome with RPNT, and that is still being studied, since there is a much smaller 
clinical experience with RPNT. The most important features about RBN are the 
concentration-related toxicities mentioned previously viz. anterior uveitis and neu-
tropenia. These concentration-related toxicities are not seen with RIF and RPNT.

PZA was developed in the 1950s and initially used at relatively high daily doses of 
50 mg/kg daily or higher (Peloquin 1991). There was a very high rate of hepatotox-
icity seen at that time, and PZA was put on the shelf for a very long time. The British 
Medical Research Council (BMRC) pulled PZA back off the shelf in the late 1960s 
and early 1970s, and performed lower dose experiments with it in combination with 
RIF and INH. They subsequently came up with what we now consider the standard 
regimen for TB using at least three drugs: INH, RIF, and PZA. Typically, EMB is 
considered as a fourth drug (American Thoracic Society/Centers for Disease Con-
trol/Infectious Disease Society of America 2003; Peloquin and Namdar 2011). PZA 
can be thought of as a highly specialized drug, perhaps a ninja. The theory is that 
PZA interacts with microorganisms in an acidic environment, where other drugs re-
ally are not effective. PZA typically is used for the first two months of treatment, fol-
lowed by the combination of INH and RIF to complete the six months of treatment. 
In clinical trials of patient with drug-susceptible TB, continued use of PZA beyond 
the first 2 months of treatment (initial phase) did not improve the outcomes achieved 
with INH and RIF only during the remaining four months of treatment (continuation 
phase; American Thoracic Society/Centers for Disease Control/Infectious Disease 
Society of America 2003; Peloquin and Namdar 2011). The situation can be quite 
different with regimens for MDR-TB, where INH and RIF are no longer effective. 
In such situations, PZA typically is used for the entire duration of treatment, often 
lasting 18–24 months. A typical PZA dose is 25–30 mg/kg, although the original 
study doses were somewhat higher, around 35 mg/kg daily for the treatment of TB 
(American Thoracic Society/Centers for Disease Control/Infectious Disease Society 
of America 2003; Peloquin and Namdar 2011). PZA is cleared by the liver, and PZA 
metabolites are excreted via the kidneys (Peloquin 1991; Peloquin et al. 1997). PZA 
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is known to be hepatotoxic, and its hepatotoxicity tends to last longer than that seen 
with INH and with RIF. If patients are being treated with PZA, they will have an 
elevated level of serum uric acid, not necessarily to the level that would produce 
gout, but it will be elevated. Thus, PZA is a great measure of adherence for patients 
who are not on directly observed therapy (DOT). If the patient says “oh yes, doc, I 
am taking those medications every day,” and if he/she has normal level of serum uric 
acid, then the patient is not telling the truth.

EMB generally is given as the fourth drug, at the beginning of treatment, until 
susceptibility data are available (American Thoracic Society/Centers for Disease 
Control/Infectious Disease Society of America 2003; Peloquin and Namdar 2011). 
The initial treatment of a typical patient with TB is empiric, based on the prob-
ability of certain types of drug resistance, and that treatment usually will involve 
INH, RIF, PZA, and EMB. Once it is shown that the patient’s isolate is fully drug 
susceptible, there is no need to continue the EMB treatment at that point. EMB is 
an inhibitor of cell wall synthesis. It is available only as an oral form in the USA; 
there is an i.v. form available in Europe. The typical doses are 15–25 mg/kg, though 
in clinical trials, doses of 12 mg/kg or less were no different from placebo. So, one 
may consider 25 mg/kg, especially at the initial part of therapy (Zhu et al. 2004). 
Caution is advised in adults and children who have renal dysfunction. While EMB 
does have some hepatic clearance, it is predominantly cleared by the kidneys and it 
can accumulate in patients with reduced renal clearance (Peloquin 1991; Zhu et al. 
2004). If one provides standard daily doses to a patient with renal dysfunction, the 
patient may experience serious ocular toxicity. There are cases reported of patients 
going blind permanently because of such toxicity. It is best to check the patient’s 
visual performance with Snellen letter charts and Ishihara color plates on a regular 
basis during EMB treatment as a screening test for visual function. Further, ask the 
patients to report if they have any difficulty in reading any kind of text, whether 
it is on their food packages or in newsprint, as an early warning system for visual 
changes (American Thoracic Society/Centers for Disease Control/Infectious Dis-
ease Society of America 2003; Peloquin and Namdar 2011).

SM was one of the first two TB drugs discovered, and for a long time was a 
first-line drug, with INH and PAS. Later, it was used as an alternative to EMB 
as the fourth drug in the initial regimen, along with INH, RIF, and PZA (Ameri-
can Thoracic Society/Centers for Disease Control/Infectious Disease Society of 
America 2003; Peloquin and Namdar 2011). Because one must give SM either in-
tramuscularly or intravenously, it is less popular than EMB, especially in devel-
oping countries, where access to clean needles can be a challenge. In such cases, 
EMB, which is orally administered, would be the preferred agent. Like the other 
aminoglycosides, SM inhibits protein synthesis. Typical doses are 15 mg/kg daily. 
There are other regimens where the SM dose is 25 mg/kg given two or three times 
a week (Peloquin et al. 2004). Like the other aminoglycosides, SM is eliminated 
through the kidneys, and it will accumulate in patients who have renal dysfunction 
(Zhu et al. 2001b). Any patient can experience either of the two forms of ototoxic-
ity: vestibular damage or hearing loss. Nephrotoxicity, as with the other aminogly-
cosides, can occur, and usually manifests as increase in serum creatinine. Since 
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SM is dosed daily or intermittently, nephrotoxicity generally is mild and reversible, 
even when continued therapy is essential. Finally, cation losses including potas-
sium, calcium, and magnesium also can occur with the aminoglycosides. These 
electrolytes along with the serum creatinine should be checked periodically during 
treatment (Peloquin et al. 2004).

AK, KM, and CM are alternative injectable agents (American Thoracic Society/
Centers for Disease Control/Infectious Disease Society of America 2003; Peloquin 
and Namdar 2011; Loeffler et al. 2012). These would be used when resistance to 
SM has been shown. AK was derived from KM, and they share very similar chemi-
cal structures. The toxicity profile and the pharmacokinetic (PK) profile of these 
three drugs are similar to SM. CM technically is not an aminoglycoside; it is a 
polypeptide. Because it so similar to the aminoglycosides in terms of dose, route of 
administration, PK, and toxicity, it tends to be put in the same category of “inject-
able agents” for TB (Peloquin 1991; American Thoracic Society/Centers for Dis-
ease Control/Infectious Disease Society of America 2003; Peloquin and Namdar 
2011; Loeffler et al. 2012). These drugs are increasingly used in cases of MDR-TB 
(American Thoracic Society/Centers for Disease Control/Infectious Disease Soci-
ety of America 2003; Peloquin and Namdar 2011). In the case of XDR-TB, by defi-
nition, resistance to at least one of the injectable agents will be observed (Peloquin 
and Namdar 2011; Lauzardo and Peloquin 2012; Dooley et al. 2013). It is possible 
to have limited, selected drug susceptibility to one injectable agent despite resis-
tance to some of the others. In cases of MDR-TB and XDR-TB, it is highly recom-
mended that an expert on TB is consulted as drug options are limited and careful 
management is necessary.

LEVO is one of two or perhaps three fluoroquinolones that typically are used 
when a member of this drug class is required for the treatment of drug-resistant TB 
(American Thoracic Society/Centers for Disease Control/Infectious Disease Soci-
ety of America 2003; Johnson et al. 2006; Peloquin and Namdar 2011; Lauzardo 
and Peloquin 2012). The quinolones are not considered first-line agents at this time: 
They have not proven to be better than INH, they are more expensive than INH, and 
they have broader spectra of antimicrobial activity than INH and are more likely 
to alter the host’s normal flora. As a class, they inhibit DNA gyrase. LEVO can be 
administered orally or intravenously, and typical doses for TB are 750–1000 mg 
once daily. LEVO is highly dependent on renal elimination, so caution must be ex-
ercised in patients who have renal dysfunction (American Thoracic Society/Centers 
for Disease Control/Infectious Disease Society of America 2003; Peloquin et al. 
2008; Peloquin and Namdar 2011; Lauzardo and Peloquin 2012). In those patients, 
MOXI may be the preferred agent, because MOXI is not entirely dependent on 
renal clearance. The fluoroquinolones have a variety of toxicities, which tend to 
be class effects. Among those are caffeine-like stimulatory properties of the central 
nervous system (CNS). They also can cause nausea, vomiting, and diarrhea. Qui-
nolones can cause tendinitis, and this is particularly a concern in older patients, or 
patients receiving corticosteroids. Particular caution has to be exercised in these 
patients, since Achilles tendon ruptures have been reported on numerous occasions 
with the fluoroquinolones. MOXI generally is given at a dose of 400 mg once daily. 
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It has been shown using in vitro and animal models that higher doses of MOXI 
might be more effective. However, there are concerns about concentration-related 
toxicities with MOXI, including corrected QT (QTc) interval prolongation. At least 
for the time being, the typical dose for patients who receive MOXI for TB is 400 mg 
once daily, and in general the drug has been used safely for TB (Takiff and Guerrero 
2011; Loeffler et al. 2012). As mentioned earlier, because MOXI is cleared both 
hepatically and renally, it can be an alternative to patients who have renal dysfunc-
tion. The toxicity profile of MOXI is very similar to that seen with LEVO, although 
there is some suggestion that MOXI may have a greater effect on QTc. GATI is not 
available in the USA, but continues to be studied for TB outside the USA (Rustom-
jee et al. 2008). It can be used in cases of MDR-TB in those countries where it is 
available.

We will now consider some of the second-line TB drugs, and there are good 
reasons why these are second-line agents. ETA has a mechanism of action that is 
similar in some regards to that of INH. There are situations where cross-resistance 
is observed (Machado et al. 2013). Similar to INH, ETA is a pro-drug and undergoes 
bio-activation inside the mycobacteria to its active form that subsequently inhibits 
the processes leading up to cell wall synthesis. ETA is an oral drug. Typical doses 
are 250–500 mg twice daily, if possible, though if one is going to use DOT, twice 
daily dosing does present some difficulties (Peloquin 1991; Loeffler et al. 2012). 
ETA is extensively metabolized in the liver. One of the metabolites is an active 
sulfoxide metabolite that can interconvert with the parent drug (Jenner et al. 1984; 
Peloquin 1991). ETA causes profound gastrointestinal distress. It causes nausea in 
most patients and vomiting in some patients. ETA also is associated with signifi-
cant amount of hypothyroidism, the latter is more pronounced in patients who re-
ceive both ETA and PAS together (American Thoracic Society/Centers for Disease 
Control/Infectious Disease Society of America 2003; Loeffler et al. 2012).

PAS was the first TB drug discovered. Its mechanism of action remains a mat-
ter of controversy, and for purposes of this discussion, it is not essential. PAS is an 
oral drug (Peloquin 1991; American Thoracic Society/Centers for Disease Control/
Infectious Disease Society of America 2003; Peloquin and Namdar 2011; Loeffler 
et al. 2012). Taking the original tablet dosage form was much like high-dose aspi-
rin. PAS is a close chemical derivative of aspirin, and it can cause stomach distress. 
Taking high doses, up to 12 g per day of PAS tablets causes about as much nausea, 
and sometimes vomiting, as seen with high doses of aspirin. There is a granule 
dosage form, which is an enteric-coated, sustained-release dosage form known as 
PASER®, and those granules generally are administered as a packet of small beads. 
The beads can be sprinkled into the mouth and swallowed with a beverage. Alterna-
tively, it can be mixed with soft food and swallowed without chewing. These pro-
cesses are repeated until the entire contents of the packets are consumed. Generally, 
twice daily dosing would be preferred, and up to three times daily dosing with PAS 
may be safely used (Peloquin et al. 1999). It is metabolized by NAT1, as opposed to 
NAT2 for INH (Peloquin 1991). PAS metabolites are cleared through the kidneys, 
but the parent drug appears to be cleared predominantly by the liver (Malone et al. 
1999). GI upset and diarrhea may occur, and as in the case of ETA, hypothyroidism 
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is a concern. If one gives the two drugs together to the same patient, testing for thy-
roid function is required, and thyroid supplements might need to be administered 
to some patients.

CS is a difficult drug to for many patients to tolerate, due to its CNS toxicities 
(American Thoracic Society/Centers for Disease Control/Infectious Disease Soci-
ety of America 2003; Loeffler et al. 2012). It inhibits cell wall synthesis upstream 
of the beta-lactam antibiotics’ site of action in the process of producing the peptido-
glycan. CS is available as an oral drug. Typical doses are similar to those for ETA: 
250–500 mg once or twice daily. Twice daily may be preferred, but again, under 
DOT conditions, twice daily dosing can be very challenging. CS is predominantly 
eliminated via renal route, so it can accumulate in patients who have renal dysfunc-
tion (Peloquin 1991; Zhu et al. 2001). Such a situation would best be handled by 
monitoring the serum concentrations of CS. Virtually everyone who takes CS is go-
ing to have some form of CNS toxicity. The most common forms are lethargy and 
the inability to concentrate; sometimes, this progresses to altered behavior. Frank 
seizures have been described, although at least in the experience of clinicians in 
the USA those tend to be extremely rare. Higher incidences of seizures have been 
reported out of South Africa, where they also use terizidone, a derivative of CS. 
Because CNS toxicities are of concern with CS, and patients should be monitored 
closely for changes in behavior.

11.4  How Do Antibiotics Work? PK  
and Pharmacodynamics

Now that we have introduced the TB drugs, let us step back and consider what we 
are trying to accomplish with them. Here is a basic statement of how the antibiotics 
work: For every drug with a proven mechanism of action, this action involves the 
drug contacting or entering the pathogenic organism, binding physically to an intra-
cellular target, and producing either an inhibitory or a lethal effect. This is true for 
all classes of antibiotics, against all classes of organisms, and is not unique to Gram-
positive or Gram-negative bacteria. This also is true when we are trying to treat TB.

We acknowledge that, for every drug given either orally or parenterally, the only 
way for the drug to reach the pathogenic organism is through the blood stream. Un-
like simple abrasions on the surface of the skin that can be addressed with topical 
drugs, in systemic infections such as TB, we generally cannot instill the drug direct-
ly at the site(s) of infection because the sites are not in a readily accessible. Hence, 
TB drugs are administered orally, intramuscularly, or intravenously. In all of these 
routes of administration, the drugs have to go through the blood stream to get to the 
site(s) of infection. Given this situation, the conclusion can be simply put: “If it isn’t 
in the blood, it isn’t in the bug.” The only way to deliver the vast majority of drugs 
is through the blood stream. Underdosing can lead to drug resistance and clinical 
failures, while for some drugs, overdosing can lead to overt toxicity. Therefore, it 
is important to understand and use knowledge of each drug PK in the treatment of 
bacterial infections, including the treatment of TB (Peloquin 1991).
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PK is the study of the movement of drugs through the body. In most cases, we are 
going to be looking at serum concentrations, because they are readily available. One 
can get serum concentrations much more easily than tissue or fluid concentrations 
at site(s) of infection. Obtaining the latter tends to be much more invasive, and in 
many situations, one simply cannot access those sites. We rely on the use of serum 
concentrations as surrogates for determining what is happening at the site of infec-
tion. We can use the serum concentration to interpret how well the PK are working 
in a particular patient, compared to what was anticipated based on prior experience 
in other patients, and we can use this kind of information to adjust doses.

Extending these concepts further, we now turn to pharmacodynamics (PD). PD 
is the study of the relationships between the drug concentrations and the corre-
sponding observed physiological responses, either efficacy or toxicity (Drusano 
2007; Mouton et al. 2011). When we are assessing antibiotics, we typically have 
three primary methods available to us for determining the PD of the drug. We have 
in vitro models, which tend to be the simplest and least expensive. Animal models 
add to that an immune system. One can study mice, guinea pigs, rabbits, or other 
species for TB, with and without effective immune systems. And, one can give a 
wider range of supraphysiological doses in these models than one might administer 
in the clinic. Animal models often are more expensive and more complicated than 
in vitro models, but they give us additional pieces of information, including activity 
within a mammalian system. Further modifications to the model, using knockout 
species or chemotherapeutic pretreatment, can explore drug activity in the model 
plus or minus an immune system. Finally, once we have selected a suitable range 
of human doses based on data from the in vitro and animal methods as well as us-
ing mathematical modeling for human dose estimation, we then proceed to clinical 
trials. By including dose escalation in clinical trials, we can determine the optimal 
dose of each drug that we want to use going forward in phase 2B or phase 3 clinical 
trials, and ultimately, in the clinical management of TB (Nuermberger and Grosset 
2004; Davies and Nuermberger 2008).

The PK/PD relationship can best be explained by considering a graph of prob-
ability of a response on the y axis and increasing drug concentration on the x axis 
(Fig. 11.1). There can be two different response curves constructed—one for effi-
cacy, and one for concentration-related toxicity (Peloquin 2001). These curves can 
represent an individual, or the curves can represent a typical or median response ob-
served in subject population. We are looking for two things when we examine these 
curves: We want the therapeutic response curve to approach 100 %, and we want the 
toxicity curve to be shifted towards higher concentrations than the response curve 
(shifted to the right). Not all drugs show concentration-related toxicity in or near 
the range of clinically effective plasma concentrations, but for some drugs, there 
clearly is overlap of the effective and toxic ranges. While undesirable, for serious 
diseases with limited therapeutic options, sometimes this is the best that we can do. 
Nevertheless, these kinds of curves can be seen with the vast majority of drugs that 
we use, across all kinds of disease states. The aim is to maximize the therapeutic re-
sponse while minimizing the toxic response of the drugs. In a hypothetical example, 
serum concentrations between 20 and 30 mcg/ml give us a high probability of the 
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desired response, while giving us a low probability of concentration-related toxici-
ties. Certain toxicities, such as rashes, really are not concentration-related per se. If 
you give any therapeutic amount of the drug, allergic reactions can occur. But for 
other drugs such as EMB, ocular toxicity clearly increases as serum concentrations 
exceed normal values with daily doses. Thus, for EMB, serum concentrations can 
inform both efficacy and toxicity.

There are three most common PD parameters that can be used to describe the 
activity of antimicrobial agents. These include the free drug Cmax to the MIC 
ratio ( fCmax/MIC), duration of time when free concentrations remain above the 
MIC ( fT > MIC), and the fAUC above the MIC ( fAUC > MIC; Nuermberger 2004; 
Drusano 2007; Davies and Nuermberger 2008; Mouton 2011). These three param-
eters are used most commonly for assessing the potency of the antimicrobial agent, 
and this information is helpful for dosing purposes.

Figure 11.2 gives a graphical representation of the parameters just mentioned. 
In this hypothetical example, the gray line is the concentration versus time curve 
and the MIC depicted with a green line. Let us assume that this drug has very low 
protein binding, so the values represent free drug. The fCmax is about 9 mcg/ml 
and MIC is 3 mcg/ml; therefore, the fCmax/MIC ratio is 3. The duration of time 
above MIC is the time when the gray line rises above and then falls below the green 
MIC line, and in this case, it is about 8 h. The fAUC > MIC also can be calculated, 
and is that portion of the AUC which is above the green line. It is important to 
note that the concentrations described in this example are measures of in vivo drug 
exposure, and the MIC is an in vitro measure. So, during the construction of these 
relationships, it is important to bear in mind that these are distinct parameters that 
are estimated from two different methods. This is an imperfect approach; however, 
because direct in vivo MIC measurement in the patient is not feasible, one has to 
use the isolate taken from that patient and test it in vitro. Generally, for TB patients, 

Fig. 11.1  PK/PD relation-
ships displayed as the 
probability of a response 
( y) versus increasing drug 
concentration ( x). (Reprinted 
with permission from Annals 
of the New York Academy of 
Science 2001; 953: 157–164)
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the isolate is contained in expectorated sputum, and is evaluated in the laboratory. 
Ideally, we would have an MIC value to work with. Unfortunately, most clinical 
laboratories test a single breakpoint concentration, the so-called critical concentra-
tion, to differentiate “wild type” from “resistant” organisms. Therefore, while a TB 
isolate may be considered “susceptible,” we typically do not know how susceptible. 
If the MICs for a given drug vary of a tenfold range, then the PD parameters above 
also vary widely from patient to patient. It is easy to imagine that one patient has an 
fCmax/MIC ratio of 20, while the next patient has a ratio of 2. For most antibiotics, 
we would not expect the same outcome with such disparate drug potency. Unfor-
tunately, with TB, we generally have to work in the dark regarding these factors.

11.5  Specific Examples of TB Drug PK/PD

We will apply the PK/PD concepts just presented to TB drugs. Let us take a look 
at INH, one of the primary drugs for the treatment of TB. With INH, there always 
is a high fCmax/MIC ratio with normal absorption (Peloquin et al. 1997). This 
is true either in slow acetylators (those patients who have deficient amounts of 
NAT2), where the drug remains in the serum longer, or in fast acetylators. This oc-
curs because the MIC is so low, roughly 0.01 mcg/ml (Heifets 1991). We have very 
good values of PD parameters with INH, whether we look at the fCmax/MIC or the 
fAUC > MIC or even fT > MIC, particularly in the slow acetylator. So, by all of these 
measures, INH is a particularly potent drug.

Now let us consider ETA, a second-line drug for TB. And it is a second-line drug 
not only because it has a higher rate of toxicity, including nausea and hypothyroid-
ism, but due to its undesirable PD (Jenner et al. 1984; Auclair et al. 2001). ETA 
serum concentrations barely get above the MIC needed for the treatment of TB, 
and they quickly fall below the MIC (Heifets 1991; Auclair et al. 2001). The MIC 
for ETA is one or two orders of magnitude higher than what is observed for INH. 
However, if these two drugs were reversed in their PD, such that ETA had great PD 
despite its toxicity, ETA would be considered a first-line agent. If INH had the low 
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potency seen with ETA, then INH would be considered a second line even though it 
is better tolerated than ETA. This is the primary complication: good or bad PK/PD. 
While the second-line drugs are considered as being potentially more toxic, and that 
is true in majority of the cases, the main point in the case of TB treatment is that the 
second-line drugs are less potent.

Drugs that show “concentration-dependent” antimicrobial activity are those that 
show increasing activity with increasing concentrations. (Drusano 2007; Mouton 
et al. 2011; Nuermberger and Grosset 2004; Davies and Nuermberger 2008) This 
might track better with fAUC/MIC for some, and fCmax/MIC for others, but typical-
ly, both measures are useful for “concentration-dependent” drugs. Typically, these are 
drugs that we give as large, single daily doses, because we want to take advantage of 
fCmax/MIC ratios. Typically, we want that ratio to be at least 10 or 12 to 1. Examples 
of such drugs would be the aminoglycosides. For bacterial infections, aminoglyco-
sides now are all dosed once daily, and not every 8 h, as was done previously. This 
allows for better killing, and for lower trough concentrations with potentially lower 
nephrotoxicity. This approach of using larger, intermittent also is observed with the 
fluoroquinolones, and this has clearly been demonstrated in a variety of models and in 
the clinical setting (Drusano 2007; Mouton et al. 2011). But not commonly discussed 
in this context is the fact that the rifamycins show profound concentration-dependent 
bactericidal activity (Jayaram et al. 2003; Peloquin 2003; Lauzardo and Peloquin 
2012). Unfortunately, this is not reflected in the way we currently dose these drugs.

11.6  Rifamycins and Their Concentration-Dependent 
Activity

Figure 11.3 provides a particular example of the “concentration-dependent” activ-
ity of RIF performed by Ludo Verbist, and published in 1969 (Verbist 1969). A 
standardized infectious dose of about 100 × 106 pathogenic organisms were admin-
istered to all these mice. The RIF amounts administered in mice were 5, 10, 20, and 
40 mg/kg. The mice were sacrificed on week ten of treatment, and their spleens 
and lungs were examined to determine the number of colony forming units (CFUs) 
remaining. At the 5 mg/kg dose, there were a lot of TB CFUs present in these ani-
mals. But as the dose increased, the number of CFUs decreased. At 40 mg/kg, no 
pathogenic organisms could be cultured in vitro. Thus, it suggests that an RIF dose 
of 40 mg/kg would be ideal in patients. However, the current dose in humans is only 
10 mg/kg.

Beginning in the early 2000s, the author and other TB researchers around the 
world started reexamining the older literature to see if we were actually giving the 
correct dose of RIF. Figure 11.4 shows some very nice work by Jayaram and col-
leagues from AstraZeneca (Bangalore, India; Jayaram et al. 2003). They showed 
similar data to that from Ludo Verbist in his 1969 paper (Verbist 1969). We have 
a concentration–response curve similar to what was described earlier. There is a 
sigmoid-shaped response curve, with low killing potency at the top left to high 
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killing potency at the bottom right. Note that there is a plateau in the response at low 
drug concentrations, and these low drug concentrations correspond to the clinically 
relevant concentrations currently obtained in humans with 600 mg doses. If one 
were to plot the data produced by Ludo Verbist, a similar graph would be observed 
(Verbist 1969). Also, note that in the Jayaram mouse model, one cannot observe a 
clear plateau at higher AUC/MIC (Jayaram et al. 2003). The authors determined the 
toxicity threshold before they were able to determine the maximum effective dose. 

PD:  Sterilizing  Activity  of  Rifampin

Mean value
after 600 mg
oral dose   

Fig. 11.4  Concentration–response relationship of rifampin, from recent studies of rifampin. 
(Reprinted with permission from Jayaram et al. 2003, courtesy of E. Nuermberger)

 

PD:  Sterilizing  Activity  of  Rifampin

Week 5 mg/kg 10 mg/kg 20 mg/kg 40 mg/kg

Lung
week 1

CFU 100,000,000 100,000,000 100,000,000 100,000,000

Lung
week 10

CFU 10,000 100 10 0

% reduction 99.99000% 99.99990% 99.99999% 100.00000%

Fig. 11.3  Concentration–response relationship of rifampin, leading to sterilizing activity, from 
early studies of rifampin. (Data from Verbist L. Acta Tuberculosa et Phneumolgia Belgica 1969; 
no. 3–4:397–412)
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The lesson for human dosing is that, in order to have maximum efficacy with RIF, 
one really needs to give much higher doses (Peloquin 2003; Mitnick et al. 2009; 
Lauzardo and Peloquin 2012).

Returning to the summary of PD again (Fig. 11.1), one would like to raise the 
response curve without any increase in the toxicity curve. Right now, it appears that 
we can achieve this with RIF. There are groups of researchers studying patients both 
in South America and in Africa to see just how high a dose of RIF can be adminis-
tered in order to maximize the response without producing overt toxicity (Martin 
Boeree et al. 2013).

11.7  Specific Clinical Examples of Rifamycin PK/PD

The current treatment regimen for TB is based on the work done by the BMRC 
and colleagues (Fox et al. 1999). A key study was published in British Journal of 
Diseases of the Chest in 1981 (British Thoracic Association 1981). For patients who 
received either SM (1000 mg) or EMB (25 mg/kg) added to a core of INH, RIF, 
and PZA (35 mg/kg), the responses were very similar. The measure of activity or 
response was the percentage of patients who went from being sputum culture posi-
tive to sputum culture negative at 1, 2, and 3 months. For the two patient groups, 
these percentages were 35–38, 77, and 97–99 %. Note that the PZA dose was 35 mg/
kg; current US guidelines from the American Thoracic Society (ATS)/Center for 
Disease Control (CDC)/Infectious Diseases Society of America (IDSA) often rec-
ommend smaller doses of 20–25 mg/kg, not what was studied in the original trials 
(American Thoracic Society/Centers for Disease Control/Infectious Disease Soci-
ety of America 2003). Also, note that the EMB dose was 25 mg/kg whereas in 
the USA a 15 mg/kg is commonly used (American Thoracic Society/Centers for 
Disease Control/Infectious Disease Society of America 2003). While the intentions 
behind these dose reductions in the USA were good (to reduce toxicities), they are 
not data driven (Peloquin 1991; American Thoracic Society/Centers for Disease 
Control/Infectious Disease Society of America 2003; Peloquin and Namdar 2011; 
Lauzardo and Peloquin 2012; Martin Boeree et al. 2013). There was an assumption 
that one could move down the toxicity curve without affecting the response curve. 
Using Fig. 11.1, it is assumed that the response curve is shifted dramatically to the 
left, creating a near certainty of complete response at any clinically relevant concen-
tration. Unfortunately, there is no reason to believe that is true, based on available 
clinical data. A more reasonable expectation is that one would be moving down both 
of those curves with a dose reduction.

Let us now compare the work that we just discussed from the BMRC to a paper 
published by Kreis and Pretet in 1976 (Kreis et al. 1976). This study used INH, RIF, 
and SM, but not EMB or PZA. All patients received daily SM at 1000 mg and INH 
900 mg daily or every other day, which is different from the standard 300 mg of 
INH daily. Patients also received 1200 mg of RIF rather than the standard 600 mg 
daily or every other day. Responses were similar in both groups, but the response 
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occurred about a month earlier than those in the BMRC trial. Patients were clearing 
the organisms at a faster rate than they did in the BMRC study. Here, at 1, 2, and 
3 months, the two groups showed the following percentages of culture-negative 
patients: 70–72, 93–94, and 98–100 %. Since these are two separate studies, it is 
not appropriate to do a direct statistical comparison of the results. Nevertheless, 
it is representative of what we might expect should we escalate the doses of RIF 
from 600 to 1200 mg. Kreis and Pretet generated these superior results even in 
the absence of PZA. Recall that we used PZA typically in the first two months of 
treatment. The addition of PZA allowed the 9-month regimen of INH and RIF to be 
shortened to a 6-month regimen. PZA adds about 10–13 % to the 2-month culture-
negativity rate. Thus, PZA has sterilizing activity to contribute, but Kreis and Pretet 
did not include PZA. Based on these data, the high-dose study groups are reason-
ably optimistic that better results can be obtained by taking advantage of RIF’s 
“concentration-dependent” activity in new clinical trials.

Earlier, we reviewed the fact that RIF can produce a flu-like syndrome if it is 
given in high intermittent doses (American Thoracic Society/Centers for Disease 
Control/Infectious Disease Society of America 2003; Peloquin 2003; Lauzardo and 
Peloquin 2012). In the study by Kreis and Pretet, by giving RIF either daily or every 
other day for 3 months, there were no reports of any patient experiencing flu-like 
syndromes. Further, in the early studies of high dose, once weekly and twice weekly 
RIF, the flu-like syndrome typically was not seen until 3 months or more into treat-
ment. Thus, in at least the first 2 months of therapy, high doses of RIF probably 
will not produce the issue of the flu-like syndrome (Martin Boeree et al. 2013). 
Nevertheless, patients will be followed closely for this potential adverse drug reac-
tion in current clinical trials of high-dose RIF (Martin Boeree et al. 2013; Trial of 
High-Dose Rifampin in Patients With TB 2013).

The PK/PD approach described above included finding the most important PK/
PD parameter using models, followed by dose-escalation studies in humans to opti-
mize this parameter (Drusano 2007; Davies and Nuermberger 2008). Unfortunately, 
that approach was not closely followed with most of the original TB drug trials (Fox 
et al. 1999; Iseman 2000; American Thoracic Society/Centers for Disease Control/
Infectious Disease Society of America 2003). While some PK/PD data do exist, it 
is a challenge to clearly define the two response curves (efficacy and toxicity) for 
many of the TB drugs (Weiner et al. 2003, 2005). We have managed to define the 
usual PK for the various drugs, and we continue to strive to link this more closely 
to the PD of the drugs (Peloquin 2001, 2002). Current TB studies now incorporate 
PK and PD assessments. Data available from prior and recent clinical trials can be 
utilized to show that, indeed, just like other antibiotics for bacterial infections, the 
TB drugs truly do show definable PK/PD responses.

Let us examine one such clinical study, conducted by the CDC TB Trials Consor-
tium (TBTC). The parent study was study 23, and study 23A was the PK sub-study. 
Published in 2005, this study examined the association between acquired rifamy-
cin resistance (typically abbreviated as ARR) in the context of HIV-associated TB 
(Weiner et al. 2005). Specifically, it examined the association between ARR and the 
PK of RBN and INH among patients with both TB and HIV. ARR is the worst-case 
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scenario in the treatment of drug-susceptible TB. First, the patient is not cured and 
now requires a lengthy re-treatment. There is a risk of toxicity, a risk of losing the 
patient to follow-up, and a risk of continued spread of TB in the community. If that 
was not bad enough, we also have lost the use of the rifamycins, the drugs that make 
a 6-month or even a 9-month regimen possible. This is the therapeutic equivalent of 
MDR-TB. We may be looking at an 18-month re-treatment regimen. So, we really 
want to avoid the generation of ARR, and proper doses and frequencies of the drugs 
are critical (Peloquin 2002; Weiner et al. 2005; Boulanger et al. 2009).

In study 23A, we found the differences in responses based upon the INH AUC 
and Cmax. The highest AUC (52.9 mg*h/ml) values were observed in the cured, 
HIV-negative patients in a prior TBTC study, study 22. Lower INH AUC values 
(28.0 mg*h/ml) were reported for the HIV-positive patients in study 23A; these 
patients also were cured. Finally, six patients in study 23A not only failed treat-
ment but did so with ARR; these patients had the lowest INH AUC (20.6 mg*h/ml; 
Weiner et al. 2005).

Not only did study 23A show that there was a measurable concentration response 
for INH at the doses we currently use clinically; it showed the same thing for RBN. 
Again, all of the patients in this study are HIV-positive. The 82 cured patients had 
higher RBN AUC values (5.1 mg*h/ml). The six patients in study 23A who failed 
treatment, and had ARR, showed lower RBN AUC (3.1 mg*h/ml, p = 0.04). While 
CD4 count was associated with poor outcomes in the parent study, when controlled 
for drug exposure, the odds ratio for ARR based on CD4 count was 1.01. In con-
trast, odds ratio for ARR based on RBN AUC was 23. Clearly, drug malabsorption 
was a key factor in the selection of ARR—a scenario that is entirely avoidable with 
prospective therapeutic drug monitoring (TDM) and dose adjustment.

11.8  Recap

Let us now recap what we have learned. Not all of the TB drugs are FDA approved 
for that indication. Some of the drugs that are used seem to have activity against TB, 
and there is a tradition of using them for TB, but controlled clinical trials are lack-
ing for most second-line TB drugs (American Thoracic Society/Centers for Disease 
Control/Infectious Disease Society of America 2003; Loeffler et al. 2012). Further, 
the EMA and the FDA have not explicitly approved several of the drugs for TB. The 
“second-line” TB drugs have poor PK/PD profiles (Peloquin 1991, 2001, 2002). 
These are weak drugs, typically with high MICs, they have low concentrations rela-
tive to those MICs, and in addition, they tend to produce toxicities at rates higher 
than seen with the first-line TB drugs. But the driver behind their reserve status is 
that they have poor PK/PD profiles. To use TB drugs safely, one must understand 
how they are absorbed and how they are eliminated (Peloquin 1991; American Tho-
racic Society/Centers for Disease Control/Infectious Disease Society of America 
2003; Peloquin and Namdar 2011). As mentioned in the cases of CS and EMB, 
those drugs are renally cleared, so patients with renal dysfunction are at risk of 
overt, concentration-related toxicity if they receive the standard daily doses.
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We see that the rifamycins, and in particular RIF, currently are underdosed 
(Peloquin 2003; Martin Boeree et al. 2013). Higher doses are very likely to produce 
better bacteriological results. There is a lot of experience in hollow fiber models, 
other in vitro models, and in preclinical animal models that clearly show this to 
be the case. There are some human data available so far, and these data will be 
bolstered by two ongoing clinical trials that will give us a much better picture of 
how to use the rifamycins, and in particular RIF going forward (Martin Boeree 
et al. 2013; Trial of High-Dose 2013). There are ongoing studies of higher doses 
of RPNT as well. Those studies will inform us whether RIF or RPNT might be the 
preferred rifamycin in majority of patients treated for drug-susceptible TB (Dorman 
et al. 2012). For many HIV-positive patients who are going to be on antiretroviral 
therapy, RBN is going to be the preferred agent for the foreseeable future because 
of its lower drug–drug interaction profile. However, higher doses of RBN may not 
be possible because RBN has concentration-related toxicities not seen with RIF or 
RPNT (Boulanger et al. 2009).

We see that recent TB studies demonstrate that poor drug absorption (leading to 
poor PK/PD) is associated with poor outcomes clinically (Weiner et al. 2003, 2005; 
Boulanger et al. 2009). TB treatment tends to be driven by the guidelines, and the 
guidelines are very well written and immensely useful (American Thoracic Society/
Centers for Disease Control/Infectious Disease Society of America 2003). However, 
the guidelines themselves state that they cannot possibly cover every conceivable 
situation that might arise in the clinic. Going forward, modeling and simulation, 
based on data acquired in the clinic, can help to fill in the missing pieces. Still, cli-
nicians need to make good decisions going forward with the information currently 
available. Even though, historically, the PK/PD of the TB drugs have not been em-
phasized, new studies that show that PK/PD is at play just the same (Weiner et al. 
2003, 2005; Boulanger et al. 2009). Just like antibiotics used for Gram-positive and 
Gram-negative bacteria, the antibiotics used for TB have to reach the site of infec-
tion, interact with the organism, and produce an inhibitory or lethal effect. Thus, all 
antibiotics including the TB drugs are entirely dependent on their PK/PD profiles 
(Peloquin 2001; Drusano 2007).

11.9  TDM and TB

There is a role for TDM in the treatment of TB (Peloquin 2001, 2002). Not ev-
ery nation is going to have ready access to TDM for their patients with TB. But 
many nations do—the USA, the countries of Europe, South Korea, and South 
Africa have laboratories capable of performing these tests. TDM is available, 
at least under selected conditions, and that allows individualization of TB ther-
apy. Now, it certainly is true that the standard doses and the standard regimens 
in the regulatory guidelines can be very effective (American Thoracic Society/
Centers for Disease Control/Infectious Disease Society of America 2003). It 
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also is important to remember that the vast majority of that data come from 
the pre-HIV era, and also from the preobesity epidemic era (Fox et al. 1999; 
American Thoracic Society/Centers for Disease Control/Infectious Disease So-
ciety of America 2003). Patients in those studies weighed less than the patients 
of today. The doses that were highly effective for pre-HIV era patients may 
or may not be the right doses for patients today, since for drugs given at fixed 
milligram doses, the current mg/kg dose is lower. TDM allows for optimization 
of the PD-linked variable for each drug. In the case of rifamycins, this seems 
to be fCmax/MIC or the fAUC/MIC. TDM also allows unraveling complicated 
multidrug interactions (Peloquin 2002; Boulanger et al. 2009). As previously 
mentioned, RBN is the preferred rifamycin for HIV-positive patients receiv-
ing concurrent antiretroviral therapy. However, also as mentioned, RBN is the 
object of multiple two-way interactions (Boulanger et al. 2009). Rifamycins 
also interact with drugs like voriconazole and other azole antifungal drugs 
(Schwiesow et al. 2008). So, if one finds that one has to use drugs that are 
known to interact, TDM provides the opportunity to measure those various 
drug interactions and adjust the doses accordingly. Thus, one can individualize 
patient treatment to maximize the benefit while minimizing the risks of adverse 
drug reactions.

Clinical data are accumulating that show that TDM could avoid some of the fail-
ures, relapses, and ARR seen in TB treatment, especially in HIV coinfected patients 
(Weiner et al. 2003, 2005; Boulanger et al. 2009). There are a variety of reasons 
why patients fail to respond to a therapy. Their immune system may not be able 
to contain the infection, they have very extensive disease progression, they have 
highly damaged lungs, and/or they may have meningitis where the drugs may not 
penetrate very well. There are a host of reasons beyond the drug-related reasons, 
which could lead to failure of therapy. However, the selection of the drugs and their 
doses are the only things we routinely control. So, one can argue that optimizing the 
doses and dosing regimen aids in optimizing the outcomes in the patients (Peloquin 
1991, 2001, 2002).

The new regulatory guidelines for the treatment of opportunistic infections 
in patients who are HIV positive are now going to recommend a starting dose 
of RBN 150 mg daily.(http://www.cdc.gov/tb/publications/guidelines/TB_
HIV_Drugs/default.htm) Previously, the recommendation was RBN 150 mg 
administered three times a week in the context of ritonavir-boosted protease 
inhibitor therapy for HIV. Conversely, if the patient is on efavirenz, a nonnu-
cleoside reverse transcriptase inhibitor (NNRTI), a starting dose of 450 or even 
600 mg of RBN is required. For such patients, it seems reasonable to measure 
the RBN concentrations early in the treatment, and also measure the concen-
trations of the protease inhibitors or the NNRTIs for HIV. One can adjust all 
of these drugs for a particular patient’s ability to absorb and eliminate these 
drugs, and in doing so, hopefully optimize both categories of drugs so that the 
patients have good response for both, TB and HIV.
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12.1  Introduction

Majority of the pharmaceutical drugs are delivered systemically, and systemic de-
livery has been the primary research focus of pharmaceutical industries during the 
past few decades. However, systemic delivery is not always a beneficial option 
especially with drugs having poor absorption, high first-pass metabolism, rapid 
systemic clearance, and causing serious systemic side effects (e.g., oral cortico-
steroids; Gonda 2004). In contrast, a local delivery of the drug at the site of action 
can alleviate some of these challenges by reducing the systemic side effects and 
having a slower clearance at the site of action compared to the systemic clearance 
of the drug. One such example of a local drug delivery method is pulmonary de-
livery, which is a lucrative option owing to the unique structure of the airways that 
enables efficient absorption of the inhaled particles into the blood, and the pres-
ence of an innate protection mechanism in the form of a mucociliary escalator to 
remove undissolved inhaled particles. Pulmonary drug delivery has been success-
fully employed for topical therapy of pulmonary diseases like asthma and chronic 
obstructive pulmonary disease (COPD) using drugs such as corticosteroids, anti-
cholinergics, and short- and long-acting β-agonists. One of the primary goals of 
inhalation therapy is drug “targeting,” i.e., achieving higher concentrations of the 
biologically active agent at the site of action, which is the lung compared to the 
concentrations in other parts of the body. This would be even more important for 
drugs used in treating respiratory diseases where the primary goal is lung-targeted 
inhalation to maximize the beneficial therapeutic effects while minimizing the sys-
temic side effects (Hochhaus et al. 1992b). Even with targeting, the inhaled drugs 
are not completely devoid of side effects because of the systemic spillover of the 
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absorbed drug from the lung. First, the multitude of pharmacokinetic (PK) and 
pharmacodynamic (PD) factors that influence pulmonary targeting are reviewed in 
this chapter taking into consideration the fate of an inhaled drug in the human body. 
Second, PK/PD approaches modeling the systemic side effects of inhaled drugs are 
described. Third, pulmonary models that describe the complicated PK behavior of 
inhaled drugs taking into consideration the physiology of the lung, physicochemi-
cal properties of the inhaled drug, and patient-related factors are presented. Finally, 
a commercially available mechanistic multi-compartment physiological model of 
the lung describing the absorption and disposition of inhaled drug molecules is 
described in this chapter.

12.2  Factors Influencing Regional Lung Kinetics 
Following Inhalation Therapy

Prior to exploring the pathway of an inhaled drug, it is important to understand the 
basic anatomical features of the lung, physicochemical properties of the drug, and 
patient-related factors that influence the kinetics and hence the fate of an inhaled 
drug in the human body.

12.2.1  Physiological Aspects of Inhalation Therapy

Traditionally, the airways in the lung are categorized into two parts: the conducting 
or the central airways and the respiratory or the peripheral airways, as character-
ized by Weibel (1963). The central airways begin with the trachea and end with 
the terminal bronchioles, the smallest airways without the alveoli, and hence not 
involved in gas exchange. The central airways comprise of the first 16 generations 
and are the principal site for airway obstruction in diseases like asthma and COPD. 
On the other hand, the peripheral airways extend from the respiratory bronchioles 
(generation 17), all the way to the alveolar ducts and alveolar sacs, and these air-
ways are responsible for gas exchange. To gain a better understanding of the im-
pact of the physiological factors on the fate of an inhaled drug, it is imperative to 
classify the lung into central airways (trachea to the terminal bronchioles) and the 
peripheral airways (respiratory bronchioles and the alveolus; Byron 1986; Gonda 
1988). Differences in the cellular profile and certain anatomical features between 
these two regions warrant such a distinction to be made. The luminal surface of the 
epithelium of the central airways is covered by a layer of mucus (Jeffery 1987) that 
facilitates the removal of undissolved drug particles from the lung by the mucocili-
ary escalator. The removed drug is either spit out or swallowed and hence no longer 
available in the lung to induce pulmonary effects. Such a clearance mechanism is 
absent in the peripheral regions because of a dearth of mucus-secreting goblet cells 
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in these airways (Tyler 1983). Another important physical difference is the increase 
in surface area as we go down the bronchial tree. The cross-sectional area increases 
dramatically from terminal bronchiole (180 cm2) to the alveoli (10,000 cm2; Hickey 
and Thompson 2004). The large surface area of the alveoli coupled with the pres-
ence of thin membranes and their proximity to the blood may point toward a faster 
rate of absorption of drug from the alveolus than from the tracheobronchial region 
(Schanker et al. 1986; Brown and Schanker 1983). It is also important to state that 
the distribution of the metabolizing enzymes in the central and the peripheral re-
gions maybe different (Petruzzelli et al. 1989). These differences indicate that the 
fate of an inhaled drug in terms of its pulmonary absorption, distribution, and clear-
ance will vary in the two regions of the lung.

12.2.2  Physicochemical Properties of the Inhaled Drug

Drug particles are delivered to the lung using three basic inhalation drug deliv-
ery systems: nebulizers, metered-dose inhalers (MDIs), and dry powder inhalers 
(DPIs). In nebulizers, the drug present in the form of a solution or a suspension 
is nebulized by ultrasonics or an air jet and is delivered via a mouthpiece or a 
ventilation mask. MDIs are multidose inhalers wherein the drug is formulated in a 
volatile propellant such as a hydrofluoroalkane (HFA). Upon activation, a specific 
amount of the drug is delivered by a metered valve to the lung as the propellant 
evaporates. DPIs are single-dose or multidose inhalers, containing micronized 
drug particles, attached to larger carrier particles agglomerated into soft pellets. 
Most of the commercially available DPIs are passive devices, where the patient’s 
inspiratory effort is required to disperse the drug powder and incorporate it into an 
inhalation airstream. Delivering an optimum respirable fraction (particles < 5 µm) 
is a common requirement of all inhalation dosage forms and delivery systems and 
is a function of the aerodynamic particle size distribution (APSD). The inhaled 
dose can be divided into three fractions depending upon its APSD. Particles that 
are greater than 5–7 µm, which are deposited predominantly in the oropharyngeal 
region by impaction and are swallowed; particles having a submicron size that 
are exhaled and do not deposit on the airways; and the fraction of particles hav-
ing the ideal size range for the lung deposition, i.e., 1–5 µm (Bates et al. 1966; 
Weda et al. 2008). Depending upon the particle size distribution within this ideal 
size range, the particles can deposit either in the central airways by impaction or 
in the smaller airways and the alveoli by gravitational sedimentation or diffusion 
(Stuart 1984).

APSD is an important physicochemical property of the aerosol as it influences 
the degree and site of lung deposition, which are important parameters that deter-
mine the targeting and effectiveness of an inhaled therapy for respiratory diseases 
like asthma and COPD. Targeting pharmaceutical aerosols to the lung is impor-
tant in maximizing the beneficial pulmonary effects and minimizing the systemic 
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side effects. Traditional pulmonary drug delivery systems deposit only about 20 % 
in the lung with significant loss (about 70 %) of the drug to the oropharyngeal 
region (Davies 1982; Thiel 1998; DeHaan and Finlay 2001). However, numerous 
advances in inhaler design and particle technology, like the advent of MDIs with 
HFA propellants (Newman et al. 2006), Respimat® soft mistTM inhaler (Boeh-
ringer Ingelheim, Ingelheim, Germany; Pitcairn et al. 2005), PulmospheresTM 
(Geller et al. 2011), thermal vaporization technology with the Staccato® device 
(Dinh et al. 2010) have improved pulmonary targeting by decreasing oropharyn-
geal deposition to about 30 %. Recent body of work on controlled condensation 
growth techniques (Hindle and Longest 2010, 2012; Longest et al. 2010; Tian 
et al. 2013) has the potential to reduce the oropharyngeal deposition to less than 
1 %, and hence aid in the development of highly efficient DPIs. In addition to the 
extent, the site of lung deposition is also important for drugs treating respiratory 
diseases. Autoradiographic studies (Carstairs et al. 1985) have shown a higher 
density of β-2 receptors in the bronchioles compared to the bronchi suggesting a 
targeted delivery of the β-2 agonists to the central airways for optimum bronchodi-
latation (Usmani et al. 2005). In contrast, since the inflammatory processes occur 
throughout the airways (Kraft et al. 1996; Carroll et al. 1997), it is believed that 
inhaled corticosteroids exert optimum anti-inflammatory activity when distributed 
throughout the lung. Lipophilicity (Lipworth and Jackson 2000) is another prop-
erty that determines the dissolution and pulmonary absorption rates of the inhaled 
particles and, hence, the lung residence times.

12.2.3  Patient Factors

The interaction between a patient and the inhalation device is a significant factor 
in determining the lung deposition of the inhaled particle. Inhalation flow rate af-
fects the velocity of the inhaled particles and hence their lung deposition (Martonen 
and Katz 1993; Borgström et al. 1994). Higher speeds increase the deposition in 
the throat and in the larger airways by impaction and decrease the deposition by 
sedimentation and diffusion by reducing the residence times. Use of spacers (New-
man et al. 1989) with MDIs is an effective method to reduce the high velocity of 
the aerosol cloud and hence improve deposition efficiency. With breath-actuated 
devices like the DPI, higher inspiratory flow rates provide more energy to expel the 
drug from the device but increase inertial impaction of the drug in the upper and 
central airways. Applying a breath-holding time (Martonen and Katz 1993) after 
inhalation can enhance the deposition of particles, especially in the small airways 
and the alveoli. The delivery of the aerosols at specific points in the breathing cycle 
can influence the regional lung deposition (Nikander et al. 2010). Other important 
factors related to the patient are the anatomy of the airways and the state of the lung, 
whether healthy or diseased. The airway caliber of the patient influences the site 
and degree of deposition. Experimental studies have shown that the lung deposition 
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in patients with asthma or COPD is more central (Harrison and Tattersfield 2003; 
Singh et al. 2003), i.e., in the large airways, than in the smaller airways and the 
alveoli because of the decrease in airway caliber.

12.3  Fate of an Inhaled Drug in the Human Body

The schematic Fig. 12.1 shows the cascade of events that take place from the mo-
ment the drug is inhaled to the time at which it is eliminated from the human body. 
An inhaled particle according to its aerodynamic particle size distribution is deposit-
ed in the lung, which is the “respirable fraction” (size < 5 µm), a fraction is deposited 
in the oropharynx (throat), and a small fraction is exhaled. The pulmonary deposited 
dose can be further divided into a fraction deposited in central lung region and a 
fraction deposited in peripheral lung region. Solid undissolved drug particles depos-
ited in central lung region are potentially impacted by the presence of a mucocili-
ary clearance mechanism. Particles not removed by the mucociliary escalator will 
then dissolve in the bronchial fluids, pass through the pulmonary cells where they 
elicit the desired therapeutic effect, and are eventually absorbed into the systemic 
circulation. Drug particles deposited in peripheral lung regions are not subjected to 
mucociliary clearance because of the absence of mucus-secreting goblet cells, and 
hence will dissolve, pass through the pulmonary cells inducing pulmonary effects, 
and are absorbed into the systemic circulation. The fraction of the drug that is de-
posited in the oropharynx and the fraction that is removed by mucociliary clearance 
will be swallowed and can be absorbed systemically through the gastrointestinal 
tract depending upon the degree of oral bioavailability of the drug. Such a fraction of 
the drug will not be able to induce pulmonary effects but will contribute to systemic 
side effects. The total systemic bioavailability of an inhaled drug therefore, is a func-
tion of the drug available from the lung and bioavailable fraction of the swallowed 
dose from the gut. The amount of drug that reaches the systemic circulation will be 
distributed and eliminated from the body according to its PK properties.

Fig. 12.1  Fate of inhaled 
corticosteroids
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12.4  PK/PD Modeling of Inhaled Drugs

12.4.1  PK/PD Factors Influencing Pulmonary Targeting

The primary goal of inhalation therapy has been to achieve pronounced pulmonary 
selectivity by maximizing the pulmonary effects while reducing the systemic side 
effects. The different kinetic processes that determine the fate of an orally inhaled 
drug product (OIDP) point towards a range of PK and PD factors that would im-
pact the degree of pulmonary targeting of OIDPs. Hochhaus et al. (1997), based on 
previously published pharmacokinetic models by Byron (1986) and Gonda (1988) 
provided a novel approach to evaluate the factors responsible for pulmonary target-
ing by integrating physiological aspects of pulmonary inhalation with PK and PD 
drug properties. The PK/PD model was used to evaluate pulmonary selectivity by 
providing a link between inhaled corticosteroid (ICS) concentrations (unbound) in 
the lung, and the systemic circulations with pharmacological effects using a simple 
Emax model as shown in Fig. 12.2. Simulations using this model were extended for 
β-2 agonists by Issar et al. (2004). An array of PK and PD properties influencing 
pulmonary selectivity are presented below.

12.4.1.1  Pharmacodynamic Factors

Receptor-Binding Affinity

It is widely accepted that the therapeutic effects and systemic side effects of inhala-
tion drugs are mediated through cytosolic or membrane receptors. For example, all 
ICSs exert their pharmacological effects through glucocorticoid receptors within 

Fig. 12.2  PK/PD model for 
describing pulmonary target-
ing. (Hochhaus et al. 1997)
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the lungs albeit with different receptor-binding affinities/potency. These receptors 
are extensively present in the lungs with high density in airway epithelial cells and 
bronchial vascular cells. The activity of ICS at the site of action, i.e., potency, is 
correlated to the receptor-binding affinity of the drug (Beato et al. 1972; Dahlberg 
et al. 1984; Druzgala et al. 1991). Similarly, in the case of β-2 adrenergic drugs, 
whose therapeutic effects are mediated through the β-2 adrenergic receptor, a strong 
association exists between in vitro pointers of drug activity in cell culture and the 
pharmacological activity in vivo (Hochhaus and Möllmann 1992). Therefore, in 
vitro parameters and receptor-binding affinities/potency are often used as yardsticks 
while comparing the pharmacological effects of inhalation drugs in the lung. It is in-
teresting to explore the role of receptor potency in pulmonary targeting using ICSs 
and β-2 adrenergic drugs as examples.

In the case of ICSs, wherein pulmonary effects and systemic side effects are me-
diated through the same glucocorticoid receptors in the lungs and systemic tissues, 
it has been shown that pulmonary targeting is not influenced by different receptor-
binding affinities as long as the differences in affinities are adjusted by the dose of 
ICSs. Therefore, an ICS with a lower receptor-binding affinity is not necessarily 
an inferior drug. The anti-inflammatory effect of a low receptor-binding affinity 
ICS can be moderated by increasing its dose. On the other hand, for β-2 adrenergic 
drugs, the pulmonary are mediated through β-2 receptors while most of the systemic 
side effects are mediated through the β-1 adrenergic receptors. In such a scenario, a 
high binding selectivity, i.e., high binding affinity to β-2 receptors and low affinity 
to β-1 receptors is favorable for pulmonary selectivity.

12.4.1.2  Pharmacokinetic Factors

Oral Bioavailability

An OIDP can enter the systemic circulation via the lung as well as from the gas-
trointestinal (GI) tract. Sum of the fractions of the drug that is deposited in the 
oropharynx and swallowed, and pulmonary deposited drug removed by mucociliary 
clearance constitute the overall amount of drug reaching the GI tract. The oral bio-
availability of the drug ( F), determined by the first-pass metabolism regulates the 
amount of drug entering the systemic circulation via the GI tract. This GI-available 
fraction of OIDP will not elicit any therapeutic effect, but will contribute towards 
systemic side effects. Ideally F should be close to 0 to reduce the overall systemic 
exposure of the drug and hence the potential for adverse events. Fluticasone propio-
nate (FP) and Ciclesonide have the lowest oral bioavailability among ICSs of  1 % 
(Peet et al. 2005). Bioavailability estimates of current ICSs range from 0 to 40 % 
(Ryrfeldt et al. 1982; Hochhaus et al. 1992a; Derendorf et al. 1995; Daley-Yates 
et al. 2001). Similarly, the bioavailability values of β-2 agonists range from 1.5 to 
50 %. These differences are likely to have an impact on pulmonary selectivity.
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Systemic Clearance

The fraction of the inhaled drug that reaches the systemic circulation, i.e., systemi-
cally available drug, will contribute toward systemic side effects by interacting 
with the receptors outside the lung. Therefore, pronounced systemic clearance will 
reduce the systemic exposure of OIDPs and garner pulmonary selectivity. Most 
ICSs are extensively metabolized in the liver with clearance values close to the 
liver blood flow (Ryrfeldt et al. 1982; Derendorf et al. 1995; Mackie et al. 1996). 
An alternative approach to increase systemic clearance would be to develop ICSs 
with extrahepatic clearance mechanisms, for example, ICSs that are metabolized in 
the blood. A challenge with such an approach is to identify such enzymes that are 
present in high concentrations in the blood, but absent in pulmonary cells, to en-
sure that pulmonary efficacy is not compromised while maximizing systemic safety. 
Desisobutyrl-ciclesonide has an apparent clearance of 228 L/h (Winkler et al. 2004) 
indicating presence of extrahepatic modes of metabolism.

Plasma Protein Binding

Freely circulating unbound drug binds to receptors within and outside the lung and 
is responsible for both local and systemic side effects, respectively. Plasma protein 
binding of OIDPs (e.g., to albumin, α1-acid glycoprotein) can decrease the potential 
for systemic side effects by reducing the number of pharmacologically active free 
drug moieties interacting with receptors outside the lung. Indeed, protein-binding 
rates have been utilized as valuable markers in predicting the cortisol suppression of 
ICSs. Ciclesonide and desisobutyryl-ciclesonide have both demonstrated protein-
binding rates of ~ 99 % (Rohatagi et al. 2005) and that may explain their minimal 
effect on HPA-axis function and cortisol levels.

Therefore, there has been an increased tendency to develop OIDPs that show 
increased plasma and tissue protein binding. Such a property not only reduces sys-
temic side effects but also reduces the desired pulmonary effects. Systemic side ef-
fects generally show a sensitive or a steep dose–response relationship and hence are 
easily detected in clinical studies. On the other hand, pulmonary effects exhibit flat 
or insensitive dose–response relationships and are hard to detect. Therefore, such 
high-binding drugs when given at identical doses as their low-binding counterparts, 
exhibit very high safety profiles (low systemic side effects) while their pulmonary 
effects (anti-asthmatic effects) are not statistically significantly different, owing to 
insensitive pulmonary biomarkers/clinical endpoints.

Pulmonary Deposition

High pulmonary deposition is warranted for OIDPs intended for local action in the 
lung, as it increases the amount of drug at the site of action, and elicits the desired 
therapeutic effect. Increased pulmonary deposition also reduces the deposition in 
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the oropharynx, thus reducing the dose available for absorption from the GI tract. 
Pulmonary deposition varies significantly between various inhalation devices. Re-
cent advancements in the design of delivery devices have increased the pulmonary 
deposition from 10–20 to 40 % (Newman et al. 1998). Although higher pulmonary 
deposition is beneficial in general for pulmonary targeting, it has a greater upside 
for drugs with higher bioavailability as a lesser fraction of the dose is available for 
oral absorption (Hochhaus et al. 1997). For drugs with lower oral bioavailability, 
the drug entering the GI tract will not be able to induce systemic side effects. How-
ever, in this case, a lower dose of the OIDP can be administered. To further increase 
our understanding of the interplay between drug delivery device and patient charac-
teristics (such as disease state, inhalation profile, device handling, and deposition), 
physiological PK/PD approaches have to be fused with computational fluid dynam-
ics (Longest et al. 2012).

Pulmonary Residence Time

Drug particles deposited in the lung will dissolve in pulmonary fluids when released 
from delivery systems, such as microspheres and liposomes and diffuse to the site 
of action, where they exert the desired pharmacological effect, and subsequently be 
absorbed into the systemic circulation. Given the physiology of the lung, it seems 
logical to assume that the dissolution rate of the inhaled particle or the release rate 
of the drug from the delivery system are the rate-limiting steps that determine lung 
residence time.

The longer the pulmonary residence time of an OIDP, i.e., the longer it stays in 
the lung, the longer their therapeutic effect will be. If a drug particle is given as a 
solution or it dissolves quickly, it is immediately absorbed into the systemic circu-
lation, and hence pulmonary selectivity is lost. In this case, the pulmonary effects 
will be accompanied by significant systemic side effects. On the other hand, lower-
ing the pulmonary dissolution rate ensures that the drug concentrations in the lung 
will be greater compared to plasma levels for an extended period of time which is 
beneficial for pulmonary targeting. However, an optimal dissolution rate exists due 
to the presence of mucociliary transport in the central lung which removes undis-
solved drug particles leading to loss of efficacy and pulmonary targeting. A longer 
retention time in the lung will not reduce the overall systemic exposure of the drug, 
but might reduce the maximal systemic exposure of the drug.

The potential for beneficial effects has warranted the genesis of a number of 
approaches to improve lung residence of OIDPs (Hardy and Chadwick 2000). Ex-
amples of approaches include the use of liposomes (Suarez et al. 1998; Suntres and 
Shek 1998), microspheres (Edwards et al. 1997; Bot et al. 2000; Dellamary et al. 
2000), ultrathin coating around dry powder formulations, and the use of excipients, 
such as oligolactic acid and trehalose derivatives (Hardy and Chadwick 2000), as 
well as use of slow-dissolving lipophilic drugs, and the formation of lipid con-
jugates (Tunek et al. 1997; Miller-Larsson et al. 1998; Edsbäcker and Brattsand 
2002; Nave et al. 2005, 2006). Intracellular ICS conjugation to lipids prolongs the 
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pulmonary residence time by creating a depot of ICS that gradually is reactivated 
into active ICS and hence available to elicit anti-inflammatory activity. Similarly, 
long-acting β-2-adrenergic drugs bind tightly to pulmonary cell membranes (Green 
et al. 1996), creating a reservoir of the drug which slowly releases the active moiety 
to the receptor. This prolonged residence time might allow for once-daily dosing 
due to the extended therapeutic effect enhancing patient compliance.

12.4.2  PK/PD Modeling of Systemic Side Effects  
After Administration of Inhaled Corticosteroids

12.4.2.1  PK/PD Modeling of Cortisol Suppression After  
Administration of Exogenous Corticosteroids

While most of the ICSs demonstrate a series of beneficial properties, they are not 
completely devoid of systemic side effects. Suppression of endogenous cortisol 
production is one of the major side effects of corticosteroids (Koopmans et al. 1992; 
Wald et al. 1992). Cortisol (hydrocortisone, 11,17,21-trihydroxypreg-4-ene-3,20-
dione) is the primary endogenous glucocorticoid synthesized in the human body 
from cholesterol via several enzyme-catalyzed steps (Chrousos and Harris 1998). 
Secretion of cortisol by the adrenal cortex is regulated by the adrenocorticotropic 
hormone (ACTH), which is produced by the anterior pituitary gland. ACTH pro-
duction is in turn regulated by corticotrophin-releasing factor (CRF) produced by 
the hypothalamus. Finally, the circulating cortisol molecules have a negative feed-
back mechanism on the hypothalamus to regulate the formation of CRF and also 
the anterior pituitary to regulate the release of ACTH thus maintaining homeostasis. 
To quantify the degree of systemic steroid activity, endogenous cortisol levels are 
used as a suitable marker. However, due to the marked circadian rhythm (Chrousos 
and Harris 1998) in cortisol release and the asymmetric nature of baseline cortisol 
concentrations, a precise quantification of cortisol suppression becomes an intricate 
exercise. Cortisol reaches a peak (acrophase) in the morning (6–10 a.m.) and a 
trough during the night (8 p.m.–2 a.m.). Furthermore, exogenous corticosteroids 
can suppress the release of cortisol by a negative feedback mechanism (Slayter et al. 
1996). Hence, there is a need to develop a consistent PK/PD model to characterize 
the effect of therapeutic corticosteroids.

The first step in modeling the steroid-induced suppression of endogenous cor-
tisol is the characterization of the asymmetric baseline circadian concentrations of 
cortisol. Then by assuming that the exogenous corticosteroid inhibits the cortisol 
secretion rate RC , the complete PK/PD model for cortisol suppression can be devel-
oped as an application of the kin -inhibition indirect response model (Chakraborty 
et al. 1999). Therefore, the resulting change in cortisol concentration under baseline 
conditions (i.e., absence of drug) is given by:

 

(12.1)
*C e

dC R k C
dt

= −
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where C is the cortisol concentration and �ke is the elimination rate constant for cor-
tisol. And in the presence of corticosteroids ( )Cst  the change in cortisol concentra-
tions can be expressed as:

 

(12.2)

where Imax is maximum fractional inhibition of RC, IC50 is the concentration of ste-
roid that causes 50 % of the maximal suppression of RC .

Due to the circadian nature of the cortisol release rate RC, various time-dependent 
24-h periodic functions have been used to describe it. Chakraborty et al. (1999) 
compared several methods to model circadian cortisol concentrations. An indirect 
response model with six different biorhythmic functions namely, single cosine, dual 
ramps, dual zero order, dual cosines, and Fourier series with two and n-harmonics 
were evaluated to model cortisol release rate. It was shown that apart from the 
single cosine, all methods reasonably captured the cortisol profiles, and the inhibi-
tion data were fitted similarly by all models. Fourier analysis had the added flex-
ibility of using the placebo data to recover equations for cortisol release rate unlike 
other models with preassigned functions and can be extended to other drug-induced 
changes in normal periodic rhythms.

Rohatagi et al. (1996a) also investigated five different models to characterize 
the cortisol concentrations as a function of time and concentration of the exogenous 
steroid triamcinolone acetonide (TCA). A cosine (Milad et al. 1994), exponential, 
monoexponential, and a biexponential self-suppression model were compared to a 
proposed linear release rate PK/PD model (Rohatagi et al. 1996a) to characterize 
the mean cortisol baseline data for 24 h, and the cortisol levels after single-dose 
administration of TCA. The linear release rate or the dual ramps model, which takes 
into account the elimination of cortisol, was shown to characterize the cortisol base-
line and cortisol suppression in a better way compared to the other models based on 
certain goodness of fit and model selection criteria. After transforming the cortisol 
plasma levels to cortisol release rates by using PK parameters of cortisol, the linear 
rate model assumes a linear decrease in cortisol production during the day from the 
time of acrophase (with maximum release rate Rmax (amount/time) at time tmax) to al-
most 0 at time of minimum release ( )tmin . Hence, for the time between the acrophase 
tmax to tmin, the decrease in release rate is modeled according to:

 

(12.3)

where t is the time after cortisol monitoring was started and Vd
COR is the volume of 

distribution of cortisol.
For the time between tmin  and tmax, the increase in release rate is described by:
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The resulting change in cortisol concentrations in the absence and presence of the 
corticosteroid are modeled using Eqs. (12.1) and (12.2). The linear release rate PK/
PD model was used to study the effect of various ICS—Ciclesonide (Rohatagi et al. 
2003; population approach—a sample NONMEM control stream is available in Ap-
pendix 1), FP (Xu et al. 2010), triamcinolone acetonide (Rohatagi et al. 1995), and 
fluocortolone (Rohatagi et al. 1996b) on cortisol suppression.

All the previously described models did not take into account the combined ef-
fect of ACTH and cortisol, though there is clearly a need for a physiologically based 
model to describe the system since the mechanism involves a sequential cascade 
of effects and circadian rhythm. Lönnebo et al. (2007) proposed a surge-based PK/
PD model similar to the one developed by Nagaraja et al. (2003) to describe the 
effect of budesonide (BUD) on ACTH and cortisol. The release rate and the serum 
concentration of ACTH, and consequently cortisol were observed to fluctuate with 
a prominent circadian rhythm with two surges every 24 h, one a.m. surge and one 
p.m. surge. In the surge-based model, the circadian rhythm in hormonal produc-
tion was described by a constant zero-order production coupled with surges. Also, 
ACTH was assumed to drive the production of cortisol, and the effect of BUD was 
assumed to solely effect the production of ACTH through an inhibitory Emax ( Imax) 
model. The surge-based model is described as follows:

 

(12.5)

 

(12.6)

where kout ACTH,  and kout cortisol,  are the first-order elimination rate constants for ACTH 
and cortisol, kin ACTH,  is the baseline production rate of ACTH in the absence of surg-
es without any drug, kin ACTH,  is obtained as the product of the two estimated param-
eters kout ACTH,  and baselineACTH. f CBud1( ) and f CBud2 ( )  are described by Imax models, 
whereas h( ACTH) is a (sigmoidal) Emax model. Negative feedback of cortisol on 
ACTH production ( ( ), ( ))f C f Ccor cor3 4  was introduced in equation using Imax models:

 

(12.7)

 

(12.8)

Surges which were characterized by the parameters SA (surge amplitude), SW 
(surge width), T (clock time), and PT (peak time) were used to define the function 
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(12.9)

The authors believe that the surge model gives a physiological description of the 
system and serves as a tool for further understanding of the HPA axis.

12.4.2.2  PK/PD Modeling of Systemic Corticosteroid-Induced 
Lymphocytopenia

In addition to cortisol suppression, the other commonly used biomarker for the sys-
temic effects of corticosteroids is lymphocytopenia, a reduction in blood lympho-
cytes resulting from their redistribution into the peripheral tissues. Lymphocyto-
penia has been frequently used as a sensitive marker, both as a desired outcome in 
the treatment of allergic inflammation (Oneda 1999) and as a systemic side effect 
of corticosteroid therapy on the immune system during the treatment of asthma 
(Van Gossum et al. 1998). It has been well established that the endogenous cortisol 
affects the number of lymphocytes in the blood as evidenced by the circadian varia-
tion of lymphocytes (Miyawaki et al. 1984), and its subtypes in the blood (Palm 
et al. 1996), and its inverse correlation with the circadian rhythm of endogenous 
cortisol (Abo et al. 1981). Therefore, a PK/PD model for lymphocytopenia after 
administration of an exogenous corticosteroid should take into account the complex 
interplay between exogenous and endogenous corticosteroids as shown in Fig. 12.3 
(Meibohm et al. 1999), modeling the decrease in blood cells as a net result of the 
direct inhibition of the exogenous corticosteroid, and an opposite indirect effect of 
the corticosteroid-induced suppression of endogenous cortisol.

A classical indirect response model was used to characterize the transient deple-
tion of lymphocytes from the blood caused by the circadian rhythm of endogenous 
cortisol (Wald et al. 1992; Möllmann et al. 1998). In the model, the rate of change 

4
( )

1

SAg clock time
T PT

SW

=
 −  +    

Fig. 12.3  Interplay between 
exogenous corticosteroid 
(budesonide), endogenous 
cortisol, and lymphocytes. 
(Meibohm et al. 1999)
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in the number of lymphocytes ( N) was described by a zero-order influx ( )kin  of cells 
coupled with an inhibitory Emax model and a first-order efflux of the cells ( )kout :

 

(12.10)

The combined PD effects (Ariens 1954; Meibohm et al. 1999) of an exogenous 
corticosteroid and cortisol on lymphocytes was modeled by:

 

(12.11)

where Imax L,  is the maximum effect of cortisol and the exogenous steroid on the in-
flux of lymphocytes, Cf

Cort and Cf
St  are the unbound concentrations of cortisol and the 

exogenous steroid respectively, and ICC L
50

→  and 50
St LIC →  are the unbound concentra-

tions of cortisol and the exogenous steroid that produce 50 % of Imax L, . The same PK/
PD model was successfully used by Stark et al. (2006) to describe the effect–time 
relationships of lymphocyte subpopulations after BUD administration. Hong et al. 
(2007) applied a population-based PK/PD approach incorporating inter-occasion 
variability to model the effects of systemic corticosteroids on lymphocyte traffick-
ing. It has been observed that the IC50 value for the effect of exogenous corticoste-
roids like BUD (Meibohm et al. 1999) and triamcinolone acetonide (Rohatagi et al.  
1995) on total lymphocyte suppression is larger than that for the effect on cortisol 
suppression, indicating that cortisol suppression might be a more sensitive biomark-
er for the systemic effects of exogenous corticosteroids.

12.4.2.3  PK/PD Modeling to Study the Relationship Between Growth 
Velocity and Systemic Corticosteroid Exposure

Corticosteroids are essential for life as they regulate and support a variety of cardio-
vascular, metabolic, immunologic, and homeostatic functions. They play a major 
role in fetal development and are required for the maintenance of normal growth. 
But a deficiency or an excess of corticosteroids can lead to a reduction in growth 
rate. When therapeutic (exogenous) corticosteroids are given for a prolonged period 
of time, like in the treatment of chronic asthma, there is a risk of adrenal insuffi-
ciency and systemic adverse effects including reduced growth velocity in children 
(Ahmed et al. 2002). Hence, it is imperative to understand the relationship between 
corticosteroid exposure and growth velocity in children, simultaneously assessing 
the differential effects of various commercially available ICSs. This approach may 
assist in the selection of ICSs that maximizes the therapeutic ratio in patients. Dal-
ey-Yates and Richards (2004) consolidated data from 32 published studies of the 
effect of growth of inhaled, intranasal, and oral corticosteroids delivered through 
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different routes of administration using a physiologically based PK/PD approach 
to study the relationship between growth velocity and corticosteroid exposure. To 
allow the comparison between different compounds and routes of administration 
among these studies, corticosteroid exposure was transformed to cortisol equiva-
lents using the following equation:

 

(12.12)

where ,ss uAUC  is the steady-state unbound AUC in cortisol equivalents; F is the 
bioavailability; “dose” is the daily corticosteroid dose; fu  is the unbound fraction 
in plasma; PR represents potency (glucocorticoid-receptor binding) relative to cor-
tisol; and CL is the systemic clearance. Further, the relationship between change in 
growth velocity and corticosteroid exposure in cortisol equivalents was described 
using a nonlinear sigmoid Emax model, as shown in the following equation:

 

(12.13)

where E0 is the change in growth velocity in the absence of the drug, Emax is the the-
oretical maximum reduction in GV, AUC50 is the AUCss,u in cortisol equivalents for 
50 % reduction in GV. The nonlinear relationship between annual growth velocity 
and exposure in cortisol equivalents for each dose group from each study is shown 
in Fig. 12.4. The developed model was further used to predict the annual change in 
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Fig. 12.4  Changes in growth velocity and exposure in cortisol equivalents. (Daley-Yates and 
Richards 2004)
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GV for different ICSs over a range of doses. Higher systemic exposures were pre-
dicted for corticosteroids with higher oral bioavailability (11–41 %)—beclametha-
sonedipropionate, BUD, and triamcinolone actetonide, and hence were predicted 
to produce systemic levels above the clinical equivalence limit for change in GV 
when administered at standard pediatric doses. On the other hand, corticosteroids 
with low oral bioavailability (< 1 %)—FP and mometasonefuroate—were predicted 
to show levels below the threshold (Fig. 12.5). Therefore, the model was able to 
establish a correlation between overall systemic bioavailability of ICSs and short-
term growth effects in children.

12.4.3   PK/PD Modeling of β-2 Agonists: A Case  
for Lung-Targeted Therapy

β-2 Agonists like salbutamol (albuterol), terbutaline, and fenoterol have been wide-
ly used in the treatment of asthma owing to their pronounced pulmonary bronchodi-
latation effects mediated through the β-2 receptors and their reduced β-1-mediated 
cardiac effects. An increase in heart rate induced by the β-1 receptor mediated a 
positive ionotropic effect, and an increase in cardiac output is one of the major side 
effects of β-agonists besides the tremors of the skeletal muscles. PK/PD models 
(Hochhaus et al. 1992b; Jonkers et al. 1989) have been successfully applied in un-
derstanding the beneficial pulmonary effects and also the systemic side effects of 
β-agonists and thereby optimizing drug regimens.

Fig. 12.5  Model-predicted changes in annual growth velocity for a range of ICS doses. (Daley-
Yates and Richards 2004)
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A PK/PD model for fenoterol developed by Hochhaus et al. (1992b) linked the 
drug levels in a shallow PK compartment after multiple routes of administration, 
to the intrathoracic gas volume, airway resistance (beneficial pulmonary effects), 
and heart rate (systemic side effect) via an Emax model. The model was able to 
simultaneously describe the pulmonary and cardiac effects after the administration 
of fenoterol, via IV injection, infusion, and nasal administration, demonstrating that 
the pulmonary effects after nasal administration were induced systemically and not 
locally (Fig. 12.6; Hochhaus and Möllmann 1992). On the other hand, with the 

Fig. 12.6  Effect on heart rate 
and airway resistance after 
different forms of fenoterol 
administration. (Hochhaus 
and Möllmann 1992)

 



366 B. Kandala and G. Hochhaus

addition of inhalation data to the model, only the cardiac effects but not the pulmo-
nary effects were described by the model. The observed pulmonary effects after in-
halation were much larger than those predicted from plasma concentrations, indicat-
ing that the pulmonary effects observed are a result of the local action of fenoterol 
in the lung (Fig. 12.7; Hochhaus and Möllmann 1992). Thus, this study highlights 
the need for lung-targeted inhalation therapy as demonstrated by an equipotent pul-
monary effect with significantly smaller cardiac effects compared to other routes of 
administration. PK/PD modeling was also used to demonstrate the selectivity of β-2 
agonists for the β-2-mediated pulmonary effects compared to the β-1-mediated car-
diac effects using the relevant EC50 (Hochhaus et al. 1992b; Fuglsang et al. 1989) 
estimates.

12.4.4  PK Modeling of Inhaled Drugs: Pulmonary Models

The PK behavior of inhaled (locally acting) drugs is more complicated than that 
of other forms of administration (systemically acting drugs). It is imperative to ac-
knowledge the effects of the abovementioned physiological (differences in the cel-
lular profile and the anatomical features between the central and the peripheral lung; 
mucociliary escalator in the central lung region), formulation (influence of particle 
size distribution on the degree and site of lung deposition; particle dissolution rate), 
and patient factors (differences in breathing patterns and airway caliber between a 
healthy and a diseased lung, and its impact on the variability between and within 
subjects) on the systemic PK of inhaled drugs. Within the same context, a general 
compartment model that adequately describes the fate of an ICS by incorporating 
these parameters is necessary to accurately characterize the systemic PK of inhaled 
drugs.

Fig. 12.7  Effect on heart 
rate and airway resistance 
after inhalation of fenoterol. 
(Hochhaus and Möllmann 
1992)
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Byron (1986) developed a mathematical model to predict drug residence kinetics 
in various regions of the human respiratory tract following inhalation of therapeutic 
aerosols. Gonda (1988) furthered the model incorporating release kinetics of the 
drug from the dosage form to study its influence on the duration of effective drug 
levels in the respiratory tract. But these models specifically focused on the drug 
kinetics in the respiratory tract and not in plasma and did not consider variability. 
The model by Hochhaus et al. (1997) using the abovementioned models as a ba-
sis provided a novel approach to evaluate the factors responsible for pulmonary 
targeting (see Section 12.4.1) by integrating physiological aspects of pulmonary 
inhalation with PK and PD drug properties. But the model did not distinguish be-
tween central and peripheral regions of the lung and did not have a random com-
ponent to it (between and within subject variability). Weber and Hochhaus (2013) 
addressed the shortcomings of previously published inhalation models by develop-
ing a pharmacokinetic trial simulation tool that adequately describes the fate of 
ICSs (Fig. 12.8) while incorporating variability between and within subjects and 
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Fig. 12.8  Compartmental model for characterization of plasma concentrations after administra-
tion of ICS. (Weber and Hochhaus 2013)
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allowing for a distinction between central and peripheral lung regions, mucociliary 
removal of the undissolved particles from the central lung region, and accounting 
for drug entering the systemic circulation via the lung and the gastrointestinal tract 
in the compartment model.

The primary goal of the authors was to provide a simulation tool that accurately 
predicts the influence of changes in relevant physiological and formulation factors 
on systemic PK of ICS. Furthermore, the simulation tool is provided as an extension 
package (“Inhaled Corticosteroids Pharmacokinetic Trial Simulation,” ICSpkTS) to 
the statistical software R and is available for download via http://www.cop.ufl.edu/
pc/research/areas-of-research/inhaled-glucocorticoids/icspkts-r-extension/. The 
package has in-built modules for commercially available ICS (BUD, flunisolide, 
FP, and triamcinolone acetonide). The performance of the BUD and FP modules 
was checked and hence validated by comparing the simulated PK data to data from 
actual studies as shown in Fig. 12.9. The package enables the users to simulate PK 
trials for any ICS delivered via different inhalers to healthy subjects or patients by 
providing the flexibility to users to specify their own model parameters. A sample 
NONMEM control stream for the simulation of a PK trial with FP as the model drug 
is presented in Appendix 2.

In spite of the stated advancements in the development of pulmonary PK models, 
there is still a knowledge gap regarding the quantitative mechanistic assessment of 
several factors impacting the PK of inhaled drugs (Labiris and Dolovich 2003). For 
e.g., the quantitative evaluation of the different processes that an inhaled particle is 
subjected to, pulmonary deposition patterns, mucociliary clearance rate, dissolu-
tion, and consequently absorption of pulmonary deposited particles using in vivo 
human data are rarely accomplished. In the same context, in vitro–in vivo correla-
tion between Cascade Impactor profiles and regional lung deposition patterns, and 
in silico–in vivo correlations are poorly understood. Borghardt et al. (2014) devel-
oped a population PK model of Olodaterol (long-acting β-agonist with negligible 
oral bioavailability) to perform in silico reanalysis of previously established data to 
quantitatively describe the pulmonary absorption processes of a drug in solution.
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The final population PK model as shown in Fig. 12.10 consisted of three lung 
compartments identifying three distinct parallel pulmonary absorption processes 
(fast, intermediate, and slow) differing in their half-lives. The different absorption 
processes were linked to the absorption of the dissolved drug in different areas of the 
lung. The fast absorption process which contributed to the early phase of the con-
centration time profile ( Cmax) was linked to drug absorption from the alveoli, which 
is highly perfused, has a large surface area and a thin absorption barrier. Whereas 
the slow absorption process which had the strongest influence on the terminal phase 
was associated to the absorption from the central lung region with a higher amount 
of lung tissue where the perfusion is lower and also the drug distributes to other 
lung tissues before absorption to plasma. The authors opine that, even though the 
representation of the lung as three compartments is a strong simplification of reality, 
the model can be mechanistically supported as evidenced by the plausible associa-
tion of the different absorption processes with the different lung regions. A sample 
NONMEM control stream for estimating the absorption parameters once the sys-
temic parameters were obtained from IV data is shown in Appendix 3.
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Fig. 12.10  Population PK model—three distinct pulmonary absorption processes. (Borghardt 
et al. 2014)
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12.5  Physiologically Based Pharmacokinetic Pulmonary 
Models: Commercially Available Software

Physiologically based pharmacokinetic (PBPK) models can help predict the PK of 
drugs in humans, taking into consideration the impact of intrinsic patient factors 
(e.g., disease, age, genetics) and extrinsic patient factors (e.g., drug–drug interac-
tions) on absorption, distribution, metabolism and excretion (ADME; Zhao et al. 
2011). Until recently, owing to its mechanistic nature and the complexity of the 
mathematical models, the application of PBPK was restricted to predicting tissue 
exposure in toxicological and safety studies. But in the past two decades, with the 
advent of high-performance computing and the development of novel in vitro and in 
silico systems, population-based PBPK modeling and simulation has been success-
fully applied across various stages of drug discovery and development (Jones et al. 
2012). Also, the availability of commercial PBPK packages such as GastroPlusTM, 
SimCYP, PKSIM®, and Chloe®PK has enhanced the utility of PBPK models.

Extension of the PBPK methodology from traditional dosage forms to inhalation 
routes is imperative in selecting successful inhaled therapeutic agents with favor-
able pharmacokinetic and safety profiles. Within the same context, GastroPlusTM 
includes a mechanistic multi-compartment physiological model of the lung and the 
nose to describe the absorption and disposition of inhaled and intranasal aerosolized 
drug molecules (Miller et al. 2010).

This pulmonary model uses similar structure to that described in the ICRP66 
model (Smith 1995) and is shown in Fig. 12.11. It describes the lung as a collection 
of five compartments:

• Optional nose (containing the anterior nasal passages)
• Extra-thoracic (naso- and oro-pharynx and the larynx)
• Thoracic (trachea and bronchi)
• Bronchiolar (bronchioles and terminal bronchioles)
• Alveolar–interstitial (respiratory bronchioles, alveolar ducts and sacs, and inter-

stitial connective tissue)

The model describes the fate of an inhaled drug in the human body taking into con-
sideration the physiological aspects of inhalation therapy, physicochemical charac-
teristics of the drug, and patient factors. Immediately after inhalation, a fraction of the 
drug is exhaled and the remainder is either swallowed or deposited in the mucus layer 
lining the airways of the various pulmonary compartments in the model. The built-in 
ICRP 66 deposition model enables for the prediction of the regional lung deposition 
of the drug taking into consideration factors such as particle size, density, shape fac-
tor, etc. The drug deposited in the lung compartments then undergoes a myriad of 
processes such as removal by the mucociliary escalator, dissolution and absorption 
into pulmonary cells, metabolism, and transfer into the systemic circulation. The 
model provides flexibility in describing the dissolution rate kinetics of the drug in 
the pulmonary mucus by a variety of methods (e.g., Noyes Whitney equation) taking 
into account the solubility of the compound at a pH = 6.9 of mucus, particle size and 
shape, particle density, and aqueous diffusion coefficient. These physicochemical 
properties of the drug are obtained from in vitro measurements or in silico predictions.  
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The passive absorption rate of the drug is driven by concentration gradient and is 
dependent on the physiological and drug-dependent physicochemical properties of 
the drug (permeability) for each compartment. Human lung physiological parameters 
like surface area, thickness and volume of mucus and cell, and mucocilliary clear-
ance rate for each compartment were obtained from literature. The drug permeability 
properties for each compartment are predicted from drug properties utilizing built-in 
models, which were generated using data obtained from literature.

The fraction of the drug deposited in oropharyngeal region and the drug removed 
by the mucociliary escalator and swallowed reaches the GI tract, and its kinetics is 
explained by advanced compartmental absorption and transit ACATTM physiological 
model (Agoram et al. 2001) within GastroPlusTM connected to the lung compartments. 
The lung compartments are also connected to the systemic PK models to simulate drug 
appearance in plasma from multiple ports of entry, i.e., the GI tract and the airways.

The abovementioned pulmonary drug delivery component of the additional dos-
age routes module (ADRM) within GastroPlus was used to simulate absorption and 
PK of inhaled BUD (Miller et al. 2010) in healthy human subjects. The systemic PK 
parameters for BUD were obtained by fitting IV data to a three-compartmental body 
model using the PKPlus module and the fitted parameters were fixed to simulate 

Fig. 12.11  Nasal-pulmonary drug delivery editor within the GastroPlus Additional Dosage Routes 
Module (ADRM). (Chaudhuri and Lukacova 2010)
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systemic PK for all pulmonary dosage forms. Physicochemical properties were ob-
tained from in vitro measurements or in silico predictions. For pulmonary doses, 
GI physiology used the default “fasted” state human ACAT model. Deposition 
fractions in the lung compartment were predicted by the built-in ICRP 66 scheme. 
None of the parameters were fitted to the in vivo data from the pulmonary route 
to highlight the predictive capability of the model. The predicted plasma concen-
tration time profile is shown in Fig. 12.12. Another example that underscores the 
applicability of the pulmonary model is the modeling of tobramycin (Lukacova 
et al. 2010) at two-dose levels and two different formulations: an aerosolized sus-
pension (Pulmosphere, 80 mg) and a solution (TOBI, 300 mg). A similar strategy 
as described above was used with the only exception that, reported experimental 
values of deposition fractions were used in place of the ICRP 6 model. Figure 12.13 
shows good agreement between the observed plasma concentration time points and 
the simulated profiles. Thus, this additional feature within GastroPlus serves as an 
invaluable tool in the development of inhaled and intranasal drug candidates.

12.6  Summary

Pharmacometrics has played a crucial role in the development of safer and more 
efficacious drugs during the past few years, with its enhanced utilization during 
various stages of drug development across therapeutic areas (Lesko et al. 2000; 
Gobburu and Lesko 2009; Lee et al. 2011). The role of modeling and simulation 

Fig. 12.12  Predicted ( line) and observed ( circle) plasma concentration–time profiles for inhaled 
administration of 0.4 mg aerosolized suspension of budesonide with no fitted parameters. (Chaud-
huri and Lukacova 2010)
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becomes even more important in the area of inhalation, where a plethora of factors 
impact the clinical performance of a drug–device combination. PK/PD models have 
been successfully applied in optimizing inhalation therapy by gaining a concrete 
understanding of the various factors that impact the targeting of the drug in the lung 
and also quantifying the favorable pulmonary effects and systemic side effects of 
locally acting inhaled drugs like corticosteroids and β-2 agonists. Advancements 
in computational technology and modeling software have led to the development 
of multi-compartment physiological and mechanistic PK models that adequately 
describe or predict the systemic concentration time profiles of inhaled drugs taking 
into consideration the physiological factors of inhalation therapy, physicochemical 
properties of the drug, and patient factors. Within the same context, the present 
chapter provides a brief summary of:

• The multitude of PK and PD factors that influence pulmonary targeting
• PK/PD approaches developed to model the systemic side effects of inhaled drugs
• Pulmonary models that explain the complicated PK behavior of inhaled drugs
• A commercially available mechanistic multi-compartment physiological model 

of the lung describing the absorption and disposition of inhaled drug molecules

However, there is a need to make a transition from the basic PK/PD models to en-
hanced PK/PD or small-to-large system models (Jusko 2013) like the corticosteroid 
models (Earp et al. 2008a, b), to gain a better understanding of the progression of 
the disease and better predict an individual’s response to therapy (Vodovotz and An 
2010; Iyengar et al. 2012).

Fig. 12.13  Comparison of unfitted simulations with observed plasma concentration–time data 
for inhaled aerosolized administration of 80 mg suspension ( black) and 300 mg solution ( red) of 
tobramycin. Dots represent observed values (with error bars) and lines represent simulated pro-
files. (Chaudhuri and Lukacova 2010)

 



374 B. Kandala and G. Hochhaus

Appendices

Appendix 1



37512 Pharmacometrics in Pulmonary Diseases

Appendix 2



376 B. Kandala and G. Hochhaus

Appendix 3



37712 Pharmacometrics in Pulmonary Diseases

References

Abo T, Kawate T, Itoh K, Kumagai K (1981) Studies on the bioperiodicity of the immune response. 
I. Circadian rhythms of human T, B, and K cell traffic in the peripheral blood. J Immunol 
126:1360–1363

Agoram B, Woltosz WS, Bolger MB (2001) Predicting the impact of physiological and biochemi-
cal processes on oral drug bioavailability. Adv Drug Deliv Rev 50(Suppl 1):S41–S67

Ahmed SF, Tucker P, Mushtaq T et al (2002) Short-term effects on linear growth and bone turn-
over in children randomized to receive prednisolone or dexamethasone. Clin Endocrinol (Oxf) 
57:185–191

Ariens EJ (1954) Affinity and intrinsic activity in the theory of competitive inhibition. I. Problems 
and theory. Arch Int Pharmacodyn Thér 99:32–49

Bates DV, Fish BR, Hatch TF et al (1966) Deposition and retention models for internal dosimetry 
of the human respiratory tract. Task group on lung dynamics. Health Phys 12:173–207

Beato M, Kalimi M, Feigelson P (1972) Correlation between glucocorticoid binding to spe-
cific liver cytosol receptors and enzyme induction in vivo. Biochem Biophys Res Commun 
47:1464–1472

Borghardt J, Weber B, Staab A et al (2014) Exapnding the mechanistic knowledge about pulmo-
nary absorption processes using a population pharmacokinetic model for inhaled olodaterol. 
Respir Drug Deliv 2:417–422

Borgström L, Bondesson E, Morén F et al (1994) Lung deposition of budesonide inhaled via 
Turbuhaler: a comparison with terbutaline sulphate in normal subjects. Eur Respir J 7:69–73

Bot AI, Tarara TE, Smith DJ et al (2000) Novel lipid-based hollow-porous microparticles as a 
platform for immunoglobulin delivery to the respiratory tract. Pharm Res 17:275–283

Brown RA, Schanker LS (1983) Absorption of aerosolized drugs from the rat lung. Drug Metab 
Dispos 11:355–360

Byron PR (1986) Prediction of drug residence times in regions of the human respiratory tract fol-
lowing aerosol inhalation. J Pharm Sci 75:433–438

Carroll N, Cooke C, James A (1997) The distribution of eosinophils and lymphocytes in the large 
and small airways of asthmatics. Eur Respir J 10:292–300

Carstairs JR, Nimmo AJ, Barnes PJ (1985) Autoradiographic visualization of beta-adrenoceptor 
subtypes in human lung. Am Rev Respir Dis 132:541–547

Chakraborty A, Krzyzanski W, Jusko WJ (1999) Mathematical modeling of circadian cortisol con-
centrations using indirect response models: comparison of several methods. J Pharmacokinet 
Biopharm 27:23–43

Chaudhuri SR, Lukacova V (2010) Simulating delivery of pulmonary (and intranasal) aerosolised 
drugs, pp 26–30. ONdrugDelivery. http://www.ondrugdelivery.com/publications/OINDP%20
November%202010/OINDP%20November%202010%20lo%20res.pdf. Accessed 26 Sept 2013

Chrousos GP, Harris AG (1998) Hypothalamic–pituitary–adrenal axis suppression and inhaled 
corticosteroid therapy. 2. Review of the literature. Neuroimmunomodulation 5:288–308

Dahlberg E, Thalén A, Brattsand R et al (1984) Correlation between chemical structure, receptor 
binding, and biological activity of some novel, highly active, 16 alpha, 17 alpha-acetal-
substituted glucocorticoids. Mol Pharmacol 25:70–78

Daley-Yates PT, Richards DH (2004) Relationship between systemic corticosteroid exposure and 
growth velocity: development and validation of a pharmacokinetic/pharmacodynamic model. 
Clin Ther 26:1905–1919

Daley-Yates PT, Price AC, Sisson JR et al (2001) Beclomethasone dipropionate: absolute bioavail-
ability, pharmacokinetics and metabolism following intravenous, oral, intranasal and inhaled 
administration in man. Br J Clin Pharmacol 51:400–409

Davies CN (1982) Deposition of particles in the human lungs as a function of particle size and 
breathing pattern: an empirical model. Ann Occup Hyg 26:119–135

DeHaan WH, Finlay WH (2001) In vitro monodisperse aerosol deposition in a mouth and throat 
with six different inhalation devices. J Aerosol Med 14:361–367

http://www.ondrugdelivery.com/publications/OINDP%20November%202010/OINDP%20November%202010%20lo%20res.pdf
http://www.ondrugdelivery.com/publications/OINDP%20November%202010/OINDP%20November%202010%20lo%20res.pdf


378 B. Kandala and G. Hochhaus

Dellamary LA, Tarara TE, Smith DJ et al (2000) Hollow porous particles in metered dose inhalers. 
Pharm Res 17:168–174

Derendorf H, Hochhaus G, Rohatagi S et al (1995) Pharmacokinetics of triamcinolone acetonide 
after intravenous, oral, and inhaled administration. J Clin Pharmacol 35:302–305

Dinh KV, Myers DJ, Noymer PD, Cassella JV (2010) In vitro aerosol deposition in the oropharyn-
geal region for Staccato loxapine. J Aerosol Med Pulm Drug Deliv 23:253–260. doi:10.1089/
jamp.2009.0814

Druzgala P, Hochhaus G, Bodor N (1991) Soft drugs—10. Blanching activity and receptor binding 
affinity of a new type of glucocorticoid: loteprednol etabonate. J Steroid Biochem Mol Biol 
38:149–154

Earp JC, Dubois DC, Molano DS et al (2008a) Modeling corticosteroid effects in a rat mod-
el of rheumatoid arthritis I: mechanistic disease progression model for the time course of 
collagen-induced arthritis in Lewis rats. J Pharmacol Exp Ther 326:532–545. doi:10.1124/
jpet.108.137372

Earp JC, Dubois DC, Molano DS et al (2008b) Modeling corticosteroid effects in a rat model of 
rheumatoid arthritis II: mechanistic pharmacodynamic model for dexamethasone effects in 
Lewis rats with collagen-induced arthritis. J Pharmacol Exp Ther 326:546–554. doi:10.1124/
jpet.108.137414

Edsbäcker S, Brattsand R (2002) Budesonide fatty-acid esterification: a novel mechanism pro-
longing binding to airway tissue. Review of available data. Ann Allergy Asthma Immunol 
88:609–616. doi:10.1016/S1081-1206(10)61893-5

Edwards DA, Hanes J, Caponetti G et al (1997) Large porous particles for pulmonary drug deliv-
ery. Science 276:1868–1871

Fuglsang G, Pedersen S, Borgström L (1989) Dose–response relationships of intravenously 
administered terbutaline in children with asthma. J Pediatr 114:315–320

Geller DE, Weers J, Heuerding S (2011) Development of an inhaled dry-powder formulation of 
tobramycin using PulmoSphereTM technology. J Aerosol Med Pulm Drug Deliv 24:175–182. 
doi:10.1089/jamp.2010.0855

Gobburu JVS, Lesko LJ (2009) Quantitative disease, drug, and trial models. Annu Rev Pharmacol 
Toxicol 49:291–301. doi:10.1146/annurev.pharmtox.011008.145613

Gonda I (1988) Drugs administered directly into the respiratory tract: modeling of the duration of 
effective drug levels. J Pharm Sci 77:340–346

Gonda I (2004) Targeting by deposition. In: Hickey AJ (ed) Pharmaceutical inhalation aerosol 
technology, 2nd edn. Merckel Dekker, New York, pp 65–88

Green SA, Spasoff AP, Coleman RA et al (1996) Sustained activation of a G protein-coupled re-
ceptor via “anchored” agonist binding. Molecular localization of the salmeterol exosite within 
the 2-adrenergic receptor. J Biol Chem 271:24029–24035

Hardy JG, Chadwick TS (2000) Sustained release drug delivery to the lungs: an option for the 
future. Clin Pharmacokinet 39:1–4. doi:10.2165/00003088-200039010-00001

Harrison TW, Tattersfield AE (2003) Plasma concentrations of fluticasone propionate and 
budesonide following inhalation from dry powder inhalers by healthy and asthmatic subjects. 
Thorax 58:258–260

Hickey A, Thompson D (2004) Physiology of the airways. In: Hickey AJ (ed) Pharmaceutical 
inhalation aerosol technology, 2nd edn. Marcel Dekker, New York, pp 1–29

Hindle M, Longest PW (2010) Evaluation of enhanced condensational growth (ECG) for con-
trolled respiratory drug delivery in a mouth–throat and upper tracheobronchial model. Pharm 
Res 27:1800–1811. doi:10.1007/s11095-010-0165-z

Hindle M, Longest PW (2012) Condensational growth of combination drug-excipient submicrom-
eter particles for targeted high-efficiency pulmonary delivery: evaluation of formulation and 
delivery device. J Pharm Pharmacol 64:1254–1263. doi:10.1111/j.2042-7158.2012.01476.x

Hochhaus G, Möllmann H (1992) Pharmacokinetic/pharmacodynamic characteristics of the beta-
2-agonists terbutaline, salbutamol and fenoterol. Int J Clin Pharmacol Ther Toxicol 30:342–362

Hochhaus G, Chen LS, Ratka A et al (1992a) Pharmacokinetic characterization and tissue distribu-
tion of the new glucocorticoid soft drug loteprednol etabonate in rats and dogs. J Pharm Sci 
81:1210–1215



37912 Pharmacometrics in Pulmonary Diseases

Hochhaus G, Schmidt EW, Rominger KL, Möllmann H (1992b) Pharmacokinetic/dynamic corre-
lation of pulmonary and cardiac effects of fenoterol in asthmatic patients after different routes 
of administration. Pharm Res 9:291–297

Hochhaus G, Möllmann H, Derendorf H, Gonzalez-Rothi RJ (1997) Pharmacokinetic/pharma-
codynamic aspects of aerosol therapy using glucocorticoids as a model. J Clin Pharmacol 
37:881–892

Hong Y, Mager DE, Blum RA, Jusko WJ (2007) Population pharmacokinetic/pharmacodynamic 
modeling of systemic corticosteroid inhibition of whole blood lymphocytes: modeling interoc-
casion pharmacodynamic variability. Pharm Res 24:1088–1097. doi:10.1007/s11095-006-
9232-x

Issar M, Mobley C, Khan P, Hochhaus G (2004) Pharmacokinetics and pharmacodynamics of 
drugs delivered to the lungs. In: Hickey A (ed) Pharmaceutical inhalation aerosol technology, 
2nd edn. Marcel Dekker, New York, pp 215–252

Iyengar R, Zhao S, Chung S-W et al (2012) Merging systems biology with pharmacodynamics. Sci 
Transl Med 4:126ps7. doi:10.1126/scitranslmed.3003563

Jeffery PK (1987) The origins of secretions in the lower respiratory tract. Eur J Respir Dis Suppl 
153:34–42

Jones HM, Dickins M, Youdim K et al (2012) Application of PBPK modelling in drug discovery 
and development at Pfizer. Xenobiotica 42:94–106. doi:10.3109/00498254.2011.627477

Jonkers R, van Boxtel CJ, Koopmans RP, Oosterhuis B (1989) A nonsteady-state agonist antago-
nist interaction model using plasma potassium concentrations to quantify the beta-2 selectivity 
of beta blockers. J Pharmacol Exp Ther 249:297–302

Jusko WJ (2013) Moving from basic toward systems pharmacodynamic models. J Pharm Sci 
102:2930–2940. doi:10.1002/jps.23590

Koopmans RP, Braat MC, Oosterhuis B, van Boxtel CJ (1992) Time-dependent effects of dexa-
methasone administration on the suppression of plasma hydrocortisone, assessed with a phar-
macokinetic model. J Pharmacol Exp Ther 262:503–508

Kraft M, Djukanovic R, Wilson S et al (1996) Alveolar tissue inflammation in asthma. Am J Respir 
Crit Care Med 154:1505–1510. doi:10.1164/ajrccm.154.5.8912772

Labiris NR, Dolovich MB (2003) Pulmonary drug delivery. Part I: physiological factors affecting 
therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol 56:588–599

Lee JY, Garnett CE, Gobburu JVS et al (2011) Impact of pharmacometric analyses on new drug 
approval and labelling decisions: a review of 198 submissions between 2000 and 2008. Clin 
Pharmacokinet 50:627–635. doi:10.2165/11593210-000000000-00000

Lesko LJ, Rowland M, Peck CC, Blaschke TF (2000) Optimizing the science of drug develop-
ment: opportunities for better candidate selection and accelerated evaluation in humans. Pharm 
Res 17:1335–1344

Lipworth BJ, Jackson CM (2000) Safety of inhaled and intranasal corticosteroids: lessons for the 
new millennium. Drug Saf 23:11–33

Longest PW, McLeskey JT, Hindle M (2010) Characterization of nanoaerosol size change 
during enhanced condensational growth. Aerosol Sci Technol 44:473–483. doi:10.1080/ 
02786821003749525

Longest PW, Tian G, Walenga RL, Hindle M (2012) Comparing MDI and DPI aerosol deposition 
using in vitro experiments and a new stochastic individual path (SIP) model of the conducting 
airways. Pharm Res 29:1670–1688. doi:10.1007/s11095-012-0691-y

Lönnebo A, Grahnén A, Karlsson MO (2007) An integrated model for the effect of budesonide 
on ACTH and cortisol in healthy volunteers. Br J Clin Pharmacol 64:125–132. doi:10.1111/
j.1365-2125.2007.02867.x

Lukacova V, Ray Chaudhuri S, Miller N et al (2010) Simulation of tobramycin pharmacokinet-
ics after pulmonary administration. 37th Annual Meeting & Exposition Controlled Release 
Society. 37th Annual Meeting and Exposition of the Controlled Release Society, Portland, OR. 
July 10–14, 2010.

Mackie AE, Ventresca GP, Fuller RW, Bye A (1996) Pharmacokinetics of intravenous fluticasone 
propionate in healthy subjects. Br J Clin Pharmacol 41:539–542



380 B. Kandala and G. Hochhaus

Martonen TB, Katz IM (1993) Deposition patterns of aerosolized drugs within human lungs: ef-
fects of ventilatory parameters. Pharm Res 10:871–878

Meibohm B, Derendorf H, Möllmann H et al (1999) Mechanism-based PK/PD model for the 
lymphocytopenia induced by endogenous and exogenous corticosteroids. Int J Clin Pharmacol 
Ther 37:367–376

Milad MA, Ludwig EA, Lew KH et al (1994) The pharmacokinetics and pharmacodynamics of 
Methylprednisolone in chronic renal failure. Am J Ther 1:49–57

Miller N, Ray Chaudhuri S, Lukacova V et al (2010) Development of physiologically-based phar-
macokinetic (PBPK) model for predicting deposition and disposition following inhaled and 
intranasal administration. Respir Drug Deliv 2:579–584

Miller-Larsson A, Mattsson H, Hjertberg E et al (1998) Reversible fatty acid conjugation of 
budesonide. Novel mechanism for prolonged retention of topically applied steroid in airway 
tissue. Drug Metab Dispos 26:623–630

Miyawaki T, Taga K, Nagaoki T et al (1984) Circadian changes of T lymphocyte subsets in human 
peripheral blood. Clin Exp Immunol 55:618–622

Möllmann H, Wagner M, Meibohm B et al (1998) Pharmacokinetic and pharmacodynamic evalu-
ation of fluticasone propionate after inhaled administration. Eur J Clin Pharmacol 53:459–467

Nagaraja NV, Pechstein B, Erb K et al (2003) Pharmacokinetic/pharmacodynamic modeling of lu-
teinizing hormone (LH) suppression and LH surge delay by cetrorelix after single and multiple 
doses in healthy premenopausal women. J Clin Pharmacol 43:243–251

Nave R, Meyer W, Fuhst R, Zech K (2005) Formation of fatty acid conjugates of ciclesonide ac-
tive metabolite in the rat lung after 4-week inhalation of ciclesonide. Pulm Pharmacol Ther 
18:390–396. doi:10.1016/j.pupt.2005.02.012

Nave R, Fisher R, Zech K (2006) In vitro metabolism of ciclesonide in human lung and liver 
precision-cut tissue slices. Biopharm Drug Dispos 27:197–207. doi:10.1002/bdd.500

Newman SP, Clark AR, Talaee N, Clarke SW (1989) Pressurised aerosol deposition in the human 
lung with and without an “open” spacer device. Thorax 44:706–710

Newman SP, Brown J, Steed KP et al (1998) Lung deposition of fenoterol and flunisolide deliv-
ered using a novel device for inhaled medicines: comparison of RESPIMAT with conventional 
metered-dose inhalers with and without spacer devices. Chest 113:957–963

Newman S, Salmon A, Nave R, Drollmann A (2006) High lung deposition of 99mTc-labeled 
ciclesonide administered via HFA-MDI to patients with asthma. Respir Med 100:375–384. 
doi:10.1016/j.rmed.2005.09.027

Nikander K, Prince I, Coughlin S et al (2010) Mode of breathing-tidal or slow and deep-through 
the I-neb Adaptive Aerosol Delivery (AAD) system affects lung deposition of (99m)Tc-DTPA. 
J Aerosol Med Pulm Drug Deliv 23(Suppl 1):S37–S43. doi:10.1089/jamp.2009.0786

Oneda K (1999) Dexamethasone-induced apoptosis in peripheral T lymphocytes from patients 
with asthma. Arerugi 48:13–22

Palm S, Postler E, Hinrichsen H et al (1996) Twenty-four-hour analysis of lymphocyte subpopula-
tions and cytokines in healthy subjects. Chronobiol Int 13:423–434

Peet CF, Enos T, Nave R et al (2005) Identification of enzymes involved in phase I metabolism of 
ciclesonide by human liver microsomes. Eur J Drug Metab Pharmacokinet 30:275–286

Petruzzelli S, De Flora S, Bagnasco M et al (1989) Carcinogen metabolism studies in human 
bronchial and lung parenchymal tissues. Am Rev Respir Dis 140:417–422. doi:10.1164/ajrc-
cm/140.2.417

Pitcairn G, Reader S, Pavia D, Newman S (2005) Deposition of corticosteroid aerosol in the hu-
man lung by Respimat Soft Mist inhaler compared to deposition by metered dose inhaler or 
by Turbuhaler dry powder inhaler. J Aerosol Med 18:264–272. doi:10.1089/jam.2005.18.264

Rohatagi S, Hochhaus G, Mollmann H et al (1995) Pharmacokinetic and pharmacodynamic evalu-
ation of triamcinolone acetonide after intravenous, oral, and inhaled administration. J Clin 
Pharmacol 35:1187–1193

Rohatagi S, Bye A, Mackie AE, Derendorf H (1996a) Mathematical modeling of cortisol circadian 
rhythm and cortisol suppression. Eur J Pharm Sci 4:341–350



12 Pharmacometrics in Pulmonary Diseases 381

Rohatagi S, Täuber U, Richter K, Derendorf H (1996b) Pharmacokinetic/pharmacodynamic 
modeling of cortisol suppression after oral administration of fluocortolone. J Clin Pharmacol 
36:311–314

Rohatagi S, Arya V, Zech K et al (2003) Population pharmacokinetics and pharmacodynamics of 
ciclesonide. J Clin Pharmacol 43:365–378

Rohatagi S, Luo Y, Shen L et al (2005) Protein binding and its potential for eliciting minimal 
systemic side effects with a novel inhaled corticosteroid, ciclesonide. Am J Ther 12:201–209

Ryrfeldt A, Andersson P, Edsbäcker S et al (1982) Pharmacokinetics and metabolism of budesonide, 
a selective glucocorticoid. Eur J Respir Dis Suppl 122:86–95

Schanker LS, Mitchell EW, Brown RA (1986) Species comparison of drug absorption from the 
lung after aerosol inhalation or intratracheal injection. Drug Metab Dispos 14:79–88

Singh SD, Whale C, Houghton N et al (2003) Pharmacokinetics and systemic effects of inhaled 
fluticasone propionate in chronic obstructive pulmonary disease. Br J Clin Pharmacol 55:375–
381

Slayter KL, Ludwig EA, Lew KH et al (1996) Oral contraceptive effects on methylprednisolone 
pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther 59:312–321. doi:10.1016/
S0009-9236(96)80009-9

Smith H (1995) Human respiratory tract model for radiological protection. ICRP Publication 
(1994) 66. Ann. ICRP 24:1–3

Stark JG, Werner S, Homrighausen S et al (2006) Pharmacokinetic/pharmacodynamic modeling of 
total lymphocytes and selected subtypes after oral budesonide. J Pharmacokinet Pharmacodyn 
33:441–459. doi:10.1007/s10928-006-9013-5

Stuart BO (1984) Deposition and clearance of inhaled particles. Environ Health Perspect 55:369–
390

Suarez S, Gonzalez-Rothi RJ, Schreier H, Hochhaus G (1998) Effect of dose and release rate on 
pulmonary targeting of liposomal triamcinolone acetonide phosphate. Pharm Res 15:461–465

Suntres ZE, Shek PN (1998) Liposomes promote pulmonary glucocorticoid delivery. J Drug Tar-
get 6:175–182. doi:10.3109/10611869808997891

Thiel CG (1998) Can in vitro particle size measurements be used to predict pulmonary deposition 
of aerosol from inhalers? J Aerosol Med 11(Suppl 1):S43–S52

Tian G, Longest PW, Li X, Hindle M (2013) Targeting aerosol deposition to and within the lung 
airways using excipient enhanced growth. J Aerosol Med Pulm Drug Deliv 26:248–265. 
doi:10.1089/jamp.2012.0997

Tunek A, Sjödin K, Hallström G (1997) Reversible formation of fatty acid esters of budesonide, an 
antiasthma glucocorticoid, in human lung and liver microsomes. Drug Metab Dispos 25:1311–
1317

Tyler WS (1983) Comparative subgross anatomy of lungs. Pleuras, interlobular septa, and distal 
airways. Am Rev Respir Dis 128:S32–S36

Usmani OS, Biddiscombe MF, Barnes PJ (2005) Regional lung deposition and bronchodilator re-
sponse as a function of beta2-agonist particle size. Am J Respir Crit Care Med 172:1497–1504. 
doi:10.1164/rccm.200410-1414OC

Van Gossum A, Schmit A, Peny MO (1998) Oral budesonide for lymphocytic colitis. Am J Gastro-
enterol 93:270. doi:10.1111/j.1572-0241.1998.270_1.x

Vodovotz Y, An G (2010) Systems biology and inflammation. Methods Mol Biol 662:181–201. 
doi:10.1007/978-1-60761-800-3_9

Wald JA, Law RM, Ludwig EA et al (1992) Evaluation of dose-related pharmacokinetics and phar-
macodynamics of prednisolone in man. J Pharmacokinet Biopharm 20:567–589

Weber B, Hochhaus G (2013) A pharmacokinetic simulation tool for inhaled corticosteroids. 
AAPS J 15:159–171. doi:10.1208/s12248-012-9420-z

Weda M, Zanen P, de Boer AH et al (2008) The therapeutic index of locally acting inhaled drugs 
as a function of their fine particle mass and particle size distribution: a literature review. Curr 
Drug Deliv 5:142–147



B. Kandala and G. Hochhaus382

Weibel E (1963) Morphometry of the human lung, 1st edn. Springer, New York
Winkler J, Hochhaus G, Derendorf H (2004) How the lung handles drugs: pharmacokinetics and 

pharmacodynamics of inhaled corticosteroids. Proc Am Thorac Soc 1:356–363. doi:10.1513/
pats.200403-025MS

Xu J, Nave R, Lahu G et al (2010) Population pharmacokinetics and pharmacodynamics of inhaled 
ciclesonide and fluticasone propionate in patients with persistent asthma. J Clin Pharmacol 
50:1118–1127. doi:10.1177/0091270009354994

Zhao P, Zhang L, Grillo JA et al (2011) Applications of physiologically based pharmacokinetic 
(PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther 89:259–267. 
doi:10.1038/clpt.2010.298



383

Chapter 13
State-of-the-Art Pharmacometric Models  
in Osteoporosis

Teun M. Post, Anna Georgieva Kondic, Antonio Cabal, Ghassan N. Fayad, 
Khamir Mehta and Thomas Kerbusch

© American Association of Pharmaceutical Scientists 2014
S. Schmidt, H. Derendorf (eds.), Applied Pharmacometrics, AAPS Advances  
in the Pharmaceutical Sciences Series 14, DOI 10.1007/978-1-4939-1304-6_13

T. M. Post () · A. Cabal · G. N. Fayad · K. Mehta · T. Kerbusch · A. Georgieva Kondic
Quantitative Pharmacology & Pharmacometrics, Merck, Sharpe & Dohme Corp., Oss, 
The Netherlands
e-mail: teun.post@merck.com; teunpost@gmail.com

13.1  Introduction

Osteoporosis is a progressive degenerative bone disease associated with an in-
creased fracture risk. Due to the related morbidity, mortality, and costs with a gen-
eral increase in life expectancy, this makes osteoporosis an important worldwide 
health issue.

Burge et al. (2007) conducted an epidemiology study in the USA on the burden 
of osteoporosis-related fractures and costs in 2005, and using a state transition 
Markov decision model predicted how those quantities would grow for the period 
of 2005–2025. Starting at 2005, the actual numbers were 2 million fractures with 
an associated cost of $ 19 billion. Due to aging population, the numbers are pre-
dicted to increase by 50 % by 2025 with 72 % due to hip fractures (Burge et al. 
2007). Similar studies have been published in other countries (Rajagopal et al. 
2008).

Due to statistical requirements and the slow progression of the disease, large 
clinical trials with long duration are required to establish a beneficial effect of 
new treatments on the reduction of fracture risk. Over time, knowledge about 
bone physiology and the mechanisms underlying bone diseases has increased. 
Furthermore, various conceptual, mathematical, statistical, and epidemiological 
models have been established providing further insight into the biology, mech-
anisms, and predictive factors of osteoporosis and corresponding fracture risk 
(Post et al. 2010).
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Over the past decade, different types of mechanism-based models have had an 
increasing impact on drug development and none more so than models of osteopo-
rosis. There has been an increasing body of work elucidating the mechanisms be-
hind the (patho-)physiology of osteoporosis, including the maturation and crosstalk 
between osteoclasts and osteoblasts and how the balance between bone resorption 
and bone formation changes with age and hormonal imbalance. The intrinsic non-
linearities, feedbacks, and different time-scales present in the system may lead to 
counter-intuitive behavior, making mathematical modeling a useful analysis tool. 
Various conceptual models for bone physiology and the effects of therapies have 
been proposed. Data included in osteoporosis models range from pharmacokinetics 
(PK) of (novel) drugs, pharmacodynamics (PD) biomarkers of various time scales 
(peptides indicative of bone-turnover, bone mineral density), bone strength, as well 
as the actual clinical outcome, namely, fracture rates at various sites in the skeleton 
(Post et al. 2010).

Published PK-PD-disease models of osteoporosis have varying degrees of bio-
logical complexity ranging from purely descriptive of disease to detailed system 
models spanning various spatial scales, as well as mechanistic models of bone 
strength. The possible identification and estimability of parameters typically de-
cline with complexity. Deciding between the use of descriptive, semi-mechanistic, 
or full mechanistic models should be driven by the drug development question at 
hand (model fit for purpose), the availability of data, as well as whether one needs 
the model for extrapolation versus interpolation. These models have been used to 
describe data from clinical trials, simulate new trial designs with novel mechanisms 
of action (e.g., what doses will result in what extent of effect on biomarkers/end 
points, differentiation between subpopulation of patients), simulate combination 
treatments (e.g., what synergy—if any—should be expected?), and how these clini-
cal trials predict for real-life settings (e.g., prevention of fractures in elderly; Post 
et al. 2010).

In what follows, we start by describing the main components of bone physiol-
ogy and the transition to the pathophysiology of osteoporosis. Then, we provide a 
general description of modeling approaches to osteoporosis, followed by a series of 
examples of specific model applications.

13.2  Overview of Osteoporosis Components for Modeling

13.2.1  Introduction to Bone Physiology and 
Pathophysiology

The biology of bone formation and resorption (a process known as bone remodel-
ing; Fig. 13.1) and how it links to the pathophysiology of osteoporosis is progres-
sively better understood. Bone remodeling is mainly the result of the actions of 
two types of cells, osteoclast and osteoblasts. In the healthy state, resorption and 
formation are balanced and bone remodeling leads to bone renewal. The osteoclasts 
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attach to the bone surface and act by removing the mineralized matrix and breaking 
up the organic bone component in the resorption lacuna. When resorption is com-
plete, osteoclasts detach and die by apoptosis. In turn, the osteoblasts attach to the 
bone and produce a matrix of osteoid, composed predominantly of type I collagen, 
followed by mineralization of this matrix. The differentiation of preosteoblasts into 
active cells is triggered via signaling from the osteoclasts. During the mineralization 
process, a fraction of osteoblasts get trapped in the bone matrix, and differentiate to 
osteocytes (Manolagas 2000; Boyle et al. 2003).

Our current understanding is that bone remodeling is controlled through:

1. The secretion of transforming growth factor beta (TGF-β) by osteoclasts trigger-
ing the differentiation of preosteoblasts to responsive osteoblasts (early osteo-
blasts that are highly responsive to differentiation signals), and attenuating the 
differentiation of responsive osteoblasts to active osteoblasts (responsible for 
bone formation), controlling the build-up of a population of responsive osteo-
blasts that will colonize the resorption lacuna once the osteoclasts population has 
died out (Manolagas 2000; Boyle et al. 2003).

2. The receptor activator of nuclear factor κ B (RANK)—receptor activator of 
nuclear factor κ B ligand (RANKL)-osteoprotegerin (OPG) pathway, which is 
dedicated to the control of the osteoclasts population by osteoblasts. Schemati-
cally, active osteoblasts produce RANKL that interact with RANK located at the 
surface of osteoclasts precursors. Occupied RANK receptors trigger the differen-
tiation of preosteoclasts in osteoclasts. Production of OPG that inhibits RANKL 
by the responsive osteoblasts ensures that the osteoclast population grows only at 
the end of the formation process (Aubin and Bonnelye 2000; Boyle et al. 2003).

Bone loss occurs in postmenopausal women as a result of an increase in the rate 
of bone remodeling and an imbalance between the activity and number of osteo-
clasts and osteoblasts. The bone loss occurs in two phases: (1) a rapid one, due to 
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predominantly estrogen deficiency and (2) a slower one, observed also in men, due 
to the effects of aging. While the effects of estrogen on bone are not fully under-
stood, it is hypothesized that they may act at least partly through the osteoblasts 
(e.g., increased synthesis of TGF-β or decreasing OPG with decreasing estrogen), 
tipping the balance in bone remodeling. The effect of aging is thought to be due to a 
lot of factors, such as vitamin D deficiency, leading to impaired calcium absorption 
and increased parathyroid hormone (PTH) secretion, as well as impaired osteoblast 
function due to continued decline of estrogen, decreased physical activity, and de-
creased secretion of growth hormone (Raisz 2008).

13.2.2  Metrics of Bone Physiology

The long-term clinical end point in osteoporosis is bone fracture. Bone’s material 
properties are assessed by a mechanical test that yields a stress–strain curve, includ-
ing breaking point (Cusick et al. 2011; Lotinun et al. 2013). The linear portion of the 
curve, known as Young’s modulus represents stiffness, while the height and inflec-
tion point are two different measures of bone strength. It has become increasingly 
more common to estimate bone strength through the use of finite-element analysis 
(FEA; Bouxsein and Seeman 2009).

Bone is categorized into two types: cortical and trabecular bone. Cortical bone, 
mainly the outer shell of bone, makes up about 80 % of bone mass. Trabecular bone, 
which accounts for only 20 % of bone mass, makes up about 80 % of bone surface. 
Cortical bone has a high resistance to bending and torsion and gives mechanical 
strength and protection. Trabecular bone is less dense than cortical bone, providing 
mechanical support and has a higher turnover rate than cortical bone providing a 
resource for calcium and phosphate for the maintenance of mineral homeostasis 
(Post et al. 2010).

While bone mineral density (BMD), the amount of mineral matter per square 
centimeter of bone is currently the best single, easy accessible, predictor of bone 
strength, it accounts only for 44 % of the fracture risk. Contributing to the overall 
bone strength are also shape, geometry, microarchitecture, bone tissue composition, 
mineralization, micro-damage, and the rate of bone turnover (Post et al. 2010). The 
most relevant areas for measuring BMD in relation to fractures are the spine (pre-
dominantly trabecular), hip (mix of trabecular and cortical), and the wrist (mainly 
cortical). In addition, BMD is used as a diagnostic predictor for post-menopausal 
osteoporosis (Melton III et al. 2003; WHO Study group 1994).

Biochemical turnover makers (BTMs) provide easily accessible information on 
the state of bone physiology on the shorter term. The combination of BTM and 
BMD has been shown to more accurately predict the risk of fracture than either 
marker alone, which advocates an integrated approach (Post et al. 2010). BTM can 
be divided into three categories: collagenous bone resorption markers, bone forma-
tion markers, and markers of osteoclast regulatory proteins (Post et al. 2010). The 
first are degradation products of bone collagen; most commonly used clinically are 
C- and N-telopeptides of collagen cross-links (CTx and NTx with existing assays in 
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both serum and urine). The bone formation markers are measures of enzyme activ-
ity of osteoblasts, measures of bone protein, or measures of procollagen markers; 
commonly used are bone-specific alkaline phosphatase (BASP), osteocalcin (OC) 
and carboxy- and amino-terminal propeptide of type I collagen (procollagen type I 
C-terminal propeptide, PICP, and procollagen type I N-terminal propeptide, PINP). 
The osteoclast regulatory proteins are either markers reflecting the rate of osteoclas-
togenesis or the osteoclast numbers (Post et al. 2010).

13.2.3  Treatment of Osteoporosis

Various treatment paradigms have been developed that leverage the ability to influ-
ence specific components of the osteoblast–osteoclast interaction (Fig. 13.2). Treat-
ments can be distinguished based on their differences in mechanism, site, and mode 
of action.

Treatments are categorized into those that (1) decrease resorption, (2) increase 
formation, or (3) a combination of these actions (Post et al. 2010).

13.2.3.1  Decreased Resorption

• The antiresorptive treatments include hormone replacement therapy, bisphos-
phonates, selective estrogen receptor modulators, and calcitonin. The bisphos-
phonates (e.g., alendronate, risendronate, zolendronate) act directly on the 

Fig. 13.2  Overview of osteoporosis mechanism of action and drug targets. (Source: Post et al. 
2013, with kind permission from Springer Science+Business Media B.V.)
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osteoclasts’ ability to resorb bone cells. This class of drugs is known to bind 
preferentially to calcium hydroxyapatite and can stay in the bone for years which 
has implications for replacement therapies.

• The RANKL inhibitor denosumab (a fully human monoclonal antibody) is a 
more targeted therapy, which results in osteoclast apoptosis and decreased bone 
resorption while avoiding some of the side effects associated with the bisphos-
phonate class (Baron et al. 2011). The importance of RANK–RANKL pathway 
was described above.

• It is recognized that estrogen, especially started soon after menopause, can main-
tain bone density but also leads to increased risk for blood clots, cancer, and 
heart disease. The selective estrogen receptor modulator (SERM) raloxifene 
mimics the effects of estrogen while avoiding some (but not all side effects).

• Fortical is a nasal spray that mimics the effects of calcitonin, a substance pro-
duced by the thyroid gland; it inhibits bone resorption but to a lesser degree.

• Selective and reversible inhibitors of the enzyme cathepsin K form a novel class 
of osteoporosis therapy. Odanacatib is currently being investigated in a phase 3 
trial focused on fracture risk reduction and long-term safety. Odanacatib reduces 
osteoclastic bone resorption (cathepsin K-mediated) and preserves bone forma-
tion during bone remodeling (Bone et al. 2010; Langdahl et al. 2012). These 
actions are thought to mediate the increases in bone mineral density observed in 
patients with low bone mass treated with odanacatib (Bone et al. 2010; Langdahl 
et al. 2012). Preclinical data indicated that cathepsin K inhibition may also in-
crease periosteal bone modeling (Cusick et al. 2011).

13.2.3.2  Increased Formation

• Injectable PTH (Forteo), which acts to preferentially increase the activity of os-
teoblasts. Due to the coupled mechanism of formation and resorption, the in-
crease in formation upon continuously administered PTH leads to resorption, 
which presents an interesting phenomenon to be captured by modeling. The fre-
quency of administration (daily subcutaneous injection) has largely limited the 
use of Forteo to severe osteoporosis patients.

• Finally, there are newer investigational medications blocking sclerostin (Amgen, 
Lilly, and Novartis). The full mechanism by which sclerostin causes osteoblast 
apoptosis is still under investigation but there is increasing evidence that scleros-
tin (i.e., mutations of sclerostin associated with sclerosteosis, a condition with 
abnormal increase in bone growth) is a promising new target for treatment of 
severe osteoporosis (McClung et al. 2012).

Calcium and vitamin D derivatives are important supplements that positively influ-
ence bone homeostasis and are part of the daily regimen for patients with postmeno-
pausal osteoporosis.

Finally, there are new treatment paradigms under consideration, such as combi-
nation therapy or sequential therapy (short period with anabolic treatment, followed 
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by a longer maintenance with antiresorptive drug for patients with severe osteopo-
rosis). Post et al. (2013) highlight the utility of modeling when trying to understand 
what the effects of such treatment regimen might be after incorporating the specific 
treatment effects and PK of the drug and what the effects of drug withdrawal on the 
bone system are.

13.3  General Pharmacometrics of Osteoporosis

Various conceptual, mathematical, statistical, and epidemiological models have 
been established providing insight into the biology, mechanisms, and predictive 
factors of osteoporosis (Post et al. 2010). In general terms, the statistical and epide-
miological model provide valuable information on the correlation, predictive value, 
and interrelated time courses of various BTMs, BMD, and clinical outcomes and 
this field of research has provided valuable insight into the influences of various 
factors, such as age, lifestyle, and menopause, and has made it possible to evaluate, 
statistically confirm and compare the effects of different treatments. The conceptual 
mathematical models provide insight into the dynamics of the markers, the bone 
physiology dynamics, and are amenable for quantitative modeling purposes and are 
therefore the focus of this chapter. This type of modeling can be either descriptive 
or based on known bone physiology, i.e., more mechanistically inspired.

The benefit lies in the fact that vastly different rates of the markers or indirectly 
the biological system and time-variant changes in the course of the disease are in-
corporated. General examples of the descriptive type of modeling in osteoporosis 
either include single markers of bone turnover, BMD, or fracture risk or combina-
tions of these components (Post et al. 2010).

A more integrative approach allows for a mechanism-based description of osteo-
porosis, and presumably other bone diseases, by explicitly including bone physiol-
ogy as the underlying mechanism to which all information is linked. Various short- 
and long-term markers at various levels and timescales of the disease and drug 
action can then be combined and evaluated. The following section will describe 
one initial mathematical model on which two of the specific pharmacometrics of 
osteoporosis examples are based.

13.3.1  Bone Turnover Markers and Bone Mineral Density: 
Mechanism-Based Models Based on Bone Cell 
Interaction—Core Physiological Model

One of the first comprehensive conceptual semi-mechanistic mathematical mod-
els for bone cell interaction was published by Lemaire et al. (2004). This seminal 
model (Figs. 13.2 and 13.3) described pools of cells from both osteoclast and os-
teoblast cell lineages at different levels of maturation. Responding osteoblasts (R) 
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are recruited from a large pool of uncommitted osteoblast progenitor cells (Ru), 
which then differentiate into active, bone-forming osteoblasts (B). Active, bone-
removing osteoclasts (C), on the other hand, are recruited from a pool of osteoclast 
progenitor cells (CP) upon stimulation of RANK by its ligand (RANKL). This latter 
process is inhibited by OPG, a soluble decoy receptor for RANKL that is formed 
by the responding osteoblasts. Other approaches have been published also taking 
into account a mathematical description of bone physiology (Komarova et al. 2003; 
Rattanakul et al. 2003; Moroz et al. 2006; Wimpenny and Moroz 2007; Earp et al. 
2008; Pivonka et al. 2008; Peterson and Riggs 2010; Pivonka and Komarova 2010; 
Marathe et al. 2011; Zumsande et al. 2011; Riggs et al. 2012).

In addition, the model captures some of the postulated effects of TGF-β and 
PTH. In particular, TGF-β which is released from bone by active osteoclasts during 
bone resorption (1) stimulates the recruitment of responding osteoblasts, (2) inhibits 
the differentiation of responding osteoblasts into active osteoblasts, and (3) stimu-
lates the apoptosis of active osteoclasts. On the other hand, PTH, through binding 
to its receptors expressed by osteoblasts, stimulates the expression of RANKL and 

Fig. 13.3  Overview of osteoporosis mechanism of action and role of biomarkers for bone turn-
over and bone mineral density. (Source: Post et al. 2013, with kind permission from Springer 
Science+Business Media B.V.)
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suppresses the secretion of OPG; we need to mention that the model by Lemaire 
et al. (2004) only captures the resorptive effects of PTH.

Mathematically, this translates into the following set of differential equations:

in which R, B, and C denote the concentrations of responding osteoblasts, active 
osteoblasts, and osteoclasts, respectively, DR, DB, DC represents the differentiation 
rates of osteoblast progenitors, responding osteoblasts, and osteoclast precursors, 
kB the apoptosis rate of active osteoblasts and DA the osteoclast apoptosis rate due 
to TGF-β. Finally, πC and πL ( R, B) denote the TGF-β receptor occupancy and the 
RANK receptor occupancy. The expressions for these parameters, as well as the 
detailed derivations can be found in Lemaire et al. (2004).

Various extensions to the model of Lemaire were made, including explicitly in-
corporating calcium dynamics by Peterson and Riggs et al. and describing bone 
dynamics in rheumatoid arthritis by Earl et al. (Lemaire et al. 2004; Riggs et al. 
2012; Earp et al. 2008; Peterson and Riggs 2010). It is worth noting that elements 
of this approach were also presented in Marathe et al. (2011) where the authors 
combined the original Lemaire et al. (2004) model and linked the number of osteo-
clasts to biomarkers of resorption in order to characterize the effect of the RANKL 
inhibitor denosumab but in multiple myeloma patients, a cancer accompanied by 
bone lesions. This Lemaire model forms the basis for two specific applied examples 
described below.

13.4  Specific Applied Examples of Pharmacometrics  
in Osteoporosis

13.4.1  Mechanism-Based Models of Bone Turnover 
Markers and Bone Mineral Density

13.4.1.1  Reduced Core Physiological Model Describing Five Biomarkers  
in a Population Approach

In work from Post (2009) and Schmidt et al. (2011) a way was proposed to reduce 
the system by Lemaire to one describing the dynamics of only osteoblasts (B) and 
osteoclasts (C), such that the dynamics of the system are kept and the different tim-
escales in the system can be described as explained below:
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with the function R = R( C) defined by

In applying this reduced system to clinical data, Post et al. connected the dimension-
less cell concentrations to the corresponding biomarkers of turnover and also to the 
bone mineral density measures (Post et al. 2010; Post 2009). This application of the 
reduced core model to clinical data was done via the population approach. To be 
able to include disease and treatment-related changes and to include multiple mark-
ers, the changes in B  and C  were related to their respective baseline values B0  and 
C0 , resulting in a dimensionless system:

such that

where PCa  and E Ti( )  are treatment effects of calcium and tibolone, respectively 
and f t( )  presents the disease progression related to a decline in estrogen during 
menopause.

This resulted in the ability to include bone turnover markers describing resorp-
tion in this system through a functional relationship of the form
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where the marker is linked to the dimensionless activity p, which is either z  for 
resorption or y  for formation. Biomarkers of formation (i.e., BSAP) are linked 
to osteoblast activity. Osteocalcin (OC) is linked to both y  and z  because it is 
produced by osteoblasts incorporated into bone and thereafter, released from bone 
during another resorption cycle. Markers of resorption (i.e., NTx) are linked to os-
teoclast activity z .

The site-specific (lumbar spine and total hip) BMD is modeled using the ratio 
S z y= /  in the following functional form:

where S  presents the ratio between the activities of resorption and formation, k  is 
the turnover rate of BMD, and BMDρ  is a transduction parameter relating changes 
in bone cells to BMD.

In this form, the reduced Lemaire model can be applied to describe the dynamics 
of the osteoblast/clast system under conditions of drug treatment, as it has enough 
granularity to capture various driving events/conditions, namely disease progres-
sion (trajectory relative to the start-of-menopause), start-of-treatment, achievement 
of systems (disease) steady-state, and end-of-treatment.

The system resulted in the ability to describe the effects of treatment based on 
clinical data within a population approach including data of NTx, BSAP, OC as 
bone turnover markers and lumbar spine and total hip BMD. Figure 13.4 gives the 
description of the model to the data by means of a predictive check (selected doses 
and data).

The quantitative description of the clinical biomarker data by this reduced mech-
anism-based core model enables the evaluation of the drug treatment effects on the 
various short- and long-term biomarkers. Once further developed and qualified with 
different biomarkers and treatments, this approach may be used to predict changes 
in long-term biomarkers based on short-term biomarker response. Ultimately, this 
model should be linked to other measures of bone strength and ultimately fracture 
risk (Figs. 13.2 and 13.3).

Below is an example (Fig. 13.5) which shows how to translate the estimated 
parameters to the course of the changes in relative osteoblasts ( z = B/B0) and osteo-
clasts ( y = C/C0) where the state of the RANK–RANKL–OPG system changes with 
each event and achieves different relative osteoblast and osteoclast turnover ( z, y 
space) starting from healthy state (1,1). This gives a means to visualize the vari-
ous changes in a two-dimensional plot. Each change in the system is defined as an 
orbit. The green orbit represents natural disease progression, while the blue orbit 
represents the addition of calcium treatment (aka placebo orbit). The solid red orbit 
describes the transition upon infinite tibolone treatment and the dashed red orbit 
represents the resetting upon treatment discontinuation after 1000 days.

(1 ),BMDdBMD k S
dt

ρ= −
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13.4.1.2  Extended Physiological Model in a Systems Biology Approach

Another mathematical model of dynamics of bone remodeling based on available 
physiological observations, specifically in the context of the mechanisms of action 
of available osteoporosis treatments was recently developed by Mehta et al. (2012). 
This work builds on prior approaches of Peterson and Riggs et al. (Peterson and 
Riggs 2010; Riggs et al. 2012), Marathe et al. (2008), Lemaire et al. (2004), and 
Komarova et al. (2003) and is novel in how it integrates known interventions in 
osteoporosis disease mitigation with an explicit connection to existing therapies. It 
also differs in the way it approaches the formulation of the model and how it retains 
the conceptual clarity of the relationships between the state variables and the model 

Fig. 13.4  Visual predictive check of the marker NTx, BSAP, and lumbar spine bone mineral 
density ( BMD) (Post et al. 2013, with kind permission from Springer Science+Business Media 
B.V.). The blue dots represent the natural logarithms of the observations. The 5th, 50th, and 95th 
percentiles of the observations are presented by the red dashed and red solid lines. The 5th, 50th, 
and 95th percentiles of the simulated data are presented by the black dashed and black solid lines. 
The confidence intervals for the simulated data’s 5th, 50th, and 95th percentiles are presented by 
the blue, red, and blue area, respectively
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parameters, while being parsimonious in and of itself. In contrast to the work de-
scribed in the previous section, this is a deterministic and not a population model.

The extended physiological model is based on the osteoclast/osteoblast signal-
ing model of Lemaire (Lemaire et al. 2004), the calcium sensing model of Ca-
bal et al. (2013), a model of TGF-β signaling, and cathepsin-K (Cat K) enzymatic 
bone degradation, a signaling protein model of the osteoblast apoptosis regulation 
as suggested by Bellido (Bellido et al. 2003). The model, in the form of ordinary 
differential equations (ODEs), quantifies the relationships between the key molecu-
lar pathways governing bone remodeling, and links, via reasonable assumptions, 
the cell and molecular concentrations to the biomarkers measured in the laboratory 
(P1NP, CTx, and BMD). The model equations follow the interactions between the 
state variables of the system which are often chemical reactions following either 
mass-action kinetics or nonlinear hill function rates for enzymatic systems wherein 
the intermediate steps are excluded to preserve model simplicity.

The extended physiological model results are consistent with the known effects 
of PTH, bisphosphonates, and anti-RANKL treatment regimens on the bone remod-
eling process. Figures 13.6, 13.7 and 13.8 show the model behavior in response to 
the known treatment strategies for osteoporosis. Notably, it is able to predict the 
delicate nature of bone build up in response to PTH treatment, and the fact that 
the same unified model can predict treatments which differ in their mechanism of 
action (bisphosphonates, rPTH, and anti-RANKLs). The model allows the compari-
son of osteoporosis therapies already on the market and new, innovative therapies in 
different stages of development and lends itself as a tool to evaluate potential new 
therapies under various administration protocols.

Fig. 13.5  Orbits of solutions of the system in red in the ( z, y)-plane (Post et al. 2013, with kind 
permission from Springer Science + Business Media B.V.). The green curve is the orbit in the 
absence of any treatment, the blue curve is the orbit in the presence of calcium treatment alone and 
the red curves are orbits caused by calcium and tibolone treatment combined. The solid red curve 
is the orbit during continuous tibolone treatment, the dashed curve the continuation after termina-
tion and washout at t = 1000 days

 



396 T. M. Post et al.

13.4.2  Finite Element Analysis

As mentioned above, the current clinical standard for diagnosing osteoporosis and 
assessing the risk of fracture and treatment effects is dual energy x-ray absorpti-
ometry (DXA), which is used to measure areal BMD (aBMD) at the spine and hip. 
The performance of DXA-aBMD as a diagnostic, as well as a predictor of bone 
strength and treatment intervention are well documented (Cummings et al. 2002; 
Pistoia et al. 2002; Cefalu 2004; Delmas and Seeman 2004; Schuit et al. 2004; See-
man 2007). As a two-dimensional projection of three-dimensional structure, DXA-
aBMD lacks the ability to interrogate the macro- and micro-architectural features 
of the bone that has a direct impact on its strength and ability to withstand specific 
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Fig. 13.6  Effect of parathyroid hormone (PTH) treatment: Simulated effect of pulse shape in the 
extended physiological model for five different administration profiles of PTH ( left plot: from 
placebo to increasing sharper rises and declines). Middle panel: The shape of the PTH pulse has a 
nonintuitive impact on osteoblasts and progressively on bone mineral density (BMD; right panel). 
The model prediction of a sharper PTH infusion yielding improvement in BMD is consistent with 
results from Cosman et al. (2010). The different colored lines here indicate different PTH admin-
istration profiles. The total area under the curve for each of the profiles is kept similar (apart from 
placebo), while the pharmacokinetic profile is varied: red—placebo (no PTH); magenta—continu-
ous administration (infusion) of PTH directly into plasma; black—PTH administration with slow 
clearance (similar to PTH secretion in response to orally administered calcilytic drugs); green—
subcutaneous injection of PTH; and blue—transdermal delivery of PTH using micro-needles as 
per Cosman et al. (2010)
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loading situations. The shape and structure of bone at a macro- and micro-archi-
tectural level provide additional, independent information to better predict fracture 
risk, assess response to treatment, and potentially differentiate new therapies from 
standard of care (Homminga et al. 2002, 2004).

Computationally, this has been addressed by the use of finite element (FE) meth-
odology, a numerical discretization procedure that has been extensively used for 
several decades in science and engineering to get good approximate solution of 
complex mathematical problems (Zienkiewicz and Taylor 2002, 2005). FEA is the 
most used computational analysis technique in the world today to solve solid me-
chanics problems and bone mechanics is no exception. Three dimensional (3D) 
images of bone are subdivided into a finite set of hexahedrons and tetrahedrons 
called elements. Applied to all nodes that form the elements, Newton’s second law 
of motion takes the following general form:
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Fig. 13.7  Simulations of changing receptor activator of nuclear factor κ B ligand (RANKL) con-
centrations in the extended physiological model were performed as a proxy for treatment with 
anti-RANKL molecules like denosumab. Decreasing concentrations of RANKL resulted in a dose-
dependent increase in bone mineral density (BMD), consistent with the findings of Marathe et al. 
(2008). The model predicts slow return to the baseline following treatment cessation after a year 
(three doses, at every 6 months)
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where i x y z= , ,  are the spatial coordinates, ui  are the coordinates of the displace-
ment vector, Fi  are the coordinates of the external body forces applied. Hooke’s law 
yields a six-dimensional stress–strain linear relationship:

Various forms of this functional relationship are possible depending on the resolu-
tion of the bone 3D image available, the loads (boundary conditions) applied to the 
bone, and the material properties used (Young’s modulus, Poisson’s ratio, etc). For 
example, under the assumption that bone is a homogeneous isotropic material, the 
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Fig. 13.8  Extended physiological model predictions of weekly dosing of bisphosphonates dem-
onstrated a dose-dependent decrease in bone mineral density (BMD), bone biomarkers, and bone 
remodeling activity, which is consistent with known effects of bisphosphonates
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above 36 coefficients are reduced to two, the Young’s modulus ( E) and the Pois-
son’s ratio ( g):

When the FE-models are generated from high-resolution micro-computed tomogra-
phy (μCT) images of trabecular samples, the models accurately capture the complex 
morphological architecture of the structures and can be used to estimate the bone 
hard tissue Young’s modulus (Zienkiewicz and Taylor 2002, 2005; Guo 2001). The 
FE model allows for computing the apparent stiffness. Physical compression ex-
periments of trabecular bone samples provide an assessment of the experimental 
stiffness. The true hard tissue Young’s modulus is then estimated from the ratio of 
the experimental and FEA-based stiffness estimates.

Animal models are a vital component of the drug discovery process and they 
provide an excellent opportunity to test FEA methodologies in disease models, ac-
quiring advanced information to help design and execute clinical studies. An ex-
ample of how the ovariectomized nonhuman primates osteoporosis model was used 
to qualify the validity of high-resolution peripheral quantitative computed tomog-
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raphy (HR-pQCT) based FEA estimates of bone strength was presented in (Jayakar 
et al. 2012). The roadmap from ex vivo preclinical FEA qualification to in vivo 
clinical translation is illustrated in Fig. 13.9.

Several clinical publications (Boutroy et al. 2008; Burghardt et al. 2010, 2011; 
Macdonald et al. 2011) have shown that high-resolution peripheral quantitative 
computer tomography (HR-pQCT)-based FEA-estimated bone strength provides 
information about skeletal fragility and fracture risk not assessed by BMD. A unique 
advantage of the preclinical FEA-estimated bone strength lies in its ability to en-
able in-vivo longitudinal estimates of bone strength that can be validated at the end 
of the study. This, in turn, provides the necessary level of confidence for the FEA 
predictions for the clinical estimates.

On the 3D clinical imaging technology resolution scale, the next class of lower 
resolution bone imaging tools is provided by QCT scanners, which can be used to 
scan whole bones at skeletal central sites, which are the most relevant for osteopo-
rosis (femur and vertebra), as compared to HR-pQCT. With the lower resolution 
(~ 500 μm), the FE models generated from those images are not capable of resolv-
ing the trabecular microarchitecture at the level of a single trabecular structure. The 
heterogeneity of the trabecular bone is represented in the QCT-based FEA assigning 
different elastic properties to the different voxels of the image in correspondence 
to the QCT density of the given voxel (Morgan and Keaveny 2001; Crawford et al. 
2003; Morgan et al. 2003).

FE models enable the testing of bone specimens in any configuration and loading 
conditions in silico, thus facilitating the exploration of potential treatment specific 

Fig. 13.10  FE-mesh of two proximal femurs under two different loading and boundary conditions
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effects. Proximal femurs could, for example, be tested in fall loading or neck shear 
configurations as illustrated in Fig. 13.10.

Another unique feature of the FEA is its ability to accurately estimate the spa-
tial stress and strain distribution for any given load. This facilitates the analysis of 
subject specific biomechanical differences even in the cases where subjects have 
the same integral BMD at a given skeletal site. Some studies have been conducted 
to assess the ability of FE models to predict the location and type of clinically rel-
evant fractures (Lotz et al. 1991a, b; Keyak et al. 2001). Figure 13.11 shows the 
spatial stress distribution on the proximal femur of a rhesus monkey subjected to a 
neck shear test. The location of the high stresses, in red, shows the places where the 
fracture is most likely to occur.

In the past decade, thanks to improvements in imaging tools and their avail-
ability, in vivo FEA have become a frequently used biomarker in phase III clinical 
trials for new osteoporosis therapies (Keaveny et al. 2007, 2008; Brixen et al. 2013). 
FEA has enabled clinical longitudinal measurements of bone strength and provided 
unique clinical insight into the biomechanical effects of new osteoporosis therapies.

Fig. 13.11  Two different views of a rhesus monkey’s right proximal femur von Mises stress spa-
tial distribution ( red being the highest stress and blue being the lowest stress)
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13.5  Conclusions

During the past decade, a myriad of disease models for osteoporosis has been devel-
oped and applied to drug development questions. The current toolbox for the phar-
macometricians provides state-of the-art modeling of the bone model unit includ-
ing the osteoclast and osteoblast dynamics and endogenous modulator molecules, 
predictive biomarkers as NTx, uNTx, and bone mineral density, risk of fracture and 
bone strength. As a result, our understanding of mechanisms of action and (devel-
opmental) drug characteristics in osteoporosis has progressed significantly. In the 
future, further integration of approaches and end points will provide higher and 
earlier predictiveness from biomarkers to fractures and deliver on the promise of 
model-based drug development in osteoporosis, where the model is continuously 
developed in parallel with the drug. The ultimate goal is to integrate all sources of 
information to obtain a comprehensive description of the pathophysiology of os-
teoporosis, including treatment and disease. This enables the description of various 
treatments and their impact on clinical outcome; enabling the prediction of short-
term to long-term outcome on fracture risk.

Summary and Key Aspects of the Chapter 
• Due to statistical requirements and the slow progression of osteoporosis, large 

clinical trials with long duration are required to establish a beneficial effect of 
new treatments on the reduction of fracture risk.

• Over the past decade, different types of mechanism-based models have had an 
increasing impact on drug development.

− Various conceptual models for bone physiology and the effects of therapies 
have been proposed. Data included in osteoporosis models range fromPK 
of (novel) drugs, PD biomarkers of various time scales (peptides indicative 
of bone-turnover, bone mineral density), bone strength, as well as the actual 
clinical outcome, namely fracture rates at various sites in the skeleton.

• Published PK–PD-disease models of osteoporosis have varying degrees of bio-
logical complexity ranging from purely descriptive of disease to detailed sys-
tems model spanning various spatial scales, as well as mechanistic models of 
bone strength.

− These models have been used to describe data from clinical trials, simulate 
new trial designs with novel mechanisms of action, and simulate combination 
treatments and how these clinical trials predict for real-life settings.

• A more integrative approach allows for a mechanism-based description of osteo-
porosis, and presumably other bone diseases, by explicitly including bone physi-
ology as the underlying mechanism to which all information is linked. Various 
short- and long-term markers at various levels and timescales of the disease and 
drug action can then be combined and evaluated.

• Specific applied examples of pharmacometrics in osteoporosis concern mech-
anism-based models based on bone cell interaction—i.e., a core physiological 
model.
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− Mechanism-based models of bone turnover markers and BMD.
◦ Reduced core physiological model describing five biomarkers in a pop-

ulation approach (reduced Lemaire core model including bone turnover 
markers and bone mineral density).

   -  Quantitative system able to describe the effects of treatment based on 
various short- and long-term biomarker clinical data within a population 
approach (treatment and disease progression).

◦ Extended physiological model in a systems biology approach (extensions 
to the Lemaire core model).

  -  Mathematical model of dynamics of bone remodeling based on avail-
able physiological observations, specifically in the context of the mecha-
nisms of action of available osteoporosis treatments.

− Finite element analysis
◦ Describing the shape and structure of bone at a macro- and micro-architec-

tural level provides additional, independent information to better predict 
fracture risk.

• The current toolbox for the pharmacometricians provides state-of the-art mod-
eling of the bone model unit including the osteoclast and osteoblast dynamics 
and endogenous modulator molecules, predictive biomarkers as NTx, uNTx, and 
bone mineral density, risk of fracture and bone strength.

• In the future, further integration of approaches and end points will provide high-
er and earlier predictiveness from biomarkers to fractures and deliver on the 
promise of model-based drug development in osteoporosis, where the model is 
continuously developed in parallel with the drug. The ultimate goal is to inte-
grate all sources of information to obtain a comprehensive description of the 
pathophysiology of osteoporosis, including treatment and disease. This enables 
the description of various treatments and their impact on clinical outcome; en-
abling the prediction of short-term to long-term outcome on fracture risk.
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14.1  Introduction

Psychiatric disorders include a very long list of mental illnesses that have a huge im-
pact on someone’s daily behavior and functioning as well as interaction with others. 
Major psychiatric diseases include attention deficit hyperactivity disorder (ADHD), 
addiction, anxiety, bipolar disorder, depression, and schizophrenia. According to 
the World Health Organization (WHO), over a third of people in most countries re-
port problems at some time in their life that meet the criteria for diagnosis of one or 
more of the common types of mental disorder (WHO 2000). Thereby, these diseases 
have a huge impact on society and health care costs. Psychiatric diseases are very 
complex, which makes diagnosis very difficult. In treatment, psychoactive drugs 
are helpful, but it is tough to measure the “true effects” at the mental and behavior 
level. With psychiatric diseases and drug effects both displaying high variability, 
there is much room for improvement of drug treatment and modalities.

For the development of better drugs and treatments there is a need for more in-
sight into the disease processes as well as the fate of psychoactive drugs in the body, 
particularly the brain, and their associated effects. Also, more insight is needed into 
the sources of intra- and interindividual differences in the pharmacodynamic (PD) 
responses of psychoactive drugs. Thus, quantitative research approaches are needed 
on the factors that play a role in the relationship between disease conditions as well as 
drug dosing and ultimate effects, both at the population and individual level. To that 
end, pharmacometrics is needed, being the science that develops and applies math-
ematical and statistical methods to quantitatively characterize, understand, and predict 
drug’s pharmacokinetic (PK), PD, and biomarker outcomes (Williams 2007). There-
with the pharmacometric approach is anticipated to contribute to improved treatment 
modalities, paving the way to individualized medicine in psychiatric diseases.
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In this chapter, first, the major psychiatric diseases anxiety, depression, and psy-
chosis will be briefly introduced. Then, current available anxiolytic, antidepres-
sants, and antipsychotic drugs used to treat such conditions will be presented. Fi-
nally, pharmacometric investigations on these drugs will be presented, with special 
focus on antipsychotics. It will be shown that the application of pharmacometrics 
in psychiatric diseases so far is scarce, but is a prerequisite to aid in further un-
derstanding of the complexity of psychiatric diseases and their drug treatments. 
Improvements of the quality the pharmacometric models, in the first place, lies 
in improvement of the quality of the data. This can be brought about by inclusion 
of multiple quantitative and objective measures as a composite biomarker for dis-
ease condition and treatment effects. The emphasis should lie on measures that can 
be obtained both preclinically and clinically, to enhance translational insights and 
therewith predictive power in an early stage of drug development. Then, in clinical 
trials, a lot can be gained by improvement of the quality of the design and explicit 
consideration of placebo effects and dropouts.

14.2  Psychiatric Diseases

Mental illness is a term used to describe a broad range of mental and emotional con-
ditions. It is different from mental retardation, organic brain damage, and learning 
disabilities. The term “psychiatric disease” is used when mental illness significantly 
interferes with the performance of major life activities, such as learning, working, 
and communicating. Psychiatric conditions may come and go and do not always 
follow a regular pattern. Moreover, the type, intensity, and duration of symptoms 
vary from person to person. This makes it very difficult to predict when psychiatric 
symptoms will bristle and proper functioning will decline. Medication and psycho-
therapy often are helpful in the control of the symptoms. In part of the patients, the 
mental illness may even go into remission, while in others the illness pursues. The 
most common forms of psychiatric disorders are anxiety disorders, depression, and 
psychosis.

14.2.1  Anxiety

Anxiety (fear) is a psychological and physiological state characterized by (non)spe-
cific worries or fear(s) and avoidance behavior. Examples include panic disorder, 
social phobia, specific phobia, obsessive–compulsive disorder, posttraumatic stress 
disorder, acute stress disorder, generalized anxiety disorder, and substance-induced 
anxiety disorder. Anxious individuals show increased attentional capture by poten-
tial signs of danger, and interpret expressions, comments, and events in a negative 
manner (Bishop 2007).
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14.2.2  Major Depressive Disorder

Major depressive disorder (also known as recurrent depressive disorder, clinical 
depression, major depression, unipolar depression, or unipolar disorder) is a mental 
disorder characterized by episodes of all-encompassing low mood accompanied by 
low self-esteem and loss of interest or pleasure in normally enjoyable activities 
(Weihs and Wert 2011).

14.2.3  Psychosis

Psychosis is a generic psychiatric term for a mental state often described as in-
volving a “loss of contact with reality.” It is typically characterized by radical 
changes in personality, impaired functioning, and a distorted or nonexistent sense 
of objective reality. Patients experience hallucinations and/or delusions that they 
believe are real, and may behave and communicate in an inappropriate and in-
coherent fashion. Psychosis may appear as a symptom of a number of mental 
disorders, including mood and personality disorders. It is also the defining feature 
of schizophrenia. People diagnosed with schizophrenia usually experience a com-
bination of symptoms, including positive (i.e., hallucinations, delusions, racing 
thoughts), negative (i.e., apathy, lack of emotion, poor, or nonexistent social func-
tioning), and cognitive symptoms (disorganized thoughts, difficulty concentrat-
ing and/or following instructions, difficulty completing tasks, memory problems; 
Andreasen and Olsen 1982).

14.2.4  Current Problems in Psychiatric Diseases

Today’s lack of quantitative objective measures of psychiatric diseases is one rea-
son that the causative factors of psychiatric diseases remain obscure (Agarwal et al. 
2010; Van et al. 2008). To measure the severity of psychiatric conditions in humans, 
clinicians are using subjective rating scales. There are many rating scales avail-
able that provide an indication of the disease condition and guide the evaluation of 
recovery. For anxiety, an example of a rating scale is the Hamilton Anxiety Rating 
Scale (HAM-A), in the form of a psychological questionnaire (Hamilton 1959; Ma-
ier et al. 1988). For depression, the Hamilton Rating Scale for Depression (HRSD) 
is often used, being a multiple item questionnaire (Hamilton 1960; Hedlund and 
Viewig 1979). For measuring symptom severity of patients with schizophrenia, the 
Positive and Negative Syndrome Scale (PANSS) is widely used in the study of 
antipsychotic therapy (PANSS, Table 14.1; Kay et al. 1987; Marder et al. 1997). 
However, such scales are not truly objective because it is based on observations of a 
psychiatrist, primary care staff, and family members (Kay et al. 1987). The PANSS 
and other scoring tools can be useful in the guidance of schizophrenia treatment, 
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but patient-specific factors cannot be taken into account. A more quantitative ap-
proach to determine the clinical outcome of antipsychotics is the use of biomarkers 
(Danhof et al. 2005). Biomarkers can also be investigated in animal models (like 
rats) and used to provide more mechanistic insights into the pathophysiology of the 
disease and prediction of treatment response in humans (Stevens et al. 2012).

Table 14.1  The positive and negative syndrome scale (PANSS). To assess a patient using PANSS, 
an approximately 45-min clinical interview is conducted. The patient is rated from 1 to 7 on 30 
different symptoms based on the interview as well as reports of family members or primary care 
hospital workers. PANSS Total score minimum = 30, maximum = 210
Positive scale: 7 items (minimum score = 7, maximum score = 49)
Delusions
Conceptual disorganization
Hallucinations
Hyperactivity
Grandiosity
Suspiciousness/persecution
Hostility
Negative scale: 7 items (minimum score = 7, maximum score = 49)
Blunted affect
Emotional withdrawal
Poor rapport
Passive/apathetic social withdrawal
Difficulty in abstract thinking
Lack of spontaneity and flow of conversation
Stereotyped thinking
General psychopathology scale: 16 items (minimum score = 16, maximum score = 112)
Somatic concern
Anxiety
Guilt feelings
Tension
Mannerisms and posturing
Depression
Motor retardation
Uncooperativeness
Unusual thought content
Disorientation
Poor attention
Lack of judgment and insight
Disturbance of volition
Poor impulse control
Preoccupation
Active social avoidance
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Identification of the neurochemical processes in the central nervous system 
(CNS) associated with psychiatric disorders has led to the development of many 
psychoactive drugs. Psychoactive drugs can be categorized into the main categories 
of antidepressants, anxiolytics, mood stabilizers, antipsychotics, and stimulants. 
Many of these drugs are helpful to patients, but there is much room for improve-
ment (Lader 2008).

For development of better drugs and treatments there is a need for more insight 
into the disease processes as well as the fate of psychoactive drugs in the body and 
particularly the brain and their effects measured by different biomarkers, both at the 
population and individual level. To that end, it is helpful to identify sources of the 
disease and (associated) sources of variability.

The prominent role of genetics in psychiatric diseases has been established in 
various family-, twin-, and adoption studies, but the identification of concrete con-
tributing genes is difficult. This may in part be due to inconsistencies in psychiatric 
classification systems, complexity and heterogeneity of psychiatric disorders, ge-
netic expression modification effects, and intervening environmental factors. Over 
the past years, many reliable genetic associations with complex diseases have been 
reported, including some associations with complex neurological and psychiatric 
diseases. Many of these disease associations are believed to lead to genetic vari-
ability in gene expression and splicing. The genetic epidemiology of complex psy-
chiatric diseases has been extensively studied and it is widely believed that many 
genetic factors contribute to the various phenotypes and diseases, with overall con-
tributions of a single factor being comparatively minor. More recently, the focus 
has shifted towards establishing endophenotypes for psychiatric diseases, including 
electrophysiological abnormalities and alterations in structural and functional brain 
imaging.

In search for contributing genetic factors, animal models with (single) gene mu-
tation are used. However, the fact that human behavior is complex and that it cannot 
be easily tested in laboratories or reproduced in animal models further complicates 
our understanding of psychiatric diseases. Still, valuable information on mecha-
nisms of brain dysfunction can be learned via experimental animals, like the poten-
tial impact of the P-glycoprotein (P-gp) efflux transporter at the blood–brain barrier 
that might influence brain distribution of part of the psychiatric drugs. That is why 
polymorphisms in the drug transporter gene ABCB1 encoding for P-gp is thought 
to account for differences in the clinical efficacy of the most drugs, most likely by 
influencing their access to the brain.

With overwhelming complexity of psychiatric diseases and treatment with 
psychoactive drugs, there is a need for quantitative description of these diseas-
es, drug effects and variability. As a follow up of model-based drug develop-
ment (Lalonde et al. 2007), pharmacometrics is the multidisciplinary science 
that makes use of advanced mathematical models that integrate pharmacology, 
physiology, and disease for quantitative analysis of interactions between drugs 
and biological systems, with special emphasis on sources of variability, to aid 
efficient drug development, regulatory decisions, and rational drug treatment in 
(individual) patients.
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14.3  Psychoactive Drugs

14.3.1  Anxiolytics

Anxiolytics and hypnotics act on the CNS to alleviate the symptoms of anxiety and 
nervousness, mood stabilizing and improving sleep. Long-term use may develop 
psychological and physiological dependence. Fear and anxiety research to under-
stand how to treat the potentially devastating effects of anxiety disorders in humans 
has utilized classical fear conditioning, a simple paradigm that has been extensively 
investigated in animals, helping outline a brain circuitry thought to be responsible 
for the acquisition, expression, and extinction of fear (Delgado et al. 2006). Catego-
ries of antianxiety drugs include benzodiazepine tranquilizers, the “new” antide-
pressants, and β-blockers (Kodish et al. 2011; Farach et al. 2012; Huh et al. 2011).

14.3.1.1  Benzodiazepines

Benzodiazepine tranquillizers, such as alprazolam (Xanax®), diazepam (Valium®) 
and lorazepam (Ativan®) fluorozapam (Dalmane®), oxazepam (Serax®), and clo-
zapam (Klonopin®), are used to relieve the symptoms of anxiety. They also have 
calming and sleep-promoting effects. The actions of benzodiazepines are due to the 
potentiation of the neural inhibition that is mediated by gamma-aminobutyric acid 
(GABA). Practically, all effects of the benzodiazepines result from their actions on 
the ionotropic GABA(A) receptors in the CNS. Benzodiazepines do not activate 
GABA(A) receptors directly but they require GABA (Olkkola and Ahonen 2008).

Main effects of benzodiazepines are sedation, hypnosis, decreased anxiety, an-
terograde amnesia, centrally mediated muscle relaxation, and anticonvulsant activ-
ity. In addition to their action on the CNS, benzodiazepines have a dose-dependent 
ventilatory depressant effect and they also cause a modest reduction in arterial 
blood pressure and an increase in heart rate as a result of a decrease of systemic 
vascular resistance (Olkkola and Ahonen 2008; Vinkers et al. 2012). Side effects in-
clude dizziness, drowsiness, somnolence, fatigue, body imbalance, loss of memory, 
difficulty in carrying out voluntary movements, dry mouth, impaired coordination, 
drugs dependence and withdrawal symptoms, etc. (Vgontzas et al. 1995).

14.3.1.2  Antidepressants

The “new” antidepressants, i.e., the serotonin and noradrenaline reuptake inhibitors 
(SNRIs) and selective serotonin reuptake inhibitors (SSRIs) include fluvoxamine 
(Luvox®), venlafaxine (Effexor®), desvenlafaxine (Pristiq®), duloxetine (Cym-
balta®, Yentreve®), and milnacipran (Dalcipran®, Ixel®, Savella®). These are 
used for the treatment of depression and other mood disorders, but also anxiety, 
by balancing the disorder of neurotransmitters, serotonin, and noradrenaline in the 
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brain to provide clinical effects. Side effects include dry mouth, gastrointestinal 
upsets, nausea, fatigue, and sweating. Pharmacotherapy for anxiety disorders by 
these drugs is effective in improving clinical symptoms, particularly in combination 
with psychotherapy. SSRIs are thought to be relatively safe and effective for acute 
treatment of several classes of anxiety disorders (Kodish et al. 2011).

14.3.1.3  Beta-blockers

The benzodiazepines have been most extensively prescribed and are still often used 
by many clinicians, despite the fact that it has become clear that SSRIs are better 
as first-choice drugs for treating anxiety disorders, alongside newer agents, such as 
pregabalin or SNRIs, and combined with cognitive-behavioral therapy (Lader 2008; 
Cloos and Ferreira 2009; Figgitt and McClellan 2000). Flumazenil is very useful 
in antagonizing benzodiazepine-induced sedation as well as to diagnose or treat 
benzodiazepine overdose (Olkkola and Ahonen 2008).

Apart from rating scales that are prone to subjectiveness, effort have been put 
into finding more objective measures for effectiveness of psychoactive drugs. For 
measurement of the effects of benzodiazepines, in healthy volunteers, measures of 
alertness were most sensitive to benzodiazepines. The most consistent effects were 
observed on saccadic peak velocity (SPV) and visual analog scores (VAS) of alert-
ness (De Visser et al. 2003).

But, significant challenges in the field include barriers to appropriate diagnosis 
and treatment of anxiety disorders, failure of a significant proportion of patients to 
respond to first-line pharmacotherapy agents, and a limited database of efficacy or 
effectiveness studies to guide treatment in such cases (Koen and Stein 2011). Thus, 
improved treatment guidelines and algorithms are needed. More recently developed 
computational supports and biological markers serve as decision supports (Him-
merich and Wranik 2012).

Many sources of variability in PK–PD relationships for anxiolytics are known. 
The SSRIs differ in their PK properties (Hiemke and Härtter 2000) and widely in 
their qualitative and quantitative interaction with cytochrome P450 (CYP) isozymes 
in the liver. CYP2D6 is inhibited by SSRIs, in order of decreasing potency parox-
etine, norfluoxetine, fluoxetine, sertraline, citalopram, and fluvoxamine (Baumann 
1996). Drug–drug interaction may, therefore, occur at the level of metabolism (Olk-
kola and Ahonen 2008; Muscatello et al. 2012; Mahmood and Sahajwalla 1999; 
Yuan et al. 1999; Fahey et al. 1998; Lin 2007). In addition to PK interactions, ben-
zodiazepines have synergistic interactions with other hypnotics and opioids. Then, 
age is a factor in variability, and can affect PK as well as PD. In general, however, 
it seems that the elderly people are more sensitive to drug action, while PK remains 
relatively unchanged (Strawn et al. 2012; Lenze and Wetherell 2011; Klotz 1998). 
Genetic polymorphism also contributes to variability (Sakai and Ishizuka 2009). 
Furthermore, also circadian rhythm (Nagayama 1993), and pathological conditions 
of the liver (Mahmood and Sahajwalla 1999) and the kidneys (Baghdady et al. 
2009) may affect the PK–PD relationship of anxiolytics.
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14.3.2  Antidepressants

Antidepressants are the most widely prescribed therapy for depression. The exact 
mechanism of action of antidepressants is unknown. The prevailing theory is that 
antidepressants increase the concentration of one or more neurotransmitters, such 
as norepinephrine, serotonin, or dopamine. The different classes of antidepressants 
differ in the neurotransmitters they affect (Cusack et al. 1994). This determines 
some of their side effects and potential drug interactions. Antidepressants include:

14.3.2.1  Tricyclics

These drugs are called “tricyclics” because the drug molecules contain three rings. 
This class of medication is used to treat depression, and also some types of anxiety, 
fibromyalgia, and to control chronic pain (von Wolff et al. 2013). Tricyclics may 
have the following side effects: seizures, insomnia, anxiety, arrhythmia, hyperten-
sion, rash, nausea, vomiting, abdominal cramps, weight loss, constipation, urinary 
retention, increased pressure on the eye, and sexual dysfunction. Examples of tricy-
clic antidepressants are amitriptyline (Elavil®), clomipramine (Anafranil®), desip-
ramine (Norpramin®), doxepin (Sinequan®), imipramine (Tofranil®), nortriptyline 
(Pamelor®), protriptyline (Vivactil®), and trimipramine (Surmontil®).

14.3.2.2  Noradrenaline and Specific Serotoninergic Antidepressants

These are a class of compounds that are used in the treatment of anxiety disorders, 
some personality disorders, and depression. Noradrenaline and specific serotonin-
ergic antidepressants (NASSAs) have the following possible side effects: constipa-
tion, dry mouth, weight gain, drowsiness, sedation, blurred vision, and dizziness. 
More serious adverse reactions include: seizures, white blood cell reduction, faint-
ing, and allergic reactions. Examples of NASSs include mianserin (Tolvon®) and 
mirtazapine (Remeron®, Avanza®, Zispin®).

14.3.2.3  SNRIs and SSRIs

SNRIs are a class of drugs used to treat major depression, mood disorders, and pos-
sibly but less commonly ADHD, obsessive compulsive disorder, anxiety disorders, 
menopausal symptoms, fibromyalgia, and chronic neuropathic pain. Examples of 
SNRIs are duloxetine (Cymbalta®), venlafaxine (Effexor®), and desvenlafaxine 
(Pristiq®). SNRIs raise levels of serotonin and norepinephrine that both play a key 
role in stabilizing mood.

Examples of SSRI antidepressants are: citalopram (Celexa®), escitalopram 
(Lexapro®), fluoxetine (Prozac®, Sarafem®), fluvoxamine (Luvox®), paroxetine 
(Paxil®), and sertraline (Zoloft®). These drugs are used to treat depression, but 
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some are used for anxiety, as earlier indicated (Hiemke and Härtter 2000). SSRIs 
will often take a month to have a noticeable effect. This is because first the brain 
needs to adapt to the “overflow” of serotonin by downregulating the sensitivity of 
the autoreceptor, which needs time (Mandrioli et al. 2012; von Wolff et al. 2013).

SSRIs and SNRIs may have the following side effects: hypoglycemia, low sodi-
um, nausea, rashes, dry mouth, constipation, diarrhea, weight loss, sweating, tremor, 
sedation, sexual dysfunction, insomnia, headache, dizziness, anxiety, agitation, and 
abnormal thinking. Currently, the SSRIs are the most commonly prescribed anti-
depressants (von Wolff et al. 2013) as SSRIs are not only very effective in treating 
depression but are also believed that they have fewer side effects than the other types.

14.3.2.4  Monoamine Oxidase Inhibitors

Monoamine oxidase inhibitors (MAOIs) are drugs that inhibit brain metabolism and 
thereby increase brain levels of monoamines, such as serotonin and norepinephrine. 
Examples are phenelzine (Nardil®), tranylcypromine (Parnate®), isocarboxazid 
(Marplan®), and selegiline (EMSAM®, Eldepryl®). MAOIs are typically only 
used when tricyclic antidepressants or SSRIs exacerbate or fail to prevent depres-
sion. MAOIs have the following possible side effects: blurred vision, rash, seizures, 
edema, weight loss, weight gain, sexual dysfunction, diarrhea, nausea, constipation, 
anxiety, insomnia, drowsiness, headache, dizziness, arrhythmia, fainting, feeling 
faint when standing up (postural hypotension), and hypertension.

Antidepressants are not all the same in how they affect neurotransmitters, how 
they are used, and what adverse effects or drug interactions are associated with them 
differ (Baumann 1996). One patient may not respond to one type of antidepressant 
and do better with another, while another person with a similar condition might 
respond the other way round.

Variation in the effects of antidepressants is a problem and the relation between 
severity of depression and outcome is complex (Van et al. 2008). Only a small part 
can be related to factors know to contribute to variability. CYP450 genes play a 
major role in the metabolism of a substantial part of psychotropics, including anti-
depressants, and the first estimates of dosage adjustments for antidepressants have 
been provided based on metabolizer status (Spina et al. 2008; Schosser and Kasper 
2009).

Two functional polymorphisms of the serotonin transporter gene, 5-HTTLPR 
and STin2, have been investigated in a large number of pharmacogenetic studies of 
depression; other candidate genes include serotonin receptor genes, brain-derived 
neurotrophic factor (BDNF), P-gp located in the BBB, G-proteins, TPH1 and TPH2, 
MAOA, the noradrenaline transporter gene, FKBP5, or cytochrome P450 (CYP450) 
genes (Schosser and Kasper 2009). Based on an extensive literature search, PK of 
antidepressants can be substantially different between women and men. Likewise, 
the response to antidepressants can be quite variable, including sex differences in 
adverse effects and time to response. Despite the many sex differences reported, 
there is still little published work systematically evaluating potential sex differences 
in antidepressant PK and PD (Bigos et al. 2009).
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De Klerk et al. (2012) concluded that adverse drug effects with SSRI treatment, 
in particular serotonergic effects, are predicted by two common polymorphisms of 
the ABCB1 gene encoding for P-gp. Since P-gp is present at the BBB and (some) 
SSRIs display affinity as substrate for P-gp, this may affect brain distribution of 
SSRIs. De Klerk and colleagues found a significant association between the number 
of SSRI-related adverse drug effects and ABCB1 gene variants. Moreover, seroto-
nergic effects (sleeplessness, gastrointestinal complaints, and sexual effects) were 
significantly predicted by these variants and haplotype.

There is an on going debate on whether or not antidepressant effects are true or the 
result of placebo effects. Kirsch evaluated by meta-analysis new-generation antide-
pressants in relation to the placebo response (Kirsch 2009). They concluded that most 
trials failed to show a significant advantage of SSRIs over inert placebo, and the dif-
ferences between drug and placebo are not clinically significant for most depressed 
patients. Fountoulakis and Möller (2011) recalculated and reinterpreted the data of 
the Kirsch (2008) study. Their conclusion was that Kirsch et al.’s meta-analysis suf-
fered from important flaws in the calculations; reporting of the results was selective 
and conclusions unjustified and overemphasized. Overall, Fountoulakis and Möller 
(2011) suggested that although a large percentage of the placebo response is due to 
expectancy, this is not true for the active drug, and effects are not additive. The drug 
effect is always present and is unrelated to depression severity, while this is not true 
for placebo.

14.3.3  Antipsychotics

Antipsychotics are drugs used to treat various symptoms of psychosis, such as those 
caused by psychotic disorders or schizophrenia. Antipsychotic medication is usu-
ally prescribed to bring psychotic symptoms under control and into remission. Pos-
sible side effects of antipsychotics include dry mouth, drowsiness, and Parkinson’s 
disease like muscle stiffness and involuntary movements of the body (tardive dys-
kinesia) or the so-called extrapiramidal side effects (EPS; Mauri et al. 2007). The 
most severe side effect of antipsychotics is agranulocytosis, the destruction of white 
blood cells with unknown cause. It is a potentially serious but reversible health 
condition, and blood cell counts need to be monitored. There are two categories of 
antipsychotics: typical and atypical.

14.3.3.1  Typical Antipsychotics

These drugs are also called first-generation antipsychotics (FGAs) that can be cat-
egorized by inducing EPS. Most conventional antipsychotics work by blocking 
the D2 dopamine receptors. Side effects include muscle stiffness and shakiness, 
like Parkinson’s disease, sluggish feeling, slow thinking, uncomfortable restless-
ness (akathisia), and problems with sex life. Examples of these drugs include chlor-
promazine (Largactil®), haloperidol (Haldol®), pimozide (Orap®), trifluoperazine 
(Stelazine®), and sulpiride (Dolmatil®).
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14.3.3.2  Atypical Antipsychotics

Atypical or second-generation antipsychotics (SGAs) induce significantly less EPS 
(Mauri et al. 2007). Atypical antipsychotics block both the D2 dopamine receptors 
as well as 5HT2A serotonin receptors. Compared to the older drugs they seem less 
likely to cause Parkinsonian side effects and tardive dyskinesia (at not too high 
doses), but they are more likely to produce weight gain, to produce diabetes, to give 
sexual problems, and to induce sleepiness and slowness. Examples of the atypical 
antipsychotics include amisulpride (Solian®), aripiprazole (Abilify®), chlorproma-
zine (Thorazine®), clozapine (Clozaril®), olanzapine (Zyprexa®), quetiapine (Se-
roquel®), risperidone (Risperdal®), sertindole (Serdolect®), zotepine (Zoleptil®), 
and paliperidone (Invega®). The atypical antipsychotics are rather expensive, but 
may be more effective than older medications for (negative) symptoms of schizo-
phrenia.

Risperidone is one of the most commonly used atypical antipsychotics that can 
improve both the positive and the negative symptoms of schizophrenia with a low 
report of EPS. The pharmacological response of risperidone depends on the concen-
tration of risperidone and its active metabolite 9-hydroxy-risperidone (9-OH-RSP), 
also known as paliperidone. Paliperidon was recently marketed as an independent 
antipsychotic drug (Invega®).

Mauri et al. (2007) provided a literature review on the relationships between 
plasma concentrations of SGAs and clinical responses by dividing the studies on the 
basis of the length of their observation periods (therapeutic ranges). The usefulness 
of therapeutic drug monitoring is well established. Plasma clozapine concentrations 
seem to be influenced by many factors, such as altered CYP450 1A4 activity, age, 
sex, and smoking. High plasma concentrations of clozapine can increase the risk of 
epileptic seizures. In use of risperidone, the metabolite 9-OH-risperidone (paliperi-
don) is formed, and both should be measured (“active moiety”) to prevent erroneous 
interpretations on the pharmacological effects of risperidone. For olanzapine, the 
literature strongly indicates a relationship between clinical outcomes and plasma 
concentrations. There is little evidence in favor of the existence of a relationship be-
tween plasma quetiapine concentrations and clinical responses. Positron emission 
tomography (PET) studies of receptor blockade indicated a discrepancy between 
the time course of receptor occupancy and plasma quetiapine concentrations. There 
is no direct evidence concerning optimal plasma concentration ranges of ziprasi-
done, aripiprazole, or sertindole.

Risperidone is metabolized by CYP2D6 and CYP3A to paliperidone, indicating 
variability will be observed by differences in metabolism (fast and slow metaboliz-
ers). The receptor-binding affinity for the dopamine receptor and the 5HT2A re-
ceptor of paliperidone are reported to be equal to risperidone (Mauri et al. 2007). 
Brain distribution is another aspect that may influence PK–PD relationships of 
antipsychotics (and CNS drugs in general). Drugs with a poor brain distribution 
(risperidone) will require higher doses to be administrated to obtain similar receptor 
occupancy when compared to compounds with a relatively good transport (olanzap-
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ine, quetiapine; Fitzgerald and Dinan 2008). Both risperidon and paliperidone are 
substrates for Pgp in vitro and in vivo.

Possible biomarkers for antipsychotic drugs are certain hormones, in particular 
prolactin (PRL). PRL is mainly associated with reproductive and metabolic func-
tions, and is synthesized and stored in lactotrophs located in the anterior lobe of 
the pituitary. The release of PRL is predominantly under hypothalamic inhibitory 
control of dopaminergic neurons. Dopaminergic neurons project dopamine into the 
anterior lobe of the pituitary via several pathways. Activation of dopamine D2 re-
ceptors on the cell surface of lactotrophs inhibits the release of PRL into plasma. 
Likewise, blockade of D2 receptors leads to release ofPRL. Besides the dopami-
nergic control on PRL release, PRL concentrations in plasma are also influenced 
by changes in synthesis rate, lactotroph storage capacity, homeostatic feedback 
mechanisms and rate of plasma elimination (Freeman et al. 2000; Ben Jonathan and 
Hnasko 2001; Fitzgerald and Dinan 2008). Interestingly, PRL synthesis, pathways 
of release and homeostatic feedback and elimination half-life are similar in rats 
when compared to man. This makes PRL concentrations in plasma an interesting 
candidate for evaluation as a translational biomarker for D2 receptor activity (Ben 
Jonathan et al. 2008), in particular for dopamine receptor antagonists and possibly 
also partial agonists. Since the synthesis, pathways for release, and elimination of 
prolactine in humans are comparable to rats, prolactine is a good translational bio-
marker for the effect of dopamine receptor antagonists (Stevens et al. 2012), as will 
be shown in the pharmacometric section for antipsychotic drugs below.

14.4  Pharmacometric Approaches

14.4.1  Anxiolytics

Although the definition of “pharmacometrics” (quantitative pharmacology) as re-
search field is young, approaches to that end have initiated long time ago. Espe-
cially for the group of benzodiazepines, this was possible as their effects could be 
well characterized from a quantitative analysis of the electroencephalogram (EEG) 
as a biomarker (Krijzer and Van der Molen 1987). When observed in conjunction 
with blood sampling, the plasma PK–PD relationships of benzodiazepines could 
be characterized in individual animals and humans. The EEG appeared to be an 
ideal biomarker of changes in CNS functionality in the sense that it can be obtained 
in a strict objective, continuous, sensitive, and reproducible manner in individual 
animals.

In the early 1990s, the first quantitative investigations on PK–PD modeling of 
benzodiazepines in the rat were performed in freely moving rats, using the EEG ef-
fects (Mandema and Danhof 1992). By this approach, quantitative information on 
the potency and intrinsic efficacy of CNS drugs could be obtained. As a measure 
of pharmacological effect intensity of benzodiazepines the amplitudes in the beta 
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frequency band of EEG signals are relevant, which reflects their affinity and intrin-
sic efficacy at the central GABA–benzodiazepine receptor complex.

Détári et al. (1999) studied the influence of serotonergic- and benzodiazepine-
type anxiolytic drugs on the cortical activation and sleep–wakefulness cycle. The 
EEG signals were obtained in freely moving rats, and other measures of sleep in 
mice. Based on sleep quality by increasing sleep episode length and time spent in 
deep sleep the authors concluded that the serotonergic anxiolytic drugs seem to be 
superior compared to the benzodiazepine–type anxiolytic drug studied. Lau et al. 
(1998) published a rat study in which the possibility of both stimulation and seda-
tion effects of midazolam were investigated by EEG effects. A stimulation–seda-
tion model was developed suggesting that midazolam possesses both stimulatory 
and sedative effects in a continuous but sequential fashion, and hypothesizes the 
coexistence of stimulation and sedation components for midazolam. Cleton et al. 
(1999) showed that the rate of change in plasma concentrations is an important de-
terminant of the EEG effects of midazolam in rats. In two groups of male volunteers 
with different ages (the younger ~ 25 years, the elderly ~ 75 years), Albrecht et al. 
(1999) investigated the pharmacologic properties of midazolam with special regard 
to age using EEG as a measure of the hypnotic-sedative effect. PK parameters were 
similar in both groups, while the PD data showed substantial hysteresis and a large 
difference in half-maximum concentration (EC50), being ~ factor-2 lower in the 
elderly. So, in the elderly lower doses are needed due to increased sensitivity to 
midazolam action.

Acute dosing and chronic dosing might have different PK–PD relationships due 
to possible tolerance or other homeostatic feedback mechanisms. Laurrijssens and 
Greenblatt (2002) studied the influence of chronic midazolam exposure on its PK–
PD relationship by EEG recordings and parallel serial blood sampling. The concen-
tration–EEG effect relationships were consistent with a sigmoidal Emax (maximal 
effect) model. No differences in PK or PD parameters were found between day 1 
and 7. However, by repeated exposure, a modest degree of tolerance to midazolam 
was found, the effect only being evident after correction for the fraction unbound 
of midazolam.

With time, the experimental approaches were refined and more statistical issues 
were addressed Quantitative EEG analysis and statistical procedures were applied 
under specific design conditions to objectively evaluate the functional bioavail-
ability of psychotropic drugs in the human brain (Barbanoj et al. 2002a). Meth-
odological aspects were discussed (different treatments, doses, time points, states, 
target variables, electrodes, and even different groups). Statistical PK–PD model-
ing was introduced as a tool to enlarge the scope of inferences that can be derived 
when using “pharmaco-EEG.” Statistical comparisons were discussed for making 
conclusions about acute, repetitive, or superimposed effects, and in relation to hu-
man psychotropic interactions (such as mechanistic drug–drug interaction descrip-
tions, drug metabolites and enantiomers as well as the importance of acquiring drug 
plasma concentrations, elapse of time, and topographic distributions) to accurately 
identify its occurrence. Examples were presented on some anxiolytic drugs, includ-
ing benzodiazepines.
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Oral midazolam is widely used for preoperative sedation in children, and the 
contribution of the formed active 1-hydroxy metabolite 1-hydroxymidazolam 
(1-OHMDZ) to the EEG effects was studied (Johnson et al. 2002). Age, weight, 
sex, concomitant drugs, and the metabolic ratio, 1-OHMDZ/midazolam were in-
vestigated as covariates of the PK of midazolam and 1-OHMDZ. The metabolite 
1-OHMDZ had approximately half the activity of the parent drug and can compen-
sate for at least part of the decreased effect due to increased midazolam metabo-
lism. This indicated that studies of midazolam should evaluate the contribution of 
1-OHMDZ to the overall PD effect.

To place pharmaco-EEG within the clinical context, the distinction between 
biomarkers, surrogate end points, clinical end points, and clinical outcomes was 
introduced by Barbanoj et al. (2002b). State-of-the-art applications of pharmaco-
EEG were discussed, together with PK–PD modeling in everyday clinical practice. 
For psychiatry, the applications can be used to discriminate between responders 
and nonresponders to pharmacological treatment using the test dose. The combina-
tion of pharmaco-EEG and PK–PD modeling, although successfully used during 
some drug development programs (e.g., benzodiazepines), is not widely applied 
in the clinical scenario where the CNS is concerned. The authors concluded that to 
develop fully the potentials of pharmaco-EEG together with PK–PD modeling in 
neuroscience therapeutics much work still needs to be done.

Using EEG, Visser et al. (2003) developed a mechanism-based PK–PD mod-
el for neuroactive steroids, comprising a separate characterization of the receptor 
activation process and the stimulus–response relationship was applied to various 
nonsteroidal GABAA receptor modulators. The model yielded estimates of both 
the apparent in vivo receptor affinity (KPD) and the in vivo intrinsic efficacy ePD. 
Significant linear correlations were observed between KPD for unbound concen-
trations and the affinity in an in vitro receptor bioassay and between ePD and the 
GABA-shift in vitro. This study showed that the in vivo effects of nonsteroidal 
GABAA receptor modulators and (synthetic) neuroactive steroids can be described 
on the basis of a single unique transducer function. Furthermore, it was found that 
the nonsteroidal GABAA receptor modulators behave as partial agonists relative to 
neuroactive steroids.

Jonker et al. (2003) investigated the PD interaction between midazolam, an al-
losteric modulator of the GABAA receptor, and tiagabine, an inhibitor of synaptic 
GABA uptake, by EEG recording and parallel plasma concentrations in the rat. 
They found that the in vivo PD interaction between midazolam and tiagabine is ad-
ditive rather than synergistic.

14.4.2  Antidepressants

Using the rat as experimental animal, Geldof et al. (2007, 2008a, b, c) performed 
a series of studies that investigated different mechanisms between SSRI dosing 
and CNS effect in a strict quantitative manner using (semi-)mechanistic PK–PD 
modeling. Fluxoxamine was used as a paradigm SSRI compound. Plasma PK was 
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investigated by a population approach by nonlinear mixed-effects modeling (Geldof 
et al. 2008a). In six studies with a different experimental setup, study site and/
or sampling design, rats received an intravenous infusion of a low, medium, and 
high dose of fluvoxamine. A population three-compartment PK model adequately 
described the fluvoxamine plasma concentrations. Body weight was identified as a 
significant covariate of the intercompartmental clearance. The PK was independent 
of factors, such as dose, surgery, and study site. The utility of the model in animal 
behavioral studies was demonstrated in a PK–PD analysis of the effects on rapid-
eye-movement (REM) sleep in which a sparse PK sampling design was used. This 
indicates that limitations of blood sampling in particular study designs can be over-
come by a mixed-effects-modeling approach.

The next study was on the kinetics of brain distribution of fluvoxamine, estimated 
by simultaneous analysis of plasma, free brain extracellular fluid (ECF), and total 
brain tissue concentrations. The PK model consisted of three compartments for flu-
voxamine concentrations in plasma in combination with a catenary two compartmen-
tal model for distribution into the brain. In this catenary model, the mass exchange 
between a shallow perfusion-limited and a deep brain compartment was described by 
a passive diffusion term and a saturable active efflux term. With increasing dose, a 
disproportional increase in brain concentrations was observed (Geldof et al. 2008a).

The next question was how brain distribution kinetics of fluvoxamine would 
relate to 5-HT transporter (SERT) occupancy. SERT occupancy of fluvoxamine was 
determined in rat frontal cortex ex vivo. Highest SERT occupancy was at early 
time-points after acute administration. Duration of SERT occupancy was longer for 
the higher dose. The maximal SERT occupancy ( Bmax) was 95 %. SERT occupancy 
could be directly related to plasma, brain ECF, and brain tissue concentrations by a 
hyperbolic function ( Bmax model; Geldof et al. 2008c).

In the final study of this series, a mechanistic model was developed to predict the 
time course of the concentrations of 5-HT and its metabolite 5-hydroxyindolacetic 
acid (5-HIAA) in rat frontal cortex following acute administration of fluvoxamine. 
In the model, fluvoxamine increase synaptic 5-HT concentrations by reversible 
blockade of the SERT in a direct concentration-dependent manner, while the 5-HT 
response is attenuated by negative feedback via 5-HT autoreceptors. In principle, 
the model allows for the description of oscillatory patterns in the time course of 
5-HT and 5-HIAA concentrations in brain ECF. The PK–PD analysis revealed that 
inhibition of 5-HT reuptake was directly related to the fluvoxamine concentration in 
plasma. The proposed mechanistic model was the first step in modeling of complex 
neurotransmission processes. The model constitutes a useful basis for the prediction 
of the time course of median 5-HT and 5-HIAA concentrations in the frontal cortex 
in behavioral pharmacology studies in vivo (Geldof et al. 2008b).

With a proper study design and modeling, sparse sampling may provide useful 
data. Feng et al. (2006) used sparse sampling to develop a population PK model 
to described paroxetine data in an elderly (> 70 years) depressed population, with 
data obtained in a 5-year clinical trial investigating “maintenance therapies in late-
life depression” (MTLD-2). The data indicate that female and male subjects with 
different CYP2D6 polymorphisms have different elimination rates and therefore 
may need to be dosed differently based on metabolizer genotype.
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As mentioned in the introduction, disease severity measures, such as the Ham-
ilton depression rating scale (HAM-D), are used as end points in the assessment of 
treatment results as well as response to newly developed drugs. Della Pasqua et al. 
(2010) discussed the implications of the limited sensitivity of global scales and their 
individual items in discriminating response, and that increasing evidence reveals 
that individual HAM-D items are insensitive to the mechanism of action of existing 
antidepressant drugs. Moreover, little distinction can be made between active treat-
ment and placebo. They concluded that differentiation of novel compounds based 
on such clinical scales is unlikely and that a mechanism-based approach accounting 
for the multidimensional nature of symptoms and signs is required.

For improved insight into drug action in diseases as complex as psychiatric diseas-
es, there is a need for more “composite” end points that reflect the underlying mecha-
nisms of action need to be developed. Such was done by Zuideveld et al. (2007), who 
investigated hypothermia and corticosterone increase of the 5-HT(1A)-receptor ago-
nists flesinoxan and buspiridone in the rat and mechanism-based PK–PD models were 
developed and characterized. Flesinoxan is a potent and selective 5-HT1A receptor 
partial/near-full agonist that possesses antidepressant and anxiolytic effects in animals 
(van Hest et al. 1992; Rodgers et al. 1994). In human clinical trials it was found to 
have robust efficacy with very high tolerability (but for unclear reasons development 
was halted and it was never marketed). In patients it enhances REM sleep latency, de-
creases body temperature, and increases adrenocoticotropin (ACTH), cortisol, PRL, 
and growth hormone secretion (Grof et al. 1993; Pitchot et al. 2004). Zuideveld et al. 
(2007) applied allometric scaling to predict drug effects in the human situation, on 
the basis of simulation, taking into account the interindividual variability and clini-
cal study design. The model-predicted effects of both flesinoxan and buspirone were 
compared to those published in the literature. The main finding of this analysis was 
that for both hypothermia and the increase in cortisol levels, the model could predict 
the extent of the pharmacological response in man adequately. For the hypothermic 
response, the time course of the response was also predicted with a high degree of 
accuracy. In contrast, in the case of the cortisol response, the observed time lag was 
not predicted, despite the fact that it fell within the model uncertainty. All together, 
these results indicated that allometrically scaled mechanism-based PK–PD models 
are promising as a means of predicting the PD responses in man.

14.4.3  Antipsychotics

14.4.3.1  Human Studies

Human Plasma PK

Due to high interindividual variability in peripheral PK parameters, dosing of 
antipsychotics relies on clinical trial and error. This blind process of upward or 
downward clinical dose titration carries a risk of relapse and adverse effects in the 
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treatment of schizophrenia. Using population PK methods, insight into sources of 
variability has been sought for.

Mannaert et al. (2005) investigated the single-dose PK profiles of long-acting 
injectable risperidone and oral risperidone. Plasma concentrations of the unchanged 
risperidone and its metabolite 9-OH-risperidone (together referred to as the active 
moiety) were measured in plasma after a single oral dose of risperidone in healthy 
volunteers, and up to 84 days after a single intramuscular injection of long-acting 
injectable risperidone in schizophrenic patients. These data were projected to mul-
tiple dose regimens and average steady-state PK profiles were predicted. The most 
interesting results, obtained at steady state, were a lower predicted peak plasma 
level and a lower predicted degree of fluctuation between steady-state maximal and 
minimal concentrations with long-acting injectable compared to oral administra-
tion, which indicates that this long-acting injectable formulation is to be preferred.

Vermeulen et al. (2007) developed a population model to simultaneously de-
scribe risperidone and 9-hydroxyrisperidone PK, to assess information on inter- and 
intra-individual variability of risperidone and 9-OH-risperidone, and to evaluate the 
influence of patient demographic characteristics and other factors on risperidone, 
9-OH-risperidone, and active moiety PK. Phase 1 (serial blood sampling) and phase 
3 data (sparse sampling) were included. The PK model contained two-compartment 
submodels for risperidone and 9-hydroxyrisperidone disposition and a sequential 
zero- and first-order absorption pathway (selected based on prior knowledge). To 
address CYP2D6 polymorphism of risperidone conversion to 9-hydroxyrisperi-
done, a mixture model was incorporated. The PK model described the plasma PK 
for risperidone and 9-OH-risperidone reasonably well and was able to determine 
each patient’s phenotype. Potential covariates were tested: age, sex, race, body 
weight, lean body mass, body mass index, creatinine clearance, liver function labo-
ratory parameters, study, and carbamazepine comedication. Of these, carbamaze-
pine comedication and study were significantly affecting the PK. Carbamazepine 
also decreased active moiety concentrations.

Using sparse sampling, Feng et al. (2008) assessed covariate effects of age 
(18–93 years), weight, sex, smoking status, race, and concomitant medications, on 
risperidone and 9-OH risperidone PK parameters. A nonlinear mixed-effects model 
(NONMEM) was developed to describe simultaneously the risperidone and 9-OH 
risperidone PK. A one-compartment mixture model with first-order absorption ad-
equately described the risperidone and 9-OH risperidone concentrations. Age was 
identified as a significant covariate on 9-OH risperidone clearance in this study. 
Thyssen et al. (2010) studied the PK of oral risperidone in children and adolescents. 
The PK of oral risperidone was investigated through noncompartmental analysis 
and population PK analysis on a pooled database including both pediatric and adult 
data. Monte Carlo simulations were performed to evaluate the relevance of the ef-
fects of covariates on the plasma exposure of the active antipsychotic fraction. The 
PK analysis showed that, after correcting doses for bodyweight, plasma exposure 
was comparable between children and adolescents. None of the tested demographic 
or biochemical characteristics were found to have a relevant effect on any of the PK 
parameters of risperidone and the active antipsychotic fraction. Also, Sherwin et al. 
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(2012) investigated risperidone and 9-OH-risperidone PK in children and adoles-
cents, searching for covariate effects on PK parameters. A NONMEM modeled the 
PKs of risperidone and 9-OH-hydroxy-risperidone; covariates included age (in con-
trast to Thyssen et al. 2010), weight, sex, and CYP2D6 phenotype (by metabolizer 
subpopulations: extensive, intermediate, and poor).

Ismail et al. (2012) studied the magnitude and variability of plasma concen-
trations of clozapine and norclozapine across the lifespan in a real-world clinical 
setting in a population PK study. “Inpatients” and “outpatients” of the Centre for 
Addiction and Mental Health in Toronto with schizophrenia spectrum disorders 
(age between 11 and 79) with clozapine (Clozaril®) treatment were included. A 
one-compartment model with first-order absorption and elimination best described 
the data. The only covariates with a significant effect on clearance were age and 
sex: clearance for both parent and metabolite decreased exponentially with age at 
least 39 years. Decreased clearance of clozapine and norclozapine with age results 
in increased blood concentrations and, hence, the potential for adverse drug reac-
tions. These findings have particular clinical relevance for the dosing and safety 
monitoring of clozapine in older adults, highlighting a need for increased vigilance.

The PK of paliperidone was determined following intramuscular administration 
of its supposedly long-acting palmitate ester at various doses and at two different 
injection sites (deltoid and gluteal muscle) by Samtani et al. (2009). Polled patient 
data were used from phase 1, 2, and 3 trials. The plasma PK for paliperidone fol-
lowing intramuscular administration of its palmitate ester was best fitted to a one-
compartment model with first-order elimination. The absorption component of the 
model allowed a fraction of the dose to enter relatively quickly into the central 
compartment via a zero-order process. After a lag time the remaining fraction en-
tered the systemic circulation, via a first-order process (dual absorption PK). Inter 
individual variability was found for clearance, central volume of distribution, and 
the absorption rate constant. An additive-error model with log-transformed data was 
used to describe the residual variability. Sex, age, injection volume, injection site, 
body mass index, needle length, and injection volume were all influencing the PK 
of paliperidone after intramuscular administration, resulting in a complex dose–PK 
relationship.

For perphenazine, Jin et al. (2010) characterized the population PK in patients 
with schizophrenia from the clinical antipsychotic trials of intervention effective-
ness (CATIE). Perphenazine was given daily for 14–600 days. A 1-compartment 
linear population PK model best described the data and race and smoking status 
were found to have significant impacts on perphenazine clearance estimates.

The contribution of genetic polymorphisms in the metabolizing enzyme (CY-
P2D6) and in the transporter (ABCB1) genes in healthy subjects was found in a 
population PK analysis of risperidone and 9-OH-risperidone (Yoo et al. 2012). A 
two-compartment model with a first-order absorption and lag time fitted well to se-
rum concentration-time curve for risperidone. 9-OH-risperidone was well described 
by a one-compartment model as an extension of the parent drug (risperidone) model 
with first-order elimination and absorption partially from the depot. The results sug-
gest the interplay of CYP2D6 and ABCB1 on the PK of risperidone and 9-OH-
risperidone according to genetic polymorphisms.
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Population PK of oral risperidone from (male) patients with schizophrenia or 
schizoaffective disorder maintained on risperidone was investigated by, using the 
mixed-effects model that was derived from the data of the clinical antipsychotic 
trials in intervention effectiveness study, to predict antipsychotic plasma concentra-
tions before risperidone dose adjustment. In light of the known relationship between 
plasma drug concentration, dopamine D2 receptor occupancy, and clinical effects 
(see below), the authors concluded that individualized dosing with the measure-
ment of antipsychotic plasma concentrations has the potential for bedside clinical 
application.

Human D2 Receptor Occupancy

Among various adverse reactions of atypical antipsychotics, weight gain and im-
paired glucose tolerance are clinically significant. Matsui-Sakata et al. (2005) ana-
lyzed the quantitative contributions of various receptors to these antipsychotics-
induced adverse reactions in humans using receptor occupancy, assuming cerebro-
spinal fluid (CSF) concentrations to be representative for target site concentrations, 
which may to a certain extent be true (De Lange 2013b). Mean receptor occupan-
cies of alpha 1 adrenergic, alpha 2 adrenergic, dopamine D2, histamine H1, mus-
carinic acetylcholine (mACh), serotonin 5-HT1A, 5-HT2A, and 5-HT2C receptors 
by antipsychotics were estimated by using the PK parameters and receptor dissocia-
tion constants. These receptor occupancy values were correlated to the extent of 
adverse reactions reported in literature, being two indices of antipsychotics-induced 
weight gain and the morbidity rate of type 2 diabetes mellitus during treatment with 
antipsychotics. For weight gain, the correlation between H1 and mACh receptors 
occupancies was significant. The morbidity rate of type 2 diabetes mellitus was 
highly correlated with H1, mACh, and 5-HT2C receptor occupancies. However, 
H1 receptor occupancy was also highly correlated with mACh receptor occupancy 
among antipsychotics, so that only one of them may be critically associated with the 
adverse reactions. As these adverse reactions have not been reported for drugs with 
mACh receptor antagonistic action, other than antipsychotics, the authors argued 
that the H1 receptor may contribute predominantly to the antipsychotics-induced 
weight gain and diabetes mellitus. It was concluded that model analysis based on 
receptor occupancy indicates that H1 receptor blockade is the primary cause of 
antipsychotics-induced weight gain and diabetes mellitus.

Also, using the same approach, Matsui-Sakata et al. (2005) investigated litera-
ture data on the relation between receptor occupancy and EPS induced by typical 
(haloperidol) and atypical (risperidone, olanzapine, and quetiapine) antipsychotics 
in patients. Matsui-Sakata and colleagues took five indices of EPS: (1) The ratio 
of patients obliged to take anticholinergic medication; (2) the occurrence rates of 
plural extrapyramidal symptoms (more than one of tremor, dystonia, hypokinesia, 
akathisia, extrapyramidal syndrome, etc.); (3) parkinsonism; (4) akathisia (inabil-
ity to remain motionless); and (5) extrapyramidal syndrome (involuntary muscle 
spasms in the face and neck). Two models were tested. The first was a model that 
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incorporated endogenous dopamine release owing to 5-HT2A receptor inhibition, 
and the second was a model that did not consider this endogenous dopamine re-
lease. The models were used to examine the relationship between the D2 recep-
tor occupancy of endogenous dopamine and the extent of drug-induced EPS. The 
model that incorporated the endogenous dopamine release better described the 
relationship between the mean D2 receptor occupancy of endogenous dopamine 
and the extent of EPS than the other model. Furthermore, the model incorporating 
endogenous dopamine release could appropriately predict the risks of EPS induced 
by two other atypical antipsychotics, clozapine, and ziprasidone, as external data 
that were not incorporated into the model development. It was concluded that the 
developed model incorporating endogenous dopamine release owing to 5-HT2A 
receptor inhibition may be useful for the prediction of antipsychotics-induced EPS.

Human PRL in Plasma

PRL is secreted by the anterior pituitary gland into the blood stream. It influences 
gonadal function in both sexes, initiates and sustains lactation in females, and con-
trols libido in males. Secretion of PRL by the pituitary is under inhibitory control 
via dopamine from the hypothalamus. Dopamine acts on the pituitary as an inhibi-
tor of PRL secretion. Blockade of dopamine D2 receptors by typical antipsychot-
ics and risperidone can cause hyperprolactinemia in males and females, and may 
lead to amenorrhea, galactorrhea, infertility, loss of libido and erectile dysfunction. 
Increase of PRL concentrations in plasma is an unwanted effect, but can be used 
to have indirect information on functionality of the dopaminergic system. Movin-
Osswald and Hammarlund-Udenaes (1995) were the first to develop a mechanism-
based PK–PD model for the effects of remoxipride on human plasma concentra-
tions of the biomarker PRL. The effect of remoxipride on plasma PRL levels is 
exterted via remoxipride preventing the inhibitory effect of dopamine D2 receptors 
in the anterior pituitary lactotrophs. The model described the time course of PRL 
plasma levels after administration of two consecutive doses of remoxipride at dif-
ferent time intervals, given to eight healthy non-obese volunteers in a randomized 
cross-over study. This design allowed the estimation of the rate of PRL synthesis 
in the lactotrophs. The model consists of three parts: (1) The pharmacokinetics of 
remoxipride, (2) a physiological substance model for PRL, incorporating the syn-
thesis of PRL and its release into and elimination from plasma, and (3) a PD model 
describing the influence of remoxipride on the PRL release from the pool as an 
indirect response. A linear PD model gave the best description of the time course 
of PRL. It was shown that the limitation in the PRL release is the amount available 
in the pool, which takes 1–2 days to fully restore, rather than a maximal effect of 
remoxipride. The intra- and interindividual variability of remoxipride as well as of 
the PRL response was low (Fig. 14.1; Movin-Oswald and Hammarlund-Udenaes 
1995).

Friberg et al. (2009b) developed a quantitative mechanism-based model to de-
scribe PRL release in patients for paliperidone and risperidone. They used data for 
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the time course of PRL in healthy as well as schizophrenic subjects, following the 
administration of various doses and formulations of these antipsychotic drugs. A 
competitive agonist–antagonist interaction (AAI) model described the competition 
between these drugs and dopamine for the D2 receptors that regulate the PRL re-
lease. Tolerance development was explained by a feedback loop with PRL stimulat-
ing dopamine release. This feedback loop better explained the data compared with 
a model that included tolerance described in terms of depletion of a PRL pool. Fur-
ther, the diurnal PRL rhythm was described by a two-period cosine function. Base-
line PRL was health status dependent and higher in women than in men, although 
the drug-induced release was less than proportional to baseline. Also, the model 
confirmed that paliperidone and risperidone have similar potencies for PRL release.

Ma et al. (2010) evaluated tolerance to the PRL response following administra-
tion of antipsychotic drugs for the two-abovementioned models using the remoxi-
pride data. The first was the PRL pool model (Movin-Oswald and Hammarlund-
Udenaes 1995) and the second the AAI model (Friberg et al. 2009b). The remoxi-
pride data were collected from healthy male subjects who received two remoxipride 
infusions on five occasions. The pool model with a circadian rhythm function fitted 
the data slightly better, while the AAI model was better in describing the circadian 
rhythm of PRL. Visual predictive checks revealed that the models predicted the 
PRL profiles equally well.

Clinical Trials Using Human PANSS Scores: Effects, Placebo Effects, and 
Dropouts

The PANSS is one of the most important rating instruments for patients with schizo-
phrenia. All 30 items range from 1 to 7 leading to a minimum total score of 30, 
implying that the PANSS is an interval scale. For such interval scales, calculation 
of relative changes needs to be performed (which is not straightforward), and these 
relative (percent) changes are the widely accepted response criterion (Obermeier 
et al. 2011). PANSS has been used in many clinical trials to evaluate the effects of 
newly developed compounds.
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Fig. 14.1  The integrated model of neuroleptic influence on prolactin (PRL) release. (From Movin-
Oswald and Hammarlund-Udenaes 1995)
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Clinical trials aiming to prove the efficacy of newly developed molecule typical-
ly compare the effects with those observed following placebo treatment in placebo-
controlled trials. However, high failure rates are encountered that are thought to be 
caused by considerable magnitude and variability in placebo response, high dropout 
rates and low sensitivity of the subjective rating scales used for assessing treatment 
effects. So far, non-model-based approaches make the general assumption that both 
placebo effect and disease progression are constant over time, which actually is not 
the case. This may lead to biased clinical trial outcomes. With advanced modeling 
and simulation approaches, one can discriminate among disease progression, pla-
cebo effects and drug effects. The use of an appropriate modeling strategy that is 
capable of identifying the potential sources of variable placebo responses and drop-
out rates is recommended for improving the sensitivity in discriminating between 
the effects of active treatment and placebo (Pilla Reddy et al. 2011).

The effectiveness of paliperidone extended-release (ER) tablets and olanzapine 
was quantified on the basis of PANSS scores in adult schizophrenia patients was 
modeled by Ortega et al. (2010). Patients received daily doses of paliperidone ER, 
olanzapine, or matched placebo for a number of weeks. An indirect response model 
described the time course of the PANSS. Deterioration rate was modeled as a func-
tion of baseline PANSS score, placebo, and drug effects, and the dropout effect. An 
exponential decrease of the placebo response was also implemented. Paliperidone 
ER and olanzapine treatment were characterized by a long-lasting drug effect, with 
a larger but short-lasting placebo effect and a notable dropout rate. The covariate 
exploration failed to identify any clinically relevant factors. The visual predictive 
check supported the model’s adequacy to reproduce observed PANSS time courses. 
It was concluded that the population model would be useful in clinical trial simula-
tion activities for the time course of PANSS scores in schizophrenia patients.

Large variation in placebo response within and among clinical trials can sub-
stantially affect conclusions about the efficacy of new medications in psychiatry. 
Developing a robust placebo model to describe the placebo response is important 
to facilitate quantification of drug effects, and eventually to guide the design of 
clinical trials for psychiatric treatment via a model-based simulation approach. In 
addition, high dropout rates are very common in the placebo arm of psychiatric 
clinical trials. While developing models to evaluate the effect of placebo response, 
the data from patients who drop out of the trial should be considered for accurate 
interpretation of the results. Better understanding of the patterns of dropout and 
the factors leading to dropouts are crucial in identifying the true placebo response. 
By modeling and simulation Friberg et al. (2009a) characterized the PK–PD rela-
tionship of sublingual asenapine in patients with schizophrenia, including placebo 
response and dropouts. The time course of total PANSS scores was characterized 
for placebo and asenapine treatments in a PK–PD model in which the asenapine ef-
fect was described by an E(max) model, increasing linearly over the study period. 
A logistic regression model described the time course of dropouts, with previous 
PANSS value being the most important predictor. The last observation carried for-
ward (LOCF) time courses were well described in simulations from the combined 
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PANSS + dropout model. The observed trial outcomes were successfully predicted 
for all the placebo arms and the majority of the treatment arms (Fig. 14.2).

Pilla Reddy et al. (2012) analyzed how to (1) develop a longitudinal placebo 
model that accounts for dropouts and predictors of the placebo effect, using the 
PANSS score, (2) compare the performance of empirical and semi-mechanistic 
placebo models, and (3) compare different time-to-event (TTE) dropout modeling 
approaches used to account for dropouts. Among the different tested placebo mod-
els, the Weibull model and the indirect response model adequately described the 
PANSS data. Covariate analysis showed that the disease condition, study duration, 
study year, geographic region where the trial was conducted, and route of adminis-
tration were important predictors for the placebo effect. All three parametric TTE 
dropout models, namely the exponential, Weibull and Gompertz models, described 
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Fig. 14.2  Visual predictive checks of the final PANSS model on the PK–PD relationship of 
sublingual asenapine in patients with schizophrenia, including placebo response and dropouts. a 
Simulations from the realized design, b simulations from the combined PANSS + dropout model 
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lated data. (From Friberg et al. 2009a)
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the probability of patients dropping out from a clinical trial equally well. The study 
duration and trial phase were found to be predictors for high dropout rates. Results 
of joint modeling of the placebo effect and dropouts indicated that the probability of 
patients dropping out is associated with an observed high PANSS score. Data analy-
ses suggest that the Weibull and indirect response models are more robust than other 
placebo models to describe the nonlinear trends in the PANSS score. The developed 
placebo models accounts for dropouts and predictors of the placebo effect. This can 
be a useful tool in the evaluation of new trial designs and for better quantification 
of antipsychotic drug effects.

While the use advanced modeling the design of the trial and impact of dropouts 
and predictors of the placebo effects can be accounted for. However, the quality of 
the model also relies on the quality of the data used to develop the model. (Obermei-
er et al. 2011) performed a systematic review of publications in which the PANSS 
was used. They found that the majority of publications (62 %) actually appear to 
use incorrect PANSS calculations, i.e., ignoring the scale level (interval vs. ratio 
scale), while, moreover, in most instances the method of calculation was not even 
described in the manuscript. This might have led to erroneous results concerning the 
efficacy of the treatment. These alarming results underline the need for standardized 
procedures for PANSS calculations.

Apart from that, the use of rating scales such as PANSS inherently include sub-
jectivity. It would therefore be of value to have more objective measures of mecha-
nisms in psychosis. In that respect, preclinical research may be of added value, 
although it is clear that the human disease conditions cannot be reflected.

14.4.3.2  Preclinical Studies and Translational Approaches

While human studies are needed for ultimate investigation of the treatment value 
of antipsychotic drugs, animal studies may provide useful information as obtained 
under well-controlled conditions, and under well-controlled challenges, to be com-
pared to those obtained in humans. Also, animal studies may provide mechanistic 
information that cannot be obtained from humans, such as drug distribution into and 
within the brain. The more knowledge is available on processes on the causal chain 
between drug dosing and effect, the better insight we will have in impact of these 
processes on the ultimate effect in different conditions.

Rat D2 Receptor Occupancy

In the rat, selective suppression of conditioned avoidance response has been wide-
ly reported as a test with high predictive validity for antipsychotic efficacy. Fur-
thermore, it has been shown that the relationship between dopamine D2 receptor 
occupancy and the suppression of conditioned avoidance response behavior cor-
relates well with the relationship between human dopamine D2 receptor occupancy 
and clinical effect. Evaluated PK–PD predictions of therapeutic effective steady-
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state plasma levels by means of conditioned avoidance response behavior in ro-
dents. Also, how this would correlate with clinically relevant plasma exposure for 
the classical antipsychotic drug haloperidol and four SGAs: sertindole, clozapine, 
risperidone, and olanzapine, including selected metabolites, like 9-OH-risperidone 
(paliperidone). First, the validity of the conditioned avoidance response and in vivo 
striatal dopamine D2 receptor occupancy was determined in parallel, using 3H-
raclopride as the radioligand. The PK–PD relationship was established by modeling 
the time-response and time-plasma concentration data. The order of dopamine D2 
receptor occupancy required to suppress conditioned avoidance response behavior 
according to EC50 measurements to be sertindole (+ dehydrosertindole) = dehydro-
sertindole = paliperidone = haloperidol = olanzapine > risperidone >> clozapine. 
Overall, a good agreement was observed between the rat dopamine D2 receptor oc-
cupancy levels providing 50 % response in the conditioned avoidance response test 
and the dopamine D2 receptor occupancy levels reported from responding schizo-
phrenic patients treated with antipsychotics. Predictions of therapeutically effective 
steady-state levels for sertindole (+ dehydrosertindole) and olanzapine were three- 
to fourfold too high whereas for haloperidol, clozapine, and risperidone the pre-
dicted steady-state EC50 in conditioned avoidance responding rats correlated well 
with the therapeutically effective plasma levels observed in patients. This indicates 
that the proposed PK–PD model may serve as a guide for determining effective 
plasma concentrations of potential antipsychotics in the clinical setting and thereby 
accelerating the overall drug development process.

For rats, a mechanism-based PK–PD population model was developed to predict 
the time course of dopamine D2 receptor occupancy in striatum as PD biomarker 
following administration of olanzapine in rats by different routes (Johnson et al. 
2011). A two-compartment PK model was used to describe the plasma PK. A hybrid 
physiology- and mechanism-based model was developed to characterize the D2 
receptor occupancy in the striatum. Plasma, brain concentration profiles, and time 
course of D2 receptor occupancy were well described by the model. The validity 
of the proposed model is supported by good agreement between estimated associa-
tion and dissociation rate constants and in vitro values from literature. This model 
includes both receptor–binding kinetics and PK as the basis for the prediction of 
the D2 receptor occupancy in rats. Moreover, this modeling framework can be ap-
plied to scale the in vitro and preclinical information to clinical receptor occupancy. 
For risperidone and paliperidone, the same approach in rats was used by Kozielska 
et al. (2012), now taking both dopamine D2 and serotonin 5-HT(2A) receptor oc-
cupancy as biomarkers of the PD of these drugs. The model of Johnson et al. (2011) 
was expanded to include metabolite kinetics, active efflux from brain, and binding 
to 5-HT(2A) receptors in the frontal cortex. A two-compartment model best de-
scribed the plasma PK profile of risperidone and paliperidone. The expanded model 
described brain concentrations and D2 and 5-HT(2A) receptor occupancy well. 
Inclusion of binding to 5-HT(2A) receptors was necessary to describe observed 
brain-to-plasma ratios accurately. Interestingly, simulations showed that receptor 
affinity strongly influences brain-to-plasma ratio pattern. It was found that binding 
to both D2 and 5-HT(2A) receptors influences brain distribution of risperidone and 
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paliperidone. This may stem from their high affinity for D2 and 5-HT(2A) recep-
tors. It was concluded that receptor affinities and brain-to-plasma ratios need to be 
considered before choosing the best PK–PD model for centrally active drugs.

To elucidate the effects of D2 receptor blockade on neurocognitive function 
Sakurai et al. (2013) evaluated the impact of estimated dopamine D2 receptor oc-
cupancy with antipsychotic drugs on several domains of neurocognitive function in 
patients with schizophrenia in the CATIE trial. Subjects treated with risperidone, 
olanzapine, or ziprasidone, received assessments for neurocognitive functions (ver-
bal memory, vigilance, processing speed, reasoning, and working memory) and psy-
chopathology. D2 receptor occupancy levels on the day of neurocognitive assess-
ment were estimated from plasma antipsychotic concentrations, using population 
PK analysis and their recently developed model (Uchida et al. 2011). A multivariate 
general linear model was used to examine effects of clinical and demographic char-
acteristics, including estimated D2 receptor occupancy levels, on neurocognitive 
functions. D2 receptor occupancy levels showed significant associations with the 
vigilance and the summary scores. Neurocognitive functions, including vigilance, 
were especially impaired in subjects who showed D2 receptor occupancy level of 
> 77 %. These findings suggest a nonlinear relationship between prescribed antipsy-
chotic doses and overall neurocognitive function and vigilance. This study shows 
that D2 receptor occupancy above approximately 80 % not only increases the risk 
for extrapyramidal side effects as consistently reported in the literature but also in-
creases the risk for cognitive impairment. While 65–80 % occupancy of dopamine 
D2 receptors optimizes therapeutic efficacy while minimizing risks of extrapyrami-
dal symptoms in treating schizophrenia, it is unclear as to whether it is necessary to 
keep D2 receptor occupancy within this therapeutic window to maintain response. 
Mizuno et al. (2012) studied daily peak and trough D2 receptor occupancy levels in 
clinically stable patients with schizophrenia who were receiving risperidone or olan-
zapine. Plasma antipsychotic concentrations at peak and trough were estimated with 
population PK techniques. Corresponding dopamine D2 receptor occupancy levels 
were then estimated, using their recently developed model (Uchida et al. 2011). Of 
the male subjects with stable schizophrenia (Asians and Caucasians, of middle age), 
around 50 % did not achieve a continuous blockade of ≥ 65 %. Moreover, around 
12 % of the subjects did not achieve the 65 % threshold at estimated peak concen-
trations. The results suggest that sustained D2 receptor occupancy levels of ≥ 65 % 
may not always be necessary for the maintenance treatment of schizophrenia.

Translational Approach to Predict Human Effects of Antipsychotics

Stevens et al. (2012) developed a mechanism-based PK–PD model for the biological 
system PRL response following a dopamine inhibition challenge using remoxipride 
in the rat. Remoxipride concentrations were determined in plasma and in brain 
caudate putamen extracellular fluid (brain ECF), following a single intravenous 
administration of a low, medium and high dose. In these studies, PRL response 
was measured in plasma as well as following double dosing of the low dose with 
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different time intervals. Baseline variation in PRL concentrations was also assessed. 
The mechanistic PK–PD model consisted of: (1) a PK model for remoxipride con-
centrations in brain ECF; (2) a pool model incorporating PRL synthesis, storage 
in lactotrophs, release into- and elimination from plasma; (3) a positive feedback 
component interconnecting PRL plasma concentrations and PRL synthesis; and (4) 
a dopamine antagonism component interconnecting remoxipride brain ECF con-
centrations and stimulation of PRL release. The most important findings were that 
the brain ECF concentrations of remoxipride drive the PRL release into plasma, and 
the positive feedback of plasma PRL concentrations on the PRL synthesis in the 
lactotrophs. The latter is in contrast to the negative feedback found in the previous 
human models on the PK–PD correlation of remoxipride, paliperidone, and ris-
peridone (Friberg et al. 2009b; Ma et al. 2010). An external validation of the model 
was performed using a dataset obtained in rats following intranasal administration 
of low, medium, and high doses of remoxipride. Following simulation of human 
remoxipride brain ECF concentrations, PD extrapolation from rat to humans was 
performed, using allometric scaling in combination with independent information 
on the values of biological system specific parameters as prior knowledge. The PK–
PD model successfully predicted the system PRL response in humans as obtained 
by indicating that positive feedback on PRL synthesis and allometric scaling thereof 
could be a new feature in describing complex homeostatic mechanisms.

14.4.3.3  Summary

Psychiatric diseases are extremely complex with regard to diagnosis and treatment. 
This is due to the heterogeneity in the expression of the disease features and the 
current subjective scales used for diagnosis, the difficulties in assessment of drug 
treatment outcomes, and the problems in distinguishing between the “true effects 
from the placebo effects.” The current knowledge on psychiatric diseases is largely 
based on empirical approaches, but it is clear that pharmacometrics in psychiatric 
diseases is upcoming, with the number of publications that has increased especially 
in the past 5 years. These publications have already aided in better understanding 
drug versus placebo and effects, impact of dropouts on assessment of such effects, 
and sources of variability. The pharmacometric models on antipsychotics so far 
have identified interindividual variability at the level of human plasma PK such as 
age (Ismail et al. 2012; Sherwin et al. 2012), sex (Ismail et al. 2012; Sherwin et al. 
2012), body mass index (Sherwin et al. 2012), genetic polymorphism in CYP2D6 
and ABC1 (Yoo et al. 2012), and modes of drug administration. Then, the models 
have improved knowledge on the relation between plasma drug concentration, hu-
man brain receptor occupancy and its, and clinical effect. H1 receptor occupancy 
was mostly related to anti-psychotics-induced weight gain and diabetes mellitus 
(Matsui-Sakata et al. 2005), and D2 receptor occupancy by endogenous dopamine 
released via 5-HT2A receptor inhibition mainly related to the extent of drug-in-
duced EPS. Also, it has been concluded that sustained receptor occupancy of the 
D2 receptor to an extent larger than 65 % is not always necessary to maintain anti-
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psychotic effects (Mizuno et al. 2012). For the effect of a number of antipsychotic 
drugs it should be realized that dopaminergic functionality can be reflected by PRL 
concentrations in plasma, but with that the rate of synthesis of PRL in the lactotroph 
for repetitive dosing needs to be taken into account, as has been shown for remo-
xipride (Movin-Osswald and Hammarlund-Udenaes 1995). Then, a very important 
contribution of modeling and simulation is the potential of a better distinction be-
tween drug effect and placebo effect, by inclusion of placebo and dropout models.

14.5  Discussion and Conclusions

14.5.1  Current Problems in Diagnosing and Treatment  
of Psychiatric Diseases

The first problem in finding good treatment for psychiatric diseases is the highly 
heterogeneous nature of these diseases and (therewith) the treatment outcomes 
(Leucht et al. 2012). The “one drug fits all” approach obviously does not work and 
indicates the need for personalized medicine. Second, these diseases are displayed 
at a behavioral and psychological level. What makes how we feel, think, and behave 
like we do? Human behavior and psychology is extremely complex and involve 
the contribution and complex interaction of a plethora of underlying mechanisms 
for which lots of knowledge still needs to be gained. The fact that human behavior 
cannot be easily tested in laboratories or reproduced in animal models further com-
plicates our understanding of psychiatric symptoms or even diseases (Agarwal et al. 
2010). Third, classification of type and severity of the diseases as well as treatment 
outcomes are currently still based on subjective rating scales. Fourth, in testing new 
treatments for psychiatric diseases, clinical trials have dealt with problems of pla-
cebo effects and dropouts during the trials that need to be taken into consideration, 
as otherwise in essence biased and not valid conclusions may be drawn.

14.5.2  Towards Better Treatment of Psychiatric Disorders

Nothing can be done about the heterogeneity of the psychiatric diseases, and im-
provements in drug treatment of psychiatric diseases must come from better diag-
nosis of the disease and from (more) objective assessment of drug treatment effects, 
as well as knowledge on sources of variability in drug treatment outcomes. Also, 
we need to (further) improve clinical trial design for distinction between drug ef-
fects versus placebo effects, and need to include the impact of dropouts during the 
trial. With such knowledge, combined with pharmacometric modeling approaches, 
we will be able to improve our knowledge on processes that govern our behavior 
and psychology, in terms of “normal” and “deviations” thereof, as well as sources of 
variability between “subjects” in terms of disease expression and treatment variation.
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14.5.2.1  Increased Insight into Sources of Variability

Due to high interindividual variability in peripheral PK parameters, current dosing 
of antipsychotics relies on clinical trial and error. This “blind” process of upward 
or downward clinical dose titration carries a risk of relapse and adverse effects in 
the treatment of schizophrenia (Leucht et al. 2012). Using population PK methods, 
insight into sources of variability has been sought for. Pharmacometric models that 
have been discussed before have shown interindividual variability at the level of hu-
man plasma PK of antipsychotics include age, sex, body mass index, smoking, ge-
netic polymorphism, and modes of drug administration, as covariates in the models.

14.5.2.2  Use of Quantitative, Objective, and Combined  
(Composite) Biomarkers

A pharmacometric model can never be better than the data that have been used for 
development of such a model. So, for that reason, here the use of different quantita-
tive and objective types of data is recommended. A first improvement in the quality 
of data is to use objective biomarkers. The scores that have been used till now in 
essence rely on more or less extensive questionnaires (such as the PANSS score). 
These are highly subjective as it is about the opinion of the patient, the clinician, 
and possibly close relatives or friends. This is far from ideal and the search should 
therefore be on finding objective measures that can serve as quantitative and objec-
tive biomarkers for individual diagnosis of the disease and for individual thera-
peutic effects. Given the multiple processes involved in the disease, it can be seen 
that a single biomarker will never provide enough insights, and there is a need for 
a composite biomarker (combination of biomarkers) obtained at different levels of 
biological system functionality (for categorization see Danhof et al. 2005). Given 
the fact that the human brain is not really accessible for invasive measurements, 
information should come from accessible body compartments like blood sampling, 
and, if from brain, by using noninvasive techniques. These techniques can all be 
used in animals as well as in humans and are of high value as therefore they may be 
included in translational approaches, and will aid in better prediction (Stevens et al. 
2012; De Lange 2013a).

Imaging Techniques

With imaging methods, brain disorders and the related occupancy of specific recep-
tors (PET), and function of neurotransmitter pathways (magnetic resonance (MR)-
based tools) can be investigated in a noninvasive way. Being noninvasive, it provides 
the ideal tool for translation from preclinical to clinical investigations (Klomp et al. 
2012). PET studies have already been included in pharmacometric models on schizo-
phrenia including receptor occupancy (as discussed in Sect. 14.3). Other imaging 
techniques can be very informative as well. During the past three decades, several 
MR-based tools such as MR morphometry, diffusion-tensor imaging, functional MR 
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imaging (fMRI) connectivity and MR spectroscopy have yielded findings that pro-
vide tangible evidence of the neurobiologic manifestations of psychiatric diseases 
(Agarwal et al. 2010). This holds promise to reveal more of the neurobiological un-
derpinnings of psychiatric disorders but also enhancing our understanding of healthy 
(human) behavior. Structural MRI studies have indicated that patients with schizo-
phrenia, and to some extent their unaffected relatives, have subtle deficits in several 
brain regions, including prefrontal and temporal lobes. Whalley et al. (2004) were 
curious how this inherited vulnerability leads to psychosis. They used a covert verbal 
initiation fMRI task that elicits frontal and temporal activity (the Hayling sentence 
completion task) to examine this issue. It was found that vulnerability to schizophre-
nia may be inherited as a disruption in a fronto-thalamic-cerebellar network, and the 
earliest changes specific to the psychotic state may be related to hyperactivation in 
the parietal lobe. Whalley et al. (2005) discussed schizophrenia from the perspec-
tive of cognitive function, along with structural and functional brain abnormalities, 
most notably in pre-frontal and temporal lobes. An important risk factor for develop-
ing the disorder is in the first place the inherited vulnerability. Similar deficits are 
apparent in relatives but less marked than those seen in patients with schizophre-
nia. With a hypothalamic MRI study Goldstein et al. (2007) investigated potential 
changes in schizophrenia with respect to supposed abnormal volumetric increases. 
These were indeed found, with greater severity in multiplex families (more than 
one ill member) compared with simplex families (one ill member). Their findings 
demonstrated significantly increased hypothalamic volume in psychotic cases and 
nonpsychotic relatives. This increase was linear from simplex to multiplex cases 
and positively correlated with anxiety, with a greater propensity in women. These 
findings suggest important implications for understanding genetic vulnerability of 
schizophrenia and the high rate of endocrine abnormalities. Brain MR morphometry 
studies on heterogeneity within the diagnostic category of schizophrenia have shown 
that brain structure per se is not a uniform endophenotype, but rather a combination 
of regional deficits highly heterogeneous in both meeting endophenotype criteria as 
well as in their distribution within the disease category. As fMRI brain connectivity 
is able to study impaired brain connectivity in schizophrenia, it also provides a tool 
to investigate the effect of drug treatment and challenges on the disconnectivity of 
functional networks in schizophrenia (Nejad et al. 2012). It can be concluded that the 
use of imaging methods is of great value in further investigation on schizophrenia 
and treatment.

Quantitative EEG, Pharmaco-EEG

Another interesting but apparently controversial technique is the quantitative 
electroencephalogram (QEEG; or termed pharmaco-EEG when drug treatment 
is evaluated). An early QEEG study was performed by Kuperman et al. (1996), 
who identified electrophysiological differences between children with distinct dis-
orders of attention and/or hyperactivity and indicated that QEEG techniques may 
prove useful in differentiating specific subtypes of ADHD. But the introduction of 
pharmaco-EEG approaches into clinical practice appears problematic (Mucci et al. 
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2006). Prichep (2005) argued that the clinical utility of the EEG, especially in psy-
chiatric, learning, and cognitive disorders, has been greatly enhanced by the use 
of quantitative analysis (QEEG), but emphasized that adequate sampling across a 
broad age range, inclusion/exclusion criteria, adequate sample of artifact-free data 
to demonstrate reliability and reproducibility of norms and specificity and sensitiv-
ity should be carefully considered. With that a normative database could be devel-
oped that allows the multivariate description of patterns of QEEG abnormalities 
in patients as compared to age appropriate normative values, and the exploration 
of neurophysiological heterogeneity within populations. They further showed the 
existence of the clinical significance of this approach in the scientific literature that 
demonstrated that QEEG provides high sensitivity and specificity to abnormalities 
in brain function seen in psychiatric populations. The latest publication on QEEG 
is a plea for this technique. According to Alhaj et al. (2011), the use of EEG offers 
two potential major means of addressing assessment of neurological information 
in psychiatric diseases. First, QEEG is able to provide direct data relating to neural 
activity that may be abnormal in certain disorders. With that as a given, there are 
opportunities for utilizing the QEEG in a variety of ways as an objective outcome 
measure. Second, there is growing evidence that in certain circumstances the QEEG 
can be used to predict which patients are likely to respond to treatment, thus poten-
tially increasing the power of studies by decreasing non-response rates and increas-
ing mean changes in outcome measure. It therefore seems that the QEEG approach 
hold promise in objective assessment of deviations in neural activity that underlies 
normal as well as changes in our brain functioning.

Blood Hormone Levels

Another, less expensive and more readily useful approach is (serial) blood sam-
pling. As the brain is in constant endocrinal communication with the rest of the 
body, plasma may provide very useful information on brain functioning. The hy-
pothalamus’ most important function is to link the nervous system to the endocrine 
system, via the pituitary gland (hypophysis). Interestingly, plasma hormone levels 
may be assessed as well in response to administration of endogenous compounds. 
A very old but highly relevant study has been performed by Ferrier et al. (1983). 
Comparing blood sample concentrations obtained from chronic schizophrenics 
and controls before and after the intravenous administration of protirelin and from 
controls, they found reductions in basal luteinizing hormone (LH) and follicle-stim-
ulating hormone (FSH) in the schizophrenic group. The FSH and PRL responses 
to the administration of protirelin and gonadorelin gonadorelin or gonadotropin re-
leasing hormone (GnRH) were reduced in the schizophrenic group. This pattern of 
hypothalamic-pituitary dysfunction, which is distinct from that seen in other psychi-
atric and endocrinological conditions, suggests a reduction in spontaneous GnRH 
release from the hypothalamus in schizophrenia and may be of potential patho-
physiological significance. Then, in this chapter it has already been shown that for 
antipsychotic drugs, PRLconcentrations in plasma may change upon administration 



E. C. M. de Lange438

of antipsychotics (Movin-Osswald and Hammarlund-Udeneas 1995; Stevens et al. 
2012). This is by induced changes in the hypothalamus that is taken further effect on 
the pituitary release, reflecting changes in dopaminergic functionality of (specific 
parts of) the brain. Bernstein et al. (2010) wrote a review on the hypothalamus being 
involved in many pathways that have been found to be disturbed in schizophrenia 
(hypothalamus–pituitary axis, hypothalamus–pituitary–thyroid axis, hypothala-
mus–pituitary–gonadal axis, metabolic syndrome, sleep–wakefulness cycle, and 
neuroimmune dysfunction). While it was earlier assumed that the hypothalamus 
plays only a subordinate role in schizophrenia, but on the basis of Bernsteins’s re-
view (Bernstein et al. 2010) the place of the hypothalamus should be reconsidered 
in the puzzle of schizophrenia. So, via blood sampling there is a lot to be gained in 
understanding the disease and effects of drugs on the disease phenotype.

14.5.2.3  Improvement in Clinical Trial Design

For the design of clinical trials also a number of issues need to be taken into con-
sideration, which being inclusion/exclusion criteria, randomization, ethical issues, 
placebo effects, and dropouts.

Inclusion/Exclusion Criteria

Another consideration in clinical trial design is on selection of a representative se-
lection of the target population as potential differences between the “ideal” and “av-
erage” patient may bias the outcomes. This is related to restrictive inclusion/exclu-
sion criteria, ethical considerations, differences in the severity of psychopathology 
between clinical and trial patients, or safety issues. This was investigated by Riedel 
et al. (2005) using retrospective analysis of particular clinical trials. It was found 
that the patients included in their clinical trials were representative of the patient 
encountered in routine clinical practice. Their recommendations were to adhere to 
inclusion and exclusion criteria to prevent inclusion of severely ill (e.g. suicidal) 
patients requiring a more intensive treatment setting, inclusion of the more chronic, 
rather treatment refractory patients as this population may arguably not represent 
the average clinical patient either.

Randomization

Another key feature of the quality of a clinical trial is the level of randomiza-
tion. Study subjects should be randomly allocated to receive one or other of the 
alternative treatments under study, after assessment of eligibility and recruitment 
but before the intervention to be studied begins (en.wikipedia.org/wiki/Random-
ized_controlled_trial). Random implies that each individual or unit being entered 
into a trial has the same chance of receiving each of the possible interventions. It 
also implies that the probability that an individual will receive a particular inter-
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vention is independent of the probability that any other individual will receive the 
same intervention. After randomization, the two (or more) groups of subjects are 
followed in exactly the same way, and the only differences between the treatment 
(in terms of procedures, tests, outpatient visits, follow-up calls, etc.) should be only 
associated with the treatments being compared. The most important advantage of 
proper randomization is that it minimizes allocation bias, balancing both known and 
unknown prognostic factors, in the assignment of treatments. From most to least 
common in the medical literature, the major categories of randomized clinical study 
designs are: (1) Parallel-group—each participant is randomly assigned to a group, 
and all the participants in the group receive (or do not receive) an intervention; (2) 
crossover—over time, each participant receives (or does not receive) an interven-
tion in a random sequence; (3) cluster—pre-existing groups of participants are ran-
domly selected to receive (or not receive) an intervention; and (4) factorial—each 
participant is randomly assigned to a group that receives a particular combination 
of interventions or non-interventions (e.g. group 1 receives compound X and com-
pound Y, group 2 receives compound X and placebo Y, group 3 receives placebo X 
and compound Y, and group 4 receives placebo X and placebo Y; Hopewell et al. 
2010).

Ethical Issues

In addition, in clinical trials, ethical issues need to be taken into consideration. Sil-
verman (2007) emphasized that the ethical conduct of a clinical trial does not end 
with the formulation of study design or the obtainment of a signature on the in-
formed consent form. An important question is whether it is a right of investigators 
to have patients omitted from treatment if there is a chance that they will suffer from 
that. Then it is necessary to monitor responsibilities to ensure the adequate protec-
tion of the rights and welfare of human subjects and the four parties who share such 
responsibilities: the institutional review board, the data monitoring committee (or 
the data safety and monitoring board), the sponsor, and the investigator. There are 
numerous challenges, being associated with monitoring—such as overlapping re-
sponsibilities, communication gaps, and lack of standards—and attempts to provide 
recommendations to address some of these issues.

Placebo Effects

The design and conduct of clinical trials present a complex array of challenging 
problems, one of which is that of the placebo effect. The effect of placebo observed 
in schizophrenia clinical trials represents a growing problem that interferes with 
signal detection for treatments, increases costs of development, discourages in-
vestment in schizophrenia research, and delays the introduction of new treatments 
(Alphs et al. 2012). The first step in addressing the issue of placebo effect is ac-
knowledgment of its existence. The focus should then be on its potential causes 
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in order to adjust clinical trial design elements. Clearly, the sources of placebo re-
sponse are diverse. Understanding placebo response as a neurobiological effect is 
different from the sources of “placebo response” in a population that includes a 
much broader range of issues that relate to trial design, conduct, and factors such 
as ascertainment bias and regression to the mean. The latter may be associated with 
strong regional differences. All of these factors should be taken into consideration 
when interpreting results from clinical trials. Increasing placebo response is fre-
quently associated with increased variance around study end point measurement, 
leading to poor signal detection. This, in turn, has led to increasing sample sizes, 
increasing numbers of failed studies and much higher treatment development costs. 
Therefore, failure to address these issues threatens the support for investments in 
and the success of CNS drug development.

Dropouts

Typically, high dropout rates characterize clinical trials of antipsychotic treatment 
and can be even higher than 50 % and dropout leads to missing data that can vary 
so much that it affects modeling and analysis (Rabinowitz and Davido 2008a, b). 
Accordingly, questions have been raised about the most appropriate method for 
analyzing efficacy data in clinical trials of antipsychotic treatment in general, and 
specifically the validity of the commonly used LOCF method, mixed-effects mod-
els, and of other methods used in these trials. Three types of dropouts can be dis-
tinguished. First is the “missing completely at random” (MCAR). MCAR refers to 
a situation where the lack does not depend on either observed or unobserved data. 
MCAR can readily be handled in the analysis. Nevertheless, MCAR leads to loss of 
power due to diminished sample size. Second is the “missing at random” (MAR). 
MAR occurs if the missing data depend on variables that are observed during the 
trial but not on unobserved data (e.g., the increased dropout in the placebo arm of 
a study or high dropout rates in a particular study center). In such cases, dropout is 
explained by the observed data and can be accounted for in the data analysis. Third 
is the “missing not at random” (MNAR). MNAR occurs if the lack depends on un-
observed data. For example, if a patient who was doing well but got lost to follow 
up because he/she had relapsed after the last observed visit and was admitted to a 
different hospital. Then, the observed data could not predict the missing data. The 
unobserved data contained information not foreseen by the observed data. MNAR 
cannot be corrected for without explicitly specifying a model for the missing data 
mechanism, which by definition cannot be observed or tested. A standard approach 
used in clinical trials is LOCF. LOCF uses the last completed observation while 
on treatment to estimate a (hypothetical) last study visit value. This is problematic 
because it assumes that the data are MCAR and that symptoms would remain abso-
lutely unchanged from the last visit before dropout to the end of the study. Thereby, 
this approach is underestimating variability in the data. Mixed-effects models and 
imputation methods work if data are MCAR or MAR; however, if the data are 
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MNAR then inferences based on these methods will not be valid. Key to choosing 
an appropriate method for analyzing data in clinical trials is the extent to which 
dropout and outcomes are related. Rabinowitz and Davido (2008a, b) examined 
whether dropout is related to outcome in clinical trials of antipsychotic treatment 
and concluded that dropout in such clinical trials corresponds with efficacy out-
comes, the dynamics of symptom change and baseline symptom severity. There-
fore, methods for statistical analysis should examine both efficacy and dropout and 
cannot assume that missing data due to dropout are completely at random. In real 
life, dropout is probably often related to symptomatology and it is also an important 
outcome. In these situations, MNAR cannot be ruled out. Therefore, methods that 
can handle MNAR are needed. One such method that is not dependent on the mech-
anism of missing data is the composite approach that does not impute data but si-
multaneously tests the combined outcome of completing the trial and improvement. 
Because dropout corresponds with symptom severity, attention to missing data due 
to dropout in analyzing efficacy data in trials of antipsychotic medication is impor-
tant. By meta-analysis of randomized controlled trials of antipsychotic treatment 
using meta-analytic random effects models Rabinowitz et al. (2009) shown that 
dropout was higher for first- than second-generation drugs. Mixed-effects models 
for meta-analysis were used to identify design features that effected dropout and to 
develop equations to derive expected dropout rates based on trial design features. 
All together, this study indicated that dropout rates are lower for second- than first-
generation antipsychotic drugs and appear to be partly explained by trial design 
features thus providing direction for future trial design.

14.5.3  Towards a Multidisciplinary Approach

It can be seen that progress in the quality of treatment of psychiatric diseases will 
come from a multidisciplinary approach including (neuro)biology, (neuro)pharma-
cology, psychiatrists, drug companies, family and friends, regulatory agencies, and 
last but not least pharmacometrics. Quantitative and combined (composite) bio-
markers of which most can be obtained in animals as well as humans will allow 
the development of translational models (Stevens et al. 2012; De Lange 2013a) and 
help to provide insight in the disease-related changes in schizophrenic conditions 
and the effects of drug treatment.

14.5.4  Conclusion

As the highest possible quality of a model is determined by the quality of the data 
used to develop the model (Obermeier et al. 2011; De Lange 2013a), individual 
diagnosis of psychiatric diseases and therapeutic effects of drugs today can, and 
therefore should, include quantitative and objective biomarkers at different physi-
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ological levels, which can even be combined with/ compared to the PANSS score. 
Furthermore, pharmacometrics modeling and simulation has an important role in 
better selection of the right population, treatment duration, and disease conditions 
in clinical trials, as well as in much improved design of clinical trials, to better dis-
criminate between drug and placebo effects. Model-based clinical trial simulation 
will allow reliable prediction of the outcomes of future trials, if various predictors of 
the placebo response and dropout are taken into consideration. Therefore, it needs 
to completely integrate disease-progression models, placebo models, drug-response 
models, covariate models, and dropout models (Pilla Reddy et al. 2011). Moreover, 
important additional insights can come from preclinical studies if designed accord-
ing to the mastermind to allow for development of predictive translational models 
approach (De Lange 2013a).

Finally, it is important to realize that people suffering from psychiatric diseases 
need to be helped by appropriate drug treatment but also by attention and care of 
their surroundings.

Bullet Point Summary 
• Psychiatric diseases are difficult to treat. This is due to the following issues:

− Psychiatric diseases are highly heterogeneous and complex.
− These diseases are displayed at a behavioral and psychological level that we 

do not really understand.
− A number of drugs are available for treatment of these diseases, but there is 

much room for improvement.
− Classification of type and severity of the disease and treatment outcomes are 

currently still based on subjective rating scales.
− Clinical trials on testing the effects of new treatments for psychiatric diseases 

have dealt with problems of placebo effects and dropouts during the trial.
• Improvements in drug treatment of psychiatric diseases must come from:

− The use of (more) objective measures and especially their combination (com-
posite biomarkers) for better diagnosis of the disease and of drug treatment 
effects.

− Inclusion of objective (composite) biomarkers that can be obtained both pre-
clinically and clinically, to enhance translational insights.

− More knowledge on sources of variability in disease.
− More knowledge on sources of variability in drug treatment outcomes.
− (Further) improvement of clinical trial design for valid distinction between 

drug effects versus placebo effects, the impact of dropouts during the trial on 
the outcome.

− Inclusion of pharmacometric approaches, to develop and apply mathemati-
cal and statistical methods for quantitative characterization, understanding, 
and predicting the PK and (biomarkers of) PD of a drug, and covariates for 
sources of variability.
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14.6  Recommendations

For improved treatment of psychiatric diseases, a highly important role has to be 
played by pharmacometric modeling approaches. In order to tackle practical ques-
tions in drug development in the area psychiatric disorders the following is recom-
mended:

• The use of objective and composite biomarkers to inform on the functioning 
of the biological system at and treatment perturbation thereof at distinct levels/
biomarker types, in a mechanistic manner.

• The use of animal studies for development of preclinical translational models, 
as animal research allows for obtaining more information than can be obtained 
from humans (although it is clear that the human disease conditions cannot be 
reflected).

• Inclusion of pharmacometric simulation in the design preclinical studies.
• Inclusion of model-based clinical trial simulation for reliable prediction of the 

outcomes of future trials (i.e., with complete integration of placebo-, dropout-, 
disease progression-, and drug effect models).
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15.1  Introduction

Alzheimer’s disease (AD) affects 35 million patients worldwide, with an expected 
increase to 150 million within the next generation (World Alzheimer’s Report 2010; 
Schneider and Sano 2009).

Recent late phase failures for candidate drugs for AD highlights the importance 
of developing more informative tools to increase the efficiency of the decision-
making process (Schneider and Sano 2009). Currently available evidence suggests 
the initiating event in AD is related to abnormal processing of beta-amyloid (Abeta) 
peptide, ultimately leading to the formation of Abeta plaques in the brain. Jack 
et al. have proposed an overarching model that relates disease stage to AD biomark-
ers in which Abeta biomarkers become abnormal first, before neurodegenerative 
biomarkers and cognitive symptoms, and neurodegenerative biomarkers become 
abnormal later, and correlate with clinical symptom severity. This process can begin 
decades prior to any clinical signs of diminished cognition.

Ideally, a quantitative understanding of the time course of disease  progression 
(cognitive and functional deterioration), and the relevant sources of variability 
would be the most useful for drug development. While the ability to detect and 
analyze biomarkers in the cerebrospinal fluid (CSF) related to Abeta and Tau have 
emerged over the past decade, limited longitudinal data are yet available to com-
pletely quantify each of the curves above. In addition, the ability of these  biomarkers 
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(Abeta, Tau, and brain structure) to translate into clinical outcome has not yet been 
determined. Attempts at meta-analytics for these endpoints are further hampered 
by factors such as interlaboratory assay and imaging algorithm differences. On the 
other hand, a wealth of information is available for the clinical manifestations, es-
pecially memory or cognition. As such, the majority of work involving clinical trial 
simulation (CTS) on AD has involved the primary clinical outcomes typically mea-
sured in these studies—function and cognition. While various tests have been used 
to measure functional changes across clinical studies, the Alzheimer’s disease as-
sessment scale cognitive sub-scale (ADAS-cog) has been used almost universally in 
trials of mild and moderate AD patients to measure changes in cognition. As a result, 
the majority of CTS activities in AD have focused on variants of the ADAS-cog.

Assumptions about disease progression and the time-variant effects of placebo 
and existing drug treatments for AD form the basis for various decisions made in AD 
drug development, including decisions relating to trial design and analysis (Rogers 
et al. 2012). While ad hoc synthesis of estimates from a small number of trials can, 
in some cases, form sufficient evidence base for such assumptions, it is a generally 
a more informative and objective approach to concisely summarize all available 
and relevant data with the aid of a meta-analytic model (Rogers et al. 2012). Such 
a meta-analytic synthesis is particularly relevant in AD, where extensive historical 
data are available (Romero et al. 2009, 2011; Sheiner 1997). Moreover, models may 
be used to interpolate expected results and to simulate data under conditions that 
have not been previously studied, e.g., when sampling at different time points or 
when enrolling patients with a different set of covariates (Rogers et al. 2012). Such 
approaches also allow the incorporation of different sequences of active treatment 
and placebo (like staggered start or delayed withdrawal designs), while accounting 
for residual effects for both active treatment and placebo (Rogers et al. 2012; Hol-
ford and Peace 1992).

Standard statistical analysis methods (ANOVA, ANCOVA) are typically used 
for the predefined primary analysis of the results of the active treatment and control 
arms at the end of the randomized phase of trials in AD (Holford and Peace 1992). 
These approaches are also used for post-hoc subgroup analyses (mild vs. moderate 
ApoE4, carrier vs. noncarrier, background therapy vs. no background therapy, etc.) 
following large late-stage failed trials. In many cases these post-hoc analyses have 
lead to further development activities in these subgroups, often resulting in further 
failures. In addition to its role in CTS, a meta-analytic model can provide a useful 
informed prior consent when attempting to understand such post-hoc analyses.

This chapter describes relevant efforts in modeling and simulation-utilizing 
drug-disease-trial (DDT) models in AD (Gobburu and Lesko 2009), focusing on 
cognition. This includes data considerations and descriptions of relevant public data 
sources available for AD model developers. It includes a brief description of previ-
ous work in the field, along with a description of common elements contained with-
in DDT models currently used for CTS in AD. Examples of applications for study 
planning and study interpretation among other potential uses are also included. It 
concludes with a look at potential future applications of CTS in AD and areas for 
growth.
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15.2  Data Considerations

The data used to aid in the design of a clinical trial can come from a variety of 
sources. A team may use past and recent literature to inform them about expected 
treatment effects and current study designs in use. They may have patient-level 
data in their organization that informs them about expected intrasubject variability, 
intersubject variability, and interoccasion variability (Milligan et al. 2013). They 
often have past clinical trial experiences that they draw from (which varies between 
individuals). The team designing a clinical trial will attempt to implicitly integrate 
all of this information to form conclusions about what design is likely to be the best 
for the stage of development and the compound in question. The broader the data 
source(s) used with respect to patient types, study durations and designs, and patient 
inclusion/exclusion criteria, the more “rugged” the final model is likely to be.

Standardized quality data sources remain a significant hurdle to developing and 
implementing a longitudinal DDT model (Romero et al. 2009, 2011). Often, when 
pooling across different data sources (different studies, different programs, differ-
ent sponsor), a significant amount of effort and resources are required to ensure that 
common standards for data collection and scoring have been adhered to (Romero 
et al. 2009, 2011). Small changes in something as simple as how missing scores are 
handled can lead to increased noise within the dataset. Often, an arduous remapping 
process may need to occur (if item level data are available). In addition, standards 
between analysts are likely to differ, making it nearly impossible to merge addi-
tional relevant datasets, without another lengthy remapping process.

In an ideal scenario, data standards would be applied a priori so that data are 
collected, scored, and recorded in a standardized form. The field of drug develop-
ment for AD is at the forefront, being the first to have generated therapeutic area 
standards in this area, in a form accepted by FDA (Romero et al. 2009, 2011).

15.2.1  Relevant Data Sources for Modeling and Simulation  
in AD

Researchers aiming to develop a quantitative understanding of AD disease progres-
sion and drug effects, often start with data within their own organizations, or other pro-
prietary data that have been made available to them. Often, however, they find that the 
data they have are limited in one or more ways, such as by limited numbers in subsets 
of interest (disease severity, genotype, biomarker classification). Generally, develop-
ers will utilize one or more of the number of large available data sources in AD, which 
may provide robust information to inform the different components of the DDT.

15.2.1.1  Literature Data

In the field of AD, a wealth of literature data from many different clinical trials and 
observational studies are readily available that can contribute to the development of 
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quantitative modeling and simulation tools. While limited in its value for determin-
ing impact of individual patient covariates of disease or drug effects, it can provide 
valuable estimates of drug effects (size, onset, offset), disease progression within a 
trial, etc.

15.2.1.2  ADNI Studies

The longitudinal Alzheimer’s Disease Neuroimaging Initiative (ADNI; http://www.
adni-info.org/) was launched in 2003 by the National Institute on Aging (NIA), 
the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the US 
Food and Drug Administration (FDA), private pharmaceutical companies, and non-
profit organizations, initially as a 5-year public–private partnership (Weiner et al. 
2012). Since 2005, the longitudinal ADNI has been validating the use of biomarkers 
including blood tests, tests of CSF, and magnetic resonance imaging–positron emis-
sion tomography (MRI–PET) imaging for AD clinical trials and diagnosis. Now 
in its third phase (ADNI, ADNI GO, and ADNI 2), ADNI 2 is studying the rate 
of change of cognition, function, brain structure, and biomarkers in 150 elderly 
controls, 450 subjects with mild cognitive impairment (MCI), 150 with mild-to-
moderate AD, and a new group of 100 people with significant, yet subtle, memory 
complaints, referred to as the significant memory concern cohort. It has also added 
whole genome sequences (WGS) for 809 ADNI participants. Similar studies have 
also been launched in other regions, such as Japan (J_ADNI). As such, the ADNI 
study series will continue to be a rich and complete source of data on the natural 
history of AD at various stages.

15.2.1.3  The Coalition Against Major Diseases Database

Coalition Against Major Diseases (CAMD) is a formal consortium of pharmaceuti-
cal companies, research foundations, and patient advocacy/voluntary health asso-
ciations, with advisors from government research and regulatory agencies includ-
ing the FDA, the European Medicines Agency (EMA), the National Institute of 
Neurological Disorders and Stroke (NINDS), and the NIA. The CAMD is led and 
managed by the nonprofit Critical Path Institute (C-Path), which is funded by a 
cooperative agreement with the FDA (Romero et al. 2009, 2011).

The CAMD database represents patient-level data from the control arms from 
phase II and III clinical trials in patients with MCI as well as mild and moderate Al-
zheimer’s dementia. As of September 2014, the CAMD database represents >6500 
individual patients. Access to this database can be requested at www.codr.c-path.org. 
It is a rich source of control-arm data for the model developer.

In addition, CAMD partnered with the Clinical Data Interchange Standards Con-
sortium (CDISC) to develop a standard for data collection in CDISC form. This 
AD standard represents the first-ever therapeutic area standards in CIDSC form. 
The intended advantage of such a standard is that it not only serves the purpose of 

http://www.adni-info.org/
http://www.adni-info.org/
www.codr.c-path.org
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integrating data from legacy clinical trials but it is also suited for prospective data 
collection in new trials, foreseeing the coming FDA requirement for data to be in 
CDISC standard form by 2017.

15.3  Summary of Disease Progression Models  
for ADAS-cog to Date

15.3.1  Historical Progression of AD Models

Various disease progression models for clinical outcomes in AD have been pub-
lished (Holford and Peace 1992; Chan and Holford 2001) and the methods utilized 
in early publications laid the groundwork for future modeling work (Mould et al. 
2007). Newer work provides further improvement and increased complexity and 
continues to build on past researchers findings, but incorporates newer, broader data 
types and sources, and utilizes new modeling methodologies resulting in an evolu-
tion of models over time (Table 15.1).

Early models were based on a limited number of trials of short duration used 
to evaluate symptomatic agents and did not contain newer key data types such as 
genotype and biomarker information, now known to be important covariates in un-
derstanding the rate of disease progression (Atchison et al. 2007). Later models 
described utilizing a variety of data types including summary level data from litera-
ture sources, data directly from one or more of a related series of controlled clinical 
trials, or noninterventional natural history studies. Rogers et al. have attempted to 
integrate all these sources in one analysis.

Historical models primarily described AD disease progression as linear, which 
was sufficient for simulation of trials of the shorter durations used for the develop-
ment of symptomatic agents. The Ito literature model identified that the severity 
of the disease itself influenced the slope, and thus the slope changed over time (in-
troducing nonlinearity). More recent models have directly incorporated nonlinear 
relationships to describe the course of disease over time.

In addition, these models lacked certain structural features that would improve 
their use for CTS, such as constraining the limits of the ADAS-cog (0–70), and 
allowing for variance components to change over time (an essential feature if the 
model is to be used for CTS of disease progression for AD).

The models described in the literature also improved with respect to all the com-
ponents typically required for a DDT model. A DDT model that includes all these 
components would require underlying data that can inform each of the various trial 
components in the model. For example, natural history data to inform underlying 
disease progression, placebo arm data to inform about magnitude, onset and offset 
of placebo response in controlled clinical trials, estimates of various drug effects 
(magnitude, time to onset, and durability), rate and magnitude of dropouts in the 
trials, and a rich source of covariates for model building. Over time, more and more 
of these components have been added in.

A brief description of more recent work is provided below.
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Model Drug effect 
component

Trial 
components

Data source Covariates Linearity

Holford and 
Peace 1992

Yes Varied Individual 
studies 
(tacrine)

Varied Linear

Ito et al. 2010 Yes (symp-
tomatic agents 
estimated)

Placebo 
(onset and 
magnitude)

All controlled 
studies in 
the literature 
1990–2008

Baseline 
severity

Linear (nonlin-
earity introduced 
by baseline 
covariates)

Ito et al. 2011 No (NA) No (NA) ADNI (nor-
mal, MCI, 
mild AD)

Baseline sever-
ity, age, ApoE4 
genotype, and 
sex

Linear (nonlin-
earity introduced 
by baseline 
covariates); fits 
normal MCI and 
mild AD

Samtani et al. 
2013

No (NA) No (NA) ADNI mild 
AD

Disease onset, 
hippocampal 
volume and 
ventricular 
volume, age, 
total choles-
terol, ApoE 
ε4 genotype, 
trail-making 
test (part B) 
score

Nonlinear; fits 
mild AD

William-
Faltaos et al. 
2013

No Dropout No 
placebo

Covariates 
influencing 
the intercept 
were baseline 
ADAS-cog 
score (did not 
use data prior 
to 4 months) 
and baseline 
MMSE score; 
no covariates 
influenced 
the disease 
progression 
slope

Nonlinear (log 
transform not 
suitable for 
whole range 
of ADAS-cog 
scores of 0–70)

Rogers et al. 
2012

Yes Placebo 
dropout

Literature 
CAMD ADNI

Baseline 
MMSE; 
disease pro-
gression time 
ApoE4 status, 
age, gender; 
dropout time, 
baseline age, 
baseline 
MMSE

Nonlinear

MMSE mini-mental state examination

Table 15.1  Relevant previous disease progression models for clinical outcomes in AD 
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15.3.2  Model-Based AD Literature Meta-Analyses

15.3.2.1  Ito (2010)

Ito et al. (2010) applied a model-based meta-analysis to summary level data avail-
able in the literature to quantify the dependence of rates of progression on base-
line ADAS-cog scores. In this analysis, a systematic literature review from 1990 to 
2008 for all available AChE inhibitor studies as well as clinical studies that evalu-
ated the rate of deterioration in AD patients was conducted. From 52 trials, which 
represented approximately 19,992 patients and more than 84,000 individual ob-
servations, a total of 576 mean ADAS-cog change-from-baseline data points were 
collected. Based on the data available from these articles, a model was developed 
to describe the longitudinal response in ADAS-cog (change from baseline) in mild-
to-moderate severity AD patients. The model described the rate of disease progres-
sion, the placebo effect observed, and the symptomatic effect of AChE inhibitors. 
Baseline ADAS-cog, mini-mental state examination (MMSE), age, and publication 
year were tested as covariates.

Ito’s model reports that disease progression in mild-to-moderate AD patients 
across all available and relevant literature sources was estimated at 5.5 ADAS-cog 
units per year. An Emax-type model best described the symptomatic drug effect 
for AChE inhibitors. The rate of disease progression (underlying disease progres-
sion) was not different between placebo and AChE-inhibitor-treated groups. Unlike 
previous modeling work, which did not include covariates, Ito’s model identified 
baseline ADAS-cog as significant covariate on disease progression. Baseline age 
was also tested as a covariate on the rate of disease progression but the model was 
not able to describe any effect, likely due to the narrow distribution of mean age 
(literature-level analysis). There was no significant impact of publication year in 
the model.

The literature-based meta-analyses provided a useful and complete integration of 
the estimated natural history of AD and provided estimates of treatment effects for 
currently available AChE-inhibitor therapies. However, due to the nature of the lit-
erature data in that it is only study-level summary data; the model had limited abil-
ity to evaluate important individual covariates, such as age and ApoE4 genotype. 
Also, the meta-analysis model from the literature using study-level data neither 
provides intersubject variability information nor includes components for increas-
ing variance over time.

15.3.3  Patient-Level Models

15.3.3.1  Ito ADNI Model (2011)

In 2011, Ito et al. published a patient-level model-based meta-analysis to describe 
the longitudinal response in ADAS-cog obtained from the ADNI (Ito et al. 2011). 
The model was fit to the longitudinal ADAS-cog scores from 889 patients. Risk 
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factors (age, ApoE4 genotype, sex, family history of AD, and years of education) 
and baseline severity were tested as covariates. Results indicated that rate of disease 
progression increased with baseline severity. Age, ApoE4 genotype, and sex were 
identified as potential covariates influencing disease progression. The rate of dis-
ease progression as described by the ADAS-cog in mild-to-moderate AD patients 
was estimated at approximately 5.5 ADAS-cog units/year, similar to that reported 
using literature-based analyses.

The authors concluded that a linear disease progression model adequately de-
scribed the natural decline of ADAS-cog observed in ADNI over 2–3 years within 
the individual patients. Baseline severity, which is incorporated into the model to 
explain the nonlinearity of the disease progression, is an important covariate to 
predict a curvilinear rate of disease progression in normal elderly, mild MCI and 
patients with Alzheimer’s dementia. Age, ApoE4 genotype, and sex also influenced 
the rate of disease progression.

15.3.3.2  Samtani ADNI Model (2012)

The objective of the Samtani et al. analysis was to develop a semimechanistic non-
linear disease progression model from the ADNI study, but that used an expanded 
set of covariates that captured the longitudinal change of ADAS-cog scores (Sam-
tani et al. 2012). The model described the rate of progression and baseline disease 
severity as a function of influential covariates. The covariates that were tested fell 
into four categories: (1) imaging volumetric measures, (2) serum biomarkers, (3) 
demographic and genetic factors, and (4) baseline cognitive tests.

Covariates found to affect baseline disease status were years since disease onset, 
hippocampal volume, and ventricular volume. Disease progression rate in the mod-
el was influenced by age, total serum cholesterol, ApoE4 genotype, trail-making 
test (part B) score as well as current levels of cognitive impairment as measured by 
ADAS-cog. Rate of progression was slower for patients with mild and severe AD 
compared with moderate AD.

15.3.3.3  Faltaos Model (2013)

This research aimed to quantitatively describe the natural progression of AD based 
on ADAS-cog scores in patients with mild-to-moderate AD utilizing data from ten 
placebo-controlled clinical trials submitted to the FDA (> 2600 patients) with up to 
72 weeks of treatment (William-Faltaos et al. 2013). Different models describing the 
time course of ADAS-cog were evaluated. Patient characteristics potentially affect-
ing score changes were assessed. Patient-dropout patterns were characterized using 
parametric survival models. Covariate selection was performed to identify the risk 
factors associated with a higher dropout rate. In this case, the ADAS-cog time course 
in mild-to-moderate AD patients receiving placebo was described by a log-linear 
model, where the intercept represents the log-transformed ADAS-cog score at week 
10 , the slope is the disease progression (i.e., natural increase of ADAS-cog score) 
on the log scale. Covariates influencing the intercept were baseline ADAS-cog score 
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and baseline MMSE score. No covariates were identified that influenced the disease 
progression slope. A parametric log-normal model fit the dropout data best. Baseline 
ADAS-cog score and age were found to be significant predictors for dropout.

15.3.4  Integrative Meta-analytic Approaches

15.3.4.1  Rogers Model (2012)

This research aimed to incorporate many of the best elements of the models described 
above in a beta regression (BR) model (Rogers et al. 2012). The use of the BR con-
strained simulations to the 0–70 range of the ADAS-cog, even when residuals were 
incorporated. In addition, the model described the longitudinal progression of the 11 
item ADAS-cog in AD patients in both natural history and randomized clinical trial 
settings, utilizing both individual patient and summary level literature data. Patient 
data from the CAMD database (3223 patients), the ADNI study database (186 pa-
tients), and summary data from 73 literature references (representing 17,235 patients) 
were fit to a BR DDT model. Treatment effects for currently available acetyl cholin-
esterase inhibitors, longitudinal changes in disease severity, dropout rate, placebo ef-
fect, and factors influencing these parameters were estimated in the model. Based on 
predictive checks and external validation, the researchers concluded that an adequate 
BR meta-analysis model for ADAS-cog using both summary-level and patient-level 
data was developed. Baseline ADAS-cog was estimated from baseline MMSE score. 
Disease progression was found to be dependent on time, ApoE4 status, age, and gen-
der. Study dropout was a function of time, baseline age, and baseline MMSE.

The model allowed for simultaneous fitting of summary and patient-level data, 
allowing for integration of all information available. A further advantage of the BR 
model was that it constrained values to the range of the original instrument for sim-
ulation purposes, in contrast to methodologies that provide appropriate constraints 
only for conditional expectations.

15.4  Review of Structural Components for Models in AD

Table 15.2 lists the general basic components of a DDT model, as described by 
Gobburu and Lesko (2009).

15.4.1  Disease Model Components

Understanding both the placebo response and the natural underlying disease pro-
gression is crucial to designing and interpreting results from AD clinical trials, 
given that it is sometimes difficult to differentiate the placebo effect and underly-
ing disease progression in longitudinal studies, resulting in misinterpretation of the 
study results. Several authors have proposed that the placebo response be assumed 
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to consist of “underlying disease progression” and “placebo effect,” where “under-
lying disease progression” describes the natural history of the disease, and the “pla-
cebo effect” represents a temporal component, i.e., such as psychological effect, or 
any effect derived from the conduction of and participation in clinical trials.

Figure 15.1 illustrates the concept behind the longitudinal diseases progression 
model, where the overall observed placebo response in a trial (C) is simply the ad-
dition of the underlying disease progression (A) and placebo effect (B). Increase in 
ADAS-cog score indicates cognitive deterioration over time.

In general, the shape described above, is adequate to describe both data reported 
from the literature and from patient-level data collected in placebo-controlled clini-
cal trials, as shown in Fig. 15.2.

15.4.1.1  Natural Longitudinal Progression

In the case of natural history studies, such as ADNI, a placebo effect is not required, 
and the time course may be described by the underlying natural history of disease 
progression (Fig. 15.3).

Table 15.2  Basic components of disease-drug-trial modeling and simulation tools for drug 
development
Component Quantitative description
Disease model (1) Natural longitudinal progression, (2) rela-

tionship of biomarkers to outcome, (3) placebo 
effect within controlled trials

Trial model (1) Patient population (baseline disease sever-
ity, etc.), (2) patient dropout rate and factors 
impacting it, (3) therapeutic adherence

Drug model (1) Overall efficacy/effectiveness, (2) impact 
of patient characteristics on drug effect, (3) 
changes in drug effect(s) over time

8

(A)
undarlying disease

progression

(C)
placebo response (observed)

(B)
placebo effect
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Fig. 15.1  Concept of placebo 
response in a disease pro-
gression scenario. ADAS-
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assessment scale cognitive 
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Historically, the progression rate has been modeled as a linear function. Although 
the data appear linear over a short duration, given the scale is finite, and that most 
AD patients reach the maximum as they become more severe (requiring the use of 
other measures such as the severe impairment battery) the data are better described 
by a sigmoid-like function restricted between 0 and 70 (the limits of the ADAS-cog 
score; Rogers et al. 2012; Samtani et al. 2012).

Recently, different researchers (Ito et al. 2010; Samtani et al., 2012; William-
Faltaos et al. 2013; Ashford and Schmitt 2001) have provided important insights 

Fig. 15.2  Observed placebo 
response for change from 
baseline Alzheimer’s disease 
assessment scale cognitive 
sub-scale ( ADAS-cog) from 
literature, 1990–2008. ( Top: 
all data with loess line and 
model prediction; bottom: 
CAMD studies; the blue line 
and gray-shaded area in the 
figure indicate a lowess fit 
line with 95 % confidential 
intervals)
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into the nonlinear progression of AD. Ito et al. (2010) analyzed the ADNI data using 
a linear AD progression model based on a population-based mixed effects approach 
(with a function to introduce nonlinearity based on baseline severity), Ashford and 
Schmitt (2001) applied a logistic model to characterize disease progression, while 
Samtani et al. (2012) developed a nonlinear mixed effects model. Samtani et al. 
(2012) proposed a logit function that restricts the ADAS-cog scores to the test’s in-
trinsic range of 0–70 points. Samtani’s models were in turn captured using a Bayes-
ian meta-analytic approach by Rogers et al. (2012) thus giving a comprehensive 
aggregation of literature- and patient-based knowledge.

In essence, the disease progression function proposed by Samtani et al. (2012) 
and Ito et al. (2010) has been integrated by Rogers et al. (2012), and can be de-
scribed as the following logit function:

Relevant covariates that affect the “intercept” ( ηpk) that have been identified by 
different authors include: baseline disease severity as expressed by ADAS-cog or 
MMSE, baseline age, and age of onset of disease (which is usually derived from 
arguably unreliable data from dates of first diagnosis). ADASipk denote the observed 
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ADAS-cog score on the ith occasion in the pth patient in the kth study. In turn, tipk 
represents the time of the observation relative to the randomization time for that 
given patient.

In line with current thinking regarding AD pathophysiology, covariates identi-
fied by several authors as affecting the rate of progression αpk have included ApoE4 
genotype, total blood cholesterol, baseline age, gender, and baseline disease sever-
ity (baseline ADAS-cog or baseline MMSE).

15.4.1.2  Placebo Function Components

The onset, offset, and overall extent of placebo effect has been successfully esti-
mated and described in the past by the use of a first order appearance (onset) and 
a first order disappearance (offset) constant, commonly known as a Bateman-type 
function (Holford and Peace 1992; Ito et al. 2010):

where βp is a factor defining the magnitude of the placebo effect, Kelp is the rate 
constant for the offset rate of the placebo effect, and Keqp is the rate constant for the 
onset rate of the placebo effect.

15.4.2  Drug Model Components

The selection of drug model components and the underlying assumptions around it 
are highly dependent on the proposed use of the model, the mechanism(s) postu-
lated, and information available on the compound(s) of interest. In the past, models 
have attempted to describe either symptomatic effects or disease-modifying effects.

15.4.2.1  Symptomatic Effect

Agents thought to have “pure symptomatic” effects can be expressed as a shift in the 
overall disease progression curve, without a change in the rate (slope) of progres-
sion (Holford and Peace 1992; Samtani et al. 2012; Bhattaram et al. 2009). Esti-
mates for magnitude, onset and offset of these symptomatic effects can be estimated 
from data available for currently approved drugs, or from proprietary data.

It has been proposed that Emax-type models adequately describe the symptom-
atic drug effect for cholinesterase inhibitors, which are the main currently available 
symptomatic treatments for AD. For example, Ito et al. (2010, 2013) proposed the 
following expression:
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where Dipk represents the dose administered to a given patient at a given occasion 
in a given trial, EΔ,d(  p) denotes the maximum symptomatic effect at a given dose for 
a given patient, and ET50,d(  p) expresses the time at which 50 % of the maximum 
symptomatic effect is achieved for a given patient at a given dose.

15.4.2.2  Disease-Modifying Effect

Agents thought to have “pure disease-modifying” effects can be expressed as a 
change in the rate of progression ( αpk in the model defined above) without a shift in 
the overall disease progression curve (Holford and Peace 1992; Samtani et al. 2012; 
Bhattaram et al. 2009). Currently, there are no FDA-approved disease-modifying 
treatments, which constitute a limitation in terms of available data for modeling 
purposes.

As mentioned previously, covariates identified by several authors as affecting the 
rate of progression have included ApoE4 genotype, total blood cholesterol, baseline 
age, gender, and baseline disease severity (baseline ADAS-cog or baseline MMSE). 
As such, it is possible to “enrich patient populations using these factors to observe 
a faster rate of progression, and theoretically, to observe a disease-modifying effect 
in a treatment arm more easily”. This has led researchers to propose the inclusion 
of proportional hazard functions to the rate of progression, in which a given percent 
modification (reduction) in the rate of progression could be incorporated into the 
disease progression function described before.

15.4.2.3  Dropout Component

Since the described modeling approaches aim at characterizing the complete data 
distribution, summary statistics based on direct simulation from the model would not 
correctly mimic the behavior of real summary statistics, as actual summary statistics 
usually are computed using incomplete data. Even in the unlikely scenario that the 
true missing data mechanism (MDM) is missing completely at random (MCAR), 
the real summary means will be based on fewer observations than their simulated 
counterparts, and the latter will therefore have standard errors that are unrealistically 
low. Accordingly, for the purpose of model validation, a MDM or “dropout model” 
is a reasonable component to be incorporated for simulation purposes.

Here, the work of William-Faltaos et al. (2013) constitutes an important exam-
ple. As explained before, these authors identified the Weibull distribution as the one 
that would most adequately characterize the evolution of the dropout hazard over 
time, and the two most important covariates for the dropout hazard were baseline 
age and baseline disease severity.

As implemented in the Rogers et al. work, the fitted dropout model utilizing 
these two covariates exhibited a high degree of agreement with the observed drop-
out rates, as seen in Fig. 15.4. The model adequately captures the dropout rate both 
by baseline MMSE and by age in these two plots.
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It is important to note that such a working model for the MDM is reasonable to 
employ for the purpose of model validation. However, for the purpose of model 
fitting, researchers can assume less restrictive conditions that are required for ig-
norability of the missing data mechanism, implying that posterior distribution for 
parameters describing the complete data distribution may be computed using the 
observed response and covariates.

A fully realistic MDM would be fairly complex and correspondingly would re-
quire substantial justification. Moreover, since the true MDM is never known, the 
issue cannot be adequately addressed without considering several MDMs, including 

Fig. 15.4  Plot of probability 
(dropout) over time by base-
line age ( upper panel) and 
baseline mini-mental state 
examination ( BMMSE, lower 
panel). ( Solid line represents 
Kaplan–Meier (nonpara-
metric) estimates based on 
observed data; dashed line 
represents model prediction; 
grey region represents 90 % 
credible interval for model 
prediction)
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various combinations of missingness related to tolerability, missingness related to 
lack of efficacy, and missingness associated with disease state. While this full treat-
ment would be a desirable research project, currently available work is only able 
to propose a plausible “working hypothesis” MDM based on observed associations 
between baseline covariates and dropout.

15.4.3  Meta-analytic Integration of Literature  
and Patient-Level Data

As explained before, there are a number of relevant databases for modeling and sim-
ulation in AD, which represent patient-level and study-level data from both obser-
vational studies and clinical trials. These can be combined with additional patient-
level data from active treatment arms that may be available to specific researchers. 
However, the amount of data available from the scientific literature should not be 
ignored (especially when trying to incorporate drug effects into models). In order 
to adequately integrate those patient-level data with summary-level information, 
Gillespie et al. (2009) have proposed a Bayesian implementation, which allows a 
probabilistically correct synthesis of literature meta-data with patient-level data. 
Additional contributions have also been made by Rogers et al. (2012), in terms of 
applying β-distributed residuals in conjunction with a generalized logistic function 
for expected disease progression (i.e., “BR”), with the defining feature of specify-
ing the residual scores for a given patient as following a β distribution. This results 
in a predictive distribution that falls entirely within the 0–70 range of the ADAS-
cog, which is a valuable feature for the purpose of simulating clinical trials.

Regarding the challenge of integrating patient-level and summary-level infor-
mation, Gillespie et al. (2009) propose that the summary-level data be modeled by 
directly specifying likelihoods based on approximate sampling distributions. As has 
been explained before, the model for individual ADAS-cog scores is nonlinear, and 
the exact sampling distributions for sample means are not available in analytical 
form. An elegant solution proposed by Rogers et al. (2012) concentrates on the ap-
proximate linearity of the logit function over the range of primary interest to derive 
the approximate distributions. These approximations can then be employed as the 
operational likelihoods.

15.5  Example Applications

15.5.1  Planning Prospective Trials

These models described previously have had varying degrees of applicability for 
CTSs, understanding CTS as a means of estimating relevant operating character-
istics for essentially any clinical trial design under any hypothesized parameter 



46715 Clinical Trial Simulation in Alzheimer’s Disease

configuration for the “true” effects of a drug. It may be used to assess how different 
trial design and drug factors affect trial performance. These factors may be control-
lable trial design properties, such as the doses studied, the sampling times, the op-
timal study duration and sampling times, and use of washouts (Gobburu and Lesko 
2009) or uncontrollable factors, such as the drug characteristics (pharmacokinetic 
or pharmacodynamics; Hennig et al. 2009). Other influencing factors may include 
the progression of disease over time or subject-specific characteristics that may be 
related to disease progression or treatment response.

15.5.1.1  “Super Symptomatic” Agents

“Super symptomatic drug effect” is conceptualized as superior clinical efficacy to 
currently available symptomatic therapies, either as stand-alone or as add-on ther-
apy. Such a super symptomatic drug profile is desired for new symptomatic drugs 
under development for AD.

As stand-alone therapy, the drug could achieve the super symptomatic effect either 
by having superior acute cognitive enhancement or by having acute symptomatic ben-
efit similar to marketed agents plus disease-stabilizing attributes. However, for com-
pounds with new mechanisms of action, it remains unclear which of these could occur.

Given the extremely high failure rate in neurodegenerative drug development pro-
grams, it is often the goal in early development to obtain an early and cost effective 
read of efficacy for compounds thought to be predominantly “symptomatic” agents. 
In this scenario, a crossover design may provide more to detect a difference rapidly, 
but would underestimate the total treatment effect relative to the longer parallel trial 
design typically used. 

Two drug profiles were studied under this scenario. In this study, the desired su-
per symptomatic drug effect was set as 3.5 points of ADAS-cog better than placebo 
at week 24. For the first drug profile, it was assumed that the drug had a superior 
symptomatic drug effect of 3.5 points on ADAS-cog at 24 weeks but similar drug 
onset compared to donepezil (thus, the first profile is Edrug,24week = 3.5 and ET50 = 1.62 
week). For the second drug profile, it was assumed that the drug had donepezil-like 
symptomatic effect ( Edrug,24week = 2.5) and a moderate disease-stabilizing effect (i.e., 
50 % decrease on slope). In both drug scenarios, true drug effect would be 3.5 points 
on ADAS-cogat 24 weeks, which is the desired effect for the super symptomatic 
treatment.

The objectives of early studies to advance drug candidates that are expected to 
have a super symptomatic profile are not only to test whether the drug is better than 
placebo but also to obtain certain confidence that the estimated drug effect would 
achieve the “target value.” Typically, this target value is defined by current standard 
of care, regulatory requirements or other thresholds for evidence of efficacy. The 
confidence level required is dependent on multiple factors, like the stage of drug 
development, the overall development plan and the medical need for the drug. The 
drug candidate in this scenario was considered to be at an early stage of develop-
ment, so the confidence requirement was not as high as that for a drug in later stages 
of development. Herein, we defined that we would need at least 25 % confidence 
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the drug is 3.5 points or more, better than placebo on the ADAS-cog scale after 
completion of the study in order to continue the drug as a potential super symptom-
atic treatment. Besides the 6-week crossover and 12-week parallel designs as de-
scribed above (a and b), a third candidate trial design was also evaluated, which was 
a two-arm parallel design (75 patients per arm) with 24 week treatment duration 
and assessments at weeks 0, 3, 6, 9, 12, and 24. The primary analysis is based on a 
linear mixed-effects model with random subject effect and fixed effects for baseline 
ADAS-cog, visit (nominal scale), treatment, and visit by treatment interaction, with 
drug effect formulated as the expected difference at week 24.

Figure 15.5 displays the average simulated results for a 6-week crossover design 
and a 12-week parallel design using a symptomatic drug that was similar to done-
pezil (2.5 points superior to placebo on ADAS-cog at week 24, ET50 of 1.62 week 
and washout half-life of 1 week). In the crossover design, under these assumptions, 
the treatment effect (difference between placebo and treatment) at the end of each 
6-week period is independent of the treatment period. Thus, in this context a cross-
over design has the potential to reduce the sample size while maintaining appropri-
ate power to demonstrate the drug benefit.

The simulation results showed that approximately 89 % power was achieved with 
30 patients per arm (60 patients in total) in a 6-week crossover study (Table 15.3). 
The power of a 12-week parallel design with 75 patients per arm (150 patients 
in total) was about 82 %. Meanwhile, as expected, the relative bias of the 6-week 
treatment in the crossover study (− 17.3 %) was higher than the 12-week parallel 
study (− 7.3 %), both of which would underestimate the true drug effect at week 24, 
given the achievement of a partial drug effect over the duration of the study. As also 
shown in Table 15.3, with a slower drug onset (e.g., ET50 of 3 weeks, two times that 
of donepezil), the power in a 6-week crossover study (81 %) still remained compa-
rable to a 12-week parallel study (79 %), although the difference of the relative bias 
for 6-week crossover study versus 12-week parallel study significantly increased. 

Fig. 15.5  Simulated 6-week crossover trials ( left panel) versus 12-week parallel trials ( right 
panel) for drugs with only symptomatic effects. ADAS-cog Alzheimer’s disease assessment scale 
cognitive sub-scale
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Depending on the primary goal of the study, the development team can use these 
results to determine the trade-off between the increase in bias and the gain in power. 
For example, when the objective of the study is to test if the drug has any effect 
rather than to measure the steady-state treatment effect, the crossover design would 
be favorable due to smaller sample size and higher power.

For super symptomatic drug scenarios, two different types of drug profiles, supe-
rior acute symptomatic drug effect ( Edrug,24week = 3.5) and acute symptomatic benefit 
plus disease-stabilizing drug effect (Edrug,24week = 2.5 plus 50 % decrease on slope) 
were assumed and studied. Three study designs of interest (6-week crossover, 12-
week parallel and 24-week parallel studies) were simulated and compared for each 
drug profile and the results are displayed in Table 15.4.

When a drug exhibited the desired super symptomatic efficacy (3.5 points at 
week 24) on ADAS-cog measures, the power to detect the drug effect was high 
regardless of the design (≥ 92 %) for the superior symptomatic drug profile and the 
symptomatic plus disease-stabilizing drug profile. However, as expected, the true 

Table 15.3  Comparison of relative bias and power for a 6-week crossover 12-week parallel study 
design

Design Relative bias (%) Power ( α = 0.05, 
two-sided)

Drug onset same as 
donepezil (ET50 = 1.62 
weeks)

6-week crossover 
( n = 30/arm)

− 17.1 0.89

12-week parallel 
( n = 75/arm)

− 7.9 0.81

Drug onset slower than 
donepezil (ET50 = 3 
weeks)

6-week crossover 
( n = 30/arm)

− 26.8 0.81

12-week parallel 
( n = 75/arm)

− 9.6 0.79

Table 15.4  Comparison of power to detect drug effect and to achieve target value for different 
study designs
Drug effect Study design Relative bias (%) Power to detect 

drug effect
( α = 0.05, 
two-sided)

Probability to 
achieve 25 % 
confidence ≥ 3.5

Superior acute 
symptomatic 
effect
( Edrug,24week = 3.5)

6-week crossover 
( n = 30/arm)

− 17.8 0.99 0.41

12-week parallel 
( n = 75/arm)

− 7.0 0.98 0.65

24-week parallel 
( n = 75/arm)

− 0.3 0.96 0.73

Acute symptom-
atic plus disease-
stabilizing effect
( Edrug,24week = 2.5 
and 50 % decrease 
on slope)

6-week crossover 
( n = 30/arm)

− 36.7 0.92 0.11

12-week parallel 
( n = 75/arm)

− 19.0 0.95 0.45

24-week parallel 
( n = 75/arm)

0.7 0.97 0.72
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drug effect at week 24 would be underestimated in both the 6-week crossover study 
and, to a lesser extent, the 12-week parallel study. The bias of drug effect estimates 
increased remarkably for drugs with acute symptomatic plus disease-stabilizing ef-
fects compared to a drug with only superior acute symptomatic effect (− 36.7 vs. 
− 17.8 % in 6-week crossover study and − 19.0 vs. − 7.0 % in 12-week parallel study, 
respectively).

The probability for a drug to achieve the target value (3.5 points with at least 
25 % confidence) in each study design is shown in Table 15.4. For a drug having 
superior acute symptomatic effect, the probability was 41 % in a 6-week crossover 
study and increased to 65 % in a 12-week parallel study while the probability was 
estimated as 73 % for a 24-week parallel study under the assumption that the true 
effect was 3.5 points at week 24. However, if a drug achieved the super symptom-
atic profile by having combined symptomatic and disease-stabilizing effects, the 
probability would be only 11 and 45 % in a 6-week crossover study and a 12-week 
parallel study, respectively. The probability remained the same (72 %) in a 24-week 
parallel trial since the true drug effect was still 3.5 points at week 24.

15.5.2  Retrospective Analyses

Given the high attrition, and often late stages of failure of compounds developed 
for AD, it is not surprising that following a negative trial a large number of post-
hoc analyses are completed to determine if a group of responders can be identified. 
Typically these post-hoc analyses are data cuts done by disease severity (very mild, 
mild, and moderate), ApoE4 genotype (carriers vs. noncarriers) CSF Abeta or Tau 
cuts, gender, age, etc. Given the number of analyses involved (often without correc-
tion for multiplicity), and the smaller sample sizes, the likelihood of a false positive 
being identified is high.

Alternatively, a small parallel design POC trial may yield positive results in a 
select group of study centers or patients, but the results are not replicated in larger, 
multinational trials in phase III. The question then becomes which study represents 
the true potential of the new agent?

15.5.2.1  Using Drug Models to Facilitate Interpretation of Study Results

Figure 15.6 (upper panel) shows results from two phase-II clinical trials for two 
different compounds (drug A and drug B) with similar inclusion criteria. In both 
cases, based on change from baseline, it appears as though a treatment effect was 
present as compared with the placebo group in each study. However, when these 
two clinical trial results are compared against the historical control data overlaid 
along with model predictions conditioned for baseline severity, it appears that the 
placebo response in the drug B trial was much worse than what would be pre-
dicted (Fig. 15.6, lower panel). Conversely, the treatment arm in trial B appears 
to be where the expected response for placebo usually falls. Given this result, and 
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without clear rationale for why a difference in placebo response would be observed, 
the clinical team concluded that the placebo response in the drug B study was not 
normal and needed more data to confirm the efficacy before taking further action 
(Ito et al. 2013).

15.5.2.2  Comparison of Phase II to Phase III Results

In this example, the treatment group from a 52-week, multi-center, placebo-con-
trolled, double-blind phase-II study demonstrated a significant effect in a phase-II 
study, followed by a 26-week, placebo-controlled, double-blind, multi-center,  global 

Fig. 15.6  Phase II clinical trial results from different drugs: change from baseline Alzheimer’s 
disease assessment scale cognitive sub-scale ( ADAS-cog, mean ± SE). Upper panels: The typi-
cal plot obtained after completion of the clincial trial, compared with the controlled placebo arm 
within the study. Lower panels: The same data above are overlaid with the historical data (litera-
ture) and its model prediction. (Reprinted from Ito et al. 2013, Copyright 2013, with permission 
from IOS Press)
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(including USA, Latin America, Europe, and Russia) phase-III study (Fig. 15.7, 
upper panel). The phase-III results appeared markedly different from the phase-II 
study, in the sense that there was no significant difference between the treatment 
and the placebo control groups. Unaided, by historical reference, the clinical team 
questioned the placebo response in the phase-III study, which appeared almost flat 
(Ito et al. 2013).

Phase-II and phase-III clinical trial results were then compared against the his-
torical control data and with model predictions conditioned for baseline severity. In 
this case, the placebo response in phase II and III could be quantitatively assessed 
against historical controls and was deemed well within the normal range; it was 
still within the 90 % prediction intervals when compared with historical placebo 

Fig. 15.7  Different results between phase-II and phase-III studies: change from baseline Alzheim-
er’s disease assessment scale cognitive sub-scale ( ADAS-cog, mean ± SE). (case study 2). Upper 
panels: The results obtained after completion of phase II ( left) and phase III ( right) studies com-
pared with the controlled placebo arm displayed with the range of the treatment duration (52 and 
26 weeks for phase II and III, respectively). Lower panels: The same data are overlaid with the 
historical data (literature) and its model prediction, using the same x- and y-axis range. The size of 
point is proportional to the number of patients in each treatment group. (Reprinted from Ito et al. 
2013, Copyright 2013, with permission from IOS Press)
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response and model prediction (Fig. 15.7, lower panel). It was revealed that the 
placebo responses in both phase II and phase III were reasonable, and it was the 
treatment group that appeared different, resulting in a failed phase-III trial. Note 
that symbol size (points) in Fig. 15.7 (lower panel) is proportional to the sample 
size of the study, i.e., bigger symbols indicate larger sample studies. This method 
is useful when visualizing information about the size of the study and comparing 
different studies, as is also seen in Fig. 15.6.

15.6  Discussion and Future Perspectives

15.6.1  Moving to Early AD: Selection and Modeling  
of Selective Subscores of the ADAS-cog

With the understanding that AD pathology and irreversible neuronal damage are 
present decades before presentation of clinical symptoms, researchers are moving 
to study disease-modifying agents in patients at a much earlier stage of the disease. 
The trade-off is that in these populations, it becomes harder to measure changes 
in cognition and function, as the magnitude of impairment and the overall rates of 
change in early AD are much slower.

Although some success has been noted in modeling longitudinal changes in cog-
nition in MCI and early AD populations with ADAS-cog, it is unlikely that the total 
ADAS-cog (designed for use in mild and moderate patients) will be sufficiently sen-
sitive to be used in these populations. Other measures have been proposed for early 
AD Huang et al. (2014), and yet other composites, containing ADAS-cog subscales 
sensitive in early AD, are under development. For example, using ADNI data, Sam-
tani et al. (2013) also identified the most informative cognitive measures from the 
ADAS-Cog and other available scales. Informative measures were identified based 
on standardized mean of 2-year change from baseline and were combined into novel 
composite endpoints. They assessed performance of the novel endpoints based on 
sample size requirements for a 2-year clinical trial. Further improvements were 
achieved by using cognitive-functional composites. Combining the novel compos-
ites with an enrichment strategy based on CSF beta-amyloid (A(1–42)) in a 2-year 
trial yielded gains in power of 20–40 % over ADAS-Cog 11, regardless of the novel 
measure considered.

15.6.2  Integrating Data Across the Entire AD Spectrum: 
the IRT Approach

As the number of tools designed for specific parts of the AD continuum continues 
to grow, the result is a further fragmentation of the tools used to capture the changes 
in the AD patient’s cognition over time, and likely the need to develop new longitu-
dinal DDT models when sufficient data becomes available.
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Ueckert et al. (2014) have proposed an alternative model-based framework that 
maximizes the precision gained from the existing ADAS-cog assessments in any 
AD population, utilizing an item response theory (IRT) model for the ADAS-cog 
assessment. In the framework of IRT, the questions of the ADAS-cog (or any other 
cognitive measurement instrument now or in the future) can be described through 
characteristic curves, which describe the probability to answer correctly given a 
certain cognitive disability. This in essence, allows mapping of other instruments 
to a common scale. Based on a prior assumption about the distribution of cognitive 
disability in the population and the characteristic curves of the questions, IRT deliv-
ers an estimate of the most likely cognitive disability given a patient’s response. By 
combining the entire knowledge gained from all questions (right or wrong; easy, 
hard, harder), a more precise estimate of the patients’ ability can be obtained than 
that which would be obtained from just the simple summing of all scores typically 
used.

Using this approach, Ueckert et al. determined the most sensitive test subsets in 
MCI and mild AD populations using Fisher information. The IRT-based framework 
would allow use and comparison of data from any cognitive instrument (present 
or future), to permit instrument-independent assessment of cognition of the patient 
over the entire span of the disease.

15.6.3  Future

The development of models for CTS in AD have evolved continuously, as the 
understanding of the disease improves, and as more sophisticated modeling tech-
niques become available. Complete DDT models require a variety of data types that 
support each of the components (natural progression, placebo effect, drug effects, 
dropouts, etc.). Obviously, no single study can provide all the relevant information 
for all components at once. This means that the integration of disparate data sources 
becomes key. Normally, literature knowledge, public access data (CAMD, ADNI), 
and data within one’s own organization inform decision making in drug develop-
ment. Rogers et al. (2012) attempted to integrate all these relevant data sources to 
inform each component.

While it may be that newer models have made incremental improvements in de-
scribing longitudinal changes over a longer duration, added trial execution compo-
nents, such as dropout, lengthened the duration for which simulations can be com-
pleted; the key structural elements and idea behind the work remain similar in all 
the work reported here. At some point it may be beneficial for the field to adopt one 
common background model to move forward as a community. CAMD, FDA, and 
EMA have come together to evaluate the work of Rogers et al. as such a common 
background model. This CTS tool was put by CAMD through the first regulatory 
review process of this kind for modeling and simulation tools. As of June 12, 2013, 
FDA issued a regulatory letter to CAMD, regarding the Agency’s decision to deem 
this proposed clinical trial simulator as a “fit-for-purpose” drug development tool for 
AD. In the Agency’s opinion, this tool will assist sponsors in optimizing clinical trial 
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designs for AD therapies. As the first ever stand-alone CTS tool to receive a regula-
tory decision, this tool represents a milestone in the effort to improve the efficiency 
and success of future clinical trials by integrating knowledge gained from earlier 
studies. Moreover, since it was developed through a partnership involving multiple 
pharmaceutical companies, regulatory agencies, patient groups, academia, and re-
search organizations, the tool demonstrates that stakeholders can come together pre-
competitively to develop tools that will benefit the entire field. In issuing a positive 
regulatory decision for the CAMD AD CTS tool, the FDA stated that the model can 
now be used to aid in the selection of clinical trial design features for mild-to-mod-
erate AD, and that the use of this tool can facilitate the review of new drug protocols. 
http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobac-
co/CDER/ucm180485.htm. Accessed 09 Sep 2014. The FDA also recommended that 
sponsors help update the tool with new information about drugs under development. 
For example, incorporating clinical and biomarker data from patients at earlier stages 
of the disease could expand the usefulness of the tool in helping sponsors design ap-
propriate clinical trials to evaluate novel therapeutic candidates.

The EMA has also endorsed the tool in Europe, through the issue of a positive quali-
fication opinion for the CTS tool in AD drug development. http://www.ema.europa.eu/
ema/pages/includes/document/open_document.jsp?webContentId=WC500146179. 
Accessed 09 Sep 2014
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16.1  Introduction

A comprehensive list of inflammatory conditions would comprise over hundred 
diseases, including Alzheimer’s disease, ankylosing spondylitis (AS), arthritis (os-
teoarthritis, OA, rheumatoid arthritis, RA, psoriatic arthritis, PsA), asthma, athero-
sclerosis, Crohn’s disease, colitis, dermatitis, diverticulitis, fibromyalgia, hepatitis, 
irritable bowel syndrome (IBS), systemic lupus erythematosus (SLE), nephritis, 
Parkinson’s disease (PD), ulcerative colitis, etc. (List of inflammatory diseases 
2013) A brief review of the literature suggests that there are numerous successful 
and ongoing pharmacometric endeavors in many of these diseases. Pharmacometric 
applications to neurodegenerative disorders, such as Alzheimer’s disease and PD, 
are discussed elsewhere as are applications to diseases, such as plaque psoriasis, in 
the dermatology area.

Numerous mathematical models have been developed to describe the disease 
progression and effects of anti-inflammatory drugs (Lon et al. 2012). In the excel-
lent review by Lon et al. (2012), the authors illustrate the state of the art in modeling 
the effects of diverse drugs for treating inflammation, describe relevant biomarkers 
amenable to modeling, and summarize major advantages and limitations of the pub-
lished pharmacokinetic/pharmacodynamic (PK/PD) models. The authors review the 
development of models ranging from direct inhibitory models to indirect response 
models to characterize symptoms and biomarkers. Target-mediated and transduc-
tion models as well as systems pharmacology models have been successfully ap-
plied to capture the PK/PD of many anti-inflammatory drugs and describe disease 
progression of inflammation. In addition, biologic treatments offer opportunities to 
develop different types of models due to their specific mechanisms of action, such as 
neutralization of specific cytokines, elimination of specific immune cells, blockade 
of costimulation for T-cell activation, and inhibition of cell adhesion (Lon et al. 
2012). Small systems models have also been developed to describe bone formation 
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and resorption using biomarkers as well as clinical outcomes such as bone mineral 
density (Lemaire et al. 2004; Marathe et al. 2008, 2011; Schmidt et al. 2011).

Apart from PK/PD/disease models, large-scale systems biology models have 
also been developed, ranging from those describing the underlying disease process 
(inflammation and erosion of joints) in patients with RA (Rullmann et al. 2005) to 
bone homeostasis models (Peterson and Riggs 2010) to those that combine the strat-
egies of systems biology and network pharmacology to investigate multi-targeted 
mechanisms of traditional Chinese medicine (Zhang et al. 2013).

Given this background, we have attempted to focus on a few documented ap-
plications in optimizing drug development strategy and/or regulatory approval. The 
selected case studies are by no means comprehensive or a reflection of the most 
influential or impactful endeavors because many successful applications are likely 
not in the public domain. Instead, the examples highlight some key learnings that 
should be broadly applicable in drug development decision making. In addition, 
an attempt has been made to provide a comprehensive reference list of various 
pharmacometric endeavors in this multifaceted therapeutic area.

16.2  Case Studies

16.2.1  Decision to Terminate Clinical Development  
of Canakinumab for the Treatment of RA  
(Demin et al. 2012)

Canakinumab (ACZ885) is a fully human monoclonal antibody that suppresses 
IL-1β-mediated joint inflammation and cartilage destruction in mice. A successful 
proof-of-concept (POC) study in patients with RA triggered a decision to conduct 
a dose-finding study. The key question was whether the magnitude of efficacy was 
sufficiently robust to warrant progression to a large phase 3 development program, 
which typically costs several hundreds of millions.

RA is an autoimmune disease that leads to inflammation, progressive joint damage, 
and disability. It affects ~ 1 % of adults worldwide, predominantly women. Advances in 
understanding the pathogenesis of this highly heterogeneous disease have fostered the 
development of several new therapeutics with vastly improved outcomes over the past 
decade. Numerous cytokines, growth and differentiation factors, and intracellular sig-
naling molecules and transcription factors have been implicated in the pathogenesis of 
RA (Table 16.1). However, to date, there are no reliable predictive biomarkers of prog-
nosis, therapeutic response, or toxicities such as increased mortality, cardiovascular, and 
other systemic complications of the disease.

Current international treatment recommendations for the management of RA state 
that the treatment of RA should be aimed at reaching a target of remission or low 
disease activity as soon as possible in every patient; and as long as the target has not 
been reached, treatment should be adjusted by strict monitoring every 1–3 months 
(Smolen et al. 2010). Methotrexate (MTX) is part of the first treatment strategy in 
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Molecule or signal mediator Key disease relevant functions Statusa

Cytokines
TNF-α Activates leukocytes, endothelial 

cells, and synovial fibroblasts, 
inducing production of cytokines, 
chemokines, adhesion molecules, 
and matrix enzymes; suppression of 
regulatory T-cell function; activation 
of osteoclasts; and resorption of car-
tilage and bone; mediates metabolic 
and cognitive dysfunction

Approved drug

Interleukin-1α and 1β Activate leukocytes, endothelial 
cells, and synovial fibroblasts; 
induce matrix-enzyme produc-
tion by chondrocytes; activate 
osteoclasts; mediate fever; enhance 
glucose metabolism; and reduce 
cognitive function

Approved drug

Interleukin-6 Activates leukocytes and osteo-
clasts; is involved in B-lymphocyte 
differentiation; regulates lipid 
metabolism, acute-phase response, 
and anemia of chronic disease; and 
is implicated in hypothalamic–pitu-
itary–adrenal axis dysfunction and 
fatigue

Approved drug

Interleukin-7 and 15 Promote and maintain T-cell and 
natural killer–cell activation and 
T-cell memory, block apoptosis, and 
maintain T-cell–macrophage cognate 
interactions

Phase 2 trial completed

Interleukin-17A and 17F Act synergistically to enhance 
activation of synovial fibroblasts, 
chondrocytes, and osteoclasts

More than one phase 2 
trial with positive results

Interleukin-18 Promotes activation of Th1, neutro-
phils, and natural killer cells

Interleukin-21 Activates Th17 and B-cell subsets
Interleukin-23 Expands Th17
Interleukin-32 Activates cytokine production by 

several leukocytes and promotes 
osteoclast differentiation

Interleukin-33 Activates mast cells and neutrophils

Growth and differentiation factors
BLyS and APRIL Activate B cells and have a role 

in the maturation of B cells and 
enhancement of autoantibody 
production

In phase 2 trial

Table 16.1  Key molecules and signal mediators implicated in the pathogenesis of rheumatoid 
arthritis
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patients with active RA. However, the majority of patients experience an inadequate 
response to a therapeutic intervention with MTX, and many are treated with at least 
two nonbiologic disease-modifying antirheumatic drugs (DMARDs) before receiv-
ing a tumor necrosis factor inhibitor (TNFi). The remaining patients are treated 
with a biologic DMARD, especially a TNFi, typically administered in combination 
with MTX, which is now the standard of care (SOC). Often one or more TNFis are 
prescribed, but ultimately many patients move to biologic DMARDs with other 
mechanisms of action, and medical needs are not fully met for many patients. Thus, 
there remains an unmet medical need for additional therapeutic options with unique 
mechanisms of action, proven efficacy, and acceptable safety profiles in patients 
with moderate-to-severe active RA.

A systematic review of the published literature on clinical trials of biologi-
cal treatments in RA was performed, using processes that have been previously 

Molecule or signal mediator Key disease relevant functions Statusa

GM-CSF and M-CSF Enhance differentiation of granulo-
cyte and myeloid-lineage cells in the 
bone marrow and synovium

In phase 1 trial

RANKL Promotes maturation and activation 
of osteoclasts

Phase 2 trial completed

Intracellular signaling molecules and transcription factors
JAK Tyrosine kinase that regulates cyto-

kine-mediated leukocyte maturation 
and activation, cytokine production, 
and immunoglobulin production

Approved drug

Syk Tyrosine kinase that regulates 
immune-complex–mediated and 
antigen-mediated activation of B 
and T cells and other Fc receptor-
bearing leukocytes

More than one phase 2 
trial with positive results

PI3K Mediates signals that drive prolifera-
tion and cell survival

Phase 1 trial planned

BTK Plays an important role in the 
activation of B cells, macrophages, 
mast cells, and neutrophils, through 
regulation of B-cell receptor and Fc 
receptor signaling as appropriate

Phase 1 trial planned

NF-κB Helps integrate inflammatory signal-
ing and is important for cell survival

APRIL a proliferation-inducing ligand, BLyS B-lymphocyte stimulator, BTK Bruton’s tyrosine 
kinase, GM-CSF granulocyte–macrophage colony-stimulating factor, JAK Janus kinase, M-CSF 
macrophage colony-stimulating factor, PI3K phosphatidylinositol 3-kinase, RANKL receptor acti-
vator of NF-κB ligand, Syk spleen tyrosine kinase, Th1 type 1 helper T cells
a Status indicates the investigational status of agents targeting the molecule or signal mediator. 
Approved drugs have been approved by the Food and Drug Administration and European Medi-
cines Agency for use in patients with rheumatoid arthritis. Trials are clinical trials that are ongoing 
or have been completed. Reproduced with permission from McInnes and Schett (2011)

Table 16.1 (continued) 
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described (McDevitt et al. 2009). The majority of the trials were placebo controlled; 
in one trial (Schiff et al. 2008), a head-to-head comparison of two biologics (abata-
cept and infliximab) was performed. For the purposes of the meta-analysis, only 
data on approved doses and regimens were retained.

This integrated analysis included data from 37 phase 2–3 studies describing 
13,474 patients. The primary end point for decision was the American College of 
Rheumatology (ACR)20 responder rate, which is the percentage of patients who 
responded to the relevant criterion based on improvements in tender or swollen 
joint counts and improvement in three of the following five parameters: acute phase 
reactant (such as sedimentation rate), patient assessment physician assessment, pain 
scale, and disability/functional questionnaire. Since nearly all published pivotal tri-
als use this measure of efficacy, it provides for a standardized way to compare treat-
ments. However, as would be expected, the ACR end point is limited by reduced 
precision compared to a continuous measure such as disease activity score. The 
final nonlinear mixed-effects model used for fitting ACR20 time course data was:

where i is the index over studies, l is the index for treatment arm within a study, 
and j is the index over time within a study. The index k represents therapies, and k2 
represents drugs. Two different γm values were estimated: one for biologics and one 
for placebo-plus-MTX and true placebo ( m = 1, 2). The Emax parameter φ1,k is logit 
transformed with M = 100 for all treatments except certolizumab and infliximab 
(drugs with decreasing response at later time points), for which M = 300. The fixed-
effects θ1k values represent Emax parameters, and fixed-effects θ2k2 values are time 
course parameters. The offset of the effect parameter α is set at 1 for all treatments 
except certolizumab and infliximab, for both of which α < 1. Random-effects pa-
rameters η1i and η2il represent between study variability (BSV) and between treat-
ment arms variability (BTAV), respectively. Residual unexplained variability, εi1j, 
and BTAV, η2il, are adjusted according to the number of subjects in a treatment arm. 
The model was implemented in a Bayesian framework and coded in WinBUGS.

Figure 16.1 shows the model-based predictions of the time course of ACR20 
responder rates for canakinumab in comparison to SOC treatments, etanercept and 
adalimumab, as well as placebo. It showed that, with the tested doses/regimens of 
canakinumab, there was only a low probability that this drug would be better than 
the most effective current treatments. At the most effective dose, the analysis pre-
dicted a very low probability (< 3 %) of canakinumab being better than certolizumab 
or infliximab, and 8 % probability of being better than adalimumab, per ACR20 
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scores after 12 weeks of treatment. This finding supported the decision not to con-
tinue with clinical development of canakinumab in RA.

16.2.2  Decision to Expand the Size and Scope of a Dose-Finding 
Study and Using Benefit and Risk Data to Select Doses for 
Phase 3 Testing. (Milligan et al. 2013)

This example illustrates the prospective application of model-based drug develop-
ment (MBDD) concepts to the late-stage development of tofacitinib, a potent im-
munomodulator with a novel mechanism of action, for the treatment of RA. Results 
from a POC trial demonstrated a high degree of efficacy but with side effects. The 
challenge was to identify dose(s) of this orally administered, small molecule for 
pivotal registration trials that would achieve a minimally acceptable product profile 
of similar efficacy as biologic injectables, with acceptable safety.

Tofacitinib is a Janus kinase (JAK) inhibitor. JAK enzymes transmit the sig-
naling of several pro-inflammatory cytokines involved in the pathogenesis of RA 
through pairings of JAKs (e.g., JAK1/JAK3, JAK1/JAK2) and tofacitinib works by 
inhibiting the activities of these combinations, resulting in modulation of cellular 
processes of hematopoiesis and immune cell function.

The first evidence of efficacy in RA patients was observed in a 6-week POC 
study of 5, 15, and 30-mg twice-daily (BID) doses of tofacitinib and placebo (Kre-
mer et al. 2009). All doses demonstrated efficacy as measured by the ACR response 
criteria but were also associated with side effects, such as dose-dependent chang-
es in laboratory markers (e.g., decreased neutrophils). The challenge was to ef-
ficiently yet comprehensively characterize dose-response relationships to identify 
optimal dose(s) for confirmatory trials. This process began by gaining agreement 
with stakeholders on the key questions and setting quantitative and action-oriented 
objectives for the phase 2b program, as illustrated below (Sheiner 1997).

Fig. 16.1  Model-based comparison of ACR20 responder rates for canakinumab versus placebo and 
SOC treatments, etanercept and adalimumab. Canakinumab (both panels, red solid lines), etanercept 
(panel a, brown dash-and-dot line), adalimumab (panel b, blue dash-and-dot line), and placebo (both 
panels, gray broken lines). Blue circles represent placebo-plus-MTX data from the canakinumab 
study. Yellow squares represent the observed ACR20 values (with red vertical bars for 95 % con-
fidence intervals) for canakinumab. The shaded areas are the respective 90 % Bayesian confidence 
intervals for model-based predictions. (Reproduced with permission from Demin et al. 2012, CPT)
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What do we need to know? Identify the lowest dose with at least 30 % differ-
ence in ACR20 response versus placebo by week 12. ACR20 response was chosen 
because it was the primary efficacy end point in the study to demonstrate superiority 
to placebo. However, the operating characteristics of the study were also verified to 
be reasonable with respect to ACR50 and ACR70 end points.

How sure do we want to be? Desire 80 % probability that the true response for 
the model-estimated dose will be within ± 20 % of the target efficacy magnitude, 
i.e., 24–36 %.

What are we willing to assume? A pharmacologically based, longitudinal Emax 
model will be applied; the dose range derived from the monotherapy POC study 
data will be applicable to combination treatment with MTX; priors for the model-
based analysis will be weakly informed by the POC study data.

Various longitudinal, dose–response models were developed, including an in-
direct latent variable response model, relating pharmacologically based models to 
categorical data (Hutmacher et al. 2008). The various models gave similar predic-
tions of the data but showed differences in their predictive performance when ex-
trapolating to lower doses and later time points. Consequently, they were used as 
“data-generation” models to ensure that the design chosen had robust operating 
characteristics over a range of “true” relationships (Krishnaswami et al. 2009). A 
similar approach was implemented to characterize decreases in absolute neutrophil 
counts. Since the neutropenia incidence data from the POC study were too sparse, 
modeling efforts were focused on characterizing neutrophil counts using indirect 
response and semi-mechanistic models (Gupta et al. 2010) to provide a more stable 
basis for dose and time interpolation/extrapolation. Using clinical trial simulations, 
it was determined that the 10th percentile of the neutrophil count distribution was 
related to the risk of neutropenia and estimated with greater precision than the neu-
tropenia incidence data, thereby providing an efficient way to eliminate doses with 
unacceptable neutropenia event rates predicted based on changes in continuous data.

Two 6-month, phase 2b studies were performed in which tofacitinib was ad-
ministered either as monotherapy (Fleischmann et al. 2012) or in combination with 
MTX (Kremer et al. 2012). Both studies evaluated placebo and tofacitinib doses of 
1, 3, 5, 10 and 15 mg BID. The sample sizes of these studies, totaling > 800 patients, 
were larger than traditional phase 2 sample sizes because they were designed to sup-
port quantitative decision criteria aimed at identifying an optimal dose rather than 
statistical separation from placebo. Traditional pairwise comparisons would have 
necessitated a 70 % increase in study size (approximately 1300 patients) to achieve 
similar performance characteristics over a model-based approach.

Model-derived inferences, updated using Bayesian methods, were used to calcu-
late the probability of technical success, i.e., the probability of achieving efficacy 
similar to that of SOC TNF inhibitor treatment (Tan et al. 2011; Tofacitinib FDA 
Advisory Meeting 2012). As predicted from the POC study, changes in neutrophils 
and predicted incidence of neutropenia were within acceptable limits and, there-
fore, not considered to limit the dose range under consideration for phase 3 trials. 
However, dose-dependent changes in hemoglobin levels were noted. A longitudi-
nal model was applied to capture the relationship between dose and hemoglobin 
levels. An empirical model was applied to capture the apparent inverted U-shaped 
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relationship between dose and hemoglobin levels, possibly arising out of beneficial 
effects (improvement in the anemia associated with chronic disease, i.e., active RA) 
at lower doses and a combination of beneficial and deleterious effects (potentially 
due to JAK2 inhibition) at higher doses. The probability that the incidence of clini-
cally important anemia (defined as > 2 g/dl decreases from baseline in hemoglobin 
or absolute value < 8 g/dl) will not exceed 5 % above placebo over 6 months of 
treatment was calculated. As shown in Fig. 16.2, modeling based on the MTX com-
bination study predicted that doses from 5 to 10 mg BID inclusive would meet 
both the desired efficacy and safety criteria of having approximately 50 % or greater 
probability of achieving efficacy similar to SOC, with anemia rates < 5 % above 
placebo. In contrast, a 3-mg dose had a 10 % chance of achieving the ACR70 target 
compared to 40 % for the 5-mg dose. It is noteworthy that while the MTX combina-
tion study was designed to identify a dose that produced at least 30 % difference in 
ACR20 rates from placebo, none of the doses in this study actually showed differ-
ences > 30 %, attributable to an unexpectedly high placebo rate (> 40 %). On the oth-
er hand, ACR50 and ACR70 response rates from the study encompassed a range of 
responses typically associated with TNF inhibitor treatment. As a consequence, the 
acceptance criteria for ACR 20 dose selection was modified to at least a 20 % differ-
ence from placebo to provide better discrimination of doses between 1- and 15-mg 
dose range while the original criteria was retained for ACR50 and ACR70 rates.

The choice of 5- and 10-mg doses was independently verified in the monother-
apy phase 2b study which became available after phase-3 dose selection was made 
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based on the MTX combination study. This study monotherapy showed that doses 
≥ 5 mg provided the requisite level of efficacy, including > 30 % differences in ACR 
20 rates from placebo, whereas a 3-mg dose was considered clinically suboptimal, 
even though it separated from placebo (Fleischmann et al. 2012). Thus, the totality 
of the data justified the choice of 5- and 10-mg BID doses for phase 3 studies.

The results from the phase 3 program were consistent with these model predic-
tions. The efficacy of 5 mg BID was as predicted (29 % difference in ACR20 rate vs. 
placebo across five phase 3 studies) and, more importantly, similar to that of SOC 
TNF inhibitor treatment (adalimumab; van Vollenhoven et al. 2012a). The rates 
of anemia and neutropenia were low and considered manageable with appropriate 
clinical monitoring.

A prospective approach to (a) designing studies to a stringent quantitative crite-
ria, (b) characterizing exposure–response relationships using well-established clini-
cal outcome data in patient populations representative of the phase 3 program, and 
(c) selecting doses based on efficacy and safety using probability of technical suc-
cess as a common metric allowed demonstration of a positive benefit: risk profile 
with the desired product attributes. Tofacitinib 5 mg BID was approved in 2012 by 
the FDA for the treatment of moderately-to-severely active RA.

16.2.3  Decision to Approve a Pediatric Dose and Formulation 
Not Tested in a Pivotal Registration Trial (Krishnaswami 
et al. 2012)

Celecoxib is a nonsteroidal anti-inflammatory drug (NSAID) that exhibits anti-
inflammatory, analgesic, and antipyretic activities by inhibiting prostaglandin 
synthesis, primarily via inhibition of cyclooxygenase-2 (COX-2) but not COX-1 at 
therapeutic concentrations in humans (Gierse et al. 2002). In addition to adult in-
dications, it is currently approved for the treatment of juvenile rheumatoid arthritis 
(JRA), a group of disorders characterized by idiopathic inflammatory arthritis. The 
key question during the pediatric development program was whether an alternative 
dosing scheme supportable by available formulation could be derived from studies 
that used an investigational formulation to evaluate efficacy, safety, and PK.

Prior to and during the conduct of the efficacy/safety trial in JRA patients 
(Foeldvari et al. 2009), several attempts were made to develop an age-appropriate 
pediatric formulation, including oral suspension, orally disintegrating tablets, and 
chewable tablets. None of these were suitable for commercialization in a timely 
manner because of technical challenges. Thus, the development team was faced 
with the conundrum of having efficacy, safety, and PK data, in the pediatric popula-
tion, but without a commercializable formulation. Thus, the overall objective of this 
pharmacometric endeavor was to bridge data across formulations, methods of ad-
ministration, and populations to derive dosing recommendations for JRA patients. 
This was achieved in three steps: (1) assessing exposures in JRA and adult RA pa-
tients administered celecoxib suspension (i.e., formulation used in the efficacy trial) 
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and characterizing the PK/PD relationship, (2) comparing the suspension exposures 
to capsule (marketed formulation) exposures, and (3) evaluating the suitability of 
administering celecoxib capsules as sprinkles (on applesauce) for those who may be 
unable or unwilling to swallow an intact capsule (Fig. 16.3).

A complicating factor in bridging capsule and suspension was that although 
similar AUC was expected between the two dosage forms at the same doses, Cmax 
would be higher (approximately doubled) for the capsule formulation. Therefore, 
the rationale for the selection of capsule doses was based on achieving concentra-
tions that do not exceed those observed in the JRA trial using the suspension formu-
lation (safety boundary), while achieving similar overall exposures as those shown 
to be noninferior to naproxen (efficacy boundary), an approved drug for the treat-
ment of JRA. Because two doses (3 and 6 mg/kg BID) of celecoxib suspension were 
evaluated in the efficacy trial and both were found to be noninferior to naproxen 
7.5 mg/kg BID and well tolerated (Foeldvari et al. 2009), concentrations in between 
those of the two dose groups were targeted. The prediction of pediatric capsule PK 
profiles was made by combining historical capsule parameter estimates in adults 
and the estimated power exponents for the effect of weight on CL/F and V/F in the 
JRA efficacy trial. It was fortuitous that the power exponent for the weight effect on 
CL/F was 0.265 ± 0.074, resulting in typical oral clearance (L/h) values that were 
only 40 and 24 % lower in patients weighing 10 and 25 kg, respectively, compared 
with a 70-kg patient. This allowed the potential use of a less flexible dosing form 
(capsule) compared to a liquid formulation.

Mechanistically, whether these results were a true reflection of the weight–
clearance relationship or an artifact arising out of possible influence of collinear 
covariates was evaluated by fixing the weight effect to an allometric model (typi-
cal CL/F = θ1 × [weighti/41]^0.75; typical V/F = θ2 × [weighti/41]) and estimating 
the relationship between age and CL/F and age and V/F using centered power 

AUC: 100 mg capsule ~ 115-118 mg suspension
Cmax: 100 mg capsule ~ 115-118 mg suspension

Marked Product

Adult
Capsule

Adult
Suspension

PK Data Available
Efficacy, Safety, and PK

Data Available 

Pediatric
Suspension

Pediatric
Capsule Sprinkles

Fig. 16.3  Bridging strategy for celecoxib sprinkles in patients with JRA. (Reproduced with per-
mission from Krishnaswami et al. 2012)
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functions. The motivation for choosing age as the second covariate was not based 
on the plausibility of incomplete maturation of metabolism or excretion processes, 
because patients typically attain full function by 2 years of age, but rather from a 
report showing a similar departure from allometry for another anti-inflammatory 
agent (leflunomide) in the JRA population (Shi et al. 2005).

Recent evidence suggests that inflammation due to underlying infectious or 
inflammatory conditions is associated with downregulation in the expression of 
several drug-metabolizing enzymes (Schmith and Foss 2010). This raised the pos-
sibility that age could be a surrogate of inflammatory burden (i.e., younger children 
having a lower burden of disease/inflammation compared with older children, and 
thus resulting in decreasing oral clearance with increasing age). Although the addi-
tion of two such parameters describing the relationship between age and CL/F and 
age and V/F resulted in only a 6.3-point decrease in the objective function (not sta-
tistically significant) relative to the weight-effect model (power exponent = 0.265), 
the parameters were estimated reasonably well (relative SE < 25 %). This suggests 
that caution should be exercised in interpreting the weight–clearance relationship 
from a mechanistic standpoint. However, the model choice or philosophy would not 
be expected to affect dosing decisions because the estimate of the power exponent 
in the weight-effect model should reflect a net effect of allometry and age. Indeed, 
typical clearance values calculated over a range of theoretical age (2–17 years) and 
weight (10–100 kg) combinations according to the 3rd, 50th, and 97th percentile 
Centers for Disease Control and Prevention weight charts are mostly similar be-
tween the allometric-plus-age model and the weight-effect model (Fig. 16.4). The 
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models diverge only under extreme scenarios (e.g., a 2-year-old child would have 
to weigh 40 kg to need twice the dose as compared with a 10-year-old weighing 
40 kg under the allometric-plus-age model). Moreover, at younger ages, the allome-
tric-plus-age model tends to suggest the need for higher doses under such extreme 
weight scenarios, making it of less utility in the absence of safety data. Thus, the 
simpler and more conservative weight-effect model was considered appropriate to 
derive dosing instructions.

Simulations supported a reduction in the number of weight-based dosing tiers 
employed in the JRA efficacy trial from five (10–12, 13–25, 26–37, 38–50, and 
> 50 kg) to two (10–25 and > 25 kg). An overall summary is shown in Fig. 16.5, 
where the simulated PK (including historical adult capsule data for reference) and 
efficacy profiles (percent responders) are depicted for the 10- to 25 and > 25-kg 
weight categories for the suspension doses used in the efficacy study and for the rec-
ommended capsule doses. The results are consistent with the approach of achieving 
efficacy closer to that of the lower dose (3 mg/kg) tested in the efficacy study while 
ensuring that Cmax, particularly in lighter patients, is not significantly greater than 
those of the higher dose (6 mg/kg) tested in the efficacy study (Fig. 16.5).
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Fig. 16.5.  Simulated PK/PD profiles for suspension and capsule dosing schemes of celecoxib in 
juvenile rheumatoid arthritis (JRA). Black short and long dash lines represent 3 and 6-mg/kg BID 
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respectively, in adult rheumatoid arthritis patients. DOI definition of improvement. (Reproduced 
with permission from Krishnaswami et al. 2012)

 



48916 Pharmacometric Applications in Inflammation

Finally, the interchangeability of different delivery methods (administration of 
the commercial capsule intact or as sprinkles) was demonstrated in adults in order 
to support dosing in children who are unable to swallow intact celecoxib capsules.

16.2.4  Decision to Test Higher Dose Space Based on Knowledge 
Derived from Totality of Internal and External Data 
(Kowalski et al. 2008)

SC-75416 is a benzopyran (chromene) COX-2 inhibitor, a novel class of com-
pounds with anti-inflammatory and analgesic activity demonstrated in preclinical 
models of pain and inflammation. An initial dose-ranging study in post-surgical 
dental patients indicated that the tested doses of a capsule formulation of SC-75416 
did not achieve pain relief (PR) response similar to SOC. PR scores were measured 
on a 5-point Likert scale (PR = 0: no pain relief; PR = 4: complete pain relief). In ad-
dition, patients receiving SC-75416 dropped out of the study and took rescue medi-
cation at a higher rate than those receiving the reference standard (rofecoxib 50 mg, 
currently withdrawn from the market). The key development question was whether 
the dose range tested was adequate to support compound termination at that point in 
time, or if there was a rationale to pursue higher doses that would ultimately provide 
efficacy differentiation from marketed products.

A modeling and simulation strategy was employed to leverage internal and ex-
ternal data from SC-75416, and from other products (rofecoxib, valdecoxib, and 
ibuprofen) to address this question. Models to characterize PR as well as dropout 
(time to rescue) were employed based on previously published methodology for 
the analysis of non-randomly censored ordered categorical data, which is typical 
of analgesia trials (Sheiner 1994; Mandema and Stanski 1996; Sheiner et al. 1997). 
A key data piece that shed light on the potential reason for the less-than-expected 
efficacy was the lower and more variable absorption profile of the capsule formula-
tion of SC-75416 in the first 6 h after dosing in patients with dental pain compared 
to that of an oral solution (previously evaluated in healthy subjects). To assess the 
impact of this difference, the PR and dropout models together with the observed PK 
profile for the oral solution were used to predict the PR score profile for the oral so-
lution formulation. These predictions, which are extrapolations outside of the data 
generated from the initial dental pain study using capsule, suggested that equivalent 
doses of the compound administered as an oral solution should provide higher PR 
response compared to those of the capsule. More importantly, higher doses of the 
oral solution were predicted to surpass the efficacy of an approved drug (ibuprofen 
400 mg). To further increase the confidence to invest in another study to test this hy-
pothesis, particularly to estimate the probability of success relative to ibuprofen, ad-
ditional PK/PD modeling was performed pooling post-oral surgery pain data from 
valdecoxib studies where 400-mg ibuprofen had been used as an active comparator. 
The PR and dropout model parameters estimated were used to obtain two sets of 
population mean predictions of efficacy for SC-75416 oral solution doses ranging 
from 30 to 360 mg. An important assumption was made that all of these drugs can 
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achieve the same maximum drug effect, and differences in effectiveness between 
the compounds is dependent only on their exposure relative to their potency.

Because different data sources were used to obtain the two sets of population 
mean predictions of efficacy, considerable discrepancy in the dose–response predic-
tions were noted between the two models. The predicted SC-75416 oral solution 
dose–response profile based on the single study was steeper compared to that pre-
dicted based on the analysis of competitor data. The parameter estimates of the PR 
and dropout models are less precise for the SC-75416 capsule post-oral surgery pain 
model because they are based on the results of a single study, and because the SC-
75416 treatments had unexpectedly low exposure due to the poor absorption of the 
capsule formulation. For these reasons, the more conservative predictions based on 
the post-oral surgery pain modeling of the data from the valdecoxib studies were con-
sidered more robust and hence were used in subsequent clinical trial simulations to 
evaluate designs in planning the SC-75416 oral solution post-oral surgery pain study.

Based on the updated PK/PD and dropout models from the valdecoxib study and 
the potency (EC50) estimate for SC-75416 from the fit to the SC-75416 capsule 
post-oral surgery pain study, clinical trial simulations were conducted to evaluate 
and optimize the study design (doses and sample sizes) for a superiority trial. The 
design was optimized using probability of success as the metric, which was defined 
as a greater than 0 value for the lower bound of a 95 % confidence interval of the 
difference in efficacy between SC-75416 and ibuprofen. Seven different design op-
tions were evaluated and the chosen design was a study with a 2:1 randomization 
with N = 50 patients per arm for the placebo and 60- and 180-mg SC-75416 oral 
solution treatments, and N = 100 patients per arm for the 360-mg SC-75416 oral 
solution and 400-mg ibuprofen treatments. A second post-oral surgery study was 
then conducted using a study design optimized to test the hypothesis that a dose of 
SC-75416 could achieve superior PR to 400-mg ibuprofen.

The results were remarkable, in that the observed results were consistent with 
model predictions and the data confirmed the hypothesis that a high dose (360 mg) 
of SC-75416 administered as an oral solution can achieve clinically relevant and sta-
tistically significant improvements in PR relative to 400-mg ibuprofen (Table 16.2).

Table 16.2  Comparison of observed and predicted TOTPAR6 responses for the SC-75416 oral 
solution post-oral surgery pain study. (Reproduced with permission from Kowalski et al. 2008)
Treatment group T0TPAR6 (mean ± SE) ΔTOTPARea

Predictedb Observed Predictedb Observed
Placebo 3.9 ± 0.9 1.4 ± 0.6 − 7.1 − 9.6
60 mg SC-75416 10.1 ± 1.4 9.2 ± 1.2c − 0.9 − 1.8
180 mg SC-75416 13.0 ± 1.2 13.7 ± 1.2c 2 2.7d

360 mg SC-75416 14.2 ± 0.9 14.3 ± 0.8c 3.2 3.3d

400 mg ibuprofen 11.0 ± 0.8 11.0 ± 0.8c 0 0
a Difference in TOTPAR6 relative to 400 mg ibuprofen
b Predicted based on Model IIA/IIB
c Significantly different ( P < 0.05) relative to placebo
d Significantly different ( P < 0.05) relative to ibuprofen
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16.3  Summary

The case studies presented herein highlight tangible impact (in terms of time, cost, 
and/or risk mitigation) achieved via the application of pharmacometric approaches 
to a variety of decisions that are at the core of clinical drug development. A sum-
mary of the impact of these approaches to drug development decision making is 
provided below:

• Case study 1: In the absence of head-to-head data, model-based meta-analysis 
was used to provide a quantitative basis for driving the decision to terminate the 
development of a compound with efficacy, but insufficient to be superior to SOC 
therapy. The framework is broadly applicable to support internal and external 
decision making at all stages of development.

• Case study 2: Use of model-based methods to design and analyze dose-find-
ing studies resulted in efficiency gains by way of needing 437 fewer patients 
(~ US$ 3 million in cost) compared to traditional methods. Prospective planning 
and pre-specification of the desired level of confidence in the magnitude of ef-
ficacy and safety resulted in larger than traditional phase 2 sample sizes, but ul-
timately allowed the identification of doses that produced the desired outcomes 
in phase 3 studies. Thus, model-based drug development should be viewed more 
as a risk mitigation tool than a cost-reduction tool.

• Case study 3: Use of model-based methods to bridge data across formulations 
and populations, along with the collection of extensive PK and PD data in the 
pediatric population including evaluation of the efficacy of two doses, resulted 
in the approval of interpolated doses and dosage forms that were not studied in 
the efficacy trial.

• Case study 4: Modeling and simulation providing the rationale, i.e., generated a 
hypothesis, for pursuing the high-dose strategy and designing a study to test the 
efficacy differentiation hypothesis that might not have otherwise been consid-
ered. The M and S strategy allowed progress to be made in understanding PK/
PD relationships without having to wait for an improved solid dosage form to 
be developed, a time saving of approximately 9 months. Models that allowed 
predictions of clinically meaningful and statistically familiar end points were 
critical to gaining support to further invest in a study to evaluate the full potential 
of the molecule.

It must be mentioned, however, that these examples do not fully reflect the length 
and breadth of basic/fundamental pharmacometric research and application already 
demonstrated in the areas of systems biology, systems pharmacology, newer statis-
tical methods as well as other types of applications to improve decision making in 
drug discovery and development (Table 16.3). The presented examples can be seen 
as defining the core pharmacometric activities that need to become standardized and 
“industrialized” so that resources can be better spent on the next frontiers of model-
based development, such as characterization of drug target properties, better trans-
lation of drug attributes from preclinical to clinical space, and pharmacoeconomics.
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17.1  Introduction

There is a paucity of published literature on the application of pharmacometrics 
methods in dermatologic drug development. This can be attributed to unique chal-
lenges associated with development of new agents in this disease area as described 
in a review by Eaglstein et al. (2009). The market for drugs for dermatologic condi-
tions is relatively small as compared to that for other therapeutic areas such as heart 
disease, neurological conditions, or cancer thus reducing the economic incentive 
to develop these drugs. The endpoints for assessing efficacy have a considerable 
subjective element involved in their quantitation. Topical agents still play a signifi-
cant role in the treatment of skin diseases; newer systemic medications are usually 
developed after the drug has been approved for another indication that shares the 
underlying pathophysiology with the skin condition. This has been the case in the 
inflammation disease area where some of the drugs approved for the treatment of 
rheumatoid arthritis have been successfully developed further for the treatment of 
plaque psoriasis.

It can therefore be surmised that potential for pharmacometric applications in 
dermatology remains largely unappreciated. The commonly held belief is that there 
are limited opportunities to utilize model-based methods in development of derma-
tologic agents. Nevertheless, there are a few noteworthy examples which clearly 
showcase the value these methodologies bring towards optimizing the clinical de-
velopment strategy and facilitating decision making. The ensuing sections will ac-
quaint the reader with examples where quantitative methods have been successfully 
employed to streamline dermatologic drug development.
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17.2  Pharmacometrics in Early Drug Development

In early stages of development, availability of richer pharmacokinetic (PK) data, 
biomarkers, and short-term efficacy data, allow the use of mechanistic pharmaco-
kinetic–pharmacodynamic (PK–PD) models to characterize relationships between 
exposure and response variables. Such quantitative approaches can be effectively 
employed to establish a minimum effective dose, identify an optimal dose range, 
and inform futures study design. The ultimate goal at this milestone is to gain a suf-
ficient understanding of the safety and efficacy characteristics of the drug candidate 
to increase the likelihood of success and minimize the chance of adverse events in 
the next stage in development.

17.2.1  PK–PD Targets for Antibacterial Drug Development

Infectious disease is not a disease area that one typically associates with dermatology. 
However, infections of skin, such as complicated skin and skin structure infections 
(cSSSIs) and impetigo, are very common. These infections caused by gram-positive 
or gram-negative pathogens can be minor in nature which can be treated with topical 
antibacterial products, or can be serious requiring systemic antibacterials and hos-
pitalization. The general paradigm followed for antibacterials during early clinical 
development involves evaluating the PK–PD of candidates in preclinical infection 
models (animal (Ambrose et al. 2007) or hollow-fiber models (MacGowan et al. 
2001)) where PK–PD targets or clinically meaningful thresholds are identified. The 
main objective of these experiments is to identify the optimal antimicrobial plasma 
concentration–effect curve that will provide the desired efficacy. The PD parameters 
usually investigated in these preclinical models are the area under the curve (AUC)/
minimum inhibitory concentration (MIC), maximum plasma concentration ( Cmax)/
MIC and T > MIC (i.e., time that the serum concentrations remain above MIC; 
Ambrose et al. 2007). These evaluations are typically based on free drug exposures 
and not total exposures. Use of total exposures is usually employed for drugs which 
do not exhibit cross-species differences in protein binding.

Dose fractionation studies in the preclinical infection models allow for identi-
fication of the PD parameter that is best associated with the antimicrobial effect 
(Ambrose et al. 2007). For β-lactams (penicillins, cephalosporins, carbapenems, 
monobactams), fT > MIC has been identified as the PD parameter. For drugs like 
vancomycin, azithromycin, clarithromycin, linezolid, doxycycline, and tigecy-
cline fAUC0-24: MIC is the PD parameter. Daptomycin has both fAUC0-24: MIC 
and Cmax: MIC as PD parameter. Daptomycin is given once daily (QD) and thus 
AUC0–24 and Cmax are highly correlated, which may explain lack of differentiation 
between the two PD parameters.

This PD parameter is then used to define the PD threshold based on criteria such 
as achieving bacteriostasis or achieving at least 1-log kill. Selection of these criteria 
is beyond the scope of this discussion and the reader is referred to the literature 
for further details (MacGowan et al. 2001). Defining the PD parameters may not 
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always be simple, especially when more than one PD parameter is associated with 
antimicrobial effect; more mechanistic PK–PD models may be needed to character-
ize the PK–PD relationships in such cases.

The PD threshold thus identified provides the dosing rationale for the design of 
the clinical studies. Dose selection can be based on the ability of the doses to meet 
the PD threshold in a target number (percent) of patients. The latter can provide the 
basis of conducting a dose-ranging evaluation; for instance, clinical trial simula-
tions (CTS) based on the PK–PD model can predict the dose range that would meet 
the PD criteria in 80–100 % of the patients to maintain maximal efficacy. Such a 
simulation approach has been successfully applied to several antibacterial agents 
for selection of doses in phase 2.

An example illustrating the application of the above approach for evernimicin 
was reported by Drusano et al. (2001). MIC distribution of clinical isolates, PD tar-
gets identified in animal models of infection and protein-binding characteristics of 
the drug were used in conjunction with the population PK model for rational dose 
selection for phase-2/3 trials. The PD targets (Table 17.1) were identified for three 
different organisms in a neutropenic mice thigh infection model.

The population PK model developed using the data from phase-1 studies in 
healthy volunteers was used to perform Monte Carlo simulations to obtain expo-
sures (AUC) in subjects at each dose. The simulated exposures were then used to 
calculate the fraction of subjects who met the PD targets listed in Table 17.2 at each 
MIC; the overall response for the pathogens was calculated at a given dose using the 
frequency of a given MIC in the MIC distribution.

Based on the above results it is clear that a dose of 6 mg/kg would achieve stasis 
for all organisms given the MIC distribution typically observed. However, for en-
terococci, a 9 mg/kg dose would be advantageous when maximal effect is desirable.

The above strategy can be used to select doses for new candidate molecules for 
conducting phase–2 trials using preclinical and healthy subjects’ data.

17.2.2  Target Site PK–PD

An important consideration for drugs for dermatological indications is to under-
stand the link between local drug exposure and clinical outcome. For example, in 

Table 17.1  PD targets for evernimicin. (Adapted from Drusano et al. 2001)
Organism AUC/MIC ratio

Stasis target Log drop targeta 90 % Emax target

Streptococcus pneumoniae 115.7 239.4 1716.4
Staphylococcus aureus 163.4 330.1 830.8
Enterococcus faecalis 59.6 85.4 764.4

Protein binding was identical between the animal species and humans. Hence, no correction was 
made to the PD targets
a Log drop targets were 3-log10 unit decline for S. pneumoniae, 2-log10 unit decline for S. aureus 
and 1-log10 unit decline for E. faecalis
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the case of antibacterials that treat skin infections, ability to achieve target con-
centrations in the skin is the key to efficacy. The PD parameters established for a 
candidate molecule as discussed above usually relate plasma/serum concentrations 
to antibacterial activity. For this correlation to be valid, it is important to establish 
that the ratio of drug exposure in the skin to that in serum/plasma approaches 1. The 
above-mentioned consideration regarding correlation between dermal availability 
and clinical outcome is particularly important for topically applied agents. McClain 
et al. (2009) evaluated cutaneous exposures of topical corticosteroids relative to that 
achieved by oral prednisone and concluded that their skin concentration correlated 
well with their efficacy.

Both local drug concentrations and the impact on disease-related biomarkers 
can provide valuable understanding regarding the mechanism of action as well as 
the exposure–response (ER) relationship in the skin. The success of this endeavor 
depends on quantifying concentrations in the relevant skin compartment. This is 
a challenging task owing to factors such as availability of a sensitive analytical 
method, sampling considerations and invasiveness of sampling methods, physio-
chemical properties of the drug, and robustness of the PD markers/biomarkers.

Dermal microdialysis is a useful minimally invasive sampling technique, which 
can be used to determine drug levels in the extravascular fluid in the skin. Microdi-
alysis involves the use of a probe (a small semipermeable hollow fiber membrane) 
that can be inserted into tissue and perfused with a physiological solution at a con-
stant rate. Free, unbound solutes can freely cross the membrane by passive diffusion 
due to a concentration gradient and can be used to sample the extravascular space 
continuously. The biggest advantage of this technique is the ability to measure un-
bound drug concentrations in the target tissue thus providing a direct correlation 
between the exposure driver at the site of action and the associated response. An 
exception to the above would be drugs which act intracellularly. The technique can 
be applied to both exogenous and endogenous agents in the extracellular space. For 
instance, microdialysis has been used to measure the baseline levels of cytokines in 
psoriatic plaques (IL-2, IL-6, IL-18, IL 23) and changes induced by treatment with 
fumaric acid derivatives (Salgo et al. 2011). However, the approach has operational 
limitations and may not work well for lipophilic, protein-bound, and high molecular 
weight drugs due to poor recoveries. A very sensitive assay capable of detecting 
low free drug concentrations may overcome this limitation. More recently, novel 
membrane-free probes and wearable multichannel pumps have overcome these 
limitations and have been used for prolonged sampling of lipophilic molecules in 
psoriatic lesional skin (Bodenlenz et al. 2012).

17.3  Population Pharmacokinetics (PK)

Collection of sparse PK samples in patients in outpatient clinical studies enables 
characterization of PK properties in the target population. PK analysis using a 
population-based approach provides an understanding of patient-specific charac-
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teristic that may impact exposure and helps in deriving dosing recommendations in 
conjunction with exposure response (ER) analyses. Development of a population 
PK model also allows for simulation of different dosing regimens that can be sub-
sequently tested in a clinical study. The typical approach for conducting population 
PK analyses is as follows:

• Develop a structural model that allows elucidation of concentration-time profile 
of the drug in the patient population.

•  Incorporate random effects on structural model parameters that describe between 
patient/subject variability (also termed as interindividual variability), interocca-
sion variability, and residual variability.

• Develop a covariate model from the list of plausible patient-specific 
character istics that may help explain some of the random variability in structural 
model parameters.

Population PK analyses for dermatologic compounds have primarily been reported 
in the psoriasis disease area. Plaque psoriasis is a chronic inflammatory skin dis-
ease driven by dysregulation in the immune system (Nestle et al. 2009). Cellular 
proliferation due to interplay of cytokines ultimately results in skin lesion forma-
tion, characterized by red, scaly, raised plaques. While no cure for psoriasis exists, 
symptomatic management can be achieved by therapies such as topical agents, pho-
totherapy, systemic immunosuppressants as well as biologics. Among these, biolog-
ics have emerged as the most promising treatment options in reducing the burden 
of disease. These agents target cytokines such as IL-12 and IL-23 (ustekinumab), 
or tumor necrosis factor (TNF; etanercept, adalimumab, and infliximab). Another 
previously approved biologic that targets T-cells (efalizumab) has been withdrawn 
from the market.

The PK characteristics of biologics differ from conventional small molecules 
due to their unique disposition characteristics; receptor mediated clearance may 
lead to nonlinear PK depending on the concentration range studied. Adalimumab 
and infliximab are known to exhibit nonlinear PK characteristics (Nestorov 2005). 
However, discerning such PK attributes is usually difficult from outpatient data 
where factors such as the dose range studied, time points for PK sampling, and 
sparseness of collected data may limit the exploration of complex mechanism-based 
models. In such instances, a simple model may be deemed sufficient and practical 
to pursue future work. This is clearly evident from the example by (Nestorov et al. 
2004) where a stepwise time function was modeled for apparent clearance (CL/F) 
and apparent volume (V/F) after attempts to fit a continuous sigmoidal function 
were unsuccessful for etanercept. The CL/F was found to be approximately 80 % of 
the steady state value before week 8 of dosing, thereafter it peaked to approximately 
120 % between weeks 4 and 8 and then gradually tapered down to achieve steady 
state values after week 8. These time effects on clearance were postulated to be aris-
ing from the redistribution of etanercept and TNF-binding sites between the blood 
and the poorly perfused skin compartment (site of action).

Across the various biologic therapies, effect of body size measures such as body 
weight or body mass index (BMI), as clinically important determinants of drug 
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clearance has consistently been reported. For instance, ustekinumab exhibits a  
57 % and 37 % higher CL/F and V/F, respectively, in patients weighing greater than 
100 kg compared to those who weigh less than 100 kg (Zhu et al. 2009). Similarly 
for efalizumab, patients weighing 137 and 57 kg had a 37 % higher and 30 % lower 
CL/F, respectively, compared to the typical population value of 1.29 L/day (Sun 
et al. 2005). Such assessments are particularly relevant in psoriasis patients since 
they tend to have higher body weights compared to the general population. Conse-
quently, these results can lead to clinically important implications with respect to 
dosing adjustments based on body size considerations. The weight-based dosing 
recommendations for ustekinumab were supported by the magnitude of PK change 
in the proposed dosing cohorts (Lebwohl et al. 2010). This example is described in 
detail in the next section.

Once the population PK model is finalized, it can be further used to simulate 
PK data under alternate dosing regimens. Such an evaluation can enable extrapola-
tion across different dosing scenarios and provide the rationale for supporting dose 
modification or even a new regimen. This can be evidenced from an example by 
Nestorov et al. (2004), who conducted a modeling and simulation exercise to sup-
port a novel dosing regimen for etanercept. Data from three clinical studies with 
doses of 25 mg QW (once weekly), 25 mg BIW (twice a week), and 50 mg BIW, 
were used to develop a population PK model. The model included covariate effects 
on CL/F (gender, weight, and time) and V/F (weight). This model was used to simu-
late concentration–time profiles for after a new regimen involving the administra-
tion of 50 mg once a week (50 QW). The simulated steady state concentrations for 
this regimen demonstrated concordance with the observed profiles for 25 mg BIW. 
Additionally, the simulations were in good agreement with additional PK data from 
84 patients receiving 50 mg QW, which provided external validation for the model. 
Based on these results, it was concluded that the concentration–time profile arising 
from 50 mg QW could be predicted with high precision; the overlap with 25 mg 
BIW suggested high probability of achieving consistent efficacy and safety between 
the two regimens.

17.4  Exposure Response (ER) Relationships

An understanding of the relationship between drug exposure (dose or summary PK 
measures, such as Cmax, Cmin, Cavg) and response (efficacy and safety) is critical to 
establishing the benefit–risk profile of a drug candidate. The food and drug admin-
istration (FDA) guidance on ER relationships (FDA 2003) highlights the utility of 
characterizing these relationships in drug development and also illustrates how this 
knowledge can facilitate regulatory decision making. ER relationships can provide 
support for primary evidence of efficacy or safety; they can also support benefit–
risk evaluation in subpopulations or dosing adjustments (including regimens, for-
mulations, route of administration). Characterizing ER has proven valuable in the 
development of new therapies in the psoriasis disease area.
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17.4.1  Using ER to Understand the Impact of Patient Specific 
Factors on Efficacy of Psoriasis Drugs

ER assessment for psoriasis drugs has typically aimed at establishing a relationship 
between the measure of disease severity termed as psoriasis area and severity in-
dex (PASI) and drug exposure in patients with moderate to severe plaque psoriasis. 
PASI scores reflect a weighted average calculated from severity and area of psori-
atic plaques. In clinical studies for psoriasis, the primary endpoint is the proportion 
of patients achieving ≥ 75 % improvement in PASI score from baseline, which is 
referred to as PASI 75 response. The section below presents examples where ER re-
lationships for PASI endpoints for two approved biologics and one small molecule 
in development provided valuable insights into the interpretation of the efficacy 
profile along with elaboration of key determinants of efficacy.

Hutmacher et al. (2007) developed a population ER model for PASI 75 for etan-
ercept with pooled data from three randomized, placebo-controlled clinical trials 
using a sequential PK–PD analysis approach. Predicted cumulative AUC (PCAUC) 
derived using the post hoc parameters from the final PK model was deemed as the 
most suitable exposure measure (compared to cumulative dose or predicted through 
concentrations) to evaluate the ER relationship. The mixed effects logistic regres-
sion model for PASI 75 is given by the following equation:

where intercept reflects the baseline probability; placebo time effect is given by the 
product (slope*time) and drug effect is given by the following model:

In the above equation, Emax is the maximum drug effect, EC50 is the exposure that 
achieves 50 % of the maximum drug effect, γ is the hill coefficient, and PCAUC* 
is an apparent exposure expressed as PCAUC (1-exp(-keot)) to capture the delay 
between drug exposure and effect (characterized by rate constant keo). It should be 
noted that the placebo model has limited interpretation due to its simple structure, 
i.e., linearity with time.

Interpatient variability was allowed to change with time in the model. The final 
model included race and sex effects on the intercept, baseline PASI and prior sys-
temic/phototherapy on Emax, an age effect on keo and a weight effect on EC50. The 
analysis predicted a 130 % increase in EC50 for a twofold weight change. Despite 
the variable selection algorithms selecting the weight effect on EC50, inspection of 
the results indicated that the model could not ascertain effectively whether differ-
ence in potency (EC50) or temporal delay (keo) was accounting for the observed 
weight-based trend in the data. Ultimately, it was concluded using other analyses 
that dose adjustment was not warranted for any subgroup of patients.

( )Logit P event 1 ,Intercept placebo time effect drug effect =  = + + 

*

max *

(PCAUC )drug effect * .
EC50 PCAUC

E
γ

γ γ=
+
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A similar weight-based phenomenon was observed for tofacitinib an investiga-
tional psoriasis drug, in a 12-week phase 2b dose-ranging study (placebo, 2, 5, 
and15 mg BID) in patients with moderate to severe chronic plaque psoriasis. Lon-
gitudinal ER modeling of PASI scores revealed body weight as being a significant 
covariate of drug effect. Weight was found to impact pharmacodynamic potency as 
well as the time delay rate constant in a modified indirect response model (Gupta 
et al. 2011). As was found with etanercept, the model could not explain whether 
dose adjustment or longer trial duration was required for the heavier subgroup to 
achieve the same level of response as their lighter counterparts. Figure 17.1 shows 
the predicted PASI 75 response rate for two weight cohorts stratified by median 
weight (90 kg) at week 12 (time for primary endpoint evaluation).

Given the small sample size and the uncertainty associated with the ER relation-
ship, it was proposed to continue to explore 5 and 10 mg BID as a fixed dosing 
regimen for a longer duration (up to 52 weeks) in the phase 3 studies in psoriasis 
patients. It was anticipated that the large sample size in the phase 3 program would 
provide an adequate number of patients to detect any significant differences in ef-
ficacy over time with respect to weight.

Another example of a population-based exposure–PASI relationship was report-
ed for the IgG1-based monoclonal antibody-ustekinumab (Zhou et al. 2010). Data 
from two phase-3 studies ( n = 1312) for psoriasis patients receiving 45 or 90 mg 
were used to develop an indirect response model. The model assumed the formation 
and remission rates of the psoriatic plaques to be zero order (kin) and first order 
(rate constant: kout), respectively. The drug effect inhibited the formation rate as 
shown below:

( )d PASI
(1 ) **dt

Cpdrug effect * IC50 CP
placebo effect (1 ( ))* * 

*

exp
.

= − − −

=
+

= − −
=

max

kin drug effect placebo effect kout PASI

E

plbmax keo time
kout baseline Pin ASIk
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Fig. 17.1  Observed and model-predicted PASI 75 by median weight at week 12 for tofacitinib. 
Observed data are represented by symbols and model predictions by solid lines; data from a phase 
2b dose-ranging study of tofacitinib in patients with moderate to severe chronic plaque psoriasis. 
(Adapted from Gupta et al. 2011)
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Emax, IC50, and γ have their usual interpretations as described above; Cp represents 
ustekinumab serum concentrations that were derived from the final PK model (one 
compartment model with first order absorption and elimination). Placebo effect also 
inhibited the formation rate. In the above equation, plbmax describes the steady 
state inhibition and keo is the rate constant governing the time course of placebo 
effect. Interpatient variability on PD parameters (kin, kout, and IC50) was assumed 
to follow a log normal distribution and a combination of proportional and additive 
errors was used to model the residual variability. The model provided adequate fits 
to the observed data and was deemed acceptable by the goodness of fit plots and 
simulation-based diagnostics. An exhaustive pool of covariates was evaluated fol-
lowing the base-full-final model approach. However, since the covariates in the full 
model could not account for interpatient variability in the PD parameters (283, 60, 
and 54 %, for IC50, kin, and kout, respectively), they were not retained in the final 
model.

The authors noted that there was a significant overlap of exposures between 
patients less than 100 kg receiving 45 mg and those heavier than 100 kg receiving 
90 mg. This observation had previously been applied to justify the two-tiered fixed 
dosing regimen for ustekinumab in psoriasis patients (Lebwohl et al. 2010). The 
authors in this manuscript reasoned that the 100-kg weight cut point was optimal 
since the changes in efficacy paralleled the changes in systemic exposure, i.e., the 
PASI 75 response rates among heavier patients receiving 90 mg (74 %) and lighter 
patients receiving 45 mg (77 %) were comparable. The proposed regimen was:

• For patients ≤ 100 kg, 45 mg initial dose (and 4 weeks later) and every 12 weeks 
thereafter

• For patients > 100 kg, 90 mg initial dose (and 4 weeks later)and every 12 weeks 
thereafter

However, the US FDA disagreed with this assessment and opined to the Derma-
tologic and Ophthalmic Drugs Advisory Committee that the dosing regimen for 
ustekinumab was suboptimal in terms of benefit that it yielded to heavier weight pa-
tients (FDA 2008). The FDA based their recommendation on an exposure (AUC)–
PASI relationship (Fig. 17.2) developed from the two studies mentioned above 
which revealed that instead of a two-tiered dosing approach the patients would stand 
to benefit more from an alternate three-tiered regimen (< 60, ≥ 60–< 90, and ≥ 90 kg) 
that could yield PASI response rates similar to those arising from the administration 
of 90 mg to all subjects. Table 17.3 shows the predicted response under the different 
dosing scenarios based on the exposure–PASI relationship. Table 17.3 illustrates 
the projected improvement in clinical outcome in heavier patients receiving the 
alternate regimen as proposed by the FDA.

This example clearly demonstrates the successful utilization of an ER relation-
ship to assess the impact of a key patient-specific factor (body weight) on clinical 
response. The example further shows how the insights gained from the ER relation-
ship can be used to recommend dosing modifications in patient subgroups that stand 
to benefit from an alternate regimen.
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17.4.2  Facilitating Decision Making Regarding Dose 
Progression to Phase 3

Pharmacometric methods can support different milestones during drug develop-
ment to facilitate decision making with respect to trial design, go/no-go deci-
sions, dose selection, and product positioning. The following section illustrates an 
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Table 17.3  Predicted response rates for ustekinumab under different dosing regimens based on the 
PASI75-ER model. (Adapted from FDA 2008)
Dosing strategya Dose Proposing entity PASI 75 response predicted from the 

ER model
Overall By body weight quartiles

68 kg 84 kg 96 kg 117 kg
Two tiered  100 kg: 45 mg

≥ 100 kg: 90 mg
Sponsor 70 77 70 66 69

Three tiered <60 kg: 45 mg
≥ 60 kg–
 90 kg: 67.5 mg
≥ 90 kg: 90 mg

FDA 74 79 75 73 69

a ER model proposed by the FDA
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example where modeling and simulation were used to develop a probabilistic deci-
sion criterion for a safety laboratory endpoint to facilitate phase-3 dose selection for 
tofacitinib, a novel oral Janus kinase (JAK) inhibitor, currently in development for 
the treatment of autoimmune conditions such as psoriasis, ankylosing spondylitis, 
Crohn’s disease, etc. Tofacitinib was recently approved for the treatment of adult 
patients with moderately to severely active rheumatoid arthritis (Xeljanz®).

This example is based on a 12-week phase 2b dose-ranging study evaluating 
tofacitinib placebo, 2, 5, and 15 mg BID in patients with moderate to severe chronic 
plaque psoriasis. Phase 3 dose selection was based on the probability of achieving a 
clinically meaningful target effect (PTE) for the selected laboratory safety and effi-
cacy (data not shown) endpoints (Gupta et al. 2012). PTE calculation took into con-
sideration the clinical meaningfulness of the target effect and the desired confidence 
in its magnitude as well as the uncertainty associated with the ER relationship(s). 
Doses were ranked for their performance on the PTE scale; doses achieving a 50 % 
or higher probability were progressed for phase-3 evaluation.

Incidence of hemoglobin drop from baseline was regarded as a clinically rel-
evant laboratory endpoint for model-based assessment. The target effect was set 
at a placebo-adjusted incidence rate of less than 5 % for a hemoglobin change of 
> 2 g/dL decrease from baseline through 12 weeks of treatment. The incidence of 
hemoglobin drop was predicted from a longitudinal, ER model for this endpoint 
(Gupta et al. 2012). Modeling hemoglobin levels as opposed to incidence rates of-
fered several advantages: (a) Incidence rates were very small in the studied popu-
lation and may not have allowed for dose interpolation and (b) characterizing the 
exposure- and time-dependent trajectories of hemoglobin levels in psoriasis patients 
offered greater flexibility in predicting the incidence for a trail design of interest.

An indirect response model (with stimulation of elimination ( Kout)) best de-
scribed the hemoglobin time course across the studied doses. The model was used 
for predicting the incidence rate of > 2 g/dL decrease in hemoglobin. The probabil-
ity scale for the achievement of target effects was constructed and applied to iden-
tify an optimal dose range for phase-3 evaluation. Based on the PTE assessment, 
5 and 10 mg BID were selected for phase 3 as they yielded PTE values of 100 and 
87 %, respectively (Fig. 17.3). This selection was also supported by efficacy consid-
erations which have not been discussed here.

17.5  Integrating Knowledge from Different Sources

A very important component of pharmacometrics is integrating knowledge from 
other sources such as competitors and/or standard of care to inform strategy and 
support clinical decisions during a compound’s development. Analyses of collec-
tive data across multiple studies for other drugs or therapies can provide a quanti-
tative contextualization framework for benchmarking a compound’s performance 
against existing treatment modalities. Prior data for the investigational drug can be 
used in conjunction with data available in the public domain (e.g., publications in 
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peer-reviewed journals, summary basis of approvals, conference posters, and ab-
stracts, etc.) for other drugs to make a comparative assessment of the safety and ef-
ficacy profiles. Such an integrated evaluation can be further utilized to guide regula-
tory and commercial strategy.

17.5.1  Meta-Analysis

Meta-analysis is a method of integrating information (summary level data) from 
different sources to enable indirect comparisons of available treatments. Since very 
few clinical studies in dermatologic drug development, have undertaken a head-
to-head comparison of different treatments in a randomized-controlled setting, this 
methodology can provide useful information regarding their comparative perfor-
mance. Meta-analyses evaluating the efficacy of biologic agents in patients with 
chronic plaque psoriasis have been published in recent years. Most recently, Reich 
et al. (2012) used a network meta-analysis approach to derive the ranking of biolog-
ics, approved in Europe for the treatment of moderate to severe psoriasis (inflix-
imab, etanercept, adalimumab, ustekinumab, and efalizumab). The analysis based 
on the PASI 50, 75, and 90 response rates was conducted on an ordered probit scale 
using a Bayesian hierarchical model. The analysis assumed consistency of treat-
ment effects across trials (on a probit scale) and yielded the predicted ranking of 
different treatments based on probability of achieving the desired PASI response 
as well as relative risk with respect to placebo. The analysis used data from 20 
trials and revealed that infliximab was the most effective treatment followed by 
ustekinumab, adalimumab, etanercept, and efalizumab.

Another example illustrating the successful utilization of a meta-analytic ap-
proach to answer questions pertaining to clinical usage of available atopic derma-
titis treatments was reported by Sher et al. (2012). The objective of the analysis 
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was to compare systemic and topical therapies for their ability to reduce the pruri-
tus associated with atopic dermatitis and to contrast these treatments against their 
respective controls, i.e., vehicle and placebo for topical and systemic therapies, 
respectively. The analysis database consisted of 42 studies (representing 7011 pa-
tients) for the topical treatment and 10 studies (representing 647 patients) for the 
oral treatment. An inverse variance fixed-effects model showed that after adjusting 
for their respective controls, topical treatments were more effective than systemic 
treatments. Within the topicals, calcineurin inhibitors were found to be more effec-
tive than corticosteroids. Among the systemic treatments, data deficiency prevented 
an evaluation of the effectiveness of antihistamines. However, immunosuppressants 
were found to be clinically beneficial in reducing pruritus symptoms.

17.5.2  Model-Based Meta-Analysis

Meta-analysis can also be conducted by assuming parametric regression-based mod-
els to describe the relationship between exposure (and/or time) and response. Such 
an analysis termed as model-based meta-analysis (MBMA) may involve assessment 
at a specified time point (landmark analysis) or utilize data collected over multiple 
time points (longitudinal analysis). The main advantage of this approach over tra-
ditional meta-analysis is the inclusion of all available data (e.g., dose levels) which 
may increase the precision of the estimated treatment effect (Mandema et al. 2011). 
Additionally, the impact of differences in patient populations on the treatment ef-
fect may be captured quantitatively by virtue of covariate models (Mandema et al. 
2011). Finally, MBMA allows for prediction and simulation of data scenarios which 
may lend themselves quite useful towards optimizing the design of a new study. 
Such value additions include but are not limited to formulating criteria for proof 
of concept studies and design elements such as study duration, choice of an active 
comparator, dose levels, etc.

MBMA may be driven by a specific question of interest. For instance, Janiczek-
Dolphin et al. (2010) evaluated the steady state relationship between sebum ex-
cretion and acne outcome (measures: total lesion count, acne severity grade, and 
inflammatory lesion count) using data from multiple studies for acne treatment. The 
objective of the analysis was to quantitatively characterize this relationship and as-
sess the ability of sebum reduction in predicting acne outcome across various drug 
classes (retinoid, oral contraceptive, 5-lipooxygenase inhibitor, and oral contracep-
tive containing antiandrogen) representing patients with mild-moderate to severe 
disease. Both hyperbolic ( Emax) and linear (slope–intercept) models were explored, 
with the latter better describing the effect (E) i.e. acne outcome as a function of 
reduction in sebum excretion (RSE)

The equation below shows the model used and Fig. 17.4 shows the results for 
the linear relationship:

/ ,*E baseline slope RSE Nε= + + √
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where ε is the additive residual error normalized with respect to the number of 
patients ( N).

The model used the totality of available evidence across different drug classes to 
quantify the association between sebum reduction and acne outcome. This relation-
ship was used to predict the magnitude of sebum reduction required for a certain 
target improvement in acne outcome measures. The predicted sebum reduction to 
achieve a 50 % improvement in total lesion count, inflammatory lesion count, and 
acne severity grade was (%, 95 % CI): 50.3 (37.8, 75.3), 37.3 (26.6, 62.7), and 40.8 
(31.4, 58.0), respectively.

This example clearly illustrates how the application of a simple model involving 
multiple drugs/classes allowed the quantification of the biomarker-clinical outcome 
relationship. The learnings from this analysis can prove useful for the development 
of other treatments for this indication.

17.6  Establishing Bioequivalence of Topical 
Corticosteroids

Bioequivalence is defined as the lack of a difference in the rate and extent of ab-
sorption between a test and a reference formulation. Typically, clinical studies that 
measure the drug concentration in a reference fluid (e.g., blood, urine) in healthy 
individuals are performed to compare these product attributes. However, for topi-
cal corticosteroid drug products, the FDA permits the use of pharmacodynamic 
(PD) approaches in order to establish bioequivalence (FDA 1998). The PD-based 
methodology relies on the vasoconstriction-induced blanching caused by topical 
dermatologic corticosteroids, which is known to be correlated with their potency, 
delivery through the stratum corneum and efficacy (Wiedersberg et al. 2008). The 
FDA guidance document recommends a two-stage approach for bioequivalence as-
sessment. In the first step, a pilot study is conducted to evaluate the dose–response 
relationship for the corticosteroid followed by a pivotal in vivo study to compare the 
test and reference product for bioequivalence.
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The pilot study involves topical application of the corticosteroid for differing 
durations. A dose–response curve is constructed based on the increasing duration 
of exposure to the skin, which can be characterized by an Emax model that relates 
the area under the effect curve (AUEC) and the dose duration (effect is measured 
as the blanching response). The parameter ED50 reflects the dose duration that pro-
duces 50 % of the maximum effect ( Emax). The FDA guidance recommends the use 
of nonlinear mixed effect modeling or naïve-pooling method for model parameter 
estimation. The guidance suggests that the bioequivalence testing be carried out at 
the approximate population estimate of ED50 with two additional dose levels (dura-
tions) as half and twice ED50, respectively, also included in the assessment.

The FDA guidance was evaluated by virtue of an exploratory dose–response 
study comparing six dermatologic corticosteroid creams: 0.05 % clobetasol propio-
nate, 0.05 % flucinonide-E, 0.5 % triamcinolone acetonide, 0.1 % betamethasone 
valerate, 0.05 % alclometasonedipropionate, and 2.5 % hydrocortisone (potency 
class: I, III, IV, V, VI, and VII, respectively; Singh et al. 1999). Incremental dosing 
durations (0.5–6 h) of each drug product were studied for their vasoconstrictive ef-
fect (skin blanching). Dose duration–AUEC(0–24) relationship was described by 
a population Emax model for five of the six products (except hydrocortisone) and 
ED50 values were estimated. Based on this study and analyzing data from a sepa-
rate bioequivalence study for a potency class III product, it was concluded that the 
estimated application duration (ED50) provided an appropriate dose for designing 
the pivotal bioequivalence study.

Holford et al. (2005) challenged these findings and the agency recommendation 
by employing a modeling and simulation approach. The authors proposed a semi-
physiological model to describe dermal absorption characteristics of corticosteroids 
(Fig. 17.5). In this model, drug delivery to the epidermis occurred at a constant rate 
(input = rate*extent); drug loss from the epidermis was a first order process gov-
erned by the rate constant k. The equation below describes the instantaneous change 
in drug levels “E” in the epidermis:

The effective drug concentration ( Ce) which produces vasoconstriction is a func-
tion of blood flow:

 . .d E input k E
dt

= −

 . * *
d Ce Cek E Flow Eff

dt Ve
= −

Fig. 17.5  Dermal absorption model for corticosteroids. (Adapted with permission from Holford 
et al. 2005).
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where Flow refers to the blood flow, Eff is the drug effect and Ve is the volume of the 
effect compartment. Time course of skin blanching is a function of vasoconstriction 
produced by the corticosteroid.

AUEC was calculated by integrating the blanching effect over the period of ap-
plication. The simulation study showed AUEC was not a robust measure under sce-
narios of rapid absorption thus suggesting that the choice of ED50 as an anchoring 
point for design may not always be justifiable.

As an alternative to the vasoconstrictive assay, microdialysis and dermatophar-
mamacokinetic (DPK) approaches have also been proposed as effective methods 
for BE assessment (Wiedersberg et al. 2008). The former technique has been dis-
cussed earlier; DPK involves drug extraction from the stratum corneum by virtue of 
repeated tape stripping and works best for quantifying the delivery of drugs such as 
antifungals, keratolytics, and antiseptics that act primarily in the stratum corneum 
(Wiedersberg et al. 2008).

17.7 Summary 

• Dermatologic drug development can benefit tremendously from the advance-
ment in pharmacometrics methods.

• As has been discussed in this chapter, the application of these methods can im-
part efficiencies at different junctures in development by reducing the uncer-
tainty in the efficacy and safety profiles of the drug candidate and facilitating the 
progression along the development continuum.

• Ultimately, pharmacometrics techniques can provide the necessary framework 
for an objective evaluation of benefits versus risks with the intent of providing 
optimal therapy to the target patient population.
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18.1  Background

Pain is a dynamic phenomenon. It is defined by the International Association for 
the Study of Pain as “an unpleasant sensory and emotional experience associated 
with actual or potential tissue damage or, described in terms of such damage” (IASP 
2012a, b). The sensation (perception) results from nerve impulses reaching the cere-
bral cortex via specific (nociceptive) neural pathways and is modulated at all levels 
of the peripheral and central nervous systems (Beaulieu et al. 2010). Broadly speak-
ing, the classification of pain is based on the duration (acute, subacute, recurrent, or 
chronic pain) and type (nociceptive, neuropathic, or idiopathic pain; IASP 2012a, 
b; Australian and New Zealand College of Anaesthetists 2010). While acute pain is 
regarded as a symptom of disease or injury, chronic and recurrent pain is a specific 
health-care problem (EFIC 2010). The prevalence of chronic pain is high in indus-
trialized countries. It has been estimated that about 100 million adults suffer from 
chronic pain in the USA alone, with treatment cost and loss of productivity adding 
up to US$ 635 billion per year (Institute of Medicine of National Academies 2011). 
In Canada, about 19 % of adults 18 years and older suffer from chronic pain. Among 
them, approximately 50 % experience pain for more than 10 years and about 30 % 
rate pain intensity as very severe (Schopflocher et al. 2011). A survey in more than 
1 million adult Japanese showed that lifetime and 4-week prevalence rates for low 
back pain were 83 and 36 %, respectively (Fujii and Matsudaira 2013). Globally, 
about 20 % of adults suffer from pain, and 10 % of adults become new chronic 

Opinions expressed in this chapter are those of the authors’ and may not necessarily be consistent 
with some of the current product development standards of the regulatory agencies. To obtain 
the most current standards or advice for drug development for opioids or any products being 
developed, the reader should contact the regulatory agency.
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pain patients each year (Goldberg and McGee 2011). The life quality of a patient 
with chronic pain is largely compromised because of the persistent nature of the 
symptom.

Pain medication management generally follows a stepwise approach as recom-
mended by the World Health Organization guidelines (WHO 1996). When non-
severe pain occurs, oral administration of nonopioid drugs should be initiated. If 
complete pain relief is not achieved or disease progression necessitates more ag-
gressive treatment, a mild opioid is added to the existing nonopioid regimen. If this 
is or becomes insufficient, a mild opioid is replaced by a stronger opioid while con-
tinuing with nonopioid therapy, escalating opioid dose until the patient is pain free 
or at the maximum possible relief without intolerable side effects. If the initial pre-
sentation is severe pain, this stepping process should be skipped and a strong opioid 
should be started immediately in combination with a nonopioid analgesic (Schug 
and Auret 2008). In recent years, public health is facing the challenge of not only 
a lack of appropriate chronic pain management but also the increasing incidence 
of abuse and misuse of prescription opioid products (WHO 2008; FDA 2008). The 
increase in prescription opioid abuse is particularly evident among young people. 
In light of this, while it is important to maintain the availability of these important 
drug products for the millions of patients who suffer from chronic pain, FDA has 
encouraged drug companies to develop novel interventions to prevent opioid abuse 
(FDA 2008).

During drug development processes, pharmacometrics has been applied to quan-
tify the pharmacokinetics (PK) and pharmacodynamics (PD) of the drug candidates 
and the disease progression at various stages to influence critical development de-
cisions such as dosing regimen determination and evaluating abuse potential. PK 
characterizes drug exposure both locally and systemically. PD correlates drug con-
centration to physiologic effect or clinical outcome. A disease progression model 
refers to the evolution of pain over time. In this chapter, we review the application 
of pharmacometrics in pain management and its implications in affecting drug de-
velopment and therapeutic decisions. This information may be useful in the design 
and analysis of relevant PK/PD studies, and the cited references should be consulted 
for more details on the application of models to specific drugs.

18.2  Model Building for Acute and Chronic  
Pain Relief Data

The general conceptual frame to quantitatively describe pain and therapeutic effects 
is similar to that in other disease areas, even though modeling strategies (e.g., math-
ematic equations) may vary. Several elements are considered valuable in the model-
based drug development. As described by Gobburu and Lesko (2009), a standard 
disease-drug-trial model should include three major components—a disease model, 
a drug model, and a trial model. A disease model focuses on characterization of 
changes in clinical outcome(s) and/or biomarker(s) over time and correlations 
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 between the clinical outcome(s) and biomarker(s). Because the placebo effect can 
be substantial in a clinical trial, characterization of the placebo effect is a critical 
component in pain disease model. For models developed based on clinical trial 
data, it is unnecessary or impractical to model placebo effect and disease progres-
sion separately to influence drug development decisions. Drug effect is generally 
described by an exposure–response (E–R) model (or a PK/PD model) that links 
exposure changes to efficacy and safety signals. This model is the key to determine 
optimal doses or dose ranges through preclinical or various phases of clinical trials. 
In addition to drug effects, success of a clinical trial is largely affected by patient 
characteristics and behaviors. Correlations among major demographic factors (e.g., 
gender and body weight) and/or disease severity assessments may directly affect 
clinical trial outcomes. Patient behaviors, such as premature discontinuation, will 
lead to missing data and may bias the trial results and complicate the interpretation 
of clinical observations. Inclusion of a quantitative model accounting for patient 
factors in a trial model allows a better assessment of potential trial outcomes at the 
trial design stage. Certain patient inclusion and exclusion criteria and trial conduct 
features can be enhanced based on knowledge of impact from patient factors. In re-
cent years, attempts have been made to implement the concept of disease-drug-trial 
model in the clinical development of products that manage pain.

In the clinical setting, pain measurement varies and efficacy has been commonly 
assessed by comparisons of pain relief scores or pain intensity differences deter-
mined with visual analogue scales (VAS). Observations from the placebo arm in a 
clinical trial can be used to build a disease model for both acute and chronic pain. 
Typical clinical trials that are intended to evaluate safety or efficacy of chronic 
pain treatment have relatively short durations (e.g., 8–13 weeks) compared to pain 
histories (e.g., > 0.5 years) of enrolled patients. The symptoms for most patients are 
considered stable (i.e., at steady state) during the trial. Therefore, in an empirical 
disease model, the underlying pain intensity can be assumed to be constant for a 
specific patient enrolled in a trial. This assumption is converted into a mathematic 
equation shown below (Eq. 18.1), where Sij  represents the pain score observed for 
the ith subject at the jth observation time point. Si

0  is the estimated baseline pain 
score for the ith subject, and ijε is the random effect assumed to be normally distrib-
uted around the mean of 0 (Eq. 18.1). Placebo effects, featured by substantial im-
provement of pain intensity from baseline, are commonly observed in chronic pain 
patients. In the placebo arm, average pain scores monotonically decrease over time:

 (18.1)

The reduction in the pain score appears to be fast after the trial is initiated and the 
pain score profile seems to approach plateau as the trial continues. Some researchers 
include a simple exponential term in the disease model to describe the placebo effect. 
Equation 18.2, derived from Eq. 18.1, can be applied to describe observations from the 
placebo arm. In this model, Pi is a negative ratio that represents the maximum placebo 
effect for the ith subject. Ki is a rate constant for the ith subject which governs how 
soon the placebo effect reaches the plateau, and tj is the time for the jth observation:

0= +ij i ijS S ε
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 (18.2)

Lockwood et al. (2003) applied this modeling approach to describe observations 
from clinical trials for pregabalin. The association between changes in biomarkers 
and pain intensity is still under investigation. Studies have shown that pain intensity 
can be linked to some specific substrates in preclinical chronic pain models. For 
instance, preclinical studies showed correlations between the maximum increase in 
neurokinin-1 receptor density and maximum pain intensity (Huntjens et al. 2005). 
However, there is rather limited information on systemic biomarkers that can pre-
dict pain response in human.

A similar modeling strategy is often applied to the acute pain placebo effect. In 
the postoperative pain model building, the disease progression is incorporated in 
the placebo effect and characterized with a time-dependent model as follows (Man-
dema and Stanski 1996):

 
(18.3)

where 1γ  and 2γ  are the first-order rate constants of the offset and onset of the pla-
cebo effect, PM determines the magnitude of the placebo effect, and βk specifies the 
baseline set of probabilities of the various degrees of pain relief. This model permits 
the placebo effect to decrease with time.

E–R models are used to characterize drug effects. PK samples collected in a 
clinical trial can be linked to PD assessments (e.g., pain scores). Alternatively, 
simulated patient-level exposures derived from a well-established population PK 
model are applied to explore E–R relationships if PK samples are not available. 
To ensure patient-level exposures are reliably derived, the population PK model 
should include covariates that represent major patient characteristics. Byon et al. 
(2010) explored E–R relationships in fibromyalgia patients receiving pregabalin. 
Pregabalin exposures were simulated by using a population PK model established 
from more than 2000 patients enrolled in multiple clinical trials. Because pregaba-
lin is mainly eliminated through kidney, creatinine clearance was included as the 
key covariate for deriving exposures. The final E–R model was established with 
the simulated average steady-state concentrations for each individual (i.e., Caverg). 
Emax and sigmoid Emax models are commonly used to describe therapeutic effects in 
drugs alleviating pain. Equation 18.4 is the sigmoid Emax model. In this model, γ  
is the hill factor that determines the steepness of the E–R curve. When γ  takes the 
value of 1, sigmoid Emax model is simplified to Emax model. Eij  is the response for 
the ith subject at jth time point. E imax,  is the maximal effect for the ith subject and 
EC i50,  is the exposure that yields 50 % of the maximal effect for the ith subject. Cij  
is the exposure level for the ith subject at the jth observation. Based on the phar-
macology of the compound, different exposure variables can be applied to the Emax 
model. For instance, the actions of duloxetine (Cymbalta®), a central pain inhibitor 
and an antidepressant, are believed to be related to serotonergic and noradrenergic 
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activities in the central nervous system (Eli 2004). It takes weeks before desirable 
efficacy can be shown in patients. Therefore, concentrations at various time points 
in a dosing interval might not be an appropriate exposure variable. Instead, a gross 
estimate of exposures (e.g., average concentrations or area under the curve at steady 
state) seems to be reasonable. Sometimes, the exposure range tested in the clinical 
trial is narrow:

 (18.4)

 (18.5)

 (18.6)

An Emax model can be simplified to a linear model (Eq. 18.5) or a log-linear model 
(Eq. 18.6), where 1,iβ  is the slope for the ith subject. The relationships between drug 
response and patient characteristics are often explored to identify more subgroups 
of patients sensitive to the treatment. Some examples of applying E–R model  
in assisting decision making in acute and chronic pain treatment are illustrated in 
Table 18.1.

Quantification of patient characteristics and behaviors is one major component 
in the clinical trial model. Premature discontinuation (dropout), an important patient 
behavior, is commonly seen in clinical trials aiming to evaluate efficacy and safety 
of chronic pain treatments. For instance, only 75 % of patients completed two 12-
week pivotal trials intended to evaluate the efficacy of duloxetine for the treatment 
of diabetic peripheral neuropathic pain (Eli 2004). Likewise, about 38 % of patients 
prematurely discontinued from the two pivotal trials intended to assess the treat-
ment effect of duloxetine on fibromyalgia (Eli 2004). The decisions for dropout 
vary from patient to patient, which will lead to missing data classified by different 
mechanisms. Some patients randomly discontinue from the trial, independent of the 
pain intensity experienced. Missing data due to this type of dropout are considered 
as missing completely at random (MCAR). Some other patients discontinue from 
the trial for a reason, which is related to the observed pain intensity. However, after 
conditioning on the observed pain intensity, whether or not data are missing does 
not depend on the values of the missing data. This type of missing data is considered 
as missing at random (MAR). If a high pain intensity score is not recorded, and 
the patient decides to drop out due to this high value, i.e., missingness depends on 
the missing value, this type of missing data is considered as missing not at random 
(MNAR; Hu and Sale 2003; Panel on handling missing data in clinical trials 2010). 
The assumptions on missing data mechanisms affect data analyses. Characteriza-
tion of patient dropout allows comparison of different data analyses and evaluation 
of trial success rates. Various survival functions are typically used in describing the 
dropout pattern. Depending on the underlying assumptions of the potential risks 
for patients to drop out (i.e., hazard) at a given time, different survival models can 
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be applied. A survival function, S( t), describes the probability of dropping out after 
time t for a patient in the trial (Eq. 18.7). A hazard function, h( t), describes an in-
stantaneous rate of dropout per unit time given that a patient is still in the trial up to 
time t (Eq. 18.8). The relationship between a hazard function and a survival function 
is shown in Eq. 18.9. Based on this relationship, different survival functions can be

 (18.7)

 (18.8)

S t T t( ) Pr( )= >

h t pr t T t dt T t
dtdt

( ) lim ( | )
=

< < + >
→0

Indication Compound E–R Model Utility/conclusion Reference
Postoperative pain Ketorolac Sigmoid Emax To support the optimal 

dose selection for the 
pain relief

Mandema and 
Stanski 1996

Post-oral surgery 
pain

Fentanyl Sigmoid Emax To establish the PKPD 
model

Foster et al. 2008

Post-surgery pain Acetaminophen Sigmoid Emax To support the new for-
mulation development

Green et al. 2010

Fibromyalgia Pregabalin Emax To support the recom-
mended doses
Greater pain reduction 
observed in female and 
older patients

Byon et al. 2010

Migraine pain Naratriptan Emax To predict pain relief 
in migraine patients 
following naratriptan 
treatment

Gueorguieval 
et al. 2005

Acute/Chronic 
pain

SC-75416 Emax To identify appropriate 
dose in future clinical 
trials

Kowalski et al. 
2008

Neuropathic pain Pregabalin Sigmoid Emax To identify minimum 
dose that led to 1-point 
reduction in pain score

Lockwood et al. 
2003

Neuropathic pain Gabapentin Emax To establish linkage 
in exposure–response 
relationship between 
two pivotal trials, which 
led to the final approval 
of the product

Miller et al. 2005

Chronic pain Ketamine Sigmoid Emax To gain insights on 
complex interaction 
between drug and pain 
relief

Dahan et al. 2011

Chronic pain Acetaminophen Sigmoid Emax To establish appropri-
ate dosage regimen in 
Japanese population

Shinoda et al. 
2007

Table 18.1  Examples of exposure–response models applied in pain treatment 
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(18.9)

derived from various assumed hazard functions. For instance, Lockwood et al. 
(2003) applied a constant hazard model (i.e., exponential survival model) to de-
scribe the dropout pattern in a clinical trial intended to evaluate treatment effect 
of pregabalin for chronic neuropathic pain. The authors assumed that the dropout 
time follows a distribution with a constant hazard, which indicates the dropout rate 
is constant over time and independent of the observed pain scores. The value of the 
daily dropout rate was assumed to be 0.0043/day. The assumed missing data mecha-
nism was MCAR. This dropout model provided a quantitative assessment of the po-
tential missing data in the trial simulations. Even though the assumption of MCAR 
was considered unrealistically strong assumption in practice, it is commonly used at 
the trial planning stage to calculate the sample size for clinical trials. Kowalski et al. 
(2008) assumed that the missing data mechanism followed MAR. The underlying 
hazard is a function of the current pain score and duration of the patient in the trial. 
The hazard function is shown as ( , ) ( )·(1 ( 1) ),+= + −h t m h m k t  where h(m) is the 
baseline hazard rate for each pain score, m is the pain score, k is the slope of change 
in hazard rate with time, and k t( )− +1  is an indicator that equals t − 1 if t ≥ 1 and 0 
otherwise. The author applied this model to support dose selection in clinical trials 
for a compound developed for pain relief.

18.3  Modeling Pain Relief in Fixed-Dose  
Combination Products

Attempts have been made to quantitatively characterize pain relief in subjects re-
ceiving fixed-dose combination products intended for pain management. Fixed-dose 
combination products, which include two or more analgesics with different pain-re-
lief mechanisms in the same dosage form, are part of treatment strategies to control 
chronic or acute pain. There are several existing fixed-dose combination products. 
Ultracept®, a product including both tramadol hydrochloride and acetaminophen, 
is indicated for short-term management of acute pain. Both hydrocodone and acet-
aminophen are formulated into vicodin® with the approved indication of relief of 
moderate or moderately severe pain. More fixed-dose combination products are 
under clinical development for ease of pain. Quantification of pain relief follow-
ing treatment of several compounds used in combination may provide important 
scientific merits. For example, Tröster et al. (2012) applied a sigmoid Emax model 
to describe analgesic effects in subjects receiving fentanyl and buprenorphine. The 
analyzed data were obtained from a crossover clinical trial in 15 healthy volunteers 
receiving an intravenous infusion of 1.5 µg/kg fentanyl, 1.5 µg/kg buprenorphine, 
a combination of 0.75 µg/kg fentanyl and buprenorphe each, or saline. As shown in 
Eq. 18.10, in the sigmoid Emax model, E represents percentage reduction in pain and 
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Emax is the maximal pain reduction. γ  is the hill factor, which determines the steep-
ness of the E–R curve. The concentration applied in the sigmoid Emax (i.e., CE) is a 
combination of buprenorphine and fentanyl concentrations (Eq. 18.11). In the equa-
tion, CE, Fen and CE, Bup are effective concentrations of fentanyl and buprenorphine, 
respectively. EC50, Fen and EC50, Bup are the concentrations to generate 50 % of the 
maximal pain reduction for fentanyl and buprenorphine, respectively. ε is the PD 
interaction term. If ε is zero, the two compounds demonstrate additive effect. If ε is 
less than zero, the two compounds show antagonistic effect. Whereas if ε is greater 
than zero, the two compounds show synergistic effect. The focus of this modeling 
approach was to determine PD interactions when the two compounds are used in 
combination. The authors indicated that, based on the modeling results, fentanyl 
and buprenorphine demonstrated additive effect:

 
(18.10)

One potential application of the E–R model in characterization of pain reduction in 
patients receiving fixed-dose combination products is to identify the contribution 
of each compound. However, several challenges exist, especially when the model 
is developed based on data from patients only receiving fixed-dose combination 
products. In general, significances of slope estimates of E–R models can be applied 
to determine whether the administered compounds are active. If p-values for the 
slope estimates are smaller than a predefined value (e.g., 0.05), the E–R relation-
ships are significant and the specific compounds are considered pharmacologically 
active. Zhu and Wang (2011) have evaluated potential issues in the application of 
E–R models to quantify responses in patients receiving a fixed-dose combination 
product at various dose levels through modeling and simulation. The complications 
come from two sources. First, concentrations from all compounds in a fixed-dose 
combination product are highly correlated, because they change proportionally fol-
lowing the changes in doses (e.g., 50 mg A/100 mg B, 100 mg A/200 mg B). Second, 
the underlying E–R relationships for each compound can be nonlinear with various 
shapes and empirical models applied for analyses might not be able to adequately 
capture these shapes without prior or independent data source (e.g., data collected 
from patients receiving one compound at a time or receiving one compound at a 
fixed-dose level with changing dose levels for the other compound). As a result, a 
univariate E–R model is inappropriate to determine the contribution of a specific 
compound in a fixed-dose combination product. A multivariate E–R model, which 
includes concentrations from all compounds in the fixed-dose combination product, 
seems to be more appropriate. However, if the underlying E–R relationships (i.e., 
model structures) for each compound are erroneously or inadequately defined, false 
positive rates in determining significant E–R relationships are elevated. Therefore, 
the E–R analyses results based on data from fixed-dose combination products at 
various dose levels should be interpreted with caution.
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18.4  Application of Pharmacometrics in Pediatric Pain 
Relief: A Case Example

Pain is a common feature of hospitalization in infants and children. Up to 80 % of 
infants and children are reported to have pain during hospital administration (Taylor 
et al. 2008). Children differ from adults not only in how pain is perceived but also 
in PK due to ontogeny. Relative to adults, there is little research evidence to guide 
clinicians regarding the pain management in children. Therefore, the pain manage-
ment practices in pediatric patients are mostly extrapolated from adults. Below is 
a brief summary of the considerations for the dosing regimen recommendation of 
over-the-counter (OTC) acetaminophen in pediatric patients from a PK/PD perspec-
tive.

Acetaminophen dosage schedule in pediatric patients below 12 years of age for 
OTC monograph is one of the many issues being evaluated and discussed in the 
development of the proposed rule (PR) for internal analgesic, antipyretic, and an-
tirheumatic (IAAA) drug products. The dosage regimen based on age and weight, 
with instructions that weight-based dosage of 10–15 mg/kg should be used if a 
child’s weight is known, is currently being assessed. The PK exposure of acetamin-
ophen in pediatric patients of 6 months to 12 years of age given the proposed OTC 
monograph dose range of 10–15 mg/kg is within the adult exposure range at the 
monograph dose (Ji et al. 2012). In this dose range, the antipyretic effect of acet-
aminophen in pediatric patients of 6 months to 12 years of age is dose dependent 
and appears to be better than placebo. The PK/PD analyses of acetaminophen in 
pediatric patients undergoing outpatient tonsillectomy were performed by Ander-
son et al. (2001). In this study, the data came from three studies: 32 patients given 
40 mg/kg ( n = 12) or 100 mg/kg oral dose ( n = 20) from study A, 21 patients given 
40 mg/kg from study B, and 30 patients given placebo from study C. The treatment 
was administered between 0.5 and 1 h preoperatively to the patients. According to 
the authors, all three studies had similar designs. The raw data of pain score as a 
function of time were requested from the authors and the results were reanalyzed. 
High dropout rate was observed early in the placebo group as shown by the rapidly 
decreasing sample size over time (no scheduled pain assessment at 1 h). The last 
observation carried forward (LOCF) method was used to impute the missing pain 
scores. For those patients without first observation (0.5 h), a pain score of 10 was 
assigned. The analysis of variance (ANOVA) method was used to compare the two 
treatment groups with placebo at each time without adjusting for multiplicity. Both 
40 mg/kg and 100 mg/kg achieved more pain reduction than placebo at all time 
points with statistical significance of 0.05 level with different effect sizes at differ-
ent times. At all time points except 0.5 h, 100 mg/kg was statistically better than 
40 mg/kg for pain reduction showing a clear dose–response for pain reduction. To 
evaluate the pain reduction for 10–15 mg/kg, an exploratory E–R modeling analysis 
was conducted to predict the expected pain reduction for the lower doses. Actual 
individual doses (0 for placebo group and 27.2–104 mg/kg for treated groups) were 
used to construct the E–R model. To avoid the confounding effect of time, E–R 
model was built at each time point with the following linear model:
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 (18.11)

where Yi is the pain score for ith patient, Xi is the square root of dose (mg/kg) for ith 
patient, 0β is the intercept, 1β is the slope, and iε is the residual. Even though pain 
score ranging from 0 to 10 is not normally distributed, no extra effort was taken to 
transform Y into a normally distributed variable because the normal approxima-
tion was sufficient to derive a well-fitted model for each time point as shown in 
Fig. 18.1. Various structure models, such as linear model, log-linear model, log–
log linear model, or Emax model, were explored and the best structure model is a 
linear model with dose transformed to its square root. The parameters are listed in 
Table 18.2, and Fig. 18.1 shows the goodness of fit. The predicted pain scores and 
their 95 % confidence interval (CI) for 10 and 15 mg/kg are listed in Table 18.3 
together with the placebo-corrected pain score changes and their 95 % CI. The pre-
dicted pain score reduction ranged from 0.7 to 2.2 units for 10 mg/kg and 0.9 to 2.7 
units for 15 mg/kg at various time points relative to placebo. The small normal p-
values should be interpreted in the context of a parametric model, and the predicted 
pain reduction should be related to clinical relevance. Nevertheless, the E–R model 
provided supportive evidence for the efficacy in pain reduction for 10 and 15 mg/kg 
in pediatric patients (5–15 years old) undergoing outpatient tonsillectomy.

0 1·= + +i i iY Xβ β ε

Fig. 18.1  Goodness of fit for exposure–response model ( vertical lines are 10 and 15 mg/kg, 
respectively)
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18.5  Pharmacometrics in the Opioid Treatment

18.5.1  Abuse Liability

The abuse liability of a drug is generally considered the degree to which repeated 
consumption will occur because of its positive subjective effects, reinforcing effects 
or to avoid negative effects (O’Connor and Mead 2010). Opioid attractiveness has 
been based in part on how rapidly peak plasma concentration ( Cmax) is reached (Bud-
man et al. 2009). It may be more appropriate to think of opioids in terms of their 
peak effects and the time to maximal effect. Reformulation from immediate-release 
product to extended-release product provides patients with continuous relief from 
pain over a long period of time, reduces pain fluctuations, requires fewer daily doses 
to help patients adhere to their prescribed regimen more easily, allows them to sleep 
through the night, and allows a physician to increase the dose for a patient as needed 
to relieve pain (Zacny and Gutierrez 2003). However, it has become a target for abus-
ers and diverters because the tablet contains larger amounts of the active ingredient 
and the controlled release formulation is easier for abusers to compromise. For the 
extended-release formulation of OxyContin, for example, both mean and individual 
peak exposures have been used to assess whether the extended-release characteristics 
of the product were compromised during manipulation (Haddox et al. 2008).

18.5.2  Opioid Tolerance

Repeated administration of opioids may lead to the development of tolerance to 
analgesia, as evidenced by requiring higher dose to maintain pain control. Based on 
the prevailing mechanism, the development of tolerance is attributed to three types: 

Table 18.2  Parameter estimates for exposure–response model
Time Parameter Estimate 95 % CI p-Value
0.5 Intercept 8.34 (7.4, 9.3) <0.0001

Slope −0.23 (−0.4, −0.1) 0.0031
1 Intercept 8.39 (7.5, 9.2) <0.0001

Slope −0.46 (−0.6, −0.3) <0.0001
2 Intercept 8.34 (7.5, 9.2) <0.0001

Slope −0.66 (−0.8, −0.5) <0.0001
3 Intercept 8.36 (7.5, 9.2) <0.0001

Slope −0.69 (−0.8, −0.6) <0.0001
4 Intercept 8.54 (7.8, 9.3) <0.0001

Slope −0.68 (−0.8, −0.6) <0.0001
5 Intercept 8.75 (8, 9.5) <0.0001

Slope −0.70 (−0.8, −0.6) <0.0001
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PK, PD, and learned (Dumas and Pollack 2008). PK tolerance occurs when drug 
disposition or metabolism is altered as a function of time. PD tolerance occurs when 
the intrinsic responsiveness of the receptor system diminishes over time. Learned 
tolerance is related to behavioral or conditional situation. Although the mechanism 
contributing to the tolerance development is complex, PK/PD empirical models, 
without incorporating specific biologic mechanisms that drive the development of 
tolerance, have been used to characterize and summarize the temporal loss of drug 
response (Ouellet and Pollack 1995, 1997; Gårdmark et al. 1993). An integrated PK/
PD model for morphine tolerance was developed following morphine infusions in 
rats by introducing a tolerance compartment in addition to the effect compartment 
(Dumas and Pollack 2008). The net effect is the sum of the positive effect from the 
effect compartment and the negative effect from the tolerance compartment.

When the specific physiologic alterations that lead to the time-dependent loss 
of the pharmacologic effect are known, they can be incorporated into mechanistic 
PK/PD models. For example, elevated nitric oxide (NO) production has been impli-
cated in the development of morphine antinociceptive tolerance. Heinzen evaluated 
the temporal relationship between morphine-induced increases in neuronal NO and 
the loss of pharmacologic activity (Heinzen and Pollack 2004). Antinociceptive ef-
fect was monitored at selected time points during and following infusion by elec-
trical stimulation vocalization. The data were fitted with a PK/PD model to obtain 
parameters governing the morphine disposition, stimulation of NO production, an-
tinociception, and antinociceptive tolerance development (Fig. 18.2).

Table 18.3  Predicted absolute pain score and placebo-corrected pain score changes for 10 and 
15 mg/kg
Treatment Treatment difference
Time Group 

(mg/kg)
Mean 95 % CI Comparison Differ-

ence
95 % CI diff p-Value

0.5 10 7.6 (7, 8.2) 10 -Placebo −0.7 (−1.2, −0.3)  0.0031
15 7.4 (6.8, 8) 15 -Placebo −0.9 (−1.5, −0.3)  0.0031

1 10 6.9 (6.4, 7.5) 10 -Placebo −1.4 (−1.9, −1) <0.0001
15 6.6 (6.1, 7.2) 15 -Placebo −1.8 (−2.3, −1.2) < 0.0001

2 10 6.3 (5.7, 6.8) 10 -Placebo −2.1 (−2.5, −1.7) < 0.0001
15 5.8 (5.3, 6.3) 15 -Placebo −2.5 (−3.1, −2) < 0.0001

3 10 6.2 (5.6, 6.7) 10 -Placebo −2.2 (−2.6, −1.8) < 0.0001
15 5.7 (5.1, 6.2) 15 -Placebo −2.7 (−3.2, −2.2) < 0.0001

4 10 6.4 (5.9, 6.9) 10 -Placebo −2.2 (−2.5, −1.8) <0.0001
15 5.9 (5.4, 6.4) 15 -Placebo −2.6 (−3.1, −2.2) < 0.0001

5 10 6.5 (6, 7) 10 -Placebo −2.2 (−2.6, −1.8) < 0.0001
15 6.0 (5.6, 6.5) 15 -Placebo −2.7 (−3.2, −2.2) < 0.0001

CI confidence interval, CI diff confidence interval for difference
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In Fig. 18.2, ,sγ  ,Eγ  and Iγ represent the shape factors, Emax,s is the maximum 
possible percent stimulation of neuronal NO production by the concentration of mor-
phine in the brain (MORBR), Emax,E is the maximum possible antinociceptive effect 
produced by MORBR, EC50,E is the MORBR that elicits a 50 % maximum response, 
Imax,E is the maximum possible inverse effect produced by NO  concentrations in a 
hypothetical compartment ( NOBR*), and IC50,E is the NOBR* that produces an effect 
equal to 50 % of the maximum possible inverse effect. The loss of antinociceptive 
effect due to NOBR* was modeled as NO acting as an inverse agonist with the fol-
lowing integrated equation (Eq. 18.12):

 
(18.12)

These data define a strong, time-dependent relationship between morphine-induced 
stimulation of NO production and tolerance development, identify the specific NO-in-
duced alterations in nociceptive processing after morphine administration, and indicate 
that NO is a key mediator of the antinociceptive tolerance development (Fig. 18.3).
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Fig. 18.2  Scheme depicting morphine antinociceptive tolerance development due to NO
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18.6  Reversal of Opioid-Induced Respiratory Depression

Respiratory depression is a potentially life-threatening adverse effect of opioid 
therapy (Baxter 1994). Naloxone, the competitive opioid μ antagonist, is commonly 
used to treat and prevent recurrence of opioid-induced respiratory depression, such 
as fentanyl and morphine (Dahan et al. 2010). It is formulated with buprenorphine in 
SuboxoneÒ in an effort to dissuade patients from injecting the tablets. Yassen et al. 
(2007) proposed a mechanism-based PK/PD interaction model to describe and predict 
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the time course of naloxone-induced reversal of respiratory depression after intrave-
nous administration of buprenorphine. A combined biophase equilibration-receptor 
association-dissociation PD model described the competitive interaction between bu-
prenorphine and naloxone at the opioid μ receptor as shown below (Eq. 18.13):

 

(18.13)
The relationship of respiratory depressant effect to the fractional receptor occu-
pancy is modeled as a linear function (Eq. 18.14):

 (18.14)

where appρ  is the apparent fractional receptor occupancy, KD is the equilibrium dis-
sociation constant of naloxone and is equal to koff  / kon, Ce is the drug concentration 
at the site of action, E is the ventilatory response, E0 is the baseline ventilation, and 
α is the intrinsic activity, the value of which varies between 0 and 1. Due to the slow 
receptor kinetics of buprenorphine and the fast elimination kinetics of naloxone, 
the reverse of buprenorphine-induced respiratory depression requires high dose and 
also continuous infusion of naloxone (Fig. 18.4).

18.7  Pharmacometrics in Clinical Patient Care

Anesthesia-analgesia clinical practice generally requires a wide spectrum of phar-
macological actions (e.g., analgesia, hypnosis, and suppression of somatic and 
autonomic responses to noxious stimuli; Kissin 1993). Therefore, a higher standard 
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Fig. 18.4  Influence of the 
mode of naloxone adminis-
tration on the reversibility 
of buprenorphine-induced 
respiratory depression. 
Buprenorphine 0.2 mg/70 kg 
was administered. Half of the 
dose was given over 90 s and 
the remainder over 59 min. 
After 30 min, naloxone was 
infused continuously at a rate 
of 0 mg/h (placebo, solid 
line), 2 mg/70 kg/h ( dot-
ted line), or 4 mg/70 kg/h 
( dashed line). (Yassen 
et al. 2007, reprinted with 
permission)
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of precision and accuracy regarding drug administration for achieving the desired 
therapeutic drug effect while minimizing side effects is desirable. Pharmacometric 
models including dose-exposure-response relationships and covariates affecting PK/
PD variability have been successfully applied in this field to help optimize drug 
administration. One of the most important examples is the development of computer-
controlled target-controlled infusion (TCI) and drug advisory displays (Syroid et al. 
2002, Sahinovic et al. 2010, Struys et al. 2011). The commercially available drug 
advisory displays, such as the SmartPilot View (Drager Medical, Lubeck, Germany; 
FDA 2012) and the Navigator (GE Healthcare, Helsinki, Finland; FDA 2007), inte-
grate real-time data from dosing history, patient monitors, and anesthesia systems 
to provide clinicians predicted PK/PD information at the point of care. The PK/PD 
models for various drugs and the combination of drugs are implemented in the al-
gorithm of the medical device to create the predicted PK/PD profiles, which are 
visualized on the displays in real time. These drug advisory displays allow clinicians 
to visually understand the extent of synergistic effects and the predicted effects under 
a specific regimen.

Although there are a large number of anesthetic PK/PD modeling studies, only 
a small part of information is ever applied in the clinical domain (Fisher 1996). 
This advisory display technology brings pharmacometrics into the operating room 
and improves the clinical utility of anesthetic drugs’ PK/PD knowledge. As shown 
in Fig. 18.5, the display generally consists of a drug administration history, se-
dation, analgesia, and relaxation response window. For the example of Navigator, 
the PK/PD modeling supports inhaled sedative drugs (e.g., desflurane, enflurane, 
isoflurane, halothane, sevoflurane, and nitrous oxide), intravenous sedative drugs 
(e.g., midazolam, propofol, and thiopental), analgesic drugs (e.g., alfentanil, fen-
tanyl, remifentanil, and sufentanil), and relaxants (e.g., mivacurium, pancuronium, 
rocuronium, and vecuronium). The PK model is used to compute the effect-site 
concentration ( Ce) of the drug. The effect-site concentration is normalized (or 
scaled) to the EC50 of the drug. The resulting display is a plot of Ce(t)/EC50 over 
time, where Ce(t) is the effect-site concentration of the drug at time t, and EC50 is 
the effect-site concentration at which 50 % of the population experience the refer-
ence effect of that drug. The system also attempts to account for certain PD drug 
interactions when a drug with known interactive properties is administered. Various 
models based on response-surface methodology have been successfully developed 
to characterize the anesthetic drug interactions (Greco et al. 1995, Minto et al. 2000, 
Guan et al. 2008, Lee 2010). For the example of propofol and analgesic drug inter-
action (Fig. 18.6), Schnider’s three-compartment PK model including age, height, 
weight, and lean body mass as covariates is used to describe propofol PK (Masui 
et al. 2010). A synergistic interaction between propofol and an analgesic drug at the 
hypothetical effect site could be characterized by a PD interaction model, such as a 
Greco’s model (Greco et al. 1995):
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where Emax is the maximal effect of drug A and drug B, EC50A and EC50B are the in-
dividual drug concentrations that produce 50 % of the maximal effect, n is the slope 
of the PD response curve, and α is a unique parameter that characterizes the nature 
and extent of interaction between two drugs for a particular effect measure. If α = 0, 
the drug interaction is additive. If α < 0, the drug interaction is antagonistic. If α >0, 
the drug interaction is synergistic. CeA and CeB represent the concentration at the 
effect site for propofol and the analgesic drug, respectively.

It is important to remember that the information on a display represents a statistical 
sampling of the population and is not the actual measurements from the patient un-
dergoing anesthesia, although some patient factors affecting drug concentrations and 
effects may be considered in the models. The anesthesiologist is expected to compare 
the potential response (based on the model) and the actual patient response (based on 
parameters on the patient anesthesia monitor) to determine (a) what adjustments to 
drug dosing need to be made based on the actual patient response and (b) how well the 

Fig. 18.5  Navigator display window visualizing PK/PD information for an individual adminis-
tered remifentanil, propofol, rocuronium, and a relaxant antagonist (used with permission of GE 
Healthcare). The effect-site concentration is normalized to the PD parameter, the EC50 which is 
the effect-site concentration at which 50 % of the population experience the reference effect of 
that drug. The total effect (the black line in the sedation and analgesia windows) visualizes the 
synergistic effect of the analgesic (remifentanil) and sedative drugs (propofol and sevoflurance). 
The models also project future effects ( right yellow panel). (Reprinted with permission from GE 
Healthcare)
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model may correlate with this patient’s actual response. In addition, the models gener-
ally were established from healthy volunteers while operation procedures and other 
factors may affect the drug’s PK and interactions. Also for the majority of published 
models, the key parameter ke0, which is used to quantify the delay between the drug 
plasma concentration and the drug effect, was derived from electroencephalogram 
(EEG) effect data. The implicit assumption that the delay between plasma concentra-
tion and all PD effects of a drug (e.g., analgesia and hypnosis) is the same as the delay 
between plasma concentration and EEG effect also needs to be verified.

Drug advisory displays have been shown to be a useful tool in guiding anes-
thesia, resulting in adequate anesthesia and a greater safety due to a more precise 
titration (Cirillo et al. 2012). By applying pharmacometric technology, the anesthe-
tists should be able to optimize anesthetic-analgesic drug administration in a more 
efficient manner.

18.8 Summary 

• Pain models are generally developed by quantitatively integrating various as-
pects of information such as disease progression, placebo effect, E–R relation-
ship, and subject-level covariates.

• Pain models are invaluable as input into clinical trial design during drug devel-
opment. These models can be applied to quantify:
− Efficacy contribution of each component in a combination product
− Pediatric dosing recommendation
− Abuse liability
− Drug tolerance
− Opioid-induced respiratory depression
− Dropout pattern

• Pharmacometric models have been implemented in the software package for 
commercial medical devices for anesthesia and analgesia management.

• Pharmacometrics in pain management not only influences drug development and 
regulatory decision making but also facilitates patient care and therapeutic decisions.

Fig. 18.6  PK and PD syn-
ergistic interaction between 
propofol and remifentanil at 
the hypothetical effect site 
characterized by the Greco’s 
model
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19.1  Introduction

Arteriosclerosis of the coronary and peripheral vasculature is the undisputed leading 
cause of death worldwide resulting from cardiovascular disease, peripheral vascular 
disease, and stroke. Identified risk factors for cardiovascular disease and the suc-
cessful mitigation of these risk factors in reducing the risk for cardiovascular dis-
ease has been the topic of recent state-of-the-art reviews (WHO et al. 2011; Smith 
et al. 2012; Lloyd-Jones 2010). Effective treatment of lipid disorders as a risk factor 
through combinations of diet and drug therapy has led to the dramatic reduction in 
the risk of cardiovascular disease. Despite the improvements in therapies, there is 
still residual cardiovascular risk which remains untreated and drives the search and 
development for additional treatments of these grievous illnesses.

Deposition of cholesterol into the vessel wall is a key factor in the process of 
arteriosclerosis. Almost all lipoproteins are an integral part of cholesterol transport 
processes forming the core of circulating lipids and are central in the pathogenesis 
of cardiovascular disease. Therefore, it is no surprise that lipoproteins represent a 
surrogate for cardiovascular risk, and the rich use of mathematical models describ-
ing lipoprotein kinetics have been investigated for nearly the past 50 years. These 
efforts represent some of the earliest applications of mathematical modeling to un-
derstand the basic physiology of lipoprotein metabolism, the influence of disease, 
and mechanism of action of drug treatments modifying these pathways.
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The application of pharmacometrics in hyperlipidemia is an emerging area. Both 
semi-mechanistic and empirical pharmacokinetic and pharmacodynamic (PK/PD) 
models have been developed to describe dose response and time course of effects 
for lipids. The application of pharmacometrics has been shown to effectively guide 
drug development decision making by accurately simulating trials, optimizing 
dosing regimens, and informing early termination of programs with unacceptable 
risk to benefit ratios. These approaches can support the development of the next 
wave of new treatments to meet therapeutic goals and further reduce cardiovascular 
risk. This chapter provides an overview of quantitative lipid metabolism, current 
treatments, and reviews the current state-of-the-art PK/PD modeling as applied to 
hyperlipidemia treatments.

19.2  Overview of Biology of Lipid Disorders

19.2.1  Lipoprotein Metabolism Overview

Lipoproteins are spherical molecules consisting of apolipoproteins, cholesterol, tri-
glycerides, and phospholipids and serve to carry lipids with limited aqueous solu-
bility in plasma water. They are characterized by their density, lipid composition, 
and the associated lipoproteins, which provide specificity with respect to functional 
interactions (Table 19.1).

Lipoprotein metabolism can be conveniently divided into two general pathways 
and are discussed in greater detail below. In healthy individuals, the first pathway 
functions to distribute cholesterol whereas the second pathway is often referred to 
as “reverse cholesterol transport” which returns cholesterol from the periphery for 
reuse and/or elimination. In individuals with lipid disorders, these two pathways 
are hypothesized to contribute to the degree of vascular pathology by either leading 
to deposition of excess cholesterol into or participating in removal of cholesterol 
from the vessel walls. Therefore, from a quantitative pharmacology perspective, the 
understanding of lipid and lipoprotein kinetics describes the process of lipid move-
ment providing mechanistic insight into normal and pathological processes. In this 
manner, lipoprotein kinetics can help to characterize the mechanism of action and 
magnitude of treatment effects.

Mathematical models are applied to quantify lipoprotein metabolism. Kinetic 
parameters of production and elimination of circulating lipids, their precursors, 
and lipoproteins are obtained through direct measurement of either production or 
elimination of these species using tracers. These tracers can be either stable-labeled 
or radiolabeled molecules. The tracers can be either incorporated into lipids and 
lipoproteins inside the body, or labeled outside the body and then reintroduced. 
There are pros and cons for each approach depending on the objective of the study. 
The fundamental principles and major assumptions behind these quantitative tracer 
studies are: (1) steady-state conditions (i.e., zero-order synthesis and first-order 
elimination), (2) the tracer amount does not perturb the system, and (3) the tracer is 
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representative of the disposition of the tracee. The data are fit using compartmental 
analyses in order to derive either the production and/or elimination rates directly or 
from a steady-state assumption. In older studies, exogenously radiolabeled lipopro-
teins were used. With the advent of sensitive mass spectrometry, incorporation of 
stable isotopes into proteins has been utilized with greater frequency over the past 
20 years. Excellent reviews of the methodologies, models, and assumptions have 
been published (Barrett et al. 1996; Ji et al. 2006).

19.2.2  Production and Transport of Exogenous  
and Endogenous Lipids

A schematic describing the transport of exogenous or dietary lipids as well as the de 
novo synthesis of new lipids and their incorporation into lipoproteins is depicted in 
Fig. 19.1. Dietary lipids are absorbed and incorporated into nascent chylomicrons 
containing apo B48, apo AI, apo AII, and apo AIV. The mature chylomicron is a 
sphere consisting of primarily triglyceride with smaller amounts of phospholipids 
and free cholesterol. These particles are transported into the circulation via the tho-
racic duct. Once in circulation, apo C proteins are transferred from high-density 
lipoprotein (HDL). Apo CII appears to be responsible for the subsequent hydrolysis 
of triglycerides through their activation of lipoprotein lipase (LPL) residing in the 
capillaries of muscle and adipose tissues where the resulting fatty acids can be uti-
lized. Once hydrolysis has occurred, apo CI and apo CII are transferred back to the 
surface of HDL. Apo E is then picked up by these chylomicron remnants that can 
be recognized by low-density lipoprotein receptors (LDLR). In this manner, the free 
cholesterol and phospholipids from chylomicron remnants are supplied to the liver.

Through the uptake and/or synthesis of triglycerides and cholesterol, the liver 
produces the majority of endogenous lipids supplying cholesterol to peripheral tis-
sues. These lipids are combined with phospholipids and apo B100 and then secreted 
into the circulation as nascent very low-density lipoprotein (VLDL) particles. Other 
apolipoproteins (apo CI, apo CII, apo E) are inserted into VLDL particles. As with 
chylomicrons, VLDL is subject to action by LPL to intermediate-density lipoprotein 

Table 19.1  Summary of major circulating lipoproteins
Lipoprotein Density (g/dL) Approximate 

molecular 
mass (kD)

Lipid composition (%) Associated 
apolipoprotein

TG Chol Phospholipid
Chylomicron 0.95 400,000 80–95 2–7 3–9 B48, C, E, A
VLDL 0.95–1.006 10,000–80,000 55–80 5–15 10–20 B100, C, E
IDL 1.006–1.019 5000–10,000 20–50 20–40 15–25 B100, C, E
LDL 1.019–1.063 2300 5–15 40–50 20–25 B100
HDL 1.063–1.210 1700–3600 5–10 15–25 20–30 A, C, E

Chol cholesterol, HDL high-density lipoprotein, IDL intermediate-density lipoprotein, LDL low-
density lipoprotein, TG triglycerides, VLDL very-low-density lipoprotein
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(IDL; VLDL remnants). These particles are then converted to smaller LDL particles 
through the action of hepatic triglyceride lipase and apo E. The liver takes up most 
LDL and removal of LDL (and other apo B100 particles) occurs through the LDLR 
on the hepatocyte. The primary signal in the regulation of hepatic cholesterol pro-
duction for secretion and hepatic cholesterol uptake by LDL and interaction with 
LDLR is the intracellular concentration of cholesterol. This regulation is mediated 
through transcription factors primarily sterol regulatory element-binding proteins 
(SREBP). This level of regulation has been reviewed in depth and may serve as the 
basis of a model-based systems biology approach to understanding the effects of 
dyslipidemia and treatment on circulating cholesterol. (Brown and Goldstein 2006; 
Dietschy 1997; van der Wulp et. al. 2012)

19.2.3  Reverse Cholesterol Transport

The concept of reverse cholesterol transport (RCT) was proposed half a century ago 
in describing the process of the lecithin-cholesterol acyltransferase enzyme (LCAT) 
activity (Glomset and Wright 1964). The role of HDL in the removal and return of 
excess cholesterol to the liver for reuse and efflux from the body is continuing to 
evolve and a current understanding is shown in Fig. 19.2.

The RCT pathway consists of lipoproteins with apo AI as their core and is be-
lieved to be protective against atherosclerosis. Pre-beta (electorphoretic mobility) 

Fig. 19.1  Absorption and production of cholesterol. chylomicrons ( CM), chylomicron remnants 
( CM Rem), VLDL remnants ( VLDL Rem), LDL-receptor ( LDLR), autosomal recessive hyper-
cholesterolemia ( ARH), ATP-binding cassette family G type 5 or 8 ( ABCG5/8). (Reprinted from 
Rader DJ et al (2003) Monogenic hypercholesterolemia: new insights into pathogenesis and treat-
ment. J Clin Invest 111/12:1796, permission conveyed through Copyright Clearance Center, Inc.)
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particles arise from secretion by the intestine and liver or are generated from chylo-
microns which have undergone lipolysis or removal of cholesteryl ester from HDL2 
particles. The role of these discoid shaped particles is to accept unesterified cho-
lesterol from the peripheral tissues. Cholesterol appears to be transported by mem-
bers of the ATP-binding cassette transporter family from peripheral tissues includ-
ing macrophages. These identified transporters include ABCA1 and ABCG1. The 
 molecular mechanisms of HDL function and the associated cellular events by which 
peripheral lipid homeostasis is achieved is the subject of a recent review (Orso et al. 
2011). Once the cholesterol is transferred to HDL particles, they undergo esterifica-
tion through the action of lecithin-cholesterol acyltransferase (LCAT) leading to 
the development of spherical shaped particles. These maturing HDL particles pack 
cholesteryl esters into the core, and continue to grow in size while reducing their 
density. These particles continue to mature into HDL2 and HDL3 particles which 
constitute the largest amount of circulating HDLs. The further expansion of cho-
lesteryl ester (CE) into the core of these HDL particles occurs as a result of apo E 
incorporation.

The steps in elimination of the acquired HDL cholesterol from the plasma in hu-
mans involve a number of pathways. These include the transfer of CE from HDL to 
VLDL/LDL particles by the action of cholesteryl ester transfer protein (CETP) and 
subsequent recycling to the periphery or delivery to the liver through the LDLR, di-

Fig. 19.2  Reverse cholesterol transport. Efflux esterification hepatic uptake fecal excretion. cho-
lesteryl ester ( CE), cholesteryl ester transfer protein ( CETP), high-density lipoprotein ( HDL), 
low-density lipoprotein ( LDL), very-low-density lipoprotein ( VLDL), LDL-receptor ( LDLR), tri-
glyceride ( TG), lecithin-cholesterol acyltransferase ( LCAT), apolipoprotein ( A1), apolipoprotein 
( B), apolipoprotein ( C2), apolipoprotein ( E), scavenger receptor ( SR-BI), free cholesterol ( FC), 
ATP-binding cassette family A or G type 1 ( ABC A/G1)
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rect removal of apo AI-containing particles through the hepatic scavenger receptor 
class B type I (SR-BI) and direct interaction of the apo E-containing HDL particles 
with the LDLR. Cholesterol in the liver is then subject to excretion into the bile and 
the feces. It is estimated that approximately 90 % of excreted cholesterol is through 
the formation of bile acids whose metabolic path is tightly and coordinately regu-
lated by orphan nuclear receptors (Russell 2009; Repa and Mangelsdorf 2000). The 
remaining 10 % is through direct secretion into the bile by canilicular transporters 
and incorporation in the synthesis of biologically active steroids.

19.3  Linkage Between LDL-C and Cardiovascular Risk

A wide range of research methods including experimental animal models, laborato-
ry investigations, epidemiology, clinical, and genetic studies indicate that elevated 
LDL-C is a major cause of coronary heart disease (CHD; National Heart, Lung, and 
Blood Institute (NHLBI) 2004). The linkage between other lipoproteins and CHD 
is less clear. Given the strong linkage, LDL-C is a standard primary endpoint for 
clinical trials evaluating the efficacy of new hypercholesterolemia drugs (European 
Medicines Agency 2010).

Using meta-analysis of trial level data involving ten controlled clinical stud-
ies, there was a direct relationship between on-treatment LDL-C and absolute risk 
of CHD in the primary and secondary prevention settings (O’Keefe et al. 2004). 
Figure 19.3 shows the relationship between LDL-C and CHD event rates in second-
ary prevention trials.

Fig. 19.3  Linkage between LDL-C and CHD events in secondary prevention trials. (Reprinted 
from O’Keefe et al. 2004, © 2004 by the American College of Cardiology Foundation)
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Another large-scale meta-analysis provides additional support for the linkage 
between LDL-C and CHD risk reduction (CTT Collaboration 2010). In a meta-
analysis of individual data involving 170,000 patients participating in controlled 
clinical studies, relative risk reduction was calculated from studies investigating ei-
ther high- versus low-dose statin or statin versus placebo. The key findings from the 
analysis indicated that a reduction in LDL-C of 38.6 mg/dL (or 1 mmol/L) reduced 
CHD risk by ~ 20 % for both high versus low statin and statin versus placebo trials. 
The authors conclude that the primary goal for patients at risk of CHD should be to 
achieve the largest LDL-C reduction possible.

19.4  Mechanisms of Action of Hyperlipidemia Therapies

A number of therapeutic options exist for the treatment of hyperlipidemia. All of 
the therapies lower cholesterol but have differential effects on lipoprotein path-
ways. Therapies with different mechanisms of action are often combined to achieve 
clinical goals. Individual classes of hyperlipidemia treatments are discussed below. 
Figure 19.4 highlights the mechanism of action of hyperlipidemia treatments.

Fig. 19.4  Mechanism of action for hyperlipidemia drugs: anion exchange resins ( A), bile acids 
( BA), cholesteryl ester ( CE), high-density lipoprotein ( HDL), 3-hydroxy-3-methylglutaryl coen-
zyme A ( HMG CoA), low-density lipoprotein ( LDL), LDL-receptor ( LDL-R), very-low-density 
lipoprotein ( VLDL), triglyceride ( TG). (Reprinted from Neal MJ (2012) Medical pharmacology at 
a glance, 7th edn, with permission from John Wiley and Sons)
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Statins (including generic names of lovastatin, rosuvastatin, atorvastatin, sim-
vastatin, pravastatin, pitavastatin, fluvastatin) inhibit 3-hydroxy-3-methylglutaryl 
coenzyme A (HMG-CoA) reductase. Their role in lowering LDL-C involves inhibi-
tion of HMG-CoA reductase, preventing the conversion of HMG-CoA to mevalonic 
acid (MVA), and further subsequent reactions involved in LDL-C synthesis in hepa-
tocytes of the liver (Istvan and Deisenhofer 2001). Statin treatment also induces de-
creases in intracellular cholesterol and increased cell-surface expression of LDLR 
(Goldstein and Brown 2009).

Ezetimibe (Zetia) limits the absorption of dietary cholesterol across the intestine 
into circulation (Merck, Zetia highlights of Prescribing Information 2013; Sweeney 
and Johnson 2007; Van Heek et al. 2000). Limiting dietary cholesterol results in a 
reduced production of VLDL and LDL-C. Ezetimibe is also available in a combina-
tion product known as Vytorin (simvastatin/ezetimibe).

Fibrates are a class of drugs (such as fenofibrate, gemfibrozil, fenofibric acid, 
and others) that work via oxidation of fatty acids resulting in multiple pharmaco-
logical effects reducing triglycerides and LDL-C in circulation. In the nuclei of liver 
hepatocytes, fibrates interact with the peroxisome proliferator-activated receptor 
alpha (PPAR-α), a nuclear transcription factor, and induce lipoprotein lipolysis, 
removal of LDL-C by altering affinity for LDL-C receptor, and increasing HDL-C 
production (Staels et al. 1998; Caslake et al. 1993).

Niacin also works to increase HDL-C, however, the mechanism by which niacin 
alters lipid profiles has not been well defined (AbbVie, Niaspan Highlights of Pre-
scribing Information 2013). The mechanism may involve several actions including 
partial inhibition of release of free fatty acids from adipose tissue, and increased 
LPL activity, which may increase the rate of chylomicron triglyceride removal from 
plasma. Niacin decreases the rate of hepatic synthesis of VLDL and LDL, and does 
not appear to affect fecal excretion of fats, sterols, or bile acids. The benefit of 
niacin therapy on cardiovascular risk is unclear in the current era of statins and 
ezetimibe as approved therapies. Investigation of niacin, prior to the availability of 
statins, did demonstrate a benefit (Canner et al. 1986). However, a 2011 study con-
ducted by the NHLBI investigating adding high-dose, extended-release niacin to 
statin treatment was ended early. Results showed the combination treatment did not 
reduce the risk of cardiovascular events, including heart attacks and stroke (NHLBI 
2011). Most recently, niacin failed to show an additional benefit when added to 
simvastatin (Merck press release 2012).

Omega-3-acid ethyl esters are also prescribed as treatment for lowering LDL-
C and triglycerides. The mechanism of action of omega-3-acid ethyl esters is not 
well understood (Glaxo Smith Kline, Lovaza Highlights of Prescribing Information 
2013). Potential mechanisms may include inhibition of acyl-CoA:1,2-diacylglyc-
erol acyltransferase, increased mitochondrial and peroxisomal β-oxidation in the 
liver, decreased lipogenesis in the liver, or increased plasma LPL activity. Omega-
3-acid ethyl esters also may reduce the synthesis of triglycerides in the liver.

Mipomersen (Kynamro™) is an antisense oligonucleotide inhibitor of apolipo-
protein B-100 (apo B100) ribonucleic acid synthesis inhibiting apo B100 protein 
synthesis (Isis, Kynamro™ Highlights of Prescribing Information 2013). Reduced 
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protein synthesis of apo B100 results in reduced production of VLDL, LDL, and 
cholesterol.

Lomitapide (Juxtapid™) directly binds and inhibits microsomal triglyceride 
transfer protein (MTP), which resides in the lumen of the endoplasmic reticulum, 
thereby preventing the assembly of apo B100-containing lipoproteins in enterocytes 
and hepatocytes. This action inhibits the synthesis of chylomicrons and VLDL lead-
ing to reduced levels of LDL-C in circulation (Aegerion, Juxtapid Highlights of 
Prescribing Information 2013).

Inhibitors of CETP are being investigated for the treatment of dyslipidemia. As 
CETP is involved in the exchange of cholesteryl esters from HDL-C to VLDL, 
inhibition of CETP increases HDL-C, and may variably reduce LDL-C (Barter and 
Rye 2012). Preclinical efficacy studies have demonstrated that a CETP inhibitor can 
inhibit the progression of atherosclerosis in rabbits (Okamoto et al. 2000). This is 
a challenging area of investigation as two development programs have been halted 
due to safety outcomes or lack of efficacy (Barter and Rye 2012). Programs for 
at least two molecules (evacetrapib and anacetrapib) are still ongoing at this time 
(Nicholls et al. 2011; Bloomfield et al. 2009).

Mutations in the gene for proprotein convertase subtilisin/kexin type 9 (PCSK9) 
were identified as the third locus of autosomal dominant hypercholesterolemia 
(Abifadel et al. 2003), and inhibitors of PCSK9 are being investigated for the treat-
ment of hyperlipidemia. PCSK9 is involved in the regulation of LDLR (Derek et al. 
2007; Lambert et al. 2009). Preclinical efficacy studies have demonstrated that a 
PCSK9 inhibitor lowers LDL-C up to 70–80 % (Chan et al. 2009; Liang et al. 2011). 
Clinical studies have confirmed the effect of PCSK9 inhibition on the lowering of 
circulating LDL-C (Dias et al. 2012; Giugliano et al. 2012; Stein et al. 2012; Koren 
et al. 2012).

19.5  Drug Effect Models

19.5.1  Overview

Several types of pharmacometric analysis have been undertaken to describe the 
effects of hyperlipidemia drugs. In general, LDL-C has been the primary focus of 
these analyses, though recent examples have included MVA and HDL. A summary 
of drug effect models describing LDL-C is shown in Table 19.2. Models have been 
developed for HMG-CoA reductase inhibitors, CETP inhibitors, ezetimibe, gem-
cabene, and methylprednisolone. An Imax model was developed to characterize the 
steady-state drug effects. In addition, a semi-mechanistic PK/PD model was devel-
oped to capture dose response and time course of LDL-C. Models have employed 
dose or concentration to predict LDL-C response to treatment.

One challenge in the application of pharmacometrics in this area was the lack 
of a clear exposure–response relationship for statins. For example, it was reported 
that dose was a better predictor of LDL-C reduction than exposure (as measured 
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by Cmax and AUC) after 2 weeks of atorvastatin treatment (Cilla et al. 1996). Chal-
lenges exist to measure active drug species which can be confounded by active 
metabolites and active uptake/efflux transport. However, LDL-C can be accurately 
measured after collection of blood samples and serves as a surrogate of efficacy. 
Thus, dose–response relationships can adequately characterize the drug effect after 
statin treatment. In addition, doses of statins can be titrated after approximately 2 
weeks of treatment to optimize LDL-C reduction and minimize side effects.

19.5.2  Imax Models

The time course of pharmacodynamic effects can be viewed as either direct or indi-
rect. For direct PK/PD relationships, concentrations are correlated with effects in a 
reversible manner with the peak pharmacodynamic effect observed at the same time 
as peak drug concentrations. The sigmoid Imax model (Hill Equation) is based on the 
receptor occupancy theory and used to describe the nonlinear concentration–effect 
relationship as shown below in Eq. 19.1:

 
(19.1)E

I C
IC C
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Table 19.2  Summary of drug effect models to describe LDL-C
Mechanism of action Drug Model Predictor 

variable
Reference

HMG-CoA reductase 
inhibitors (Statins)

Atorvastatin, 
simvastatin, 
fluvastatin

Indirect response Dose Faltaos et al. 
2006

Rosuvastatina Indirect response Concentration Aoyama et al. 
2010

Simvastatin Indirect response Concentration 
(simvastatin 
acid)

Kim et al. 2011

Rosuvastatin Imax Dose Yang et al. 2011
Atorvastatin Indirect response Dose Oh et al. 2012

CETP inhibition Anacetrapibb Imax Concentration Krishna et al. 
2011

Multiple mechanisms Ezetimibe 
(cholesterol 
absorption 
inhib), gem-
cabene (novel 
mechanism), 
Atorvastatin 
(HMG-CoA)

Imax Dose Mandema et al. 
2005

Glucocorticoid receptor 
agonist

Methylpredniso-
lone

Indirect response LDL receptor 
mRNA

Hazra et al. 2008

a PK/PD model was developed to predict mevalonic acid 
b PK/PD model was developed to predict LDL-C and HDL
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where the effect of the drug ( E) can be described by some maximal inhibitory ef-
fect ( Imax) and the concentration associated with half of the maximal inhibitory 
effect ( IC50). In addition, dose–response analysis can be performed and the dose 
associated with the half-maximal inhibitory effect (ID50) can be estimated. The Hill 
slope coefficient ( n) increases or decreases the steepness of the concentration–effect 
relationship depending on whether the value of n is greater or less than 1, respec-
tively. Alternatively, for drugs that increase the response, an alternate model can be 
selected with an Emax, EC50, and n parameters in the form of Eq. 19.1.

The sigmoid Imax model was applied to describe the dose–response relationship 
of statins to facilitate drug development of gemcabene, a new chemical entity for 
the treatment of hypercholesterolemia (Mandema et al. 2005). The objective of the 
analysis was to use model-based meta-analysis to guide decision making for gem-
cabene, using a model of statin, ezetimibe, and gemcabene alone or in combination. 
Trial level data was obtained from 21 randomized clinical trials involving atorv-
astatin, rosuvastatin, simvastatin, lovastatin, pravastatin, and ezetimibe following 
multiple-dose treatment for at least 4 weeks as monotherapy. The statins shared a 
common Imax and n, and unique ED50 values were estimated for each drug. LDL-C 
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Fig. 19.5  Dose–response relationship for statins as monotherapy treatment. The solid red line 
represents the model-predicted LDL-C reduction expressed as % change from baseline in LDL-C. 
Symbols and bars represent the observed mean and 95 % confidence interval. (With kind permis-
sion from Springer Science + Business Media: Mandema et al (2005) AAPS J 7(3):E513–522; 
Fig. 19.1)
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values were expressed as percentage change from baseline. Figure 19.5 shows the 
dose–response relationship for statins, and Table 19.3 gives a summary of the pa-
rameter estimates.

The sigmoid Imax model effectively described the shape of the dose–response 
curve for each statin. The mean response after placebo was 0.802 % change from 
baseline indicating a small placebo response relative to the effect of statins. An 
estimated mean Imax of − 78.7 % change from baseline and n of 0.451 was observed, 
which is consistent with the common pharmacological mechanism of action for 
statins. The statin ID50 values varied from 4.35 to 97.3 mg reflecting in vivo potency 
for each statin. In addition, the Imax, ID50, and n for ezetimibe and gemcabene as 
monotherapy were characterized.

Because gemcabene was under development for use in combination with statins, 
the pharmacodynamic interaction was investigated for comparison to ezetimibe, 
an approved therapy for use in combination with statins. The pharmacodynamic 
interaction model included the effect of placebo, dose response for statin or non-
statin, and an interaction term to characterize the nature of the pharmacodynamic 
interaction. The interaction term between statin and ezetimibe was estimated to be 
1, which indicated pharmacological independence. In contrast, the interaction term 
between statin and gemcabene was 1.69 which indicated a less than independent 
interaction. Moreover, limited additional LDL-C reduction was predicted when 
adding gemcabene to the highest doses of statins. The model-based meta-analysis 
supported the decision to discontinue the development of gemcabene preventing 
costly additional clinical studies.

Table 19.3  Summary of PK/PD parameters (± 95 % confidence intervals) from Imax models of 
LDL-C response
Drug E0 (%) Imax (%) ID50 (mg) n Reference
Atorvastatin 0.802

(0.0598, 1.54)
− 78.7
(− 90.7, − 66.7)

13.1
(6.57, 26.2)

0.451
(0.366, 0.557)

Mandema 
et al. 2005

Rosuvastatin 4.35
(2.19, 8.62)

Simvastatin 30.5
(15–62.1)

Lovastatin 82.8
(37.1–185)

Pravastatin 97.3
(42.4, 223)

Ezetimibe − 19.6
(− 20.6, − 18.6)

0.302
(0.151, 0.604)

1 Mandema 
et al. 2005

Rosuvastatin 0.802 (fixed)a − 57.0
(− 61.3, − 52.7)

1.74
(1.00, 2.48)

1 (fixed) Yang et al. 
2011

Anacetrapibb 107 (3)c

140(1)d
− 80 (4) 237(25)e 1 (fixed) Krishna et al. 

2011
a Fixed value from Mandema et al. (2005) 
b Parameter estimate (± SE) 
c Baseline in mg/dL for healthy volunteers 
d Baseline in mg/dL for patients 
e IC50 in ng/mL
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Differences in the response to rosuvastatin in Western and Asian hypercholes-
terolemia patients were examined using a sigmoid Imax model (Yang et al. 2011). 
Trial-level data from 14 dose-ranging, and 22 one-dose trials with rosuvastatin 
were combined for model-based meta-analysis. The placebo response was fixed 
at 0.802 % change from baseline based on Mandema et al. The mean Imax and ID50 
were estimated at − 57 % change from baseline and 1.74 mg/day, respectively. Asian 
patients had a mean ID50 value that was approximately half (0.564) of the Western 
patient population estimate. The analysis supports the current dosing recommenda-
tion of 5–20 mg in Asian and 10–40 mg in Western populations which was based on 
bridging pharmacokinetic exposure across populations. It was reported that Asian 
patients have a lower oral clearance of rosuvastatin compared to Western patients 
(Lee et al. 2005). The resulting higher exposures may explain the lower ID50 in 
Asian populations. Results from the Imax model indicate that race differences in 
rosuvastatin pharmacodynamics were consistent with the pharmacokinetic differ-
ences, suggesting that the underlying PK/PD relationship is consistent for Asian and 
Western populations. A trend towards higher approved maximal doses for cardio-
vascular drugs has been observed for Westerners relative to Japanese and Asians in 
general (Liao 2007; Arnold et al. 2010).

Recently, the Imax model was applied to describe the effects of anacetrapib, a 
CETP inhibitor (Krishna et al. 2011). Because anacetrapib may be used in combina-
tion with statins, the pharmacodynamic interaction between anacetrapib and ator-
vastatin was characterized. Individual subject level data was obtained from phase 
1 and phase 2b studies. Trough anacetrapib concentrations were found to be most 
predictive of HDL and LDL-C response. The effect of anacetrapib was modeled 
as proportional to the baseline of LDL-C. Mean baseline LDL-C values of 107 
and 140 mg/dL were estimated for healthy subjects and patients, respectively, with 
24 % intersubject variability in the baseline. The Imax and IC50 were − 78 % and 240  
ng/mL, respectively, for anacetrapib as monotherapy. Treatment with atorvastatin 
(20 mg/day) lowered LDL-C values by − 44.5 %. The pharmacodynamic interac-
tion term for anacetrapib and atorvastatin was estimated to be 0.99 which indi-
cated pharmacological independence. A similar approach was applied to define the 
trough exposure-response for HDL. Simulations were performed using the model 
to predict the effect of food, patient status, and dose on LDL-C decrease and HDL 
increase. The Imax model effectively characterized the trough exposure–response 
relationship and provided quantitative support for phase 3 dose selection.

19.5.3  Indirect Response Models

The indirect response model has been used extensively to characterize drug ef-
fects for drugs which act on turnover processes such as production or elimination 
(Dayneka et al. 1993; Sharma and Jusko 1996; Mager et al. 2003). The indirect 
response model will describe a time delay between peak plasma concentrations and 
the maximal response which can be useful to help define the onset and offset of 
pharmacological effects. Figure 19.6 shows the compartmental model structure for 
the indirect response model.



552 M. G. Emery et al.

The general equation for the indirect response model is shown in Eq. 19.2:

 
(19.2)

where R is the response, ksyn is the zero-order synthesis rate, and kdeg is the first-
order degradation rate. A family of four indirect effect models has been applied. 
Drug effects can include (1) inhibition of input, (2) inhibition of output, (3) stimula-
tion of input, and (4) stimulation of output, where model selection is based on an 
understanding of the mechanism of drug action. Models 1 and 4 have been most 
commonly used to describe the time course of effect on LDL-C by statins.

The indirect response model was applied to characterize the hyperlipidemic ef-
fects of corticosteroids after single-dose administration in normal male Wistar rats 
(Hazra et al. 2008). Corticosteroids induce effects through binding to glucocorti-
coid receptors. Through a cascade of events, the glucocorticoid receptors modulate 
the expression of LDL receptors in the liver. As noted in Sect. 19.2.2, hepatocyte 
LDL receptors are the predominant elimination mechanism for LDL-C in humans 
and preclinical species, accounting for 50–80 % of the elimination of LDL-C in 
preclinical species (Bilheimer 1984). The authors proposed a mechanistic model 
where reduction in messenger RNA (mRNA) levels of the LDL receptor reduces 
the kdeg of LDL-C under the assumption that LDL receptor mRNA levels are cor-
related with the activity of LDL receptor. The model described the time course of 
LDL-C elevations after a single dose of 50 mg/kg methylprednisolone by intramus-
cular injection. The initial value of LDL-C was 35.8 mg/dL, and kdeg was 0.51 h−1. 
The mechanistic model successfully described the time delay between methylpre-
dinsolone concentrations ( tmax of ~ 1 h) and peak LDL-C response ( tmax of ~ 18 h) 
after administration of methylprednisolone in rats giving biological insights into 
corticosteroid-induced hyperlipidemia.

The indirect response modeling approach was applied to simvastatin to charac-
terize the dose–response relationship of LDL-C reduction in Koreans (Kim et al. 
2011). Healthy volunteers recruited to participate in a drug–drug interaction study 
received simvastatin 40 mg daily for 14 days. Intensive PK measurements were 
obtained for simvastatin and simvastatin acid on days 1, 7, and 14, with trough 
measurements on days 5, 6, 12, and 13. A two-compartment model with first-order 

d
d syn
R
t

k k R= − deg· ,

ksyn kdegResponse
(R)

1 3 2 4

Fig. 19.6  Compartmental model structure for the indirect response model. Inhibitory effects are 
represented by the shaded bar such that models 1 and 2 represent inhibition of production rate 
constant ( ksyn) or elimination rate constant ( kdeg), respectively. Stimulatory effects are represented 
by the open bar such that models 3 and 4 represent stimulation of ksyn or kdeg, respectively
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absorption described the pharmacokinetics of simvastatin with 70 % of the dose 
eliminated as simvastatin (central compartment), and 30 % of the dose eliminated 
as simvastatin acid (represented as a peripheral compartment). Simvastatin acid 
was the active pharmacological species that inhibited ksyn of LDL-C in the PK/
PD model. Table 19.4 gives a summary of the PK/PD parameter estimates. The 
system parameters baseline LDL-C and ksyn were 92 mg/dL and 0.274 g/L x day, 
respectively. Simvastatin acid had an Imax and IC50 of 0.489 and 0.0868 ng/mL, 
respectively. Intersubject variability was greatest for the IC50 with 93.2 % CV, and 
less for Imax, ksyn, and baseline LDL-C at 15.7, 50.2, and 20.5 % CV, respectively. 
The authors noted that the IC50 and intersubject variability in IC50 may have been 
poorly estimated because simvastatin acid concentrations were much higher than 
the IC50 for the 40 mg dose. A visual predictive check of concentration and LDL-C 
indicated that the model fit the data well and explained the observed variability, as 
shown in Fig. 19.7.

Simulations were performed using the PK/PD model to compare the predicted 
dose–response relationship with observed dose–response data. To determine if the 
concentration–response model could predict the effect of simvastatin on LDL-C 
in patients, the authors overlayed the model-predicted dose–response relationship 
with available data from a meta-analysis and the Zocor label. This analysis demon-
strated the successful prediction of steady-state LDL-C response in patients from 
healthy subjects using population PK/PD modeling. Overall, the indirect response 
model successfully described the dose–response relationship for simvastatin in 
Korean patients.

The indirect response model proposed by Kim et al. was used as the basis inves-
tigating LDL-C reductions after morning or evening administration of simvastatin 

Table 19.4  Summary of PK/PD parameters (± 95 % confidence intervals) from basic and precur-
sor-pool indirect response models of LDL-C
Drug INH ID50 (mg) kin (g/L/day) kout (1/day) BSV

kin

BSV
ID50

Reference

Atorvastatin 0.21
(0.19–0.28)

26
(19–66)

0.14
(0.10–0.24)

NR 72 160 Faltaos 
et al. 2006

Simvastatin 1.3
(1.0–3.7)

Fluvastatin 15
(9–34)

Simvastatin NE 0.0868a 
(0.000150–
0.396)

0.274 
(0.208–0.346)

0.297 50.2 93.2 Kim et al. 
2011

Atorvastatin 0.09 11.9
(3.8–31.8), 
patients
2.0
(0.2–5.9) 
healthy

0.15
(0.12–0.20)

0.105
(0.08–0.144)

1.6 98 Oh et al. 
2012

NR not reported, BSV between subject variability (%) 
a IC50 in ng/mL
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Fig. 19.7  Application of 
the indirect response model 
to LDL-C turnover after 
administration of simvastatin 
40 mg/day for 14 days in 
healthy, Korean subjects. 
(Reprinted from Kim et al. 
2011, with permission from 
John Wiley and Sons and © 
2011 The Authors Basic & 
Clinical Pharmacology & 
Toxicology © 2011 Nordic 
Pharmacological Society)
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in a simulation study (Wright et al. 2011). It has been reported that the effects of 
statins are more prominent after administration in the evening, but are also asso-
ciated with a 5–25 % reduction in compliance relative to morning administration 
(Vrijens et al. 2008). The authors modified the indirect response model to include a 
circadian production of LDL-C, and performed simulations to compare the impact 
of morning versus evening administration for 10, 20, 40, and 80 mg/day simvas-
tatin. In addition, the effect of 10 % noncompliance was considered for subjects re-
ceiving the evening dose. The difference in LDL-C reduction for morning, evening, 
and evening with 10 % noncompliance was 30.6, 33.0, and 31.6 %, respectively, 
after 10 mg/day simvastatin. The model predictions suggested a relatively small 
advantage for evening administration that could be almost completely eliminated 
by noncompliance.

The indirect response model has been used to characterize the inhibitory ef-
fects of rosuvastatin on MVA (Aoyama et al. 2010). HMG-CoA reductase converts 
HMG-CoA to MVA as the rate-limiting step in de novo cholesterol biosynthesis. 
The data source for the modeling was based on a previously published report of 
the administration of 10 mg/day rosuvastatin to 24 subjects in a two-way cross-
over study comparing the effects of morning versus evening administration (Martin 
et al. 2002). The indirect response model was modified to account for the circadian 
production of MVA throughout the course of a day. A 7.7 % reduction in the area 
under the effect curve over 24 h was reported for MVA for morning administration 
relative to evening administration. The extended indirect response model success-
fully described the circadian fluctuations in MVA and effects of rosuvastin after 
morning or evening administration. The implications of the findings with MVA on 
steady-state LDL-C are not entirely clear as the link between MVA and LDL-C has 
not been defined.

19.5.4  Precursor Pool Indirect Response Model

A modified version of the indirect response model which we refer to as the precur-
sor pool indirect response model was proposed to describe the LDL-C reduction 
after multiple dose administration of atorvastatin, simvastatin, and fluvastatin in 
hypercholesterolemia patients (Faltaos et al. 2006). The model included a precur-
sor compartment which represented the production of LDL-C in hepatocytes, and 
a response compartment which represented circulating LDL-C pool as shown in 
Fig. 19.8.

kin koutResponse
(R)

Precursor
(P)

K

Fig. 19.8  Precursor pool indirect response model. Inhibitory effects are represented by the shaded 
bar. Stimulatory effects are represented by the open bar. kin production rate constant, K transfer 
rate constant, kout elimination rate constant
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Distinct from the precursor-dependent indirect response model which describes 
tolerance and rebound phenomena (Sharma et al. 1998), the precursor pool indirect 
response model in this case was developed based on the known pharmacological 
mechanism of statins (described in Sect. 19.6.3). The general equation for the pre-
cursor pool indirect response model is shown below in Eqs. 19.3 and 19.4:

 

(19.3)

 
(19.4)

where P is the precursor compartment, R is the response compartment, kin is the 
zero-order synthesis rate, K is the transfer rate from precursor to response compart-
ment, and kout is the first-order elimination rate. INH and STIM represent the drug 
effects of statins, namely inhibition of synthesis and stimulation of elimination, 
respectively. Pharmacokinetic data were not available from the study, so the effect 
of each statin on kout was proposed to be dose-dependent in the form of an Emax 
model while the INH function was independent of dose and/or statin. One of the 
limitations of the precursor pool indirect response model was reported (Kim et al. 
2011), where the authors found that the model was overparameterized when applied 
to simvastatin data from healthy Korean subjects.

The precursor pool indirect response model was applied to describe the effect 
of atorvastatin, simvastatin, and fluvastatin on LDL-C in hypercholesterolemic 
patients (Faltaos et al. 2006). LDL-C observations ( n = 309) were collected from 
100 patients after daily administration of atorvastatin (10–40 mg/day), simvastatin 
(10–80 mg/day), and fluvastatin (10–80 mg/day) at different times (ranging from 14 
to 150 days). Table 19.4 gives a summary of the PK/PD parameter estimates. The 
model described the data adequately, and suggested a kin value of 0.14 g/L/day that 
was inhibited by 21 % by statin treatment. The potency of simvastatin, fluvastatin, 
and atorvastatin as measured by the ED50 for stimulating kout was 1.3, 15, and 26  
mg/day, respectively. Extensive intersubject variability in kin and ED50 were report-
ed (72 and 160 %, respectively). The model was one of the first examples to describe 
the time course of LDL-C reduction, and could be a useful platform for the design of 
clinical studies. Unfortunately, the authors did not provide an estimate for K or kout 
in the publication, limiting the general application of the model by other scientists.

The precursor pool indirect response model was subsequently utilized to de-
scribe the PK/PD relationship of atorvastatin to gain insights into the dose–response 
relationship in Korean dyslipidemic patients and nonpatient volunteers (Oh et al. 
2012). The study included 15 dyslipidemic patients that participated in a two-step 
dose escalation trial where the dose of atorvastatin was initiated at either 10 or 
20 mg/day and escalated to 40 or 80 mg/day after 21 days of dosing. In addition, 11 

dP
dt

k INH K P= − −in· ( ) ·1

dR
dt

K P STIM k R= − +· ( ) · · ,1 out
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healthy subjects were included in the study and received 10 mg/day atorvastatin for 
21 days. Blood samples were collected to measure lipids for 56 days. Figure 19.9 
shows the predicted and observed LDL-C reduction after administration of atorvas-
tatin to Korean patients and healthy subjects.

Based on the analysis, the kin for LDL-C was 0.15 g/L/day in the Korean subjects 
with a low intersubject variability of 13 %. The elimination rate constant for LDL-
C was 0.105 day−1 which suggested a half-life of 6.6 days. Atorvastatin inhibited 
kin by 9 % which was slightly less than the 21 % reported by Faltaos et al. The ID50 
in patients and healthy subjects were 11.9 and 2.0, respectively, which suggested 
that healthy subjects might be more sensitive to the effects of atorvastatin. How-
ever, due to the imprecision of the ID50 estimates, there was an overlap in the 95 % 
confidence intervals of the ID50 estimates. Extensive intersubject variability in the 
ID50 of atorvastin (99 % CV) was reported. The implications of a sixfold difference 
between patients and healthy subjects were not discussed by the authors. Because 
dose was the predictor of pharmacodynamic response, pharmacokinetic differences 
between healthy subjects and patients were not investigated. The atorvastatin ID50 
value from Oh et al. was in close agreement to the value reported by Mandema et al. 
(11.9 vs. 13 mg/day atorvastatin, respectively). Application of the precursor pool 
indirect response model enabled the characterization of atorvastatin dose–response 
relationship in Korean patients and healthy subjects. The model could be used to 
help optimize drug therapy in dyslipidemic patients.

Fig. 19.9  Application of the precursor pool indirect response model to LDL-C turnover after 
administration of atorvastatin in Korean dyslipidemic patients and nonpatient ( NP) volunteers. 
(Reprinted from Oh et al. 2012, with permission from Dustri-Verlag and © 2012 Dustri-Verlag 
and Dr. K Feistle)
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19.5.5  Other Applications

Examples of other applications of pharmacometrics that are not solely focused on 
drug effects are presented. A systems biology approach was applied to characterize 
the impacts of aging on LDL-C (McAuley et al. 2012). The model captured the 
known physiology of cholesterol metabolism, and included six compartments to 
describe intake, intestinal absorption, excretion, plasma, hepatic, and peripheral tis-
sues. The influence of changes in cholesterol absorption and elimination by LDL 
receptors was simulated to give insights into their respective importance in cho-
lesterol balance. Based on the simulations, a 50 % reduction in hepatic clearance 
of LDL-C can result in a 116 mg/dL increase in plasma LDL-C. Also, increasing 
the bioavailability of cholesterol from 50 to 80 % can increase plasma LDL-C by 
34 mg/dL. The findings from a systems biology model give insights into the fun-
damental biology of lipoproteins, and suggest that plasma LDL-C levels were most 
sensitive to changes in the rate of hepatic elimination.

There may be an opportunity for pharmacometrics to guide dosing decisions 
in order to optimize the risk to benefit ratio of hyperlipidemia treatments. Use of 
high-dose simvastatin (80 mg) has been associated with an increased risk of myopa-
thies and in rare cases rhabdomyolysis compared to lower doses (Egan and Colman 
2011). In addition, the risk of myopathies can be increased with drug interactions 
such as coadministration of CYP3A inhibitor and/or OATP1B1 inhibitor (Neuvonen 
et al. 2006). Additional concentration-safety analysis may support ongoing efforts 
to identify intermittent dosing strategies that maintain benefit and reduce risk of 
myopathy with statin treatment (Keating et al. 2013).

In the area of cardiovascular disease progression, the focus of research has been 
on defining short-term risk estimates of cardiovascular events to define treatment 
algorithms (NHLBI 2004). More recently, the question of duration of LDL-C ex-
posure as it pertains to cardiovascular risk has been raised, where it was noted that 
longer treatment with statins was associated with reduced risk of CHD (Brown and 
Goldstein 2006). In addition, it was proposed that the cumulative exposure to LDL-
C may serve as surrogate of lifetime cardiovascular risk based on outcomes from 
human genetic observational studies (Horton et al. 2009). In the future, a pharmaco-
metric disease progression model may serve to unify the effect of LDL-C reduction 
on cardiovascular risk reduction.

19.6  Summary and Conclusions

Cardiovascular disease produces significant worldwide morbidity and mortality. 
Lipoproteins represent a major risk factor for cardiovascular disease. Therefore, 
treatment of lipoproteins is important to the goal of reducing cardiovascular risk 
given its relationship to arteriosclerosis. PK/PD models have been used to char-
acterize the effect on LDL-C for a wide variety of drugs including statins, CETP 
inhibitors, and ezetimibe. Both empirical and semi-mechanistic models have been 
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used to characterize dose response and the time course of effects of hyperlipidemia 
therapies. The application of pharmacometrics has been shown to effectively guide 
drug development decision making by accurately simulating trials, optimizing dos-
ing regimens, and informing early termination of programs with unacceptable risk 
to benefit ratios. In conclusion, pharmacometrics will continue to be an important 
tool to facilitate the development of new drug therapies to alleviate the burden of 
cardiovascular disease.

Summary of Key Messages

• PK/PD models have been used to characterize the effect on LDL-C for hyperlip-
idemia drugs including statins, CETP inhibitors, and ezetimibe.

• Both empirical and semi-mechanistic models have been used to characterize 
dose response and the time course of effects of hyperlipidemia therapies.

• The application of pharmacometrics in the cardiovascular area has been shown 
to effectively guide drug development decision making by accurately simulating 
trials, optimizing dosing regimens, and informing early termination of programs 
with unacceptable risk/benefit ratios.
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