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Abstract In this chapter we consider a weak version of the Hyers–Ulam stability
problem for the Pexider equation, Cauchy equation satisfied in restricted domains in
a group when the target space of the functions is a 2-divisible commutative group.
As the main result we find an approximate sequence for the unknown function
satisfying the Pexider functional inequality, the limit of which is the approximate
function in the Hyers–Ulam stability theorem.
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1 Introduction

The Hyers–Ulam stability problems of functional equations were originated by S.
M. Ulam in 1940 when he proposed the following question [36]:

Let f be a mapping from a group G1 to a metric group G2 with metric d(·, ·) such
that

d(f (xy), f (x)f (y)) ≤ ε.

Then does there exist a group homomorphism h and δε > 0 such that

d(f (x), h(x)) ≤ δε

for all x ∈ G1?
One of the first assertions to be obtained is the following result, essentially due

to D. H. Hyers [20], that gives an answer for the question of Ulam.
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Theorem 1 Suppose that S is a commutative semigroup, B is a Banach space,
ε ≥ 0, and f : S → B satisfies the inequality

‖f (x + y) − f (x) − f (y)‖ ≤ ε (1)

for all x, y ∈ S. Then there exists a unique function A : S → B satisfying

A(x + y) = A(x) + A(y) (2)

and

‖f (x) − A(x)‖ ≤ ε (3)

for all x ∈ S.
In 1950, this result was generalized by T.Aoki [4] and D.G. Bourgin [9, 8]. In 1978

T.M. Rassias generalized the Hyers’result to new approximately linear mappings [?].
Since then the stability problems have been investigated in various directions
for many other functional equations. Among the results, the stability problem
in a restricted domain was investigated by F. Skof, who proved the stability
problem of the inequality (1) in a restricted domain [35]. Several papers have
been published on the Hyers–Ulam stability in restricted domains for a large
variety of functional equations including the Jensen functional equation [24],
quadratic type functional equations [23], mixed type functional equations [30], and
Jensen type functional equations [31]. The results can be summarized as follows:
Let X and B be a real normed space and a real Banach space, respectively. For fixed
d ≥ 0, if f : X → B satisfies the functional inequalities (such as that of Cauchy,
quadratic, Jensen, and Jensen type, etc.) for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ d, then
the inequalities hold for all x, y ∈ X.

In [14, 15], generalizing the restricted domains such as ‖x‖+‖y‖ ≥ d in a normed
space to some abstract domains in a group, we consider the stability problem of
Pexider equation and Jensen-type equations in the restricted domains. In the present
paper, we consider a weak version of Hyers–Ulam stability of the Pexider equation
when the target space of the functions in given functional inequalities are not a
normed space but a 2-divisible commutative group. Note that the existence of the
approximate additive function A in Theorem 1 is due to the completeness of the
target space B. For example, if Y is a noncomplete normed space and f : S → Y

satisfies (1), then we can only find a Cauchy sequence an : S → Y such that

|an(x + y) − an(x) − an(y)| ≤ 2−nε (4)

for all x, y ∈ S, n = 1, 2, 3, . . . , and

|f (x) − an(x)| ≤ ε (5)

for all x ∈ S and n = 1, 2, 3, . . . . Throughout this paper, we denote a commutative
group by G and a 2-divisible commutative group by H respectively, 0 ∈ V ⊂ H

and W ⊂ G × G. Also, we denote a Banach space and a real normed space by B
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and Y , respectively, and f , g,h : G → H (or Y , B). In Sect. 2 of this chapter, we
consider the behavior of f : G → H satisfying

f (x + y) − f (x) − f (y) ∈ V (6)

for all x, y ∈ G. As a result we prove that there exists a Cauchy-type sequence
an : G → H (which is a Cauchy sequence when H = Y ) such that

f (x) − an(x) ∈ 2−n(V + 2V + . . . + 2n−1V ) (7)

for all x ∈ G. In Sect. 3, we consider

f (x + y) − g(x) − h(y) ∈ V (8)

for all (x, y) ∈ W ⊂ G×G. As the main result we prove that under some assumptions
on W , if f , g, h satisfy (8) then there exist approximate Cauchy-type sequences
an, bn, and cn forf , g, andh respectively. From our result we obtain the Hyers–Ulam
stability theorem for Pexider equation when f , g,h : G → B.

2 A Weak Stability of Pexider Equation

For subsets V ,V1,V2 of H , v ∈ V , and n ∈ N, we define

nv = v + · · · + v︸ ︷︷ ︸
n−times

, nV = {nv : v ∈ V }, 2−nV = {h ∈ H : 2nh ∈ V },

and
V1 + V2 = {v1 + v2 : v1 ∈ V1, v2 ∈ V2}.

We call an : G → H a V -Cauchy sequence if

am+n(x) − am(x) ∈ 2−m−n(V + 2V + . . . + 2n−1V )

for all m, n = 1, 2, 3, . . . , and x ∈ G.
First we consider the weak version of the Hyers–Ulam stability theorem for the

Cauchy equation.

Theorem 2 Suppose that f : G → H satisfies

f (x + y) − f (x) − f (y) ∈ V (9)

for all x, y ∈ G. Then there exists a V -Cauchy sequence an : G → H satisfying

an(x + y) − an(x) − an(y) ∈ 2−nV , (10)

and

an(x) − f (x) ∈ 2−n(V + 2V + . . . + 2n−1V ) (11)
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for all x, y ∈ G and n ∈ N.

Proof Note that since H is 2-divisible, for each n ∈ N and x ∈ G we can choose
an an(x) such that

2nan(x) = f (2nx). (12)

Replacing y by x in (9) and using induction argument we have

2n−1f (2x) − 2nf (x) ∈ 2n−1V

2n−2f (4x) − 2n−1f (2x) ∈ 2n−2V

· · · · · · · · · · · · · · · · · ·
2f (2n−1x) − 4f (2n−2x) ∈ 2V

f (2nx) − 2f (2n−1x) ∈ V

for all x ∈ G. Thus it follows that

f (2nx) − 2nf (x) ∈ V + 2V + . . . + 2n−1V (13)

for all x ∈ G. Now it follows from (12) and (13) that

an(x) − f (x) ∈ 2−n(V + 2V + . . . + 2n−1V ) (14)

for all x ∈ G. Replacing x by 2mx in (13) and using (12) we have

am+n(x) − am(x) ∈ 2−m−n(V + 2V + . . . + 2n−1V ) (15)

for all x ∈ G, which implies that an is V -Cauchy. Replacing x by 2nx and y by 2ny
in (9) and using (12) we have

an(x + y) − an(x) − an(y) ∈ 2−nV (16)

for all n ∈ N and x ∈ G. This completes the proof.
Let 〈Y , ‖ · ‖〉 be a normed space and V = {x ∈ Y : ‖x‖ ≤ ε}. Then we have

2−n(V + 2V + . . . + 2n−1V ) ⊂ {x ∈ Y : ‖x‖ ≤ ε}
for all n ∈ N, and

2−m−n(V + 2V + . . . + 2n−1V ) ⊂ {x ∈ Y : ‖x‖ ≤ 2−mε}
for all m, n ∈ N. Thus in this case, every V -Cauchy sequence is a Cauchy sequence.
Now as a direct consequence of Theorem 2 we have the following.

Corollary 1 Let ε > 0. Suppose that f : G → Y satisfies

‖f (x + y) − f (x) − f (y)‖ ≤ ε (17)



On a Weak Version of Hyers–Ulam Stability Theorem in Restricted Domains 117

for all x, y ∈ G. Then there exists a Cauchy sequence an : G → Y satisfying

‖an(x + y) − an(x) − an(y)‖ ≤ 2−nε (18)

for all n ∈ N and x, y ∈ G, and

‖an(x) − f (x)‖ ≤ ε (19)

for all x ∈ G.

In particular, if f : G → B, then there exists A : G → B such that

lim
n→∞ an(x) = A(x).

Letting n → ∞ in (18) we have

A(x + y) − A(x) − A(y) = 0 (20)

for all x, y ∈ G. We call a function A : G → B satisfying (20) an additive function.
Thus as a direct consequence of Corollary 1 we have the well known Hyers–Ulam
stability theorem.

Corollary 2 Let ε > 0. Suppose that f : G → B satisfies

‖f (x + y) − f (x) − f (y)‖ ≤ ε (21)

for all x, y ∈ G. Then there exists an additive function A : G → B such that

‖f (x) − A(x)‖ ≤ ε (22)

for all x ∈ G.
Throughout this chapter we denote

V ∗ = {v1 + v2 − v3 − v4 : vj ∈ V , j = 1, 2, 3, 4}.

Theorem 3 Suppose that f , g,h : G → H satisfy

f (x + y) − g(x) − h(y) ∈ V (23)

for all x, y ∈ G. Then there exist V ∗-Cauchy sequences an, bn, cn : G → H

satisfying

an(x + y) − an(x) − an(y) ∈ 2−nV ∗ (24)

bn(x + y) − bn(x) − bn(y) ∈ 2−nV ∗ (25)

cn(x + y) − cn(x) − cn(y) ∈ 2−nV ∗ (26)

for all n ∈ N and x, y ∈ G, and
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an(x) − f (x) + f (0) ∈ V ∗
n , (27)

bn(x) − g(x) + g(0) ∈ V ∗
n , (28)

cn(x) − h(x) + h(0) ∈ V ∗
n , (29)

and

an(x + y) − bn(x) − cn(y) ∈ V ∗∗
n (30)

for all n ∈ N and x, y ∈ G, where

V ∗
n = 2−n(V ∗ + 2V ∗ + . . . + 2n−1V ∗),

V ∗∗
n = V − V + V ∗

n − V ∗
n − V ∗

n .

Proof Let D(x, y) = f (x + y) − g(x) − h(y). Then we have

f (x + y) − f (x) − f (y) + f (0)=D(x, y) + D(0, 0) − D(x, 0) − D(y, 0) ∈ V ∗
(31)

g(x + y) − g(x) − g(y) + g(0)=D(x, y) + D(y, 0) − D(x + y, 0) − D(0, y) ∈ V ∗
(32)

h(x + y) − h(x) − h(y) + h(0)=D(x, y) + D(0, x) − D(0, x + y) − D(x, 0) ∈ V ∗
(33)

for all x, y ∈ G. Thus, in view of (31), (32), and (33), using Theorem 2 for f (x) −
f (0), g(x) − g(0), h(x) − h(0), we obtain (24)–(29). Now, putting x = y = 0 in
(23), we have

f (0) − g(0) − h(0) ∈ V. (34)

Then, by (23), (27), (28), (29), and (34) we get (30).
This completes the proof.
In particular, let V = {x ∈ Y : ‖x‖ ≤ ε}. Then we have

V ∗
n ⊂ {x ∈ Y : ‖x‖ ≤ 4ε}, V ∗∗

n ⊂ {x ∈ Y : ‖x‖ ≤ 14ε}
for all n ∈ N. Thus as a direct consequence of Theorem 3 we have the following.

Corollary 3 Let ε > 0. Suppose that f , g,h : G → Y satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (35)

for all x, y ∈ G. Then there exist Cauchy sequences an, bn, cn : G → Y satisfying

‖an(x + y) − an(x) − an(y)‖ ≤ 2−n+2ε (36)

‖bn(x + y) − bn(x) − bn(y)‖ ≤ 2−n+2ε (37)
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‖cn(x + y) − cn(x) − cn(y)‖ ≤ 2−n+2ε (38)

for all n ∈ N and x, y ∈ G, and

‖f (x) − an(x) − f (0)‖ ≤ 4ε, (39)

‖g(x) − bn(x) − g(0)‖ ≤ 4ε, (40)

‖h(x) − cn(x) − h(0)‖ ≤ 4ε (41)

and

‖an(x + y) − bn(x) − cn(y)‖ ≤ 14ε (42)

for all n ∈ N and x, y ∈ G.

Corollary 4 Let ε > 0. Suppose that f , g,h : G → B satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (43)

for all x, y ∈ G. Then there exists an additive function A : G → B such that

‖f (x) − A(x) − f (0)‖ ≤ 4ε,

‖g(x) − A(x) − g(0)‖ ≤ 4ε,

‖h(x) − A(x) − h(0)‖ ≤ 4ε

for all x ∈ G.

Proof Let A1(x) = limn→∞ an(x), A2(x) = limn→∞ bn(x), A3(x) =
limn→∞ cn(x). Then it follows from (36)–(38) that for each j = 1, 2, 3, Aj is an
additive function. Letting n → ∞ in (39)–(41) we have

‖f (x) − A1(x) − f (0)‖ ≤ 4ε,

‖g(x) − A2(x) − g(0)‖ ≤ 4ε,

‖h(x) − A3(x) − h(0)‖ ≤ 4ε

for all x ∈ G. Finally, letting n → ∞ in (42) we have

‖A1(x + y) − A2(x) − A3(y)‖ ≤ 14ε (44)

for all x, y ∈ G. Putting y = 0 and x = 0 in (44) separately, we have

‖A1(x) − A2(x)‖ ≤ 14ε

‖A1(y) − A3(y)‖ ≤ 14ε

for all x, y ∈ G, which implies that A1 = A2 and A1 = A3. This completes the
proof.
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3 Weak Stability of Pexider Equation in Restricted Domains

It is a frequent situation to consider a functional equation satisfied in a restricted
domain or satisfied under a restricted condition [3, 5–7, 10–12, 15, 18, 28, 32–35].
In this section we consider the weak version of the Hyers–Ulam stability theorem in
some restricted domains in G. We use the following usual notations. Let G × G =
{(a1, a2) : a1, a2 ∈ G} be the product group. For a subsetK ofG×G and a ∈ G×G,
we define a+K = {a+ k : k ∈ K}. For given x, y ∈ G we denote the sets of points
of the forms (not necessarily distinct) in G×G by Px,y , Qx,y , andRx,y , respectively
as,

Px,y = {(0, 0), (x, 0), (0, y), (x, y)},
Qx,y = {(y, 0), (0, y), (x, y), (x + y, 0)},
Rx,y = {(x, 0), (0, x), (x, y), (0, x + y)},

where 0 is the identity element of G. The set Px,y can be viewed as the vertices of a
rectangle inG×G, andQx,y andRx,y can be viewed as the vertices of parallelograms
in G × G.

Definition 1 Let W ⊂ G×G. We introduce the following conditions (C1), (C2),
and (C3) on W : For any x, y ∈ G, there exist z1, z2, z3 ∈ G such that

(C1) (− z1, z1) + Px,y ⊂ W ,

(C2) (0, z2) + Qx,y ⊂ W ,

(C3) (z3, 0) + Rx,y ⊂ W ,

respectively.

Example 1 Let G be a real normed space. For α,β, d ∈ R, let

U = {(x, y) ∈ G × G : α‖x‖ + β‖y‖ ≥ d}, (45)

V = {(x, y) ∈ G × G : ‖αx + βy‖ ≥ d}. (46)

Then U satisfies (C1) if α + β > 0, (C2) if β > 0 and (C3) if α > 0, and V

satisfies (C1) if α �= β, (C2) if β �= 0 and (C3) if α �= 0.

Example 2 Let G be a real inner product space. For d ≥ 0, x0, y0 ∈ G

U = {(x, y) ∈ G × G : 〈x0, x〉 + 〈y0, y〉 ≥ d}. (47)

Then U satisfies (C1), if x0 �= y0, (C2) if y0 �= 0 and (C3) if x0 �= 0.

Example 3 Let G be the group of nonsingular square matrices with the operation
of matrix multiplication. For α,β ∈ R, δ, d ≥ 0, let
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U = {(P1,P2) ∈ G × G : | det P1|α| det P2|β ≤ δ}, (48)

U = {(P1,P2) ∈ G × G : | det P1|α| det P2|β ≥ d}. (49)

Then U satisfies (C1) if α �= β, (C2) if β �= 0, and (C3) if α �= 0.
In the following one can see that if Px,y ,Qx,y , and Rx,y are replaced by arbi-

trary subsets of four points (not necessarily distinct) in G × G, respectively, the
conditions become stronger, that is, there are subsets Uj , j = 1, 2, 3, which sat-
isfy the conditions (C1), (C2), and (C3), respectively, but Uj , j = 1, 2, 3, fail to
fulfill the following conditions (2.6), (2.7), and (2.8), respectively: For any subset
{p1,p2,p3,p4} of points (not necessarily distinct) in G × G, there exists a z ∈ G

such that

(e, z){p1,p2,p3,p4}(z−1, e) ⊂ U1, (50)

{p1,p2,p3,p4}(e, z) ⊂ U2, (51)

(z, e){p1,p2,p3,p4} ⊂ U3, (52)

respectively.
Now we give examples of U1, U2, U3 which satisfy (C1), (C2), and (C3),

respectively, but not (50), (51), and (52), respectively.

Example 4 Let G = Z be the group of integers. Enumerating

Z × Z = {(a1, b1), (a2, b2), . . . , (an, bn), . . . }
such that

|a1| + |b1| ≤ |a2| + |b2| ≤ · · · ≤ |an| + |bn| ≤ · · · ,

and let Pn = {(0, 0), (an, 0), (0, bn), (an, bn)}, n = 1, 2, . . . . Then it is easy to
see that U1 = ⋃∞

n=1 (Pn + ( − 2n, 2n)) satisfies the condition (C1). Now let
P = {(x1, y1), (x2, y2)} ⊂ Z × Z with x2 > x1, y2 > y1, (x1 + y1)(x2 + y2) > 0.
Then P + ( − z, z) is not contained in U1 for all z ∈ Z. Indeed, let (a, b) ∈
Pn + (− 2n, 2n), (c, d) ∈ Pn+1 + (− 2n+1, 2n+1). Then we have a > c, b < d for all
n = 1, 2, . . . . Thus it follows from x2 > x1, y2 > y1 that if P + (− z, z) ⊂ U1, then
P + ( − z, z) ⊂ Pn + ( − 2n, 2n) for some n ∈ N, which implies that the line segment
joining the points ofP+(−z, z) intersects the line y = −x in R

2, contradicting to the
condition (x1 + y1)(x2 + y2) > 0. Similarly, let Qn = {(bn, 0), (0, bn), (an, bn), (an +
bn, 0)} and Rn = {(an, 0), (0, an), (an, bn), (0, an +bn)}, n = 1, 2, . . . . Then it is easy
to see that U2 = ⋃∞

n=1 (Qn + (0, 2n)) satisfies the condition (C2) but not (2.7) and
U3 = ⋃∞

n=1 (Rn + (2n, 0)) satisfies the condition (C3) but not (52).
As in Sect. 2, we denote

V ∗ = {v1 + v2 − v3 − v4 : vj ∈ V , j = 1, 2, 3, 4}.

Theorem 4 LetW satisfy the condition (C1). Suppose that f , g,h : G → H satisfy

f (x + y) − g(x) − h(y) ∈ V (53)
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for all (x, y) ∈ W . Then there exists a V ∗-Cauchy sequence an : G → H satisfying

an(x + y) − an(x) − an(y) ∈ 2−nV ∗ (54)

for all n ∈ N and x, y ∈ G and

an(x) − f (x) + f (0) ∈ 2−n(V ∗ + 2V ∗ + . . . + 2n−1V ∗) (55)

for all x ∈ G.

Proof For given x, y ∈ G, choose z ∈ G such that (− z, z) + Px,y ⊂ W . Then we
have

f (x + y) − g(x − z) − h(z + y) ∈ V ,

− f (x) + g(x − z) + h(z) ∈ −V ,

− f (y) + g(− z) + h(z + y) ∈ −V ,

+ f (0) − g(− z) − h(z) ∈ V.

Thus it follows that

f (x + y) − f (x) − f (y) + f (0) ∈ V + (− V ) + (− V ) + V = V ∗ (56)

for all x, y ∈ G.
Now by Theorem 2, there exists a V ∗-Cauchy sequence an : G → H satisfying

(54) and (55). This completes the proof.
In particular, let V = {x ∈ Y : ‖x‖ ≤ ε}. Then we have

V ∗ ⊂ {x ∈ Y : ‖x‖ ≤ 4ε}, 2−n(V ∗ +2V ∗ + . . .+2n−1V ∗) ⊂ {x ∈ Y : ‖x‖ ≤ 4ε}
for all n ∈ N, and

2−m−n(V ∗ + 2V ∗ + . . . + 2n−1V ∗) ⊂ {x ∈ Y : ‖x‖ ≤ 2−m+2ε}
for allm, n ∈ N. Thus in this case, every V ∗-Cauchy sequence is a Cauchy sequence.
Now as a direct consequence of Theorem 4 we have the following.

Corollary 5 Let W satisfy the condition (C1) and ε ≥ 0. Suppose that f , g,h :
G → Y satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (57)

for all (x, y) ∈ W . Then there exists a Cauchy sequence an : G → Y satisfying

‖an(x + y) − an(x) − an(y)‖ ≤ 2−n+2ε (58)

for all n ∈ N and x, y ∈ G, and

‖an(x) − f (x) + f (0)‖ ≤ 4ε (59)
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for all x ∈ G.
As a direct consequence of Corollary 5 we have the following.

Corollary 6 Let W satisfy the condition (C1) and ε ≥ 0. Suppose that f , g,h :
G → B satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (60)

for all (x, y) ∈ W . Then there exists an additive function A1 : G → B and

‖f (x) − A1(x) − f (0)‖ ≤ 4ε (61)

for all x ∈ G.

Theorem 5 LetW satisfy the condition (C2). Suppose that f , g,h : G → H satisfy

f (x + y) − g(x) − h(y) ∈ V (62)

for all (x, y) ∈ W . Then there exists a V ∗-Cauchy sequence bn : G → H satisfying

bn(x + y) − bn(x) − bn(y) ∈ 2−nV ∗ (63)

for all n ∈ N and x, y ∈ G, and

bn(x) − g(x) + g(0) ∈ 2−n(V ∗ + 2V ∗ + . . . + 2n−1V ∗) (64)

for all x ∈ G.

Proof For given x, y ∈ G, choose z ∈ G such that (0, z) + Qx,y ⊂ W . Then we
have

−f (x + y + z) + g(x + y) + h(z) ∈ −V ,

f (x + y + z) − g(x) − h(y + z) ∈ V ,

f (y + z) − g(y) − h(z) ∈ V ,

−f (y + z) + g(0) + h(y + z) ∈ −V.

Thus it follows that

g(x + y) − g(x) − g(y) + g(0) ∈ −V + V + V − V = V ∗ (65)

for all x, y ∈ G. Now by Theorem 2, there exists a sequence bn : G → H satisfying
(63) and (64). This completes the proof.

In particular, if f , g,h : G → Y we have the following.

Corollary 7 Let W satisfy the condition (C2) and ε ≥ 0. Suppose that f , g,h :
G → Y satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (66)
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for all (x, y) ∈ W . Then there exists a Cauchy sequence bn : G → Y satisfying

‖bn(x + y) − bn(x) − bn(y)‖ ≤ 2−n+2ε (67)

for all n ∈ N and x, y ∈ G, and

‖bn(x) − g(x) + g(0)‖ ≤ 4ε (68)

for all x ∈ G.
In particular, if f , g,h : G → B we have the following.

Corollary 8 Let W satisfy the condition (C2) and ε ≥ 0. Suppose that f , g,h :
G → B satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (69)

for all (x, y) ∈ W . Then there exists a unique additive function A2 : G → B such
that

‖g(x) − A2(x) − g(0)‖ ≤ 4ε (70)

for all x ∈ G.

Theorem 6 LetW satisfy the condition (C3). Suppose that f , g,h : G → H satisfy

f (x + y) − g(x) − h(y) ∈ V (71)

for all (x, y) ∈ W . Then there exists a V ∗-Cauchy sequence cn : G → H satisfying

cn(x + y) − cn(x) − cn(y) ∈ 2−nV ∗ (72)

for all n ∈ N and x, y ∈ G and

cn(x) − h(x) + h(0) ∈ 2−n(V ∗ + 2V ∗ + . . . + 2n−1V ∗) (73)

for all x ∈ G.

Proof For given x, y ∈ G, choose z ∈ G such that (0, z) + Qx,y ⊂ W . Then we
have

−f (z + x + y) + g(z) + h(x + y) ∈ −V ,

f (z + x + y) − g(z + x) − h(y) ∈ V ,

f (z + x) − g(z) − h(x) ∈ V ,

−f (z + x) + g(z + x) + h(0) ∈ −V.

Thus it follows that

h(x + y) − h(x) − h(y) + h(0) ∈ −V + V + V − V = V ∗ (74)
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for all x, y ∈ G. Now by Theorem 2, there exists a sequence cn : G → H satisfying
(72) and (73). This completes the proof.

In particular, if f , g,h : G → Y we have the following.

Corollary 9 Let W satisfy the condition (C3) and ε ≥ 0. Suppose that f , g,h :
G → Y satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (75)

for all (x, y) ∈ W . Then there exists a Cauchy sequence cn : G → Y satisfying

‖cn(x + y) − cn(x) − cn(y)‖ ≤ 2−n+2ε (76)

for all n ∈ N and x, y ∈ G, and

‖cn(x) − h(x) + h(0)‖ ≤ 4ε (77)

for all x ∈ G.
In particular, if f , g,h : G → B we have the following.

Corollary 10 Let W satisfy the condition (C3) and ε ≥ 0. Suppose that f , g,h :
G → B satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (78)

for all (x, y) ∈ W . Then there exists a unique additive function A3 : G → B such
that

‖h(x) − A3(x) − h(0)‖ ≤ 4ε (79)

for all x ∈ G.

Theorem 7 Let W satisfy all the conditions (C1), (C2), and (C3). Suppose that
f , g,h : G → H satisfy

f (x + y) − g(x) − h(y) ∈ V (80)

for all (x, y) ∈ W . Then there exist V ∗-Cauchy sequences an, bn, cn : G → H

satisfying

an(x + y) − an(x) − an(y) ∈ 2−nV ∗ (81)

bn(x + y) − bn(x) − bn(y) ∈ 2−nV ∗ (82)

cn(x + y) − cn(x) − cn(y) ∈ 2−nV ∗ (83)

for all n ∈ N and x, y ∈ G, and
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an(x) − f (x) + f (0) ∈ V ∗
n , (84)

bn(x) − g(x) + g(0) ∈ V ∗
n , (85)

cn(x) − h(x) + h(0) ∈ V ∗
n (86)

for all n ∈ N and x ∈ G, and

an(x + y) − bn(x) − cn(y) ∈ V ∗∗
n . (87)

for all n ∈ N and x, y ∈ G, where

V ∗
n = 2−n(V ∗ + 2V ∗ + . . . + 2n−1V ∗),

V ∗∗
n = V + V + V + V + V − V − V − V − V − V + V ∗

n − V ∗
n − V ∗

n .

Proof From Theorems 4, 5, and 6, it remains to show (87). By the condition (C1),
for given x, y ∈ G, choose z ∈ G such that (− z, z), (x − z, z + y) ∈ W . Then from
(80) we have

f (x + y) − g(x − z) − h(z + y) ∈ V , (88)

−f (0) + g( − z) + h(z) ∈ −V. (89)

Also, by (65) and (74) we have

g(x − z) − g(x) − g(− z) + g(0) ∈ V + V − V − V , (90)

h(z + y) − h(z) − h(y) + h(0) ∈ V + V − V − V. (91)

for all x, y, z ∈ G. From (88)–(91), we have

f (x+y)−g(x)−h(y)−f (0)+g(0)+h(0)∈V +V +V +V +V −V −V −V −V −V

(92)

for all x, y ∈ G. Using (84), (85), (86), and (92) we have

an(x+y)−bn(x)−cn(y)∈V +V +V +V +V −V −V −V −V −V +V ∗
n −V ∗

n −V ∗
n .

(93)

This completes the proof.
In particular, let V = {x ∈ Y : ‖x‖ ≤ ε}. Then we have

V ∗
n ⊂ {x ∈ Y : ‖x‖ ≤ 4ε}, V ∗∗

n ⊂ {x ∈ Y : ‖x‖ ≤ 22ε}
for all n ∈ N. Thus as a direct consequence of Theorem 7 we have the following.

Corollary 11 Let W satisfy the conditions (C1), (C2), and (C3) and ε ≥ 0.
Suppose that f , g,h : G → Y satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (94)
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for all (x, y) ∈ W . Then there exist Cauchy sequences an, bn, cn : G → Y satisfying

‖an(x + y) − an(x) − an(y)‖ ≤ 2−n+2ε (95)

‖bn(x + y) − bn(x) − bn(y)‖ ≤ 2−n+2ε (96)

‖cn(x + y) − cn(x) − cn(y)‖ ≤ 2−n+2ε (97)

for all n ∈ N and x, y ∈ G,

‖f (x) − an(x) − f (0)‖ ≤ 4ε, (98)

‖g(x) − bn(x) − g(0)‖ ≤ 4ε, (99)

‖h(x) − cn(x) − h(0)‖ ≤ 4ε (100)

for all n ∈ N and x ∈ G, and

‖an(x + y) − bn(x) − cn(y)‖ ≤ 22ε (101)

for all n ∈ N and x, y ∈ G.

Corollary 12 Let W satisfy the conditions (C1), (C2), and (C3) and ε ≥ 0.
Suppose that f , g,h : G → B satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (102)

for all (x, y) ∈ W . Then there exists an additive function A : G → B such that

‖f (x) − A(x) − f (0)‖ ≤ 4ε,

‖g(x) − A(x) − g(0)‖ ≤ 4ε,

‖h(x) − A(x) − h(0)‖ ≤ 4ε

for all x ∈ G.

Proof Let A1(x) = limn→∞ an(x), A2(x) = limn→∞ bn(x), A3(x) =
limn→∞ cn(x). Then it follows from (95)–(97) that for each j = 1, 2, 3,Aj is additive.
Letting n → ∞ in (98)–(100) we have

‖f (x) − A1(x) − f (0)‖ ≤ 4ε,

‖g(x) − A2(x) − g(0)‖ ≤ 4ε,

‖h(x) − A3(x) − h(0)‖ ≤ 4ε

for all x ∈ G. Finally letting n → ∞ in (101) we have

‖A1(x + y) − A2(x) − A3(y)‖ ≤ 22ε (103)

for all x, y ∈ G. Putting y = 0 and x = 0 in (103) separately, we have

‖A1(x) − A2(x)‖ ≤ 22ε
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‖A1(y) − A3(y)‖ ≤ 22ε

for all x, y ∈ G, which implies that A1 = A2 and A1 = A3. This completes the
proof.

In particular, if G is a normed vector space we have the following.

Corollary 13 Let d > 0. Suppose that f , g,h : G → B satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (104)

for all ‖x‖ + ‖y‖ ≥ d . Then there exists an additive function A : G → B such that

‖f (x) − A(x) − f (0)‖ ≤ 4ε,

‖g(x) − A(x) − g(0)‖ ≤ 4ε,

‖h(x) − A(x) − h(0)‖ ≤ 4ε

for all x ∈ G.
Finally we give another interesting example of the set W ⊂ R

n × R
n with finite

Lebesgue measure satisfying all the conditions (C1).

Lemma 1 Let D := {(x1, y1), (x2, y2), (x3, y3), . . . } be a countable dense subset of
R

2. For each j = 1, 2, 3, . . . , we denote by

Rj = {(x, y) ∈ R
2 : |x − xj | < 1, |y − yj | < 2−j ε}

the rectangle in R
2 with center (xj , yj ) and let W = ⋃∞

j=1 Rj . It is easy to see that
the Lebesgue measure m(W ) of U satisfies m(W ) ≤ ε. Now for d > 0, let

Wd = W ∩ {(x, y) ∈ R
2 : |x| + |y| > d}.

Then Wd satisfies (C1).

Proof For given x, y ∈ R we choose a p ∈ R such that

|p| ≥ d + |x| + |y| + 1. (105)

We first choose (xi1 , yi1 ) ∈ K such that

| − p − xi1 | + |p − yi1 | <
1

4
, (106)

and then we choose (xi2 , yi2 ) ∈ K , (xi3 , yi3 ) ∈ K and (xi4 , yi4 ) ∈ K with 1 < i1 <

i2 < i3 < i4, step by step, satisfying

|x − yi1 − xi2 | + |yi1 − yi2 | < 2−i1−1, (107)

|x − yi2 − xi3 | + |y + yi2 − yi3 | < 2−i2−1, (108)

|y − yi3 − xi4 | + |yi3 − yi4 | < 2−i3−1. (109)
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Let

z1 = yi1 − p,

z2 = yi2 − yi1 ,

z3 = yi3 − yi2 − y,

z4 = yi4 − yi3 ,

and
z = z1 + z2 + z3 + z4.

Then from (106)–(109) we have

|z1| < 1

4
, |z2| < 2−i1−1, |z3| < 2−i2−1, |z4| < 2−i3−1, |z| < 1

2
. (110)

Thus from (105), (106), and (110) we have

|− p − z| + |p + z| ≥ 2(|p| − |z|) ≥ 2(|p| − 1

2
) (111)

> 2d ≥ d ,

|− p − z − xi1 | ≤ | − p − xi1 | + |z| (112)

<
1

4
+ 1

2
< 1,

and

|p + z − yi1 | = |z2 + z3 + z4| < 2−i1−1 + 2−i2−1 + 2−i3−1 < 2−i1 . (113)

The inequalities (111), (112), and (113) imply

(−p − z,p + z) ∈ Wd. (114)

Also from the inequalities

|x − p − z| + |p + z| ≥ 2(|p| − |x| − |z|) > 2(|p| − |x| − 1

2
) > d ,

|x − p − z − xi2 | ≤ |x − yi1 − xi2 | + |z2| + |z3| + |z4|

<
1

8
+ 1

8
+ 1

16
+ 1

32
< 1,

and

|p + z − yi2 | = |z3 + z4| < 2−i2−1 + 2−i3−1 < 2−i2 ,

we have

(x − p − z,p + z) ∈ Wd. (115)
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Similarly, using the inequalities

|x − p − z − xi3 | ≤ |x − yi2 − xi3 | + |z3| + |z4| < 1,

|y + p + z − yi3 | = |z4| < 2−i3 ,

|− p − z − xi4 | ≤ |y − yi3 − xi4 | + |z4| < 1,

|y + p + z − yi4 | = 0,

we have

(x − p − z, y + p + z), (− p − z, y + p + z) ∈ Wd. (116)

Let {(x1, y1), (x2, y2), (x3, y3), . . . } be defined as above. For each j = 1, 2, 3, . . . ,
let

Sj = {(x, y) : x, y ∈ R : |x + y − xj − yj | < 1, |x − y − xj + yj | < 2−j ε}
and let V = ⋃∞

j=1 Sj . Then V satisfies m(V ) ≤ ε. For fixed d > 0, let

Vd = V ∩ {(x, y) ∈ R
2 : |x| + |y| > d}.

Using the similar method as in the proof of Lemma 1 we can show that Vd satisfies
the conditions (C1), (C2), and (C3).

As a direct consequence of Lemma 1 we have the following.

Theorem 8 Let d > 0. Suppose that f : R → R satisfies

|f (x + y) − f (x) − f (y)| ≤ ε (117)

for all (x, y) ∈ Wd . Then there exists a unique additive function A : R → R such
that

|f (x) − A(x)| ≤ 3ε (118)

for all x ∈ R.

Proof It follows from (115) and (116) that for given x, y ∈ R there exist p, z ∈ R

satisfying

|f (x + y) − f (x) − f (y)| ≤ | − f (x) + f (x − p − z) + f (p + z)|
+ |f (x + y) − f (x − p − z) − f (y + p + z)|
+ |− f (y) + f (− p − z) + f (y + p + z)|
≤ 3ε.

Using Theorem A we get the result.
As a consequence of Theorem 8 we obtain an asymptotic behavior of

Cd (f ) := sup
(x,y)∈Wd

|f (x + y) − f (x) − f (y)| → 0 (119)
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as d → ∞.

Theorem 9 Suppose that f : R → R satisfies the condition

Cd (f ) → 0 (120)

as d → ∞. Then f is an additive function.

Proof By the condition (120), for each j ∈ N, there exists dj > 0 such that

|f (x + y) − f (x) − f (y)| ≤ 1

j

for all (x, y) ∈ Wdj . By Theorem 8, there exists a unique additive function
Aj : R → R such that

|f (x) − Aj (x)| ≤ 3

j
(121)

for all x ∈ R. From (121), using the triangle inequality we have

|Aj (x) − Ak(x)| ≤ 3

j
+ 3

k
≤ 6 (122)

for allx ∈ R and all positive integers j , k. Now, the inequality (122) impliesAj = Ak .
Indeed, for all x ∈ R and all rational numbers r > 0 we have

|Aj (x) − Ak(x)| = 1

r
|Aj (rx) − Ak(rx)| ≤ 6

r
. (123)

Letting r → ∞ in (123) we have Aj = Ak . Thus, letting j → ∞ in (121) we get
the result.
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