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1 Introduction

At present we know that the study of existence of selections of the set-valued maps,
satisfying some inclusions, in many cases is connected to the stability problems of
functional equations (see, e.g., [8, 26, 27, 29]). Let us remind the result on the
stability of functional equation published in 1941 by D. H. Hyers in [6].

Let X be a linear normed space, Y a Banach space, and € > 0. Then, for every
function f : X — Y satisfying the inequality

fx+»—f)-fOIl=e, x,yeX, ey

there exists a unique additive function g : X — Y such that

If(x) — g <e, xeX. 2
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For further information and references concerning that subject we refer to [1, 3, 5,
7,10, 11, 15, 28].

W. Smajdor [29] and Z. Gajda, R. Ger [8] observed that inequality (2) can be
written in the form

fx+y) = f(x) = f(y) € B(0,¢e),  x,yeX,

where B(0, €) is the closed ball centered at 0 and of radius €. Hence we have

fx+y)+ B0,¢) C f(x)+ B0,€)+ f(y)+ BO,€),  x,ye€X,
and the set-valued function

F(x) := f(x)+ B(0,¢), x e X,
is subadditive, i.e.
F(x+y) C F(x)+ F(y), x,y €X;
moreover, the function g from inequality (2) satisfies
g(x) € F(x), x € X,

which means that F has the additive selection g.

There arises a natural question under what conditions a subadditive set-valed
function admits an additive selection. An answer provides the result of Z. Gajda and
R. Ger in [8] given below (§(D) denotes the diameter of a nonempty set D).

Theorem 1 Let (S,+) be a commutative semigroup with zero, X a real Banach
space and F : S — 2% a set-valued map with nonempty, convex, and closed values
such that

F(x+y)C F(x)+ F(y), x,y €8S,

and
sup 6(F(x)) < oo.
xes
Then F admits a unique additive selection.
Some other results on the existence of the additive selections of subadditive,
superadditive, or additive set-valued functions can be found in [16, 30-33].

2 Linear Inclusions

In this section X is a real vector space and Y is a real Banach space. We denote
by n(Y) the family of all nonempty subsets of Y and by ccl(Y) the family of all
nonempty closed and convex subsets of Y. The number

8(A) = sup |lx — yll
x,yeA



Selections of Set-valued Maps Satisfying Some Inclusions . . . 85

is said to be the diameter of nonempty A C Y. For A,B C Y and «, B € R (the set
of reals) we write

A+B:={a+b: aec A be B}
and
oA ={ax: x € A};
it is well known that
2(A+ B)=aA+aB
and
(¢ +B)A C xA + BA.
If A C Y is convex and a8 > 0, then we have
(¢ + A =aA+ BA.
A nonempty set K C Y is said to be a convex cone if
K+KCK

and
tK C K, t > 0.

Any function f : X — Y such that
f(x) € F(x), xeX,

is said to be a selection of the multifunction F : X — n(Y).
Some generalization of Theorem 1 can be found in [20], where («, 8)-subadditive
set-valued map was considered, i.e., the set valued function satisfying

F(ax + By) CaF(x)+ BF(y), x,yeK.

It has been proved there that an (o, B8)-subadditive set-valued map with closed,
convex, and equibounded values in a Banach space has exactly one additive selection
ifor, B are positiverealsand e+ # 1. Fora+f < 1astronger resultis true; namely,
F is single valued and additive. The above results were extended by K. Nikodem
and D. Popa [18, 22] to the case of the following general linear inclusions:

Flax +by+k) C pF(x)+qF(y)+C, x,y €K, (3)
pF(x)4+qF(y) C Flax +by+k)+ C, x,y €K, (@)

wherea, b, p, g are positive reals, K C X is aconvex cone with zero, F' : K — n(Y),
k € K, and C € n(Y). Namely, they have proved the following two theorems.
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Theorem 2 Supposethata+b # 1, p+q # 1, and F : K — ccl(Y) satisfies the
general linear inclusion

F(ax +by +k) C pF(x)+qF(y), x,y €K,
and

sup 8(F(x)) < oo. ®))
xekK

Then,

(i) in the case p + q > 1, there exists a unique selection f : K — Y of F that
satisfies the general linear equation

flax +by+k)=pf(x)+qf(»y), =xyek; (6)

(ii) in the case p + q < 1, F is single valued.

Making a suitable substitutions, we easily deduce from the above theorem the
following corollary.

Corollary 1 Suppose thata +b # 1, p+q > 1, C C Y is nonempty, compact,
and convex and F : K — ccl(Y) satisfies (5) and the general linear inclusion (3).

Then there exists a unique single valued mapping f : K — Y satisfying Eq. (6)
and such that

1
fx)e Fx)+ ————C, x€Kk.
pt+q—1

The next theorem is complementary to the above one.

Theorem 3 Suppose that p +q # 1 and F : K — ccl(Y) satisfies the general
linear inclusion

pF(x)+qF(y) C Flax +by), x,y€Kk, )
and
sup §(F(x)) < oo, zeK,
xel,
where
L,={tz: t >0}
Then,

(i) inthe case p +q < 1, there exists a unique selection f : K — Y of F satisfying
the general linear equation

pfx)+qf(y) = flax +by), x,y€K;

(ii) in the case p + q > 1, F is single-valued.
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It can be easily shown that Theorem 3 yields the following.

Corollary 2 Leta+b # 1, p+q < 1, C C Y be nonempty, compact, and convex,

and
k

T 1l—a—b

Suppose that F : K 4+ xo — ccl(Y) satisfies the general linear inclusion (4) for
x,y € K 4+ xp and

X0 -

sup 8(F(x)) < oo, ze K.

xeL;+xo

Then there exists a unique single valued mapping f : K + xo — Y satisfying
Eq. (6) for x,y € K + xo and such that

1
f(x)eF(x)+1—C, x € K + xo.

Now, we recall some results concerning the linear inclusions when p + ¢ = 1.
The special cases are the following two Jensen inclusions

F(x—i—y) C F(x)+ F(y)

2 2

and

F(x)+ F(y) c F(x+y>.
2 2

First we show some examples. Namely, the multifunction F : R — ccl(R) given
by
Fx)=[x—-1,x+1], x € R,

satisfies the Jensen equation

F(x+y> _ Fx)+ F(y)

b b ER’
2 e

2
and each function f : R — R,
fx)=x+b, x eR,

where b € [—1,1] is fixed, is a selection of F and satisfies the Jensen functional
equation.
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Observe also that, in the case p + g = 1, a constant function F : K — ccl(Y),
F(x) =M forx € K, where K C X isacone and M € ccl(Y) is fixed, satisfies the
equation

F(ax +by) = pF(x) +qF(y), x,y €K,

and each constant function f : K — Y, f(x) = m forx € K, where m € M is
fixed, satisfies

flax +by) = pf(x)+qf(y), x,y € K.

The subsequent results, concerning this case, have been obtained by K. Nikodem
[17] and by A. Smajdor and W. Smajdor in [34] (as before, K C X is a convex cone
containing zero).

Theorem 4 Leta € (0,1), a,b > 0, C be a nonempty, compact, and convex subset
of Y containing zero. Suppose that F : K — ccl(Y) satisfies

(I-a)F(x)+aF(y) C F(px +qy)+C, x,y €K,
and

sup 6(F(x)) < oo.

xekK

Then there exists a function f : K — Y satisfying

(I-a)fx)+af(y)= f(px+qy), x,y€K,

and such that
1
fx)e F(x)+ =C, xeKk.
o

Recently D. Inoan and D. Popa in [9] generalized the above theorem onto the case
of inclusion

(I—-a)F(x)+aF(y) C Fxxy)+C, x,y €G, (®)
where (G, %) is a groupoid with an operation that is bisymmetric, i.e.,

(xp*yD) * (2% y2) = (xp % X2) x (Y1 % y2),  X1,X2,¥1,02 € G,

and fulfills the property:
there exists an idempotent element a € G (i.e. a xa = a) such that for every x € G
there exists a unique #,(x) € G with 7,(x) xa = x.

They have proved the following (we write t;’“(x) = 1,(t)(x)) for x € G and
each positive integer n).
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Theorem 5 Let p € (0,1)and F : G — n(Y) satisfy inclusion (8) and

sup 8(F () (x))) < oo, x € G.
neN

Then there exists a function f : G — Y with the following properties:

1
fx)eclF(x)+ —C, x €@,
p

A=pfx)+pfy)= flxxy), x,y €G.

To present the further generalizations of those results, we need to remind the
notion of the square symmetric operation. Let (G, *) be a groupoid (i.e., G is a
nonempty set endowed with a binary operation * : G — G). We say that x is square
symmetric provided

xXxy)*x(xxy)=x*xx)*x(y*y), x,y €G.

D. Popa in [21, 23] have proved that a set-valued map F : X — n(Y) satisfying
one of the following two functional inclusions

Fxxy) C F(x)o F(y), x,y € X,

F(x)o F(y) C F(x xy), x,y € X,

in appropriate conditions admits a unique selection f : X — Y satisfying the
functional equation

fx)o f(y) = flxxy),

where (X, ), (Y, ¢) are square-symmetric groupoids.

Those results extend the previous ones, because it is easy to check thatif K C X
is a convex cone, k € T and a, b are fixed positive reals, then * : T? — T defined
by

x*y:=ax +by+k, x,yeT,

is square symmetric. Actually, even more general property is valid: the operation
x:T? — T, given by

xxy=a(x)+p(y)+r,  xyeT,
is square symmetric, where o, 8 : T — T are fixed additive mappings with
o o ,3 = ﬂ oo

and y is a fixed element of T'.
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3 Inclusions in a Single Variable

Now, we present some results corresponding to inclusions in a single variable and
applications to the inclusions in several variables.

In this section, K stands for a nonempty set and (Y, d) denotes a metric space,
unless explicitly stated otherwise. For F : K — n(Y) we denote by clF the
multifunction defined by

(clF)(x) = clF(x), x € K.
Given« : K — K we write «°(x) = x for x € K and
" =a"oa, neNy:=NU{0}

(N is the set of positive integers). The following result has been obtained in [24].
Theorem 6 LetF: K - n(Y), ¥ :Y - Y, a: K — K, A €(0,400),

dWx),¥(y) =rd(x,y), x,y€Y,
and
n]i)rglo AMS(F(a"(x)) =0, x€K.
1) If Y is complete and
¥ (F(a(x))) C F(x), x ek,
then, for each x € K, the limit

lim cl¥” o F o a"(x) =: f(x)

n—00

exists and f is a unique selection of the multifunction clF such that
Vo foa=/f
2) If
F(x) C ¥(F(x(x))), x ek,
then F is a single-valued function and
WoFoua=F.
Obviously, if ¥ is a contraction (i.e., A < 1) and

sup §(F(x)) < oo,

xekK
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then it is easily seen that
lim A"8(F(a"(x)) =0
n—oo

and consequently the assertions of Theorem 6 are satisfied.

It has been shown in [24] that from Theorem 6 we can derive results on the selec-
tions of the set-valued functions satisfying inclusions in several variables, especially
the general linear inclusions. Indeed, it is enough to take

¥U(x)= X, a(x) = (a + b)x, x ek,

p+q

or
1

a+b
to obtain the results on selections for the inclusions

Y(x)=(p+qg)x, a(x) = X, x ek,

F(ax +by) C pF(x)+qF(y), x,y €K,

and
pF(x)+qF(y) C F(ax + by), x,y €K,

respectively. Analogously, we can also obtain results for the quadratic inclusions:
Fx+y)+ F(x —y) C2F(x)+2F(y)
and
2F(x)+2F(y)C Fx+y)+ F(x —y),
the cubic inclusions:
FCx+y)+ FQ2x —y) C2F(x +y)+2F(x —y)+ 12F(x)
and
2F(x 4+ y)+2F(x —y) + 12F(x) C F2x + y) + F2x — y),
and the quartic inclusions:

F2x+y)+ F2x —y)+6F(y) C4F(x +y)+4F(x — y)+24F(x), (9)

AF(x +y)+4F(x —y)+24Fx) C F2x+y)+ F2x —y) + 6F(y) (10)
(some of them have been investigated in [19]), or the following one in three variables

Fx+y+2z) C2F (%) + F(2),

considered in [14].
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From Theorem 6 we can deduce the same conclusions as in [14, 19] (cf. also, e.g.,
[13]), but under weaker assumptions. As an example we present below such a result
for the quartic inclusions, with a proof.

Corollary 3 Let Y be a real Banach space, (K, +) be a commutative group, F :
K — ccl(Y) and
sup 6(F(x)) < oo.

xekK

(1) If (9) holds for all x,y € K, then there exists a unique selection f : K — Y of
the multifunction F such that

fCx+)+ fQx—y)+6f() =4f(x+y)+4f(x—y)+24f(x), x,y €K
(i1) If (10) holds for all x,y € K, then F is single-valued.
Proof (i) Setting x = y = 0 in (9) we have
8F(0) C 32F(0).

and, by the Radstrom cancellation lemma, we get 0 € F(0). Next setting y = 0 in
(9) and using the last condition we obtain

2F(2x) C 2F(2x) + 6F(0) C 32F(x), x €K,

whence we derive the inclusion

F(Q2x)
16

C F(x), x e K.

Next, by Theorem 6, with
1
VU(x)= Rx, a(x) = 2x, x €K,

for each x € K there exists the limit
. " u . F(@2"x)
lim ¢"(F(a"(x))) = lim = f(x);
n—o00 n—00 16n

moreover,
f(x) € F(x), xeKk.

Since, forevery x,y € K, n € N,

FQ'Qx+y)  FQ'"Qx—y) FQ2")
16" + 16" +o 16"
JFE+y) | FQUE —y) 424 F(Z”X)’

16" 16" 16"
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letting n — oo we also get

fCx+)+fRx—y)+6f(y) =4f(x+y)+4f(x—y)+24 f(x), x,y € K.

Also the uniqueness of f can be easily deduced from Theorem 6.
(ii) Setting x = y = 0 in (10) and using the Radstrom cancellation lemma we get

F(0) = {0}.
Thus and by (10) (with y = 0) we have
32F(x) C 2F(2x) + 6 F(0) = 2F(2x), x € K,

and consequently

F(Q2x)

F s e K.
x) C 6 X
So, using Theorem 6 with ¥ and « defined as in the previous case, we deduce
that F must be single-valued. 0

Some generalization of Theorem 6 can be found in [25]; they are given below.

Theorem 7 Let F : K - nY), keN ay,...,a0p : K > K, A,... , A : K —>
[0,00), ¥ : K x YF —> ¥,

k
AW (Wi, Wi, W (21, 20) < ) Mi(0d(wi, zi)

i=I

forx € K, wi,... , Wi, 21,...,2 € Y and

k k k
lim inf D hi ()Y iy o)XY (i, 0 i, 0.0 )(X)

i1=1 ir=1 in=1

X 8(F((ej, o...00a;)(x)) =0, x € K.
(a) If Y is complete and
¥ (x, F(aj(x)),..., Flag(x))) C F(x), x € K,

then there exists a unique selection f : K — Y of the multifunction clF such
that
V(x, flar(x)), ..., flaxx) = f(x), xeK.

(b) If
F(x) c¥(x, F(ai(x)), ..., Flag(x))), x ek,
then F is a single-valued function and

Y(x, F(ai(x)),..., Flar(x)) = F(x), x eK.
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From this theorem we can easily deduce similar results for the following two
gamma-type inclusions in single variable

¢(x)F(a(x)) C F(x), x ek,
and
F(x) C ¢(x)F(a(x)), xek,

where F : K — n(Y),a : K — K, ¢ : K — R (for some recent stability results
connected with those inclusions see [12]); or for the subsequent two inclusions

AMF(ap(x)) + -+ A Far(x)) C F(x), x €K,
and
F(x) CMF(ai(x))+ - - 4+ A Fag(x)), x €K,

where W : K xY* > Y, aq,...,ax : K = K, Ay,... , At € R, (nonegative reals),
and A +---+ A, € (0,1).

A different generalization of Theorem 6 have been suggested in [25], with the
right side of inclusions as a sum of two set-valued functions. But in this situation we
do not obtain existence of the selection but of a suitable single valued function close
to F. Namely, we have the following two theorems.

Theorem 8 Assume thatY is complete, F,G : K — n(Y),0 € G(x) forallx € K,
v:Y—>Y a:K— K, Ae(0,1),

dW(x),¥(y)) = Ad(x,y), x,y€l,

M = sup 6(F(x)+ G(x)) < o0
xek

and
Y(F(a(x)) C F(x)+ G(x), x e K. (11)
Then there exists a unique function f : K — Y such that
Vofoa=f
and

1
sup d(f(x),y) < ——M, xeKk.
yeF(x) 1—A

Theorem 9 Assume that Y is complete, F,G : K — n(Y),0 € G(x)forallx € K,
keNU: KxY > Y a,...,00: K— K, A,..., 0 : K — [0,00),

k
dWx,wi,... , W), ¥(x,21,...,2%) < Z)»i(x)d(wi,Zi)

i=1

forx e K, wi,... ,Wg,21,...,2% €7,
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k(x) := 8(F(x) + G(x))
k

ook k
FY Y M) Y iy 0 i )(x) ... Y (ki oty 0. 0 a;)(X)

=1 i1=1 ir=1 i=1

X 8(F((aj; 0...00;)(x)) + G((aj; 0...005)(x))) < 00
forx € K and
VU(x, F(ai1(x)),..., F(ax(x)) C F(x)+ G(x), xeK.
Then there exists a unique function f : K — Y such that

Y(x, flar(x), ..., flax) = f(x), xeK,

and

sup d(f(x),y) <k(x), xeKk.
yeF(x)

A special case of inclusion (11), without the assumption 0 € G(x), has been
investigated in [4]. In what follows X is a Banach space over a field K € {R,C},
a:K—>Kb:K —[0,00),¢:K — K,y : K— X are given functions and
B € n(X) is a fixed balanced and convex set with §(B) < co. Moreover, we write

a0 =1, @) :=[]a@ ),
Jj=0
cn(x) := b(@" (x))an-1(x),
and

s(x) =0, s,(x) ==Y a1 ()P (@)

k=0
foreveryn € No, x € K.

Theorem 10 Assume that F : K — n(X) is a set-valued map and the following
three conditions hold:

a(x)F(¢(x)) C F(x) +¢¥(x) +b(x)B, x €K,
lim inf S(F(@" (ODlan(x) =0,  x €K,

o) =) le(x) <00, xeK. (12)
n=0
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Let
@ur=d6mﬂmﬂwu»+w4m+<§]mw03)
k=n

for x € K, n € Ny. Then, for each x € K, the sequence (®,(x)),en, is decreasing
(i.e., @,41(x) C D,(x)), the set

D(x) =[] Pulx)
n=0

has exactly one point and the function f : K — X given by f(x) € Q/D\(x) is the
unique solution of the equation

ax)f(@(x) = f(xX)+¢¥(x), xek, (13)
with

f(x) € Do(x) = cl(F(x) + w(x)B), x € K.

4 Applications

In this section we present a few applications of the results, presented in the previous
sections, to the stability of some functional equations.

Let V be nonempty, compact, and convex subset of a real Banach space Y,0 € V,
anda,b, p,q € R.

Corollary 4 Let K be a convex cone in a real vector space and ¢ € K. Suppose
thata+b # 1, p+q > 1,and f : K — Y satisfies

flax +by+c)—pf(x)—qf(y) eV, x,yeKk.
Then there exists a unique function h : K — Y such that

h(ax + by +¢) = ph(x) + qh(y), x,y €K,

and
h(x) — f(x) € ! 14 €K
x)— f(x —V, X .
ptqg-—1
Proof Let
Fx):=fx)+ —V, xeKk.
@)= f@)+
Then
1

Flax+by+c)= flax+by+c)+ ———V
pt+qg—1
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Cpfx)+aqf(y)+ _ptd
ptqg-—1

1 1
=P<f(x)+—p+q_1v>+5]<f()’)+mv>
=pF(x)+qF(y), x,yeK.

By Theorem 2 there exists a unique function 4 : K — Y with

1
h(x) € f(x) + ——V, xek,
p+qg-—1

and such that

h(ax + by + ¢) = ph(x) + qh(y), x,y € K.

Corollary 5 Let (K, +) be a commutative group and f : K — Y satisfies

fCx+ )+ fRx—y)+6f(y)—4fx+y)—4fx—y)—24f(x) eV

for every x,y € K. Then there exists a unique function h : K — Y such that

hQ2x+y) + h(2x—y) + 6h(y) = 4h(x + y) + 4h(x — y) + 24h(x), x,y € K,
h(x) — 1V K
x)—fx) e 22" x € K.

Proof Let F(x) := f(x)+ iV for x € K. Then
F2x+y)+ FQ2x —y)+6F(y)

8
=f(2x+y)+f(2)C—y)+6f(y)+ﬁV

C4f(x+y)+4f(x—y)+24f(x)+%V—i—V

1 1 1
=4<f(x+y)+ﬂV>+4(f(x—y)+ﬁv)+24<f(x)+ﬂv>
=4F(x +y) +4F(x —y)+24F(x),  x,y€K.

Now, according to Corollary 3 there exists a unique function 4 : K — X such
that h(2x + y) + h(2x — y) + 6h(y) = 4h(x + y) +4h(x — y) +24h(x) forx,y € K
and

1
h(x)ef(x)+ﬁV, x e K.



98 J. Brzdek and M. Piszczek

In similar way we can obtain the stability results for some other equations. In
particular, from Theorem 7 with

Fx) = fx)+

v, x ek,
= Gat -t

and A; + --- 4+ A € (0,1), we can derive analogous as in Corollary 5 results for
functions f satisfying the condition

Mflai(x) + -+ A fla@x) - fx) eV,  xek.
The following corollary follows from Theorem 10 (see [4]).
Corollary 6 Let (12) be valid and g : K — X satisfy

a(x)g(p(x)) — g(x) — ¥(x) € b(x)B,  x € K.

Then there exists a unique solution f : K — X of Eq. (13) with
f(x) — gx) € w(x)clB, x € K.
Moreover, for each x € K,
) = lim [a,-1(x)g(@" (x)) + $,-1(x)]-

Finally, let us recall the result in [2].

Theorem 11 Let (S,+) be a left amenable semigroup and let X be a Hausdorff
locally convex linear space. Let F : S — n(X) be set-valued function such that F (s)
is convex and weakly compact for all s € S. Then F admits an additive selection
a: S — X ifand only if there exists f : S — X such that

fls+1)— f(1) e F(s), s,1€S.
As a consequence of it we obtain the following corollaries.

Corollary 7 Let(S,+)be aleft amenable semigroup and let X be a reflexive Banach
space. In addition, let p : S — [0,00) and g : S — X be arbitrary functions. Then
there exists an additive function a : S — X such that

la(s) — gl < p(s),  s€S,
if and only if there exists a function f : S — X such that
If(s+0)— f()—g@Il = p@s), s,2€S8.
Corollary 8 Let (S,+) be a left amenable semigroup, X be a reflexive Banach

space, and let p : § — [0,00) be an arbitrary function. Assume that a function
f S — X satisfies

If(s+0) = f(O) = fOl =pls), s.teS.

Then there exists an additive function a : S — X such that

la(s) = fOI < pls),  s.r€S.
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