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1 Introduction

At present we know that the study of existence of selections of the set-valued maps,
satisfying some inclusions, in many cases is connected to the stability problems of
functional equations (see, e.g., [8, 26, 27, 29]). Let us remind the result on the
stability of functional equation published in 1941 by D. H. Hyers in [6].

Let X be a linear normed space, Y a Banach space, and ε > 0. Then, for every
function f : X → Y satisfying the inequality

‖f (x + y) − f (x) − f (y)‖ ≤ ε, x, y ∈ X, (1)

there exists a unique additive function g : X → Y such that

‖f (x) − g(x)‖ ≤ ε, x ∈ X. (2)
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For further information and references concerning that subject we refer to [1, 3, 5,
7, 10, 11, 15, 28].

W. Smajdor [29] and Z. Gajda, R. Ger [8] observed that inequality (2) can be
written in the form

f (x + y) − f (x) − f (y) ∈ B(0, ε), x, y ∈ X,

where B(0, ε) is the closed ball centered at 0 and of radius ε. Hence we have

f (x + y) + B(0, ε) ⊂ f (x) + B(0, ε) + f (y) + B(0, ε), x, y ∈ X,

and the set-valued function

F (x) := f (x) + B(0, ε), x ∈ X,

is subadditive, i.e.

F (x + y) ⊂ F (x) + F (y), x, y ∈ X;

moreover, the function g from inequality (2) satisfies

g(x) ∈ F (x), x ∈ X,

which means that F has the additive selection g.
There arises a natural question under what conditions a subadditive set-valed

function admits an additive selection. An answer provides the result of Z. Gajda and
R. Ger in [8] given below (δ(D) denotes the diameter of a nonempty set D).

Theorem 1 Let (S, +) be a commutative semigroup with zero, X a real Banach
space and F : S → 2X a set-valued map with nonempty, convex, and closed values
such that

F (x + y) ⊂ F (x) + F (y), x, y ∈ S,

and
sup
x∈S

δ(F (x)) < ∞.

Then F admits a unique additive selection.
Some other results on the existence of the additive selections of subadditive,

superadditive, or additive set-valued functions can be found in [16, 30–33].

2 Linear Inclusions

In this section X is a real vector space and Y is a real Banach space. We denote
by n(Y ) the family of all nonempty subsets of Y and by ccl(Y ) the family of all
nonempty closed and convex subsets of Y . The number

δ(A) = sup
x,y∈A

‖x − y‖
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is said to be the diameter of nonempty A ⊂ Y . For A,B ⊂ Y and α,β ∈ R (the set
of reals) we write

A + B := {a + b : a ∈ A, b ∈ B}
and

αA := {αx : x ∈ A} ;

it is well known that

α(A + B) = αA + αB

and

(α + β)A ⊂ αA + βA.

If A ⊂ Y is convex and αβ > 0, then we have

(α + β)A = αA + βA.

A nonempty set K ⊂ Y is said to be a convex cone if

K + K ⊂ K

and
tK ⊂ K , t > 0.

Any function f : X → Y such that

f (x) ∈ F (x), x ∈ X,

is said to be a selection of the multifunction F : X → n(Y ).
Some generalization of Theorem 1 can be found in [20], where (α,β)-subadditive

set-valued map was considered, i.e., the set valued function satisfying

F (αx + βy) ⊂ αF (x) + βF (y), x, y ∈ K.

It has been proved there that an (α,β)-subadditive set-valued map with closed,
convex, and equibounded values in a Banach space has exactly one additive selection
ifα,β are positive reals andα+β �= 1. Forα+β < 1 a stronger result is true; namely,
F is single valued and additive. The above results were extended by K. Nikodem
and D. Popa [18, 22] to the case of the following general linear inclusions:

F (ax + by + k) ⊂ pF (x) + qF (y) + C, x, y ∈ K , (3)

pF (x) + qF (y) ⊂ F (ax + by + k) + C, x, y ∈ K , (4)

where a, b,p, q are positive reals,K ⊂ X is a convex cone with zero, F : K → n(Y ),
k ∈ K , and C ∈ n(Y ). Namely, they have proved the following two theorems.
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Theorem 2 Suppose that a+ b �= 1, p+ q �= 1, and F : K → ccl(Y ) satisfies the
general linear inclusion

F (ax + by + k) ⊂ pF (x) + qF (y), x, y ∈ K ,

and

sup
x∈K

δ(F (x)) < ∞. (5)

Then,

(i) in the case p + q > 1, there exists a unique selection f : K → Y of F that
satisfies the general linear equation

f (ax + by + k) = pf (x) + qf (y), x, y ∈ K; (6)

(ii) in the case p + q < 1, F is single valued.

Making a suitable substitutions, we easily deduce from the above theorem the
following corollary.

Corollary 1 Suppose that a + b �= 1, p + q > 1, C ⊂ Y is nonempty, compact,
and convex and F : K → ccl(Y ) satisfies (5) and the general linear inclusion (3).

Then there exists a unique single valued mapping f : K → Y satisfying Eq. (6)
and such that

f (x) ∈ F (x) + 1

p + q − 1
C, x ∈ K.

The next theorem is complementary to the above one.

Theorem 3 Suppose that p + q �= 1 and F : K → ccl(Y ) satisfies the general
linear inclusion

pF (x) + qF (y) ⊂ F (ax + by), x, y ∈ K , (7)

and
sup
x∈Lz

δ(F (x)) < ∞, z ∈ K ,

where
Lz = {tz : t ≥ 0}.

Then,

(i) in the case p+ q < 1, there exists a unique selection f : K → Y of F satisfying
the general linear equation

pf (x) + qf (y) = f (ax + by), x, y ∈ K;

(ii) in the case p + q > 1, F is single-valued.
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It can be easily shown that Theorem 3 yields the following.

Corollary 2 Let a+b �= 1, p+q < 1, C ⊂ Y be nonempty, compact, and convex,
and

x0 := k

1 − a − b
.

Suppose that F : K + x0 → ccl(Y ) satisfies the general linear inclusion (4) for
x, y ∈ K + x0 and

sup
x∈Lz+x0

δ(F (x)) < ∞, z ∈ K.

Then there exists a unique single valued mapping f : K + x0 → Y satisfying
Eq. (6) for x, y ∈ K + x0 and such that

f (x) ∈ F (x) + 1

1 − p − q
C, x ∈ K + x0.

Now, we recall some results concerning the linear inclusions when p + q = 1.
The special cases are the following two Jensen inclusions

F

(
x + y

2

)
⊂ F (x) + F (y)

2

and

F (x) + F (y)

2
⊂ F

(
x + y

2

)
.

First we show some examples. Namely, the multifunction F : R → ccl(R) given
by

F (x) = [x − 1, x + 1], x ∈ R,

satisfies the Jensen equation

F

(
x + y

2

)
= F (x) + F (y)

2
, x, y ∈ R,

and each function f : R → R,

f (x) = x + b, x ∈ R,

where b ∈ [−1, 1] is fixed, is a selection of F and satisfies the Jensen functional
equation.
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Observe also that, in the case p + q = 1, a constant function F : K → ccl(Y ),
F (x) = M for x ∈ K , where K ⊂ X is a cone and M ∈ ccl(Y ) is fixed, satisfies the
equation

F (ax + by) = pF (x) + qF (y), x, y ∈ K ,

and each constant function f : K → Y , f (x) = m for x ∈ K , where m ∈ M is
fixed, satisfies

f (ax + by) = pf (x) + qf (y), x, y ∈ K.

The subsequent results, concerning this case, have been obtained by K. Nikodem
[17] and by A. Smajdor and W. Smajdor in [34] (as before, K ⊂ X is a convex cone
containing zero).

Theorem 4 Let α ∈ (0, 1), a, b > 0, C be a nonempty, compact, and convex subset
of Y containing zero. Suppose that F : K → ccl(Y ) satisfies

(1 − α)F (x) + αF (y) ⊂ F (px + qy) + C, x, y ∈ K ,

and
sup
x∈K

δ(F (x)) < ∞.

Then there exists a function f : K → Y satisfying

(1 − α)f (x) + αf (y) = f (px + qy), x, y ∈ K ,

and such that

f (x) ∈ F (x) + 1

α
C, x ∈ K.

Recently D. Inoan and D. Popa in [9] generalized the above theorem onto the case
of inclusion

(1 − α)F (x) + αF (y) ⊂ F (x � y) + C, x, y ∈ G, (8)

where (G, �) is a groupoid with an operation that is bisymmetric, i.e.,

(x1 � y1) � (x2 � y2) = (x1 � x2) � (y1 � y2), x1, x2, y1, y2 ∈ G,

and fulfills the property:
there exists an idempotent element a ∈ G (i.e. a � a = a) such that for every x ∈ G

there exists a unique ta(x) ∈ G with ta(x) � a = x.
They have proved the following (we write tn+1

a (x) := ta(tna (x)) for x ∈ G and
each positive integer n).
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Theorem 5 Let p ∈ (0, 1) and F : G → n(Y ) satisfy inclusion (8) and

sup
n∈N

δ(F (tna (x))) < ∞, x ∈ G.

Then there exists a function f : G → Y with the following properties:

f (x) ∈ clF (x) + 1

p
C, x ∈ G,

(1 − p)f (x) + pf (y) = f (x � y), x, y ∈ G.

To present the further generalizations of those results, we need to remind the
notion of the square symmetric operation. Let (G, �) be a groupoid (i.e., G is a
nonempty set endowed with a binary operation � : G2 → G). We say that � is square
symmetric provided

(x � y) � (x � y) = (x � x) � (y � y), x, y ∈ G.

D. Popa in [21, 23] have proved that a set-valued map F : X → n(Y ) satisfying
one of the following two functional inclusions

F (x � y) ⊂ F (x) � F (y), x, y ∈ X,

F (x) � F (y) ⊂ F (x � y), x, y ∈ X,

in appropriate conditions admits a unique selection f : X → Y satisfying the
functional equation

f (x) � f (y) = f (x � y),

where (X, �), (Y , �) are square-symmetric groupoids.
Those results extend the previous ones, because it is easy to check that if K ⊂ X

is a convex cone, k ∈ T and a, b are fixed positive reals, then � : T 2 → T defined
by

x � y := ax + by + k, x, y ∈ T ,

is square symmetric. Actually, even more general property is valid: the operation
∗ : T 2 → T , given by

x ∗ y := α(x) + β(y) + γ0, x, y ∈ T ,

is square symmetric, where α,β : T → T are fixed additive mappings with

α ◦ β = β ◦ α
and γ0 is a fixed element of T .
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3 Inclusions in a Single Variable

Now, we present some results corresponding to inclusions in a single variable and
applications to the inclusions in several variables.

In this section, K stands for a nonempty set and (Y , d) denotes a metric space,
unless explicitly stated otherwise. For F : K → n(Y ) we denote by clF the
multifunction defined by

(clF )(x) = clF (x), x ∈ K.

Given α : K → K we write α0(x) = x for x ∈ K and

αn+1 = αn ◦ α, n ∈ N0 := N ∪ {0}
(N is the set of positive integers). The following result has been obtained in [24].

Theorem 6 Let F : K → n(Y ), Ψ : Y → Y , α : K → K , λ ∈ (0, +∞),

d(Ψ (x),Ψ (y)) ≤ λd(x, y), x, y ∈ Y ,

and

lim
n→∞ λnδ(F (αn(x))) = 0, x ∈ K.

1) If Y is complete and

Ψ (F (α(x))) ⊂ F (x), x ∈ K ,

then, for each x ∈ K , the limit

lim
n→∞ clΨ n ◦ F ◦ αn(x) =: f (x)

exists and f is a unique selection of the multifunction clF such that

Ψ ◦ f ◦ α = f.

2) If

F (x) ⊂ Ψ (F (α(x))), x ∈ K ,

then F is a single-valued function and

Ψ ◦ F ◦ α = F.

Obviously, if Ψ is a contraction (i.e., λ < 1) and

sup
x∈K

δ(F (x)) < ∞,



Selections of Set-valued Maps Satisfying Some Inclusions . . . 91

then it is easily seen that

lim
n→∞ λnδ(F (αn(x))) = 0

and consequently the assertions of Theorem 6 are satisfied.

It has been shown in [24] that from Theorem 6 we can derive results on the selec-
tions of the set-valued functions satisfying inclusions in several variables, especially
the general linear inclusions. Indeed, it is enough to take

Ψ (x) = 1

p + q
x, α(x) = (a + b)x, x ∈ K ,

or

Ψ (x) = (p + q)x, α(x) = 1

a + b
x, x ∈ K ,

to obtain the results on selections for the inclusions

F (ax + by) ⊂ pF (x) + qF (y), x, y ∈ K ,

and
pF (x) + qF (y) ⊂ F (ax + by), x, y ∈ K ,

respectively. Analogously, we can also obtain results for the quadratic inclusions:

F (x + y) + F (x − y) ⊂ 2F (x) + 2F (y)

and

2F (x) + 2F (y) ⊂ F (x + y) + F (x − y),

the cubic inclusions:

F (2x + y) + F (2x − y) ⊂ 2F (x + y) + 2F (x − y) + 12F (x)

and

2F (x + y) + 2F (x − y) + 12F (x) ⊂ F (2x + y) + F (2x − y),

and the quartic inclusions:

F (2x + y) + F (2x − y) + 6F (y) ⊂ 4F (x + y) + 4F (x − y) + 24F (x), (9)

4F (x + y) + 4F (x − y) + 24F (x) ⊂ F (2x + y) + F (2x − y) + 6F (y) (10)

(some of them have been investigated in [19]), or the following one in three variables

F (x + y + z) ⊂ 2F

(
x + y

2

)
+ F (z),

considered in [14].



92 J. Brzdȩk and M. Piszczek

From Theorem 6 we can deduce the same conclusions as in [14, 19] (cf. also, e.g.,
[13]), but under weaker assumptions. As an example we present below such a result
for the quartic inclusions, with a proof.

Corollary 3 Let Y be a real Banach space, (K , +) be a commutative group, F :
K → ccl(Y ) and

sup
x∈K

δ(F (x)) < ∞.

(i) If (9) holds for all x, y ∈ K , then there exists a unique selection f : K → Y of
the multifunction F such that

f (2x+y) + f (2x−y) + 6f (y) = 4f (x+y) + 4f (x−y) + 24f (x), x, y ∈ K.

(ii) If (10) holds for all x, y ∈ K , then F is single-valued.

Proof (i) Setting x = y = 0 in (9) we have

8F (0) ⊂ 32F (0).

and, by the Rådström cancellation lemma, we get 0 ∈ F (0). Next setting y = 0 in
(9) and using the last condition we obtain

2F (2x) ⊂ 2F (2x) + 6F (0) ⊂ 32F (x), x ∈ K,

whence we derive the inclusion

F (2x)

16
⊂ F (x), x ∈ K.

Next, by Theorem 6, with

Ψ (x) = 1

16
x, α(x) = 2x, x ∈ K ,

for each x ∈ K there exists the limit

lim
n→∞Ψ n(F (αn(x))) = lim

n→∞
F (2nx)

16n
= f (x);

moreover,
f (x) ∈ F (x), x ∈ K.

Since, for every x, y ∈ K , n ∈ N,

F (2n(2x + y))

16n
+ F (2n(2x − y))

16n
+ 6

F (2ny)

16n

⊂ 4
F (2n(x + y))

16n
+ 4

F (2n(x − y))

16n
+ 24

F (2nx)

16n
,
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letting n → ∞ we also get

f (2x+y)+f (2x−y)+6f (y) = 4f (x+y)+4f (x−y)+24f (x), x, y ∈ K.

Also the uniqueness of f can be easily deduced from Theorem 6.
(ii) Setting x = y = 0 in (10) and using the Rådström cancellation lemma we get

F (0) = {0}.
Thus and by (10) (with y = 0) we have

32F (x) ⊂ 2F (2x) + 6F (0) = 2F (2x), x ∈ K,

and consequently

F (x) ⊂ F (2x)

16
, x ∈ K.

So, using Theorem 6 with Ψ and α defined as in the previous case, we deduce
that F must be single-valued. �

Some generalization of Theorem 6 can be found in [25]; they are given below.

Theorem 7 Let F : K → n(Y ), k ∈ N, α1, . . . ,αk : K → K , λ1, . . . , λk : K →
[0, ∞), Ψ : K × Y k → Y ,

d(Ψ (x, w1, . . . , wk),Ψ (x, z1, . . . , zk)) ≤
k∑

i=1

λi(x)d(wi , zi)

for x ∈ K , w1, . . . , wk , z1, . . . , zk ∈ Y and

lim inf
n→∞

k∑

i1=1

λi1 (x)
k∑

i2=1

(λi2 ◦ αi1 )(x) . . .
k∑

in=1

(λin ◦ αin−1 ◦ . . . ◦ αi1 )(x)

× δ(F ((αin ◦ . . . ◦ αi1 )(x))) = 0, x ∈ K.

(a) If Y is complete and

Ψ (x,F (α1(x)), . . . ,F (αk(x))) ⊂ F (x), x ∈ K ,

then there exists a unique selection f : K → Y of the multifunction clF such
that

Ψ (x, f (α1(x)), . . . , f (αk(x))) = f (x), x ∈ K.

(b) If

F (x) ⊂ Ψ (x,F (α1(x)), . . . ,F (αk(x))), x ∈ K ,

then F is a single-valued function and

Ψ (x,F (α1(x)), . . . ,F (αk(x))) = F (x), x ∈ K.
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From this theorem we can easily deduce similar results for the following two
gamma-type inclusions in single variable

φ(x)F (a(x)) ⊂ F (x), x ∈ K ,

and

F (x) ⊂ φ(x)F (a(x)), x ∈ K ,

where F : K → n(Y ), a : K → K , φ : K → R (for some recent stability results
connected with those inclusions see [12]); or for the subsequent two inclusions

λ1F (α1(x)) + · · · + λkF (αk(x)) ⊂ F (x), x ∈ K ,

and

F (x) ⊂ λ1F (α1(x)) + · · · + λkF (αk(x)), x ∈ K ,

whereΨ : K×Y k → Y , α1, . . . ,αk : K → K , λ1, . . . , λk ∈ R+ (nonegative reals),
and λ1 + · · · + λk ∈ (0, 1).

A different generalization of Theorem 6 have been suggested in [25], with the
right side of inclusions as a sum of two set-valued functions. But in this situation we
do not obtain existence of the selection but of a suitable single valued function close
to F . Namely, we have the following two theorems.

Theorem 8 Assume that Y is complete, F ,G : K → n(Y ), 0 ∈ G(x) for all x ∈ K ,
Ψ : Y → Y , α : K → K , λ ∈ (0, 1),

d(Ψ (x),Ψ (y)) ≤ λd(x, y), x, y ∈ Y,

M := sup
x∈K

δ(F (x) + G(x)) < ∞

and

Ψ (F (α(x))) ⊂ F (x) + G(x), x ∈ K. (11)

Then there exists a unique function f : K → Y such that

Ψ ◦ f ◦ α = f

and

sup
y∈F (x)

d(f (x), y) ≤ 1

1 − λ
M , x ∈ K.

Theorem 9 Assume that Y is complete, F ,G : K → n(Y ), 0 ∈ G(x) for all x ∈ K ,
k ∈ N, Ψ : K × Y k → Y , α1, . . . ,αk : K → K , λ1, . . . , λk : K → [0, ∞),

d(Ψ (x, w1, . . . , wk),Ψ (x, z1, . . . , zk)) ≤
k∑

i=1

λi(x)d(wi , zi)

for x ∈ K , w1, . . . , wk , z1, . . . , zk ∈ Y ,



Selections of Set-valued Maps Satisfying Some Inclusions . . . 95

k(x) := δ(F (x) + G(x))

+
∞∑

l=1

k∑

i1=1

λi1 (x)
k∑

i2=1

(λi2 ◦ αi1 )(x) . . .
k∑

il=1

(λil ◦ αil−1 ◦ . . . ◦ αi1 )(x)

× δ(F ((αil ◦ . . . ◦ αi1 )(x)) + G((αil ◦ . . . ◦ αi1 )(x))) < ∞
for x ∈ K and

Ψ (x,F (α1(x)), . . . ,F (αk(x))) ⊂ F (x) + G(x), x ∈ K.

Then there exists a unique function f : K → Y such that

Ψ (x, f (α1(x)), . . . , f (αk(x))) = f (x), x ∈ K ,

and
sup

y∈F (x)
d(f (x), y) ≤ k(x), x ∈ K.

A special case of inclusion (11), without the assumption 0 ∈ G(x), has been
investigated in [4]. In what follows X is a Banach space over a field K ∈ {R, C},
a : K → K, b : K → [0, ∞), φ : K → K , ψ : K → X are given functions and
B ∈ n(X) is a fixed balanced and convex set with δ(B) < ∞. Moreover, we write

a−1(x) := 1, an(x) :=
n∏

j=0

a(φj (x)),

cn(x) := b(φn(x))an−1(x),

and

s−1(x) := 0, sn(x) := −
n∑

k=0

ak−1(x)ψ(φk(x))

for every n ∈ N0, x ∈ K .

Theorem 10 Assume that F : K → n(X) is a set-valued map and the following
three conditions hold:

a(x)F (φ(x)) ⊂ F (x) + ψ(x) + b(x)B, x ∈ K ,

lim inf
n→∞ δ(F (φn+1(x)))|an(x)| = 0, x ∈ K ,

ω(x) :=
∞∑

n=0

|cn(x)| < ∞, x ∈ K. (12)
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Let

Φn(x) := cl

(
an−1(x)F (φn(x)) + sn−1(x) +

( ∞∑

k=n

|ck(x)|
)
B

)

for x ∈ K , n ∈ N0. Then, for each x ∈ K , the sequence (Φn(x))n∈N0 is decreasing
(i.e., Φn+1(x) ⊂ Φn(x)), the set

Φ̂(x) :=
∞⋂

n=0

Φn(x)

has exactly one point and the function f : K → X given by f (x) ∈ Φ̂(x) is the
unique solution of the equation

a(x)f (φ(x)) = f (x) + ψ(x), x ∈ K , (13)

with

f (x) ∈ Φ0(x) = cl(F (x) + ω(x)B), x ∈ K.

4 Applications

In this section we present a few applications of the results, presented in the previous
sections, to the stability of some functional equations.

Let V be nonempty, compact, and convex subset of a real Banach space Y , 0 ∈ V ,
and a, b,p, q ∈ R.

Corollary 4 Let K be a convex cone in a real vector space and c ∈ K . Suppose
that a + b �= 1, p + q > 1, and f : K → Y satisfies

f (ax + by + c) − pf (x) − qf (y) ∈ V , x, y ∈ K.

Then there exists a unique function h : K → Y such that

h(ax + by + c) = ph(x) + qh(y), x, y ∈ K ,

and

h(x) − f (x) ∈ 1

p + q − 1
V , x ∈ K.

Proof Let

F (x) := f (x) + 1

p + q − 1
V , x ∈ K.

Then

F (ax + by + c) = f (ax + by + c) + 1

p + q − 1
V
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⊂ pf (x) + qf (y) + p + q

p + q − 1
V

= p

(
f (x) + 1

p + q − 1
V

)
+ q

(
f (y) + 1

p + q − 1
V

)

= pF (x) + qF (y), x, y ∈ K.

By Theorem 2 there exists a unique function h : K → Y with

h(x) ∈ f (x) + 1

p + q − 1
V , x ∈ K ,

and such that

h(ax + by + c) = ph(x) + qh(y), x, y ∈ K.

�

Corollary 5 Let (K , +) be a commutative group and f : K → Y satisfies

f (2x + y) + f (2x − y) + 6f (y) − 4f (x + y) − 4f (x − y) − 24f (x) ∈ V

for every x, y ∈ K . Then there exists a unique function h : K → Y such that

h(2x+y) + h(2x−y) + 6h(y) = 4h(x + y) + 4h(x − y) + 24h(x), x, y ∈ K ,

h(x) − f (x) ∈ 1

24
V , x ∈ K.

Proof Let F (x) := f (x) + 1
24V for x ∈ K . Then

F (2x + y) + F (2x − y) + 6F (y)

= f (2x + y) + f (2x − y) + 6f (y) + 8

24
V

⊂ 4f (x + y) + 4f (x − y) + 24f (x) + 8

24
V + V

= 4

(
f (x + y) + 1

24
V

)
+ 4

(
f (x − y) + 1

24
V

)
+ 24

(
f (x) + 1

24
V

)

= 4F (x + y) + 4F (x − y) + 24F (x), x, y ∈ K.

Now, according to Corollary 3 there exists a unique function h : K → X such
that h(2x+y) +h(2x−y) + 6h(y) = 4h(x+y) + 4h(x−y) + 24h(x) for x, y ∈ K

and

h(x) ∈ f (x) + 1

24
V , x ∈ K.

�
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In similar way we can obtain the stability results for some other equations. In
particular, from Theorem 7 with

F (x) = f (x) + 1

1 − (λ1 + · · · + λk)
V , x ∈ K ,

and λ1 + · · · + λk ∈ (0, 1), we can derive analogous as in Corollary 5 results for
functions f satisfying the condition

λ1f (α1(x)) + · · · + λkf (αk(x)) − f (x) ∈ V , x ∈ K.

The following corollary follows from Theorem 10 (see [4]).

Corollary 6 Let (12) be valid and g : K → X satisfy

a(x)g(φ(x)) − g(x) − ψ(x) ∈ b(x)B, x ∈ K.

Then there exists a unique solution f : K → X of Eq. (13) with

f (x) − g(x) ∈ ω(x)clB, x ∈ K.

Moreover, for each x ∈ K ,

f (x) = lim
n→∞ [an−1(x)g(φn(x)) + sn−1(x)].

Finally, let us recall the result in [2].

Theorem 11 Let (S, +) be a left amenable semigroup and let X be a Hausdorff
locally convex linear space. Let F : S → n(X) be set-valued function such that F (s)
is convex and weakly compact for all s ∈ S. Then F admits an additive selection
a : S → X if and only if there exists f : S → X such that

f (s + t) − f (t) ∈ F (s), s, t ∈ S.

As a consequence of it we obtain the following corollaries.

Corollary 7 Let (S, +) be a left amenable semigroup and letX be a reflexive Banach
space. In addition, let ρ : S → [0, ∞) and g : S → X be arbitrary functions. Then
there exists an additive function a : S → X such that

‖a(s) − g(s)‖ ≤ ρ(s), s ∈ S,

if and only if there exists a function f : S → X such that

‖f (s + t) − f (t) − g(s)‖ ≤ ρ(s), s, t ∈ S.

Corollary 8 Let (S, +) be a left amenable semigroup, X be a reflexive Banach
space, and let ρ : S → [0, ∞) be an arbitrary function. Assume that a function
f : S → X satisfies

‖f (s + t) − f (t) − f (s)‖ ≤ ρ(s), s, t ∈ S.

Then there exists an additive function a : S → X such that

‖a(s) − f (s)‖ ≤ ρ(s), s, t ∈ S.
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