
Springer Optimization and Its Applications 96

Themistocles M. Rassias   Editor

Handbook of 
Functional 
Equations
Stability Theory



Springer Optimization and Its Applications

Volume 96

Managing Editor
Panos M. Pardalos (University of Florida)

Editor–Combinatorial Optimization
Ding-Zhu Du (University of Texas at Dallas)

Advisory Board
J. Birge (University of Chicago)
C.A. Floudas (Princeton University)
F. Giannessi (University of Pisa)
H.D. Sherali (Virginia Polytechnic and State University)
T. Terlaky (McMaster University)
Y. Ye (Stanford University)

Aims and Scope
Optimization has been expanding in all directions at an astonishing rate during the
last few decades. New algorithmic and theoretical techniques have been developed,
the diffusion into other disciplines has proceeded at a rapid pace, and our knowledge
of all aspects of the field has grown even more profound. At the same time, one of
the most striking trends in optimization is the constantly increasing emphasis on the
interdisciplinary nature of the field. Optimization has been a basic tool in all areas
of applied mathematics, engineering, medicine, economics, and other sciences.

The series Springer Optimization and Its Applications publishes undergraduate
and graduate textbooks, monographs and state-of-the-art expository work that fo-
cus on algorithms for solving optimization problems and also study applications
involving such problems. Some of the topics covered include nonlinear optimization
(convex and nonconvex), network flow problems, stochastic optimization, optimal
control, discrete optimization, multi-objective programming, description of software
packages, approximation techniques and heuristic approaches.

More information about this series at http://www.springer.com/series/7393



Themistocles M. Rassias
Editor

Handbook of Functional
Equations

Stability Theory

2123



Editor
Themistocles M. Rassias
Department of Mathematics
National Technical University of Athens
Athens, Greece

ISSN 1931-6828 ISSN 1931-6836 (electronic)
ISBN 978-1-4939-1285-8 ISBN 978-1-4939-1286-5 (eBook)
DOI 10.1007/978-1-4939-1286-5
Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2014952594

Mathematics Subject Classification (2010): 39B05, 39B22, 39B52, 39B62, 39B82, 40A05, 41A30,
54C60, 54C65.

© Springer Science+Business Media, LLC 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this
publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s
location, in its current version, and permission for use must always be obtained from Springer. Permissions
for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to
prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Printed on acid-free paper

Springer is part of Springer Science + Business Media (www.springer.com)



Preface

Handbook of Functional Equations: Stability Theory consists of 17 chapters written
by eminent scientists from the international mathematical community, who present
important research works in the field of mathematical analysis and related subjects,
particularly in the Ulam stability theory of functional equations. These works pro-
vide an insight in a large domain of research with emphasis to the discussion of
several theories, methods and problems in approximation theory, influenced by the
seminal work of the well-known mathematician and physicist Stanislaw Ulam (1909–
1984). Emphasis is given to one of his fundamental problems concerning approximate
homomorphisms.

The chapters of this book focus mainly on both old and recent developments
on the equation of homomorphism for square symmetric groupoids, the linear and
polynomial functional equations in a single variable, the Drygas functional equation
on amenable semigroups, monomial functional equation, the Cauchy–Jensen type
mappings, differential equations and differential operators, operational equations
and inclusions, generalized module left higher derivations, selections of set-valued
mappings, D’Alembert’s functional equation, characterizations of information mea-
sures, functional equations in restricted domains, as well as generalized functional
stability and fixed point theory. It is a pleasure to express our deepest thanks to all the
mathematicians who, through their works, participated in this publication. I would
like to thank Dr. Michael Batsyn for his invaluable help during the preparation of
this book. I would also wish to acknowledge the superb assistance that the staff of
Springer has provided for the publication of this work.

Athens, Greece Themistocles M. Rassias
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On Some Functional Equations

Marcin Adam, Stefan Czerwik and Krzysztof Król

Subject Classifications: 39B22, 39B52, 39B82, 40A05, 41A30.

Abstract This chapter consists of three parts. In the first part we consider so-called
Adomian’s polynomials and present the proof of the convergence of the sequence of
such polynomials to the solution of the equation. The second part is devoted to present
several approximation methods for finding solutions of so-called Kordylewski–
Kuczma functional equation. Finally, in the last one we present a stability result
in the sense of Ulam–Hyers–Rassias for generalized quadratic functional equation
on topological spaces.

Keywords Adomian’s polynomials · Decomposition method · Convergence of Ado-
mian’s iterations · Approximate solutions of functional equations · Generalized
quadratic functional equation · Stability

1 On the Convergence of Adomian’s Method

1.1 Introduction

G. Adomian in several papers (see e.g. [6–9]) developed a numerical technique using
special kinds of polynomials (called Adomian polynomials) for solving non-linear
functional equations. In this method the solution is given by a series having terms
which are Adomian’s polynomials. Unfortunately, the problems of convergence are
not satisfactorily solved.
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Yves Cherruault [10] presents some results on convergence ofAdomian’s method.
But the result (and the proof) presented in this paper contains some incorrectness. In
this chapter we present a similar result and the complete proof.

Throughout this chapter we denote the sets of nonnegative integers, positive
integers, and real numbers by N0, N, and R respectively.

1.2 The Decomposition Method

Let us consider the following functional equation:

y − N (y) = f , (1)

where N : X → X is a given function on a Banach space X and f ∈ X. Assume
that (1) has exactly one solution y ∈ X for every f ∈ X.

The Adomian method is the following one. Let

y =
∞∑

n=0

yn, (2)

and assume that

N (y) =
∞∑

n=0

An, (3)

where An are so-called Adomian’s polynomials obtained from the relation:

for z =
∞∑

n=0

λnyn, N

( ∞∑

n=0

λnyn

)
=

∞∑

n=0

λnAn,

where λ is a parameter. Then we have (under suitable assumptions on N )

n!An = dn

dλn

[
N

( ∞∑

n=0

λnyn

)]

λ=0

, n ∈ N0. (4)

In general, one can verify that An depends only on y0, . . . , yn.
First, we neglect the problem of convergence of the series involved into the

method. Then from (1), (2), and (3) we get

∞∑

n=0

yn −
∞∑

n=0

An = f ,

and therefore

y0 = f ,
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y1 = A0,

...

yn = An−1, n ∈ N.

Consequently, we can determine all term of the series (2).
In [10] the following modification is presented. For a convergent series

y =
∞∑

n=0

yn,

we define

N (y) =
∞∑

n=0

An(y0, . . . , yn),

where An’s are given by (4). Let

Un =
n∑

i=0

yi ,

then

Nn(Un) =
n∑

i=0

Ai(y0, . . . , yi).

Therefore the Adomian method is equivalent to finding the sequence

Sn = y1 + . . . + yn

given by the formula

Sn+1 = Nn(y0 + Sn), S0 = 0, n ∈ N0 (5)

(for more details, see [10]).
The sequence defined by

Sn+1 = N (y0 + Sn), S0 = 0, n ∈ N0,

one can associate with the following equation:

N (y0 + S) = S. (6)

Under suitable assumptions we shall prove in the next part of the chapter that the
sequence given by (5) will converge to S, the solution of (6) (the proof presented in
[10] contains some incorrectness).
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1.3 Convergence Result

We shall prove the following result concerning the convergence of the approximations
to the solution of the equation.

Theorem 1 LetX be a Banach space and letN ,Nn : X → X, n ∈ N0, be functions
such that

‖N (x) − N (y)‖ ≤ δ‖x − y‖, x, y ∈ X, (7)

where

0 ≤ δ < 1, (8)

and there exist constants Ln ≥ 0, n ∈ N0, such that

‖(Nn − N )(x)‖ ≤ Ln‖x‖, x ∈ X, n ∈ N0, (9)

where

Ln → 0 as n → ∞. (10)

Then the sequence {Sn} given by

Sn+1 = Nn(y0 + Sn), S0 = 0, n ∈ N0, (11)

where y0 ∈ X is arbitrarily fixed, converges to S, the unique solution of the equation

N (y0 + S) = S. (12)

Proof Let us note that, in view of (7) and (8), from the well-known Banach fixed
point theorem for the strict contraction in complete metric space the Eq. (12) has
exactly one solution S ∈ X.

Take ε > 0 such that ε + δ < 1. Then from (10) it follows that there exists
a number n0 ∈ N such that Ln < ε

4 for n ≥ n0. Assume that M0 is the number
satisfying the conditions

‖Sn0‖ ≤ M0

4
, ‖S‖ ≤ M0

4
, ‖y0‖ ≤ M0. (13)

Now we shall prove the inequality

‖Sn − S‖ ≤ M0

2
, n ≥ n0. (14)

For n = n0 we have

‖Sn0 − S‖ ≤ ‖Sn0‖ + ‖S‖ ≤ M0

4
+ M0

4
= M0

2
.

Let us assume that for n = m ≥ n0 we have

‖Sm − S‖ ≤ M0

2
. (15)
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From (7), (9), and (11) we get

‖Sn+1 − S‖ = ‖Nn(y0 + Sn) − N (y0 + S)‖
= ‖Nn(y0 + Sn) − N (y0 + Sn) + N (y0 + Sn) − N (y0 + S)‖
≤ ‖(Nn − N )(y0 + Sn)‖ + δ‖Sn − S‖
≤ Ln‖y0 + Sn‖ + δ‖Sn − S‖
≤ Ln(‖y0‖ + ‖Sn‖) + δ‖Sn − S‖.

Therefore

‖Sn+1 − S‖ ≤ Ln(‖y0‖ + ‖Sn‖) + δ‖Sn − S‖ (16)

for all n ∈ N. From (15) one obtains

‖Sm‖ ≤ ‖Sm − S‖ + ‖S‖ ≤ M0

2
+ M0

4
≤ M0

and consequently, by (16) for n = m we get

‖Sm+1 − S‖ ≤ Lm(M0 + M0) + δ
M0

2
≤ (ε + δ)

M0

2
≤ M0

2
,

i.e.,

‖Sm+1 − S‖ ≤ M0

2
,

which shows by the induction principle that (14) holds true. Consequently, from (14)
there exists

0 ≤ lim sup
n→∞

‖Sn − S‖ = q < ∞.

To prove our theorem it is enough to verify that q = 0. In fact, (14) implies

‖Sn‖ ≤ M0, n ≥ n0,

and consequently by (16) we obtain for n ≥ n0

‖Sn+1 − S‖ ≤ 2LnM0 + δ‖Sn − S‖.
Hence, on account of (10), we get

q = lim sup
n→∞

‖Sn+1 − S‖

≤ lim sup
n→∞

(2LnM0) + lim sup
n→∞

(δ‖Sn − S‖)

≤ δ lim sup
n→∞

‖Sn − S‖

≤ δq,



6 M. Adam et al.

i.e.,
q ≤ δq,

which implies by (8) the equality q = 0. This means that there exists the limit

0 ≤ lim
n→∞ ‖Sn − S‖ ≤ lim sup

n→∞
‖Sn − S‖ = 0

and the proof is completed. �

2 Approximation Methods for Solving Functional Equations

2.1 The Collocation Method

In the first and in the second part of this section we contemplate two boundary
element methods. The first will be the collocation method. We can read about this
method in [29]. Furthermore, we can read about the linear functional equation and
the nonlinear functional equation in [27].

We consider the linear functional equation

y[f (x)] = g(x)y(x) + F (x), (17)

where functions f , g,F are given and y is unknown function.
In this section we consider continuous solutions of the Eq. 17 in the interval [a, b]

and taking values in R.
The class of functions defined in an interval I and taking values in R will be

denoted by Y[I]. Let R0
ξ [I] be the class of continuous and strictly increasing functions

in I fulfilling the conditions for ξ ∈ I :

1. (f (x) − x)(ξ − x) > 0, x ∈ I , x �= ξ ,
2. (f (x) − ξ )(ξ − x) < 0, x ∈ I , x �= ξ .

Theorem 2 [27] Assume that f ∈ R0
ξ [I], where ξ ∈ I . Let functions g,F ∈ Y[I] be

continuous in I and g(x) �= 0 for x ∈ I , x �= ξ . Further, let condition |g(ξ )| > 1 be
fulfilled. Then Eq. (17) has a unique continuous solution y ∈ Y[I] in I . This solution
is given by the formula

y[x] = −
∞∑

n=0

F [f n(x)]

Gn+1(x)
, x ∈ I , (18)

where

Gn(x) =
n−1∏

i=0

g[f i(x)], x ∈ I , n ∈ N.

In the sequel we present the following result.
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Theorem 3 Let functions g,F : [a, b] → R, f : [a, b] → [a, b] fulfill the
assumptions of Theorem 2 for P = [a, b], where a < b, a, b ∈ R. Let

S := {xi : xi ∈ [a, b], xi �= xj for i �= j , i, j = 1, . . . , n}.
Assume that Φj : [a, b] → R, j = 1, . . . , n, are given and linearly independent
functions on the interval [a, b]. Then the solution of the Eq. (17) on the interval [a, b]
is approximated by the function

yn(x) =
n∑

j=1

pjΦj (x), x ∈ [a, b], (19)

where coefficients pj , j = 1, . . . , n, are solutions of the equations

n∑

j=1

pjΨj (xi) = F (xi), i = 1, . . . , n, (20)

where Ψj (xi) := Φj [f (xi)] − g(xi)Φj (xi) and xi ∈ S, i, j = 1, . . . , n.

Proof Define the following error function

R[y(x)] := y[f (x)] − g(x)y(x) − F (x).

We calculate value R[yn(xi)] for xi ∈ S:

R[yn(xi)] = yn[f (xi)] − g(xi)yn(xi) − F (xi)

=
n∑

j=1

pjΦj [f (xi)] − g(xi)
n∑

j=1

pjΦj (xi) − F (xi)

=
n∑

j=1

pj

[
Φj [f (xi)] − g(xi)Φj (xi)

]
− F (xi).

In the collocation method we calculate unknown parameters pi by finding place,
where error function R[y(x)] takes value equal to 0 on the set S, that is

R[yn(xi)] = 0, i = 1, . . . , n.

From the above conditions we get the system of Eq. (20). This completes the
proof. �

In this section we use the same examples to show solution accuracy.

Example 1 Find approximate solution of the equation

y
(1

2
x
)

= (2x + 4)y(x) − 4x2 − 7x, x ∈ [−1, 1], (21)

using the collocation method.
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Solution 1 In this case we take the following knots: x1 = −1, x2 = 0, x3 = 1
from the interval [−1, 1]. From the Eq. (21) we get f (x) = 1

2x, g(x) = 2x + 4,
F (x) = −4x2 − 7x. These functions fulfill the assumptions of Theorem 2. We take
the following linearly independent functions:

Φ1(x) = 1, Φ2(x) = x, Φ3(x) = x2.

We calculate the functions Ψj (x) for j = 1, 2, 3:

Ψ1(x) = Φ1[f (x)] − g(x)Φ1(x) = −2x − 3,

Ψ2(x) = Φ2[f (x)] − g(x)Φ2(x) = −2x2 − 7

2
x,

Ψ3(x) = Φ3[f (x)] − g(x)Φ3(x) = −2x3 − 15

4
x2.

By putting the knots to above functions and from (20) we get the following system
of equations

⎧
⎪⎪⎨

⎪⎪⎩

−p1 + 3
2p2 − 7

4p3 = 3,

−3p1 + 0p2 + 0p3 = 0,

−5p1 − 11
2 p2 − 23

4 p3 = −11,

to which the only solution is
⎧
⎪⎪⎨

⎪⎪⎩

p1 = 0,

p2 = 2,

p3 = 0.

Hence we get approximate solution of the Eq. (21) in the form

y3(x) = p1Φ1(x) + p2Φ2(x) + p3Φ3(x) = 2x.

This is the accurate solution of the Eq. (21).
Next we apply this method to nonlinear functional equation. We consider the

nonlinear functional equation

y[f (x)] = g(x, y(x)), (22)

where functions f , g are given and y is unknown function.
Let Ω be a region (an open, simply connected set) on the real plane and let I be

a real interval. We introduce the sets (see [27])

Ωx = {y : (x, y) ∈ Ω}.
Let g be a function defined in Ω . We denote by Γx the set of values of g(x, y) for

y ∈ Ω .
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We assume the following hypotheses (see [27]).

Conjecture 1 For every x ∈ I the set Ωx is an open interval (possibly infinite).

Conjecture 2 For every x ∈ I we have Γx = Ωf (x).

Conjecture 3 The function g(x, y) is defined and continuous in the strip

{(x, y) : x ∈ I , y ∈ Ωx}.

Conjecture 4 For every fixed x ∈ I the function gx(y)
df= g(x, y) is invertible in

Ωx .

Theorem 4 [27] Let f ∈ R0
ξ [I], where ξ is an endpoint of I , ξ /∈ I , and let

conjectures 1, 2, 3, and 4be fulfilled. Then Eq. (22) has in I a continuous solution y
depending on an arbitrary function, given in the interval [x0, f (x0)].

Now we consider the following example.

Example 2 Find the approximate solution of the equation

y
(1

2
x
)

= y3(x) − 8x3 + x, x ∈ [−1, 1], (23)

using the collocation method.

Solution 2 From the Eq. (23) we get f (x) = 1
2x, and g(x, y) = −8x3 + x + y3.

These functions fulfill the assumptions of Theorem 4 for Ω = (−1, 1) × R and
Ωx = Ωf (x) = Γx = R. In this case we take the following knots: x1 = −1, x2 = 0,
x3 = 1 from the interval [−1, 1]. We take the following linear independent functions:

Φ1(x) = 1, Φ2(x) = x, Φ3(x) = x2.

We calculate the error function

R[y(x)] = y
(1

2
x
)

− y3(x) + 8x3 − x.

Hence for

y3(xi) =
3∑

j=1

pjΦj (xi), i = 1, 2, 3,

we get

R[y3(xi)] =
3∑

j=1

pjΦj

(1

2
xi

)
−
⎡

⎣
3∑

j=1

pjΦj (xi)

⎤

⎦
3

+ 8x3
i − xi i = 1, 2, 3. (24)

In the collocation method R[y3(xi)] = 0 for i = 1, 2, 3. From (24) we get for
i = 1, 2, 3

p1 − p3
1 +

(p2

2
− 3p2

1p2

)
xi +

(p3

4
− 3p1p

2
2 − 3p2

1p3

)
x2
i + (−p3

2 − 6p1p2p3
)
x3
i
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+ (−3p2
2p3 − 3p1p

2
3

)
x4
i + (−3p2p

2
3

)
x5
i − p3

3x
6
i = −8x3

i + xi.

By putting the knots to above equations we get the following nonlinear system of
equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 − p3
1 − p2

2 + 3p2
1p2 + p3

4 − 3p1p
2
2 − 3p2

1p3 + p3
2 + 6p1p2p3 − 3p2

2p3

−3p1p
2
3 + 3p2p

2
3 − p3

3 = 7,

p1 − p3
1 = 0,

p1 − p3
1 + p2

2 − 3p2
1p2 + p3

4 − 3p1p
2
2 − 3p2

1p3 − p3
2 − 6p1p2p3 − 3p2

2p3

−3p1p
2
3 − 3p2p

2
3 − p3

3 = −7,

to which the solution is
⎧
⎪⎪⎨

⎪⎪⎩

p1 = 0,

p2 = 2,

p3 = 0.

Hence we get approximate solution of the Eq. (23) in the form

y3(x) = p1Φ1(x) + p2Φ2(x) + p3Φ3(x) = 2x.

This is the solution of the Eq. (23).

2.2 The Method of Moments

One can read about this method one can read in [29].

Theorem 5 Let functions g,F : [a, b] → R, f : [a, b] → [a, b] fulfill the as-
sumptions of Theorem 2 for P = [a, b], where a < b, a, b ∈ R. Assume that
Φj : [a, b] → R, j = 1, . . . , n, are given and linearly independent functions on the
interval [a, b]. Then the solution of the Eq. (17) on the interval [a, b] is approximated
by the function

yn(x) = F (x) +
n∑

j=1

pjΦj (x), x ∈ [a, b], (25)

where coefficients pj , j = 1, . . . , n, are solutions of the equations

n∑

j=1

pj

[∫ b

a

Ψj (x)Φi(x) dx

]
=
∫ b

a

(
(1 + g(x))F (x) − F [f (x)]

)
Φi(x) dx (26)

for i = 1, . . . , n and Ψj (x) := Φj [f (x)] − g(x)Φj (x), x ∈ [a, b].
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Proof Define the following error function

R[y(x)] := y[f (x)] − g(x)y(x) − F (x), x ∈ [a, b].

We calculate the value R[yn(x)] for x ∈ [a, b]:

R[yn(x)] = yn[f (x)] − g(x)yn(x) − F (x)

= F [f (x)] +
n∑

j=1

pjΦj [f (x)] − g(x)

⎡

⎣F (x) +
n∑

j=1

pjΦj (x)

⎤

⎦− F (x)

=
n∑

j=1

pj

[
Φj [f (x)] − g(x)Φj (x)

]
+ F [f (x)] − (1 + g(x))F (x)

=
n∑

j=1

pjΨj (x) + F [f (x)] − (1 + g(x))F (x). (27)

In the method of moments we require the error function to be orthogonal to
functions Φi(x), i = 1, . . . , n. It means that it must be satisfied by the following
conditions

∫ b

a

R[yn(x)]Φi(x) dx = 0, i = 1, . . . , n. (28)

From (27) and (28) we get the system of equations
∫ b

a

n∑

j=1

pjΨj (x)Φi(x)dx−
∫ b

a

(1+g(x))F (x)Φi(x)dx+
∫ b

a

F [f (x)]Φi(x)dx = 0.

After transformations we get the system of Eq. (26). This completes the proof. �

The system of Eq. (26) takes the following matrix form

C · p = F, (29)

where

C = {Cij }i,j=1,... ,n, Cij =
∫ b

a

Ψj (x)Φi(x) dx,

p = [p1, . . . ,pn]T ,

F = [F1, . . . ,Fn]T , Fi =
∫ b

a

[(1 + g(x))F (x) − F [f (x)]]Φi(x) dx.

Remark 1 It would be interesting to find conditions when the system of Eq. (29)
has a solution.

Example 3 Find the approximate solution of the equation

y
(1

2
x
)

= (2x + 4)y(x) − 4x2 − 7x, x ∈ [−1, 1], (30)

using the method of moments.



12 M. Adam et al.

Solution 3 From the Eq. (30) we getf (x) = 1
2x, g(x) = 2x+4,F (x) = −4x2−7x.

These functions fulfill the assumptions of Theorem 2. We take the following linearly
independent functions:

Φ1(x) = 1, Φ2(x) = x, Φ3(x) = x2.

We calculate the functions Ψj (x) for j = 1, 2, 3:

Ψ1(x) = Φ1[f (x)] − g(x)Φ1(x) = −2x − 3,

Ψ2(x) = Φ2[f (x)] − g(x)Φ2(x) = −2x2 − 7

2
x,

Ψ3(x) = Φ3[f (x)] − g(x)Φ3(x) = −2x3 − 15

4
x2.

Furthermore, we get the following elements of matrix C:

C11 =
∫ 1

−1
Ψ1(x)Φ1(x) dx =

∫ 1

−1
(−2x − 3) dx = −6,

C12 =
∫ 1

−1
Ψ2(x)Φ1(x) dx =

∫ 1

−1
(−2x2 − 7

2
x) dx = −4

3
,

C13 =
∫ 1

−1
Ψ3(x)Φ1(x) dx =

∫ 1

−1
(−2x3 − 15

4
x2) dx = −5

2
,

C21 =
∫ 1

−1
Ψ1(x)Φ2(x) dx =

∫ 1

−1
(−2x − 3)x dx = −4

3
,

C22 =
∫ 1

−1
Ψ2(x)Φ2(x) dx =

∫ 1

−1
(−2x2 − 7

2
x)x dx = −7

3
,

C23 =
∫ 1

−1
Ψ3(x)Φ2(x) dx =

∫ 1

−1
(−2x3 − 15

4
x2)x dx = −4

5
,

C31 =
∫ 1

−1
Ψ1(x)Φ3(x) dx =

∫ 1

−1
(−2x − 3)x2 dx = −2,

C32 =
∫ 1

−1
Ψ2(x)Φ3(x) dx =

∫ 1

−1
(−2x2 − 7

2
x)x2 dx = −4

5
,

C33 =
∫ 1

−1
Ψ3(x)Φ3(x) dx =

∫ 1

−1
(−2x3 − 15

4
x2)x2 dx = −3

2

and elements of the column F:

F1 =
∫ 1

−1
[(2x + 5)(−4x2 − 7x) + 4

(
1

2
x

)2

+ 7

(
1

2
x

)
] dx = −22,

F2 =
∫ 1

−1
[(2x + 5)(−4x2 − 7x) + 4

(
1

2
x

)2

+ 7

(
1

2
x

)
]x dx = −121

5
,
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F3 =
∫ 1

−1
[(2x + 5)(−4x2 − 7x) + 4

(
1

2
x

)2

+ 7

(
1

2
x

)
]x2 dx = −66

5
.

Finally, we get the following system of equations
⎧
⎪⎪⎨

⎪⎪⎩

−6p1 − 4
3p2 − 5

2p3 = −22,

− 4
3p1 − 7

3p2 − 4
5p3 = − 121

5 ,

−2p1 − 4
5p2 − 3

2p3 = − 66
5 ,

to which the only solution is
⎧
⎪⎪⎨

⎪⎪⎩

p1 = 0,

p2 = 9,

p3 = 4.

Hence we get the approximate solution of the Eq. (30) in the form

y3(x) = p1Φ1(x) + p2Φ2(x) + p3Φ3(x) + F (x) = 9x + 4x2 − 4x2 − 7x = 2x.

Moreover, this is the solution of the Eq. (30).
Next we apply this method to nonlinear functional equation.

Example 4 Find the approximate solution of the equation

y
(1

2
x
)

= y3(x) − 8x3 + x, x ∈ [−1, 1], (31)

using the method of moments.

Solution 4 From the Eq. (31) we get f (x) = 1
2x and g(x, y) = −8x3 + x + y3.

This functions fulfill the assumptions of Theorem 4 for Ω = (−1, 1) × R and
Ωx = Ωf (x) = Γx = R. From (31) we obtain F (x) = −8x3 + x. We take the
following linearly independent functions:

Φ1(x) = 1, Φ2(x) = x, Φ3(x) = x2, Φ4(x) = x3.

We calculate the error function

R[y(x)] = y
(1

2
x
)

− y3(x) + 8x3 − x.

Hence for

y4(x) = F (x) +
4∑

j=1

pjΦj (x), x ∈ [−1, 1],

we get

R[y4(x)] = F
(1

2
x
)

+
4∑

j=1

pjΦj

(1

2
x
)

−
⎡

⎣F (x) +
4∑

j=1

pjΦj (x)

⎤

⎦
3

+ 8x3 − x

(32)
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for x ∈ [−1, 1]. In the method of moments it must be satisfied by the conditions

∫ 1

−1
R[y4(x)]Φi(x) dx = 0, i = 1, 2, 3, 4. (33)

From (33) for Φ1(x) = 1 we get

∫ 1

−1
(512 − 192p4 + 24p2

4 − p3
4)x9 + ( − 192p3 + 48p3p4 − 3p3p

2
4)x8

+ (−192 − 192p2 + 24p2
3 + 48p4 + 48p2p4 − 3p2

3p4 − 3p2
4 − 3p2p

2
4)x7

+ (−192p1 + 48p3 + 48p2p3 − p3
3 + 48p1p3 − 6p3p4 − 6p2p3p4 − 3p1p

2
4)x6

+ (24 + 48p2 + 24p2
2 + 48p1p3 − 3p2

3 − 3p2p
2
3 − 3p3 − 6p2p4 − 3p2

2p4

− 6p1p3p4)x5

+ (48p1 + 48p1p2 − 3p3 − 6p2p3 − 3p2
2p3 − 3p1p

2
2 − 6p1p4 − 6p1p2p4)x4

+ (6 + 24p2
1 − 3p2 − 3p2

2 − p3
2 − 6p1p3 − 6p1p2p3 + p4

8
− 3p2

1p4)x3

+ (−3p1 − 6p1p2 − 3p1p
2
2 + p3

4
− 3p2

1p3)x2

+ (−1

2
− 3p2

1 + p2

2
− 3p2

1p2)x + (p1 − p3
1) dx = 0.

From (33) for Φ2(x) = x we obtain
∫ 1

−1
(512 − 192p4 + 24p2

4 − p3
4)x10 + (−192p3 + 48p3p4 − 3p3p

2
4)x9

+ (−192 − 192p2 + 24p2
3 + 48p4 + 48p2p4 − 3p2

3p4 − 3p2
4 − 3p2p

2
4)x8

+ (−192p1 + 48p3 + 48p2p3 − p3
3 + 48p1p3 − 6p3p4 − 6p2p3p4 − 3p1p

2
4)x7

+ (24 + 48p2 + 24p2
2 + 48p1p3 − 3p2

3 − 3p2p
2
3 − 3p3 − 6p2p4 − 3p2

2p4

− 6p1p3p4)x6

+ (48p1 + 48p1p2 − 3p3 − 6p2p3 − 3p2
2p3 − 3p1p

2
2 − 6p1p4 − 6p1p2p4)x5

+ (6 + 24p2
1 − 3p2 − 3p2

2 − p3
2 − 6p1p3 − 6p1p2p3 + p4

8
− 3p2

1p4)x4

+ (−3p1 − 6p1p2 − 3p1p
2
2 + p3

4
− 3p2

1p3)x3

+ (−1

2
− 3p2

1 + p2

2
− 3p2

1p2)x2 + (p1 − p3
1)x dx = 0.

From (33) for Φ3(x) = x2 we get

∫ 1

−1
(512 − 192p4 + 24p2

4 − p3
4)x11 + (−192p3 + 48p3p4 − 3p3p

2
4)x10
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+ (−192 − 192p2 + 24p2
3 + 48p4 + 48p2p4 − 3p2

3p4 − 3p2
4 − 3p2p

2
4)x9

+ (−192p1 + 48p3 + 48p2p3 − p3
3 + 48p1p3 − 6p3p4 − 6p2p3p4 − 3p1p

2
4)x8

+ (24 + 48p2 + 24p2
2 + 48p1p3 − 3p2

3 − 3p2p
2
3 − 3p3 − 6p2p4 − 3p2

2p4

− 6p1p3p4)x7

+ (48p1 + 48p1p2 − 3p3 − 6p2p3 − 3p2
2p3 − 3p1p

2
2 − 6p1p4 − 6p1p2p4)x6

+ (6 + 24p2
1 − 3p2 − 3p2

2 − p3
2 − 6p1p3 − 6p1p2p3 + p4

8
− 3p2

1p4)x5

+ (−3p1 − 6p1p2 − 3p1p
2
2 + p3

4
− 3p2

1p3)x4

+ (−1

2
− 3p2

1 + p2

2
− 3p2

1p2)x3 + (p1 − p3
1)x2 dx = 0.

From (33) for Φ4(x) = x3 we obtain

∫ 1

−1
(512 − 192p4 + 24p2

4 − p3
4)x12 + ( − 192p3 + 48p3p4 − 3p3p

2
4)x11

+ (−192 − 192p2 + 24p2
3 + 48p4 + 48p2p4 − 3p2

3p4 − 3p2
4 − 3p2p

2
4)x10

+ (−192p1 + 48p3 + 48p2p3 − p3
3 + 48p1p3 − 6p3p4 − 6p2p3p4 − 3p1p

2
4)x9

+ (24 + 48p2 + 24p2
2 + 48p1p3 − 3p2

3 − 3p2p
2
3 − 3p3 − 6p2p4 − 3p2

2p4

− 6p1p3p4)x8

+ (48p1 + 48p1p2 − 3p3 − 6p2p3 − 3p2
2p3 − 3p1p

2
2 − 6p1p4 − 6p1p2p4)x7

+ (6 + 24p2
1 − 3p2 − 3p2

2 − p3
2 − 6p1p3 − 6p1p2p3 + p4

8
− 3p2

1p4)x6

+ (−3p1 − 6p1p2 − 3p1p
2
2 + p3

4
− 3p2

1p3)x5

+ (−1

2
− 3p2

1 + p2

2
− 3p2

1p2)x4 + (p1 − p3
1)x3 dx = 0.
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Finally, we get the following nonlinear system of equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1248
35 p1 − 2p3

1 + 76
5 p1p2 − 2p1p

2
2 − 2099

70 p3 − 2p2
1p3 + 396

35 p2p3 − 6
5p

2
2p3

− 6
5p1p

2
3 − 2

7p
3
3 + 396

35 p1p4 − 12
5 p1p2p4 + 188

21 p3p4 − 12
7 p2p3p4 − 6

7p1p
2
4

− 2
3p3p

2
4 = 0,

38
5 p

2
1 − 3131

105 p2 − 2p2
1p2 + 198

35 p
2
2 − 2

5p
3
2 + 396

35 p1p3 − 12
5 p1p2p3 + 94

21p
2
3

− 6
7p2p

2
3 − 115729

4620 p4 − 6
5p

2
1p4 + 188

21 p2p4 − 6
7p

2
2p4 − 12

7 p1p3p4 − 2
3p

2
3p4

+ 122
33 p

2
4 − 2

3p2p
2
4 − 2

11p
3
4 = − 22849

385 ,

− 1032
35 p1 − 2

3p
3
1 + 396

35 p1p2 − 6
5p1p

2
2 − 57749

2310 p3 − 6
5p

2
1p3 + 188

21 p2p3 − 6
7p

2
2p3

− 6
7p1p

2
3 − 2

9p
3
3 + 188

21 p1p4 − 12
7 p1p2p4 + 244

33 p3p4 − 4
3p2p3p4 − 2

3p1p
2
4

− 6
11p3p

2
4 = 0,

198
35 p

2
1 − 28759

1155 p2 − 6
5p

2
1p2 + 94

21p
2
2 − 2

7p
3
2 + 188

21 p1p3 − 12
7 p1p2p3 + 122

33 p
2
3

− 2
3p2p

2
3 − 257563

12012 p4 − 6
7p

2
1p4 + 244

33 p2p4 − 2
3p

2
2p4 − 4

3p1p3p4 − 6
11p

2
3p4

+ 450
143p

2
4 − 6

11p2p
2
4 − 2

13p
3
4 = − 761377

15015 ,

to which the solution is
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p1 = 0,

p2 = 1,

p3 = 0,

p4 = 8.

Hence we get the approximate solution of the Eq. (31) in the form

y4(x) = p1Φ1(x) + p2Φ2(x) + p3Φ3(x) + p4Φ4(x) + F (x)

= 0 + 1x + 0x2 + 8x3 − 8x3 + x = 2x.

As we know this is the solution of the Eq. (31).

2.3 The Least Squares Method

In this section we apply the method presented in [25], to nonlinear functional
equation. We present this method on the following example.

Example 5 Find approximate solution of the equation

y
(1

2
x
)

= y3(x) − 8x3 + x, x ∈ [−1, 1], (34)

using the least squares method.
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Solution 5 From the Eq. (34) we get f (x) = 1
2x and g(x, y) = −8x3 + x + y3.

These functions fulfill the assumptions of Theorem 4 for Ω = (−1, 1) × R and
Ωx = Ωf (x) = Γx = R. We take the following linearly independent functions:

Φ1(x) = 1, Φ2(x) = x.

We calculate the error function

R[y(x)] = y
(1

2
x
)

− y3(x) + 8x3 − x.

In the least squares method we tend to minimize the following expression

I (p) = I (p1,p2) =
∫ 1

−1
(R[y2(x)])2 dx,

where y2(x) = p1Φ1(x) + p2Φ2(x). Hence we get

I (p) =
∫ 1

−1

⎛

⎝
2∑

j=1

pjΦj

(1

2
x
)

−
⎡

⎣
2∑

j=1

pjΦj (x)

⎤

⎦
3

+ 8x3 − x

⎞

⎠

2

dx.

Thus coefficients pi must satisfy the equations

∂I (p)

∂pi
= 0, i = 1, 2.

Therefore we get for i = 1, 2:

∫ 1

−1

⎛

⎝
2∑

j=1

pjΦj

(1

2
x
)

−
⎡

⎣
2∑

j=1

pjΦj (x)

⎤

⎦
3

+ 8x3 − x

⎞

⎠

·
⎛

⎝Φi

(1

2
x
)

− 3

⎡

⎣
2∑

j=1

pjΦj (x)

⎤

⎦
2

· Φi(x)

⎞

⎠ dx = 0. (35)

From (35) for i = 1 we have
∫ 1

−1

(
p1 + p2

(
1

2
x

)
− (p1 + p2x)

3 + 8x3 − x

)
· (1 − 3 (p1 + p2x)

2
)
dx = 0,

and for i = 2 one gets
∫ 1

−1

(
p1+p2

(
1

2
x

)
− (p1 + p2x)

3 + 8x3 − x

)
·
(

1

2
x−3 (p1 + p2x)

2 · x
)
dx = 0.

Finally, we obtain the following nonlinear system of equations
⎧
⎨

⎩
2p1 − 8p3

1 + 6p5
1 − 76

5 p1p2 − 6p1p
2
2 + 20p3

1p
2
2 + 6p1p

4
2 = 0,

− 38
5 p

2
1 + 1

6p2 − 6p2
1p2 + 10p4

1p2 − 198
35 p

2
2 − 4

5p
3
2 + 12p2

1p
3
2 + 6

7p
5
2 = − 19

15 ,
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to which the solution is
⎧
⎨

⎩
p1 = 0,

p2 = 2.

Hence we get the approximate solution of the Eq. (34) in the form

y2(x) = p1Φ1(x) + p2Φ2(x) = 2x.

Moreover, this is the solution of the Eq. (34).

2.4 The Adomian Decomposition Method

We can read about this method in [1, 2, 4, 5–9]. In this section we apply the de-
composition method, presented in [2, 26], to nonlinear functional equation. Let us
consider the following functional equation

y − N (y) = f , (36)

where N : X → X is a given function on a Banach space X and f ∈ X.

Theorem 6 [2] Let X be a Banach algebra and let N : X → X be the class of C∞.
Then

An =
∑

α1+...+αn=n

cα1,... ,αn (N (y0))n+1−α1 ◦ (N ′(y0))α1−α2

. . . (N (n−1)(y0))αn−1−αn ◦ (N (n)(y0))αn (37)

and A0 = N (y0), where y0 ∈ X and

cα1 , . . . ,αn

= n!
(α1 − α2)! . . . (αn−1 − αn)!αn!(1!)α1−α2 . . . (n − 1)!αn−1−αn (n!)αn (n + 1 − α1)!

(38)

for n ∈ N.

From (38) we get the table of coefficients cα1,... ,αn for n = 1, 2:

n cα1,... ,αn value

1 c1 1

2 c11
1
2

c20 1
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Theorem 7 [2] If N is C∞ and satisfies ‖N (n)(y0)‖ ≤ M < 1 for any n ∈ N, then
the decompositional series

∑∞
n=0 yn is absolutely convergent and we have

‖yn+1‖ = ‖An‖ ≤ Mn+1n
√
neπ

√
2
3 n. (39)

We present this method on the following example.

Example 6 Find the approximate solution of the equation

y
(1

2
x
)

= 1

12
y3(x) − 2

3
x3 + x, x ∈ [−1, 1], (40)

using the decomposition method.

Solution 6 From the Eq. (40) we get f (x) = 1
2x and g(x, y) = − 2

3x
3 + x + 1

12y
3.

These functions fulfill the assumptions of Theorem 4 for Ω = (−1, 1) × R and
Ωx = Ωf (x) = Γx = R.

In this example we consider a Banach algebra (X, ‖ · ‖), where X = C([−1, 1]),
‖x‖ = supt∈[−1,1] |x(t)| and N : C([−1, 1]) → C([−1, 1]), N ∈ C∞(X,Y ) for
Y = C([−1, 1]). From (40) we get N(y) = 1

12y
3 and f(x) = − 2

3x
3 + x. In this

method we have

y0

(
1

2
x

)
= f = −2

3
x3 + x,

y1

(
1

2
x

)
= A0,

...

yn

(
1

2
x

)
= An−1, n ∈ N.

By differentiating N (y) we get N ′(y) = 1
4y

2, N ′′(y) = 1
2y, N ′′′(y) = 1

2 and
N (4)(y) = 0. From (37) and applying the table of coefficients we have

y0(x) = 2x − 16

3
x3,

y1

(
1

2
x

)
= A0 = N (y0) = 1

12
y3

0 = 1

12

(
2x − 16

3
x3

)3

= 2

3
x3 − 16

3
x5 + 128

9
x7 − 1024

81
x9,

y1(x) = 16

3
x3 − 512

3
x5 + 16384

9
x7 − 524288

81
x9,

y2

(
1

2
x

)
= A1 = c1N (y0) · N ′(y0) = 1

4

(
2x − 16

3
x3

)2

·
(

16

3
x3 − 512

3
x5 + 16384

9
x7 − 524288

81
x9

)
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= 16

3
x5 − 1792

9
x7 + 74752

27
x9 − 1409024

81
x11

+ 11534336

243
x13 − 33554432

729
x15,

y2(x) = 512

3
x5 − 229376

9
x7 + 38273024

27
x9 − 2885681152

81
x11

+ 94489280512

243
x13 − 1099511627776

729
x15,

y3

(
1

2
x

)
= A2 = c11(N (y0))2 · N ′′(y0) + c20N (y0) · (N ′(y0))2

= 1

2

(
16

3
x3 − 512

3
x5 + 16384

9
x7 − 524288

81
x9

)2

· 1

2

(
2x − 16

3
x3

)

+ 1

(
16

3
x3 − 512

3
x5 + 16384

9
x7 − 524288

81
x9

)(
1

4

(
2x − 16

3
x3

)2
)2

= 176

9
x7 − 31744

27
x9 + 825344

27
x11 − 107773952

243
x13 + 2800943104

729
x15

− 14266925056

729
x17 + 347422588928

6561
x19 − 1105954078720

19683
x21,

y3(x) = 22528

9
x7 − 16252928

27
x9 + 1690304512

27
x11 − 882884214784

243
x13

+ 91781303631872

729
x15 − 1869994400940032

729
x17

+ 182149494303883264

6561
x19 − 2319353808095805440

19683
x21,

In the decomposition method we consider the solution having the series form

y =
∞∑

n=0

yn. (41)

In our case we get the following partial sum of series (41)

y3(x) := y0(x) + y1(x) + y2(x) + y3(x)

= 2x − 63488

3
x7 + 65536000

81
x9 + 2185232384

81
x11 − 262798311424

81
x13

+ 90681792004096

729
x15 − 1869994400940032

729
x17

+ 182149494303883264

6561
x19 − 2319353808095805440

19683
x21.
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Next we use Theorem 7 to prove the convergence of this series. First we verify
the assumption of this theorem. From above calculations we have

‖N (y0)‖ ≤
√

2

162
,

‖N ′(y0)‖ ≤ 1

18
,

‖N ′′(y0)‖ ≤
√

2

6
,

‖N ′′′(y0)‖ ≤ 1

2
,

‖N (n)(y0)‖ ≤ 0, n = 4, 5, . . .

Hence we get

‖N (n)(y0)‖ ≤ 1

2
< 1, n ∈ N0.

From Theorem 7 we guess that the series (41) is absolutely convergent to the
solution of (40).

If we look into the partial sums of the series we discover that most expressions
cancel out in this series. From (41) and Theorem 4 we get that the Eq. (40) has
continuous solution. One can check that y(x) = 2x is the solution of the Eq. (40).

3 Stability of the Generalized Quadratic Functional Equation
on Topological Spaces

3.1 Introduction

In the theory of functional equations the problem of the stability has its origin in the
following question, posed by S. Ulam [33] in 1940, concerning the stability of group
homomorphisms.

Let G1 be a group and let G2 be a metric group with a metric d(·, ·). Given ε > 0,
does there exist a δ > 0 such that if a function f : G1 → G2 satisfies the inequality

d[f (xy), f (x)f (y)] < δ for all x, y ∈ G1,

then there exists a homomorphism a : G1 → G2 with

d[f (x), a(x)] < ε for all x ∈ G1?

In the next year, D. H. Hyers [19] gave a partial affirmative answer to the question
of Ulam in the context of Banach spaces. That was the first significant breakthrough
and a step toward more solutions in this area. Since then, a large number of papers
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have been published in connection with various generalizations of Ulam’s problem
and Hyers’ theorem. For more information concerning the stability problems of
functional equations the reader is referred to the next monographs [13, 14, 21, 22]
and papers, e.g. [11, 12, 16, 20, 31].

Let (S, +) be a commutative semigroup and throughout this part of the chapter
let X be a sequentially complete locally convex linear topological Hausdorff space.
We recall a few results concerning the stability of the Cauchy and Pexider functional
equations on topological spaces.

In [32] L. Székelyhidi and in [17] Z. Gajda have proved that if f : S → X is a
function for which the Cauchy difference

Cf (x, y) := f (x + y) − f (x) − f (y), x, y ∈ S

is bounded on S, then there exists an additive function a : S → X such that f − a

is bounded on S. In such a case we say that the Cauchy functional equation

f (x + y) = f (x) + f (y), x, y ∈ S

is stable in the sense of Hyers and Ulam.
For an arbitrary set A ⊂ X, we denote by conv A the convex hull of A, by cl A

the closure ofA, and by seq cl A the sequential closure ofA. In [30] K. Nikodem has
proved, assuming additionally that S is a semigroup with zero, that if for arbitrary
functions f , g,h : S → X for which the Pexider difference P (f , g,h) satisfies the
condition

P (f , g,h)(x, y) := f (x + y) − g(x) − h(y) ∈ V , x, y ∈ S,

where V is a bounded, convex, and symmetric with respect to zero subset of X, then
there exist functions F ,G,H : S → X satisfying the Pexider functional equation

F (x + y) = G(x) + H (y), x, y ∈ S

such that f (x) − F (x) ∈ 3 seq cl V , g(x) − G(x) ∈ 4 seq cl V , h(x) − H (x) ∈
4 seq cl V for all x ∈ S.

Motivated by this result, E. Głowacki and Z. Kominek [18] have proved the
stability of the Pexider functional equation without the assumption that S contains
the zero element. Moreover, in [24] Z. Kominek generalized this result, and similarly
to the above Nikodem’s theorem, he gave the appropriate bounds of functions f −F ,
g − G, and h − H .

In [3] M. Adam and S. Czerwik have proved the stability of the generalized
quadratic functional equation. This result reads as follows.

Theorem 8 Let G be an Abelian 2-divisible group and let B ⊂ X be a nonempty
bounded set. If functions f , g : G → X satisfy

f (x + y) + f (x − y) − g(x) − g(y) ∈ B, x, y ∈ G,

then there exists exactly one quadratic function Q : G → X such that

Q(x) + f (0) − f (x) ∈ 2

3
seq cl conv (B − B), x ∈ G, (42)
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2Q(x) + g(0) − g(x) ∈ 2

3
seq cl conv (B − B), x ∈ G. (43)

Moreover, the function Q is given by the formulae

Q(x) = lim
n→∞

f (2nx)

22n
= 1

2
lim
n→∞

g(2nx)

22n
, x ∈ G (44)

and the convergence is uniform on G.
In the present part of the chapter we determine the general solution of the

functional equation

f (x + 3y) + g(x − y) = h(x − 3y) + k(x + y), x, y ∈ G, (45)

which is a generalized version of the functional equation

f (x + 3y) + 3 f (x − y) = f (x − 3y) + 3 f (x + y), x, y ∈ G. (46)

The general solution of the above equation is of the formf = Q+A+c, whereQ is
a quadratic mapping,A is an additive one and c is an arbitrary constant. It is also worth
noting that this equation is equivalent to the functional equation Δ3

2yf (x − 3y) = 0,
whereΔf is the difference operator defined byΔhf (x) = f (x+h)−f (x) andΔ3 f

denotes its third iteration. Therefore a solution of the above equation is a polynomial
of degree at most two (see, e.g., [28]). It is a classical result in the theory of functional
equations. Moreover, we will prove the Hyers–Ulam stability of the above functional
equation on topological spaces.

Now we give some auxiliary results. Given sets A,B ⊂ X and a number k ∈ R,
we define the well-known operations

A + B := {x ∈ X : x = a + b, a ∈ A, b ∈ B},

kA := {x ∈ X : x = ka, a ∈ A}.
One can prove (see, e.g., [15]) the following lemmas.

Lemma 1 If A,B ⊂ X and 0 ≤ α ≤ β, then

αA ⊂ β conv[A ∪ {0}],
conv A + conv B = conv(A + B).

Lemma 2 For any sets A,B ⊂ X and numbers α,β ∈ R we have

α(A + B) = αA + αB,

(α + β)A ⊂ αA + βA.

Moreover, if A is a convex set and α,β ≥ 0, then

αA + βA = (α + β)A.

Let us recall that a set A ⊂ X is said to be bounded iff for every neighbourhood
U of zero there exists a number α > 0 such that αA ⊂ U .
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Lemma 3 If A,B ⊂ X are bounded sets, then

A ∪ B, A + B, conv A

are also bounded subsets of X.

3.2 Stability

In the following theorem we prove the stability of the functional Eq. (46) on
topological spaces.

Theorem 9 Let G be an Abelian group uniquely divisible by 2 and 3, and assume
that B is nonempty and bounded subset of X. If f : G → X satisfies the condition

f (x + 3y) + 3f (x − y) − f (x − 3y) − 3f (x + y) ∈ B, x, y ∈ G, (47)

then there exist a unique quadratic function Q : G → X and a unique additive
function A : G → X such that

Q(x) + A(x) + f (0) − f (x) ∈ 1

24
seq cl conv (11B − 3B), x ∈ G,

Q(x) + f (0) − f (x) + f (−x)

2
∈ 1

3
seq cl conv B, x ∈ G,

A(x) − f (x) − f (−x)

2
∈ 1

8
seq cl conv (B − B), x ∈ G.

Moreover, the functions Q and A are given by the formulae

Q(x) = lim
n→∞

f (2nx) + f (−2nx) − 2f (0)

2 · 22n
, x ∈ G,

A(x) = lim
n→∞

f (3nx) − f (−3nx)

2 · 3n
, x ∈ G.

Proof Putting x = y = 0 in (47) we have 0 ∈ B. Let us define a function fe : G →
X by the formula

fe(x) := f (x) + f (−x)

2
− f (0), x ∈ G.

Clearly, fe is even and fe(0) = 0. Since f satisfies (47), then

fe(x + 3y) + 3fe(x − y) − fe(x − 3y) − 3fe(x + y) ∈ conv B, x, y ∈ G. (48)
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Substitution y = x in (48) leads to

fe(4x) − 4fe(2x) ∈ conv B, x ∈ G,

i.e.,

1

22
fe(2x) − fe(x) ∈ 1

4
conv B, x ∈ G. (49)

By a standard way (see, e.g., [3]) one can inductively check that

1

22n
fe(2

nx) − fe(x) ∈ 1

3

(
1 − 1

22n

)
conv B, n ∈ N, x ∈ G. (50)

Define

Qn(x) := 1

22n
fe(2

nx), n ∈ N, x ∈ G. (51)

For all m, n ∈ N and x ∈ G, we have by (50)

Qm+n(x) − Qn(x) = 1

22(m+n)
fe
(
2m+nx

)− 1

22n
fe(2

nx)

= 1

22n

[
1

22 m
fe(2

m · 2nx) − fe(2
nx)

]
∈ 1

22n
· 1

3

(
1 − 1

22 m

)
conv B.

From the boundedness of the set conv B (see Lemma 3) we have that (Qn)n∈N is a
Cauchy sequence of elements of X uniformly convergent on G by the completeness
of X. Therefore we can define a function Q : G → X by the following formula

Q(x) := lim
n→∞Qn(x), x ∈ G.

Obviously, Q is even andQ(0) = 0. Taking the limit in (50) as n → ∞ we obtain

Q(x) − fe(x) ∈ 1

3
seq cl conv B, x ∈ G. (52)

Substituting 2nx, 2ny instead of x and y in (48), respectively, and dividing both
sides of the resulting expression by 22n we get

1

22n
fe(2

n(x + 3y)) + 3 · 1

22n
fe(2

n(x − y))

− 1

22n
fe(2

n(x − 3y)) − 3 · 1

22n
fe(2

n(x + y)) ∈ 1

22n
conv B, x, y ∈ G.

Taking the limit in the above expression as n → ∞ we conclude that

Q(x + 3y) + 3Q(x − y) − Q(x − 3y) − 3Q(x + y) = 0, x, y ∈ G.

It is well known (see, e.g., [23]) that ifQ is even then the above functional equation
is equivalent to the original quadratic functional equation

Q(x + y) + Q(x − y) = 2Q(x) + 2Q(y), x, y ∈ G.

Therefore, Q is quadratic.
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To prove the uniqueness of the solution assume that there exists another quadratic
function Q1 : G → X satisfying the condition (52). Then we have

Q1(x) − Q(x) = Q1(x) − fe(x) − [Q(x) − fe(x)] ∈ 2

3
seq cl conv B,

i.e.,

Q1(x) − Q(x) ∈ 2

3
seq cl conv B, x ∈ G.

Replacing x in the above condition by 2nx and dividing both sides by 22n, and
then taking the limit in the resulting expression, we obtain Q1(x) − Q(x) = 0, i.e.,
Q1 = Q.

According to (52) we get

Q(x) + f (0) − f (x) + f (−x)

2
∈ 1

3
seq cl conv B, x ∈ G. (53)

Moreover

Q(x) = lim
n→∞

f (2nx) + f (−2nx) − 2f (0)

2 · 22n
, x ∈ G.

Now we consider the second case where a function fo : G → X is defined by the
formula

fo(x) := f (x) − f (−x)

2
, x ∈ G.

Clearly, f0 is odd and fo(0) = 0. Since f satisfies (47), then

fo(x + 3y) + 3fo(x − y) − fo(x − 3y) − 3fo(x + y) ∈ 1

2
conv (B − B), x, y ∈ G.

(54)

Taking x = 0 in (54) we see that

fo(3x) − 3fo(x) ∈ 1

4
conv (B − B), x ∈ G,

hence

1

3
fo(3x) − fo(x) ∈ 1

12
conv (B − B), x ∈ G. (55)

Proceeding similarly as in the previous case we can prove by induction the
following formula

1

3n
fo(3

nx) − fo(x) ∈ 1

8

(
1 − 1

3n

)
conv (B − B), n ∈ N, x ∈ G. (56)
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Moreover,
(
fo(3nx)

3n

)

n∈N

is a Cauchy sequence and thus we can define a function

A : G → X by the following formula

A(x) := lim
n→∞

fo(3nx)

3n
, x ∈ G.

Obviously, A is odd and A(0) = 0. Taking the limit in (56) as n → ∞ we obtain

A(x) − fo(x) ∈ 1

8
seq cl conv (B − B), x ∈ G. (57)

It follows from (54) that

A(x + 3y) + 3A(x − y) − A(x − 3y) − 3A(x + y) = 0, x, y ∈ G.

It is also well known (see, e.g., [23]) that if A is odd then the above functional
equation is equivalent to the Cauchy functional equation. Therefore, A is additive.
Similarly as before, we can prove the uniqueness of the solution. By (57) we get

A(x) − f (x) − f (−x)

2
∈ 1

8
seq cl conv (B − B), x ∈ G. (58)

Moreover

A(x) = lim
n→∞

f (3nx) − f (−3nx)

2 · 3n
, x ∈ G.

Finally, from (53) and (58) we obtain

Q(x) + A(x) + f (0) − f (x) ∈ 1

24
seq cl conv (11B − 3B), x ∈ G,

which completes the proof. �

In the following theorem we determine the general solution of the functional
Eq. (45) without assuming any regularity condition on the unknown functions f , g,
h, k.

Theorem 10 Let G1 be an Abelian group divisible by 2 and 3, and let G2 be an
Abelian group uniquely divisible by 2 and 3. Suppose that functionsf , g,h, k : G1 →
G2 satisfy the following functional equation

f (x + 3y) + g(x − y) = h(x − 3y) + k(x + y), x, y ∈ G1. (59)

Then there exist a quadratic function Q : G1 → G2, additive functions E,F :
G1 → G2 and constants C1,C2,C3,C4 ∈ G2 such that C1 + C2 = C3 + C4 and

f (x) = Q(x) + E(x) + F (x) + C1,

g(x) = 3Q(x) + 3E(x) − F (x) + C2,

h(x) = Q(x) + E(x) − F (x) + C3,

k(x) = 3Q(x) + 3E(x) + F (x) + C4
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for all x ∈ G1.

Proof Since the group G2 is uniquely divisible by 2 (i.e., 2G = G), then we may
split f into its even and odd parts f +, f − : G1 → G2 by the formulae

f +(x) := f (x) + f (−x)

2
, f −(x) := f (x) − f (−x)

2
, x ∈ G1.

Clearly, f + is even, f − is odd, and f = f + + f −. Similarly we define the
functions g+, g−, h+, h−, k+, k−. Obviously f −(0) = g−(0) = h−(0) = k−(0) = 0.
Since f , g,h, k satisfy (59), then

f +(x + 3y) + g+(x − y) = h+(x − 3y) + k+(x + y), x, y ∈ G1, (60)

f −(x + 3y) + g−(x − y) = h−(x − 3y) + k−(x + y), x, y ∈ G1. (61)

Let us denote C1 := f +(0), C2 := g+(0), C3 := h+(0), C4 := k+(0). For
x = y = 0 in (60) we have C1 + C2 = C3 + C4. Define

f0(x) := f +(x) − C1,

g0(x) := g+(x) − C2,

h0(x) := h+(x) − C3,

k0(x) := k+(x) − C4

for all x ∈ G1. Obviously, the functions f0, g0, h0, k0 are also even and f0(0) =
g0(0) = h0(0) = k0(0) = 0. Moreover

f0(x + 3y) + g0(x − y) = h0(x − 3y) + k0(x + y), x, y ∈ G1. (62)

Setting, successively, x = 0, y = 0, y = x, y = −x, x = 3y and x = 5y in (62)
and applying the fact that f0, g0, h0, k0 are even, we get

f0(3x) + g0(x) = h0(3x) + k0(x), (63)

f0(x) + g0(x) = h0(x) + k0(x), (64)

f0(2x) = h0(x) + k0(x), (65)

f0(x) + g0(x) = h0(2x), (66)

f0(3x) + g0(x) = k0(2x), (67)

f0(4x) + g0(2x) = h0(x) + k0(3x) (68)
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for all x ∈ G1. Subtracting (65) and (66) from (64) we have

f0(2x) = h0(2x), x ∈ G1,

i.e.,

f0(x) = h0(x), x ∈ G1. (69)

Comparing (64) and (69) we see that

g0(x) = k0(x), x ∈ G1. (70)

Therefore, using (69) and (70) one can check that Eqs. (66), (67), and (68) are
now given as follows

f0(x) + g0(x) = f0(2x), (71)

f0(3x) + g0(x) = g0(2x), (72)

f0(4x) + g0(2x) = f0(x) + g0(3x) (73)

for all x ∈ G1. Replacing x by 2x in (71) we obtain

f0(2x) + g0(2x) = f0(4x), x ∈ G1. (74)

Adding (71), (73), and (74) we have

g0(3x) = 2g0(2x) + g0(x), x ∈ G1. (75)

Replacing x by 3x in (71) we get

f0(3x) + g0(3x) = f0(6x), x ∈ G1. (76)

Adding (72) and (75), and using (76) yields

f0(6x) = 3g0(2x), x ∈ G1,

whence

f0(3x) = 3g0(x), x ∈ G1. (77)

Combining (72) and (77) we arrive at

g0(2x) = 4g0(x), x ∈ G1. (78)

Multiplying both sides of (78) by 2 and adding to the resulting Eq. (75) we obtain

g0(3x) = 9g0(x), x ∈ G1. (79)
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Comparing (77) and (79) we see that

f0(3x) = 3g0(x) = 1

3
g0(3x), x ∈ G1,

i.e.,

3f0(x) = g0(x), x ∈ G1. (80)

Finally, from (69), (70), and (80) we get

3f0(x) = g0(x) = 3h0(x) = k0(x), x ∈ G1. (81)

Let Q := f0. Therefore from (62) and (81) we have

Q(x + 3y) + 3Q(x − y) = Q(x − 3y) + 3Q(x + y), x, y ∈ G1.

Since Q is even and satisfies the above equation, then Q is a quadratic function.
Moreover

f +(x) = Q(x) + C1,

g+(x) = 3Q(x) + C2,

h+(x) = Q(x) + C3,

k+(x) = 3Q(x) + C4

for all x ∈ G1.
Now we consider the second case. Replacing y by −y in (61) we obtain

f −(x − 3y) + g−(x + y) = h−(x + 3y) + k−(x − y), x, y ∈ G1. (82)

Thus, subtracting (82) from (61) we see that

f −(x + 3y) + h−(x + 3y) + g−(x − y) + k−(x − y)

= f −(x − 3y) + h−(x − 3y) + g−(x + y) + k−(x + y), x, y ∈ G1. (83)

Define
E1(x) := f −(x) + h−(x), x ∈ G1,

E2(x) := g−(x) + k−(x), x ∈ G1.

Clearly, these functions are odd and E1(0) = E2(0) = 0. Then (83) becomes

E1(x + 3y) + E2(x − y) = E1(x − 3y) + E2(x + y), x, y ∈ G1. (84)

Setting, successively, x = 0, y = x, x = 3y and x = 5y in (84) we get

E1(3x) = E2(x), (85)

E1(2x) = −E1(x) + E2(x), (86)
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E1(3x) + E2(x) = E2(2x), (87)

E1(4x) + E2(2x) = E1(x) + E2(3x) (88)

for all x ∈ G1. From (85) and (87) it easily follows that

E2(2x) = 2E2(x), x ∈ G1. (89)

Comparing (87) and (86), and using (89) we have

E1(3x) = E1(2x) + E1(x), x ∈ G1. (90)

Now, replace x by 2x in (86) to get

E1(4x) = −E1(2x) + E2(2x), x ∈ G1. (91)

Then subtracting (90) and (91) from (88), and using (85) and (89) we obtain

E2(3x) = 3E2(x), x ∈ G1. (92)

Next, using (85) and (92) we have

E1(3x) = E2(x) = 1

3
E2(3x), x ∈ G1,

i.e.,

3E1(x) = E2(x), x ∈ G1. (93)

Substituting twice (93) back into (84) we see that

E1(x + 3y) + 3E1(x − y) = E1(x − 3y) + 3E1(x + y), x, y ∈ G1, (94)

E2(x + 3y) + 3E2(x − y) = E2(x − 3y) + 3E2(x + y), x, y ∈ G1. (95)

Since E1 and E2 are odd, and satisfy the above equations, then these functions
are additive.

Adding (61) and (82) we have

f −(x + 3y) − h−(x + 3y) + g−(x − y) − k−(x − y)

= −f −(x − 3y) + h−(x − 3y) − g−(x + y) + k−(x + y), x, y ∈ G1. (96)

Define
F1(x) := f −(x) − h−(x), x ∈ G1,

F2(x) := g−(x) − k−(x), x ∈ G1.

Obviously, these functions are also odd and F1(0) = F2(0) = 0. Then (96)
becomes

F1(x + 3y) + F2(x − y) = −F1(x − 3y) − F2(x + y), x, y ∈ G1. (97)
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Setting y = 0 in (97) we get

F1(x) = −F2(x), x ∈ G1. (98)

Now, using twice (98) in (97) we see that

F1(x + 3y) + F1(x − 3y) = F1(x + y) + F1(x − y), x, y ∈ G1, (99)

F2(x + 3y) + F2(x − 3y) = F2(x + y) + F2(x − y), x, y ∈ G1.

Setting, successively, y = x and x = 3y in (99) we obtain

F1(2x) = 2F1(x), x ∈ G1, (100)

F1(3x) = F1(2x) + F1(x), x ∈ G1. (101)

Combining (100) and (101) we arrive at

F1(3x) = 3F1(x), x ∈ G1. (102)

Now we show that F1 and F2 are additive. Interchanging the roles of variables in
(99) and applying the oddness of F1 we deduce that

F1(3x + y) − F1(3x − y) = F1(x + y) − F1(x − y), x, y ∈ G1. (103)

Replacing y by 3y in (103) and using (102) one can obtain

3F1(x + y) − 3F1(x − y) = F1(x + 3y) − F1(x − 3y), x, y ∈ G1,

i.e.,

F1(x + 3y) + 3F1(x − y) = F1(x − 3y) + 3F1(x + y), x, y ∈ G1. (104)

Since F1 is odd and satisfies the above equation, then F1 is additive. From (98)
the function F2 is also additive. Finally

E1(x) = f −(x) + h−(x), (105)

3E1(x) = g−(x) + k−(x), (106)

F1(x) = f −(x) − h−(x), (107)

−F1(x) = g−(x) − k−(x) (108)

for all x ∈ G1. Define

E(x) := 1

2
E1(x), F (x) := 1

2
F1(x), x ∈ G1.

Then from (105), (107), and (106), (108) we obtain

f −(x) = E(x) + F (x), x ∈ G1,
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g−(x) = 3E(x) − F (x), x ∈ G1

and

h−(x) = E(x) − F (x), x ∈ G1,

k−(x) = 3E(x) + F (x), x ∈ G1,

respectively. Since f = f + + f −, then

f (x) = Q(x) + E(x) + F (x) + C1, x ∈ G1.

Similarly, one can show that

g(x) = 3Q(x) + 3E(x) − F (x) + C2,

h(x) = Q(x) + E(x) − F (x) + C3,

k(x) = 3Q(x) + 3E(x) + F (x) + C4

for all x ∈ G1, where C1 + C2 = C3 + C4. This completes the proof. �

Using a similar argument to that of the proof in Theorem 10 and applying Theorem
9, we have the following result concerning the stability of (59) on topological spaces.

Theorem 11 Let G be an Abelian group uniquely divisible by 2 and 3. Suppose
that B ⊂ X is a nonempty bounded set and let functions f , g,h, k : G → X satisfy
the condition

f (x + 3y) + g(x − y) − h(x − 3y) − k(x + y) ∈ B, x, y ∈ G. (109)

Then there exist exactly one quadratic function Q : G → X and two unique
additive functions E,F : G → X such that

Q(x) + F (x) + G(x) + f (0) − f (x) ∈ 91

6
seq cl conv (B − B),

3Q(x) + 3F (x) − G(x) + g(0) − g(x) ∈ 65

4
seq cl conv (B − B),

Q(x) + F (x) − G(x) + h(0) − h(x) ∈ 91

6
seq cl conv (B − B),

3Q(x) + 3F (x) + G(x) + k(0) − k(x) ∈ 65

4
seq cl conv (B − B)

for all x ∈ G.
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Remarks on Stability of the Equation
of Homomorphism for Square Symmetric
Groupoids
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Abstract Let (G, �) and (H , ◦) be square symmetric groupoids and S ⊂ G be
nonempty. We present some remarks on stability of the following conditional
equation of homomorphism

f (x � y) = f (x) ◦ f (y) x, y ∈ S, x � y ∈ S,

in the class of functions mapping S into H . In particular, we consider the situation
where H = R and

−ν(x, y) ≤ h(x � y) − h(x) ◦ h(y) ≤ μ(x, y) x, y ∈ S, x � y ∈ S,

with some functions μ, ν : S2 → [0, ∞).

Keywords Hyers-Ulam stability · Square symmetric groupoids · Homomorphism ·
Fixed point · Complete metric · Linear equation

1 Introduction

The issue of stability of functional equations has been a very popular subject of
investigations for the last nearly 50 years (see, e.g., [6, 11, 23, 25, 31, 32, 35, 36]).
The main motivation for it was given by S.M. Ulam (cf. [58]) in 1940 in his talk at
the University of Wisconsin, where he presented some unsolved problems and, in
particular, the following one.
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Let G1 be a group and (G2, d) a metric group. Given ε > 0, does there exist δ > 0
such that if f : G1 → G2 satisfies

d(f (xy), f (x)f (y)) < δ x, y ∈ G1,

then a homomorphism T : G1 → G2 exists with

d(f (x), T (x)) < ε x, y ∈ G1?

In 1941 D.H. Hyers [21] published a partial answer to it, which can be stated as
follows.
Let E and Y be Banach spaces and ε > 0. Then, for every g : E → Y with

sup
x,y∈E

‖g(x + y) − g(x) − g(y)‖ ≤ ε,

there is a unique solution f : E → Y of the Cauchy equation

f (x + y) = f (x) + f (y) (1)

such that
sup
x∈E

‖g(x) − f (x)‖ ≤ ε.

We can describe the result of Hyers by simply saying that the Cauchy functional
Eq. (1) is Hyers-Ulam stable (or has the Hyers-Ulam stability). At the moment it
is well known (see, e.g., [23]) that in the Hyers result it is enough to assume that
(E, +) is an amenable semigroup or a square symmetric groupoid (either of those
assumptions is fulfilled when (E, +) is a commutative semigroup).

In the next few years Hyers and Ulam published some further stability results for
polynomial functions, isometries, and convex functions in [22, 26–28].

We should mention here that now we are aware of an earlier result concerning
stability of functional equations that is due to Gy. Pólya and G. Szegö [40, Teil I,
Aufgabe 99] (see also [41, Part I, Chap. 3, Problem 99] and [18, p. 125]) and reads
as follows (N stands for the set of positive integers).
For every real sequence (an)n∈N such that

sup
n,m∈N

|an+m − an − am| ≤ 1,

there is a real number ω with supn∈N
|an − ωn| ≤ 1. Moreover,

ω = lim
n→∞

an

n
.

A next significant result for the Cauchy equation was obtained by T. Aoki [1],
who proved the subsequent (for another extension of the result of Hyers see [55]).



Remarks on Stability of the Equation of Homomorphism . . . 39

Theorem 1 Assume that E1 and E2 are two normed spaces, E2 is complete, c ≥ 0
and 0 < p < 1. Let f : E1 → E2 be a mapping such that

‖f (x + y) − f (x) − f (y)‖ ≤ c(‖x‖p + ‖y‖p) x, y ∈ E1. (2)

Then there exists a unique solution T : E1 → E2 of (1) with

‖f (x) − T (x)‖ ≤ c‖x‖p
1 − 2p−1

x ∈ E1. (3)

Unfortunately that result had remained unnoticed by a wider audience for quite
a long time. In 1978 it was rediscovered by Th.M. Rassias [47], who came across it
while solving a problem communicated to him by Ulam (evidently not familiar with
the Aoki outcome, as well); moreover, Th.M. Rassias [47] obtained the linearity
of T under the assumption of continuity of f and thus provided an outcome on
stability of linear mappings and a method of proving it. In this way and through
his numerous further publications (see, e.g., [12, 24, 25, 29, 49–54]) Th.M. Rassias
strongly stimulated investigations of that kind of stability (for further information
and references see, e.g., [6, 23, 31, 32]). In recognition of this, the results obtained
in [47] are quite often referred to as the Hyers-Ulam-Rassias stability of the Cauchy
equation (cf., e.g., [16, 31–32]).

In [49] (see also [53, p. 326]) it has been noticed that a result analogous to that of
Theorem 1 is also valid for p < 0. Next, motivated by the problem raised by Th.M.
Rassias (see [48]), Z. Gajda [15] extended the result contained in Theorem 1 for
p > 1 and gave an example that for p = 1 it is not valid (for further such examples
see [53]; some complementary result for the case p = 1 are given in [17, 56]).
Recently, it has been proved in [8] (see also [39]) that, for p < 0, each function
f : E1 → E2 satisfying (2) (but of course only for x �= 0 and y �= 0) must be
additive and the completness of E2 is not necessary then.

All those stability results finally yield the following theorem.

Theorem 2 Let E1 and E2 be two normed spaces, c ≥ 0 and p �= 1 be fixed real
numbers. Let f : E1 → E2 be a mapping such that

‖f (x + y) − f (x) − f (y)‖ ≤ c(‖x‖p + ‖y‖p) x, y ∈ E1 \ {0}. (4)

If p ≥ 0 and E2 is complete, then there exists a unique additive function T :
E1 → E2 with

‖f (x) − T (x)‖ ≤ c‖x‖p
|2p−1 − 1| x ∈ E1 \ {0}. (5)

If p < 0, then f is additive.
It has been proved in [7] that estimation (5) is optimum for p ≥ 0 in the general

case. Further extensions and generalizations of the idea of stability, described above,
have been proposed in [4, 5, 16, 20, 45, 46] (for more information we refer, e.g., to
[6, 11, 13, 23, 31]), where the authors studied mappings f satisfying the inequality

‖f (x + y) − f (x) − f (y)‖ ≤ ϕ(x, y) (6)
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for functionsϕ of some other or more general form than in condition (4). In particular,
the function ϕ of the form

ϕ(x, y) ≡ c(‖x‖p‖y‖q)

has been used in [45, 46], with suitable real c,p, q.

2 An Auxiliary Result

In the sequel we use in the proofs some kind of fixed point approach (for a survey on
related results we refer to [10]).The following lemma is very simple, but nevertheless
very useful in that (R+ denotes the set of nonnegative reals).

Lemma 1 Assume that Γ : R+ → R+ is nondecreasing and

∞∑

n=0

Γ n(t) < ∞ t ∈ R+. (7)

Then the following three statements are valid.

(a) Γ (0) = 0.

(b) Γ is continuous at 0 or, for each t ∈ R+, there is m ∈ N such that

Γ n(t) = 0 n > m.

(c) If Γ is subadditive, i.e.,

Γ (t + s) ≤ Γ (t) + Γ (s) t , s ∈ R+,

then

Γ

( ∞∑

n=k

Γ n(t)

)
≤

∞∑

n=k+1

Γ n(t) k ∈ N0, t ∈ R+. (8)

Proof The proof seems to be a routine by now, but for the convenience of readers
we present it here.

Since Γ is nondecreasing, we have

Γ (0) ≤ Γ n(0) n ∈ N.

Consequently, it is easily seen that (a) is a consequence of (7).
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Next, for the proof of (b), assume that there are t ∈ R+ and a sequence (kn)n∈N ∈
N

N such that
lim
n→∞ kn = ∞

and
Γ kn (t) > 0.

Suppose that Γ is not continuous at 0, i.e., according to (a) there is d > 0 with

Γ (c) > d c > 0.

Then
Γ kn+1(t) = Γ

(
Γ kn (t)

) ≥ d n ∈ N,

which is a contradiction to (7). Thus we have proved (b).
Finally, we prove (c). So, fix t ∈ R+ and k ∈ N. First, suppose that Γ is not

continuous at 0. Then, according to (b), there is m ∈ N such that

Γ n(t) = 0 n > m.

Next, by subadditivity of Γ , we get

Γ

( ∞∑

n=k

Γ n(t)

)
≤

m∑

n=k

Γ n+1(t) + Γ

( ∞∑

n=m+1

Γ n(t)

)

=
m∑

n=k

Γ n+1(t) + Γ (0) ,

whence, by (a),

Γ

( ∞∑

n=k

Γ n(t)

)
≤

m∑

n=k

Γ n+1(t) =
∞∑

n=k+1

Γ n(t).

It remains to consider the case when Γ is continuous at 0. Then, analogously as
above, the subadditivity of Γ yields

Γ

( ∞∑

n=k

Γ n(t)

)
≤

m∑

n=k

Γ n+1(t) + Γ

( ∞∑

n=m+1

Γ n(t)

)
(9)

for m ∈ N, m > k. Clearly, (7) and (a) imply that

lim
m→∞Γ

( ∞∑

n=m+1

Γ n(t)

)
= 0.

Hence, letting m → ∞ in (9), we obtain (8). �

We need yet the following simple observation (R stands for the set of real
numbers).
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Proposition 1 Let S be a nonempty set, T : R
S → R

S and γn, δn : S → R+ for
n ∈ N0. Assume that

−δn−1(t) ≤ T n(ϕ)(t) − T n−1(ϕ)(t) ≤ γn−1(t) t ∈ S, n ∈ N

and

Δ(t) :=
∞∑

n=0

δn(t) < ∞ , Γ (t) :=
∞∑

n=0

γn(t) < ∞ t ∈ S.

Then, for each t ∈ S, the limit

Φ(t) := lim
n→∞ T n(ϕ)(t)

exists and
−Δ(t) ≤ Φ(t) − ϕ(t) ≤ Γ (t).

Proof Since, for every k, n ∈ N0 := N ∪ {0}, k > 0, t ∈ S, we have

−
∞∑

i=n

δi(t) ≤
k∑

i=1

T n+i(ϕ)(t) − T n+i−1(ϕ)(t)

= T n+k(ϕ)(t) − T n(ϕ)(t) ≤
∞∑

i=n

γi(t),

the limit Φ(t) exists and, with n = 0 and k → ∞, we obtain

Δ(t) ≤ Φ(t)−ϕ(t) ≤ Γ (t). �

3 Modified Stability on Square Symmetric Groupoids

In the case where f takes values in the set of real numbers R, condition (6) can be
written in the form

−ϕ(x, y) ≤ f (x + y) − f (x) − f (y) ≤ ϕ(x, y) (10)

and there arises a natural question whether results analogous to those in Theorem 2
can be obtained also for functions f : E1 → R, which satisfy the inequalities

−ν(x, y) ≤ f (x + y) − f (x) − f (y) ≤ μ(x, y), (11)

with some suitable functions μ, ν : E1 × E1 → R+, not necessarily equal. In this
section we investigate this issue. Moreover, we do it on a restricted domain and for
functions with a domain being a subset of a square symmetric groupoid.
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Let us recall that a groupoid (G, �) (i.e., a nonempty setGwith a binary operation
� : G×G → G) is square symmetric provided the operation � is square symmetric,
i.e.,

(x � x) � (y � y) = (x � y) � (x � y) x, y ∈ G.

Clearly every commutative semigroup is a square symmetric groupoid. Next, let
X be a linear space over a field K, a, b ∈ K, z ∈ X and define a binary operation
� : X2 → X by:

x � y := ax + by + z x, y ∈ X.

Then it is easy to check that (X, �) provides a simple example of a square sym-
metric groupoid. Clearly, � is commutative only if a = b. Moreover, it is easy to
check that it is associative only for a = b = 1.

If in a nonempty set G we define a binary operation � : G2 → G by one of the
following two conditions:

x � y := x x, y ∈ G,

x � y := y x, y ∈ G,

then it is square symmetric. Also, it is easily seen that (R, ◦), with

x ◦ y := A(x − y) x, y ∈ R,

with some fixed mapping A : R → R, is another very simple example of a square
symmetric groupoid.

One more example of a square symmetric operations is described in [18, Theorem
12]. Namely, let (G, ·) be a groupoid with a right (or left) unit element andF : G2 →
G be such that

F (z · x, z · y) = z · F (x, y), F (x · z, y · z) = F (x, y) · z x, y, z ∈ G.

Then the operation � : G2 → G, given by: x � y := F (x, y) for x, y ∈ G, is
square symmetric.

Observe yet that, if (G, ◦) is a square symmetric groupoid, H is a nonempty set
and h : H → G is a bijection, then the operation � : H 2 → H , given by:

x � y := h−1(h(x) ◦ h(y)) x, y ∈ H ,

is also square symmetric.
The square symmetric groupoids have been already considered in several papers

investigating the stability of some functional equations (see, e.g., [18, 33, 34, 37, 38,
43, 44, 55, 57]). For a description of square symmetric operations we refer to [14].

Finally, let us mention that (G, +, d) is a complete metric groupoid provided
(G, +) is a groupoid, (G, d) is a complete metric space and the operation+ : G2 → G

is continuous, in both variables simultaneously, with respect to the metric d.
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In the sequel, given a groupoid (G, �), we define a mapping τ� : G → G by:

τ�(x) := x � x.

Now we are in a position to prove the next theorem, which generalizes to some
extent the main results in [18, 33, 34, 37, 38].

Theorem 3 Let (G, �) be a square symmetric groupoid, ◦ : R
2 → R be a continuous

square symmetric operation (cf. [14]), S ⊂ G be nonempty, μ, ν : S2 → R+,
τ�(S) ⊂ S, Γn : R → R+ be nondecreasing for n ∈ N, and h : S → R satisfy

−ν(x, y) ≤ h(x � y) − h(x) ◦ h(y) ≤ μ(x, y) x, y ∈ S, x � y ∈ S. (12)

Suppose that one of the following two conditions is valid.

(i) τ◦ is bijective and σ := τ−1◦ , ρ := τ� satisfy

σn(x) − σn(y) ≤ Γn(x − y) x, y ∈ R, n ∈ N, (13)

μ̂(x) :=
∞∑

n=0

Γn+1(μ(ρn(x), ρn(x))) < ∞ x ∈ S,

ν̂(x) :=
∞∑

n=0

Γn+1(ν(ρn(x), ρn(x))) < ∞ x ∈ S,

lim inf
n→∞ Γn(μ(ρn(x), ρn(y))) = 0 x, y ∈ S, x � y ∈ S, (14)

lim inf
n→∞ Γn(ν(ρn(x), ρn(y))) = 0 x, y ∈ S, x � y ∈ S. (15)

(ii) τ�|S is a bijection onto S, (13), (14), and (15) hold with ρ := (τ�|S)−1 and
σ := τ◦, and

μ̂(x) := ν(ρ(x), ρ(x)) +
∞∑

n=1

Γn(ν(ρn+1(x), ρn+1(x))) < ∞ x ∈ S,

ν̂(x) := μ(ρ(x), ρ(x)) +
∞∑

n=1

Γn(μ(ρn+1(x), ρn+1(x))) < ∞ x ∈ S.

Then the limit
F (x) := lim

n→∞ σn(h(ρn(x)))

exists for each x ∈ S,

F (x � y) = F (x) ◦ F (y) x, y ∈ S, x � y ∈ S, (16)
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and

−ν̂(x) ≤ F (x) − h(x) ≤ μ̂(x) x ∈ S. (17)

Moreover, ifΓ1 is subadditive and

lim inf
n→∞ Γ n

1 (μ̂(ρn(x))) = 0 x ∈ S, (18)

lim inf
n→∞ Γ n

1 (̂ν(ρn(x))) = 0 x ∈ S, (19)

then F is the unique function mapping S into R such that (16) and (17) are valid.

Proof Write Γ0(t) = t , for t ∈ R and define Δn : R → R by

Δn(x) := −Γn(−x) x ∈ R, n ∈ N0.

Then Δn is nondecreasing for each n ∈ N0 and, by (13),

Δn(x − y) ≤ σn(x) − σn(y) ≤ Γn(x − y) x, y ∈ R, n ∈ N0. (20)

Let
T (α)(t) := σ (α(ρ(t)))

for α ∈ R
S , t ∈ S. Next, (12) with x = y yields

−ν(x, x) ≤ h(τ�(x)) − τ◦(h(x)) ≤ μ(x, x) x ∈ S. (21)

Hence, in the case when (i) holds, by (20), for each n ∈ N0 and z ∈ S we get

T n+1(h)(z) − T n(h)(z) = σn+1 ◦ h ◦ ρn+1(z) − σn ◦ h ◦ ρn(z)

= σn+1 ◦ h ◦ ρn+1(z) − σn+1 ◦ τ◦ ◦ h ◦ ρn(z)

≤ Γn+1(h ◦ ρ(ρn(z)) − τ◦(h(ρn(z)))

≤ Γn+1(μ(ρn(z), ρn(z)))

and

T n+1(h)(z) − T n(h)(z) = σn+1 ◦ h ◦ ρn+1(z) − σn ◦ h ◦ ρn(z)

= σn+1 ◦ h ◦ ρn+1(z) − σn+1 ◦ τ◦ ◦ h ◦ ρn(z)

≥ Δn+1(h ◦ ρ(ρn(z)) − τ◦(h(ρn(z)))

≥ Δn+1(−ν(ρn(z), ρn(z)))

= −Γn+1(ν(ρn(z), ρn(z))).

If (ii) holds, then analogously we obtain

T n+1(h)(z) − T n(h)(z) = σn+1 ◦ h ◦ ρn+1(z) − σn ◦ h ◦ ρn(z)
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≤ Γn(σ ◦ h(ρn+1(z)) − h(ρn(z)))

= Γn(τ◦ ◦ h(ρn+1(z)) − h ◦ τ�(ρn+1(z)))

≤ Γn(ν(ρn+1(z), ρn+1(z))),

T n+1(h)(z) − T n(h)(z) ≥ Δn(σ ◦ h(ρn+1(z)) − h(ρn(z)))

= Δn(τ◦ ◦ h(ρn+1(z)) − h ◦ τ�(ρn+1(z)))

≥ Δn(−μ(ρn+1(z), ρn+1(z)))

= −Γn(μ(ρn+1(z), ρn+1(z)))

for every n ∈ N0 and z ∈ S. So, in view of Proposition 1 with

γn(z) :=
{
Γn+1(μ(ρn(z), ρn(z))) , if (i) holds;

Γn(ν(ρn+1(z), ρn+1(z))), if (ii) holds,

and

δn(z) :=
{

−Γn+1(ν(ρn(z), ρn(z))) , if (i) holds;

−Γn(μ(ρn+1(z), ρn+1(z))) , if (ii) holds,

for z ∈ S and n ∈ N0, the limit

F (x) := lim
n→∞ T n(h)(x)

exists for every x ∈ S and (17) holds.
Now we show that F satisfies (16). So take x, y ∈ S with x � y ∈ S. Then it is

easy to check that, for every n ∈ N,

ρn(x), ρn(y) ∈ S,

ρn(x � y) = ρn(x) � ρn(y),

σn(h(ρn(x))) ◦ σn(h(ρn(y))) = σn(h(ρn(x)) ◦ h(ρn(y))),

and consequently

σn(h(ρn(x � y))) − σn(h(ρn(x))) ◦ σn(h(ρn(y)))

= σn(h(ρn(x) � ρn(y))) − σn(h(ρn(x)) ◦ h(ρn(y)))

≤ Γn(h(ρn(x) � ρn(y)) − h(ρn(x)) ◦ h(ρn(y)))

≤ Γn(μ(ρn(x), ρn(y))),

σn(h(ρn(x � y))) − σn(h(ρn(x))) ◦ σn(h(ρn(y)))
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≥ Δn(h(ρn(x) � ρn(y)) − h(ρn(x)) ◦ h(ρn(y)))

≥ Δn(−ν(ρn(x), ρn(y))) = −Γn(ν(ρn(x), ρn(y))).

Letting n → ∞, in view of (14), (15) and the continuity of ◦, we obtain

F (x � y) = F (x) ◦ F (y).

Finally we prove the statement concerning the uniqueness of F . So, assume that
Γ1 is subadditive and (18), (19) are valid. Let A : S → R satisfy

A(x � y) = A(x) ◦ A(y) x, y ∈ S, x � y ∈ S,

and
−ν̂(x) ≤ A(x) − h(x) ≤ μ̂(x) x ∈ S.

According to Lemma 1, for every x ∈ S and n ∈ N,

σn(F (ρn(x))) − σn(A(ρn(x))) ≤ Γ n
1 (F (ρn(x)) − A(ρn(x)))

≤ Γ n
1 (F (ρn(x)) − h(ρn(x)))

+ Γ n
1 (h(ρn(x)) − A(ρn(x)))

≤ Γ n
1 (μ̂(ρn(x))) + Γ n

1 (̂ν(ρn(x)))

and

σn(F (ρn(x))) − σn(A(ρn(x))) ≥ Δn
1(F (ρn(x)) − A(ρn(x)))

≥ Δn
1(F (ρn(x)) − h(ρn(x))) + Δn

1(h(ρn(x)) − A(ρn(x)))

≥ Δn
1(−ν̂(ρn(x))) + Δn

1(−μ̂(ρn(x)))

= −Γ n
1 (̂ν(ρn(x))) − Γ n

1 (μ̂(ρn(x))).

Consequently, with n → ∞, in view of (18) and (19) we obtain that

F (x) = A(x) x ∈ S. �

Below we give a very simple example of possible applications of Theorem 3 with
functions μ and ν having some natural forms, mentioned already before.

Corollary 1 Let X be a normed space, c1, c2,p, q, r ∈ [0, ∞),

(p − 1)(q + r − 1) > 0,

S ⊂ X be nonempty, 2S = S, and h : S → R satisfy the inequality

−c1‖x‖q‖y‖r ≤ h(x + y) − h(x) − h(y) ≤ c2(‖x‖p + ‖y‖p) (22)

x, y ∈ S, x + y ∈ S.
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Then there exists a unique function F : S → R such that

F (x + y) = F (x) + F (y) x, y ∈ S, x + y ∈ S, (23)

and

− c1‖x‖q+r

|1 − 2q+r−1| ≤ F (x) − h(x) ≤ c2‖x‖p
|1 − 2p−1| x ∈ S. (24)

Proof If p < 1 and q + r < 1, then it is enough to use Theorem 3 (i). If p > 1 and
q + r > 1, then we use Theorem 3 (ii). �

4 Some Complementary Results

In this section we show that a fixed point approach, analogous as in the proof of
Theorem 3, can be applied to obtain stability results also for functions mapping a
square symmetric groupoid (G, �) into a metric space (Y , d) and satisfying the “usual
stability inequality”

d(h(x � y),h(x) ◦ h(y)) ≤ μ(x, y) x, y ∈ S, x � y ∈ S,

with a nonempty S ⊂ G, some square symmetric operation ◦ : Y 2 → Y, and a
suitable function μ : S2 → [0, ∞). In the case where S = G and

d(x ◦ y, z ◦ y) ≤ d(x, z) x, y, z ∈ Y , (25)

such results can be derived from [18, Theorems 4 and 6]. However, the reasonings
and notations in [18] are somewhat involved, while the proof that we present below
is direct, quite elementary, on a restricted domain, and without condition (25). We
should add here that actually our proof applies some ideas from [18] (and also from
[33, 34, 37, 38, 44, 55, 57]).

We start with the following modification of Proposition 1.

Proposition 2 Let (X, d) be a complete metric space, S be a nonempty set, ϕ ∈ XS ,
T : XS → XS , γn : S → R+ for n ∈ N0,

d(T n(ϕ)(t), T n−1(ϕ)(t)) ≤ γn−1(t) t ∈ S, n ∈ N,

and

h(t) :=
∞∑

n=0

γn(t) < ∞ t ∈ S. (26)

Then the limit
Φ(t) := lim

n→∞ T n(ϕ)(t)

exists for every t ∈ S and

d(ϕ(t),Φ(t)) ≤ h(t) t ∈ S. (27)
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Proof For every k, n ∈ N ∪ {0}, k > 0, t ∈ S, we have

d(T n+k(ϕ)(t), T n(ϕ)(t)) ≤
k∑

i=1

d(T n+i(ϕ)(t), T n+i−1(ϕ)(t)) (28)

≤
∞∑

i=n

γi(t).

So, for each t ∈ S, the limit

Φ(t) := lim
n→∞ T n(ϕ)(t)

exists and, in view of (28) (with n = 0 and k → ∞), we get (27). �

Now we are in a position to prove the main result in this section.

Theorem 4 Let (G, �) and (H , ◦) be square symmetric groupoids, d be a complete
metric in H , the operation ◦ be continuous, μ : S2 → R, S ⊂ G be nonempty,

τ�(S) ⊂ S,

Γn : R+ → R+ be non-decreasing for n ∈ N, and h : S → H satisfy the inequality

d(h(x � y),h(x) ◦ h(y)) ≤ μ(x, y) x, y ∈ S, x � y ∈ S. (29)

Suppose that one of the following two conditions is valid.

(i) τ◦ is bijective, and σ := τ−1◦ , ρ := τ� satisfy

d(σn(x), σn(y)) ≤ Γn(d(x, y)) x, y ∈ H , n ∈ N, (30)

μ̂(x) :=
∞∑

n=0

Γn+1(μ(ρn(x), ρn(x))) < ∞ x ∈ S,

lim inf
n→∞ Γn(μ(ρn(x), ρn(y))) < ∞ x, y ∈ S, x � y ∈ S. (31)

(ii) τ�|S is a bijection onto S, (30) and (31) hold with ρ := (τ�|S)−1 and σ := τ◦,
and

μ̂(x) := μ(ρ(x), ρ(x)) +
∞∑

n=1

Γn(μ(ρn+1(x), ρn+1(x))) < ∞ x ∈ S .

Then the limit
F (x) := lim

n→∞ σn(h(ρn(x)))

exists for each x ∈ S,

F (x � y) = F (x) ◦ F (y) x, y ∈ S, x � y ∈ S, (32)
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and

d(F (x),h(x)) ≤ μ̂(x) x ∈ S. (33)

Moreover, ifΓ1 is subadditive and

lim inf
n→∞ Γ n

1 (μ̂(ρn(x))) = 0 x ∈ S, (34)

then F is the unique function mapping S into H such that (32) and (33) are valid.

Proof Note that ρ(z) ∈ S for z ∈ S. Write

T (α)(t) := σ (α(ρ(t)))

for α ∈ HS , t ∈ S. From (29), with x = y = z, we deduce that

d(h ◦ τ�(z), τ◦ ◦ h(z)) ≤ μ(z, z) z ∈ S.

Consequently, (30) implies that, for each n ∈ N0 and z ∈ S,

d(T n+1(h)(z), T n(h)(z)) = d(σn+1 ◦ h ◦ ρn+1(z), σn ◦ h ◦ ρn(z))

= d(σn+1 ◦ h ◦ ρn+1(z), σn+1 ◦ τ◦ ◦ h ◦ ρn(z))

≤ Γn+1(d(h ◦ ρ(ρn(z)), τ◦(h(ρn(z))))

≤ Γn+1(μ(ρn(z), ρn(z)))

if (i) holds and, analogously, we get

d(T n+1(h)(z), T n(h)(z)) = d(σn+1 ◦ h ◦ ρn+1(z), σn ◦ h ◦ ρn(z))

≤ Γn(d(σ ◦ h ◦ ρ(ρn(z)),h(ρn(z))))

= Γn(d(τ◦ ◦ h(ρn+1(z)),h ◦ τ�(ρn+1(z))))

≤ Γn(μ(ρn+1(z), ρn+1(z)))

if (ii) holds, where Γ0(t) = t , for t ∈ R+. So, in view of Proposition 2 with

γn(z) :=
{
Γn+1(μ(ρn(z), ρn(z))), if (i) holds;

Γn(μ(ρn+1(z), ρn+1(z))), if (ii) holds,

for z ∈ S and n ∈ N0, the limit F (x) exists for every x ∈ S and (33) holds.
Now we show that F satisfies (32). So take x, y ∈ S with x � y ∈ S. Then it is

easy to check that, for every n ∈ N,

ρn(x), ρn(y) ∈ S,

ρn(x � y) = ρn(x) � ρn(y),

σn(h(ρn(x))) ◦ σn(h(ρn(y))) = σn(h(ρn(x)) ◦ h(ρn(y))),
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and consequently

d(σn(h(ρn(x � y))) , σn(h(ρn(x))) ◦ σn(h(ρn(y))))

= d(σn(h(ρn(x) � ρn(y))), σn(h(ρn(x)) ◦ h(ρn(y))))

≤ Γn(d(h(ρn(x) � ρn(y)),h(ρn(x)) ◦ h(ρn(y))))

≤ Γn(μ(ρn(x), ρn(y))).

Letting n → ∞, in view of (31) and the continuity of ◦, we obtain

F (x � y) = F (x) ◦ F (y).

Finally we prove the statement concerning the uniqueness of F . So, assume that
A : S → H ,

A(x � y) = A(x) ◦ A(y) x, y ∈ S, x � y ∈ S,

and
d(A(x),h(x)) ≤ μ̂(x) x ∈ S.

Then

d(F (x),A(x)) = d(σn(F (ρn(x))), σn(A(ρn(x))))

≤ Γ n
1 (d(F (ρn(x)),A(ρn(x))))

≤ Γ n
1 (d(F (ρn(x)),h(ρn(x))))

+ Γ n
1 (d(h(ρn(x)),A(ρn(x))))

≤ 2Γ n
1 (μ̂(ρn(x))) x ∈ S, n ∈ N.

Now, from (34) we derive that

F (x) = A(x) x ∈ S. �

Remark 1 Note that in the case when Γ1 is subadditive, (i) holds and

Γn(t) ≤ Γ n
1 (t) t ∈ S, n ∈ N, (35)

in view of Lemma 1 we have

Γ n
1 (μ̂(ρn(x))) ≤ Γ n

1

( ∞∑

i=0

Γ i+1
1 (μ(ρi+n(x), ρi+n(x)))

)

≤
∞∑

i=0

Γ i+n+1
1 (μ(ρi+n(x), ρi+n(x)))

=
∞∑

i=n

Γ i+1
1 (μ(ρi(x), ρi(x))) x ∈ S, n ∈ N.
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Consequently, in such situation, the condition

∞∑

i=0

Γ i+1
1 (μ(ρi(x), ρi(x))) < ∞ x ∈ S

implies (34).
Analogously, in the case of (ii), (34) follows from the conditions (35) and

∞∑

i=0

Γ i
1 (μ(ρi+1(x), ρi+1(x))) < ∞ x ∈ S.

Remark 2 Let (H , ◦) be a square symmetric groupoid and σ := τ◦. Define functions
Γ̂n : R → R, for n ∈ N, by (cf. [18]):

Γ̂n(t) := sup {d(σn(x), σn(z)) : x, z ∈ H , d(x, z) ≤ t} t ∈ [0, ∞), (36)

Γ̂n(t) := 0 t ∈ (−∞, 0).

It is easily seen that they are nondecreasing, fulfill (30) and, for every family of
nondecreasing functions Γn : R → R, with n ∈ N, satisfying (30), we have

Γn(t) ≥ Γ̂n(t) t ∈ R.

Moreover,
d(σn(x), σn(y)) ≤ Γ̂ n

1 (d(x, y)) x, y ∈ H.

There arises a natural question whether it is possible at all that

Γ̂n �= Γ̂ n
1

for some square symmetric groupoids H and some n. The answer is yes. This is
the case for instance when H is a multiplicative subgroup of the field of complex
numbers C, of the form

H = {1, −1, i, −i}
(where i2 = −1), with ◦ being the usual multiplication in C, and

d(x, y) := |x − y| x, y ∈ H.

In fact, then

Γ̂1(2) = max {|x2 − z2| : x, z ∈ H , |x − z| ≤ 2}
= max {|x2 − z2| : x, z ∈ H } = 2

and consequently, by induction, we get

Γ̂ n+1
1 (2) = Γ̂ n

1 (2) = Γ̂1(2) = 2 n ∈ N,
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but clearly

Γ̂n(2) = max {|x2n − z2n | : x, z ∈ H } = 0 n ∈ N, n > 1,

because σn(x) = x2n = 1 for every x ∈ H , n ∈ N, n > 1.

Remark 3 There arises a natural question concerning the optimality of estimations
(17) and (33) (cf., e.g., [18]). Unfortunately, this is not the case, which shows
Theorem 2 with p < 0.

Remark 4 Let (G, +), (H , +) be commutative semigroups, d be a complete metric
in H , g,h : G → G and A,B : H → H be homomorphisms with

g ◦ h = h ◦ g, A ◦ B = B ◦ A, (37)

and ζ ∈ G, z0 ∈ H . Write

x � y := g(x) + h(y) + ζ x, y ∈ G

and
u ◦ v := A(u) + B(v) + z0 u, v ∈ H.

Then it is easy to check that (G, �) and (H , ◦) are square symmetric groupoids.
Therefore from Theorem 4 one can easily derive a stability result for the functional
equation

f (g(x) + h(y) + ζ ) = A(f (x)) + B(f (y)) + z0

in the class of functions f mapping a nonempty set S ⊂ G intoH . Note that condition
(37) is valid for instance when g = hn and A = Bm with some m, n ∈ N.

Below we present a simplified case of such result, concerning the general linear
functional equation of the form

F (αx + βy + γ ) = AF (x) + BF (y) + C (38)

for functions F mapping a subset S �= ∅ of a linear space X over a field K into
Banach space Y over a field F ∈ {R, C}, with some fixed α,β ∈ K, A,B ∈ F,
γ ∈ X, and C ∈ Y . Let us mention here that, motivated by a problem formulated by
Th.M. Rassias and J.Tabor in [54, pp. 67–68], several authors (see [2, 3, 9, 19, 30, 42])
studied stability of various particular cases of (38).

Corollary 2 Let E := A + B �= 1, A �= −B, S ⊂ X be nonempty, s : X → X be
given by

s(x) := (α + β)x + γ x ∈ X,

ϕ : S2 → R, and f : S → Y satisfy

‖f (αx + βy + γ ) − Af (x) − Bf (y) − C‖ ≤ ϕ(x, y) (39)
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for every x, y ∈ S with αx + βy + γ ∈ S. Suppose that there is ε ∈ {−1, 1} such
that sε(S) ⊂ S and, for every x, y ∈ S,

H (x) :=
∞∑

i=0

|E|−iεϕ(siε(x), siε(x)) < ∞,

lim inf
n→∞ |E−nεϕ(snε(x), snε(y))| = 0. (40)

Then there exists a unique F : S → Y such that (38) holds for every x, y ∈ S

with αx + βy + γ ∈ S and

‖F (x) − f (x)‖ ≤ H0(x) x ∈ S,

where

H0(x) :=

⎧
⎪⎨

⎪⎩

ϕ(s−1(x), s−1(x)), if E = 0 ;

|E|−1H (x), if E �= 0 and ε = 1;

H (s−1(x)), if E �= 0 and ε = −1.

Proof Note that condition (i) of Theorem 4 holds when ε = 1 and condition
(ii) of Theorem 4 is fulfilled when ε = −1. Consequently it is enough to apply
Theorem 4. �

Remark 5 Corollary 2 contains actually the main result in [9]. Note that if

A + B = 1 �= α + β,

then with
x = y = γ

1 − α − β

in (38) we get C = 0, which means that for C �= 0 Eq. (38) has no solutions
F : X → Y . On the other hand (39) holds for every x, y ∈ X whenever f is constant
and

‖C‖ ≤ inf
x,y∈X ϕ(x, y).

This means that Corollary 2 is not true when A + B = 1 �= α + β and S = X.
Corollary 2 generalizes several already classical results on stability of (1)

described in the Introduction. In fact, if we take ε = −1, V ⊂ X and

ϕ(x, y) := L1‖x‖p + L2‖y‖q + L3‖x‖r‖y‖s x, y ∈ V

with some L1,L2,L3 ∈ R+, p, q ∈ (1, ∞), and r , s ∈ R with r + s > 1, then H0

has the form

H0(x) = L1‖x‖p
2p − 2

+ L2‖x‖q
2q − 2

+ L3‖x‖r+s

2r+s − 2
x ∈ V.

On the other hand, if ε = 1, V ⊂ X \ {0} and

ϕ(x, y) := δ + L1‖x‖p + L2‖‖q + L3‖x‖r‖y‖s x, y ∈ V

with some δ,L1,L2,L3 ∈ R+, q, r ∈ ( − ∞, 1), and r , s ∈ R with r + s < 1, then

H0(x) = δ + L1‖x‖p
2 − 2p

+ L2‖x‖q
2 − 2q

+ L3‖x‖r+s

2 − 2r+s
x ∈ V.
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8. Brzdȩk, J.: Hyperstability of the Cauchy equation on restricted domains. Acta Math. Hung.
141, 58–67 (2013)
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On Stability of the Linear and Polynomial
Functional Equations in Single Variable
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Abstract We present a survey of selected recent results of several authors concerning
stability of the following polynomial functional equation (in single variable)

ϕ(x) =
m∑

i=1

ai(x)ϕ(ξi(x))p(i) + F (x),

in the class of functions ϕ mapping a nonempty set S into a Banach algebra X over
a field K ∈ {R, C}, where m is a fixed positive integer, p(i) ∈ N for i = 1, . . . ,m,
and the functions ξi : S → S, F : S → X and ai : S → X for i = 1, . . . ,m, are
given. A particular case of the equation, with p(i) = 1 for i = 1, . . . ,m, is the very
well-known linear equation

ϕ(x) =
m∑

i=1

ai(x)ϕ(ξi(x)) + F (x).

Keywords Hyers–Ulam stability · Polynomial functional equation · Linear func-
tional equation · Single variable · Banach space · Characteristic root

1 Introduction

In what follows N, Z, R, and C denote the sets of positive integers, integers, reals,
and complex numbers, respectively; moreover, R+ := [0, ∞), and N0 := N ∪ {0}.
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The issue of stability of functional equations has been a very popular subject of
investigations for more than 50 years. The first known result on it is due to Gy. Pólya
and G. Szegö [54] and reads as follows.

For every real sequence (an)n∈N with

sup
n,m∈N

|an+m − an − am| ≤ 1,

there is a real number ω such that

sup
n∈N

|an − ωn| ≤ 1.

Moreover,

ω = lim
n→∞

an

n
.

But the main motivation for investigation of that subject was given by S. M. Ulam,
who in 1940 in his talk at the University of Wisconsin discussed a number of unsolved
problems. The following question concerning the stability of homomorphism was
among them. Let G1 be a group and (G2, d) a metric group. Given ε > 0, does there

exist δ > 0 such that if f : G1 → G2 satisfies

d(f (xy), f (x)f (y)) < δ

for all x, y ∈ G1, then a homomorphism T : G1 → G2 exists with

d(f (x), T (x)) < ε

for all x, y ∈ G1?

The first answer to it was published in 1941 by D. H. Hyers [40]. The subsequent
theorem contains an extension of it.

Theorem 1 Let E1 and E2 be two normed spaces, c ≥ 0 and p ∈ R \ {1}. Assume
that f : E1 → E2 satisfies the inequality

‖f (x + y) − f (x) − f (y)‖ ≤ c(‖x‖p + ‖y‖p), x, y ∈ E1 \ {0}.
If E2 is complete and p ≥ 0, then there is a unique T : E1 → E2 that is additive
(i.e., T (x + y) = T (x) + T (y) for x, y ∈ E1) and fulfills

‖f (x) − T (x)‖ ≤ c

|2p−1 − 1| ‖x‖p , x ∈ E1 \ {0}. (1)

If p < 0, then f is additive.

It contains the results of Hyers [40] (p = 0), Aoki [2] and Rassias [59] (p ∈ (0, 1)),
Gajda [38] (1 < p), and Brzdȩk [11] (p < 0).

From [38] it follows that an analogous result is not true for p = 1 (see [41–43] for
more details). Moreover, it has been proved in [10] that estimation (1) is optimum.
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Results similar to Theorem 1 have been proved for numerous other functional
equations. Also, the theorem has been generalized and extended in various directions.
For more detailed information we refer to [3, 7, 39, 41–43, 48, 60, 62].

We can introduce the following general definition of the notion of stability that
corresponds to the outcomes collected in Theorem 1 (for some comments on various
possible definitions of stability we refer to [51–53]).

Definition 1 Let n ∈ N, A be a nonempty set, (X, d) be a metric space, C ⊂ R+An

be nonempty, T be a function mapping C into R+A, and F1, F2 be functions mapping
nonempty D ⊂ XA into XAn

. We say that the equation

F1ϕ(x1, . . . , xn) = F2ϕ(x1, . . . , xn) (2)

is T – stable provided for every ε ∈ C and ϕ0 ∈ D with

d(F1ϕ0(x1, . . . , xn), F2ϕ0(x1, . . . , xn)) ≤ ε(x1, . . . , xn)

x1, . . . , xn ∈ A,

there is a solution ϕ ∈ D of (2) such that

d(ϕ(x),ϕ0(x)) ≤ T ε(x) , x ∈ A.

Let us mention that given two nonempty sets, by AB we denote, as usual, the
family of all functions mapping B into A.

2 Stability of Zeros of Polynomials

That notion of stability of functional equations, described above, inspired numerous
authors to investigate stability of other mathematical objects, in a similar manner
(see, e.g., [7, 35, 41–43]).

For instance Li and Hua [49] started to study stability of the solutions of the
following polynomial equation

xn + αx + β = 0, (3)

with x ∈ [ − 1, 1], where α and β are fixed real numbers and n is a positive integer.
They have proved the following theorem.

Theorem 2 Assume that |α| > n and

|β| < |α| − 1.

Then there exists a real constant K > 0, such that for each ε > 0 and y ∈ [ − 1, 1]
with

|yn + αy + β| ≤ ε,
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there is a solution v ∈ [ − 1, 1] of Eq. (3) such that

|y − v| ≤ Kε.

They have asked if an analogous property is true for more general polynomials of
the form

anzn + an−1zn−1 + . . . + a1z + a0 = 0.

In this way they have inspired authors of the papers [6, 44]. For example, the
following result has been proved in [6].

Theorem 3 Let ε > 0 and a0, . . . , an ∈ R be such that

|a0| < |a1| − (|a2| + |a3| + . . . + |an|),
|a1| > 2|a2| + 3|a3| + . . . + (n − 1)|an−1| + n|an|.

If y ∈ [ − 1, 1] fulfills the inequality

|anyn + an−1y
n−1 + . . . + a1y + a0| ≤ ε,

then there is z ∈ [ − 1, 1] with

anzn + an−1zn−1 + . . . + a1z + a0 = 0

and
|y − z| ≤ λε,

where

λ := 2|a2| + 3|a3| + . . . + (n − 1)|an−1| + n|an|
|a1| < 1.

S.-M. Jung [44] has proved the subsequent theorem.

Theorem 4 Let K ∈ {R, C}, n ∈ N, a0, a1, . . ., an ∈ K, r > 0 and

Br = {ω ∈ K : |ω| ≤ r}.
Assume that

|a1| >
n∑

i=2

iri−1|ai |,

|a0| ≤
n∑

i=2

(i − 1)ri |ai |.

If ε > 0 and z ∈ Br fulfill the inequality

|anzn + an−1zn−1 + . . . + a1z + a0| ≤ ε,

then there is z0 ∈ Br such that

anzn0 + an−1zn−1
0 + . . . + a1z0 + a0 = 0

and

|z − z0| ≤ ε

(1 − λ)|a1| ,
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where

λ := 1

|a1|
n∑

i=2

iri−1|ai | < 1.

Further generalization of those two theorems have been obtained in [16], where
stability of the following functional equation

f (x) +
m∑

j=1

aj (x)f (ξj (x))p(j ) = G(x), (4)

has been studied in the class of functions f mapping a nonempty set S into a commu-
tative Banach algebra X over a field K ∈ {R, C}, with the unit element denoted by e,
wherem ∈ N, a1, . . . , am ∈ XS , p : {1, . . . ,m} → N,G ∈ XS and ξ1, . . . , ξm ∈ SS .
We write f (y)0 = e and

f (y)k := (f (y))k , k ∈ N.

Note that the linear functional equation (in single variable)

f (x) +
m∑

j=1

aj (x)f (ξj (x)) = G(x) (5)

is a particular case of Eq. (4) (whenp(i) = 1 for i = 1, . . . ,m). It is very well known
and its stability has already been studied in several papers, under various additional
assumptions. For more information on its solutions we refer to [46, 47].

In this chapter we present a survey of those stability results concerning Eqs. (4)
and (5), published by various authors.

For examples of other stability results for functional equations in single variable
see for instance to [1, 4, 5, 7–9, 12, 13, 18, 22, 27–30, 36, 37, 45, 65–69]. For
information on polynomials and their solutions we refer to [50, 61].

3 Stability of the Linear Equation: The General Case

In what follows we assume that S is a nonempty set, K ∈ {R, C}, m ∈ N, and
ξ1, . . . , ξm ∈ SS , unless explicitly stated otherwise.

We start our survey with the following general result that can be easily deduced
from [22, Corollary 4].
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Theorem 5 Let X be a commutative Banach algebra over a field K, a1, . . . , am ∈
XS , ε : S → R+, φ : S → X,

q(x) :=
m∑

i=1

‖ai(x)‖ < 1,

ε(ξi(x))ε(x)

and

q(ξi(x)) ≤ q(x) (6)

for x ∈ S, i = 1, . . . ,m. Assume that

∥∥φ(x) +
m∑

i=1

ai(x)φ(ξi(x)) − G(x)
∥∥ ≤ ε(x), x ∈ S.

Then, for each x ∈ S, the limit

f (x) := lim
n→∞ T nφ(x)

exists and the function f : S → X, defined in this way, is the unique solution to
Eq. (5) such that

‖φ(x) − f (x)‖ ≤ ε(x)

1 − q(x)
, x ∈ S,

where T : XS → XS is given by:

T g(x) := G(x) −
m∑

i=1

ai(x)g(ξi(x)) , g ∈ XS , x ∈ S.

Clearly, assumption (6) is fulfilled when

‖ai(ξi(x))‖ ≤ ‖ai(x)‖ , x ∈ S, i = 1, . . . ,m;

this is the case, e.g., when the functions a1, . . . , am are constant.
In the case m = 1 Eq. (5) takes the form

ϕ(x) + a1(x)ϕ(ξ1(x)) = G(x). (7)

If ξ1 is bijective, then it can be rewritten in the form

ϕ(ξ (x)) = a(x)ϕ(x) + F (x) (8)
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with ξ := ξ−1
1 ,

a(x) := −a1(ξ (x)) , x ∈ S,

and
F (x) := G(ξ (x)) , x ∈ S.

Also, if a1 takes only the scalar values and 0 �∈ a1(S), then (7) can be written as (8)
with

a(x) := − 1

a1(x)
, x ∈ S,

and

F (x) := G(x)

a1(x)
, x ∈ S.

Stability of (8) has been investigated in [5, 8, 24, 56–58, 63] (for some related
results see, e.g., [8, 9, 29–34, 64–69]); it seems that the most general result has been
provided in [24, Lemma 1] and it is presented below. As usual, for each p ∈ N0, we
write ξp for the p-th iterate of ξ , i.e.,

ξ 0(x) = x , x ∈ S,

and

ξp+1(x) = ξ (ξp(x)) , p ∈ N0, x ∈ S,

and, only if ξ is bijective,

ξ−p = (
ξ−1
)p

,

where ξ−1 denotes the function inverse to ξ .
From now on we assume that X is a Banach space over K, F∈XS and ξ∈ SS ,

unless and explicitly stated otherwise.

Theorem 6 Let ε0 : S → R+, a : S → K,

S ′ := {x ∈ S : a(ξp(x)) �= 0 for p ∈ N0},

ε′(x) :=
∞∑

k=0

ε0(ξk(x))
∏k

p=0 |a(ξp(x))| < ∞, x ∈ S ′,

and ϕs : S → X be a function satisfying the inequality

‖ϕs(ξ (x)) − a(x)ϕs(x) − F (x)‖ ≤ ε0(x), x ∈ S. (9)

Suppose that the function

ξ0 := ξ |S\S′ (10)
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(i.e., the restriction of ξ to the set S\S ′) is injective and

ξ (S\S ′) ⊂ S\S ′, a(S\S ′) ⊂ {0}.
Then the limit

ϕ′(x) := lim
n→∞

[
ϕs(ξn(x))

∏n−1
j=0 a(ξ j (x))

−
n−1∑

k=0

F (ξk(x))
∏k

j=0 a(ξ j (x))

]

exists for every x ∈ S ′ and the function ϕ : S → X, given by:

ϕ(x) :=

⎧
⎪⎨

⎪⎩

ϕ′(x) , if x ∈ S ′;
F (ξ−1

0 (x)) , if x ∈ ξ (S) \ S ′;
ϕs(x) + u(x) , if x ∈ S \ [S ′ ∪ ξ (S)],

with any u : S → X such that

‖u(x)‖ ≤ ε0(x) , x ∈ S,

is a solution of functional Eq. (8) with

‖ϕs(x) − ϕ(x)‖ ≤ ε′(x) , x ∈ S, (11)

where

ε′(x) :=
⎧
⎨

⎩
ε0(ξ−1

0 (x)), if x ∈ ξ (S) \ S ′;

ε0(x) , if x ∈ S \ [S ′ ∪ ξ (S)].

Moreover, ϕ is the unique solution of (8) that satisfies (11) if and only if

S = S ′ ∪ ξ (S).

To simplify the statements, in Theorem 6 it is assumed that assumption (10) is
fulfilled by every function ξ : S → S when the set S \ S ′ is empty. Note that in the
case S \S ′ = ∅, Theorem 6 takes the following much simpler form, which is actually
[63, Theorem 2.1].

Theorem 7 Let ε0 : S → R+, a : S → K \ {0},

ε′(x) :=
∞∑

k=0

ε0(ξk(x))
∏k

p=0 |a(ξp(x))| < ∞, x ∈ S,

and ϕs : S → X be a function satisfying inequality (9). Then the limit

ϕ(x) := lim
n→∞

[
ϕs(ξn(x))

∏n−1
j=0 a(ξ j (x))

−
n−1∑

k=0

F (ξk(x))
∏k

j=0 a(ξ j (x))

]
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exists for every x ∈ S and the function ϕ : S → X, defined in this way, is the unique
solution of functional Eq. (8) that satisfies inequality (11).

The next result has been stated in [24, Corollary 1].

Theorem 8 Let a : S → K, ε0 : S → R+, ϕs : S → X satisfy (8), ξ be bijective,

S ′′ := {x ∈ S : a(ξ−p(x)) �= 0 for p ∈ N},
ξ (S ′′) ⊂ S ′′, a(S \ S ′′) ⊂ {0}, and

ε′′(x) :=
∞∑

k=1

ε0(ξ−k(x))
k−1∏

p=1

|a(ξ−p(x))| < ∞ , x ∈ S ′′.

Then, for every x ∈ S ′′, the limit

ϕ′′(x) := lim
n→∞

⎡

⎣ϕs(ξ−n(x))
n∏

j=1

a(ξ−j (x)) +
n∑

k=1

F (ξ−k(x))
k−1∏

j=1

a(ξ−j (x))

⎤

⎦

exists and the function ϕ : S → X, given by

ϕ(x) :=
{
ϕ′′(x), if x ∈ S ′′;
F (ξ−1(x)), if x ∈ S \ S ′′,

is the unique solution of Eq. (8) such that

‖ϕs(x) − ϕ(x)‖ ≤ ε′′(x), x ∈ S,

where
ε′′(x) = ε0(ξ−1(x)) , x ∈ S \ S ′′.

For some remarks and examples complementing the above results see [26, pp. 96,
97].

Let us yet present one more simple result from [24, Lemma 2] (a function h

mapping S into a nonempty set P is ξ -invariant provided h(ξ (x)) = h(x) for x ∈ S).

Theorem 9 Assume that ξ is bijective, ε0 : S → R+ and a : S → K are ξ -
invariant,

S := {x ∈ S : |a(x)| �= 1},
and ϕs : S → X satisfies (9). Then there exists a unique solution ϕ : S → X of
Eq. (8) such that

‖ϕs(x) − ϕ(x)‖ ≤ ε0(x)

|1 − |a(x)| | , x ∈ S.

It follows from [24, Remark 7.7] that, in the statement of Theorem 9, in some
situations ϕ cannot be extended to a solution of (8) that maps S into X.
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In several cases it can be proved that the assumptions, that appear in the theo-
rems containing the stability results, are necessary. So, one could guess that in the
case when some of them are not fulfilled, we should be able to obtain a kind of
nonstability outcomes. It is true, but the point is that in general it is very difficult to
give a (reasonably simple) general definition of nonstability; for examples of such
definitions we refer to [17, 20, 23–25]. If we base on Definition 1, then such non-
stability notion should refer to the operator T and it seems that we should speak of
T -nonstability. Below we give an example of such nonstability result for m = 1,
given in [21, Theorem 1], and the reader will easily identify the suitable operator T .

Theorem 10 Assume that (an)n∈N0 is a sequence in K \ {0}, (bn)n∈N0 is a sequence
in X and (εn)n∈N0 is a sequence of positive real numbers such that

lim
n→∞

εn|an+1|
εn+1

= 1.

Then there exists a sequence (xn)n∈N0 in X satisfying

‖xn+1 − anxn − bn‖ ≤ εn, n ∈ N0,

and such that, for every sequence (yn)n∈N0 in X, given by

yn+1 = anyn + bn, n ∈ N0,

we have

lim
n→∞

‖xn − yn‖
εn−1

= ∞.

For further examples of nonstability results we refer to [17, 20, 23–25]. At the
end of the next section we give examples of nonstability results for m > 1.

4 Stability of the Linear Equation: Iterative Case

In this section we focus on a special iterative case of (5), when there is a function
ξ : S → S such that

ξj := ξ j , j = 1, . . . ,m.

Then (5) takes the form

f (x) +
m∑

j=1

aj (x)f (ξ j (x)) = G(x). (12)

If ξ is bijective, then it can be rewritten in the form

f (ηm(x)) =
m∑

j=1

bj (x)f (ηm−j (x)) + F (x) (13)
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(analogously as in the previous section by replacing x by ξ−m(x)) with η := ξ−1 and

bi(x) := −ai(η
m(x)) , F (x) := G(ηm(x)) , x ∈ S, i = 1, . . . ,m.

Also, if am takes only the scalar values and 0 �∈ am(S), then (12) can be written in
the form of (13) with η := ξ and

bi(x) := −am−i(x)

am(x)
, F (x) := G(x)

am(x)
, x ∈ S, i = 1, . . . ,m − 1.

In what follows we use the following hypothesis concerning the roots of the
equation

zm −
m∑

j=1

bj (x)zm−j = 0, (14)

which (for x ∈ S) is the characteristic equation of functional Eq. (13). The hypothesis
reads as follows.

(H) η : S → S, b1, . . . , bm : S → KF : S → X and functions r1, . . . , rm : S → C

satisfy the following condition

m∏

i=1

(z − ri(x)) = zm −
m∑

j=1

bj (x)zm−j , x ∈ S, z ∈ C.

It is easily seen that (H) means that r1(x), . . . , rm(x) ∈ C are the complex roots
of Eq. (14) for every x ∈ S. Moreover, the functions r1, . . . , rm are not unique, but
for every x ∈ S the sequence

(r1(x), . . . , rm(x))

is uniquely determined up to a permutation. Clearly,

0 �∈ bm(S) if and only if 0 �∈ rj (S) forj = 1, . . . ,m.

As before, we say that that a function ϕ : S → X is f -invariant provided

ϕ(f (x)) = ϕ(x) , x ∈ S.

Note, that under the assumption that (H) holds, b1, . . . , bm are f -invariant if and
only if r1, . . . , rm can be chosen f -invariant (see [24, Remark 3]).

To simplify some statements we write

0∏

p=1

λ(hp(x)) := 1

for every h : S → S, λ : S → K, x ∈ S. Moreover, we assume that the restriction
to the empty set of any function is injective.
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Now we are in a position to present [24, Theorem 1] (see also [24, Remark 7]),
which reads as follows.

Theorem 11 Let ε0 : S → R+, (H) be valid, ϕs : S → X,

∥∥ϕs(ηm(x)) −
m∑

i=1

bi(x)ϕs(η
m−i(x)) − F (x)

∥∥ ≤ ε0(x), x ∈ S, (15)

rj be η-invariant for j > 1, (i1, . . . , im) ∈ {−1, 1}m. Write

sj := 1

2
(1 − ij ), j = 1, . . . ,m,

S1 := {x ∈ S : r1(ηi1p(x)) �= 0 for p ∈ N0}.
Assume that, for each j ∈ {1, . . . ,m}, one of the following three conditions holds:

1◦ ij = 1 for j = 1, . . . ,m and 0 �∈ bm(S);
2◦ ij = 1 for j = 1, . . . ,m, η is injective, η(S \ S1) ⊂ S \ S1, r1(S \ S1) ⊂ {0};
3◦ η is bijective, η(S1) ⊂ S1, and r1(S \ S1) ⊂ {0}.
Further, suppose that

ε1(x) :=
∞∑

k=s1

ε0(ηi1k(x))
k−s1∏

p=s1

|r1(ηi1p(x))|−i1 < ∞, x ∈ S1,

εj (x) :=
∞∑

k=sj

εj−1(ηij k(x))|rj (x)|−ij (k+ij ) < ∞, x ∈ Sj , j ∈ {2, . . . ,m},

where
Sj := {x ∈ S : rj (x) �= 0}, j > 1,

and, in the case S \ Sj �= ∅,

εj (x) :=
{
εj−1(η−1(x)) , if x ∈ η(S) \ Sj ;

εj−1(x), if x ∈ S \ [Sj ∪ η(S)],

for x ∈ S \ Sj , j ∈ {1, . . . ,m}. Then Eq. (13) has a solution ϕ : S → X with

‖ϕs(x) − ϕ(x)‖ ≤ εm(x), x ∈ S.

Moreover, if r1 is η-invariant and

S \ Sj ⊂ η(S \ Sj ), j = 1, . . . ,m,

then for each η-invariant function h : S → R Eq. (13) has at most one solution
ϕ : S → X such that

‖ϕs(x) − ϕ(x)‖ ≤ h(x)εm(x), x ∈ S.

A simplified version of Theorem 11, with constant coefficient functions bj , can
be found in [19].
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If we assume that the functions ε0, b1, . . . , bm are η-invariant and η is bijective,
then we obtain the following result, which is much simpler than Theorem 11 (see
[24, Theorem 2]).

Theorem 12 Suppose that hypothesis (H) holds, η is bijective, ε0 : S → R+ and
b1, . . . , bm are η-invariant,

S̃ := {x ∈ S : |rj (x)| �= 1 forj = 1, . . . ,m},
and a function ϕs : S → X is an ε0-solution of Eq. (13) that is (15) holds. Then
there is a unique solution ϕ : S̃ → X of (13) such that

‖ϕs(x) − ϕ(x)‖ ≤ ε0(x)

|(1 − |r1(x)|) · . . . · (1 − |rm(x)|)| , x ∈ S̃ . (16)

Moreover, for each η-invariant function ε : S̃ → R, ϕ is the unique solution of
(13) such that

‖ϕs(x) − ϕ(x)‖ ≤ ε(x) , x ∈ S̃ .

It follows from [26, Remark 7.13] that, in the case K = R and

rj (S) ⊂ [0, ∞), j = 1, . . . ,m,

estimation (16) in Theorem 12 is the best possible in the general situation. But in
some other situations we can get sometimes much better estimations than (16), as
for instance in [14, Theorem 3.1] (cf.[14, p. 3]), which is stated for m = 2, F (x) ≡ 0
and ε0, b1 and b2 being constant functions; it reads as follows.

Theorem 13 Let η : S → S, b1, b2 ∈ K, b2 �= 0, ε̄ > 0 and g : S → X satisfy the
inequality

sup
x∈S

‖g(η2(x)) − b1g(η(x)) − b2g(x)‖ ≤ ε̄ x ∈ S.

Suppose that one of the following three conditions is valid:

(i) |si | < 1 for i = 1, 2 and s1 �= s2;
(ii) |si | �= 1 for i = 1, 2 and η is bijective;
(iii) (ii) holds and s1 �= s2,

where s1 and s2 denote the complex roots of the equation

b2z2 + b1z − 1 = 0.

Then there exists a solution f : S → X of the equation

f (η2(x)) = b1f (η(x)) + b2f (x), x ∈ S (17)
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such that

sup
x∈S

‖g(x) − f (x)‖ ≤ Mε,

where

M =
{

min{M1,M2}, if (i) or (iii) holds;

M2, if (ii) holds

and

M1 := 1

|s1 − s2|
( |s1|

||s1| − 1| + |s2|
||s2| − 1|

)
,

M2 := 1

|(|s1| − 1)(|s2| − 1)| .
Moreover, if |si | < 1 for i = 1, 2, then there exists exactly one solution f : S → X

of Eq. (17) such that
sup
x∈S

‖g(x) − f (x)‖ < ∞.

Related and even more general (to some extent) results for Eq. (17) can be derived
from [15, Theorem 2.1].

Now, let us recall [24, Definition 3] (cf. [26, Definition 7.3]).

Definition 2 Eq. (13) is said to be strongly Hyers–Ulam stable (in the class of
functions ψ : S → X) provided there exists α ∈ R such that, for every δ > 0 and
for every ψ : S → X satisfying

sup
x∈S

∥∥ψ(ηm(x)) −
m∑

i=1

bi(x)ψ(ηm−i(x)) − F (x)
∥∥ ≤ δ,

there exists a solution ϕ : S → X of (13) with

sup
x∈S

‖ϕ(x) − ψ(x)‖ ≤ αδ.

In [26, Corollary 7.4] the following result is stated.

Theorem 14 Suppose that hypothesis (H) is valid, η is bijective and

inf
x∈S |1 − |rj (x)|| > 0, j = 1, . . . ,m. (18)

Then, in the case where b1, . . . , bm are η-invariant, Eq. (13) is strongly Hyers–Ulam
stable.

From [26, Example 7.5] it follows (see [26, Remark 7.14]) that assumption (18)
is necessary in the theorem above.

In the special case when the functions b1, . . . , bm are constant, Eq. (13) becomes
the following functional equation:

ϕ(ηm(x)) =
m∑

i=1

biϕ(ηm−i(x)) + F (x) (19)
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with given fixed b1, . . . , bm ∈ K. Then Theorems 11 and 12 obtain much simpler
forms described in [24, Corollaries 3 and 4]. They show in particular that Eq. (19) is
strongly Hyers–Ulam stable under the assumption that its characteristic equation

rm −
m∑

i=1

bir
m−i = 0 (20)

has no roots of module one. The assumption is necessary (see [26, Examples 7.6 and
7.7]).

Clearly, a simple particular case of functional Eq. (13), with S being either the
set of nonnegative integers N0 or the set of integers Z, is the difference equation

yn+m =
m∑

i=1

bi(n)yn+m−i + dn, n ∈ S, (21)

for sequences (yn)n∈S in X, where (dn)n∈S is a fixed sequence in X; namely Eq. (13)
becomes difference Eq. (21) with

f (n) = n + 1 , yn := f (n) = f (ηn(0)) , dn := F (n) , n ∈ S.

Stability and nonstability results for such difference equations can be found in [20],
with constant functions bi . Let us recall here a nonstability outcome from [20,
Theorem 4].

Theorem 15 Let T ∈ {N0, Z}, b1, . . . , bm ∈ K and r1, . . . , rm denote all the com-
plex roots of Eq. (20). Assume that |rj | = 1 for some j ∈ {1, . . . ,m}. Then, for any
δ > 0, there exists a sequence (yn)n∈T in X, satisfying the inequality

∥∥yn+m −
m∑

i=1

biyn+m−i − dn
∥∥ ≤ δ, n ∈ T ,

such that

sup
n∈T

‖yn − xn‖ = ∞

for every sequence (xn)n∈T in X, fulfilling the recurrence

xn+m =
m∑

i=1

bixn+m−i + dn , n ∈ T . (22)

Moreover, if r1, . . . , rm ∈ K or there is a bounded sequence (xn)n∈T inX fulfilling
(22), then (yn)n∈T can be chosen unbounded.

The next theorem provides one more nonstability result from [26, Theorem 7.4].
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Theorem 16 Suppose that η ∈ SS , F ∈ XS , b1, . . . , bm ∈ K, Eq. (19) has a
solution in the class of functions mapping S into X, characteristic Eq. (20) has a
complex root of module 1, and there exists x0 ∈ S such that

ηk(x0) �= ηn(x0) , k, n ∈ N0, k �= n,

and
η(S \ S0) ⊂ S \ S0,

where
S0 := {ηn(x0) : n ∈ N0}.

Then, for each δ > 0, there is a function ψ : S → X, satisfying the inequality

sup
x∈S

∥∥ψ(ηm(x)) −
m∑

i=1

biψ(ηm−i(x)) − F (x)
∥∥ ≤ δ,

such that
sup
x∈S

‖ψ(x) − ϕ(x)‖ = ∞

for arbitrary solution ϕ : S → X of Eq. (19).
Moreover, if all the roots of characteristic Eq. (20) are in K, thenψ can be chosen

unbounded.

A similar, but more general result has been obtained in [23, Theorem 1]. Below we
present next two nonstability outcomes from [23, Theorems 2 and 3]. As before,
η ∈ SS , F ∈ XS and, in the second theorem (see [23, Remark 1]), d1, . . . , dm−1 are
the unique complex numbers such that

b1 = r1 + d1 , bm = −r1dm−1

and, in the case m > 2,

bj = r1dj−1 + dj , j = 2, . . . ,m − 1.

Theorem 17 Let b1, . . . , bm ∈ K, m > 1, S0 ⊂ S be nonempty, η(S0) ⊂ S0,

sup
x∈S0

‖F (x)‖ < ∞,

m∑

j=1

bj = 1,

and

lim
n→∞

∥∥
n∑

k=0

F (ηk(x0))
∥∥ = ∞
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for some x0 ∈ S0. Then Eq. (19) is nonstable on S0, that is there is a function
ψ : S → X such that

sup
x∈S0

∥∥ψ(ηm(x)) −
m∑

i=1

biψ(ηm−i(x)) − F (x)
∥∥ < ∞

and

sup
x∈S0

‖ψ(x) − ϕ(x)‖ = ∞

for arbitrary solution ϕ : S → X of Eq. (19).

Theorem 18 Let b1, . . . , bm ∈ K, m > 1, S0 ⊂ S be nonempty. Suppose that
Eq. (20) have a root r1 ∈ K , there is a function ψ0 : S → X such that

sup
x∈S0

‖ψ0(η(x)) − r1ψ0(x) − F (x)‖ < ∞

and the equation
ψ1(η(x)) = r1ψ(x) + F (x)

has no solutions ψ1 : S → X with

sup
x∈S0

‖ψ0(x) − ψ1(x)‖ < ∞.

Further, assume that the equation

γ (ηm−1(x)) =
m−1∑

i=1

diγ (ηm−i(x)) + ψ0(x)

is nonstable on S0 (in the sense described in Theorem 17) or has a solution γ : S →
X. Then Eq. (19) is nonstable on S0.

5 Set-Valued Case

In this part we present two theorems that contain results on selections of set-valued
maps satisfying linear inclusions, which can be derived from Theorems 1 and 2 in
[55]. They are closely related to the issue of stability of the corresponding functional
equations.

Let K be a nonempty set and (Y , d) be a metric space. We will denote by n(Y )
the family of all nonempty subsets of Y . The nonnegative real number

δ(A) := sup {d(x, y) : x, y ∈ A}
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is said to be the diameter of a nonempty set A ⊂ Y . For F : K → n(Y ) we denote
by clF the multifunction defined by

(clF )(x) := clF (x) , x ∈ K.

Each function f : K → Y such that

f (x) ∈ F (x) , x ∈ K ,

is said to be a selection of the multifunction F .
The theorems read as follows.

Theorem 19 Let F : K → n(Y ), m ∈ N, a1, . . . , am : K → R, ξ1, . . . , ξm : K →
K and

lim inf
n→∞

k∑

i1=1

|ai1 (x)|
k∑

i2=1

|ai2 ◦ ξi1 (x)| . . .
k∑

in=1

|ain ◦ ξin−1 ◦ . . . ◦ ξi1 (x)|

×δ(F ◦ ξin ◦ . . . ◦ ξi1 (x)) = 0 , x ∈ K.

(a) If Y is complete and

m∑

i=1

ai(x)F (ξi(x)) ⊂ F (x) , x ∈ K ,

then there exists a unique selection f : K → Y of the multifunction clF such
that

m∑

i=1

ai(x)f (ξi(x)) = f (x) , x ∈ K.

(b) If

F (x) ⊂
m∑

i=1

ai(x)F (ξi(x)) , x ∈ K ,

then F is a single-valued function and

m∑

i=1

ai(x)F (ξi(x)) = F (x) , x ∈ K.

Theorem 20 Let m ∈ N, a1, . . . , am : K → R, ξ1, . . . , ξm : K → K , F ,G :
K → n(Y ),

k(x) := δ(F (x) + G(x))

+
∞∑

l=1

m∑

i1=1

|ai1 (x)|
m∑

i2=1

|ai2 ◦ ξi1 (x)| . . .
m∑

il=1

|ail ◦ ξil−1 ◦ . . . ◦ ξi1 (x)|
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× δ(F ◦ ξil ◦ . . . ◦ ξi1 (x) + G ◦ ξil ◦ . . . ◦ ξi1 (x)) < ∞,

m∑

i=1

ai(x)F (ξi(x)) ⊂ F (x) + G(x),

and 0 ∈ G(x) for all x ∈ K . Then there exists a unique function f : K → Y such
that, for each x ∈ K ,

m∑

i=1

ai(x)f (ξi(x)) = f (x),

sup
y∈F (x)

d(f (x), y) ≤ k(x).

6 Stability of the Polynomial Equation

We end this chapter with a result proved in [16] and concerning stability functional
Eq. (4), i.e., the equation

f (x) +
m∑

j=1

aj (x)f (ξj (x))p(j ) = G(x).

In this section, as at the end of Sect. 2, X denotes a Banach commutative algebra over
K,m ∈ N, a1, . . . , am : S → X, p : {1, . . . ,m} → N,G ∈ XS and ξ1, . . . , ξm ∈ SS .

In what follows, r > 0 is a fixed real number and

Br := {f ∈ XS : ‖f (x)‖ ≤ r for x ∈ S}.
To simplify statements of the main results we define operators L : XS → XS and

Ψ : R
S+ → R

S+ by the formulas:

Lh(x) = G(x) −
m∑

i=1

ai(x)h(ξi(x))p(i) , h ∈ XS , x ∈ S,

Ψγ (x) =
m∑

i=1

p(i)rp(i)−1‖ai(x)‖γ (ξi(x)) , γ ∈ R
S
+, x ∈ S.

Now we are in a position to present [16, Theorem 2].

Theorem 21 Suppose that δ ∈ R
S+, γ ∈ Br ,

∥∥γ (x) +
m∑

j=1

aj (x)γ (ξj (x))p(j ) − G(x)
∥∥ ≤ δ(x) , x ∈ S,

‖G(x)‖ ≤ r −
m∑

i=1

‖ai(x)‖rp(i) , x ∈ S,
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χ (x) :=
∞∑

n=0

Ψ nδ(x) < ∞ , x ∈ S.

Then there is a unique solution f ∈ Br of Eq. (4) with

‖f (x) − γ (x)‖ ≤ χ (x) , x ∈ S;

in particular
f (x) = lim

n→∞ Lnγ (x) , x ∈ S.

If in Theorem 21 we take S = {t0}, then it is easily seen that we obtain the
following.

Corollary 1 Suppose that ξ0, ξ1, . . . , ξm ∈ X, z0 ∈ X, ‖z0‖ ≤ r ,

‖ξ0‖ ≤ r −
m∑

i=1

‖ξi‖ri , λ0 :=
m∑

j=1

jrj−1‖ξj‖ < 1.

Then there is a unique z ∈ X such that ‖z‖ ≤ r ,

z =
m∑

j=0

ξj zj , ‖z − z0‖ ≤ 1

1 − λ0

∥∥z0 −
m∑

j=0

ξj zj0
∥∥.

In particular
z = lim

n→∞Ln(z0),

with

L(w) =
m∑

i=0

ξiw
i , w ∈ X.
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7. Brillouët-Belluot, N., Brzdȩk, J., Ciepliński, K.: On some recent developments in Ulam’s type
stability. Abstr. Appl. Anal. 2012, Article ID 716936 (2012)



On Stability of the Linear and Polynomial Functional Equations in Single Variable 79

8. Brydak, D.: On the stability of the functional equation ϕ[f (x)] = g(x)ϕ(x) +F (x). Proc. Am.
Math. Soc. 26, 455–460 (1970)

9. Brydak, D.: Iterative stability of the Böttcher equation. In: Rassias, Th.M., Tabor, J. (eds.)
Stability of Mappings of Hyers-Ulam Type, pp. 15–18. Hadronic Press, Palm Harbor (1994)
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14. Brzdȩk, J., Jung, S.-M.: A note on stability of a linear functional equation of second order
connected with the Fibonacci numbers and Lucas sequences. J. Ineq. Appl. 2010, Article ID
793947, 10 p. (2010)
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Selections of Set-valued Maps Satisfying Some
Inclusions and the Hyers–Ulam Stability
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Abstract We present a survey of several results on selections of some set-valued func-
tions satisfying some inclusions and also on stability of those inclusions. Moreover,
we show their consequences concerning stability of the corresponding functional
equations.

Keywords Stability of functional equation · Set-valued map · Inclusion · Selection

1 Introduction

At present we know that the study of existence of selections of the set-valued maps,
satisfying some inclusions, in many cases is connected to the stability problems of
functional equations (see, e.g., [8, 26, 27, 29]). Let us remind the result on the
stability of functional equation published in 1941 by D. H. Hyers in [6].

Let X be a linear normed space, Y a Banach space, and ε > 0. Then, for every
function f : X → Y satisfying the inequality

‖f (x + y) − f (x) − f (y)‖ ≤ ε, x, y ∈ X, (1)

there exists a unique additive function g : X → Y such that

‖f (x) − g(x)‖ ≤ ε, x ∈ X. (2)
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For further information and references concerning that subject we refer to [1, 3, 5,
7, 10, 11, 15, 28].

W. Smajdor [29] and Z. Gajda, R. Ger [8] observed that inequality (2) can be
written in the form

f (x + y) − f (x) − f (y) ∈ B(0, ε), x, y ∈ X,

where B(0, ε) is the closed ball centered at 0 and of radius ε. Hence we have

f (x + y) + B(0, ε) ⊂ f (x) + B(0, ε) + f (y) + B(0, ε), x, y ∈ X,

and the set-valued function

F (x) := f (x) + B(0, ε), x ∈ X,

is subadditive, i.e.

F (x + y) ⊂ F (x) + F (y), x, y ∈ X;

moreover, the function g from inequality (2) satisfies

g(x) ∈ F (x), x ∈ X,

which means that F has the additive selection g.
There arises a natural question under what conditions a subadditive set-valed

function admits an additive selection. An answer provides the result of Z. Gajda and
R. Ger in [8] given below (δ(D) denotes the diameter of a nonempty set D).

Theorem 1 Let (S, +) be a commutative semigroup with zero, X a real Banach
space and F : S → 2X a set-valued map with nonempty, convex, and closed values
such that

F (x + y) ⊂ F (x) + F (y), x, y ∈ S,

and
sup
x∈S

δ(F (x)) < ∞.

Then F admits a unique additive selection.
Some other results on the existence of the additive selections of subadditive,

superadditive, or additive set-valued functions can be found in [16, 30–33].

2 Linear Inclusions

In this section X is a real vector space and Y is a real Banach space. We denote
by n(Y ) the family of all nonempty subsets of Y and by ccl(Y ) the family of all
nonempty closed and convex subsets of Y . The number

δ(A) = sup
x,y∈A

‖x − y‖
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is said to be the diameter of nonempty A ⊂ Y . For A,B ⊂ Y and α,β ∈ R (the set
of reals) we write

A + B := {a + b : a ∈ A, b ∈ B}
and

αA := {αx : x ∈ A} ;

it is well known that

α(A + B) = αA + αB

and

(α + β)A ⊂ αA + βA.

If A ⊂ Y is convex and αβ > 0, then we have

(α + β)A = αA + βA.

A nonempty set K ⊂ Y is said to be a convex cone if

K + K ⊂ K

and
tK ⊂ K , t > 0.

Any function f : X → Y such that

f (x) ∈ F (x), x ∈ X,

is said to be a selection of the multifunction F : X → n(Y ).
Some generalization of Theorem 1 can be found in [20], where (α,β)-subadditive

set-valued map was considered, i.e., the set valued function satisfying

F (αx + βy) ⊂ αF (x) + βF (y), x, y ∈ K.

It has been proved there that an (α,β)-subadditive set-valued map with closed,
convex, and equibounded values in a Banach space has exactly one additive selection
ifα,β are positive reals andα+β �= 1. Forα+β < 1 a stronger result is true; namely,
F is single valued and additive. The above results were extended by K. Nikodem
and D. Popa [18, 22] to the case of the following general linear inclusions:

F (ax + by + k) ⊂ pF (x) + qF (y) + C, x, y ∈ K , (3)

pF (x) + qF (y) ⊂ F (ax + by + k) + C, x, y ∈ K , (4)

where a, b,p, q are positive reals,K ⊂ X is a convex cone with zero, F : K → n(Y ),
k ∈ K , and C ∈ n(Y ). Namely, they have proved the following two theorems.
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Theorem 2 Suppose that a+ b �= 1, p+ q �= 1, and F : K → ccl(Y ) satisfies the
general linear inclusion

F (ax + by + k) ⊂ pF (x) + qF (y), x, y ∈ K ,

and

sup
x∈K

δ(F (x)) < ∞. (5)

Then,

(i) in the case p + q > 1, there exists a unique selection f : K → Y of F that
satisfies the general linear equation

f (ax + by + k) = pf (x) + qf (y), x, y ∈ K; (6)

(ii) in the case p + q < 1, F is single valued.

Making a suitable substitutions, we easily deduce from the above theorem the
following corollary.

Corollary 1 Suppose that a + b �= 1, p + q > 1, C ⊂ Y is nonempty, compact,
and convex and F : K → ccl(Y ) satisfies (5) and the general linear inclusion (3).

Then there exists a unique single valued mapping f : K → Y satisfying Eq. (6)
and such that

f (x) ∈ F (x) + 1

p + q − 1
C, x ∈ K.

The next theorem is complementary to the above one.

Theorem 3 Suppose that p + q �= 1 and F : K → ccl(Y ) satisfies the general
linear inclusion

pF (x) + qF (y) ⊂ F (ax + by), x, y ∈ K , (7)

and
sup
x∈Lz

δ(F (x)) < ∞, z ∈ K ,

where
Lz = {tz : t ≥ 0}.

Then,

(i) in the case p+ q < 1, there exists a unique selection f : K → Y of F satisfying
the general linear equation

pf (x) + qf (y) = f (ax + by), x, y ∈ K;

(ii) in the case p + q > 1, F is single-valued.
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It can be easily shown that Theorem 3 yields the following.

Corollary 2 Let a+b �= 1, p+q < 1, C ⊂ Y be nonempty, compact, and convex,
and

x0 := k

1 − a − b
.

Suppose that F : K + x0 → ccl(Y ) satisfies the general linear inclusion (4) for
x, y ∈ K + x0 and

sup
x∈Lz+x0

δ(F (x)) < ∞, z ∈ K.

Then there exists a unique single valued mapping f : K + x0 → Y satisfying
Eq. (6) for x, y ∈ K + x0 and such that

f (x) ∈ F (x) + 1

1 − p − q
C, x ∈ K + x0.

Now, we recall some results concerning the linear inclusions when p + q = 1.
The special cases are the following two Jensen inclusions

F

(
x + y

2

)
⊂ F (x) + F (y)

2

and

F (x) + F (y)

2
⊂ F

(
x + y

2

)
.

First we show some examples. Namely, the multifunction F : R → ccl(R) given
by

F (x) = [x − 1, x + 1], x ∈ R,

satisfies the Jensen equation

F

(
x + y

2

)
= F (x) + F (y)

2
, x, y ∈ R,

and each function f : R → R,

f (x) = x + b, x ∈ R,

where b ∈ [−1, 1] is fixed, is a selection of F and satisfies the Jensen functional
equation.
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Observe also that, in the case p + q = 1, a constant function F : K → ccl(Y ),
F (x) = M for x ∈ K , where K ⊂ X is a cone and M ∈ ccl(Y ) is fixed, satisfies the
equation

F (ax + by) = pF (x) + qF (y), x, y ∈ K ,

and each constant function f : K → Y , f (x) = m for x ∈ K , where m ∈ M is
fixed, satisfies

f (ax + by) = pf (x) + qf (y), x, y ∈ K.

The subsequent results, concerning this case, have been obtained by K. Nikodem
[17] and by A. Smajdor and W. Smajdor in [34] (as before, K ⊂ X is a convex cone
containing zero).

Theorem 4 Let α ∈ (0, 1), a, b > 0, C be a nonempty, compact, and convex subset
of Y containing zero. Suppose that F : K → ccl(Y ) satisfies

(1 − α)F (x) + αF (y) ⊂ F (px + qy) + C, x, y ∈ K ,

and
sup
x∈K

δ(F (x)) < ∞.

Then there exists a function f : K → Y satisfying

(1 − α)f (x) + αf (y) = f (px + qy), x, y ∈ K ,

and such that

f (x) ∈ F (x) + 1

α
C, x ∈ K.

Recently D. Inoan and D. Popa in [9] generalized the above theorem onto the case
of inclusion

(1 − α)F (x) + αF (y) ⊂ F (x � y) + C, x, y ∈ G, (8)

where (G, �) is a groupoid with an operation that is bisymmetric, i.e.,

(x1 � y1) � (x2 � y2) = (x1 � x2) � (y1 � y2), x1, x2, y1, y2 ∈ G,

and fulfills the property:
there exists an idempotent element a ∈ G (i.e. a � a = a) such that for every x ∈ G

there exists a unique ta(x) ∈ G with ta(x) � a = x.
They have proved the following (we write tn+1

a (x) := ta(tna (x)) for x ∈ G and
each positive integer n).
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Theorem 5 Let p ∈ (0, 1) and F : G → n(Y ) satisfy inclusion (8) and

sup
n∈N

δ(F (tna (x))) < ∞, x ∈ G.

Then there exists a function f : G → Y with the following properties:

f (x) ∈ clF (x) + 1

p
C, x ∈ G,

(1 − p)f (x) + pf (y) = f (x � y), x, y ∈ G.

To present the further generalizations of those results, we need to remind the
notion of the square symmetric operation. Let (G, �) be a groupoid (i.e., G is a
nonempty set endowed with a binary operation � : G2 → G). We say that � is square
symmetric provided

(x � y) � (x � y) = (x � x) � (y � y), x, y ∈ G.

D. Popa in [21, 23] have proved that a set-valued map F : X → n(Y ) satisfying
one of the following two functional inclusions

F (x � y) ⊂ F (x) � F (y), x, y ∈ X,

F (x) � F (y) ⊂ F (x � y), x, y ∈ X,

in appropriate conditions admits a unique selection f : X → Y satisfying the
functional equation

f (x) � f (y) = f (x � y),

where (X, �), (Y , �) are square-symmetric groupoids.
Those results extend the previous ones, because it is easy to check that if K ⊂ X

is a convex cone, k ∈ T and a, b are fixed positive reals, then � : T 2 → T defined
by

x � y := ax + by + k, x, y ∈ T ,

is square symmetric. Actually, even more general property is valid: the operation
∗ : T 2 → T , given by

x ∗ y := α(x) + β(y) + γ0, x, y ∈ T ,

is square symmetric, where α,β : T → T are fixed additive mappings with

α ◦ β = β ◦ α
and γ0 is a fixed element of T .
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3 Inclusions in a Single Variable

Now, we present some results corresponding to inclusions in a single variable and
applications to the inclusions in several variables.

In this section, K stands for a nonempty set and (Y , d) denotes a metric space,
unless explicitly stated otherwise. For F : K → n(Y ) we denote by clF the
multifunction defined by

(clF )(x) = clF (x), x ∈ K.

Given α : K → K we write α0(x) = x for x ∈ K and

αn+1 = αn ◦ α, n ∈ N0 := N ∪ {0}
(N is the set of positive integers). The following result has been obtained in [24].

Theorem 6 Let F : K → n(Y ), Ψ : Y → Y , α : K → K , λ ∈ (0, +∞),

d(Ψ (x),Ψ (y)) ≤ λd(x, y), x, y ∈ Y ,

and

lim
n→∞ λnδ(F (αn(x))) = 0, x ∈ K.

1) If Y is complete and

Ψ (F (α(x))) ⊂ F (x), x ∈ K ,

then, for each x ∈ K , the limit

lim
n→∞ clΨ n ◦ F ◦ αn(x) =: f (x)

exists and f is a unique selection of the multifunction clF such that

Ψ ◦ f ◦ α = f.

2) If

F (x) ⊂ Ψ (F (α(x))), x ∈ K ,

then F is a single-valued function and

Ψ ◦ F ◦ α = F.

Obviously, if Ψ is a contraction (i.e., λ < 1) and

sup
x∈K

δ(F (x)) < ∞,
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then it is easily seen that

lim
n→∞ λnδ(F (αn(x))) = 0

and consequently the assertions of Theorem 6 are satisfied.

It has been shown in [24] that from Theorem 6 we can derive results on the selec-
tions of the set-valued functions satisfying inclusions in several variables, especially
the general linear inclusions. Indeed, it is enough to take

Ψ (x) = 1

p + q
x, α(x) = (a + b)x, x ∈ K ,

or

Ψ (x) = (p + q)x, α(x) = 1

a + b
x, x ∈ K ,

to obtain the results on selections for the inclusions

F (ax + by) ⊂ pF (x) + qF (y), x, y ∈ K ,

and
pF (x) + qF (y) ⊂ F (ax + by), x, y ∈ K ,

respectively. Analogously, we can also obtain results for the quadratic inclusions:

F (x + y) + F (x − y) ⊂ 2F (x) + 2F (y)

and

2F (x) + 2F (y) ⊂ F (x + y) + F (x − y),

the cubic inclusions:

F (2x + y) + F (2x − y) ⊂ 2F (x + y) + 2F (x − y) + 12F (x)

and

2F (x + y) + 2F (x − y) + 12F (x) ⊂ F (2x + y) + F (2x − y),

and the quartic inclusions:

F (2x + y) + F (2x − y) + 6F (y) ⊂ 4F (x + y) + 4F (x − y) + 24F (x), (9)

4F (x + y) + 4F (x − y) + 24F (x) ⊂ F (2x + y) + F (2x − y) + 6F (y) (10)

(some of them have been investigated in [19]), or the following one in three variables

F (x + y + z) ⊂ 2F

(
x + y

2

)
+ F (z),

considered in [14].
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From Theorem 6 we can deduce the same conclusions as in [14, 19] (cf. also, e.g.,
[13]), but under weaker assumptions. As an example we present below such a result
for the quartic inclusions, with a proof.

Corollary 3 Let Y be a real Banach space, (K , +) be a commutative group, F :
K → ccl(Y ) and

sup
x∈K

δ(F (x)) < ∞.

(i) If (9) holds for all x, y ∈ K , then there exists a unique selection f : K → Y of
the multifunction F such that

f (2x+y) + f (2x−y) + 6f (y) = 4f (x+y) + 4f (x−y) + 24f (x), x, y ∈ K.

(ii) If (10) holds for all x, y ∈ K , then F is single-valued.

Proof (i) Setting x = y = 0 in (9) we have

8F (0) ⊂ 32F (0).

and, by the Rådström cancellation lemma, we get 0 ∈ F (0). Next setting y = 0 in
(9) and using the last condition we obtain

2F (2x) ⊂ 2F (2x) + 6F (0) ⊂ 32F (x), x ∈ K,

whence we derive the inclusion

F (2x)

16
⊂ F (x), x ∈ K.

Next, by Theorem 6, with

Ψ (x) = 1

16
x, α(x) = 2x, x ∈ K ,

for each x ∈ K there exists the limit

lim
n→∞Ψ n(F (αn(x))) = lim

n→∞
F (2nx)

16n
= f (x);

moreover,
f (x) ∈ F (x), x ∈ K.

Since, for every x, y ∈ K , n ∈ N,

F (2n(2x + y))

16n
+ F (2n(2x − y))

16n
+ 6

F (2ny)

16n

⊂ 4
F (2n(x + y))

16n
+ 4

F (2n(x − y))

16n
+ 24

F (2nx)

16n
,
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letting n → ∞ we also get

f (2x+y)+f (2x−y)+6f (y) = 4f (x+y)+4f (x−y)+24f (x), x, y ∈ K.

Also the uniqueness of f can be easily deduced from Theorem 6.
(ii) Setting x = y = 0 in (10) and using the Rådström cancellation lemma we get

F (0) = {0}.
Thus and by (10) (with y = 0) we have

32F (x) ⊂ 2F (2x) + 6F (0) = 2F (2x), x ∈ K,

and consequently

F (x) ⊂ F (2x)

16
, x ∈ K.

So, using Theorem 6 with Ψ and α defined as in the previous case, we deduce
that F must be single-valued. �

Some generalization of Theorem 6 can be found in [25]; they are given below.

Theorem 7 Let F : K → n(Y ), k ∈ N, α1, . . . ,αk : K → K , λ1, . . . , λk : K →
[0, ∞), Ψ : K × Y k → Y ,

d(Ψ (x, w1, . . . , wk),Ψ (x, z1, . . . , zk)) ≤
k∑

i=1

λi(x)d(wi , zi)

for x ∈ K , w1, . . . , wk , z1, . . . , zk ∈ Y and

lim inf
n→∞

k∑

i1=1

λi1 (x)
k∑

i2=1

(λi2 ◦ αi1 )(x) . . .
k∑

in=1

(λin ◦ αin−1 ◦ . . . ◦ αi1 )(x)

× δ(F ((αin ◦ . . . ◦ αi1 )(x))) = 0, x ∈ K.

(a) If Y is complete and

Ψ (x,F (α1(x)), . . . ,F (αk(x))) ⊂ F (x), x ∈ K ,

then there exists a unique selection f : K → Y of the multifunction clF such
that

Ψ (x, f (α1(x)), . . . , f (αk(x))) = f (x), x ∈ K.

(b) If

F (x) ⊂ Ψ (x,F (α1(x)), . . . ,F (αk(x))), x ∈ K ,

then F is a single-valued function and

Ψ (x,F (α1(x)), . . . ,F (αk(x))) = F (x), x ∈ K.
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From this theorem we can easily deduce similar results for the following two
gamma-type inclusions in single variable

φ(x)F (a(x)) ⊂ F (x), x ∈ K ,

and

F (x) ⊂ φ(x)F (a(x)), x ∈ K ,

where F : K → n(Y ), a : K → K , φ : K → R (for some recent stability results
connected with those inclusions see [12]); or for the subsequent two inclusions

λ1F (α1(x)) + · · · + λkF (αk(x)) ⊂ F (x), x ∈ K ,

and

F (x) ⊂ λ1F (α1(x)) + · · · + λkF (αk(x)), x ∈ K ,

whereΨ : K×Y k → Y , α1, . . . ,αk : K → K , λ1, . . . , λk ∈ R+ (nonegative reals),
and λ1 + · · · + λk ∈ (0, 1).

A different generalization of Theorem 6 have been suggested in [25], with the
right side of inclusions as a sum of two set-valued functions. But in this situation we
do not obtain existence of the selection but of a suitable single valued function close
to F . Namely, we have the following two theorems.

Theorem 8 Assume that Y is complete, F ,G : K → n(Y ), 0 ∈ G(x) for all x ∈ K ,
Ψ : Y → Y , α : K → K , λ ∈ (0, 1),

d(Ψ (x),Ψ (y)) ≤ λd(x, y), x, y ∈ Y,

M := sup
x∈K

δ(F (x) + G(x)) < ∞

and

Ψ (F (α(x))) ⊂ F (x) + G(x), x ∈ K. (11)

Then there exists a unique function f : K → Y such that

Ψ ◦ f ◦ α = f

and

sup
y∈F (x)

d(f (x), y) ≤ 1

1 − λ
M , x ∈ K.

Theorem 9 Assume that Y is complete, F ,G : K → n(Y ), 0 ∈ G(x) for all x ∈ K ,
k ∈ N, Ψ : K × Y k → Y , α1, . . . ,αk : K → K , λ1, . . . , λk : K → [0, ∞),

d(Ψ (x, w1, . . . , wk),Ψ (x, z1, . . . , zk)) ≤
k∑

i=1

λi(x)d(wi , zi)

for x ∈ K , w1, . . . , wk , z1, . . . , zk ∈ Y ,
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k(x) := δ(F (x) + G(x))

+
∞∑

l=1

k∑

i1=1

λi1 (x)
k∑

i2=1

(λi2 ◦ αi1 )(x) . . .
k∑

il=1

(λil ◦ αil−1 ◦ . . . ◦ αi1 )(x)

× δ(F ((αil ◦ . . . ◦ αi1 )(x)) + G((αil ◦ . . . ◦ αi1 )(x))) < ∞
for x ∈ K and

Ψ (x,F (α1(x)), . . . ,F (αk(x))) ⊂ F (x) + G(x), x ∈ K.

Then there exists a unique function f : K → Y such that

Ψ (x, f (α1(x)), . . . , f (αk(x))) = f (x), x ∈ K ,

and
sup

y∈F (x)
d(f (x), y) ≤ k(x), x ∈ K.

A special case of inclusion (11), without the assumption 0 ∈ G(x), has been
investigated in [4]. In what follows X is a Banach space over a field K ∈ {R, C},
a : K → K, b : K → [0, ∞), φ : K → K , ψ : K → X are given functions and
B ∈ n(X) is a fixed balanced and convex set with δ(B) < ∞. Moreover, we write

a−1(x) := 1, an(x) :=
n∏

j=0

a(φj (x)),

cn(x) := b(φn(x))an−1(x),

and

s−1(x) := 0, sn(x) := −
n∑

k=0

ak−1(x)ψ(φk(x))

for every n ∈ N0, x ∈ K .

Theorem 10 Assume that F : K → n(X) is a set-valued map and the following
three conditions hold:

a(x)F (φ(x)) ⊂ F (x) + ψ(x) + b(x)B, x ∈ K ,

lim inf
n→∞ δ(F (φn+1(x)))|an(x)| = 0, x ∈ K ,

ω(x) :=
∞∑

n=0

|cn(x)| < ∞, x ∈ K. (12)
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Let

Φn(x) := cl

(
an−1(x)F (φn(x)) + sn−1(x) +

( ∞∑

k=n

|ck(x)|
)
B

)

for x ∈ K , n ∈ N0. Then, for each x ∈ K , the sequence (Φn(x))n∈N0 is decreasing
(i.e., Φn+1(x) ⊂ Φn(x)), the set

Φ̂(x) :=
∞⋂

n=0

Φn(x)

has exactly one point and the function f : K → X given by f (x) ∈ Φ̂(x) is the
unique solution of the equation

a(x)f (φ(x)) = f (x) + ψ(x), x ∈ K , (13)

with

f (x) ∈ Φ0(x) = cl(F (x) + ω(x)B), x ∈ K.

4 Applications

In this section we present a few applications of the results, presented in the previous
sections, to the stability of some functional equations.

Let V be nonempty, compact, and convex subset of a real Banach space Y , 0 ∈ V ,
and a, b,p, q ∈ R.

Corollary 4 Let K be a convex cone in a real vector space and c ∈ K . Suppose
that a + b �= 1, p + q > 1, and f : K → Y satisfies

f (ax + by + c) − pf (x) − qf (y) ∈ V , x, y ∈ K.

Then there exists a unique function h : K → Y such that

h(ax + by + c) = ph(x) + qh(y), x, y ∈ K ,

and

h(x) − f (x) ∈ 1

p + q − 1
V , x ∈ K.

Proof Let

F (x) := f (x) + 1

p + q − 1
V , x ∈ K.

Then

F (ax + by + c) = f (ax + by + c) + 1

p + q − 1
V
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⊂ pf (x) + qf (y) + p + q

p + q − 1
V

= p

(
f (x) + 1

p + q − 1
V

)
+ q

(
f (y) + 1

p + q − 1
V

)

= pF (x) + qF (y), x, y ∈ K.

By Theorem 2 there exists a unique function h : K → Y with

h(x) ∈ f (x) + 1

p + q − 1
V , x ∈ K ,

and such that

h(ax + by + c) = ph(x) + qh(y), x, y ∈ K.

�

Corollary 5 Let (K , +) be a commutative group and f : K → Y satisfies

f (2x + y) + f (2x − y) + 6f (y) − 4f (x + y) − 4f (x − y) − 24f (x) ∈ V

for every x, y ∈ K . Then there exists a unique function h : K → Y such that

h(2x+y) + h(2x−y) + 6h(y) = 4h(x + y) + 4h(x − y) + 24h(x), x, y ∈ K ,

h(x) − f (x) ∈ 1

24
V , x ∈ K.

Proof Let F (x) := f (x) + 1
24V for x ∈ K . Then

F (2x + y) + F (2x − y) + 6F (y)

= f (2x + y) + f (2x − y) + 6f (y) + 8

24
V

⊂ 4f (x + y) + 4f (x − y) + 24f (x) + 8

24
V + V

= 4

(
f (x + y) + 1

24
V

)
+ 4

(
f (x − y) + 1

24
V

)
+ 24

(
f (x) + 1

24
V

)

= 4F (x + y) + 4F (x − y) + 24F (x), x, y ∈ K.

Now, according to Corollary 3 there exists a unique function h : K → X such
that h(2x+y) +h(2x−y) + 6h(y) = 4h(x+y) + 4h(x−y) + 24h(x) for x, y ∈ K

and

h(x) ∈ f (x) + 1

24
V , x ∈ K.

�
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In similar way we can obtain the stability results for some other equations. In
particular, from Theorem 7 with

F (x) = f (x) + 1

1 − (λ1 + · · · + λk)
V , x ∈ K ,

and λ1 + · · · + λk ∈ (0, 1), we can derive analogous as in Corollary 5 results for
functions f satisfying the condition

λ1f (α1(x)) + · · · + λkf (αk(x)) − f (x) ∈ V , x ∈ K.

The following corollary follows from Theorem 10 (see [4]).

Corollary 6 Let (12) be valid and g : K → X satisfy

a(x)g(φ(x)) − g(x) − ψ(x) ∈ b(x)B, x ∈ K.

Then there exists a unique solution f : K → X of Eq. (13) with

f (x) − g(x) ∈ ω(x)clB, x ∈ K.

Moreover, for each x ∈ K ,

f (x) = lim
n→∞ [an−1(x)g(φn(x)) + sn−1(x)].

Finally, let us recall the result in [2].

Theorem 11 Let (S, +) be a left amenable semigroup and let X be a Hausdorff
locally convex linear space. Let F : S → n(X) be set-valued function such that F (s)
is convex and weakly compact for all s ∈ S. Then F admits an additive selection
a : S → X if and only if there exists f : S → X such that

f (s + t) − f (t) ∈ F (s), s, t ∈ S.

As a consequence of it we obtain the following corollaries.

Corollary 7 Let (S, +) be a left amenable semigroup and letX be a reflexive Banach
space. In addition, let ρ : S → [0, ∞) and g : S → X be arbitrary functions. Then
there exists an additive function a : S → X such that

‖a(s) − g(s)‖ ≤ ρ(s), s ∈ S,

if and only if there exists a function f : S → X such that

‖f (s + t) − f (t) − g(s)‖ ≤ ρ(s), s, t ∈ S.

Corollary 8 Let (S, +) be a left amenable semigroup, X be a reflexive Banach
space, and let ρ : S → [0, ∞) be an arbitrary function. Assume that a function
f : S → X satisfies

‖f (s + t) − f (t) − f (s)‖ ≤ ρ(s), s, t ∈ S.

Then there exists an additive function a : S → X such that

‖a(s) − f (s)‖ ≤ ρ(s), s, t ∈ S.
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Generalized Ulam–Hyers Stability Results:
A Fixed Point Approach

Liviu Cădariu

Abstract We show that a recent fixed point result in (Cădariu et al., Abstr. Appl.
Anal., 2012) can be used to prove some generalized Ulam–Hyers stability theorems
for additive Cauchy functional equation as well as for the monomial functional
equation in β−normed spaces.

Keywords Generalized · Ulam–Hyers stability · Fixed point approach · Monomial
functional equation · Cauchy functional equation · β-norm

1 Preliminaries

Starting from a question of S. M. Ulam concerning the stability of group homo-
morphisms, D. H. Hyers gave a purely constructive solution in the case of Cauchy
functional equation in Banach spaces (see, e.g., [26, 27]). The result of Hyers was
generalized by T. Aoki [1] for approximately additive mappings and by Th. M. Ras-
sias [37] for approximately linear mappings. G. L. Forti [19] extended a part of
Th. M. Rassias’ result for a general class of functional equations. P. Găvruţa [23]
obtained a generalization of Th. M. Rassias’ theorem, by replacing the Cauchy dif-
ferences by a control mapping satisfying a simple condition of convergence. These
papers had a great influence in the development of what is now known as general-
ized Hyers–Ulam–Rassias stability of the functional equations. For a comprehensive
presentation of this field we refer the reader to the papers [3, 20–22, 24, 28, 30–32,
35, 38, 39] and to the books [17, 18, 27, 29].

Almost all proofs in this topic used the direct method (of Hyers): the exact solution
of the functional equation is explicitly constructed as a limit of a sequence, starting
from the given approximate solution f . On the other hand, J. A. Baker [2] used
in 1991 the Banach fixed point theorem to give Hyers–Ulam stability results for
a nonlinear functional equation. In 2003, V. Radu [36] proposed a new method,
successively developed in [8–10,12] to obtain the existence of the exact solutions and
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the error estimations, based on the fixed point alternative. After that, D. Miheţ [33]
applied the Luxemburg–Jung fixed point theorem in generalized metric spaces while
L. Găvruţa [25] used the Matkowski’s fixed point theorem to obtain some general
results concerning the Hyers–Ulam stability of several types of functional equations
in a single variable. L. Cădariu and V. Radu used two fixed point alternatives together
with the error estimations for generalized contractions of type Bianchini–Grandolfi
and Matkowski for proving stability of Cauchy functional equation [13] and of the
monomial functional equation [14], in β−normed spaces (see, e.g., [16] for more
details).

In the last 3 years several papers based on the idea to construct some fixed points
theorems in very general conditions for operators with suitable properties have been
published. Afterwards, these theorems have been used to obtain properties of gen-
eralized Ulam–Hyers stability for several classes of functional equations. In this
context, J. Brzdȩk et al. proved in [7] a fixed point theorem for (not necessarily)
linear operators and they used it for proving Hyers–Ulam stability results for a class
of functional equations in a single variable. A fixed point result of the same type was
proved by J. Brzdȩk and K. Ciepliński [6], in complete non-Archimedean metric
spaces as well as in complete metric spaces. These results were extended in [15] by
L. Cădariu et al. Moreover, they gave an affirmative answer to the open problem of J.
Brzdȩk and K. Ciepliński [6], concerning the uniqueness of the fixed point of some
operator T , defined in the following lines.

In this chapter, we will show that some classical results of generalized Ulam–
Hyers stability can be obtained directly from these fixed point theorems.

We now recall some necessary notions and results, used in the sequel. Let S be a
vector space over the real or the complex field K and β ∈ (0, 1].

Definition 1 A mapping || · ||β : S → R+ is called a β−norm iff it has the
following properties:

nIβ : ||x||β = 0 ⇐⇒ x = 0;

nIIβ : ||λ · x||β = |λ|β · ||x||β , for all x ∈ S, λ ∈ K;

nIIIβ : ||x + y||β ≤ ||x||β + ||y||β , for all x, y ∈ S.

We also recall some fixed point results that will be used to prove the generalized
Ulam–Hyers stability theorems for the additive Cauchy functional equation as well
as for the monomial functional equation.

We consider a nonempty set X, a complete metric space (Y , d), and the mappings
Λ : R

X+ → R
X+ and T : YX → YX. We remind that YX denotes the space of all

mappings from X into Y.

Definition 2 We say that T is Λ− contractive if for u, v : X → Y and δ ∈ R
X+ with

d(u(t), v(t)) ≤ δ(t), ∀t ∈ X,

it follows

d((T u)(t), (T v)(t)) ≤ (Λδ)(t), ∀t ∈ X.
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In the following, we assume that Λ satisfies the condition:
For every sequence (δn)n∈N of elements of R

X+ and every t ∈ X,

lim
n→∞ δn(t) = 0 ⇒ lim

n→∞ (Λδn)(t) = 0. (C1)

Also, we suppose that ε ∈ R
X+ is a given function such that

ε∗(t) :=
∞∑

k=0

(
Λkε

)
(t) < ∞, t ∈ X. (C2)

Now we are in position to recall one of the main results in [15]:

Theorem 1 ([15], Theorem 2.1) We suppose that the operator T is Λ−contractive
and the conditions (C1) and (C2) hold. We consider a mapping f ∈ YX such that

d((T f )(t), f (t)) ≤ ε(t), ∀t ∈ X. (1)

Then, for every t ∈ X, the limit

g(t) := lim
n→∞ (T nf )(t), (2)

exists and the mapping g is the unique fixed point of T with the property

d((T mf )(t), g(t)) ≤
∞∑

k=m

(
Λkε

)
(t), t ∈ X, m ∈ N = {0, 1, 2, . . .}. (3)

Moreover, if we have

lim
n→∞ (Λnε∗)(t) = 0, ∀t ∈ X, (C3)

then g is the unique fixed point of T with the property

d(f (t), g(t)) ≤ ε∗(t), ∀t ∈ X. (4)

As a direct consequence of the Theorem 1 we obtained the following result:

Proposition 1 ([15], Corollary 2.3) Let G be a nonempty set, (X, d) be a complete
metric space, R+ be the set of all nonnegative real numbers, and Λ : R

G+ → R
G+ be

a non-decreasing operator satisfying the hypothesis (C1). If T : XG → XG is an
operator satisfying the inequality

d((T ξ )(x), (T μ)(x)) ≤ Λ(d(ξ (x),μ(x))), ξ ,μ ∈ XG, x ∈ G, (5)

and the functions ε : G → R+ and g : G → X are such that

d((T g)(x), g(x)) ≤ ε(x), x ∈ G, (6)
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and

ε∗(x) :=
∞∑

k=0

(
Λkε

)
(x) < ∞, x ∈ G, (C

′
2)

then, for every x ∈ G, the limit

A(x) := lim
n→∞ (T ng)(x)

exists and the function A ∈ XG, defined in this way, is a fixed point of T , with

d(g(x),A(x)) ≤ ε∗(x), x ∈ G.

Moreover, if the condition

lim
n→∞ (Λnε∗)(x) = 0, ∀x ∈ G, (C

′
3)

holds, then A is the unique fixed point of T with the property

d(g(x),A(x)) ≤ ε∗(x), x ∈ G.

2 Results

In this section we show that generalized Ulam–Hyers stability properties for two
well-known functional equations can be obtained directly from the fixed point result
in Proposition 1. The first outcome refers to the generalized Ulam–Hyers stability for
additive Cauchy functional equation in β−normed spaces. This result was proved in
[23], by using the direct method, for functions defined on the Abelian groups into
Banach spaces. In [9] a variant of this theorem was obtained, for functions with
values in β− normed spaces, by using the fixed point alternative (see also [13]).

We denote by (G, +) an Abelian group, by (X, || · ||β) a complete β−normed
space and by ϕ : G × G → [0, ∞) a mapping such that

Φ(x) :=
∞∑

k=0

ϕ(2kx, 2kx)

2βk
< ∞, ∀x ∈ G (7)

and

lim
n→∞

ϕ(2nx, 2ny)

2βn
= 0, ∀x, y ∈ G. (8)

Theorem 2 Let f : G → X, such that

||f (x + y) − f (x) − f (y)||β ≤ ϕ(x, y), ∀x, y ∈ G. (9)
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Then there exists a unique mapping A : G → X, which satisfies the additive
Cauchy functional equation and

||f (x) − A(x)||β ≤ 1

2β
Φ(x), ∀x ∈ G. (10)

Proof We apply the Proposition 1 taking the mapping

Λ : R
G
+ → R

G
+, (Λδ)(x) := δ(2x)

2β
, (δ : G → R+),

and the operator

T : XG → XG, (T ψ)(x) := ψ(2x)

2
, (ψ : G → X).

From the definition of Λ, the relation (C1) is obvious and condition (5) from
Proposition 1 holds with equality.

If we take

ε(x) := ϕ(x, x)

2β
, ∀x ∈ G,

the relation (7) implies that the series

ε∗(x) =
∞∑

k=0

(
Λkε

)
(x) =

∞∑

k=0

ε(2kx)

2kβ
= 1

2β

∞∑

k=0

ϕ(2kx, 2kx)

2kβ
= Φ(x)

2β
, ∀x ∈ G

is convergent, so (C
′
2) is verified.

Also, we have that
∣∣∣∣

∣∣∣∣
f (2x)

2
− f (x)

∣∣∣∣

∣∣∣∣
β

≤ 1

2β
ϕ(x, x), ∀x ∈ G,

and f satisfied the hypotheses of Proposition 1. This means that

dβ ((T f )(x), f (x)) ≤ ε(x), ∀x ∈ G,

with dβ(u, v) := ||u − v||β , u, v ∈ XG.

On the other hand,

(Λnε∗)(x) = Φ(2nx)

2(n+1)β
= 1

2β

∞∑

k=0

ϕ(2n+kx, 2n+kx)

2(n+k)β
= 1

2β

∞∑

p=n

ϕ(2px, 2px)

2βp
, ∀x ∈ G.

Taking on the limit in the above relation as n → ∞, we obtain that (C
′
3) is verified.

Applying Proposition 1, it results that the limit

lim
n→∞ (T nf )(x) = lim

n→∞
f (2nx)

2n
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exists for every x ∈ G. Moreover, the mapping A : G → X,

A(x) := lim
n→∞ (T nf (x)), ∀x ∈ G

is the unique fixed point of T , with

dβ(f (x),A(x)) ≤ ε∗(x), ∀x ∈ G,

which implies that

||f (x) − A(x)||β ≤ 1

2β
Φ(x), ∀x ∈ G.

As in [23], to prove that the function A is a solution of the Cauchy functional
equation, we use (8) and the definition of A. �

The last part of the chapter is devoted to the study of generalized Ulam–Hyers
stability of the monomial functional equation. We now recall some necessary notions
used in the sequel.

Let X and Y be vector spaces and consider the difference operators defined, for
every y ∈ X and any mapping f : X → Y , by

Δ1
yf (x) := f (x + y) − f (x), ∀x ∈ X,

and, inductively, Δn+1
y = Δ1

y ◦ Δn
y , for all natural number n ≥ 1.

A mapping f : X → Y is called a monomial function of degree N if it is a solution
of the monomial functional equation

ΔN
y f (x) − (N !)f (y) = 0, ∀ x, y ∈ X. (11)

The monomial equation of degree 1 is exactly the Cauchy equation, forN = 2 the
monomial equation is equivalent to the well-known quadratic functional equation

f (x + y) + f (x − y) = 2 f (x) + 2 f (y), ∀x, y ∈ X, (12)

for N = 3 the monomial equation is of cubic type, etc. In the sequel, the degree
N will be fixed. Recall also the following noteworthy formula for the difference
operator:

ΔN
y f (x) =

N∑

j=0

(− 1)N+j

(
N

N − j

)
f (x + jy). (13)

In [10] we proved by the direct method, some properties of generalized Ulam–
Hyers stability of the monomial functional equation (see also [11]). In what follows
we give a very simple proof of the above mentioned result, by using also the fixed
point result in Proposition 1.
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Let us consider an Abelian group G, a complete β-normed space X, and a
controlling mapping ϕ : G × G → [0, ∞) such that

Φi(x) :=
∞∑

k=0

ϕ(2kix, 2kx)

(2Nβ)k
< ∞, ∀x ∈ G, for i = 0, 1, . . .,N , (14)

and

lim
m→∞

ϕ(2mx, 2my)

(2Nβ)m
= 0, ∀x, y ∈ G. (15)

Theorem 3 ([10], Theorem 2.1) For every mapping f : G → X which satisfies
the control condition

‖ΔN
y f (x) − (N !)f (y)‖β ≤ ϕ(x, y) ∀x, y ∈ G, (16)

there exists a unique monomial function A : G → X of degree N such that, for all
x ∈ G,

‖f (x) − A(x)‖β ≤ 1

2Nβ · (N !)β
(
Φ0(2x) +

N∑

i=0

(
N

N − i

)
· Φi(x)

)
. (17)

For proving the above theorem, we also need the following result:

Proposition 2 ([10], Lemma 2.2) LetG be an Abelian group, X a β-normed space,
and ϕ : G×G → [0, ∞) a given mapping. If the function f : G → X satisfies (16)
then, for all x ∈ G,

∣∣∣∣

∣∣∣∣
f (2x)

2N
− f (x)

∣∣∣∣

∣∣∣∣
β

≤
ϕ(0, 2x) +

N∑

i=0

(
N

N − i

)
· ϕ(ix, x)

2Nβ · (N !)β . (18)

Proof of Theorem 3. We apply Proposition 1 taking the mapping

Λ : R
G
+ → R

G
+, (Λδ)(x) := δ(2x)

2Nβ
, (δ : G → R+),

and the operator

T : XG → XG, (T ψ)(x) := ψ(2x)

2N
, (ψ : G → X).

From the definition of Λ, the relation (C1) is obvious and condition (5) from
Proposition 1 holds with equality. From Proposition 2, we have that

∣∣∣∣

∣∣∣∣
f (2x)

2N
− f (x)

∣∣∣∣

∣∣∣∣
β

≤ 1

2Nβ · (N !)β
(
ϕ(0, 2x) +

N∑

i=0

(
N

N − i

)
· ϕ(ix, x)

)
:= ε(x),
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for all x ∈ G, hence the relation

dβ((T f )(x), f (x)) ≤ ε(x), x ∈ G,

holds. On the other hand,

ε∗(x) =
∞∑

k=0

(
Λkε

)
(x) =

=
∞∑

k=0

(
1

2Nβ · (N !)β
(
ϕ(0, 2k+1x)

2Nβk
+

N∑

i=0

(
N

N − i

)
· ϕ
(
2kix, 2kx

)

2Nβk

))
=

= 1

2Nβ · (N !)β
(
Φ0(2x) +

N∑

i=0

(
N

N − i

)
· Φi(x)

)
, ∀x ∈ G,

which is convergent from (14). So we have that (C
′
2) is verified. Moreover,

(Λmε∗)(x) = 1

2Nβ · (N !)β
(
Φ0(2m+1x)

2mNβ
+

N∑

i=0

(
N

N − i

)
· Φi (2mx)

2mNβ

)
=

= 1

2Nβ · (N !)β
∞∑

k=0

(
ϕ(0, 2m+k+1x)

2Nβ(m+k)
+

N∑

i=0

(
N

N − i

)
· ϕ
(
2m+kix, 2m+kx

)

2Nβ(m+k)

)
=

= 1

2Nβ · (N !)β
∞∑

p=m

(
ϕ(0, 2p+1x)

2Nβp
+

N∑

i=0

(
N

N − i

)
· ϕ (2

pix, 2px)

2Nβp

)
, ∀x ∈ G.

By letting m → ∞ in the above relation, we obtain

lim
m→∞ (Λmε∗)(x) = 0, ∀x ∈ G,

so (C
′
3) is verified. By using Proposition 1, it results that the limit

lim
m→∞ (T mg)(x) = lim

m→∞
f (2mx)

2mN

exists for every x ∈ G. Moreover, the mapping A : G → X,

A(x) := lim
m→∞ (T mf (x)) = lim

m→∞
f (2mx)

2mN
, ∀x ∈ G

is the unique fixed point of T , with

dβ(f (x),A(x)) ≤ ε∗(x), ∀x ∈ G,

which implies that the estimation relation (17) holds.
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To prove that the mapping A is a monomial function of degree N , we use the
same method as in [10]. In fact, we replace x by 2mx and y by 2my in (16), then
divide the obtained relation by 2mN and it results

∣∣∣∣∣

∣∣∣∣∣
ΔN

2myf (2mx)

2mN
− (N !)f (2my))

2mN

∣∣∣∣∣

∣∣∣∣∣
β

≤ ϕ(2mx, 2my)

2mNβ
∀x, y ∈ G.

On the other hand, we denote

Am(x) := f (2mx)

2mN
, ∀x ∈ G.

By (13) we have that

ΔN
2myf (2mx)

2mN
=

N∑

k=0

( − 1)N−k

⎛

⎝ N

k

⎞

⎠ f (2mx + k2my)

2mN
=

=
N∑

k=0

( − 1)N−k

⎛

⎝ N

k

⎞

⎠Am(x + ky) = ΔN
y Am(x),

for all x, y ∈ G.And we get

∣∣∣∣ΔN
y Am(x) − (N !) · Am(y)

∣∣∣∣
β

≤ ϕ(2mx, 2my)

2mNβ
, ∀x, y ∈ G.

By letting m → ∞ and having in mind (15), we obtain

ΔN
y A(x) − (N !) · A(y) = 0, ∀x, y ∈ G.

Remark 1 It is worth noting that the generalized Ulam–Hyers stability properties for
a large class of functional equations (Cauchy and Jensen, quadratic, cubic, quartic,
quintic, etc.) can be obtained directly from Proposition 1, for suitable operator T
and mapping Λ. Moreover, several results of generalized stability for functional
equations in a single variable can be obtained by the same method.

Remark 2 In some recent papers there are proved properties of hyperstability for
Cauchy functional equation on restricted domain [5] as well as for linear functional
equations [34], by using a fixed point result in [7]. Moreover, the same fixed point
theorem is the main tool for proving a stability result of Th. M. Rassias–Aoki’s type
for p-Drygas functional equation in [4]. Following the ideas of these papers, our
future goal is to identify several classes of functional equations whose generalized
stability properties can be obtained directly by suitable fixed point theorems. A first
step in this regard is the present chapter.
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On a Weak Version of Hyers–Ulam Stability
Theorem in Restricted Domains

Jaeyoung Chung and Jeongwook Chang

Abstract In this chapter we consider a weak version of the Hyers–Ulam stability
problem for the Pexider equation, Cauchy equation satisfied in restricted domains in
a group when the target space of the functions is a 2-divisible commutative group.
As the main result we find an approximate sequence for the unknown function
satisfying the Pexider functional inequality, the limit of which is the approximate
function in the Hyers–Ulam stability theorem.

Keywords Hyers–Ulam stability · Functional equations · Restricted domains ·
Pexider equation · 2-divisible commutative group

1 Introduction

The Hyers–Ulam stability problems of functional equations were originated by S.
M. Ulam in 1940 when he proposed the following question [36]:

Let f be a mapping from a group G1 to a metric group G2 with metric d(·, ·) such
that

d(f (xy), f (x)f (y)) ≤ ε.

Then does there exist a group homomorphism h and δε > 0 such that

d(f (x), h(x)) ≤ δε

for all x ∈ G1?
One of the first assertions to be obtained is the following result, essentially due

to D. H. Hyers [20], that gives an answer for the question of Ulam.
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Theorem 1 Suppose that S is a commutative semigroup, B is a Banach space,
ε ≥ 0, and f : S → B satisfies the inequality

‖f (x + y) − f (x) − f (y)‖ ≤ ε (1)

for all x, y ∈ S. Then there exists a unique function A : S → B satisfying

A(x + y) = A(x) + A(y) (2)

and

‖f (x) − A(x)‖ ≤ ε (3)

for all x ∈ S.
In 1950, this result was generalized by T.Aoki [4] and D.G. Bourgin [9, 8]. In 1978

T.M. Rassias generalized the Hyers’result to new approximately linear mappings [?].
Since then the stability problems have been investigated in various directions
for many other functional equations. Among the results, the stability problem
in a restricted domain was investigated by F. Skof, who proved the stability
problem of the inequality (1) in a restricted domain [35]. Several papers have
been published on the Hyers–Ulam stability in restricted domains for a large
variety of functional equations including the Jensen functional equation [24],
quadratic type functional equations [23], mixed type functional equations [30], and
Jensen type functional equations [31]. The results can be summarized as follows:
Let X and B be a real normed space and a real Banach space, respectively. For fixed
d ≥ 0, if f : X → B satisfies the functional inequalities (such as that of Cauchy,
quadratic, Jensen, and Jensen type, etc.) for all x, y ∈ X with ‖x‖ + ‖y‖ ≥ d, then
the inequalities hold for all x, y ∈ X.

In [14, 15], generalizing the restricted domains such as ‖x‖+‖y‖ ≥ d in a normed
space to some abstract domains in a group, we consider the stability problem of
Pexider equation and Jensen-type equations in the restricted domains. In the present
paper, we consider a weak version of Hyers–Ulam stability of the Pexider equation
when the target space of the functions in given functional inequalities are not a
normed space but a 2-divisible commutative group. Note that the existence of the
approximate additive function A in Theorem 1 is due to the completeness of the
target space B. For example, if Y is a noncomplete normed space and f : S → Y

satisfies (1), then we can only find a Cauchy sequence an : S → Y such that

|an(x + y) − an(x) − an(y)| ≤ 2−nε (4)

for all x, y ∈ S, n = 1, 2, 3, . . . , and

|f (x) − an(x)| ≤ ε (5)

for all x ∈ S and n = 1, 2, 3, . . . . Throughout this paper, we denote a commutative
group by G and a 2-divisible commutative group by H respectively, 0 ∈ V ⊂ H

and W ⊂ G × G. Also, we denote a Banach space and a real normed space by B
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and Y , respectively, and f , g,h : G → H (or Y , B). In Sect. 2 of this chapter, we
consider the behavior of f : G → H satisfying

f (x + y) − f (x) − f (y) ∈ V (6)

for all x, y ∈ G. As a result we prove that there exists a Cauchy-type sequence
an : G → H (which is a Cauchy sequence when H = Y ) such that

f (x) − an(x) ∈ 2−n(V + 2V + . . . + 2n−1V ) (7)

for all x ∈ G. In Sect. 3, we consider

f (x + y) − g(x) − h(y) ∈ V (8)

for all (x, y) ∈ W ⊂ G×G. As the main result we prove that under some assumptions
on W , if f , g, h satisfy (8) then there exist approximate Cauchy-type sequences
an, bn, and cn forf , g, andh respectively. From our result we obtain the Hyers–Ulam
stability theorem for Pexider equation when f , g,h : G → B.

2 A Weak Stability of Pexider Equation

For subsets V ,V1,V2 of H , v ∈ V , and n ∈ N, we define

nv = v + · · · + v︸ ︷︷ ︸
n−times

, nV = {nv : v ∈ V }, 2−nV = {h ∈ H : 2nh ∈ V },

and
V1 + V2 = {v1 + v2 : v1 ∈ V1, v2 ∈ V2}.

We call an : G → H a V -Cauchy sequence if

am+n(x) − am(x) ∈ 2−m−n(V + 2V + . . . + 2n−1V )

for all m, n = 1, 2, 3, . . . , and x ∈ G.
First we consider the weak version of the Hyers–Ulam stability theorem for the

Cauchy equation.

Theorem 2 Suppose that f : G → H satisfies

f (x + y) − f (x) − f (y) ∈ V (9)

for all x, y ∈ G. Then there exists a V -Cauchy sequence an : G → H satisfying

an(x + y) − an(x) − an(y) ∈ 2−nV , (10)

and

an(x) − f (x) ∈ 2−n(V + 2V + . . . + 2n−1V ) (11)
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for all x, y ∈ G and n ∈ N.

Proof Note that since H is 2-divisible, for each n ∈ N and x ∈ G we can choose
an an(x) such that

2nan(x) = f (2nx). (12)

Replacing y by x in (9) and using induction argument we have

2n−1f (2x) − 2nf (x) ∈ 2n−1V

2n−2f (4x) − 2n−1f (2x) ∈ 2n−2V

· · · · · · · · · · · · · · · · · ·
2f (2n−1x) − 4f (2n−2x) ∈ 2V

f (2nx) − 2f (2n−1x) ∈ V

for all x ∈ G. Thus it follows that

f (2nx) − 2nf (x) ∈ V + 2V + . . . + 2n−1V (13)

for all x ∈ G. Now it follows from (12) and (13) that

an(x) − f (x) ∈ 2−n(V + 2V + . . . + 2n−1V ) (14)

for all x ∈ G. Replacing x by 2mx in (13) and using (12) we have

am+n(x) − am(x) ∈ 2−m−n(V + 2V + . . . + 2n−1V ) (15)

for all x ∈ G, which implies that an is V -Cauchy. Replacing x by 2nx and y by 2ny
in (9) and using (12) we have

an(x + y) − an(x) − an(y) ∈ 2−nV (16)

for all n ∈ N and x ∈ G. This completes the proof.
Let 〈Y , ‖ · ‖〉 be a normed space and V = {x ∈ Y : ‖x‖ ≤ ε}. Then we have

2−n(V + 2V + . . . + 2n−1V ) ⊂ {x ∈ Y : ‖x‖ ≤ ε}
for all n ∈ N, and

2−m−n(V + 2V + . . . + 2n−1V ) ⊂ {x ∈ Y : ‖x‖ ≤ 2−mε}
for all m, n ∈ N. Thus in this case, every V -Cauchy sequence is a Cauchy sequence.
Now as a direct consequence of Theorem 2 we have the following.

Corollary 1 Let ε > 0. Suppose that f : G → Y satisfies

‖f (x + y) − f (x) − f (y)‖ ≤ ε (17)
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for all x, y ∈ G. Then there exists a Cauchy sequence an : G → Y satisfying

‖an(x + y) − an(x) − an(y)‖ ≤ 2−nε (18)

for all n ∈ N and x, y ∈ G, and

‖an(x) − f (x)‖ ≤ ε (19)

for all x ∈ G.

In particular, if f : G → B, then there exists A : G → B such that

lim
n→∞ an(x) = A(x).

Letting n → ∞ in (18) we have

A(x + y) − A(x) − A(y) = 0 (20)

for all x, y ∈ G. We call a function A : G → B satisfying (20) an additive function.
Thus as a direct consequence of Corollary 1 we have the well known Hyers–Ulam
stability theorem.

Corollary 2 Let ε > 0. Suppose that f : G → B satisfies

‖f (x + y) − f (x) − f (y)‖ ≤ ε (21)

for all x, y ∈ G. Then there exists an additive function A : G → B such that

‖f (x) − A(x)‖ ≤ ε (22)

for all x ∈ G.
Throughout this chapter we denote

V ∗ = {v1 + v2 − v3 − v4 : vj ∈ V , j = 1, 2, 3, 4}.

Theorem 3 Suppose that f , g,h : G → H satisfy

f (x + y) − g(x) − h(y) ∈ V (23)

for all x, y ∈ G. Then there exist V ∗-Cauchy sequences an, bn, cn : G → H

satisfying

an(x + y) − an(x) − an(y) ∈ 2−nV ∗ (24)

bn(x + y) − bn(x) − bn(y) ∈ 2−nV ∗ (25)

cn(x + y) − cn(x) − cn(y) ∈ 2−nV ∗ (26)

for all n ∈ N and x, y ∈ G, and
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an(x) − f (x) + f (0) ∈ V ∗
n , (27)

bn(x) − g(x) + g(0) ∈ V ∗
n , (28)

cn(x) − h(x) + h(0) ∈ V ∗
n , (29)

and

an(x + y) − bn(x) − cn(y) ∈ V ∗∗
n (30)

for all n ∈ N and x, y ∈ G, where

V ∗
n = 2−n(V ∗ + 2V ∗ + . . . + 2n−1V ∗),

V ∗∗
n = V − V + V ∗

n − V ∗
n − V ∗

n .

Proof Let D(x, y) = f (x + y) − g(x) − h(y). Then we have

f (x + y) − f (x) − f (y) + f (0)=D(x, y) + D(0, 0) − D(x, 0) − D(y, 0) ∈ V ∗
(31)

g(x + y) − g(x) − g(y) + g(0)=D(x, y) + D(y, 0) − D(x + y, 0) − D(0, y) ∈ V ∗
(32)

h(x + y) − h(x) − h(y) + h(0)=D(x, y) + D(0, x) − D(0, x + y) − D(x, 0) ∈ V ∗
(33)

for all x, y ∈ G. Thus, in view of (31), (32), and (33), using Theorem 2 for f (x) −
f (0), g(x) − g(0), h(x) − h(0), we obtain (24)–(29). Now, putting x = y = 0 in
(23), we have

f (0) − g(0) − h(0) ∈ V. (34)

Then, by (23), (27), (28), (29), and (34) we get (30).
This completes the proof.
In particular, let V = {x ∈ Y : ‖x‖ ≤ ε}. Then we have

V ∗
n ⊂ {x ∈ Y : ‖x‖ ≤ 4ε}, V ∗∗

n ⊂ {x ∈ Y : ‖x‖ ≤ 14ε}
for all n ∈ N. Thus as a direct consequence of Theorem 3 we have the following.

Corollary 3 Let ε > 0. Suppose that f , g,h : G → Y satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (35)

for all x, y ∈ G. Then there exist Cauchy sequences an, bn, cn : G → Y satisfying

‖an(x + y) − an(x) − an(y)‖ ≤ 2−n+2ε (36)

‖bn(x + y) − bn(x) − bn(y)‖ ≤ 2−n+2ε (37)
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‖cn(x + y) − cn(x) − cn(y)‖ ≤ 2−n+2ε (38)

for all n ∈ N and x, y ∈ G, and

‖f (x) − an(x) − f (0)‖ ≤ 4ε, (39)

‖g(x) − bn(x) − g(0)‖ ≤ 4ε, (40)

‖h(x) − cn(x) − h(0)‖ ≤ 4ε (41)

and

‖an(x + y) − bn(x) − cn(y)‖ ≤ 14ε (42)

for all n ∈ N and x, y ∈ G.

Corollary 4 Let ε > 0. Suppose that f , g,h : G → B satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (43)

for all x, y ∈ G. Then there exists an additive function A : G → B such that

‖f (x) − A(x) − f (0)‖ ≤ 4ε,

‖g(x) − A(x) − g(0)‖ ≤ 4ε,

‖h(x) − A(x) − h(0)‖ ≤ 4ε

for all x ∈ G.

Proof Let A1(x) = limn→∞ an(x), A2(x) = limn→∞ bn(x), A3(x) =
limn→∞ cn(x). Then it follows from (36)–(38) that for each j = 1, 2, 3, Aj is an
additive function. Letting n → ∞ in (39)–(41) we have

‖f (x) − A1(x) − f (0)‖ ≤ 4ε,

‖g(x) − A2(x) − g(0)‖ ≤ 4ε,

‖h(x) − A3(x) − h(0)‖ ≤ 4ε

for all x ∈ G. Finally, letting n → ∞ in (42) we have

‖A1(x + y) − A2(x) − A3(y)‖ ≤ 14ε (44)

for all x, y ∈ G. Putting y = 0 and x = 0 in (44) separately, we have

‖A1(x) − A2(x)‖ ≤ 14ε

‖A1(y) − A3(y)‖ ≤ 14ε

for all x, y ∈ G, which implies that A1 = A2 and A1 = A3. This completes the
proof.
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3 Weak Stability of Pexider Equation in Restricted Domains

It is a frequent situation to consider a functional equation satisfied in a restricted
domain or satisfied under a restricted condition [3, 5–7, 10–12, 15, 18, 28, 32–35].
In this section we consider the weak version of the Hyers–Ulam stability theorem in
some restricted domains in G. We use the following usual notations. Let G × G =
{(a1, a2) : a1, a2 ∈ G} be the product group. For a subsetK ofG×G and a ∈ G×G,
we define a+K = {a+ k : k ∈ K}. For given x, y ∈ G we denote the sets of points
of the forms (not necessarily distinct) in G×G by Px,y , Qx,y , andRx,y , respectively
as,

Px,y = {(0, 0), (x, 0), (0, y), (x, y)},
Qx,y = {(y, 0), (0, y), (x, y), (x + y, 0)},
Rx,y = {(x, 0), (0, x), (x, y), (0, x + y)},

where 0 is the identity element of G. The set Px,y can be viewed as the vertices of a
rectangle inG×G, andQx,y andRx,y can be viewed as the vertices of parallelograms
in G × G.

Definition 1 Let W ⊂ G×G. We introduce the following conditions (C1), (C2),
and (C3) on W : For any x, y ∈ G, there exist z1, z2, z3 ∈ G such that

(C1) (− z1, z1) + Px,y ⊂ W ,

(C2) (0, z2) + Qx,y ⊂ W ,

(C3) (z3, 0) + Rx,y ⊂ W ,

respectively.

Example 1 Let G be a real normed space. For α,β, d ∈ R, let

U = {(x, y) ∈ G × G : α‖x‖ + β‖y‖ ≥ d}, (45)

V = {(x, y) ∈ G × G : ‖αx + βy‖ ≥ d}. (46)

Then U satisfies (C1) if α + β > 0, (C2) if β > 0 and (C3) if α > 0, and V

satisfies (C1) if α �= β, (C2) if β �= 0 and (C3) if α �= 0.

Example 2 Let G be a real inner product space. For d ≥ 0, x0, y0 ∈ G

U = {(x, y) ∈ G × G : 〈x0, x〉 + 〈y0, y〉 ≥ d}. (47)

Then U satisfies (C1), if x0 �= y0, (C2) if y0 �= 0 and (C3) if x0 �= 0.

Example 3 Let G be the group of nonsingular square matrices with the operation
of matrix multiplication. For α,β ∈ R, δ, d ≥ 0, let
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U = {(P1,P2) ∈ G × G : | det P1|α| det P2|β ≤ δ}, (48)

U = {(P1,P2) ∈ G × G : | det P1|α| det P2|β ≥ d}. (49)

Then U satisfies (C1) if α �= β, (C2) if β �= 0, and (C3) if α �= 0.
In the following one can see that if Px,y ,Qx,y , and Rx,y are replaced by arbi-

trary subsets of four points (not necessarily distinct) in G × G, respectively, the
conditions become stronger, that is, there are subsets Uj , j = 1, 2, 3, which sat-
isfy the conditions (C1), (C2), and (C3), respectively, but Uj , j = 1, 2, 3, fail to
fulfill the following conditions (2.6), (2.7), and (2.8), respectively: For any subset
{p1,p2,p3,p4} of points (not necessarily distinct) in G × G, there exists a z ∈ G

such that

(e, z){p1,p2,p3,p4}(z−1, e) ⊂ U1, (50)

{p1,p2,p3,p4}(e, z) ⊂ U2, (51)

(z, e){p1,p2,p3,p4} ⊂ U3, (52)

respectively.
Now we give examples of U1, U2, U3 which satisfy (C1), (C2), and (C3),

respectively, but not (50), (51), and (52), respectively.

Example 4 Let G = Z be the group of integers. Enumerating

Z × Z = {(a1, b1), (a2, b2), . . . , (an, bn), . . . }
such that

|a1| + |b1| ≤ |a2| + |b2| ≤ · · · ≤ |an| + |bn| ≤ · · · ,

and let Pn = {(0, 0), (an, 0), (0, bn), (an, bn)}, n = 1, 2, . . . . Then it is easy to
see that U1 = ⋃∞

n=1 (Pn + ( − 2n, 2n)) satisfies the condition (C1). Now let
P = {(x1, y1), (x2, y2)} ⊂ Z × Z with x2 > x1, y2 > y1, (x1 + y1)(x2 + y2) > 0.
Then P + ( − z, z) is not contained in U1 for all z ∈ Z. Indeed, let (a, b) ∈
Pn + (− 2n, 2n), (c, d) ∈ Pn+1 + (− 2n+1, 2n+1). Then we have a > c, b < d for all
n = 1, 2, . . . . Thus it follows from x2 > x1, y2 > y1 that if P + (− z, z) ⊂ U1, then
P + ( − z, z) ⊂ Pn + ( − 2n, 2n) for some n ∈ N, which implies that the line segment
joining the points ofP+(−z, z) intersects the line y = −x in R

2, contradicting to the
condition (x1 + y1)(x2 + y2) > 0. Similarly, let Qn = {(bn, 0), (0, bn), (an, bn), (an +
bn, 0)} and Rn = {(an, 0), (0, an), (an, bn), (0, an +bn)}, n = 1, 2, . . . . Then it is easy
to see that U2 = ⋃∞

n=1 (Qn + (0, 2n)) satisfies the condition (C2) but not (2.7) and
U3 = ⋃∞

n=1 (Rn + (2n, 0)) satisfies the condition (C3) but not (52).
As in Sect. 2, we denote

V ∗ = {v1 + v2 − v3 − v4 : vj ∈ V , j = 1, 2, 3, 4}.

Theorem 4 LetW satisfy the condition (C1). Suppose that f , g,h : G → H satisfy

f (x + y) − g(x) − h(y) ∈ V (53)



122 J. Chung and J. Chang

for all (x, y) ∈ W . Then there exists a V ∗-Cauchy sequence an : G → H satisfying

an(x + y) − an(x) − an(y) ∈ 2−nV ∗ (54)

for all n ∈ N and x, y ∈ G and

an(x) − f (x) + f (0) ∈ 2−n(V ∗ + 2V ∗ + . . . + 2n−1V ∗) (55)

for all x ∈ G.

Proof For given x, y ∈ G, choose z ∈ G such that (− z, z) + Px,y ⊂ W . Then we
have

f (x + y) − g(x − z) − h(z + y) ∈ V ,

− f (x) + g(x − z) + h(z) ∈ −V ,

− f (y) + g(− z) + h(z + y) ∈ −V ,

+ f (0) − g(− z) − h(z) ∈ V.

Thus it follows that

f (x + y) − f (x) − f (y) + f (0) ∈ V + (− V ) + (− V ) + V = V ∗ (56)

for all x, y ∈ G.
Now by Theorem 2, there exists a V ∗-Cauchy sequence an : G → H satisfying

(54) and (55). This completes the proof.
In particular, let V = {x ∈ Y : ‖x‖ ≤ ε}. Then we have

V ∗ ⊂ {x ∈ Y : ‖x‖ ≤ 4ε}, 2−n(V ∗ +2V ∗ + . . .+2n−1V ∗) ⊂ {x ∈ Y : ‖x‖ ≤ 4ε}
for all n ∈ N, and

2−m−n(V ∗ + 2V ∗ + . . . + 2n−1V ∗) ⊂ {x ∈ Y : ‖x‖ ≤ 2−m+2ε}
for allm, n ∈ N. Thus in this case, every V ∗-Cauchy sequence is a Cauchy sequence.
Now as a direct consequence of Theorem 4 we have the following.

Corollary 5 Let W satisfy the condition (C1) and ε ≥ 0. Suppose that f , g,h :
G → Y satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (57)

for all (x, y) ∈ W . Then there exists a Cauchy sequence an : G → Y satisfying

‖an(x + y) − an(x) − an(y)‖ ≤ 2−n+2ε (58)

for all n ∈ N and x, y ∈ G, and

‖an(x) − f (x) + f (0)‖ ≤ 4ε (59)
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for all x ∈ G.
As a direct consequence of Corollary 5 we have the following.

Corollary 6 Let W satisfy the condition (C1) and ε ≥ 0. Suppose that f , g,h :
G → B satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (60)

for all (x, y) ∈ W . Then there exists an additive function A1 : G → B and

‖f (x) − A1(x) − f (0)‖ ≤ 4ε (61)

for all x ∈ G.

Theorem 5 LetW satisfy the condition (C2). Suppose that f , g,h : G → H satisfy

f (x + y) − g(x) − h(y) ∈ V (62)

for all (x, y) ∈ W . Then there exists a V ∗-Cauchy sequence bn : G → H satisfying

bn(x + y) − bn(x) − bn(y) ∈ 2−nV ∗ (63)

for all n ∈ N and x, y ∈ G, and

bn(x) − g(x) + g(0) ∈ 2−n(V ∗ + 2V ∗ + . . . + 2n−1V ∗) (64)

for all x ∈ G.

Proof For given x, y ∈ G, choose z ∈ G such that (0, z) + Qx,y ⊂ W . Then we
have

−f (x + y + z) + g(x + y) + h(z) ∈ −V ,

f (x + y + z) − g(x) − h(y + z) ∈ V ,

f (y + z) − g(y) − h(z) ∈ V ,

−f (y + z) + g(0) + h(y + z) ∈ −V.

Thus it follows that

g(x + y) − g(x) − g(y) + g(0) ∈ −V + V + V − V = V ∗ (65)

for all x, y ∈ G. Now by Theorem 2, there exists a sequence bn : G → H satisfying
(63) and (64). This completes the proof.

In particular, if f , g,h : G → Y we have the following.

Corollary 7 Let W satisfy the condition (C2) and ε ≥ 0. Suppose that f , g,h :
G → Y satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (66)
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for all (x, y) ∈ W . Then there exists a Cauchy sequence bn : G → Y satisfying

‖bn(x + y) − bn(x) − bn(y)‖ ≤ 2−n+2ε (67)

for all n ∈ N and x, y ∈ G, and

‖bn(x) − g(x) + g(0)‖ ≤ 4ε (68)

for all x ∈ G.
In particular, if f , g,h : G → B we have the following.

Corollary 8 Let W satisfy the condition (C2) and ε ≥ 0. Suppose that f , g,h :
G → B satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (69)

for all (x, y) ∈ W . Then there exists a unique additive function A2 : G → B such
that

‖g(x) − A2(x) − g(0)‖ ≤ 4ε (70)

for all x ∈ G.

Theorem 6 LetW satisfy the condition (C3). Suppose that f , g,h : G → H satisfy

f (x + y) − g(x) − h(y) ∈ V (71)

for all (x, y) ∈ W . Then there exists a V ∗-Cauchy sequence cn : G → H satisfying

cn(x + y) − cn(x) − cn(y) ∈ 2−nV ∗ (72)

for all n ∈ N and x, y ∈ G and

cn(x) − h(x) + h(0) ∈ 2−n(V ∗ + 2V ∗ + . . . + 2n−1V ∗) (73)

for all x ∈ G.

Proof For given x, y ∈ G, choose z ∈ G such that (0, z) + Qx,y ⊂ W . Then we
have

−f (z + x + y) + g(z) + h(x + y) ∈ −V ,

f (z + x + y) − g(z + x) − h(y) ∈ V ,

f (z + x) − g(z) − h(x) ∈ V ,

−f (z + x) + g(z + x) + h(0) ∈ −V.

Thus it follows that

h(x + y) − h(x) − h(y) + h(0) ∈ −V + V + V − V = V ∗ (74)
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for all x, y ∈ G. Now by Theorem 2, there exists a sequence cn : G → H satisfying
(72) and (73). This completes the proof.

In particular, if f , g,h : G → Y we have the following.

Corollary 9 Let W satisfy the condition (C3) and ε ≥ 0. Suppose that f , g,h :
G → Y satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (75)

for all (x, y) ∈ W . Then there exists a Cauchy sequence cn : G → Y satisfying

‖cn(x + y) − cn(x) − cn(y)‖ ≤ 2−n+2ε (76)

for all n ∈ N and x, y ∈ G, and

‖cn(x) − h(x) + h(0)‖ ≤ 4ε (77)

for all x ∈ G.
In particular, if f , g,h : G → B we have the following.

Corollary 10 Let W satisfy the condition (C3) and ε ≥ 0. Suppose that f , g,h :
G → B satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (78)

for all (x, y) ∈ W . Then there exists a unique additive function A3 : G → B such
that

‖h(x) − A3(x) − h(0)‖ ≤ 4ε (79)

for all x ∈ G.

Theorem 7 Let W satisfy all the conditions (C1), (C2), and (C3). Suppose that
f , g,h : G → H satisfy

f (x + y) − g(x) − h(y) ∈ V (80)

for all (x, y) ∈ W . Then there exist V ∗-Cauchy sequences an, bn, cn : G → H

satisfying

an(x + y) − an(x) − an(y) ∈ 2−nV ∗ (81)

bn(x + y) − bn(x) − bn(y) ∈ 2−nV ∗ (82)

cn(x + y) − cn(x) − cn(y) ∈ 2−nV ∗ (83)

for all n ∈ N and x, y ∈ G, and
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an(x) − f (x) + f (0) ∈ V ∗
n , (84)

bn(x) − g(x) + g(0) ∈ V ∗
n , (85)

cn(x) − h(x) + h(0) ∈ V ∗
n (86)

for all n ∈ N and x ∈ G, and

an(x + y) − bn(x) − cn(y) ∈ V ∗∗
n . (87)

for all n ∈ N and x, y ∈ G, where

V ∗
n = 2−n(V ∗ + 2V ∗ + . . . + 2n−1V ∗),

V ∗∗
n = V + V + V + V + V − V − V − V − V − V + V ∗

n − V ∗
n − V ∗

n .

Proof From Theorems 4, 5, and 6, it remains to show (87). By the condition (C1),
for given x, y ∈ G, choose z ∈ G such that (− z, z), (x − z, z + y) ∈ W . Then from
(80) we have

f (x + y) − g(x − z) − h(z + y) ∈ V , (88)

−f (0) + g( − z) + h(z) ∈ −V. (89)

Also, by (65) and (74) we have

g(x − z) − g(x) − g(− z) + g(0) ∈ V + V − V − V , (90)

h(z + y) − h(z) − h(y) + h(0) ∈ V + V − V − V. (91)

for all x, y, z ∈ G. From (88)–(91), we have

f (x+y)−g(x)−h(y)−f (0)+g(0)+h(0)∈V +V +V +V +V −V −V −V −V −V

(92)

for all x, y ∈ G. Using (84), (85), (86), and (92) we have

an(x+y)−bn(x)−cn(y)∈V +V +V +V +V −V −V −V −V −V +V ∗
n −V ∗

n −V ∗
n .

(93)

This completes the proof.
In particular, let V = {x ∈ Y : ‖x‖ ≤ ε}. Then we have

V ∗
n ⊂ {x ∈ Y : ‖x‖ ≤ 4ε}, V ∗∗

n ⊂ {x ∈ Y : ‖x‖ ≤ 22ε}
for all n ∈ N. Thus as a direct consequence of Theorem 7 we have the following.

Corollary 11 Let W satisfy the conditions (C1), (C2), and (C3) and ε ≥ 0.
Suppose that f , g,h : G → Y satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (94)
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for all (x, y) ∈ W . Then there exist Cauchy sequences an, bn, cn : G → Y satisfying

‖an(x + y) − an(x) − an(y)‖ ≤ 2−n+2ε (95)

‖bn(x + y) − bn(x) − bn(y)‖ ≤ 2−n+2ε (96)

‖cn(x + y) − cn(x) − cn(y)‖ ≤ 2−n+2ε (97)

for all n ∈ N and x, y ∈ G,

‖f (x) − an(x) − f (0)‖ ≤ 4ε, (98)

‖g(x) − bn(x) − g(0)‖ ≤ 4ε, (99)

‖h(x) − cn(x) − h(0)‖ ≤ 4ε (100)

for all n ∈ N and x ∈ G, and

‖an(x + y) − bn(x) − cn(y)‖ ≤ 22ε (101)

for all n ∈ N and x, y ∈ G.

Corollary 12 Let W satisfy the conditions (C1), (C2), and (C3) and ε ≥ 0.
Suppose that f , g,h : G → B satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (102)

for all (x, y) ∈ W . Then there exists an additive function A : G → B such that

‖f (x) − A(x) − f (0)‖ ≤ 4ε,

‖g(x) − A(x) − g(0)‖ ≤ 4ε,

‖h(x) − A(x) − h(0)‖ ≤ 4ε

for all x ∈ G.

Proof Let A1(x) = limn→∞ an(x), A2(x) = limn→∞ bn(x), A3(x) =
limn→∞ cn(x). Then it follows from (95)–(97) that for each j = 1, 2, 3,Aj is additive.
Letting n → ∞ in (98)–(100) we have

‖f (x) − A1(x) − f (0)‖ ≤ 4ε,

‖g(x) − A2(x) − g(0)‖ ≤ 4ε,

‖h(x) − A3(x) − h(0)‖ ≤ 4ε

for all x ∈ G. Finally letting n → ∞ in (101) we have

‖A1(x + y) − A2(x) − A3(y)‖ ≤ 22ε (103)

for all x, y ∈ G. Putting y = 0 and x = 0 in (103) separately, we have

‖A1(x) − A2(x)‖ ≤ 22ε
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‖A1(y) − A3(y)‖ ≤ 22ε

for all x, y ∈ G, which implies that A1 = A2 and A1 = A3. This completes the
proof.

In particular, if G is a normed vector space we have the following.

Corollary 13 Let d > 0. Suppose that f , g,h : G → B satisfy

‖f (x + y) − g(x) − h(y)‖ ≤ ε (104)

for all ‖x‖ + ‖y‖ ≥ d . Then there exists an additive function A : G → B such that

‖f (x) − A(x) − f (0)‖ ≤ 4ε,

‖g(x) − A(x) − g(0)‖ ≤ 4ε,

‖h(x) − A(x) − h(0)‖ ≤ 4ε

for all x ∈ G.
Finally we give another interesting example of the set W ⊂ R

n × R
n with finite

Lebesgue measure satisfying all the conditions (C1).

Lemma 1 Let D := {(x1, y1), (x2, y2), (x3, y3), . . . } be a countable dense subset of
R

2. For each j = 1, 2, 3, . . . , we denote by

Rj = {(x, y) ∈ R
2 : |x − xj | < 1, |y − yj | < 2−j ε}

the rectangle in R
2 with center (xj , yj ) and let W = ⋃∞

j=1 Rj . It is easy to see that
the Lebesgue measure m(W ) of U satisfies m(W ) ≤ ε. Now for d > 0, let

Wd = W ∩ {(x, y) ∈ R
2 : |x| + |y| > d}.

Then Wd satisfies (C1).

Proof For given x, y ∈ R we choose a p ∈ R such that

|p| ≥ d + |x| + |y| + 1. (105)

We first choose (xi1 , yi1 ) ∈ K such that

| − p − xi1 | + |p − yi1 | <
1

4
, (106)

and then we choose (xi2 , yi2 ) ∈ K , (xi3 , yi3 ) ∈ K and (xi4 , yi4 ) ∈ K with 1 < i1 <

i2 < i3 < i4, step by step, satisfying

|x − yi1 − xi2 | + |yi1 − yi2 | < 2−i1−1, (107)

|x − yi2 − xi3 | + |y + yi2 − yi3 | < 2−i2−1, (108)

|y − yi3 − xi4 | + |yi3 − yi4 | < 2−i3−1. (109)
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Let

z1 = yi1 − p,

z2 = yi2 − yi1 ,

z3 = yi3 − yi2 − y,

z4 = yi4 − yi3 ,

and
z = z1 + z2 + z3 + z4.

Then from (106)–(109) we have

|z1| < 1

4
, |z2| < 2−i1−1, |z3| < 2−i2−1, |z4| < 2−i3−1, |z| < 1

2
. (110)

Thus from (105), (106), and (110) we have

|− p − z| + |p + z| ≥ 2(|p| − |z|) ≥ 2(|p| − 1

2
) (111)

> 2d ≥ d ,

|− p − z − xi1 | ≤ | − p − xi1 | + |z| (112)

<
1

4
+ 1

2
< 1,

and

|p + z − yi1 | = |z2 + z3 + z4| < 2−i1−1 + 2−i2−1 + 2−i3−1 < 2−i1 . (113)

The inequalities (111), (112), and (113) imply

(−p − z,p + z) ∈ Wd. (114)

Also from the inequalities

|x − p − z| + |p + z| ≥ 2(|p| − |x| − |z|) > 2(|p| − |x| − 1

2
) > d ,

|x − p − z − xi2 | ≤ |x − yi1 − xi2 | + |z2| + |z3| + |z4|

<
1

8
+ 1

8
+ 1

16
+ 1

32
< 1,

and

|p + z − yi2 | = |z3 + z4| < 2−i2−1 + 2−i3−1 < 2−i2 ,

we have

(x − p − z,p + z) ∈ Wd. (115)
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Similarly, using the inequalities

|x − p − z − xi3 | ≤ |x − yi2 − xi3 | + |z3| + |z4| < 1,

|y + p + z − yi3 | = |z4| < 2−i3 ,

|− p − z − xi4 | ≤ |y − yi3 − xi4 | + |z4| < 1,

|y + p + z − yi4 | = 0,

we have

(x − p − z, y + p + z), (− p − z, y + p + z) ∈ Wd. (116)

Let {(x1, y1), (x2, y2), (x3, y3), . . . } be defined as above. For each j = 1, 2, 3, . . . ,
let

Sj = {(x, y) : x, y ∈ R : |x + y − xj − yj | < 1, |x − y − xj + yj | < 2−j ε}
and let V = ⋃∞

j=1 Sj . Then V satisfies m(V ) ≤ ε. For fixed d > 0, let

Vd = V ∩ {(x, y) ∈ R
2 : |x| + |y| > d}.

Using the similar method as in the proof of Lemma 1 we can show that Vd satisfies
the conditions (C1), (C2), and (C3).

As a direct consequence of Lemma 1 we have the following.

Theorem 8 Let d > 0. Suppose that f : R → R satisfies

|f (x + y) − f (x) − f (y)| ≤ ε (117)

for all (x, y) ∈ Wd . Then there exists a unique additive function A : R → R such
that

|f (x) − A(x)| ≤ 3ε (118)

for all x ∈ R.

Proof It follows from (115) and (116) that for given x, y ∈ R there exist p, z ∈ R

satisfying

|f (x + y) − f (x) − f (y)| ≤ | − f (x) + f (x − p − z) + f (p + z)|
+ |f (x + y) − f (x − p − z) − f (y + p + z)|
+ |− f (y) + f (− p − z) + f (y + p + z)|
≤ 3ε.

Using Theorem A we get the result.
As a consequence of Theorem 8 we obtain an asymptotic behavior of

Cd (f ) := sup
(x,y)∈Wd

|f (x + y) − f (x) − f (y)| → 0 (119)
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as d → ∞.

Theorem 9 Suppose that f : R → R satisfies the condition

Cd (f ) → 0 (120)

as d → ∞. Then f is an additive function.

Proof By the condition (120), for each j ∈ N, there exists dj > 0 such that

|f (x + y) − f (x) − f (y)| ≤ 1

j

for all (x, y) ∈ Wdj . By Theorem 8, there exists a unique additive function
Aj : R → R such that

|f (x) − Aj (x)| ≤ 3

j
(121)

for all x ∈ R. From (121), using the triangle inequality we have

|Aj (x) − Ak(x)| ≤ 3

j
+ 3

k
≤ 6 (122)

for allx ∈ R and all positive integers j , k. Now, the inequality (122) impliesAj = Ak .
Indeed, for all x ∈ R and all rational numbers r > 0 we have

|Aj (x) − Ak(x)| = 1

r
|Aj (rx) − Ak(rx)| ≤ 6

r
. (123)

Letting r → ∞ in (123) we have Aj = Ak . Thus, letting j → ∞ in (121) we get
the result.
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On the Stability of Drygas Functional Equation
on Amenable Semigroups

Elhoucien Elqorachi, Youssef Manar and Themistocles M. Rassias

Abstract In this chapter, we will prove the Hyers–Ulam stability of Drygas
functional equation

f (xy) + f (xσ (y)) = 2f (x) + f (y) + f (σ (y)), x, y ∈ G,

where G is an amenable semigroup, σ is an involution of G and f : G → E is
approximatively central (i.e., |f (xy) − f (yx)| ≤ δ).

Keywords Hyers–Ulam stability · Drygas functional equation · Amenable semi-
groups · Invariant means · Semigroups · Abelian groups

1 Introduction

The stability problem of functional equations originated from a question of Ulam
[50] in 1940, concerning the stability of group homomorphisms

Given a group G1 and a metric group G2 with a metric d(·, ·). Given ε > 0, does there exist
a δ > 0 such that if f : G1 → G2 satisfies d(f (xy), f (x)f (y)) < δ for all x, y ∈ G1, then
a homomorphism g : G1 → G2 exist with d(f (x), g(x)) < ε for all x ∈ G1?

In other words, under what condition does there exists a homomorphism near an
approximate homomorphism? The concept of stability for functional equation arises
when we replace the functional equation by an inequality which outs as a perturbation
of the equation. The case of approximately additive mappings was solved by Hyers
[23] under the assumption that G1 and G2 are banach spaces. In 1950, Aoki [1]
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provided a generalization of the Hyers’ Theorem for additive mappings. In 1978,
Rassias [41] succeeded in extending the result of Hyers for linear mappings by
allowing the Cauchy difference to be unbounded. Since then, several mathematicians
have been attracted to the results of Hyers and Rassias and stimulated to investigate
the stability problems of functional equations. The interested reader can get a rapid
overview on the subject by consulting the books of Czerwik [10], Hyers et al. [24]
and Jung [27], Kannappan [29] or the survey papers of Forti [17], Ger [21], Hyers and
Rassias [25] and Székelyhidi [49]. We refer also to the references: [3, 4, 7–10, 20,
21, 27, 32–46]. LetG be a semigroup andE a Banach space. A mapping f : G → E

will be called a solution of the generalized Drygas functional equation if it satisfies

f (xy) + f (xσ (y)) = 2f (x) + f (y) + f (σ (y)), x, y ∈ G, (1)

when σ : G → G is an involution of G, i.e., σ (xy) = σ (y)σ (x) and σ ◦ σ (x) = x

for all x, y ∈ G. The functional Eq. (1) is a generalization of the classical Drygas
functional equation

f (xy) + f (xy−1) = 2f (x) + f (y) + f (y−1), x, y ∈ G (2)

introduced in [11]. The functional Eq. (2) has been studied by Szabo [47], Ebanks
et al. [12], and Faǐziev and Sahoo [13]. The solutions of Eq. (1) in abelian group
are obtained by Stetkær in [46]. A stability result for the Drygas functional Eq. (2)
was derived by Jung and Sahoo [28] when G is a linear space, while later on Yang
[51] proved the stability when G is an abelian group. Recently, Faǐziev and Sahoo
[14, 15] proved the stability of Eq. (2) under an additional condition implied by the
centrality. Li, Kim and Chung [30] obtained the stability of Eq. (2) in the space of
generalized functions. Bouikhalene et al. [5] obtained a stability theorem for the
functional Eq. (1) an abelian groups. In the same years, in [4], they proved a stability
theorem for Eq. (1) in non-abelian group, when σ is an automorphism of G, i.e.,
σ ◦σ (x) = x and σ (xy) = σ (x)σ (y) for all x, y ∈ G. Székelyhidi [48] extended the
Hyers’ result to amenable semigroups. He replaced the original proof given by Hyers
by a new one based on the use of invariant means. The connections between stability
and amenability of groups (or semigroups) and sufficient condition for amenability
in term of stability is proved by Forti in [16]. In [18], Forti and Sikorska obtained the
stability of the Drygas functional Eq. (2) in amenable groupG, under the assumption
that f is approximatively central (i.e., |f (xy) − f (yx)| ≤ δ for some δ ≥ 0 and for
all x, y ∈ G). In the present chapter, we study the stability of the generalized Drygas
functional Eq. (1) when the domain G is an amenable semigroup and the function
f is approximatively central. The result of this chapter can be compared with the
ones of Forti and Sikorska [18] because we formulate them in the same way by using
some ideas from [18]. In contrast to [18], we work with a general involution σ on the
semigroup G. We recall that a linear functional m on the space B(G, C). The space
of all bounded functions on G is called a left (right) invariant mean if and only if

inf
x∈G f (x) ≤ m(f ) ≤ sup

x∈G
f (x); m(af ) = m(f ); (m(fa) = m(f ))

for all f ∈ B(G, C) and a ∈ G, where af and fa are the left and right translates
of f defined by af (x) = f (ax), fa(x) = f (xa), x ∈ G. A semigroup G which
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admits a left (right) invariant mean on B(G, C) will be termed left (right) amenable.
If on the space B(G, C), there exists a real linear functional which is simultaneously
a left and right invariant mean then we say that G is two-sided amenable or just
amenable. We refer to [22] for the definition and properties of invariant means.
Throughout this chapter, f o and f e denote the odd and even parts of f , respectively,

i.e., f o(x) = f (x) − f (σ (x))

2
, f e(x) = f (x) + f (σ (x))

2
for all x ∈ G.

2 Hyers–Ulam Stability of the Drygas Functional Equation
in Amenable Semigroups

In the following lemma, we establish a connection between solutions and approxi-
mate solutions of Drygas functional Eq. (1).

Lemma 1 Let G be a semigroup and E be a Banach space. Let f : G → E be
a function for which there exists a solution g of the Drygas functional Eq. (1) such
that ‖f (x) − g(x)‖ ≤ δ for all x ∈ G and for some δ ≥ 0. Then

g(x) =

lim
n→+∞ 2−2n

{
f e(x2n ) + 1

2

n∑

k=1

2k−1
[
f e((x2n−k

σ (x)2n−k

)2k−1
) + f e((σ (x)2n−k

x2n−k

)2k−1
)
]}

+ 2−n

{
f o(x2n ) + 1

2

n∑

k=1

[
f e((x2k−1

σ (x)2k−1
)2n−k

) − f e((σ (x)2k−1
x2k−1

)2n−k

)
]}

(3)

where f e, f o are the even and odd part of f .

Proof By using Drygas functional Eq. (1), we get

[ge(xy) + ge(xσ (y)) − 2ge(x) − 2ge(y)] + [go(xy) + go(xσ (y)) − 2go(x)] = 0
(4)

Setting x = y in (4) and using go(xσ (x)) = go(σ (x)x) = 0, we obtain

[ge(x2) + ge(xσ (x)) − 4ge(x)] + [go(x2) − 2go(x)] = 0. (5)

Changing x into σ (x) in (5), we get

[ge(x2) + ge(σ (x)x) − 4ge(x)] + [− go(x2) + 2go(x)] = 0. (6)

By adding and subtracting (5) to (6), we obtain respectively,

ge(x2) + 1

2
[ge(xσ (x)) + ge(σ (x)x)] = 4ge(x) (7)

and

go(x2) + 1

2
[ge(xσ (x)) − ge(σ (x)x)] = 2go(x). (8)
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From (7), we get

ge(x2) + ge(xσ (x)) − 4ge(x) = 1

2
[ge(xσ (x)) − ge(σ (x)x)] (9)

= 1

2
[g(xσ (x)) − g(σ (x)x)] = c(x),

where c(x) = 1

2
[g(xσ (x)) − g(σ (x)x)]. First, we use induction on n to prove the

following relation

ge(x2n ) = 4nge(x) −
n∑

k=1

4k−1
[
ge(x2n−k

σ (x)2n−k

) − c(x2n−k

)
]

(10)

for all x ∈ G. Equation (9) proves that the assertion (10) is true for n = 1. Now,
assume that (10) holds for n. By using (9) and (10), we obtain

ge(x2n+1
) = 4ge(x2n ) − ge(x2nσ (x)2n ) + c(x2n )

= 4

[
4nge(x) −

n∑

k=1

4k−1
[
ge(x2n−k

σ (x)2n−k

) − c(x2n−k

)
]]

− ge(x2nσ (x)2n ) + c(x2n )

= 4n+1ge(x) −
n+1∑

k=1

4k−1
[
ge(x2n+1−k

σ (x)2n+1−k

) − c(x2n+1−k

)
]

,

which proves the validity of (10) for n + 1. If we replace x by xσ (x) in (9), we get

4ge(xσ (x)) = 2ge((xσ (x))2), x ∈ G. (11)

By applying the inductive assumption, we obtain

4nge(xσ (x)) = 2nge((xσ (x))2n ) (12)

for some positive integer n. It follows from (11) that (12) is true for n = 1. The
inductive step must now be demonstrated to hold true for n + 1, that is,

4n+1ge(xσ (x)) = 4[2nge((xσ (x))2n )]

= 2n × 2ge((xσ (x))2n+1
) = 2n+1ge((xσ (x))2n+1

)

This proves the validity of the relation (12). By the hypothesis, f = g + b, where b
is a bounded function. So, we have

f e = ge + be and f o = go + bo. (13)
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The first relation in (13) gives

4−nf e(x2n ) = 4−nge(x2n ) + 4−nbe(x2n ).

By using (10) and (12), we get

4−nf e(x2n ) = 4−n

[
4nge(x) −

n∑

k=1

4k−1
[
ge(x2n−k

σ (x)2n−k
) − c(x2n−k

)
]]

+ 4−nbe(x2n )

= ge(x) − 4−n

n∑

k=1

2k−1ge((x2n−k
σ (x)2n−k

)2k−1
) + 4−n

n∑

k=1

4k−1c(x2n−k
)

+ 4−nbe(x2n ).

Therefore, we have

4−n

[
f e(x2n ) +

n∑

k=1

2k−1f e((x2n−k

σ (x)2n−k

)2k−1
)

]
(14)

= ge(x) + 4−n

n∑

k=1

2k−1
[
f e((x2n−k

σ (x)2n−k

)2k−1
) − ge((x2n−k

σ (x)2n−k

)2k−1
)
]

+ 4−n

n∑

k=1

4k−1c(x2n−k

) + 4−nbe(x2n ).

Since the function c is odd (c(σ (x)) = −c(x)), so by substituting x by σ (x) in
(14), and adding the new result to (14), we obtain

4−n

[
f e(x2n ) + 1

2

n∑

k=1

2k−1
[
f e((x2n−k

σ (x)2n−k
)2k−1

) + f e((σ (x)2n−k
x2n−k

)2k−1
)
]]

= ge(x) + 1

2
4−n

n∑

k=1

2k−1
[
f e((x2n−k

σ (x)2n−k
)2k−1

) − ge((x2n−k
σ (x)2n−k

)2k−1
)
]

+ 1

2
4−n

n∑

k=1

2k−1
[
f e((σ (x)2n−k

x2n−k
)2k−1

) − ge((σ (x)2n−k
x2n−k

)2k−1
)
]

+ 4−nbe(x2n ).

Therefore, we get

‖ge(x) − 4−n

[
f e(x2n ) + 1

2

n∑

k=1

2k−1
[
f e((x2n−k

σ (x)2n−k
)2k−1

) + f e((σ (x)2n−k
x2n−k

)2k−1
)
]]

‖

≤ 1

2
4−n

n∑

k=1

2k−1‖f e((x2n−k
σ (x)2n−k

)2k−1
) − ge((x2n−k

σ (x)2n−k
)2k−1

)‖ (15)

+ 1

2
4−n

n∑

k=1

2k−1‖f e((σ (x)2n−k
x2n−k

)2k−1
) − ge((σ (x)2n−k

x2n−k
)2k−1

)‖ + 4−n‖be(x2n )‖
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≤ 4−nδ

n∑

k=1

2k−1 + 4−n‖be(x2n )‖

≤ 2n − 1

4n
δ + 4−n‖be(x2n )‖.

So, by letting n → +∞ in the formula (15), we obtain

ge(x) = lim
n→+∞ 4−n

{
f e(x2n ) + 1

2

n∑

k=1

2k−1
[
f e((x2n−k

σ (x)2n−k
)2k−1

) + f e((σ (x)2n−k
x2n−k

)2k−1
)
]}

.

Consider now the odd parts. First, we check by induction that

go(x2n ) = 2ngo(x) −
n∑

k=1

2n−kc(x2k−1
) (16)

for all x ∈ G. From (8), it follows that (16) is true for n = 1. Now, assume that
(16) holds for n. Using (8) (by replacing x by x2n ), Eq. (16) and the definition of the
function c, we get

go(x2n+1
) = 2go(x2n ) − c(x2n )

= 2

[
2ngo(x) −

n∑

k=1

2n−kc(x2k−1
)

]
− c(x2n )

= 2n+1go(x) −
n+1∑

k=1

2n+1−kc(x2k−1
),

which proves the validity of (16). By using (12), (16), and the definition of the
function c, we get

2−nf o(x2n ) = 2−ngo(x2n ) + 2−nbo(x2n )

= 2−n

[
2ngo(x) −

n∑

k=1

2n−kc(x2k−1
)

]
+ 2−nbo(x2n )

= go(x) − 2−n

[
1

2

n∑

k=1

ge((x2k−1
σ (x)2k−1

)2n−k
) − ge((σ (x)2k−1

x2k−1
)2n−k

)

]

+ 2−nbo(x2n ).

Then, we obtain

‖go(x) − 2−n

{
f o(x2n ) + 1

2

n∑

k=1

f e((x2k−1
σ (x)2k−1

)2n−k
) − f e((σ (x)2k−1

x2k−1
)2n−k

)

}
‖

≤ 2−n 1

2

n∑

k=1

‖f e((x2k−1
σ (x)2k−1

)2n−k
) − ge((x2k−1

σ (x)2k−1
)2n−k

)‖ (17)
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+ ‖f e((σ (x)2k−1
x2k−1

)2n−k
) − ge((σ (x)2k−1

x2k−1
)2n−k

)‖ + 2−n‖bo(x2n )‖

≤ 2−n[
1

2
nδ + 1

2
nδ] + 2−n‖bo(x2n )‖ = 2−nnδ + 2−n‖bo(x2n )‖.

If we let n → +∞ in (17), we get

go(x) = lim
n→+∞ 2−n

{
f o(x2n ) + 1

2

n∑

k=1

[
f e((x2k−1

σ (x)2k−1
)2n−k

) − f e((σ (x)2k−1
x2k−1

)2n−k
)
]}

.

Since g(x) = ge(x) + go(x), the rest of the proof follows.

Remark 1 Let G be a group, σ = −I and let E be a Banach space. Let f : G → E

be a function for which there exists a solution g of Drygas functional Eq. (2) such
that ‖f (x) −g(x)‖ ≤ δ for all x ∈ G and for some δ ≥ 0. Then, we obtain the result
proved in [18]:

g(x) = lim
n→+∞ 2−2n{f e(x2n )} + 2−n{f o(x2n )}

Remark 2 In Lemma 1, if a function g is a solution of Drygas functional equation

g(xy) + g(σ (x)y) = 2g(y) + g(x) + g(σ (x)), x, y ∈ G (18)

and ‖f (x) − g(x)‖ ≤ δ for all x ∈ G and for some δ ≥ 0. Then

g(x)

= lim
n→+∞ 2−2n

{
f e(x2n ) + 1

2

n∑

k=1

2k−1
[
f e((x2n−k

σ (x)2n−k
)2k−1

) + f e((σ (x)2n−k
x2n−k

)2k−1
)
]}

+ 2−n

{
f o(x2n ) − 1

2

n∑

k=1

[
f e((x2k−1

σ (x)2k−1
)2n−k

) − f e((σ (x)2k−1
x2k−1

)2n−k
)
]}

.

Remark 3 if f : G −→ C is a solution of Drygas functional Eq. (1) with f is
central, i.e., f (xy) = f (yx) then the even and odd parts of f satisfies the quadratic
functional equation

f e(xy) + f e(xσ (y)) = 2f e(x) + 2f e(y), x, y ∈ G (19)

respectively, the Jensen functional equation

f o(xy) + f o(xσ (y)) = 2f o(x), x, y ∈ G. (20)

Later, we use the following result.

Lemma 2 LetGbe a semigroup andE be a Banach space. Suppose thatf : G → E

be an even function, (i.e., f (σ (x)) = f (x)) satisfying the inequality

‖f (xy) + f (xσ (y)) − 2f (x) − 2f (y)‖ ≤ δ (21)
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for all x ∈ G and for some δ ≥ 0. Then, for every x ∈ G, the limit

q(x) = lim
n→+∞ 2−2n{f (x2n ) + (2n − 1)f (x2n−1

σ (x)2n−1
)} (22)

exists. Moreover, the mapping q satisfies the inequality

‖f (x) − q(x)‖ ≤ 11

6
δ (23)

for all x ∈ G.

Proof In the proof, we use some ideas from Bouikhalene et al. [4]. By interchanging
x by y in (21), we obtain with f (xσ (y)) = f (yσ (x)) that

‖f (xy) − f (yx)‖ ≤ 2δ. (24)

Now, from (21), we get

‖2f (x2n−1
σ (x)2n−1

σ (x)2n−1
x2n−1

) − 2f (x2n−1
σ (x)2n−1

) − 2f (σ (x)2n−1
x2n−1

)‖ ≤ δ.

(25)

Since

‖f (x2n−1
σ (x)2n−1

) − f (σ (x)2n−1
x2n−1

)‖ ≤ 2δ (26)

and

‖f (x2n−1
σ (x)2nx2n−1

) − f (x2nσ (x)2n )‖ ≤ 2δ. (27)

Then

‖2f (x2n−1
σ (x)2nx2n−1

) − 4f (x2n−1
σ (x)2n−1

)‖ ≤ 5δ (28)

and

‖2f (x2nσ (x)2n ) − 4f (x2n−1
σ (x)2n−1

)‖ (29)

≤ ‖2f (x2n−1
σ (x)2nx2n−1

) − 2f (x2nσ (x)2n )‖
+ ‖2f (x2n−1

σ (x)2nx2n−1
) − 4f (x2n−1

σ (x)2n−1
)‖

≤ 9δ.

First, by using induction on n, we prove the following inequality

‖f (x) − 1

22n
{f (x2n ) + (2n − 1)f (x2n−1

σ (x)2n−1
)}‖ ≤ 11

6
δ + (

8

3

1

22n
− 9

2

1

2n
)δ.

(30)

By letting x = y in (21), we get

‖f (x2) + f (xσ (x)) − 4f (x)‖ ≤ δ. (31)
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So

‖f (x) − 1

22
{f (x2) + (2 − 1)f (xσ (x))}‖ ≤ δ

22
. (32)

This proves (30) for n = 1. The inductive step must now be demonstrated to hold
true for the integer n + 1 that is,

‖f (x) − 1

22(n+1)
{f (x2n+1

) + (2n+1 − 1)f (x2nσ (x)2n )}‖

≤ 1

22(n+1)
‖f (x2n+1

) + f (x2nσ (x)2n ) − 4f (x2n )‖

+ 1

22(n+1)
‖2(2n − 1)f (x2nσ (x)2n ) − 4(2n − 1)f (x2n−1

σ (x)2n−1
)‖

+ 1

22(n+1)
‖4f (x2n ) + 4(2n − 1)f (x2n−1

σ (x)2n−1
) − 22(n+1)f (x)‖

≤ δ

22(n+1)
+ (2n − 1)

22(n+1)
9δ + ‖f (x) − 1

22n
{f (x2n ) + (2n − 1)f (x2n−1

σ (x)2n−1
)}‖

≤ 9δ

22

1

2n
− 2δ

22n
+ 11

6
δ + (

8

3

1

22n
− 9

2

1

2n
)δ = 11

6
δ + (

8

3

1

22(n+1)
− 9

2

1

2n+1
)δ.

This completes the proof of the induction assumption (30). Now, Let us define

qn(x) = 1

22n

{
f (x2n ) + (2n − 1)f (x2n−1

σ (x)2n−1
)
}

(33)

for any positive integer n, and x ∈ G. By using (21), (29), and (33), we get

‖qn+1(x) − qn(x)‖

= 1

22(n+1)
‖f (x2n+1

) + (2n+1 − 1)f (x2nσ (x)2n ) − 4f (x2n ) − 4(2n − 1)f (x2n−1
σ (x)2n−1

)‖

≤ 1

22(n+1)
‖f (x2n+1

) + f (x2nσ (x)2n ) − 4f (x2n )‖

+ 1

22(n+1)
‖2(2n − 1)f (x2nσ (x)2n ) − 4(2n − 1)f (x2n−1

σ (x)2n−1
)‖

≤ δ

22(n+1)
+ 9δ

(2n − 1)

22(n+1)
≤ 5

2n+3
δ.

It follows that {qn(x)}n is a Cauchy sequence for everyx ∈ G. SinceE is complete,
we can define q(x) = lim

n→+∞ qn(x) for any x ∈ G. In view of (30), one can verify

that q satisfies the inequality (23). This completes the proof.
In the following theorem, we prove a partial stability result of the quadratic and

Jensen functional equations on amenable semigroups.

Theorem 1 Let G be an amenable semigroup and E be a Banach space. Assume
that f : G → E be a function satisfying the following inequalities:

‖f e(xy) + f e(xσ (y)) − 2f e(x) − 2f e(y)‖ ≤ δ, (34)
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‖f o(xy) + f o(xσ (y)) − 2f o(x)‖ ≤ γ (35)

for allx, y ∈ Gand for some δ, γ ≥ 0. Then, there exists a unique solutiong = Q+D

of Drygas functional Eq. (1), with Q solution of the quadratic functional equation

Q(xy) + Q(xσ (y)) = 2Q(x) + 2Q(y)

and D solution of Jensen functional equation

D(xy) + D(xσ (y)) = 2D(x)

such that

‖f (x) − g(x))‖ ≤ 1

2
(δ + γ ) (36)

for all x ∈ G.

Proof We follows the ideas and the computations used in [4] and [51]. By using
(34), we get

‖f e((xy)n) − f e((yx)n)‖ = ‖f e([(xyxy. . .xy)x]y) − f e(y[(xyxy. . .xy)x])‖ ≤ 2δ.
(37)

From (34), (37), and the triangle inequality, we deduce that

‖f e((xy)2n (σ (xy)2n )) − f e((yx)2n (σ (yx)2n ))‖ (38)

≤ ‖f e((xy)2n (σ (xy)2n )) + f e((xy)2n (xy)2n ) − 4f e((xy)2n )‖
+ ‖f e((yx)2n (σ (yx)2n )) + f e((yx)2n (yx)2n ) − 4f e((yx)2n )‖
+ ‖f e((xy)2n (xy)2n ) − f e((yx)2n (yx)2n )‖
+ 4‖f e((xy)2n ) − f e((yx)2n )‖

≤ δ + δ + 2δ + 8δ = 12δ.

From Lemma 2, for every x ∈ G, the limit

q(x) = lim
n→+∞ 2−2n{f e(x2n ) + (2n − 1)f e(x2n−1

σ (x)2n−1
)} (39)

exists and

‖f e(x) − q(x)‖ ≤ 11

6
δ. (40)

Furthermore, in view of (37) and (2.36), we have

‖q(xy) − q(yx)‖
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= lim
n→+∞ 2−2n‖f e((xy)2n ) + (2n − 1)f e((xy)2n−1

σ (xy)2n−1
)

− f e((yx)2n ) − (2n − 1)f e((yx)2n−1
σ (yx)2n−1

)‖
≤ lim

n→+∞ 2−2n‖f e((xy)2n ) − f e((yx)2n )‖

+ (2n − 1)

22n
‖f e((xy)2n−1

σ (xy)2n−1
) − f e((yx)2n−1

σ (yx)2n−1
)‖

≤ lim
n→+∞ 2−2n+1δ + 12

(2n − 1)

22n
δ = 0.

Then, the mapping q satisfies the relation

q(xy) = q(yx), x, y ∈ G. (41)

So, by (40) and (34), the function q satisfies the inequality

‖q(xy) + q(xσ (y)) − 2q(x) − 2q(y)‖ ≤ 12δ (42)

for all x, y ∈ G. Consequently, for any fixed y ∈ G, the function x �−→ q(xy) +
q(xσ (y)) − 2q(x) is bounded. Since G is amenable then there exists an invariant
mean m on the space of bounded function on G and we have

m{zyq +σ (z)y q − 2yq} = m{y(zq +σ (z) q − 2q)} = m{zq +σ (z) q − 2q},
m{qyz + qyσ (z) − 2qy} = m{(qz + qσ (z) − 2q)y} = m{qz + qσ (z) − 2q},

when qy(z) = q(zy), z ∈ G. Define

Ψ (y) = m{qy + qσ (y) − 2q} (43)

for all y ∈ G. By using (43) and (41), we obtain

Ψ (zy) + Ψ (σ (z)y) = m{qzy + qσ (y)σ (z) − 2q} + m{qσ (z)y + qσ (y)z − 2q}
= m{zyq +σ (z)y q − 2yq} + m{qσ (y)σ (z) + qσ (y)z − 2qσ (y)}

+ m{2qy + 2qσ (y) − 4q}
= m{zq +σ (z) q − 2q} + m{qσ (z) + qz − 2q}

+ 2m{qy + qσ (y) − 2q}
= 2Ψ (z) + 2Ψ (y).

So, Q(y) = Ψ (y)/2 satisfies the functional equation

Q(xy) + Q(σ (x)y) = 2Q(x) + 2Q(y) (44)

for all x, y ∈ G and the following inequality

‖Q(y) − q(y)‖ = 1

2
‖m{qy + qσ (y) − 2q − 2q(y)}‖ (45)
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≤ sup
x∈G

1

2
‖q(xy) + q(xσ (y)) − 2q(x) − 2q(y)‖

≤ 6δ.

If we let y = e in (44), we get Q is even and by a simple computation, we deduce
thatQ(xy) = Q(yx) for all x, y ∈ G. Consequently, there exists a mappingQwhich
satisfies the quadratic functional equation

Q(xy) + Q(xσ (y)) = 2Q(x) + 2Q(y), x, y ∈ G (46)

and the inequality ‖f e(y) − Q(y)‖ ≤ 47

6
δ. Assume now that there exists another

mapping H : G → E solution of (46) satisfying ‖f e(x) − H (x)‖ ≤ 47

6
δ for all

x ∈ G. First, by mathematical induction, we show that

Q(x) = 2−2n

{
Q(x2n ) +

n∑

k=1

2k−1Q((x2n−k

σ (x)2n−k

)2k−1
)

}
(47)

for each n ∈ N. By letting x = y in (46) we obtain

Q(x2) + Q(xσ (x)) = 22Q(x). (48)

This proves (47) for n = 1. Substituting x by xσ (x) in (48), we get

2Q((xσ (x))2) = 4Q(xσ (x)). (49)

By using (48) and (49), we obtain (47) for n = 2, that is:

Q(x22
) + Q(x2σ (x)2) + 2Q((xσ (x))2) = 22[Q(x2) + Q(xσ (x))]

= 24Q(x).

Suppose that (47) is true for n. Hence, by using (48) and (49), we have

Q(x2n+1
) +

n+1∑

k=1

2k−1Q((x2n+1−k

σ (x)2n+1−k

)2k−1
)

= Q(x2n+1
) + Q(x2nσ (x)2n ) +

n+1∑

k=2

2k−1Q((x2n+1−k

σ (x)2n+1−k

)2k−1
)

= 22Q(x2n ) +
n+1∑

k=2

2k−1Q((x2n+1−k

σ (x)2n+1−k

)2k−1
)

= 22

[
Q(x2n ) +

n∑

k=1

2k−1Q((x2n−k

σ (x)2n−k

)2k−1
)

]

= 22(n+1)Q(x).
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From (47), we obtain

‖Q(x) − H (x)‖

= 2−2n‖Q(x2n ) − H (x2n ) +
n∑

k=1

2k−1
[
Q((x2n−k

σ (x)2n−k

)2k−1
) − H ((x2n−k

σ (x)2n−k

)2k−1
)
]
‖

≤ 2−2n‖Q(x2n ) − f e(x2n )‖ + 2−2n‖H (x2n ) − f e(x2n )‖

+ 2−2n
n∑

k=1

2k−1‖Q((x2n−k

σ (x)2n−k

)2k−1
) − f e((x2n−k

σ (x)2n−k

)2k−1
)‖

+ 2−2n
n∑

k=1

2k−1‖H ((x2n−k

σ (x)2n−k

)2k−1
) − f e((x2n−k

σ (x)2n−k

)2k−1
)‖

≤ 2−2n 94

6
δ + 2−n 94

6
δ.

By letting n → +∞, we get Q = H . This proves the uniqueness of the mapping
Q. Now, we define by induction the sequence function f e

0 (x) = f e(x) and

f e
n (x) = 2−n

{
f e(x2n ) +

n∑

k=1

2k−1f e((x2n−k

σ (x)2n−k

)2k−1
)

}

for all n ≥ 1. By a direct computation, we can easily verify that f e
n (x) =

1

2
[f e

n−1(x2) + f e
n−1(xσ (x))] for n ≥ 1. By letting x = y in (34) we get

‖1

2
[f e(x2) + f e(xσ (x))] − 2f e(x)‖ ≤ δ

2
, (50)

so

‖f e
1 (x) − 2f e

0 (x)‖ ≤ δ

2
(51)

for all x ∈ G. In the following, we prove by induction the inequalities

‖f e
n (x) − 2f e

n−1(x)‖ ≤ δ

2
, (52)

‖f e
n (x) − 2nf e(x)‖ ≤ (2n − 1)

2
δ (53)

for all n ∈ N and x ∈ G. From (51), we get (52) for n = 1. The inductive step must
now be demonstrated to hold true for the integer n + 1, that is

‖f e
n+1(x) − 2f e

n (x)‖ = 1

2
‖f e

n (x2) + f e
n (xσ (x)) − 2f e

n−1(x2) − 2f e
n−1(xσ (x))‖
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≤ 1

2
‖f e

n (x2) − 2f e
n−1(x2)‖ + 1

2
‖f e

n (xσ (x)) − 2f e
n−1(xσ (x))‖

≤ 1

2
[
δ

2
+ δ

2
] = δ

2
.

This proves that (52) is true for all n ≥ 1. Now, by using the inequality

‖f e
n (x) − 2nf e(x)‖ ≤ ‖f e

n (x) − 2f e
n−1(x)‖ + 2‖f e

n−1(x) − 2n−1f e(x)‖ (54)

we check that (53) holds true for any n ∈ N. Let us define

gn(x) = f e
n (x)

2n
= 2−2n

{
f e(x2n ) +

n∑

k=1

2k−1f e((x2n−k

σ (x)2n−k

)2k−1
)

}

for any positive integer n and x ∈ G. By using (47) and inequality ‖f e(x)−Q(x)‖ ≤
47

6
δ, we can prove that

Q(x) = lim
n→+∞ gn(x).

From (53), one can verify that Q satisfies ‖f e(x) − Q(x)‖ ≤ δ

2
for all x ∈ G.

Consider now (35), we have

‖f o(yx) − f o(xσ (y)) − 2f o(y)‖ = ‖f o(yx) + f o(yσ (x)) − 2f o(y)‖ ≤ γ. (55)

Whence, for every y ∈ G, the function x → f o(yx) −f o(xσ (y)) is bounded. By
using (35) and (55), we obtain

‖f o(yx) + f o(σ (y)x) − 2f o(x)‖ (56)

≤ ‖f o(yx) − f o(xσ (y)) − 2f o(y)‖ + ‖f o(σ (y)x) + f o(σ (y)σ (x)) − 2f o(σ (y))‖
+ ‖f o(xy) + f o(xσ (y)) − 2f o(x)‖

≤ 3γ.

The function x → f o(yx) + f o(σ (y)x) − 2f o(x) is bounded. So, we have

m{zyf
o +σ (z)y f

o − 2yf
o} = m{y(zf

o +σ (z) f
o − 2f o)} = m{zf

o +σ (z) f
o − 2f o},

m{f o
σ (y)σ (z) + f o

σ (y)z − 2f o
σ (y)} = m{(f o

σ (z) + f o
z − 2f o)σ (y)} = m{f o

σ (z) + f o
z − 2f o}.

Define

ϕ(y) = m{yf o − f o
σ (y)}, y ∈ G. (57)

Therefore, we have

ϕ(zy) + ϕ(σ (z)y) = m{zyf
o − f o

σ (y)σ (z)} + m{σ (z)yf
o − f o

σ (y)z}
= m{zyf

o +σ (z)y f
o − 2(yf

o)} − m{f o
σ (y)σ (z) + f o

σ (y)z − 2f o
σ (y)}
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+ 2m{yf o − f o
σ (y)}

= m{zf
o +σ (z) f

o − 2f o} − m{f o
σ (z) + f o

z − 2f o}
+ 2m{yf o − f o

σ (y)}
= m{zf

o − f o
σ (z)} + m{σ (z)f

o − f o
z } + 2m{yf o − f o

σ (y)}
= ϕ(z) + ϕ(σ (z)) + 2ϕ(y).

Thus, ϕ is a solution of Drygas functional Eq. (18). The function D(y) = 1

2
ϕ(y)

is a solution of Drygas functional Eq. (18). Moreover, we have

‖D(y) − f o(y)‖ = 1

2
‖ϕ(y) − 2f o(y)‖ = 1

2
‖m{yf o − f o

σ (y) − 2f o(y)}‖ (58)

≤ 1

2
sup
x∈G

‖f o(yx) − f o(xσ (y)) − 2f o(y)}‖

≤ 1

2
γ.

So, D is a solution of (18) such that (58). Then, by Remark 2

D(x) = 1

2
lim

n→+∞ 2−2n
{
f o(x2n ) + f o(σ (x2n ))

+ 1

2

n∑

k=1

2k−1
[
f o((x2n−k

σ (x)2n−k

)2k−1
) + f o((σ (x)2n−k

x2n−k

)2k−1
)
]

+ 1

2

n∑

k=1

2k−1
[
f o(σ ((x2n−k

σ (x)2n−k

)2k−1
)) + f o(σ ((σ (x)2n−k

x2n−k

)2k−1
))
]}

+ 2−n
{
f o(x2n ) − f o(σ (x2n ))

− 1

2

n∑

k=1

[
f o((x2k−1

σ (x)2k−1
)2n−k

) + f o((σ (x)2k−1
x2k−1

)2n−k

)
]

− 1

2

n∑

k=1

[
f o(σ ((x2k−1

σ (x)2k−1
)2n−k

)) + f o(σ ((σ (x)2k−1
x2k−1

)2n−k

))
]}

= lim
n→+∞ 2−nf o(x2n ).

Then, D is odd. Thus, D satisfies the following equation

D(xy) + D(σ (x)y) = 2D(y), x, y ∈ G, (59)

which implies that

−D(σ (y)σ (x)) − D(σ (y)x) = −2D(σ (y)), (60)
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so D is a solution of Jensen functional equation

D(xy) + D(xσ (y)) = 2D(x), x, y ∈ G. (61)

The uniqueness of the function D follows as usual. Finally, we conclude that
g = Q + D is the unique solution of Drygas functional Eq. (1) such that (36).

Now, we are able to prove the main result of the present chapter.

Theorem 2 Let G be an amenable semigroup and E a Banach space. Suppose that
f : G → E be a function satisfying the following inequalities

‖f (xy) + f (xσ (y)) − 2f (x) − f (y) − f (σ (y))‖ ≤ δ (62)

and

‖f (xy) − f (yx))‖ ≤ μ (63)

for allx, y ∈ Gand for some δ,μ ≥ 0. Then, there exists a unique solutiong = Q+D

of Drygas functional Eq. (1), with Q solution of the quadratic functional Eq. (46)
and D solution of Jensen functional Eq. (61), such that

‖f (x) − g(x)‖ ≤ δ + μ (64)

for all x ∈ G.

Proof From (62) and (63) we have

‖f e(xy) + f e(xσ (y)) − 2f e(x) − 2f e(y)‖

= 1

2
‖f (xy) + f (σ (y)σ (x)) + f (xσ (y)) + f (yσ (x)) − 2f (x) − 2f (σ (x)) − 2f (y) − 2f (σ (y))‖

≤ 1

2
‖f (xy) + f (xσ (y)) − 2f (x) − f (y) − f (σ (y))‖

+ 1

2
‖f (σ (x)y) + f (σ (x)σ (y)) − 2f (σ (x)) − f (y) − f (σ (y))‖

+ 1

2
‖f (σ (y)σ (x)) − f (σ (x)σ (y))‖ + 1

2
‖f (yσ (x)) − f (σ (x)y)‖

≤ δ + μ

and analogous approximation we have

‖f o(xy) + f o(xσ (y)) − 2f o(x)‖ ≤ δ + μ (65)

for all x, y ∈ G. Hence, by Theorem 1 we get our main result.

Corollary 1 [18] LetG be an amenable semigroup andE a Banach space. Suppose
that f : G → E be a function satisfying the following inequalities

‖f (xy) + f (xy−1) − 2f (x) − f (y) − f (y−1)‖ ≤ δ (66)
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and

‖f (xy) − f (yx))‖ ≤ μ (67)

for all x, y ∈ G and for some δ,μ ≥ 0. Then there exists a unique solution g = Q+D

of Drygas functional Eq. (2), with Q quadratic and D Jensen such that

‖f (x) − g(x)‖ ≤ δ + μ (68)

for all x ∈ G.

Corollary 2 [48] LetG be an amenable semigroup andE a Banach space. Suppose
that f : G → E be a function satisfying the following inequality

‖f (xy) − f (x) − f (y)‖ ≤ δ (69)

for all x, y ∈ G and for some δ ≥ 0. Then, there exists a unique additive mapping
a : G → E such that

‖f (x) − a(x)‖ ≤ δ

2
(70)

for all x ∈ G.
In fact, from the proof of Theorem 2, we see that instead of the condition ‖f (xy)−

f (yx))‖ ≤ μ, we may assume a weaker one and which follows from the approximate
centrality, namely

‖f (xy) + f (xσ (y)) − f (yx) − f (σ (y)x)‖ ≤ γ , x, y ∈ G.

Corollary 3 Let G be an amenable semigroup and E a Banach space. Suppose that
f : G → E be a function satisfying the following inequalities

‖f (xy) + f (xσ (y)) − 2f (x) − f (y) − f (σ (y))‖ ≤ δ (71)

and

‖f (xy) + f (xσ (y)) − f (yx) − f (σ (y)x)‖ ≤ γ (72)

for allx, y ∈ Gand for some δ, γ ≥ 0. Then, there exists a unique solutiong = Q+D

of Drygas functional Eq. (2), with Q solution of the quadratic functional Eq. (46)
and D solution of the Jensen functional Eq. (61) such that

‖f (x) − g(x)‖ ≤ δ + γ

2
(73)

for all x ∈ G.
In [52], D. Yang presented some rich ideas on the stability of Jensen’s functional

equation

f (xy) + f (xy−1) = 2f (x), x, y ∈ G (74)
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on amenable groups. However, the proof of his result is incorrect. The function ψ

defined by Eq. (11) in [52] satisfies Drygas functional equation, the deduction that
the odd parts ψ◦ of the function ψ satisfies Jensen functional Eq. (74) is not true. In
the following, we correct the error that occurs in the proof of [[52], Proposition 2].

Corollary 4 Let G be an amenable semigroup with neutral element e. Let f :
G −→ C be a function satisfying the following inequality:

|f (xy) + f (xy−1) − 2f (x)|≤ δ (75)

for all x, y ∈ G and for some nonnegative δ. Then, there exists a unique solution g

of Jensen Eq. (74) such that

|f (x) − g(x) − f (e)|≤ 3δ (76)

for all x ∈ G.

Proof In the proof, we use some ideas from Yang [52] and Forti and Sikorska [18].
Setting x = e in (75), we have

|f e(y) − f (e)|≤ δ

2
(77)

for all y ∈ G. The inequalities (75), (77), and the triangle inequality gives

|f (xy) + f (yx) − 2f (x) − 2f (y) + 2f (e)| (78)

≤|f (xy) + f (xy−1) − 2f (x)| + |f (yx) + f (yx−1) − 2f (y)|
+| 2f (e) − f (xy−1) − f (yx−1)|
≤ 3δ.

Hence, from (75), (77), and (78), we get

|f (yx) + f (y−1x) − 2f (x)| (79)

≤|f (yx) + f (xy) − 2f (y) − 2f (x) + 2f (e)|
+|f (y−1x) + f (xy−1) − 2f (y−1) − 2f (x) + 2f (e)|
+|−f (xy) − f (xy−1) + 2f (x)|+|2f (y) + 2f (y−1) − 4f (e)|
≤ 9δ.

Now, from (75) and (79), we obtain

|f (yx) − f (x−1y−1) + f (yx−1) − f (xy−1) − 2(f (y) − f (y−1))| (80)

≤|f (yx) + f (yx−1) − 2f (y)| +|f (xy−1) + f (x−1y−1) − 2f (y−1)|
≤ 10δ.

Consequently, we get

|f o(yx) + f o(yx−1) − 2f o(y)|≤ 5δ (81)

for all x, y ∈ G. Now, by using the proof of Theorem 2.6, we get the rest of the
proof.
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Stability of Quadratic and Drygas Functional
Equations, with an Application for Solving
an Alternative Quadratic Equation

Gian Luigi Forti

Abstract The aim of this survey is to present stability results obtained in the last
years (roughly after 1995) for the quadratic equation and its various generalizations,
and the Drygas equation. The number of papers on this subject is very high, hence,
the author of the present chapter made a (quite arbitrary) choice of some of them
to be shown in detail. The last section is devoted to an application of stability for
solving an alternative form of the quadratic equation.

Keywords Ulam–Hyers stability · Quadratic equation · Drygas equation ·Alternative
quadratic equation

1 Introduction

The well-known characterization of inner product spaces among normed spaces is
given by the so-called parallelogram law

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2

and this leads naturally to the following functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y). (1)

In the case of f : R → R, the regular solutions of the equation above have the
form f (x) = λx2 and from this fact Eq. (1) has been named quadratic equation and
its solutions quadratic functions (see [2]).

The similar functional equation

g(x + y) + g(x − y) = 2g(x) + g(y) + g(−y) (2)

was introduced in 1987 by H. Drygas in [28], where the author was looking for
characterizations of quasi inner product spaces, which in turn lead to solutions of
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some problems in statistics and mathematical programming. Equation (2) is now
known in the literature as Drygas equation.

Both functional equations have been the subject of investigations in various set-
tings: linear spaces, commutative and non–commutative groups, etc. Moreover,
several authors dealt with the Ulam–Hyers stability of them.

The aim of this survey is to present stability results obtained after 1995 for the two
previous equations and some of their generalizations. For the period before 1995,
refer to [26, 42, 45, 86, 87, 91]. Moreover, various results are in the more recent
books [27, 57, 61, 88, 89, 91, 98]. The number of papers on this subject is very high,
hence, it is not realistic to try to describe the content of all of them. The author of
the present chapter made a (quite arbitrary) choice of some of them to be shown in
detail and decided not to treat the case of restricted domains.

The last section is devoted to an application of stability for solving an alternative
form of the quadratic equation.

Throughout this chapter N, R, C denote the natural, real and complex numbers,
respectively.

2 Stability of the Quadratic Equation

The natural setting for studying stability of Eq. (1) is that of functions mapping a
group G into a Banach space B. When G is not necessarily Abelian, we write Eq. (1)
in the multiplicative form

f (xy) + f (xy−1) = 2f (x) + 2f (y) (3)

otherwise we use the additive form.
Following [41] and [100], we shall use the following definition.

Definition 1 Let G be a group and B a Banach space. We say that the couple (G, B)
has the property of the stability of the quadratic functional equation (write (G, B) is
QS for short) if for every function f : G → B such that

‖f (xy) + f (xy−1) − 2f (x) − 2f (y)‖ ≤ δ for all x, y ∈ G and for some δ ≥ 0
(4)

there exists a quadratic function q : G → B and a constant ε ≥ 0 depending only on
δ such that

‖f (x) − q(x)‖ ≤ ε for all x ∈ G. (5)

The first author treating the problem above was F. Skof, who in [96] proved the
following.

Theorem 1 Let X be a normed vector space and B a Banach space. If f : X → B
fulfils (4), then for every x ∈ X the limit

q(x) = lim
n→∞

f (2nx)

22n
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exists and q is the unique quadratic function satisfying (5) with ε = δ/2.
P. W. Cholewa in [18] proved that the previous theorem remains true if we

substitute the vector space X with an Abelian group G.
Having in mind what has been done for the additive equation, we face the problem

of eliminating or weakening the request of commutativity of G. The first step in order
to simplify the study of that problem is provided by the following:

Theorem 2 [100] Suppose that the couple (G, C) (or (G, R)) is QS. Then, for every
complex (real) Banach space B, the couple (G, B) is QS. Moreover, if the (G, B) is
QS and f , q, δ and ε are as in Definition 1, then q is unique and ε = δ/2.

Following the ideas of L. Székelyhidi [97] for the Cauchy equation, D. Yang was
able to prove the following.

Theorem 3 [100] Let G be an amenable group. Then, (G, C) is QS.
Moreover, this paper of D. Yang contains a counterexample, suggested by that

presented in [41] for the Cauchy equation, proving that on the free group generated
by two elements the quadratic equation is not stable.

Also V. A. Faı̆ziev and P. K. Sahoo attacked in [39] the problem of reducing the
requirement of commutativity (without quoting the former result of D. Yang). In
order to state the result, we need to introduce some classes of groups.

Definition 2 Given an integer n, a group G is said to be n-Abelian if for every
x, y ∈ G, we have

(xy)n = xnyn.

By Kn, we denote the class of groups such that for every x, y the relation

(xy)n = xnyn = ynxn

is satisfied. Note that the 2-Abelian groups are commutative.
Another group considered in [39] is T (2,K), that is the group of matrices of the

form
⎡

⎣ y t

0 x

⎤

⎦

where x, y, t ∈ K and K is a commutative field.
Then, the stability of the quadratic equation is proved in [39] when the domain is

either a n-Abelian group or the group T (2,K).
Along the lines traced by T. Aoki [3] for the additive mappings and Th. M. Rassias

for the linear ones [83], many authors have considered the stability of the quadratic
equation in the more general case where the constant bound is substituted by a control
function.

Probably the first author to prove stability in this setting was St. Czerwik, who in
[25] proved the following.
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Theorem 4 Let X be a normed space and B a Banach space and let f : X → B
be a function satisfying the inequality

‖f (x + y) + f (x − y) − 2f (x) − 2f (y)‖ ≤ Λ(x, y). (6)

with either

(i) Λ(x, y) = η + θ (‖x‖s + ‖y‖s), s < 2 x, y ∈ X \ {0},
or
(ii) Λ(x, y) = θ (‖x‖s + ‖y‖s), s > 2 x, y ∈ X ,

for some η, θ ≥ 0.
Then, there exists exactly one quadratic function q such that

‖f (x) − q(x)‖ ≤ 1

3
(η + ‖f (0)‖) + 2θ

4 − 2s
‖x‖s , x ∈ X \ {0}

in case (i) or

‖f (x) − q(x)‖ ≤ 2θ

2s − 4
‖x‖s , x ∈ X

in case (ii). Moreover, if the function t �→ f (tx), t ∈ R, is continuous for each
x ∈ X , then q satisfies the equation

q(tx) = t2q(x), x ∈ X , t ∈ R.

In [9], as a particular case of a stability theorem for a wider class of functional
equations, the following result has been obtained.

Theorem 5 Let G be an Abelian group, B a Banach space and let f : G → B be a
function with f (0) = 0 and fulfilling (6). Assume that one of the series

+∞∑

i=1

2−2iΛ(2i−1x, 2i−1x) or
+∞∑

i=1

22(i−1)Λ(2−ix, 2−ix)

converges for every x and call Γ (x) its sum. If, for every x, y

22iΛ(2i−1x, 2i−1y) → 0 or 22(i−1)Λ(2−ix, 2−iy) → 0,

respectively, as i → ∞, then there exists a unique quadratic function q such that

‖f (x) − q(x)‖ ≤ Γ (x), x ∈ X .

Some authors studied the stability of the quadratic equation in different contexts
concerning both the domain and the range of the functions involved. C.-G. Park
in [77] considered the case of Banach modules; in [113], the domain is a Banach
module over a C∗-algebra; M. S. Moslehian, K. Nikodem and D. Popa in [75] used
multi-normed spaces.

A. K. Mirmostafaee and M. S. Moslehian in [73] investigated the stability when
domain and range are fuzzy normed space.
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Definition 3 A function N : X × R → [0, 1], X real linear space, is said to be a
fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R, the following conditions hold:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

N (x, c) = 0 for c ≤ 0;

x = 0 if and only if N (x, c) = 1 for all c > 0;

N (cx, t) = N
(
x, t

|c|
)

if c �= 0;

N (x + y, s + t) = min[N (x, s),N (y, t)];

N (x, ·) is non-decreasing and limt→∞ N (x, t) = 1.

The pair (X ,N ) is called a fuzzy normed linear space; a complete fuzzy normed
linear space is called fuzzy Banach.

The result in this setting, presented in [73], says:

Theorem 6 Let (X ,N ) be a fuzzy normed linear space and (B,N ′) a fuzzy Banach
space. Let p > 1/2 and assume that f : X → B satisfies the inequality

N ′(f (x + y) + f (x − y) − 2f (x) − 2f (y), t + s) ≥ min[N (x, tp),N (y, sp)]

for all x, y ∈ X and s, t ∈ [0, ∞). Then, there exists a unique quadratic function q

such that

N ′(q(x) − f (x), t) ≥ N

(
x,

(
22−1/p − 1

4

)p

tp
)
.

A similar result is valid for p < 1/2.
Other stability theorems in the same framework of fuzzy spaces are in [29, 33,

48, 62]. For results in non-Archimedean spaces see [8, 63, 95].
As for other functional equations, also the quadratic one has been investigated

in the frame of distributions. A stability result in this setting has been published by
J.-Y. Chung in [19]. Clearly the first, and crucial, step consists of transforming a
functional inequality in an inequality meaningful for distributions.

Let A, B, P1 and P2 be the functions

A(x, y) = x + y, B(x, y) = x − y, P1(x, y) = x, P2(x, y) = y, x, y ∈ Rn.

Then, the inequality (6) can be naturally transformed as

‖u ◦ A + u ◦ B − 2u ◦ P1 − 2u ◦ P2‖ ≤ Λ(x, y) (7)

where u ◦A, u ◦B, u ◦ P1, u ◦ P2 are the pullback of u by A,B,P1,P2, respectively,
and ‖v‖ ≤ Λ(x, y) means that |〈v,φ〉| ≤ ‖Λφ‖L1 for all test functions φ.

The main result reads as follows:

Theorem 7 [19] Let u ∈ S ′ satisfies the inequality (7). Then, there exists a unique
quadratic function

q(x) =
∑

1≤j≤k≤n
ajkxjxk
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such that

‖u(x) − q(x)‖ ≤ 1
|4−2p |Λ(x, x), 0 < p < 2 or p > 4;

‖u(x) − q(x)‖ ≤ 1
2Λ(0, 0), p = 0.

(S ′ is the space of Schwartz tempered distributions.)
Other results of this kind can be found in [20–22, 24, 69, 70].
The term f (x − y) in the quadratic equation or, more precisely, the −y in the

argument, can be interpreted in a more abstract way as an involution σ applied to y.
Some results in this direction are given in [10, 11, 31].

The first natural generalization of the quadratic equation consists of the so-called
Pexideration of the functional equation, that is, while preserving the structure of the
equation, in one or more terms appear different functions.

S.-M. Jung in [56] proves the following stability theorem for a Pexider-type
equation:

Theorem 8 Assume that f1, f2, f3, f4 : X → B satisfy the inequality

‖f1(x + y) + f2(x − y) − f3(x) − f4(y)‖ ≤ φ(x, y)

where φ is symmetric, φ(x, −y) = φ(x, y) and there exists an integer s ≥ 2 such
that either

∞∑

i=0

1

si
φ(six, siy) < ∞,

or
∞∑

i=0

s2iφ
( x
si

,
y

si

)
< ∞.

Then, there exist a quadratic function q and additive functions a1, a2 such that

‖fi(x) − q(x) − a1(x) − a2(x) − fi(0)‖ ≤ Ψi(x), i = 1, 2, 3

‖f4(x) − 2q(x) − 2a1(x) − f4(0)‖ ≤ Ψ4(x),

for some functions Ψi , i = 1, 2, 3, 4 depending only on φ. In the special case
φ(x, y) = ε, the four functions Ψi are the constants 137

3 ε, 125
3 ε, 136

3 ε and 124
3 ε,

respectively.
Quite curiously, this very same result, in the case of constant bound, constitutes

the only content of the paper [58], published later than [56] and by the same author.
Other results, very similar among them, are in [50–53].
A different approach to the stability is in the paper [10] where the following system

of equations is studied:
⎧
⎨

⎩
f (xy) + f (xσ (y)) = 2f (x) + 2f (y)

f (xy) + g(xσ (y)) = f (x) + g(y)
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Here, the domain of the functions f and g is an amenable semigroup G and σ is
an automorphisms on G such that σσ = I . Some of the results therein contained
concern the Pexiderized quadratic equation

f1(xy) + f2(xσ (y)) = f3(x) + f4(y).

Note that Z. Kominek in [68] has been able to investigate the stability of the
quadratic equation in semigroups by modifying its form as follows:

f (x + 2y) + f (x) = 2f (x + y) + 2f (y).

In the last ten years, several other functional equations called “quadratic” (or
Euler–Lagrange: see [84–90]) have been investigated in order to determine the gen-
eral solution and to prove stability results in the sense of Ulam–Hyers in various
different situations. The name “quadratic” has been given since, in the case of real
functions of real variable, the quadratic polynomials are among their solutions.

Showing all these results would be excessively long. In the following, we present
a choice of these equations and related stability results.

J. M. Rassias in [85] proved the following:

Theorem 9 Let f : X → B, where X is a linear normed space and B a real
Banach space. For reals ai and positive reals mi , i = 1, 2, define

m0 = m1m2 + 1

m1 + m2
, m = m1a

2
1 + m2a

2
2

m0

and

f (x) = m0
m

[
1
m1
f
(
m1
m0
a1x
)+ 1

m2
f
(
m2
m0
a2x
)]

,

f (x) = 1
mm0

[
m1f (a1x) + 1

m2
f (m2a2x)

]
.

Assume that m �= 1 and ‖f (x) − f (x)‖ ≤ c′ and

‖m1m2f (a1x1 + a2x2) + f (m2a2x1 − m1a1x2) − mm0(m2f (x1) + m1f (x2))‖ ≤ c,

for some positive constants c and c′. Then, there exists a unique quadratic mapping
q satisfying the functional equation

m1m2q(a1x1 + a2x2) + q(m2a2x1 − m1a1x2) = mm0(m2q(x1) + m1q(x2)),

and such that ‖f (x) − q(x)‖ ≤ c1, for some c1 depending only on c and c′.
The same author treated analogous functional equations in several other papers.
S.-M. Jung in [54] considered the functional equation

f (x + y + z) + f (x) + f (y) + f (z) = f (x + y) + f (y + z) + f (z + x),

where f maps a real linear space X into a Banach space B. If X = B = R, the
function f (x) = x2 is a solution, hence, again we have a “quadratic” equation.
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The stability result proved therein is the following:

Theorem 10 Assume that f satisfies the system of inequalities
⎧
⎨

⎩
‖f (x + y + z) + f (x) + f (y) + f (z) − f (x + y) − f (y + z) − f (z + x)‖ ≤ ε

‖f (x) − f (−x)‖ ≤ θ

for some ε, θ ≥ 0. Then, there exists a unique quadratic mapping q which satisfies
the previous equation and the inequality

‖f (x) − q(x)‖ ≤ 3ε.

If, moreover, f is measurable or f (tx) is continuous in t for each fixed x ∈ X ,
then q(tx) = t2q(x) for all x ∈ X and t ∈ R.

The same equation has been studied in [14].
Again S.-M. Jung in [55] investigates the functional equation

f (x − y − z) + f (x) + f (y) + f (z) − f (x − y) − f (y + z) − f (z − x) = 0,

f : X → B,

and, after showing that it is equivalent to the quadratic Eq. (1), proves the following:

Theorem 11 Assume that f satisfies the inequality

‖f (x − y − z) + f (x) + f (y) + f (z) − f (x − y) − f (y + z) − f (z − x)‖
≤ ε(‖x‖p + ‖y‖p + ‖z‖p)

for some ε ≥ 0, some p > 0, p �= 2 and for all x, y, z ∈ X . Then, there exists a
unique quadratic mapping q which satisfies the inequality

‖f (x) − q(x)‖ ≤ 8ε

|2p − 4| ‖x‖p.

If, moreover, f is measurable or f (tx) is continuous in t for each fixed x ∈ X ,
then q(tx) = t2q(x) for all x ∈ X and t ∈ R.

A similar result is true for p < 0 if the following inequality is added to the
hypotheses:

‖f (x) − f (−x)‖ ≤ δ.

In this case, we have the different bound

‖f (x) − q(x)‖ ≤ 2

3
(δ + ‖f (0)‖) + 4ε

|2p − 4| ‖x‖p.

J.-H. Bae and H.-M. Kim in [4] studied the stability of equation

f (x + y + z) + f (x − y) + f (y − z) + f (x − z) = 3[f (x) + f (y) + f (z)].
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I.-S. Chang and H.-M. Kim in [15] considered the functional equations

f (2x + y) + f (2x − y) = f (x + y) + f (x − y) + 6f (x)

f (2x + y) + f (x + 2y) = 4f (x + y) + f (x) + f (y),

I.-S. Chang, E. H. Lee and H.-M. Kim in [17] considered the equation

f (x + y + z + w) + 2f (x) + 2f (y) + 2f (z) + 2f (w) =
f (x + y) + f (y + z) + f (z + x) + f (x + w) + f (y + w) + f (z + w).

and H.-M. Kim in [64] considered the following one

f (x + y + z) + f (x − y) + f (x − z) = f (x − y − z) + f (x + y) + f (x + z).

In [49], K.-W. Jun and H.-K. Kim solved the functional equation

n∑

i=1

f

⎛

⎝
∑

j �=i

xj − (n − 1)xi

⎞

⎠+ nf

(
n∑

i=1

xi

)
= n2

n∑

i=1

f (xi),

proving that its solutions are exactly the quadratic functions. Then, this stability
theorem is given:

Theorem 12 Let f : X → B be a function such that
∥∥∥∥∥∥

n∑

i=1

f

⎛

⎝
∑

j �=i

xj − (n − 1)xi

⎞

⎠+ nf

(
n∑

i=1

xi

)
− n2

n∑

i=1

f (xi)

∥∥∥∥∥∥
≤ φ(x1, · · · , xn)

and assume that either

Φ(x1, · · · , xn) :=
∞∑

i=0

1

n2i
φ(nix1, · · · , nixn) < ∞

or

Φ(x1, · · · , xn) :=
∞∑

i=0

n2iφ(
x1

ni
, · · · ,

xn

ni
) < ∞

for all xi ∈ X , i = 1, · · · , n.
Then, there exists a unique quadratic mapping q such that

∥∥∥∥f (x) − f (0)

n2 − 1
− q(x)

∥∥∥∥ ≤ 1

n3
Φ(x, · · · , x)

for all x ∈ X .
An analogous result is obtained when A is a unital Banach ∗-algebra and f :

M1 → M2, where M1,M2 are Banach left A-modules.
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In this line of generalizations, various so-called mixed equations, i.e., equations
whose regular solutions, in the real-to-real case, are polynomials containing linear,
quadratic, cubic, quartic, etc. monomials, have been investigated.

An example of these kind of equations and related results is in [1], where we can
find the following:

Theorem 13 Let X be a quasi-Banach space with quasi-norm ‖ · ‖X and Y a
p-Banach space with p-norm ‖ · ‖Y . Suppose that a mapping f : X → Y , with
f (0) = 0, satisfies the inequality

‖f (nx + y) + f (nx − y) − n2 f (x + y) − n2 f (x − y)

−2f (nx) + 2n2f (x) + 2(n2 − 1)f (y)‖Y ≤ φ(x, y).

where φ : X × X → [0, +∞) satisfies the following conditions:

lim
m→∞ 4mφ

( x

2m
,
y

2m

)
= 0 = 1

16m
φ(2mx, 2my)

for all x, y and

∑∞
i=1 4piφp

(
x

2i ,
y

2i

)
< ∞,

∑∞
i=0

1
16pi φ

p(2ix, 2iy) < ∞
for all x and all

y ∈ {x, 2x, 3x, nx, (n − 1)x, (n + 1)x, (n − 2)x, (n + 2)x, (n − 3)x}.
Then, there exists a unique quadratic mapping q and a unique quartic mapping t

such that

‖f (x) − q(x) − t(x)‖Y ≤ Φ(x),

where Φ is a function explicitly computed from φ.
(For the definition and properties of quasi-normed and quasi-Banach spaces see

[7] and [93].)
Other stability problems have been investigated in the framework of random

normed spaces. See the papers [6, 32–36, 47, 81, 94] for the definition of random
normed space and stability results.

We feel obliged to remark that most papers dealing with generalizations of the
quadratic equation and/or less usual domains and ranges do not give any motiva-
tion for the choice of the equations to be studied and the setting where they are
investigated.

This is the point where few words about the methods are necessary. Most of
the results previously stated have been obtained either by using the so-called direct
method (see, for instance, [43]) or by using the translation invariant means in the
case of amenable groups.
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In [16], L. Cădariu and V. Radu introduced the use of fixed point theorems for
the stability of some functional equations. While in the opinion of the author of the
present paper this new method is essentially a change in language with respect to the
direct one, several mathematicians started to use it, sometimes proving again already
known results. Here is a (certainly non-exhaustive) list of papers dealing with that
method for the quadratic equation and its generalizations: [5, 12–16, 34, 46, 60, 66,
67, 71, 72, 74, 76, 78–82, 92].

Another method which can be applied for the investigation of stability make use of
the so-called shadowing property introduced in [99]. A stability theorem concerning
a functional equation of quadratic type proved by using this method can be found in
[65].

To finish this section, we prove a result which is the analogous of Theorem 4
proved in [41] for the Cauchy functional equation and which will be used in the last
section of this chapter. If

Qf (x, y) := f (x + y) + f (x − y) − 2f (x) − 2f (y)

is bounded then, due to any of the previous stability theorems, we have the decom-
position f (x) = q(x) + k(x), with q quadratic and k bounded. Our aim is to provide
information on the range of the bounded function k.

Theorem 14 Let f : G → B, where G is an Abelian group and B a Banach space
and let M be a bounded subset of B. If Qf (x, y) ∈ M , then f (x) = q(x) + k(x),
where q is quadratic and the range of k is contained in 1

2C(− M), where C(− M)
is the closure of the convex hull of −M .

Proof By any of the stability results, we have the decomposition

f (x) = q(x) + k(x)

with q quadratic and k bounded. Since q(0) = 0, we have f (0) = k(0) = − 1
2m0,

for certain m0 ∈ M . Fix x ∈ G and consider the value k(x) =: u. We have

k(2x) − 4k(x)=Qf (x, x) −f (0), hence, k(2x)=4u + 1

2
m0+m1 for some m1 ∈ M.

By induction, we obtain

k(sx) = s2u + s − 1

2
m0 +

s−1∑

i=1

(s − i)mi ,

for some mi ∈ M . By dividing by s2, we have

k(sx)

s2
= u + 1

2

s−1∑

i=1

2(s − i)

s2
mi + 1

2s
m0 − 1

2s2
m0.
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Clearly,
∑s−1

i=1
2(s−i)
s2 mi + 1

2s m0 ∈ C(M); taking the limit as s → ∞ and
remembering that k is bounded, we get

u + 1

2
μ = 0, where μ = lim

s→∞

s−1∑

i=1

2(s − i)

s2
mi + 1

2s
m0,

thus, u ∈ 1
2C(− M). �

Theorem 15 In the hypotheses of Theorem 14, the range of k is contained in the
set K = {−∑∞

i=1
mi

41 − m0
6 : mi ∈ M , m0 = −2k(0)

}
.

Proof By Theorem 14, the range of k is contained in 1
2C(− M) and we have k(0) =

−m0
2 for some m0 ∈ M . From

Qk(x, x) = k(2x) + k(0) − 4k(x) = k(2x) − 4k(x) − m0

2
∈ M ,

we obtain

k(2x) = 4k(x) + m0

2
+ m1 ∈ 1

2
C(− M), for some m1 ∈ M ,

hence

k(x) ∈
[

1

8
C(− M) − m0

8
− m1

4

]
∩
[

1

2
C(− M)

]
.

It is easy to see that

1

8
C(− M) − m0

8
− m1

4
⊂ 1

2
C(− M),

thus

k(x) ∈
⋃

m1∈M

[
1

8
C(− M) − m0

8
− m1

4

]
.

We claim that

k(x) ∈
⋃

m1,m2,··· ,mn∈M

[
1

2 · 4n
C(− M) − m0

2

n∑

i=1

1

4i
−

n∑

i=1

mn+1−i

4i

]
=: Kn.

The proof is by induction. Consider n + 1 and

4k(x) + m0

2
+ mn+1 ∈ 1

2 · 4n
C(− M) − m0

2

n∑

i=1

1

4i
−

n∑

i=1

mn+1−i

4i

for some m1,m2, · · · ,mn+1 ∈ M . Hence,

k(x) ∈ 1

2 · 4n+1
C(− M) − m0

2

n+1∑

i=1

1

4i
−

n∑

i=1

mn+1−i

4i
− mn+1

4
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and

k(x) ∈
⋃

m1,m2,··· ,mn+1∈M

[
1

2 · 4n+1
C(− M) − m0

2

n+1∑

i=1

1

4i
−

n+1∑

i=1

mn+2−i

4i

]
= Kn+1.

It is not difficult to prove that Kn+1 ⊂ Kn, then

k(x) ∈
∞⋂

n=1

Kn =: K

and

K =
{
−

∞∑

i=1

mi

41
− m0

6
: mi ∈ M , m0 = −2k(0)

}
.

�

3 Stability of the Drygas Equation

In this section, we intend to present some of the stability results concerning the
Drygas equation

g(x + y) + g(x − y) = 2g(x) + g(y) + g(−y).

As for the quadratic equation, if the domain is a group G non-necessarily
commutative, we shall use the multiplicative notation

g(xy) + g(xy−1) = 2g(x) + g(y) + g(y−1). (8)

The range is always at least a commutative field F with characteristic different from 2.
Before going to stability, we cite the important result obtained by B. R. Ebanks,

P. L. Kannappan and P. K. Sahoo ([30]) which gives the structure of the solutions of
Eq. (8).

Theorem 16 Let g : G → F be a solution of Eq. (8), satisfying the additional
condition g(zyx) = g(zxy) for all x, y, z ∈ G. Then, g has the following form

g(x) = a(x) + H (x, x),

where a : G → F is a homomorphism and H : G × G → F is biadditive and
symmetric (hence, H (x, x) is quadratic).

The condition g(zyx) = g(zxy) is known in the literature as the Kannappan
condition and constitutes a weak substitute of the commutativity of the domain.
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Thus, if G is Abelian, Theorem 16 says that any solution of the Drygas equation is
the sum of an additive function and a quadratic function.

Further results in this direction have been obtained in [37] by V. A. Faı̆ziev and P.
K. Sahoo in the case of some special non-commutative groups for the system

⎧
⎨

⎩
g(xy) + g(xy−1) − 2g(x) − g(y) − g(y−1) = 0

g(yx) + g(y−1x) − 2g(x) − g(y) − g(y−1) = 0
(9)

where g is real valued. A glance at the system above shows that a sort of weak
commutativity is introduced by the couple of equations.

The first stability result concerning Drygas equation has been proved by S.-M.
Jung and P. K. Sahoo in [59], when the relevant domain is a real vector space:

Theorem 17 Let X be a real vector space and B a Banach space. If g : X → B
satisfies the inequality

‖g(x + y) + g(x − y) − 2g(x) − g(y) − g(−y)‖ ≤ ε (10)

for some ε ≥ 0 and all x, y ∈ X , then there exist a unique additive function
a : X → B and a unique quadratic function q : X → B such that

‖g(x) − q(x) − a(x)‖ ≤ 25

3
ε

for all x ∈ X . In other words, there exists a unique solution d of Drygas equation
such that

‖g(x) − d(x)‖ ≤ 25

3
ε.

D. Yang in [101] as a corollary of a more general stability result for a functional
equation involving several unknown functions, obtained the following improvement
of Theorem 17:

Theorem 18 Let G be a group and B a Banach space. If g : G → B satisfies the
inequality

‖g(xy) + g(xy−1) − 2g(x) − g(y) − g(y−1)‖ ≤ ε

for some ε ≥ 0 and all x, y ∈ G and g(zyx) = g(zxy) for all x, y, z ∈ G, then there
exists a unique solution d of Drygas equation such that

‖g(x) − d(x)‖ ≤ 3

2
ε.

for all x ∈ G.
V. A. Faı̆ziev and P. K. Sahoo in [38] attacked the problem of weakening the

requirement of commutativity of the domain or that that the function involved satisfies
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the Kannappan condition. In analogy with what has been done for the equation, they
considered the following system of functional inequalities

⎧
⎨

⎩
|g(xy) + g(xy−1) − 2g(x) − g(y) − g(y−1)| ≤ ε

|g(yx) + g(y−1x) − 2g(x) − g(y) − g(y−1)| ≤ ε
(11)

for some non-negative ε and for real valued g.
As for the quadratic equation they used n-Abelian groups (see Definition 2 in

the previous section) or the Heisemberg group UT (3,K), that is the group of the
matrices of the form

⎡

⎢⎢⎣

1 y t

0 1 x

0 0 1

⎤

⎥⎥⎦

where x, y, t ∈ K and K is a commutative field.
The stability result can be formulated as follows:

Theorem 19 [38] Let G ∈ Kn or G = UT (3,K), then the system (11) is stable, that
is the function g is the sum of a solution of the system and a bounded function.

Theorem 3 shows that the quadratic equation is stable if the domain is an amenable
group. It is natural to ask if a similar result is true also for the Drygas equation. The
investigations in this direction have been conducted by J. Sikorska and the present
author in [44]. We present here two results. The first is given by the following.

Theorem 20 Let G be an amenable group and B a Banach space. Assume that
g : G → B is a function satisfying the following inequalities, where ge and go

denote its even and odd part, respectively:

‖ge(xy) + ge(xy−1) − 2ge(x) − ge(y) − ge(y−1)‖
= ‖ge(xy) + ge(xy−1) − 2ge(x) − 2ge(y)‖ ≤ ε,

and

‖go(xy) + go(xy−1) − 2go(x) − go(y) − go(y−1)‖
= ‖go(xy) + go(xy−1) − 2go(x)‖ ≤ μ,

for some non-negative ε and μ. Then, there exists a unique solution d of the Drygas
equation such that

‖g(x) − d(x)‖ ≤ 1

2
(ε + μ), x ∈ G.

The proof of Theorem 20 is inspired by those contained in [101] and [102].
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Instead of considering the inequalities concerning the even and odd part of the
function g, the next theorem starts with the boundedness of the Drygas difference of
the function g and the condition of approximate centrality of it.

Theorem 21 Let G be an amenable group and B a Banach space. Assume that
g : G → B is a function satisfying the following inequalities:

‖g(xy) + g(xy−1) − 2g(x) − g(y) − g(y−1)‖ ≤ ε,

‖g(xy) − g(yx)‖ ≤ δ.

for all x, y ∈ G and some non-negative ε and δ. Then, there exists a unique solution
d of the Drygas equation such that

‖g(x) − d(x)‖ ≤ ε + δ, x ∈ G.

As a consequence of the previous results, we obtain the following:

Theorem 22 Let G be an amenable group and B a Banach space. Assume that
g : G → B is a function satisfying the Drygas equation and such that

‖g(xy) + g(xy−1) − g(yx) − g(y−1x)‖ ≤ γ , x, y ∈ G

for some non-negative γ . Then g is of the form g = q + a with q quadratic and a

additive.
Moreover, as for the additive and quadratic equation, it is also proved that the

Drygas equation is not stable on the free group generated by two elements.
As a last result concerning stability, we present that obtained by J.-Y. Chung, L.

Li and D. Kim ([23]) in the frame of Schwartz distributions D′. As for the quadratic
equation (see the previous section) let A, B, P1 and P2 be the functions

A(x, y) = x + y, B(x, y) = x − y, P1(x, y) = x, P2(x, y) = y, x, y ∈ Rn.

Then, the inequality (10) can be naturally transformed as

‖u ◦ A + u ◦ B − 2u ◦ P1 − u ◦ P2 − u ◦ (−P2)‖ ≤ ε (12)

where u◦A, u◦B, u◦P1, u◦P2, u◦(−P2) are the pullback of u byA,B,P1,P2, −P2,
respectively, and ‖u‖ ≤ ε means that |〈u,φ〉| ≤ ε‖φ‖L1 for all test functions φ.

The main result is stated in the following.

Theorem 23 Let u ∈ D′ satisfy the inequality (12). Then, there exist a unique
a ∈ Cn and a unique quadratic form

q(x) =
∑

1≤j≤k≤n
ajkxjxk

such that u = a ·x+q(x)+h(x), whereh is a bounded measurable function satisfying
‖h‖L∞ ≤ 3

2ε.
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We finish this section devoted to the Drygas equation with two theorems analog
to Theorems 14 and 15.

Indeed, we have

Theorem 24 Let f : G → B, where G is an Abelian group and B a Banach space
and let M be a bounded subset of B. If g(x + y) + g(x − y) − 2g(x) − g(y) − g(−
y) ∈ M , then g(x) = d(x) + r(x), where d is a solution of Drygas equation and
(r(x) + r(−x))/2 is contained in 1

2C(− M), where C(− M) is the closure of the
convex hull of −M .

Proof By the stability we have the decomposition g(x) = d(x)+r(x) with d solution
of Drygas equation and r bounded. Since d(0) = 0, we have g(0) = r(0) = − 1

2m0,
for certain m0 ∈ M . Fix x ∈ G and consider the values r(x) =: u and r(−x) =: v.
We have

r(2x) + r(0) − 3r(x) − r(−x) ∈ M ,

hence

r(2x) = 3u + v + 1

2
m0 + m1 for some m1 ∈ M.

By induction, we obtain

r(sx) = s(s + 1)

2
u + s(s − 1)

2
v + s − 1

2
m0 +

s−1∑

i=1

(s − i)mi ,

for some mi ∈ M . By dividing by s2 and taking the limit as s → ∞, we have, as in
the proof of Theorem 14,

u + v

2
∈ 1

2
C(− M).

�
Theorem 25 In the hypotheses of Theorem 24, we have that (r(x) + r(−x))/2 is
contained in the set

R =
{

−1

2

∞∑

i=1

mi + ti

41
− m0

6
: mi , ti ∈ M , m0 = −2r(0)

}
.

Proof By adding the two relations

r(2x) + r(0) − 3r(x) − r(−x) ∈ M and r(−2x) + r(0) − 3r(−x) − r(x) ∈ M

we obtain

r(2x) + r(−2x)

2
= 2[r(x) + r(−x)] − r(0) + m1 + t1

2

for some m1, t1 ∈ M .
From now on, we proceed as in the proof of Theorem 15. �
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4 Alternative Quadratic Equation

The author of the present chapter became aware of the existence of Hyers’ theorem
about stability of the additive equation while working, in 1978, on a problem proposed
by Marek Kuczma concerning the alternative Cauchy equation. The stability result
has been the main tool for solving that problem (see [40]).

In order to conclude the present paper devoted to the quadratic equation, we
intend to investigate the analogous alternative equation. Namely, we intend to find
the solutions of the following alternative equation:

Qf (x, y) = f (x + y) + f (x − y) − 2f (x) − 2f (y) ∈ {0, 1} (13)

We assume that f : G → R, where G is an Abelian group, hence, we use the additive
notation.

Due to the stability results, we transform the previous problem into the following

Qk(x, y) = k(x + y) + k(x − y) − 2k(x) − 2k(y) ∈ {0, 1}, (14)

where the function k is bounded and, by Theorem 14, has its range in the interval
[−1/2, 0]. By setting x = y = 0, we have k(0) ∈ {− 1

2 , 0}.
By setting p(x) := −k(x) − 1

2 , we see that k(0) = − 1
2 implies p(0) = 0 and

Qp(x, y) ∈ {0, 1}. Thus, we can consider only the case k(0) = 0 and investigate the
problem

⎧
⎨

⎩
k(x + y) + k(x − y) − 2k(x) − 2k(y) ∈ {0, 1}
k : G → [− 1

2 , 0
]
, k(0) = 0.

(15)

Theorem 15 applied to this situation gives that the range of k is contained in the
set K = {−∑∞

n=1
αn
4n : αn ∈ {0, 1}}.

Writing the set K in the form

K =
{

−1

3

∞∑

n=1

3αn
4n

: αn ∈ {0, 1}
}

we see that it is obtained by a procedure similar to that of the construction of the
ternary Cantor set. In this case, we take the unit interval, divide it in four equal
parts, say [0, 1/4], [1/4, 1/2], [1/2, 3/4] and [3/4, 1] and eliminate the open central
interval (1/4, 3/4). Proceeding in this way and multiplying the resulting set by − 1

3 ,
we obtain K .

It should be noted that the numbers in K have a unique representation in the form
−∑∞

n=1
αn
4n with αn ∈ {0, 1}.

Consider the set Zk = {x ∈ G : k(x) = 0} and put x, y ∈ Zk in Eq. (14): we have

k(x + y) + k(x − y) ∈ {0, 1}
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and this forces k(x + y) = k(x − y) = 0, i.e., Zk is a subgroup of G.
Take now x /∈ Zk and let k(x) = −∑∞

n=1
αn
4n for some sequence {αn} ∈ {0, 1}N.

Then

k(2x) − 4k(x) ∈ {0, 1} ⇔ k(2x) ∈
{
−

∞∑

n=1

αn

4n−1
, 1 −

∞∑

n=1

αn

4n−1

}
.

If α1 = 0, then
∑∞

n=1
αn

4n−1 = ∑∞
n=2

αn
4n−1 ≤ 1

3 , hence, 1 −∑∞
n=1

αn
4n−1 ≥ 2

3 .
Thus,

k(2x) = −
∞∑

n=1

αn

4n−1
= −

∞∑

n=2

αn

4n−1
.

If α1 = 1, then
∑∞

n=1
αn

4n−1 = 1 +∑∞
n=2

αn
4n−1 ≥ 1, hence, 1 −∑∞

n=1
αn

4n−1 ≤ 0.
Thus,

k(2x) = 1 −
∞∑

n=1

αn

4n−1
= −

∞∑

n=2

αn

4n−1
.

If we identify k(x) with the sequence {αn}∞n=1, then k(2x) is identified by {αn+1}∞n=1
and we always have k(2x) ∈ K .

Now we compute k(3x). From Eq. (14) with 2x instead of x and x instead of y,
we obtain

k(3x) + k(x) − 2k(2x) − 2k(x) = k(3x) − 2k(2x) − k(x) ∈ {0, 1}
whence

k(3x) ∈
{
−

∞∑

n=1

αn + 2αn+1

4n
, 1 −

∞∑

n=1

αn + 2αn+1

4n

}
.

If

k(3x) = −
∞∑

n=1

αn + 2αn+1

4n
,

then for having k(3x) ∈ K , by Theorem 15, we must have

∞∑

n=1

αn + 2αn+1

4n
=

∞∑

n=1

an

4n

for some sequence {an} with an = 0, 1. We prove that this is possible if and only if
αn + 2αn+1 ∈ {0, 1}. If not, let n0 be the first index such that αn + 2αn+1 �= an; we
have two possibilities: either an0 < αn0 + 2αn0+1 or 1 = an0 > αn0 + 2αn0+1 = 0.

In the first case, we have

∞∑

n=n0

an

4n
≤ an0

4n0
+ 1

3 · 4n0
= an0 + 1/3

4n0
<
an0 + 1

4n0
≤ αn0 + 2αn0+1

4n0
≤

∞∑

n=n0

αn + 2αn+1

4n
,
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a contradiction.
In the second case, we have

∞∑

n=n0

αn + 2αn+1

4n
≤ 1

4n0
≤ 1

4n0
+

∞∑

n=n0+1

an

4n
=

∞∑

n=n0

an

4n
.

This forces the equality and an = 0, αn + 2αn+1 = 3 for all n > n0, i.e., αn = 1
for all n > n0. Hence, 0 = αn0 + 2αn0+1 ≥ 2: a contradiction.

Thus, αn + 2αn+1 ∈ {0, 1} and this is possible if and only if αn+1 = 0 for every
n ≥ 1. Thus, either αn = 0 for every n ≥ 0, i.e., x ∈ Zk , impossible, or α1 = 1 and
αn = 0 for every n ≥ 2. This means that k(x) = − 1

4 . In this case, k(2x) = 0, i.e.,
2x ∈ Zk and k(3x) = − 1

4 .
The other possibility is

k(3x)=1 −
∞∑

n=1

αn + 2αn+1

4n
=

∞∑

n=1

3

4n
−

∞∑

n=1

αn + 2αn+1

4n
=−

∞∑

n=1

αn + 2αn+1 − 3

4n
.

The condition k(3x) ∈ K implies αn + 2αn+1 − 3 = 0, i.e., αn + 2αn+1 = 3 for
every n ≥ 1, hence, αn = 1 for every n ≥ 1. This means that k(x) = − 1

3 . In this
case, k(2x) = − 1

3 and k(3x) = 0, i.e., 3x ∈ Zk .
Let now x, y /∈ Zk , with k(x) = − 1

4 and k(y) = − 1
3 . Then

k(x + y) + k(x − y) + 1

2
+ 2

3
∈ {0, 1} ⇔ k(x + y) + k(x − y) ∈

{
−7

6
, −1

6

}
.

Since k(x+y), k(x−y) ∈ {− 1
3 , − 1

4 , 0}, we cannot obtain the values − 7
6 and − 1

6 .
Thus, we have proved the following

Theorem 26 If k is a solution of problem (14), then the range of k is contained in
the set {− 1

3 , 0} or {− 1
4 , 0}. Thus, problem (14) has a non-identically zero solution

if and only if either G has a subgroup Z such that G/Z is cyclic of order 3 and the
non-trivial solution takes the values 0 on Z and − 1

3 outside Z or G has a subgroup
Z such that G/Z is cyclic of order 2 and the non-trivial solution takes the values 0
on Z and − 1

4 outside Z .
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12. Brzdȩk, J., Ciepliński, K.: A fixed point approach to the stability of functional equations in
non-Archimedean metric spaces. Nonlinear Anal. 74, 6861–6867 (2011)
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A Functional Equation Having Monomials
and Its Stability

M. E. Gordji, H. Khodaei and Themistocles M. Rassias

Abstract We use some results about the Fréchet functional equation to consider the
following functional equation:

f

⎛

⎝
(

m∑

i=1

aix
p

i

) 1
p

⎞

⎠ =
m∑

i=1

aif (xi).

We also apply a fixed point method and homogeneous functions of degree α to
investigate some stability results for this functional equation in β-Banach spaces.

Keywords Frechet functional equation · Homogeneous functions · Dynamical
systems · Hyers–Ulam–Rassias stability · Fixed point theorem

1 Introduction

In 1909, M. Fréchet [10] studied an important generalization of Cauchy’s equation,
which characterizes the polynomials among the continuous functions. This functional
equation has the form

Δh1,... ,hnf (x) = 0, (1)

where Δhf (x) = f (x + h) − f (x), Δh1,... ,hnf (x) = Δh1 · · ·Δhnf (x) and n =
2, 3, · · · . In particular, if h1 = · · · = hn = h, then (1) can be rewritten succinctly as

Δn
hf (x) = 0. (2)
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From the result of Fréchet, it follows that a continuous function f : R → R

satisfies (2) for all x,h ∈ R if and only if f is a polynomial function of degree at
most n − 1; for details, see Theorem 1 of [2] and also Theorem 13.5 of [20]. In
explicit form, the functional Eq. (2) can be written as

Δn
yf (x) =

n∑

j=0

(−1)n−j

⎛

⎝ n

j

⎞

⎠ f (x + jy) = 0.

The problem of stability of functional equations is one of the main topics in the
theory of functional equations and is connected with perturbation theory and the
notions of shadowing in dynamical systems and controlled chaos (see [13, 26, 32]).
Zhou [34] used a stability property of the functional equation

f (x + y) + f (x − y) = 2f (x) (3)

to prove a conjecture of Z. Ditzian about the relationship between the smoothness of
a mapping and the degree of its approximation by the associated Bernstein polyno-
mials. The starting point of the stability theory of functional equations was a problem
formulated in the celebrated book by Pólya and Szegő [29], and the problem of Ulam
concerning the stability of group homomorphisms [33]. Recall that an equation is
called stable in the Hyers–Ulam–Rassias sense if for any solution of the perturbed
equation, called an approximate solution, there exists a solution of the equation close
to it. For definitions, approaches, and results on Hyers–Ulam–Rassias stability, we
refer the reader to, e.g., [4, 5, 7, 9, 11, 12, 14, 16, 17, 25, 28, 30].

We use some results about the Fréchet functional equation to consider Cauchy–
Jensen, quadratic, cubic, quartic, and quintic functional equations, and then we deal
with the following monomial functional equation

f

(
( m∑

i=1

aix
p

i

) 1
p

)
=

m∑

i=1

aif (xi). (4)

Finally, we apply a fixed point theorem to investigate the stability by using con-
tractively subhomogeneous and expansively superhomogeneous functions of degree
α for the Eq. (4) in β-Banach spaces.

2 Preliminaries

Throughout this paper N, Z, Q
+, Q, R

+, R, and C stand, as usual, for the set
of positive integers, integers, positive rationals, rationals, positive reals, reals, and
complex numbers, respectively. In the rest of this paper, unless otherwise explicitly
stated, we will assume that K denote either Q or R, X and Y are linear spaces over K,
m ∈ N\{1}, p ∈ {1, . . . , 5}, a1, . . . , am are fixed nonzero reals when p ∈ {1, 3, 5}
and are fixed positive reals when p ∈ {2, 4}, α is a fixed nonzero real number,
L ∈ (0, 1) and β ∈ (0, 1].
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We now recall the definition and some necessary notions of multi-additive map-
pings, used in the sequel. A mapping An : Xn → Y is called n-additive if it is
additive (satisfies Cauchy’s functional equation) in each variable, that is

An(x1, . . . , xi−1, xi + x ′
i , xi+1, . . . , xn) = An(x1, . . . , xn)

+ An(x1, . . . , xi−1, x ′
i , xi+1, . . . , xn)

for all i ∈ {1, . . . , n}, x1, . . . , xi−1, xi , x ′
i , xi+1, . . . , xn ∈ X. Some basic facts on

such mappings can be found for instance in [21], where their application to the rep-
resentation of polynomial functions is also presented (see also [23, 24]). A mapping
An is called symmetric if

An(x1, . . . , xn) = An(xi1 , . . . , xin )

for any permutation {i1, . . . , in} of {1, . . . , n}. If An(x1, . . . , xn) is an n-additive
symmetric mapping, then An : Xn → Y denotes the diagonal An(x, . . . , x), that is,
An(x) := An(x, . . . , x) for x ∈ X; note that An(rx) = rnAn(x) whenever x ∈ X

and r ∈ Q. Such a mapping An(x) is called a monomial mapping of degree n

(under the assumption that An(x) �= 0). Furthermore, the mapping obtained by the
substitution x1 = · · · = xl = x, xl+1 = · · · = xn = y in An(x1, . . . , xn) is denoted
by Al,n−l(x, y).

Lemma 1 (see Czerwik [7], p. 74). Let An : Xn → Y be a n-additive symmetric
mapping and An : Xn → Y be the diagonal of An. Then, for every k ≥ n and for
every x, y1, . . ., yk ∈ X, we have

Δy1,... ,ykA
n(x) =

⎧
⎨

⎩
n!An(y1, . . . , yn) if k = n;

0 if k > n.

The following theorem was proved by Mazur and Orlicz [23, 24], and in greater
generality by Djoković [8]; also see Baker [3].

Theorem 1 If n ∈ N and f : X → Y , then the following assertions are equivalent:

(1) Δn+1
y f (x) = 0 for all x, y ∈ X;

(2) Δy1,... ,yn+1f (x) = 0 for all x, y1, . . . , yn+1 ∈ X;
(3) f is a generalized polynomial of degree at most n, that is,

f (x) = A0(x) + A1(x) + · · · + An(x)

for all x ∈ X, where A0(x) = A0 is an arbitrary element of Y and Ai , i = 1, . . . , n
is the diagonal of an i-additive symmetric mapping Ai : Xi → Y.

The following fixed point theorem will play a crucial role in proving our stability
results.

Theorem 2 (Banach’s Contraction Principle). Let (X, d) be a complete metric space
and consider a mapping Λ : X → X as a strictly contractive mapping, that is

d(Λx,Λy) ≤ Ld(x, y), ∀x, y ∈ X,

for some (Lipschitz constant) L ∈ [0, 1). Then:
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(i) The mapping Λ has a unique fixed point x∗ = Λ(x∗);
(ii) The fixed point x∗ is globally attractive, that is

lim
n→∞Λnx = x∗

for any starting point x ∈ X;

(iii) One has the following estimation inequalities

d(Λnx, x∗) ≤ Lnd(x, x∗),

d(Λnx, x∗) ≤ 1

1 − L
d(Λnx,Λn+1x),

d(x, x∗) ≤ 1

1 − L
d (x,Λx)

for all x ∈ X and nonnegative integers n.

Definition 1 A mapping φ : X → Y is called,

• A homogeneous mapping of degree α if φ(cx) = cαφ(x) (for the case of α = 1,
the corresponding mapping is simply said to be homogeneous),

• A contractively subhomogeneous mapping of degree α if there exists a constant
L such that

φ(cx) ≤ cαLφ(x),

• An expansively superhomogeneous mapping of degree α if there exists a constant
L such that

φ(cx) ≥ cα

L
φ(x)

for any x ∈ X and any positive reals c.

Remark 1 It follows by the contractively subhomogeneous of degree α (:� = 1)
and expansively superhomogeneous of degree α (:� = −1) conditions of φ that

φ(c�kx) ≤ (
c�αL

)k
φ(x), k ∈ N.

Definition 2 We fix a real number β and let X be a real or complex linear space. A
β-norm on X is a function x �→ ‖x‖β from X to [0, ∞) which satisfies

(βN1) ‖x‖β = 0 if and only if x = 0;
(βN2) ‖λx‖β = |λ|β. ‖x‖ for all scalars λ and all x ∈ X;
(βN3) ‖x + y‖β ≤ ‖x‖β + ‖y‖β for all x, y ∈ X.

The pair (X, ‖ . ‖β) is then said to be a β-normed space, which is called a β-
Banach space if it is complete. In special case, when β = 1,

(
X, ‖ . ‖β

)
turns into a

normed linear space.

Example 1 Let Lβ be the space of all measurable functions f (t) on I = [a, b] with∫ b
a

|f (t)|βdt < ∞ (we identify functions which are equal almost everywhere). For
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all f ∈ Lβ , let the function ‖f ‖β be defined by ‖f ‖β =
(∫ b

a
|f (t)|βdt

) 1
β

. Hence,

‖f ‖β is a quasi-norm on a topological linear space [19] and the βth power of the
quasi-norm ‖f ‖β is a β-norm on Lβ .

3 Multi-additive and Monomial Mappings

We start with the following lemma which plays a crucial role in this section.

Lemma 2 Let f : X → Y be a mapping. Then:

(i) f satisfies the functional equation (3) if and only if f is of the form f (x) =
A0 + A1(x);

(ii) f satisfies the functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y) (5)

if and only if f is of the form f (x) = A2(x) (see also [1]);

(iii) f satisfies the functional equation

f (2x + y) + f (2x − y) = 2f (x + y) + 2f (x − y) + 12f (x) (6)

if and only if f is of the form f (x) = A3(x) (compare with [15, 31]);

(iv) f satisfies the functional equation

f (2x + y) + f (2x − y) + 6f (y) = 4f (x + y) + 4f (x − y) + 24f (x) (7)

if and only if f is of the form f (x) = A4(x) (compare with [6, 22, 27]);

(v) f satisfies the functional equation

f (3x + y) + f (2x − y) + 10f (x + y) = 5f (2x + y) + 5f (x − y)

+ 120f (x) + 10f (y) (8)

if and only if f is of the form f (x) = A5(x);
for all x, y ∈ X, where A0 is an arbitrary element of Y and Ai , i = 1, . . . , 5 is the
diagonal of an i-additive symmetric mapping Ai : Xi → Y.

Proof (i) Assume that f is a solution of the Eq. (3). Letting x = x + y in (3), we
get

f (x + 2y) − 2f (x + y) + f (x) = 0,

that is, Δ2
yf (x) = 0. Consequently, by Theorem 1, f is a generalized polynomial of

degree at most 1; that is, f (x) = A0 + A1(x) for all x ∈ X.
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Conversely, if f has the form f (x) = A0 +A1(x), where A1 is additive, then we
have Δ2

yf (x) = 0 by Theorem 1. Letting x = x − y in Δ2
yf (x) = 0, we get the

Eq. (3).
(ii) Assume that f is a solution of the Eq. (5). Letting x = y = 0 and x = 0

separately in (5), we get f (0) = 0 and f (−y) = f (y) for all y ∈ X. Letting
y = x + y and y = 2x + y separately in (5) and subtracting the latter from the
former, we obtain

f (3x + y) − 3f (2x + y) + 3f (x + y) − f (y) = 0,

that is, Δ3
xf (y) = 0. Due to Theorem 1, f is a generalized polynomial of degree

at most 2; that is, f (x) = A0 + A1(x) + A2(x), where Ai(x) is the diagonal of an
i-additive symmetric mapping Ai : Xi → Y for i = 1, 2 and A0 is an arbitrary
constant. From f (0) = 0, we have A0 = 0. Since f is an even mapping, A1(x) must
vanish. Thus, f (x) = A2(x) for all x ∈ X.

Conversely, assume that there exists a 2-additive symmetric mapping A2 : X2 →
Y such thatf (x) = A2(x) for allx ∈ X.By Lemma 1, we obtainΔ2

xA
2(y) = 2!A2(x),

that is,

A2(2x + y) − 2A2(x + y) + A2(y) = 2A2(x).

Replacing y by y − x in the last equation, we obtain

A2(x + y) − 2A2(y) + A2(y − x) = 2A2(x).

On account of the additivity of A2(x1, x2), we have A2(rx) = r2A2(x) for all
r ∈ Q, so

A2(x + y) + A2(x − y) − 2A2(x) − 2A2(y) = 0.

By the assumption, we arrive at the functional Eq. (5).
(iii) Assume that f is a solution of the Eq. (6). Letting x = y = 0, x = 0 and

y = 0 separately in (6), we get f (0) = 0, f (−x) = −f (x) and f (2x) = 8f (x) for
all x ∈ X. Interchanging x and y in (6) and using oddness of f , we obtain

f (x + 2y) − f (x − 2y) − 2f (x + y) + 2f (x − y) − 12f (y) = 0. (9)

Replacing x by 2x in (9) and using f (2x) = 8f (x), we obtain

f (2x + y) − f (2x − y) − 4f (x + y) + 4f (x − y) + 6f (y) = 0. (10)

Letting y = x + y and y = 2x + y separately in (6), then the two resulting
equations yield

f (4x + y) − 4f (3x + y) + 4f (2x + y) + 2f (x + y) − 2f (x − y)

+ 12f (x) − 5f (y) = 0. (11)
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It follows from (6), (10), and (11) that

f (4x + y) − 4f (3x + y) + 6f (2x + y) − 4f (x + y) + f (y) = 0,

that is, Δ4
xf (y) = 0. Due to Theorem 1, f is a generalized polynomial of degree at

most 3; that is, f (x) = A0 +A1(x) +A2(x) +A3(x), where Ai(x) is the diagonal of
an i-additive symmetric mapping Ai : Xi → Y for i = 1, 2, 3 and A0 is an arbitrary
constant. From f (0) = 0, we have A0 = 0. Since f is an odd mapping, A2(x)
must vanish. Thus, f (x) = A1(x) + A3(x) for all x ∈ X. By f (2x) = 8f (x) and
Am(rx) = rmAm(x) whenever x ∈ X and r ∈ Q, we get A1(x) = 0. Therefore,
f (x) = A3(x) for all x ∈ X.

Conversely, assume that there exists a 3-additive symmetric mapping A3 : X3 →
Y such thatf (x) = A3(x) for allx ∈ X.By Lemma 1, we obtainΔ3

xA
3(y) = 3!A3(x),

that is,

A3(3x + y) − 3A3(2x + y) + 3A3(x + y) − A3(y) = 6A3(x). (12)

Setting y = y − x in (12), we get

A3(2x + y) − 3A3(x + y) + 3A3(y) − A3(y − x) = 6A3(x). (13)

Setting y = −y in (13), we get

A3(2x − y) − 3A3(x − y) + 3A3(−y) − A3(−y − x) = 6A3(x). (14)

Adding (13) to (14) and using oddness of A3, we get

A3(2x + y) + A3(2x − y) − 2A3(x + y) − 2A3(x − y) − 12A3(x) = 0.

By the assumption, we arrive at the functional Eq. (6).
(iv) Assume that f is a solution of the Eq. (7). Letting x = y = 0, x = 0 and

y = 0 separately in (7), we get f (0) = 0, f (−x) = f (x) and f (2x) = 16f (x) for
all x ∈ X. Letting y = 2x + y and y = 3x + y separately in (7) and subtracting the
latter from the former, we obtain

f (5x+y)−5f (4x+y)+10f (3x+y)−10f (2x+y)+5f (x+y)−f (y) = 0,

that is, Δ5
xf (y) = 0. Due to Theorem 1, f is a generalized polynomial of degree at

most 4; that is, f (x) = A0 + A1(x) + A2(x) + A3(x) + A4(x), where Ai(x) is the
diagonal of an i-additive symmetric mapping Ai : Xi → Y for i = 1, 2, 3, 4 and
A0 is an arbitrary constant. From f (0) = 0, we have A0 = 0. Since f is an even
mapping, A1(x) and A3(x) must vanish. Thus, f (x) = A2(x) +A4(x) for all x ∈ X.

By f (2x) = 16f (x) and Am(rx) = rmAm(x) whenever x ∈ X and r ∈ Q, we get
A2(x) = 0. Therefore, f (x) = A4(x) for all x ∈ X.

Conversely, assume that there exists a 4-additive symmetric mapping A4 : X4 →
Y such that f (x) = A4(x) for all x ∈ X. By Lemma 1, we get Δ4

xA
4(y) = 4!A4(x),

that is,

A4(4x + y) − 4A4(3x + y) + 6A4(2x + y) − 4A4(x + y) + A4(y) = 24A4(x).
(15)
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Setting y = y − 2x in (15) and using evenness of A4, we get

A4(2x + y) + A4(2x − y) − 4A4(x + y) − 4A4(x − y) − 24A4(x) + 6A4(y) = 0.

By the assumption, we arrive at the functional Eq. (7).
(v) Assume that f is a solution of the Eq. (8). Letting x = y = 0, x = 0, y = 0,

y = x, y = 2x and y = 3x separately in (8), we get f (0) = 0, f (−x) = −f (x),
f (3x) = 4f (2x) + 115f (x) (∗1 ), f (4x) = 10f (2x) + 704f (x) (∗2 ), f (5x) =
20f (2x) + 2485f (x) and f (6x) = 35f (2x) + 6656f (x) (∗3 ) for all x ∈ X. From
(∗1), (∗2), and (∗3), we obtain f (2x) = 32f (x) for all x ∈ X. Letting y = 2x+y and
y = 3x + y separately in (8) and subtracting the latter from the former, we obtain

f (6x + y) − 6f (5x + y) + 15f (4x + y) − 20f (3x + y) + 15f (2x + y)

− 6f (x + y) + f (y) = 0,

that is, Δ6
xf (y) = 0. Due to Theorem 1, f is a generalized polynomial of degree at

most 5; that is, f (x) = A0 +A1(x) +A2(x) +A3(x) +A4(x) +A5(x), where Ai(x)
is the diagonal of an i-additive symmetric mapping Ai : Xi → Y for i = 1, 2, 3, 4, 5
and A0 is an arbitrary constant. From f (0) = 0, we have A0 = 0. Since f is an
odd mapping, A2(x) and A4(x) must vanish. Thus, f (x) = A1(x) + A3(x) + A5(x)
for all x ∈ X. By f (2x) = 32f (x) and Am(rx) = rmAm(x) whenever x ∈ X and
r ∈ Q, we get A1(x) = A3(x) = 0. Therefore, f (x) = A5(x) for all x ∈ X.

Conversely, assume that there exists a 5-additive symmetric mapping A5 : X5 →
Y such that f (x) = A5(x) for all x ∈ X. Due to Lemma 1, we obtain Δ5

xA
5(y) =

5!A5(x), that is,

A5(5x + y) − 5A5(4x + y) + 10A5(3x + y) − 10A5(2x + y) + 5A5(x + y)

− A5(y) = 120A5(x). (16)

Setting y = y − 2x in (16) and using oddness of A5, we get

A5(3x + y) − 5A5(2x + y) + A5(2x − y) + 10A5(x + y) − 5A5(x − y)

− 120A5(x) − 10A5(y) = 0.

By the assumption, we arrive at the functional Eq. (8).

Remark 2 (i) The functional Eq. (3) is called the Cauchy–Jensen functional
equation, and every solution of the Eq. (3) is called a Cauchy–Jensen mapping.

(ii) The functional Eq. (5) is called the quadratic functional equation, and every
solution of the Eq. (5) is called a quadratic mapping.

(iii) The functional Eq. (6) is called the cubic functional equation, and every solution
of the Eq. (6) is called a cubic mapping.

(iv) The functional Eq. (7) is called the quartic functional equation, and every
solution of the Eq. (7) is called a quartic mapping.

(v) The functional Eq. (8) is called the quintic functional equation, and every
solution of the Eq. (8) is called a quintic mapping.
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Lemma 3 If a mapping f : R → X satisfies the functional equation

f

(
( m∑

i=1

x
p

i

) 1
p

)
=

m∑

i=1

f (xi), (17)

then for each p = 1, . . . , 5, f is Cauchy-additive, quadratic, cubic, quartic, and
quintic, respectively.

Proof Letting x1 = · · · = xm = 0 in (17), we get f (0) = 0. Setting x1 = x,
x2 = −x and x3 = · · · = xm = 0 in (17), we get 0 = f (0) = f (x)+f (−x); that is,
f (− x) = −f (x) for all x ∈ R and p ∈ {1, 3, 5}. Putting x1 = −x1 in (17), we have

f

(
( m∑

i=1

x
p

i

) 1
p

)
= f (−x1) +

m∑

i=2

f (xi) (18)

for all x1, . . . , xm ∈ R and p ∈ {2, 4}. If we compare (17) with (18), then we obtain
that f (−x1) = f (x1); that is, f (−x) = f (x) for all x ∈ R and p ∈ {2, 4}. It is easy
to see that f ( p

√
kx) = kf (x), and so f ( x

p√
k
) = 1

k
f (x) for k ∈ Z when p ∈ {1, 3, 5}

and k ∈ N when p ∈ {2, 4}. Hence, f ( p
√
rx) = rf (x) for r ∈ Q when p ∈ {1, 3, 5}

and r ∈ Q
+ when p ∈ {2, 4}. Thus, for every n ∈ Z, we have f (r

n
p x) = rnf (x) for

r ∈ Q \ {0} when p ∈ {1, 3, 5} and r ∈ Q
+ when p ∈ {2, 4}.

For p = 1, Eq. (17) yields the generalized Cauchy-additive equation
f
(∑m

i=1 xi
) = ∑m

i=1 f (xi). If x3 = · · · = xm = 0 in the last equality, then f

is Cauchy-additive.
Using the proof of Lemma 2.1 of [18], we conclude that if p = 2 and x3 = · · · =

xm = 0 in (17), then f satisfies (5); i.e., f is quadratic.
For p = 3, letting x1 = x, x2 = y and x3 = · · · = xm = 0 in (17) and using

f (0) = 0, one gets

f
(

3
√
x3 + y3

)
= f (x) + f (y). (19)

Replacing x by x + y and y by x − y in (19) and using f ( 3
√

2x) = 2f (x), we
obtain

f
(

3
√
x3 + 3xy2

)
= 1

2
[f (x + y) + f (x − y)], (20)

which by replacing x by 2x yields

f
(

3
√

4x3 + 3xy2
)

= 1

4
[f (2x + y) + f (2x − y)]. (21)

Setting y = (
x3 + 3xy2

) 1
3 in (19) and using (20), we get

f
(

3
√

2x3 + 3xy2
)

= 1

2
[f (x + y) + f (x − y)] + f (x). (22)
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Putting y = (
2x3 + 3xy2

) 1
3 in (19) and using (22), we get

f
(

3
√

3x3 + 3xy2
)

= 1

2
[f (x + y) + f (x − y)] + 2f (x). (23)

Letting y = (
3x3 + 3xy2

) 1
3 in (19) and using (23), we get

f
(

3
√

4x3 + 3xy2
)

= 1

2
[f (x + y) + f (x − y)] + 3f (x). (24)

From (21) and (24), we conclude that f satisfies (6). Hence, by Lemma 2, f is
cubic.

For p = 4, letting x1 = x, x2 = y and x3 = · · · = xm = 0 in (17) and using
f (0) = 0, one finds

f
(

4
√
x4 + y4

)
= f (x) + f (y). (25)

Replacing x by x + y and y by x − y in (25), we obtain

f
(

4
√
x4 + 6x2y2 + y4

)
= 1

2
[f (x + y) + f (x − y)]. (26)

Setting y = (
x4 + 6x2y2 + y4

) 1
4 in (25) and using (26), we obtain

f
(

4
√

2x4 + 6x2y2 + y4
)

= 1

2
[f (x + y) + f (x − y)] + f (x), (27)

which by replacing x by
√

2x and using f
(
r
n
4 x
) = rnf (x) for r ∈ Q

+ becomes

f
(

4
√

8x4 + 12x2y2 + y4
)

= 1

2

[
f
(√

2x + y
)

+ f
(√

2x − y
)]

+ 4f (x). (28)

Interchange x and y in (27) and using evenness of f to get

f
(

4
√
x4 + 6x2y2 + 2y4

)
= 1

2
[f (x + y) + f (x − y)] + f (y),

which by putting x = 2x gives

f
(

4
√

8x4 + 12x2y2 + y4
)

= 1

4
[f (2x + y) + f (2x − y) + 2f (y)]. (29)

It follows from (28) and (29) that

f (2x + y) + f (2x − y) = 2f
(√

2x + y
)

+ 2f
(√

2x − y
)

+ 16f (x) − 2f (y),

(30)

which by letting y = √
2y yields

f
(√

2x + y
)

+ f
(√

2x − y
)

= 2f (x + y) + 2f (x − y) + 4f (x) − 2f (y).

(31)
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From (30) and (31), we conclude that f satisfies (7). Hence, by Lemma 2, f is
quartic.

For p = 5, letting x1 = x, x2 = y and x3 = · · · = xm = 0 in (17) and using
f (0) = 0, we see that

f
(

5
√
x5 + y5

)
= f (x) + f (y). (32)

Replacing x by x + y and y by 0 in (32), we obtain

f
(

5
√
x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

)
= f (x + y), (33)

which by replacing x by 3x and then using (32) and f
(

5
√

3x
)

= 3f (x) becomes

f
(

5
√

81x5 + 135x4y + 90x3y2 + 30x2y3 + 5xy4
)

= 1

3
[f (3x + y) − f (y)],

which, by using (32) again, gives

f
(

5
√

27x4y + 18x3y2 + 6x2y3 + xy4
)

= 1

15
[f (3x + y) − 243f (x) − f (y)].

(34)

Replacing x by x + y and y by x − y in (32), we obtain

f
(

5
√
x5 + 10x3y2 + 5xy4

)
= 1

2
[f (x + y) + f (x − y)], (35)

which by replacing x by 2x yields

f
(

5
√

16x5 + 40x3y2 + 5xy4
)

= 1

4
[f (2x + y) + f (2x − y)]. (36)

Set y = x + y in (35) and using oddness of f to get

f
(

5
√

16x5 + 40x4y + 40x3y2 + 20x2y3 + 5xy4
)

= 1

2
[f (2x + y) − f (y)]. (37)

From (32) and (37), we have

f
(

5
√

8x4y + 8x3y2 + 4x2y3 + xy4
)

= 1

10
[f (2x + y) − 32f (x) − f (y)]. (38)

It follows from (32), (36), and (37) that

f
(

5
√

2x4y + x2y3
)

= 1

80
[f (2x + y) − f (2x − y) − 2f (y)], (39)

which by replacing y by x + y and then using (32) becomes

f
(

5
√

5x4y + 3x3y2 + x2y3
)

= 1

80
[f (3x + y)−2f (x + y)−f (x − y)]−3f (x).

(40)
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By (32), (39), and (40), we obtain

f
(

5
√
x4y + x3y2

)
= 1

240
[f (3x + y) − f (2x + y) + f (2x − y) − 2f (x + y)

− f (x − y) + 2f (y)] − f (x). (41)

By (32), (38), and (41), we obtain

f
(

5
√

4x2y3 + xy4
)

= −1

30
[f (3x + y) − 4f (2x + y) + f (2x − y) − 2f (x + y)

− f (x − y) − 144f (x) + 5f (y)]. (42)

By (32), (34), and (42), we obtain

f
(

5
√

27x4y + 18x3y2 + 2x2y3
)

= 1

30
[3f (3x + y) − 4f (2x + y) + f (2x − y)

− 2f (x + y) − f (x − y) + 3f (y)] − 21f (x).

(43)

By (32), (41), and (43), we obtain

f
(

5
√

9x4y + 2x2y3
)

= 1

120
[3f (3x + y) − 7f (2x + y) − 5f (2x − y)

+ 10f (x + y) + 5f (x − y) − 6f (y)] − 3f (x). (44)

By (32), (39), and (44), we obtain

f
(

5
√
x4y

)
= 1

600
[3f (3x + y) − 10f (2x + y) − 2f (2x − y) + 10f (x + y)

+ 5f (x − y) − 360f (x)]. (45)

By (32), (39), and (45), we obtain

f
(

5
√
x2y3

)
= −1

1200
[12f (3x + y) − 55f (2x + y) + 7f (2x − y) + 40f (x + y)

+ 20f (x − y) − 1440f (x) + 30f (y)]. (46)

It follows from (32), (33), (35), (45), and (46) that f satisfies (8). Hence, by
Lemma 2, f is quintic.

We now solve the functional equation (4), which is the generalized form of (17).

Theorem 3 If a mapping f : R → X satisfies the functional equation (4) and∑m
i=1 ai �= 1, then for each p = 1, . . . , 5, f is Cauchy-additive, quadratic, cubic,

quartic, and quintic, respectively.
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Proof Substituting xi = 0(1 ≤ i ≤ m) in (4) yields f (0) = 0 since
∑m

i=1 ai �= 1. If
we put x1 = −x1 in (4), then we have

f

⎛

⎝
(

m∑

i=1

aix
p

i

) 1
p

⎞

⎠ = a1f (−x1) +
m∑

i=2

aif (xi) (47)

for all x1, . . . , xm ∈ R and p ∈ {2, 4}. If we compare (4) with (47), we obtain that
f (−x) = f (x) for all x ∈ R and p ∈ {2, 4}. Setting xi = 0(1 ≤ i �= j ≤ m) and
xj = x in (4), we get f

(
p
√
ajx

) = ajf (x) for all x ∈ R. Hence,

f

⎛

⎝ p

√√√√
k∏

j=�

aj x

⎞

⎠ =
k∏

j=�

ajf (x) (1 ≤ � ≤ k ≤ m) (48)

for all x ∈ R. Letting xi = ∏m
j=1,j �=i aj xi(1 ≤ i ≤ m) in (4) and using (48),

we obtain that f satisfies (17). Hence, by Lemma 3, for each p = 1, . . . , 5 f is
Cauchy-additive, quadratic, cubic, quartic, and quintic, respectively.

Corollary 1 If a mappingf : R → X satisfies the functional Eq. (4) and
∑m

i=1 ai �=
1, then for each p = 1, . . . , 5, f is of the form f (x) = Ap(x) for all x ∈ R, where
Ap is the diagonal of an p-additive symmetric mapping Ap : R

p → X.

4 Fixed Points and Stability of Monomial Functional Equations

Letφ be a function from R
m to R

+ andY be aβ-Banach space.A mappingf : R → Y

is called a φ-approximately monomial, if
∥∥∥∥∥∥
f

⎛

⎝
(

m∑

i=1

aix
p

i

) 1
p

⎞

⎠−
m∑

i=1

aif (xi)

∥∥∥∥∥∥
β

≤ φ(x1, . . . , xm) (49)

for all x1, . . . , xm ∈ R, where
∑m

i=1 ai ∈ R
+\{1}. Now, we apply the Banach fixed

point theorem and our results in the previous section to get the following.

Theorem 4 Suppose that f : R → Y is a φ-approximately monomial mapping and
that the function φ is contractively subhomogeneous of degree α with a constant L,
where α ≤ pβ. Moreover, assume that f is even when p is even. Then, there exists
a unique mapping Fp : R → Y satisfying (4) such that

∥∥f (x) − Fp(x)
∥∥
β

≤ 1

λpβ (1 − L)
Φ(x) (50)

for all x ∈ R, where λ := ∑m
i=1 ai and

Φ(x) := λ(p−1)β
p−1∑

�=0

1

λ�β
φ
(

n−t imes︷ ︸︸ ︷
λ

�
p x, . . . , λ

�
p x
)
.



194 M. E. Gordji et al.

The mapping Fp is given by Fp(x) = limn→∞ 1
λpn

f (λnx) for all x ∈ R, and Fp

for each p = 1, . . . , 5 is Cauchy-additive, quadratic, cubic, quartic, and quintic,
respectively.

Proof Consider the set

W :=
{
g : R → Y , sup

x∈R

‖g(x) − f (x)‖β
Φ(x)

< ∞
}

and introduce the following metric on W:

d(g,h) = sup
x∈R

‖g(x) − h(x)‖β
Φ(x)

.

We assert that (W , d) is complete. Let {gk} be a Cauchy sequence in (W , d).
Then, for any ε > 0, there exists a positive integer Nε such that d(gj , gk) ≤ ε for all
j , k ≥ Nε. By the definition of d , for each j , k ≥ Nε,

∥∥gj (x) − gk(x)
∥∥
β

≤ εΦ(x), x ∈ R. (51)

So, for each x ∈ R, {gk(x)} is a Cauchy sequence in Y . Since Y is complete, for
each x ∈ R, there exists g(x) ∈ Y such that gk(x) → g(x) as k → ∞. Hence, by
(51) for each k ≥ Nε,

‖gk(x) − g(x)‖β = lim
j→∞

∥∥gk(x) − gj (x)
∥∥
β

≤ εΦ(x), x ∈ R,

that is, d(gk , g) ≤ ε for each k ≥ Nε. Hence, gk → g ∈ W as k → ∞. Thus, (W , d)
is complete.

Now we consider the mapping P : W → W defined by (Pg)(x) = 1
λp
g(λx) for

all g ∈ W and all x ∈ R. Let g,h ∈ W and let C ∈ [0, ∞) be an arbitrary constant
with d(g,h) < C. From the definition of d , we have

‖g(x) − h(x)‖β
Φ(x)

≤ C

for all x ∈ R. By the assumption and the last inequality, we have

‖(Pg)(x) − (Ph)(x)‖β
Φ(x)

= ‖g(λx) − h(λx)‖β
λpβΦ(x)

≤ λα−pβL ‖g(λx) − h(λx)‖β
Φ (λx)

≤ LC

for all x ∈ R. So

d(Pg, Ph) ≤ Ld(g,h)

for all g,h ∈ W , which means that P is a strictly contractive self-mapping of W
with the Lipschitz constant L.

Substituting x1, . . . , xm := x in the functional inequality (49), we obtain

∥∥∥f
(
λ

1
p x
)

− λf (x)
∥∥∥
β

≤ φ(
n−times︷ ︸︸ ︷
x, . . . , x )
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for all x ∈ R. Thus,
∥∥f (λx) − λpf (x)

∥∥
β

≤ Φ(x) (52)

for all x ∈ R. Hence, ∥∥f (x) − 1
λp
f (λx)

∥∥
β

Φ(x)
≤ 1

λpβ

for all x ∈ R. So d(f , Pf ) ≤ 1

λpβ
.

Due to Theorem 2, there exists a unique mapping Fp ∈ W such that Fp(λx) =
λpFp(x) for all x ∈ R, i.e., Fp is a unique fixed point of P . Moreover,

Fp(x) = lim
n→∞ (Pnf )(x) = lim

n→∞
1

λpn
f (λnx) (53)

for all x ∈ R, and

d(f , Fp) ≤ 1

1 − L
d(f , Pf ) ≤ 1

λpβ(1 − L)
,

i.e., inequality (50) holds true for all x ∈ R.
In addition it is clear from (49) and (53) that the equality

∥∥∥∥∥∥
Fp

⎛

⎝
(

m∑

i=1

aix
p

i

) 1
p

⎞

⎠−
m∑

i=1

aiFp(xi)

∥∥∥∥∥∥
β

= lim
n→∞

1

λpβn

∥∥∥∥∥∥
f

⎛

⎝
(

m∑

i=1

λpnaix
p

i

) 1
p

⎞

⎠−
m∑

i=1

aif (λnxi)

∥∥∥∥∥∥
β

≤ lim
n→∞

1

λpβn
φ
(
λnx1, . . . , λnxm

)

≤ lim
n→∞

(
λα−pβL

)n
φ (x1, . . . , xm) = 0

holds for all x1, . . . , xm ∈ R, and so by Theorem 3 the mapping Fp ∈ W for each
p = 1, . . . , 5 is Cauchy-additive, quadratic, cubic, quartic, and quintic, respectively,
as desired.

Theorem 5 Suppose that f : R → Y is a φ-approximately monomial mapping and
that the function φ is expansively superhomogeneous of degree α with a constant L,
where α ≥ pβ. Moreover, assume that f is even when p is even. Then, there exists
a unique mapping Fp : R → Y satisfying (4) such that

∥∥f (x) − Fp(x)
∥∥
β

≤ L

λα (1 − L)
Φ(x) (54)

for all x ∈ R, where λ and Φ(x) are defined as in Theorem 4. The mapping Fp is
given by Fp(x) = limn→∞ λpnf

(
x
λn

)
for all x ∈ R, and Fp for each p = 1, . . . , 5

is Cauchy-additive, quadratic, cubic, quartic, and quintic, respectively.
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Proof We introduce the same definitions for W and d as in the proof of Theorem 4
such that (W , d) becomes a complete metric space. Let P : W → W be the mapping
defined by (Pg)(x) = λpg

(
x
λ

)
for all g ∈ W and all x ∈ R. One can show that

d(Pg, Ph) ≤ Ld(g,h) for any g,h ∈ W . Similar to the proof of Theorem 4, we
obtain that f satisfies (52) for all x ∈ R. Hence,

∥∥f (x) − λpf
(
x
λ

) ∥∥
β

Φ(x)
≤ L

λα

for all x ∈ R. So d(f , Pf ) ≤ L
λα

.
Due to Theorem 2, there exists a unique mapping F ∈ W such that Fp(λx) =

λpFp(x) for all x ∈ R, i.e., Fp is a unique fixed point of P . Moreover,

Fp(x) = lim
n→∞ (Pnf )(x) = lim

n→∞ λpnf
( x
λn

)

for all x ∈ R, and

d(f , Fp) ≤ 1

1 − L
d(f , Pf ) ≤ L

λα(1 − L)
,

i.e., inequality (54) holds true for all x ∈ R.
The remaining assertion goes through in a similar way to the corresponding part

of Theorem 4.
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Some Functional Equations Related to the
Characterizations of Information Measures
and Their Stability

Eszter Gselmann and Gyula Maksa

Abstract The main purpose of this chapter is to investigate the stability problem of
some functional equations that appear in the characterization problem of information
measures.

Keywords Information measures · Information quantity · Probability distribution ·
Shannon entropy · Stability

1 Introduction and Preliminaries

Throughout this chapter, N, Z, Q, R, and C will stand for the set of the positive inte-
gers, the integers, the rational numbers, the reals and the set of the complex numbers,
respectively. Furthermore, R+ and R++ will denote the set of the nonnegative and
the positive real numbers, respectively.

In this section, firstly we summarize some notations and preliminaries that will
be used subsequently. We begin with the introduction of the information measures.
Here, their definition and some results concerning them will follow.

The second section of our chapter will be devoted to the topic of information func-
tions. Here—among others—the general solution of the (parametric) fundamental
equation of information will be described. Furthermore, some results concerning the
so-called sum form information measures will also be listed.

Finally, in the last part of this chapter, we will investigate the stability problem
for the functional equations that appeared in the second section. Here, some open
problems will also be presented.
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1.1 Information Measures

The question “How information can be measured?,” was first raised by Hartley in
1928. In his paper [37], Hartley considered only those systems of events, in which
every event occurs with the same probability. After that, in 1948, the celebrated paper
of Shannon [72] appeared where the information quantity contained in a complete
(discrete) probability distribution was defined.

In what follows, based on the notions and the results of the monograph Aczél–
Daróczy [7], a short introduction to information measures will follow.

Let n ∈ N, n ≥ 2 be arbitrarily fixed and define the sets

Γ ◦
n =

{
(p1, . . . ,pn) ∈ R

n|pi > 0, i = 1, . . . , n,
n∑

i=1

pi = 1

}

and

Γn =
{

(p1, . . . ,pn) ∈ R
n|pi ≥ 0, i = 1, . . . , n,

n∑

i=1

pi = 1

}
,

respectively. We say that the sequence of functions (In)
∞
n=2 (or simply (In)) is an

information measure, if either In : Γ ◦
n → R for all n ≥ 2 or In : Γn → R for all

n ≥ 2.
We have to mention that, in the literature, “information measures” depending

on not only probabilities but on the events themselves (inset information measures)
(see e.g., Aczél–Daróczy [5]) or depending on several probability distributions (see
Ebanks–Sahoo–Sander [25]) are also investigated. Here, we do not involve these
cases. On the other hand, originally the zero probabilities were allowed adopting the
conventions

0 log2 (0) = 0

0 + 0
= 0α = 0 (α ∈ R). (1)

We follow these conventions, and we denote Γ ◦
n or Γn by Gn provided that it does

not matter that the zero probabilities are excluded or not.
Certainly, the most known information measures are the Shannon entropy (see

Shannon [72]), i.e.,

H 1
n (p1, . . . ,pn) = −

n∑

i=1

pi log2 (pi), ((p1, . . . ,pn) ∈ Gn, n ≥ 2)

and the so-called entropy of degree α, or the Havrda–Charvát entropy (see Aczél–
Daróczy [7], Daróczy [15], Kullback [53], Tsallis [78]), i.e.,

Hα
n (p1, . . . ,pn) =

⎧
⎨

⎩

(
21−α − 1

)−1 (∑n
i=1 p

α
i − 1

)
, if α �= 1

H 1
n (p1, . . . ,pn), if α = 1

,
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where n ∈ N, n ≥ 2, α ∈ R and (p1, . . . ,pn) ∈ Gn.
(H 1

n ) was first introduced to the statistical thermodynamics by Boltzmann and
Gipps, to the information theory by Shannon [72], while (Hα

n ) (for α �= 1) was
first investigated from cybernetic point of view by Havrda and Charvát [38], from
information theoretical point of view by Daróczy [15], and was rediscovered by
Tsallis [78] for the Physics community.

It is easy to see that, for arbitrarily fixed n ≥ 2 and (p1, . . . ,pn) ∈ Gn,

lim
α→1

Hα
n (p1, . . . ,pn) = H 1

n (p1, . . . ,pn) ,

which shows that the Shannon entropy can continuously be embedded to the family
of entropies of degree α. As it is formulated in [7], the characterization problem for
the information measure (Hα

n ) is the following: What properties have to be imposed
upon an information measure (In) in order that (In) = (Hα

n ) be valid?
In what follows, we list the properties which seem to be reasonable for character-

izing (Hα
n ). It is not difficult to check that the information measure (Hα

n ) has these
properties.

An information measure (In) is called symmetric if

In (p1, . . . ,pn) = In
(
pσ (1), . . . ,pσ (n)

)
(2)

is satisfied for all n ≥ 2, (p1, . . . ,pn) ∈ Gn and for arbitrary permutation σ :
{1, . . . , n} → {1, . . . , n} . Further, we say that (In) is 3-semi-symmetric if

I3(p1,p2,p3) = I3(p1,p3,p2) (3)

holds for all (p1,p2,p3) ∈ G3.
(In) is called normalized if

I2

(
1

2
,

1

2

)
= 1, (4)

and it is called α-recursive if

In (p1, . . . ,pn)

= In−1 (p1 + p2,p3, . . . ,pn) + (p1 + p2)
α I2

(
p1

p1 + p2
,

p2

p1 + p2

)
(5)

holds for all for all n ≥ 3 and (p1, . . . ,pn) ∈ Gn. In case α = 1, we say simply that
(In) is recursive.

For a fixed α ∈ R and 2 ≤ n ∈ N, 2 ≤ m ∈ N, the information measure (In) is
said to be (α, n,m)- additive, if

Inm (P ∗ Q) = In (P ) + Im (Q) + (21−α − 1)In (P ) Im (Q) (6)

holds for all P = (p1, . . . ,pn) ∈ Gn, Q = (q1, . . . , qm) ∈ Gm where
P ∗ Q = (p1q1, . . . ,p1qm, . . . ,pnq1, . . . ,pnqm) ∈ Gnm. Finally, we say that an
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information measure (In) has the sum property, if there exists a function f : I → R

such that

In(p1, . . . ,pn) =
n∑

i=1

f (pi) ((p1, . . . ,pn) ∈ Gn) (7)

for all 2 ≤ n ∈ N. Here (and through the chapter) I denotes the closed unit interval
[0, 1] if Gn = Γn for all 2 ≤ n ∈ N and the open unit interval ]0, 1[ if Gn = Γ ◦

n for all
2 ≤ n ∈ N. Such a function f satisfying (7) is called a generating function of (In).

1.2 The Characterization Problem and Functional Equations

The properties listed above are of algebraic nature. This is the reason why they
lead to functional equations. In this section, we present how they imply the so-
called parametric fundamental equation of information and the sum form functional
equations. Following the ideas of Daróczy [14] (see also [7]), suppose first that the
information measure (In) is (5) α-recursive and (3) 3-semi-symmetric, and define
the function f on I by

f (x) = I2(x, 1 − x)

and the set D◦ = {(x, y) | x, y, x + y ∈ I }, if I = ]0, 1[ and D = {(x, y) | x, y ∈
[0, 1[, x + y ∈ I } if I = [0, 1], respectively. Let now

(x, y) ∈
⎧
⎨

⎩
D if I = [0, 1]

D◦ if I = ]0, 1[

and n = 3,p1 = 1 − x − y,p2 = y,p3 = x in (5). Then, we have that

I3(1 − x − y, y, x) = I2(1 − x, x) + (1 − x)αI2

(
1 − y

1 − x
,

y

1 − x

)

= f (x) + (1 − x)αf

(
y

1 − x

)

which, by (3), implies that

f (x) + (1 − x)αf

(
y

1 − x

)
= f (y) + (1 − y)αf

(
x

1 − y

)
(8)

holds on D◦ and on D, respectively. Functional Eq. (8) is called the parametric fun-
damental equation of information, (in case α = 1 simply the fundamental equation
of information).
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Furthermore, in case α = 1 and the domain D, its solutions f : [0, 1] → R

satisfying the additional requirements f (0) = f (1), f
(

1
2

) = 1 are the information
functions.

The role of the α-recursivity is very important since, with the aid of this property,
we can determine the entire information measure from its initial element I2. On the
other hand, this idea shows the importance of Eq. (8), as well.

The appearance of the sum form functional equations in the characterization prob-
lems of information measures is more evident. Indeed, the (6) (α, n,m)- additivity
and the (7) sum property immediately imply the functional equation

n∑

i=1

m∑

j=1

f (piqj ) =
n∑

i=1

f (pi) +
m∑

j=1

f (qj ) + (21−α − 1)
n∑

i=1

f (pi)
m∑

j=1

f (qj ) (9)

for the generating function f .
As we shall see in the sections below, the solutions of (8) and (in many cases)

also of (9) can be expressed by the solutions of some well-known and well-discussed
functional equations. In what follows we remind the reader some basic facts from
this part of the theory of functional equations.

1.3 Prerequisites from the Theory of Functional Equations

All the results of this subsection can be found in the monographs Aczél [3] and
Kuczma [52].

Let A ⊂ R be an arbitrary nonempty set and

A = {
(x, y) ∈ R

2 | x, y, x + y ∈ A
}
.

A function a : I → R is called additive on A, if for all (x, y) ∈ A

a(x + y) = a(x) + a(y). (10)

If A = R, then the function a will be called simply additive. It is well known that
the solutions of the equation above, under some mild regularity condition, are of the
form

a(x) = cx (x ∈ I ) ,

with a certain real constant c. For example, it is true that those additive functions
which are bounded above or below on a set of positive Lebesgue measure have the
form

a(x) = cx (x ∈ R)

with some c ∈ R. It is also known, however, that there are additive functions the
graph of which is dense in the plain. A great number of basic functional equations
can easily be reduced to (10). In the following, we list some of them.
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Let

M = {
(x, y) ∈ R

2 | x, y, xy ∈ A
}
.

A function m : A → R is called multiplicative on A, if for all (x, y) ∈ M

m(xy) = m(x)m(y).

If A = R+ or A = R++ then the function m is called simply multiplicative.
Furthermore, we say that the function � : A → R is logarithmic on A if for any

(x, y) ∈ M,

�(xy) = �(x) + �(y)

The functional equation

ϕ(xy) = xϕ(y) + yϕ(x) (11)

has an important role in the following and it can easily be reduced to the functional
equation of logarithmic functions by introducing the function �(x) = ϕ(x)

x
. Finally,

we will use functions d : R → R that are both additive and they are solutions of
functional Eq. (11), that is,

d(xy) = xd(y) + yd(x)

is also satisfied for all x, y ∈ R. This kind of functions are called real derivations.
Their complete description can be found in Kuczma [52] from which it turns out
the somewhat surprising fact that there are nonidentically zero real derivations. Of
course, if a real derivation bounded from one side on a set of positive Lebesgue
measure then it must be identically zero, otherwise its graph is dense in the plain.

In the subsequent sections it will occur that the equations introduced above are
fulfilled only on restricted domains. Most of these cases it can be proved that the
functions in question are the restrictions of some functions which satisfy the above
equations on its natural domains. The results of this type are the so-called extension
theorems, and the first classical ones are due to Aczél–Erdős [8] and Daróczy–
Losonczi [20]. As a typical and important example, we cite the following extension
theorem (see [20]).

Theorem 1 Assume that the function a0 : [0, 1] → R is additive on [0, 1]. Then
there exists a uniquely determined function a : R → R which is additive on R such
that

a0(x) = a(x)

holds for all x ∈ [0, 1].
Since all the other functional equations mentioned above in this subsection can

be reduced to (10), we can easily get extension theorems for them as consequences,
and their regular (say bounded on a set of positive Lebesgue measure) solutions can
also be obtained easily. In particular, the typical regular (say bounded from one side
on a set of positive Lebesque measure) solutions ϕ : [0, +∞[ → R of (11) are of
the form ϕ(x) = cx log2 (x) for all 0 ≤ x ∈ R and for some c ∈ R.
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2 Results on the Fundamental Equation of Information
and on the Sum Form Equations

2.1 Information Functions

The first characterization theorem concerning the Shannon entropy (the case α = 1)
considered on Γn is due to Shannon himself, see [72]. The second one, which is
more abstract and mathematically well-based, can be found in Khinchin [47]. In
1956, Faddeev succeed to reduce the system of axioms used by the two previous
authors, see [27]. Faddeev assumed only symmetry, the normalization property,
recursivity and that the function f : [0, 1] → R defined by

f (x) = I2(x, 1 − x) (x, y ∈ [0, 1])

is continuous. After that, the regularity assumption in the result of Faddeev was
replaced by weaker and weaker assumptions. For example, together with the above
three algebraic properties, Tverberg [79] assumed (Lebesgue) integrability, Lee [55]
measurability, Daróczy [14] continuity at zero (‘small for small probabilities’), and
Diderrich [24] boundedness on a set of positive measure, and they showed that the
above properties determine uniquely the Shannon entropy. We mention here the result
of Kendall [46] and Borges [12] who suppose monotonicity on the interval [0, 1/2[
and proved the same.

Concerning the characterization of the Shannon entropy, a 1969 paper of Daróczy
[14] meant a breakthrough. He recognized that this characterization problem is
equivalent with finding information functions that are identical with the Shannon
information function S defined by

S(x) = x log2 (x) + (1 − x) log2 (1 − x) (x ∈ I ).

The other important contribution was to find the general form of information
functions (see [7]) which is the following.

Theorem 2 A function f : [0, 1] → R is an information function if, and only if,

f (x) = ϕ(x) + ϕ(1 − x) (x ∈ [0, 1]) (12)

with some function ϕ : [0, +∞[ → R satisfying the functional equation

ϕ(xy) = xϕ(y) + yϕ(x) (x, y ∈ [0, +∞[) (13)

and ϕ
(

1
2

) = 1
2 .

The proof of this theorem is based on some results and ideas of purely algebraic
nature in Jessen, Karpf, and Thorup [43] on the cocycle equation

F (x + y, z) + F (x, y) = F (x, y + z) + F (y, z)

that is satisfied, provided that

F (x, y) = (x + y)f

(
y

x + y

)
(x, y ∈ R+, x + y ∈ R++)
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where f is an information function. Supposing that

f (x) + (1 − x)f

(
y

1 − x

)
= f (y) + (1 − y)f

(
x

1 − y

)

holds only on the open domain D◦ = {(x, y) : x, y, x + y ∈ ]0, 1[} for the unknown
function f : ]0, 1[ → R, Maksa and Ng [68] proved that f (x) = ϕ(x) + ϕ(1 − x)
+ ax for all x ∈ ]0, 1[ and for some function ϕ : [0, +∞[ → R satisfying functional
Eq. (13) and for some a ∈ R.

Obviously, if ϕ(x) = −x log2 x, x ∈ [0, +∞[ then ϕ
(

1
2

) = 1
2 , ϕ satisfies (13),

and (12) implies that f = S. However, as it was pointed out in Aczél [4], f does not
determine ϕ unambiguously by (12). Indeed, if d : R → R is a real derivation, that
is, d satisfies both functional equations

d(x + y) = d(x) + d(y) and d(xy) = xd(y) + yd(x)

then (12) and (13) hold also with ϕ + d instead of ϕ, moreover (ϕ + d)
(

1
2

) = 1
2 is

valid, as well. Thus, since there are nonidentically zero real derivations, the function
ϕ in (12) does not inherit the regularity properties of f . So even for very regular
f the function ϕ may be very irregular. This is the main difficulty in deriving the
regular solutions from the general one.

The first successful attempt in this direction is due to Daróczy [17]. By his
observation, (12) and (13) imply that

(x + y)f

(
y

x + y

)
=ϕ(x) + ϕ(y) − ϕ(x + y)

(x, y ∈ R+, x + y ∈ R++). (14)

If f is (say) continuous then, for all fixed y ∈ R+ the difference functions
x �→ ϕ(x + y) − ϕ(x), x ∈ R+ so are. Therefore, by a theorem of de Bruijn [23], ϕ
is a sum of a continuous and an additive function. It is not difficult to show that the
additive function is a real derivation and the other summand is a continuous solution
of (13).

This is the point at which the stability idea first appeared in the investigation.
Namely, supposing that the information function f is bounded by a positive real
number ε, (14) implies that

|ϕ(x) + ϕ(y) − ϕ(x + y)| ≤ ε (x, y ∈ R+, x + y ≤ 1),

that is, the Cauchy difference of ϕ is bounded on a triangle. While de Bruijn type
theorem is not true for this case we could apply the stability theory in Maksa [60]
to determine the bounded information functions by giving a new and short proof of
Diderrich’s theorem published in [24].

At this point, we have to highlight the problem of nonnegative information func-
tions. First of all, we emphasis that the requirment of the nonnegativity for an
information function is very natural from information theoretical point of view,
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since f (x) is the measure of information belonging to the probability distribution
{x, 1 − x} , x ∈ [0, 1]. On the other hand, the one-sided boundedness is important
also from theoretical point of view, as well. Indeed, the solutions of the Cauchy
Eq. (10) bounded below or above on a set of positive Lebesgue measure are contin-
uous linear functions. Therefore, it was natural to expect that something similar is
true for the information functions that are bounded from one side (say nonnegative
on [0, 1]). Indeed, it was conjectured in Aczél–Daróczy [7] (supported by the partial
result Daróczy–Kátai [19] by which the nonnegative information functions coin-
cide with the Shannon one at the rational points of [0, 1]) that the only nonnegative
information function is the Shannon one. The following counter example in Daróczy–
Maksa [21] however disproves this conjecture since, with any nonidentically zero
real derivation d, the function f0 defined by

f0(x) =

⎧
⎪⎨

⎪⎩
S(x) + d(x)2

x(1 − x)
, if x ∈ ]0, 1[

0, if x ∈ {0, 1}
is a nonnegative information function different from S. Of course, there are positive
results, as well. For example, it is also proved in [21] that S(x) ≤ f (x) for all
nonnegative information function f and for all x ∈ [0, 1]. Another one is about the
set K(f ) = {x ∈ [0, 1]|f (x) = S(x)} which was introduced by Lawrence [54] and
called the Shannon kernel of the nonnegative information function f . It is proved in
Gselmann–Maksa [36] that K(f ) has the form [0, 1] ∩ Lf where Lf is a subfield
of R containing the square roots of its nonnegative elements. Furthermore, if K
denotes the intersection of all Shannon kernels (belonging to nonnegative information
functions) then all the elements of K are algebraic over Q and K contains all the
algebraic elements of [0, 1] of degree at most 3. Our first open problem is related to
these latter facts.

Open Problem 1 Prove or disprove that all algebraic elements of the closed inter-
val [0, 1] is contained by K , in other words any nonnegative information function
coincides with S at the algebraic points of the closed unit interval.

We remark that Lawrence’s conjecture in [54] is affirmative.
The last sentences of this subsection are devoted to the case α �= 1 which is much

simpler than the caseα = 1. Indeed, in [15], Daróczy determined all the solutions f :
[0, 1] → R of (8) satisfying the additional requirements f (0) = f (1), f

(
1
2

) = 1.
Thus he characterized the entropy of degree α on Γn by using purely algebraic
properties: semisymmetry, normalization, andα-recursivity. Since then, these results
have been extended to the open domain case, as well (see, e.g., the sections about
the stability).

2.2 Sum Form Equations

As we have seen earlier, the sum form Eq. (9) is the consequence of the (α, n,m)-
additivity and the sum property. In connection with the characterization properties
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discussed above, we should remark here the following implication: the sum property
follows from the symmetry (2) and α-recursivity (5), as it is shown in [7].

In several characterization theorems for the entropy of degreeα based on (α, n,m)-
additivity and the sum property, an additional regularity condition was supposed for
the generating function f and also on the parameters α, n, and m. We list some of
the results of this type in chronological order.

We begin with the Shannon case α = 1. Chaundy–McLeod [13] proved that, if
f : [0, 1] → R is continuous and

n∑

i=1

m∑

j=1

f (piqj ) =
n∑

i=1

f (pi) +
m∑

j=1

f (qj ) (15)

holds for all (p1, . . . ,pn) ∈ Γn, (q1, . . . , qm) ∈ Γm and for all n ≥ 2,m ≥ 2 then

f (x) = cx log2 (x) (x ∈ [0, 1]) (16)

with some c ∈ R. The same was proved by Aczél and Daróczy [6] supposing that
f is continuous and (15) holds for all n = m ≥ 2. Daróczy [16] determined the
measurable solutions f supposing that n = 3,m = 2, f (1) = 0. Daróczy and Járai
[18] found the measurable solutions of (15) in the case n = m = 2 discovering
solutions that are not solutions when n ≥ 3 or m ≥ 3. This was one of the starting
point of developing the regularity theory of functional equations (see Járai [42]). In
Maksa [61], the solutions bounded from on a set of positive Lebesgue measure of
(15) were determined. These are the same as in the continuous case (see (16)) while
it was also shown that the supposition of the one-sided boundedness does not lead to
the same result. Counterexample can be given by real derivations (see Maksa [64]).
Connected with these investigations the following problem is still open.

Open Problem 2 Find the general solution of Eq. (15) for a fixed pair (n,m), n ≥
2,m ≥ 2, particularly find all functions f : I → R satisfying the functional equation

f (xy) + f ((1 − x)y) + f (x(1 − y)) + f ((1 − x)(1 − y))

= f (x) + f (1 − x) + f (y) + f (1 − y)

for all x, y ∈ I .
A partial result can be found in Losonczi–Maksa [59].
As we have already mentioned, in the characterization theorems for the entropy of

degree α based on (α, n,m)-additivity and the sum property, an additional regularity
condition was supposed for the generating function f . Now we present here an
exceptional case (see Maksa [64]) in which all the conditions refer to the information
measure itself and there is no condition on the generating function. The stability
idea appears again. Indeed, suppose that the information measure (In) is (1, n,m)-
additive for some n ≥ 3, m ≥ 2, has the sum property with generating function
f : [0, 1] → R and I3 is bounded by the real number K , that is,

|I3(p1,p2,p3)| ≤ K ((p1,p2,p3) ∈ Γ3). (17)
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Let x, y ∈ [0, 1] such that x+y ≤ 1 and apply (17) to the probability distributions
(x, y, 1 − x − y) ∈ Γ3 and then to (x + y, 1 − x − y, 0) ∈ Γ3, respectively to get that

|I3(x, y, 1 − x − y)| ≤ K and |I3(x + y, 1 − x − y, 0)| ≤ K.

Therefore, because of the triangle inequality, for the generating function f , we
have that

|f (x + y) − f (x) − f (y) + f (0)| ≤ 2 K ,

that is, the stability inequality holds for the function f − f (0) on a triangle. The
details together with the consequences are in [64].

The brief history of the case α �= 1 follows. The continuous solutions, supposing
that (9) holds for all n ≥ 2,m ≥ 2 were determined by Behara and Nath [11],
Kannappan [45], and Mittal [70] independently of each other. They found that the
continuous solutions either a sum of a continuous additive function and a constant or
the sum of a continuous additive function and a continuous multiplicative function
(power function). The same was proved by Losonczi [56] supposing that (9) holds for
a fixed pair (n,m), n ≥ 3,m ≥ 2 and the generating function f in (9) is measurable.
Contrary to the caseα = 1, in the caseα �= 1 the general solution has been determined
(see Losonczi-Maksa [59] and Maksa [63]) supposing that n ≥ 3 and m ≥ 2 are
fixed. Characterization theorems for the entropy of degree α can easily be derived
from these results (see [64]).

In the case α �= 1, with the definition g(p) = p+ (21−α −1)f (p), p ∈ I , Eq. (9)
can be reduced to equation

n∑

i=1

m∑

j=1

g(piqj ) =
n∑

i=1

g(pi)
m∑

j=1

g(qj ). (18)

The general solution of which is not known when n = m = 2. Therefore we
formulate the following open problem.

Open Problem 3 Find all functions g : I → R satisfying the functional equation

g(xy) + g((1 − x)y) + g(x(1 − y)) + g((1 − x)(1 − y))

= (g(x) + g(1 − x)) (g(y) + g(1 − y))

for all x, y ∈ I .
A partial result is proved in Losonczi [57].
Further investigations related to sum form equations on open domain or for func-

tions in several variables can be found among others in Losonczi [58] and in the
survey paper Ebanks–Kannappan–Sahoo–Sander [26].
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3 Stability Problems

During one of his talks, held at the University of Wisconsin S. Ulam posed several
problems. One of these problems has became the cornerstone of the stability theory
of functional equations, see [80]. Ulam’s problem reads as follows.

Let (G, ◦) be a group and (H , ∗) be a metric group with the metric d. Let ε ≥ 0
and f : G → H be a function such that

d (f (x ◦ y), f (x) ∗ f (y)) ≤ ε

holds for all x, y ∈ G. Is it true that there exist δ ≥ 0 and a function g : G → H

such that

g(x ◦ y) = g(x) ∗ g(y), (x, y ∈ G)

and

d (f (x), g(x)) ≤ δ

holds for all x ∈ G?
This question was first answered in 1941 by D. H. Hyers by proving the following

theorem, see [41].

Theorem 3 Let ε ≥ 0, X,Y be Banach spaces and f : X → Y be a function.
Suppose that

‖f (x + y) − f (x) − f (y)‖ ≤ ε

holds for all x, y ∈ X. Then, for all x ∈ X, the limit

a(x) = lim
n→∞

f (2nx)

2n

does exist, the function a : X → R is additive on X, i.e.,

a(x + y) = a(x) + a(y)

holds for all x, y ∈ X, furthermore,

‖f (x) − a(x)‖ ≤ ε

is fulfilled for arbitrary x ∈ X. Additionally, the function a : R → R is uniquely
determined by the above formula.

The above theorem briefly expresses the following. Assume that X,Y are Banach
spaces and the function f : X → Y satisfies the additive Cauchy equation only
“approximatively.” Then there exists a unique additive function a : X → Y which is
“close” to the function f . Since 1941 this result has been extended and generalized
in several ways. Furthermore, Ulam’s problem can obviously be raised concerning
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not only the Cauchy equation but also in connection with other equations, as well.
For further result consult the monograph Hyers–Isac–Rassias [40].

For instance, the stability problem of the exponential Cauchy equation highlighted
a new phenomenon, which is nowadays called superstability. In this case the so-called
stability inequality implies that the function in question is either bounded or it is the
exact solution of the functional equation in question, see Baker [10].

In this work, we will meet an other notion, namely the hyperstability. In this case,
from the stability inequality, we get that the function in question can be nothing else
than the exact solution of the functional equation in question, see, e.g., Maksa–Páles
[69].

Since the above result of D. H. Hyers appeared, the stability theory of functional
equations became a rapidly developing area. Presently, in the theory of stability
there exist several methods, e.g. the Hyers’ method (c.f. Forti [28]), the method of
invariant means (see Székelyhidi [74, 75]), and the method that is based on separation
theorems (see Badora–Ger–Páles [9]).

As we will see in the following subsections, in case of the functional equations, we
will deal with, none of the above methods will work. More precisely, in some cases
the method of invariant means is used. However, basically we have to develop new
ideas to prove stability type theorems for the functional equations, we mentioned in
the introduction. Concerning topic of invariant means, we offer the expository paper
Day [22]. Although the only result needed from [22] is, that on every commutative
semigroup there exist an invariant mean, that is, every commutative semigroup is
amenable.

The aim of this chapter is to investigate the stability of some functional equations
that appear in the theory of information. Firstly, we will investigate the above problem
concerning the parametric fundamental equation of information. The main results
and also the applications will be listed in the subsequent subsections. We will prove
stability, superstability, and hyperstability according to the value of the parameter
α. The results, we will present can be found in Gselmann [30, 31, 32, 34] and in
Gselmann–Maksa [35].

Concerning the stability of the parametric fundamental equation of information,
the first result was the stability of Eq. (6) on the set D, assuming that 1 �= α > 0 (see
Maksa [67]). Furthermore, the stability constant, got in that paper is much smaller
than that of ours. However, the method, used in Maksa [67], does not work if α = 1
or α ≤ 0 or if we consider the problem on the open domain.

After that, it was proved that Eq. (6) is stable in the sense of Hyers and Ulam on
the setD◦ as well as onD, assuming that α ≤ 0 (see [35]). After that it turned out that
this method is appropriate to prove superstability in case 1 �= α > 0. This enabled us
to give a unified proof for the stability problem of Eq. (6). Finally, using a different
approach, in [30] it was showed that in case α < 0, the parametric fundamental
equation of information is hyperstable on D◦ as well as on D.
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3.1 The Cases α = 0 and 0 < α �= 1

In this part of the chapter, we will investigate the stability of the parametric funda-
mental equation of information in case for the parameter α, α = 0, or 0 < α �= 1
holds. The method, we will use during the proofs were firstly developed for the case
α < 0. However, it turned out that this approach works in this case also. The results
we will present here can be found in [31, 32] and also in [67].

Theorem 4 Let α, ε ∈ R be fixed, 1 �= α ≥ 0, ε ≥ 0. Suppose that the function
f : ]0, 1[ → R satisfies the inequality

∣∣∣∣f (x) + (1 − x)αf

(
y

1 − x

)
− f (y) − (1 − y)αf

(
x

1 − y

)∣∣∣∣ ≤ ε (19)

for all (x, y) ∈ D◦. Then, in case α = 0, there exists a logarithmic function l :
]0, 1[ → R and c ∈ R such that

|f (x) − [l(1 − x) + c]| ≤ K(α)ε, (x ∈ ]0, 1[) (20)

furthermore, if α /∈ {0, 1}, there exist a, b ∈ R such that
∣∣f (x) − [axα + b(1 − x)α − b

]∣∣ ≤ K(α)ε (21)

holds for all x ∈ ]0, 1[, where

K(α) = ∣∣21−α − 1
∣∣−1
(

3 + 12 · 2α + 32 · 3α+1

|2−α − 1|
)
.

Proof Define the function F on R
2++ by

F (u, v) = (u + v)αf

(
v

u + v

)
. (22)

Then

F (tu, tv) = tαF (u, v) (t , u, v ∈ R++) (23)

and

f (x) = F (1 − x, x), (x ∈ ]0, 1[) (24)

furthermore, with the substitutions

x = w

u + v + w
, y = v

u + v + w
(u, v, w ∈ R++)

inequality (19) implies that



Some Functional Equations Related to the Characterizations . . . 213

∣∣∣∣f
(

w

u + v + w

)
+ (u + v)α

(u + v + w)α
f

(
v

u + v

)

−f

(
v

u + v + w

)
− (u + w)α

(u + v + w)α
f

(
w

u + w

)∣∣∣∣ ≤ ε (25)

whence, by (22)

|F (u + v, w) + F (u, v) − F (u + w, v) − F (u, w)| ≤ ε(u + v + w)α (26)

follows for all u, v, w ∈ R++.
In the next step, we define the functions g andG on R++ and on R

2++, respectively
by

g(u) = F (u, 1) − F (1, u) (27)

and

G(u, v) = F (u, v) + g(v). (28)

We will show that

|G(u, v) − G(v, u)| ≤ 3ε(u + v + 1)α. (u, v ∈ R++) (29)

Indeed, with the substitution w = 1, inequality (26) implies that

|F (u + v, 1) + F (u, v) − F (u + 1, v) − F (u, 1)| ≤ ε(u + v + 1)α. (30)

Interchanging u and v, it follows from (30) that

|−F (u + v, 1) − F (v, u) + F (v + 1, u) − F (v, 1)| ≤ ε(u + v + 1)α

(u, v ∈ R++) .

This inequality, together with (30) and the triangle inequality imply that

|F (u, v) − F (v, u) − F (u + 1, v) − F (u, 1) + F (v + 1, u) + F (v, 1)|
≤ 2ε(u + v + 1)α (31)

holds for all u, v ∈ R++. On the other hand, with u = 1, we get from (26) that

|F (1 + v, w) + F (1, v) − F (1 + w, w) − F (1, w)| ≤ ε(1 + v + w)α.

Replacing here v by u and w by v, respectively, we have that

|F (u + 1, v) + F (1, u) − F (v + 1, u) − F (1, v)| ≤ ε(u + v + 1)α

(u, v ∈ R++) .

Again, by the triangle inequality and the definitions (27) and (28), (31) and the last
inequality imply (29).
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In what follows we will investigate the function g. At this point of the proof, we
have to distinguish two cases.

Case I. (α = 0). In this case, we will show that there exists a logarithmic function
l : R++ → R such that

|g(u) − l(u)| ≤ 6ε

for all u ∈ R++. Indeed, (29) yields in this case that

|G(u, v) − G(v, u)| ≤ 3ε. (u, v ∈ R++)

Due to (23) and (28), we obtain that

G(tu, tv) = F (tu, tv) + g(tv) = F (u, v) + g(tv) = G(u, v) − g(v) + g(tv)

that is,

G(tu, tv) − G(u, v) = g(tv) − g(v), (t , u, v ∈ R++)

therefore

|g(tv) − g(v) + g(u) − g(tu)| = |G(tu, tv) − G(u, v) − G(tv, tu) + G(v, u)|
≤ |G(tu, tv) − G(tv, tu)| + |G(v, u) − G(u, v)| ≤ 6ε

(32)

for all t , u, v ∈ R++. Now (32) with the substitution u = 1 implies that

|g(tv) − g(v) − g(t)| ≤ 6ε

holds for all t , v ∈ R++, since obviously g(1) = 0. This means that the function
g is approximately logarithmic on R++. Thus, there exists a logarithmic function
l : R++ → R such that

|g(u) − l(u)| ≤ 6ε

holds for all u ∈ R++.
Furthermore,

|f (x) − l(1 − x) − (f (1 − x) − l(x))|
= |F (1 − x, x) − l(1 − x) − F (x, 1 − x) + l(x)|
= |F (1 − x, x) + g(x) − g(x) − l(1 − x)

−F (x, 1 − x) + g(1 − x) − g(1 − x) + l(x) |
≤ |F (1 − x, x) + g(x) − (F (x, 1 − x) + g(1 − x))|

+ |g(1 − x) − l(1 − x)| + |l(x) − g(x)|
= |G(1 − x, x) − G(x, 1 − x)| + |g(1 − x)
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−l(1 − x)| + |l(x) − g(x)|
≤ 3ε + 6ε + 6ε = 15ε (33)

Define the functions f0 and F0 on ]0, 1[ and on ]0, 1[2, respectively, by

f0(x) = f (x) − l(1 − x)

and

F0(p, q) = f0(p) + f0(q) − f0(pq) − f0

(
1 − p

1 − pq

)

Due to (3.1)

|f0(x) − f0(1 − x)| ≤ 15ε (34)

holds for all x ∈ ]0, 1[. Furthermore, with the substitutions x = 1 − p, y = pq

(p, q ∈ ]0, 1[) inequality (19) implies, that
∣∣∣∣f0(1 − p) + f0(q) − f0(pq) − f0

(
1 − p

1 − pq

)∣∣∣∣ ≤ ε (35)

is fulfilled for all p, q ∈ ]0, 1[. Inequalities (34) and (35) and the triangle inequality
imply that

|F0(p, q)| ≤ 16ε (36)

for all p, q ∈ ]0, 1[. An easy calculation shows that

f0(p) − f0(q)

0 = F0(q,p) − F0(p, q) + F0

(
1 − p

1 − pq
,p

)
− f0

(
1 − 1 − p

1 − pq

)
+ f0

(
1 − p

1 − pq

)

therefore,

|f0(p) − f0(q)|

≤ |F0(q,p)| + |F0(p, q)| +
∣∣∣∣F0

(
1 − p

1 − pq
,p

)∣∣∣∣

+
∣∣∣∣f0

(
1 − 1 − p

1 − pq

)
− f0

(
1 − p

1 − pq

)∣∣∣∣

≤ 3 · 16ε + 15ε = 63ε (37)

holds for all p, q ∈ ]0, 1[. With the substitution q = 1
2 inequality (37) implies that

∣∣∣∣f0(p) − f0

(
1

2

)∣∣∣∣ ≤ 63ε. (p ∈ ]0, 1[)

Using the definition of the function f0, we obtain that inequality

|f (x) − l(1 − x) − c| ≤ 63ε

is satisfied for all x ∈ ]0, 1[, where c = f0
(

1
2

)
. Hence, inequality (20) holds, indeed.
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Case II. (1 �= α ≥ 0). Finally, we will prove that there exists c ∈ R such that

|g(x) − c(xα − 1)| ≤ 4 · 3α+1ε

|2−α − 1|
holds for all x ∈ ]0, 1[.

Due to inequalities (22) and (27),

G(tu, tv) = F (tu, tv) + g(tv) = tαF (u, v) + g(tv)

= tαG(u, v) − tαg(v) + g(tv),

that is,

G(tu, tv) − tαG(u, v) = g(tv) − tαg(v)

holds for all t , v ∈ R++. Therefore,

|g(tv) − tαg(v) + tαg(u) − g(tu)|
= |G(tu, tv) − G(u, v) − G(tv, tu) + G(v, u)|
≤ |G(tu, tv) − G(tv, tu)| + |G(u, v) − G(v, u)|
≤ 3ε(t(u + v) + 1)α + 3ε(u + v + 1)α (38)

holds for all t , u, v ∈ R++, where we used (19). With the substitution u = 1, (38)
implies that

|g(tv) − tαg(v) − g(t)| ≤ 3ε(t(v + 1) + 1)α + 3ε(v + 2)α (t , v ∈ R++) (39)

Interchanging t and v in (39), we obtain that

|g(tv) − vαg(t) − g(v)| ≤ 3ε(v(t + 1) + 1)α + 3ε(t + 2)α (t , v ∈ R++) (40)

Inequalities (39), (40), and the triangle inequality imply that

|tαg(v) + g(t) − vαg(t) − g(v)| ≤ B(t , v) (41)

is fulfilled for all t , v ∈ R++, where

B(t , v) = 3ε(t(v + 1) + 1)α + 3ε(v + 2)α + 3ε(v(t + 1) + 1)α + 3ε(t + 2)α.

With the substitution t = 1
2 and with the definition c = g( 1

2 )
2−α−1 , we obtain

|g(v) − c(vα − 1)| ≤ B
(

1
2 , v
)

|2−α − 1| (42)

for all v ∈ R++.
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Let us observe that

|B(t , v)| ≤ 4 · 3α+1ε

holds, if t , v ∈ ]0, 1[. Thus

|g(v) − c(vα − 1)| ≤ B
(

1
2 , v
)

|2−α − 1| ≤ 4 · 3α+1ε

|2−α − 1| (43)

for all v ∈ ]0, 1[. Therefore (24), (28), (29), (43), and the triangle inequality imply
that

|f (x) − c(1 − x)α + c − (f (1 − x) − cxα + c) |
= |F (1 − x, x) − c(1 − x)α + c − (F (x, 1 − x) − cxα + c) |
≤ |F (1 − x, x) + g(x) − F (x, 1 − x) − g(1 − x)|

+ |g(x) − c(xα − 1)| + |g(1 − x) − c((1 − x)α − 1)|
= |G(1 − x, x) − G(x, 1 − x)|

+ |g(x) − c(xα − 1)| + |g(1 − x) − c((1 − x)α − 1)|

≤ 3 · 2αε + 8 · 3α+1ε

|2−α − 1| (44)

holds for all x ∈ ]0, 1[.
As in the previous cases, we define the functions f0 and F0 on ]0, 1[ and on ]0, 1[2

by

f0(x) = f (x) − c(1 − x)α (45)

and

F0(p, q) = f0(p) + pαf0(q) − f0(pq) − (1 − pq)αf0

(
1 − p

1 − pq

)
, (46)

respectively. Then (19), (44), and (45) imply that
∣∣∣∣f0(x) + (1 − x)αf0

(
y

1 − x

)
− f0(y) − (1 − y)αf0

(
x

1 − y

)∣∣∣∣ ≤ ε (47)

for all (x, y) ∈ D◦ and

|f0(x) − f0(1 − x)| ≤ 3 · 2αε + 8 · 3α+1ε

|2−α − 1| . (x ∈ ]0, 1[) (48)

Furthermore, with the substitutions x = 1 − p, y = pq (p, q ∈ ]0, 1[), (47) implies
that

∣∣∣∣f0(1 − p) + pαf0(q) − f0(pq) − (1 − pq)αf0

(
1 − p

1 − pq

)∣∣∣∣ ≤ ε (49)
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holds for all p, q ∈ ]0, 1[. Thus (48), (49), and the triangle inequality imply that

|F0(p, q)| ≤ ε + 3 · 2αε + 8 · 3α+1ε

|2−α − 1| . (x ∈ ]0, 1[)

Similarly to the previous case, it is easy to see that the identity

f0(p)
[
qα + (1 − q)α − 1

]− f0(q)
[
pα + (1 − p)α − 1

]

= F0(q,p) − F0(p, q)

−(1 − pq)α
[
F0

(
1 − q

1 − pq
,p

)
+ f0

(
1 − 1 − p

1 − pq

)
− f0

(
1 − p

1 − pq

)]
(50)

is satisfied for all p, q ∈ ]0, 1[. Therefore
∣∣∣f0(p) − f0(q)

qα + (1 − q)α − 1

[
pα + (1 − p)α − 1

] ∣∣∣

≤ |qα + (1 − q)α − 1|−1 ×

×
(

3

(
ε + 3 · 2αε + 8 · 3α+1ε

|2−α − 1|
)

+ 3 · 2αε + 8 · 3α+1ε

|2−α − 1|
)

for all p, q ∈ ]0, 1[. In view of (45), with q = 1
2 with the definitions

a = f0

(
1

2

) (
21−α − 1

)−1
and b = a + c,

this inequality implies that
∣∣f (p) − [apα + b(1 − p)α − b

]∣∣ ≤ K(α)ε (51)

holds for all p ∈ ]0, 1[, where

K(α) = ∣∣21−α − 1
∣∣−1
(

3 + 12 · 2α + 32 · 3α+1

|2−α − 1|
)

,

which had to be proved.
In the following theorem, we shall prove that the parametric fundamental equation

of information is stable not only onD◦ but also onD. During the proof of this theorem,
the following function will be needed. For all 1 �= α > 0, we define the function
T (α) by

T (α) = 3 · 2α + 8 · 3α+1

|2−α − 1| .

Furthermore, the following relationship is fulfilled between K(α) and T (α)

K(α) = 4 T (α) + 3∣∣21−α − 1
∣∣

for all 1 �= α > 0.
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Theorem 5 Let α, ε ∈ R be fixed, 0 ≤ α �= 1, ε ≥ 0. Suppose that the function
f : [0, 1] → R satisfies inequality (19) for all (x, y) ∈ D. Then, in case α �= 0 there
exist a, b ∈ R such that the function h1 defined on [0, 1] by

h1(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if x = 0

axα + b(1 − x)α − b, if x ∈ ]0, 1[

a − b, if x = 1

is a solution of (6) on D and

|f (x) − h1(x)| ≤ max {K(α), T (α) + 1} ε (x ∈ [0, 1]) (52)

holds. In case α = 0, there exists c ∈ R such that the function h2 defined on [0, 1] by

h2(x) =

⎧
⎪⎪⎨

⎪⎪⎩

f (0), if x = 0

c, if x ∈ ]0, 1[

f (1), if x = 1

is a solution of (6) on D and

|f (x) − h2(x)| ≤ K(α)ε. (x ∈ [0, 1]) (53)

is fulfilled.

Proof An easy calculation shows that the functions h1 and h2 are the solutions of
Eq. (6) on D in case α �= 0 and α = 0, respectively.

At first, we deal with the case α > 0. Substituting x = 0 into (19) and with
y → 0, we obtain that

|f (0)| ≤ ε ≤ K(α)ε,

that is, (52) holds for x = 0. If x ∈ ]0, 1[, then inequality (52) follows immediately
from Theorem (4). Furthermore, with the substitution y = 1 − x (x ∈ ]0, 1[)
inequality (19) implies that

|f (x) + (1 − x)αf (1) − f (1 − x) − xαf (1)| ≤ ε. (x ∈ ]0, 1[)

From the proof of Theorem 4 (see definition (45)), it is known that

f (x) = f0(x) + c(1 − x)α , (x ∈ ]0, 1[)

therefore, the last inequality yields that

|f0(x) − f0(1 − x) + c(1 − x)α − cxα + (1 − x)αf (1) − xαf (1)| ≤ ε (54)
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holds for all x ∈ ]0, 1[. Whereas

|f0(x) − f0(1 − x)| ≤ T (α). (x ∈ ]0, 1[)

Thus after rearranging (54), we get that

|f0(x) − f0(1 − x) − [c + f (1)][xα − (1 − x)α]| ≤ ε, (x ∈ ]0, 1[)

that is,

||f0(x) − f0(1 − x)| − |c + f (1)| · |xα − (1 − x)α|| ≤ ε

holds for all x ∈ ]0, 1[. Therefore

|c + f (1)| · |xα − (1 − x)α| ≤ (T (α) + 1)ε

for all x ∈ ]0, 1[. Taking the limit x → 0+, we obtain that

|c + f (1)| ≤ (T (α) + 1)ε.

However, in the proof of Theorem 4, we used the definition c = b − a, thus

|f (1) − (a − b)| ≤ (T (α) + 1)ε,

so (52) holds, indeed.
Finally, we investigate the case α = 0. If x = 0 or x = 1, then (53) trivially

holds, since

|f (0) − h2(0)| = |f (0) − f (0)| = 0 ≤ K(α)ε

and

|f (1) − h2(1)| = |f (1) − f (1)| = 0 ≤ K(α)ε.

Let now x ∈ ]0, 1[ and y = 1 − x in (19), then we obtain that

|f (x) − f (1 − x)| ≤ ε, (x ∈ ]0, 1[) (55)

if fulfilled for all x ∈ ]0, 1[.
Due to Theorem 4, there exists a logarithmic function l : ]0, 1[ → R and c ∈ R

such that

|f (x) − l(1 − x) − c| ≤ 63ε (56)

holds for all x ∈ ]0, 1[. Hence it is enough to prove that the function l is identically
zero on ]0, 1[. Indeed, due to (55) and (56)

|l(1 − x) − l(x)|
= |l(1 − x) − f (1 − x) + f (1 − x) + c − l(x) + f (x) − f (x) − c|
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≤ |l(1 − x) + c − f (x)| + |f (1 − x) − l(x) − c| + |f (x) − f (1 − x)|
≤ 127ε (57)

holds for all x ∈ ]0, 1[. Since the function l is uniquely extendable to R++, with the
substitution x = p

p+q
(p, q ∈ R), we get that

|l(p) − l(q)| ≤ 127ε, (p, q ∈ R++)

where we used the fact that l is logarithmic, as well. This last inequality, with the
substitution q = 1 implies that

|l(p)| ≤ 127ε

holds for all p ∈ R++, since l(1) = 0. Thus l is bounded on R++. However, the only
bounded, logarithmic function on R++ is the identically zero function. Therefore,

|f (x) − c| ≤ 63ε

holds for all x ∈ ]0, 1[, i.e., (53) is proved.
Since

lim
α→1

K(α) = +∞,

our method is inappropriate if α = 1. Hence we cannot prove stability concerning
the fundamental equation of information neither on the set D◦ nor on D.

The stability problem for the fundamental equation of information was raised by
L. Székelyhidi (see 38. Problem in [76]) and to the best of the authors’ knowledge,
it is still open. Therefore, we also can formulate the following.

Open Problem 4 Let ε ≥ 0 be arbitrary and f : ]0, 1[ → R be a function. Suppose
that

∣∣∣∣f (x) + (1 − x)f

(
y

1 − x

)
− f (y) − (1 − y)f

(
x

1 − y

)∣∣∣∣ ≤ ε

holds for all (x, y) ∈ D◦. Is it true that in this case there exists a solution of the
fundamental equation of information h : ]0, 1[ → R and a constant K(ε) ∈ R

depending only on ε such that

|f (x) − h(x)| ≤ K(ε)

is fulfilled for any x ∈ ]0, 1[?
Concerning this problem, we remark that for the system of recursive, 3-semi-

symmetric information measures, some partial results are known, see Morando [71].
Applying Theorem 4 we can prove the stability of a system of functional equations

that characterizes the α-recursive, 3-semi-symmetric information measures.
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Theorem 6 Let n ≥ 2 be a fixed positive integer and (In) be the sequence of
functions In : Γ ◦

n → R and suppose that there exist a sequence (εn) of nonnegative
real numbers and a real number 0 ≤ α �= 1 such that

|In(p1, . . . ,pn) − In−1(p1 + p2,p3, . . . ,pn)

−(p1 + p2)αI2

(
p1

p1 + p2
,

p2

p1 + p2

)∣∣∣∣ ≤ εn−1 (58)

for all n ≥ 3 and (p1, . . . ,pn) ∈ Γ ◦
n , and

|I3(p1,p2,p3) − I3(p1,p3,p2)| ≤ ε1 (59)

holds on Γ ◦
n . Then, in case α = 0 there exists a logarithmic function l : ]0, 1[ → R

and c ∈ R such that
∣∣∣In (p1, . . . ,pn) − [cH 0

n (p1, . . . ,pn) + l(p1)
] ∣∣∣

≤
n−1∑

k=2

εk + (n − 1)K(α) (2ε2 + ε1) (60)

for all n ≥ 2 and (p1, . . . ,pn) ∈ Γ ◦
n . Furthermore, if α > 0 then there exist c, d ∈ R

such that
∣∣In(p1, . . . ,pn) − [cHα

n (p1, . . . ,pn) + d(pα
1 − 1)

]∣∣

≤
n−1∑

k=2

εk + (n − 1)K(α)(2ε2 + ε1) (61)

holds for all n ≥ 2 and (p1, . . . ,pn) ∈ Γ ◦
n , where the convention

∑1
k=2 εk = 0 is

adopted.

Proof Similarly as in the proof of Theorem 6, due to (58) and (59), it can be proved
that, for the function f defined on ]0, 1[ by f (x) = I2(1 − x, x) we get that

∣∣∣∣f (x) + (1 − x)αf

(
y

1 − x

)
− f (y) − (1 − y)αf

(
x

1 − y

)∣∣∣∣ ≤ 2ε2 + ε1

for all (x, y) ∈ D◦, i.e., (19) holds with ε = 2ε2 + ε1. Therefore, applying Theorem
6 we obtain (20) and (21), respectively, with some a, b, c ∈ R and a logarithmic
function l : ]0, 1[ → R and ε = 2ε2 + ε1, i.e.,

|I2 (1 − x, x) − (axα + b(1 − x)α − b)| ≤ K(α)(2ε2 + ε1), (x ∈ ]0, 1[)

in case α �= 0, and

|I2 (1 − x, x) − (l(1 − x) + c)| ≤ K(α)(2ε2 + ε1) (x ∈ ]0, 1[)

in case α = 0.
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Therefore, (60) holds with c = (21−α − 1)a, d = b − a in case α > 0 and (61)
holds in case α = 0, respectively, for n = 2.

We continue the proof by induction on n. Suppose that (60) and (61) hold,
respectively, and for the sake of brevity, introduce the notation

Jn(p1, . . . ,pn) =
⎧
⎨

⎩
cHα

n (p1, . . . ,pn), if α �= 0

cH 0
n (p1, . . . ,pn) + l(p1), if α = 0

for all n ≥ 2, (p1, . . . ,pn) ∈ Γ ◦
n . It can easily be seen that (60) and (61) hold on Γ ◦

n

for Jn instead of In (n ≥ 3) with εn = 0 (n ≥ 2).
Therefore, if α = 0, (58) (with n + 1 instead of n), (60) with n = 2 and

the induction hypothesis (applying to (p1 + p2, . . . ,pn+1) instead of (p1, . . . ,pn))
imply that

∣∣∣In+1(p1, . . . ,pn+1) − Jn+1(p1, . . . ,pn+1)
∣∣∣

≤ εn +
n−1∑

k=2

εk + K(α)(n − 1)(2ε2 + ε1) + K(α)(2ε2 + ε1)

=
n∑

k=2

εk + K(α)n(2ε2 + ε1).

This yields that (60) holds for n + 1 instead of n.
Furthermore, if α > 0, then (58) (with n + 1 instead of n), (61) with n = 2 and

the induction hypothesis (applying to (p1 + p2, . . . ,pn+1) instead of (p1, . . . ,pn))
imply that

∣∣∣In+1(p1, . . . ,pn+1) − Jn+1(p1, . . . ,pn+1)
∣∣∣

≤ εn +
n−1∑

k=2

εk + K(α)(n − 1)(2ε2 + ε1) + K(α)(2ε2 + ε1)

=
n∑

k=2

εk + K(α)n(2ε2 + ε1),

that is, (61) holds for n + 1 instead of n.

3.2 The Case α < 0

At this part of the chapter, we will turn to investigate the case α < 0. Here it
will be proved for the negative parameters, the parametric fundamental equation
of information is hyperstable on D◦ as well as on D. As an application of these
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results, we will deduce that the system ofα-recursive, 3-semi-symmetric information
measures is stable.

Theorem 7 Let α, ε ∈ R, α < 0, ε ≥ 0 and f : ]0, 1[ → R be a function. Assume
that

∣∣∣∣f (x) + (1 − x)αf

(
y

1 − x

)
− f (y) − (1 − y)αf

(
x

1 − y

)∣∣∣∣ ≤ ε (62)

holds for all (x, y) ∈ D◦. Then, and only then, there exist c, d ∈ R such that

f (x) = cxα + d(1 − x)α − d (63)

for all x ∈ ]0, 1[.

Proof It is easy to see that for the function f is given by formula (63) functional
equation

f (x) + (1 − x)αf

(
y

1 − x

)
= f (y) + (1 − y)αf

(
x

1 − y

)

holds for all (x, y) ∈ D◦. Thus, inequality (62) is also satisfied with arbitrary ε ≥ 0.
Therefore, it is enough to prove the converse direction.

Define the function G : D◦ → R by

G(x, y) = f (x) + (1 − x)αf

(
y

1 − x

)
− f (x + y). ((x, y) ∈ D◦) (64)

Then inequality (62) immediately implies that

|G(x, y) − G(y, x)| ≤ ε (65)

for all (x, y) ∈ D◦.
Let (x, y, z) ∈ D◦

3, then due to the definition of the function G,

G(x + y, z) = f (x + y) + (1 − (x + y))αf

(
z

1 − (x + y)

)
− f (x + y + z),

G(x, y + z) = f (x) + (1 − x)αf

(
y + z

1 − x

)
− f (x + y + z)

and

(1 − x)αG

(
y

1 − x
,

z

1 − x

)

=(1 − x)α
[
f

(
y

1 − x

)
+
(

1 − y

1 − x

)α

f

(
z

1−x

1 − y

1−x

)
− f

(
y + z

1 − x

)]
,
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therefore,

G(x, y) + G(x + y, z) = G(x, y + z) + (1 − x)αG

(
y

1 − x
,

z

1 − x

)
(66)

holds on D◦
3, where we used the identity

z

1 − (x + y)
=

z

1 − x

1 − y

1 − x

also.
In what follows, we will show that the function G is α-homogeneous. Indeed,

interchanging x and y in (66), we get

G(y, x) + G(x + y, z)

= G(y, x + z) + (1 − y)αG

(
x

1 − y
,

z

1 − y

)
.
(
(x, y, z) ∈ D◦

3

)

Furthermore, Eq. (66) with the substitution

(x, y, z) = (y, z, x)

yields that

G(y, z) + G(y + z, x) = G(y, x + z) + (1 − y)αG

(
z

1 − y
,

x

1 − y

)

is fulfilled for all (x, y, z) ∈ D◦
3.

Thus

G(y, z) − (1 − x)αG

(
y

1 − x
,

z

1 − x

)

=
{
G(x, y) + G(x + y, z) − G(x, y + z) − (1 − x)αG

(
y

1 − x
,

z

1 − x

)}

− G(x, y) − G(x + y, z) + G(x, y + z)

+
{
G(y, x) + G(x + y, z) − G(y, x + z) − (1 − y)αG

(
x

1 − y
,

z

1 − y

)}

+
{
G(y, z) + G(y + z, x) − G(y, x + z) − (1 − y)αG

(
z

1 − y
,

x

1 − y

)}

− G(y + z, x) + G(y, x + z) + (1 − y)αG

(
z

1 − y
,

x

1 − y

)

= G(y, x) − G(x, y) + G(x, y + z) − G(y + z, x)

+ (1 − y)α
(
G

(
z

1 − y
,

x

1 − y

)
− G

(
x

1 − y
,

z

1 − y

))
(67)
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for all (x, y, z) ∈ D◦
3, since the expressions in the curly brackets are zeros. Thus (67),

(65), and the triangle inequality imply that
∣∣∣∣G(y, z) − (1 − x)αG

(
y

1 − x
,

z

1 − x

)∣∣∣∣ ≤ (2 + (1 − y)α) ε (68)

is fulfilled for all (x, y, z) ∈ D◦
3. Given any t ∈ ]0, 1[, (u, v) ∈ D◦, let

x = 1 − t , y = tu and z = tv.

Then x, y, z ∈ ]0, 1[ and

x + y + z = 1 − t(1 − u − v) ∈ ]0, 1[,

that is (x, y, z) ∈ D◦
3, and inequality (68) implies that

|G(tu, tv) − tαG(u, v)| ≤ (2 + (1 − tu)α) ε,

or, after rearranging,
∣∣∣∣
G(tu, tv)

tα
− G(u, v)

∣∣∣∣ ≤ (2 + (1 − tu)α)

tα
ε

holds for arbitrary t ∈ ]0, 1[ and (u, v) ∈ D◦. Taking the limit t → 0+ we obtain
that

lim
t→0+

G(tu, tv)

tα
= G(u, v), ((u, v) ∈ D◦)

since lim
t→0+(1−tu)α = 1 for all u ∈ ]0, 1[ and lim

t→0+t
−α = 0, since α < 0. This implies

that the function G is α–homogeneous on D◦. Indeed, for arbitrary s ∈ ]0, 1[ and
(u, v) ∈ D◦

G(su, sv) = lim
t→0+

G(t(su), t(sv))

tα

= sα lim
t→0+

G((ts)u, (ts)v)

(ts)α
= sαG(u, v). (69)

At this point of the proof, we will show that inequality (65) and Eq. (69) together
imply the symmetry of the function G. Indeed, due to (65)

|G(tx, ty) − G(ty, tx)| ≤ ε

holds for all (x, y) ∈ D◦ and t ∈ ]0, 1[. Using the α-homogeneity of the function G,
we obtain that

|tαG (x, y) − tαG (y, x)| ≤ ε, ((x, y) ∈ D◦, t ∈ ]0, 1[)
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or, if we rearrange this,

|G(x, y) − G(y, x)| ≤ ε

tα

holds for all (x, y) ∈ D◦ and t ∈ ]0, 1[. Taking the limit t → 0+, we get that

G(x, y) = G(y, x)

is fulfilled for all (x, y) ∈ D◦, since α < 0. Therefore, the function G is symmetric.
Due to definition (64), this implies that

f (x) + (1 − x)αf

(
y

1 − x

)
= f (y) + (1 − y)αf

(
x

1 − y

)
, ((x, y) ∈ D◦)

i.e., the function f satisfies the parametric fundamental equation of information on
D◦. Thus by Theorem 3 of Maksa [62], there exist c, d ∈ R such that

f (x) = cxα + d(1 − x)α − d

holds for all x ∈ ]0, 1[.
In what follows, we will show that for negative α’s, the parametric fundamental

equation of information is stable also on the set D.

Theorem 8 Let α, ε ∈ R be fixed, α < 0, ε ≥ 0. Then the function f : [0, 1] → R

satisfies the inequality (62) for all (x, y) ∈ D if, and only if, there exist c, d ∈ R such
that

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, if x = 0

cxα + d (1 − x)α − d , if x ∈ ]0, 1[

c − d , if x = 1.

(70)

Proof Let y = 0 in (62). Then, we have that

((1 − x)α + 1) |f (0)| ≤ ε (x ∈ ]0, 1[)

Since α < 0, this yields that f (0) = 0. On the other hand, by Theorem 7,

f (x) = cxα + d (1 − x)α − d (x ∈ ]0, 1[)

with some c, d ∈ R. Finally, let x ∈ ]0, 1[ and y = 1 − x in (62). Then, again by
Theorem 7, there exist c, d ∈ R such that

|c − d − f (1)| |xα − (1 − x)α| ≤ ε.

Since α < 0, f (1) = c − d follows.
The converse is an easy computation and it turns out that f defined by (70) is a

solution of (6) on D.
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Our third main result in this section says that the system of α-recursive, 3-semi-
symmetric information measures is stable.

Theorem 9 Let n ≥ 2 be a fixed positive integer, (In) be the sequence of functions
In : Γ ◦

n → R and suppose that there exist a sequence (εn) of nonnegative real
numbers and a real number α < 0 such that

|In (p1, . . . ,pn) − In−1 (p1 + p2,p3, . . . ,pn)

− (p1 + p2)
α I2

(
p1

p1 + p2
,

p2

p1 + p2

)∣∣∣∣ ≤ εn−1 (71)

holds for all n ≥ 3 and (p1, . . . ,pn) ∈ Γ ◦
n , and

|I3 (p1,p2,p3) − I3 (p1,p3,p2)| ≤ ε, (72)

holds on D◦
3 . Then there exist a, b ∈ R such that

∣∣In (p1, . . . ,pn) − (aHα
n (p1, . . . ,pn) + b

(
pα

1 − 1
))∣∣ ≤

n−1∑

k=2

εk (73)

for all n ≥ 2 and (p1, . . . ,pn) ∈ Γ ◦
n , where the convention

∑1
k=2 εk = 0 is adopted.

Proof As in Maksa [67], it can be proved that, due to (71) and (72), for the function
f defined by f (x) = I2 (1 − x, x), x ∈ ]0, 1[ we get that

∣∣∣∣f (x) + (1 − x)α f

(
y

1 − x

)
− f (y) − (1 − y)α f

(
x

1 − y

)∣∣∣∣ ≤ 2ε2 + ε1

for all (x, y) ∈ D◦, i.e., (62) holds with ε = 2ε2 + ε1. Therefore, applying Theorem
7, we obtain (63) with some c, d ∈ R, i.e.,

I2 (1 − x, x) = cxα + d (1 − x)α − d, (x ∈ ]0, 1[)

i.e., (73) holds for n = 2 with a = (21−α − 1)c, b = d − c.
We continue the proof by induction on n. Suppose that (73) holds and, for the

sake of brevity, introduce the notation

Jn (p1, . . . ,pn) = aHα
n (p1, . . . ,pn) + b

(
pα

1 − 1
)

for all n ≥ 2, (p1, . . . ,pn) ∈ Γ ◦
n . It can easily be seen that (71) and (72) hold on Γ ◦

n

for Jn instead of In (n ≥ 3) with εn = 0 (n ≥ 2). Thus for all (p1, . . . ,pn+1) ∈ Γ ◦
n+1,

we get that

In+1 (p1, . . . ,pn+1) − Jn+1 (p1, . . . ,pn+1)

= In+1 (p1, . . . ,pn+1) − Jn (p1 + p2,p3, . . . ,pn+1)

− (p1 + p2)
α J2

(
p1

p1 + p2
,

p2

p1 + p2

)
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= In+1 (p1, . . . ,pn+1) − In (p1 + p2,p3, . . . ,pn+1)

− (p1 + p2)
α I2

(
p1

p1 + p2
,

p2

p1 + p2

)

+ In (p1 + p2,p3, . . . ,pn+1) − Jn (p1 + p2,p3, . . . ,pn+1)

+ (p1 + p2)
α I2

(
p1

p1 + p2
,

p2

p1 + p2

)

− (p1 + p2)
α J2

(
p1

p1 + p2
,

p2

p1 + p2

)
.

Therefore, (73) with n = 2 and the induction hypothesis imply that

|In+1 (p1, . . . ,pn+1) − Jn (p1, . . . ,pn+1)| ≤ εn +
n−1∑

k=2

εk =
n∑

k=2

εk ,

that is, (73) holds for n + 1 instead of n.

Corollary 1.3.2.1 Applying Theorem 9 with the choice εn = 0 for all n ∈ N, we get
the α-recursive, 3-semi-symmetric information measures. Hence the previous theo-
rem says that the system of α-recursive and 3-semi-symmetric information measures
is stable.

3.3 Related Equations

In the previous subsections, we have investigated the stability problem of the paramet-
ric fundamental equation of information. In the remaining part of this chapter, we will
discuss the stability problem of some functional equations that also have information
theoretical background. Firstly, we will show that the so-called entropy equation is
stable on its domain. After that some results concerning the modified entropy equation
will follow. Finally, we will end this section with some open problems.

3.3.1 Stability of the Entropy Equation

In what follows, our aim is to prove that the entropy equation, i.e., equation

H (x, y, z) = H (x + y, 0, z) + H (x, y, 0) (74)

is stable on the set

C = {
(x, y, z) ∈ R

3|x ≥ 0, y ≥ 0, z ≥ 0, x + y + z > 0
}
.

In [44], A. Kamiński and J. Mikusiński determined the continuous and 1-homoge-
neous solutions of Eq. (74) on the set R

3. This result was strengthened by J. Aczél
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in [2]. After that, using a result of Jessen–Karpf–Thorup [43], which concerns the
solution of the cocycle equation, Z. Daróczy proved the following (see [17]).

Theorem 10 If a function H : C → R is symmetric and satisfies Eq. (74) in the
interior of C and the map (x, y) �→ H (x, y, 0) is positively homogeneous (of order
1) for all x, y ∈ R++, then there exists a function ϕ : R++ → R such that

ϕ (xy) = xϕ (y) + yϕ (x)

holds for all x, y ∈ R++ and

H (x, y, z) = ϕ (x + y + z) − ϕ(x) − ϕ(y) − ϕ(z)

for all (x, y, z) ∈ C.
During the proof of the main result the stability of the cocycle equation is needed.

This theorem can be found in [74].

Theorem 11 Let S be a right amenable semigroup and let F : S × S → C be a
function, for which the function

(x, y, z) �−→ F (x, y) + F (x + y, z) − F (x, y + z) − F (y, z) (75)

is bounded on S × S × S. Then there exists a function Ψ : S × S → C satisfying the
cocycle equation, i.e.,

Ψ (x, y) + Ψ (x + y, z) = Ψ (x, y + z) + Ψ (y, z) (76)

for all x, y, z ∈ S and for which the function F −Ψ is bounded by the same constant
as the map defined by (75).

About the symmetric, 1-homogeneous solutions of the cocycle equation one can
read in [43]. Furthermore, the symmetric and α-homogeneous solutions of Eq. (76)
can be found in [62], as a consequence of Theorem 3. The general solution of the
cocycle equation without symmetry and homogeneity assumptions, on cancellative
abelian semigroups was determined by M. Hosszú in [39].

Our main result concerning the stability of Eq. (74) is the following, see also [34].

Theorem 12 Let ε1, ε2, ε3 be arbitrary nonnegative real numbers, α ∈ R, and
assume that the function H : C → R satisfies the following system of inequalities.

|H (x, y, z) − H (σ (x), σ (y), σ (z))| ≤ ε1 (77)

for all (x, y, z) ∈ C and for all σ : {x, y, z} �→ {x, y, z} permutation;

|H (x, y, z) − H (x + y, 0, z) − H (x, y, 0)| ≤ ε2 (78)

for all (x, y, z) ∈ C◦, where C◦ denotes the interior of the set C;

|H (tx, ty, 0) − tαH (x, y, 0)| ≤ ε3 (79)
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holds for all t , x, y ∈ R++. Then, in case α = 1 there exists a function ϕ : R++ → R

which satisfies the functional equation

ϕ (xy) = xϕ (y) + yϕ (x) , (x, y ∈ R++)

and

|H (x, y, z) − [ϕ (x + y + z) − ϕ (x) − ϕ (y) − ϕ (z)]| ≤ ε1 + ε2 (80)

holds for all (x, y, z) ∈ C◦; in case α = 0 there exists a constant a ∈ R such that

|H (x, y, z) − a| ≤ 8ε3 + 25ε2 + 49ε1 (81)

for all (x, y, z) ∈ C◦; finally, in all other cases there exists a constant c ∈ R such
that

∣∣H (x, y, z) − c
[
(x + y + z)α − xα − yα − zα

]∣∣ ≤ ε1 + ε2 (82)

holds on C◦.

Proof For the sake of brevity, here we present only the sketch of proof of the above
statement. For details, the reader should consult [34].

Using inequality (79), it can be shown that the map

(x, y) �→ H (x, y, 0) (x, y ∈ R++)

is homogeneous of degree α, assuming that α �= 0.
Let us consider the function F : R

2++ → R defined by

F (x, y) = H (x, y, 0) (x, y ∈ R++) .

From inequalities (77) and (78), we can deduce that

|F (x, y) − F (y, x)| ≤ ε1, (x, y ∈ R++) (83)

and

|F (x + y, z) + F (x, y) − F (x, y + z) − F (y, z)| ≤ 2ε2 + 4ε1. (x, y, z ∈ R++).
(84)

Furthermore, in case α �= 0, H (x, y, 0) is homogeneous of degree α, therefore

F (tx, ty) = tαF (x, y) (α �= 0, t , x, y ∈ R++) (85)

and if α = 0,

|F (tx, ty) − F (x, y)| ≤ ε3, (t , x, y ∈ R++) (86)

is fulfilled.
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The set C◦ is a commutative semigroup with the usual addition. Thus it is
amenable, as well. Therefore, by Theorem 11, there exists a function G : R

2++ → R

which is a solution of the cocycle equation, and for which

|F (x, y) − G(x, y)| ≤ 2ε2 + 4ε1 (87)

holds for all x, y ∈ R++. Additionally, by a result of [39] there exist a function
f : R++ → R and a function B : R

2++ → R which satisfies the following system

B(x + y, z) = B(x, z) + B(y, z),

B(x, y) + B(y, x) = 0,
(x, y, z ∈ R++)

such that

G(x, y) = B(x, y) + f (x + y) − f (x) − f (y). (x, y ∈ R++)

All in all, this means that

|F (x, y) − (B(x, y) + f (x + y) − f (x) − f (y))| ≤ 2ε2 + 4ε1 (88)

holds for all x, y ∈ R++.
Using the above properties of the function B, we can show that B is identically

zero on R
2++. Additionally, after some computation, we obtain that

F (x + y, z) + F (x, y) = F (x, y + z) + F (y, z). (x, y, z ∈ R++)

This means that also the function F satisfies the cocycle equation on R
2++. Addition-

ally, F is homogeneous of degree α (α �= 0) and symmetric. Using Theorem 5 in
[43], in case α = 1, and a result of [62] in all other cases, we get that

F (x, y) =
⎧
⎨

⎩
c [(x + y)α − xα − yα] , if α /∈ {0, 1}
ϕ (x + y) − ϕ(x) − ϕ(y), if α = 1

(89)

where the function ϕ : R++ → R satisfies the functional equation

ϕ (xy) = xϕ(y) + yϕ(x)

for all x, y ∈ R++, and c ∈ R is a constant. In view of the definition of the function
F , this yields that

H (x, y, 0) = c
[
(x + y)α − xα − yα

]
(90)

for all x, y ∈ R++ in case α /∈ {0, 1}, and

H (x, y, 0) = ϕ (x + y) − ϕ(x) − ϕ(y) (91)

for all x, y ∈ R++ in case α = 1.
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Using this representations and inequalities (77) and (78), the statement of our
theorem can be deduced.

With the choice ε1 = ε2 = ε3 = 0, one can recognize the solutions of Eq. (74).

Corollary 1.3.3.1 Assume that the function H : C → R is symmetric, homoge-
neous of degree α, where α ∈ R is arbitrary but fixed. Furthermore, suppose that
H satisfies Eq. (74) on the set C◦. Then, in case α = 1 there exists a function
ϕ : R++ → R which satisfies the functional equation

ϕ(xy) = xϕ(y) + yϕ(x), (x, y ∈ R++)

and

H (x, y, z) = ϕ (x + y + z) − ϕ (x) − ϕ (y) − ϕ (z) (92)

holds for all (x, y, z) ∈ C◦; in all other cases there exists a constant c ∈ R such that

H (x, y, z) = c
[
(x + y + z)α − xα − yα − zα

]
(93)

holds on C◦.

Remark 1.3.3.1 Our theorem says that the entropy equation is stable in the sense
of Hyers and Ulam.

3.3.2 Stability of the Modified Entropy Equation

In this part of the chapter, we investigate the stability problem concerning the
functional equation

f (x, y, z) = f (x, y + z, 0) + (y + z)αf

(
0,

y

y + z
,

z

y + z

)
, (94)

where x, y, z are positive real numbers and α is a given real number. Equation (94)
is a special case of the so-called modified entropy equation,

f (x, y, z) = f (x, y + z, 0) + μ(y + z)f

(
0,

y

y + z
,

z

y + z

)
, (95)

where μ is a given multiplicative function defined on the positive cone of R
k and

(95) is supposed to hold for all elements x, y, z of the above mentioned cone and all
operations on vectors are to be understood componentwise. The symmetric solutions
of Eq. (95) were determined in [29] (see also [1]).

By a real interval we always mean a subinterval of positive length of R.
Furthermore, in case U and V are real intervals, then their sum

U + V = {u + v | u ∈ U , v ∈ V }
is obviously a real interval, as well.
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During the proof of our main result of this subsection, the stability of a simple
associativity equation should be used which is contained in the following theorem,
see [33].

Theorem 13 Let U , V , and W be real intervals, A : (U + V ) × W → R, B :
U × (V + W ) → R and suppose that

|A(u + v, w) − B(u, v + w)| ≤ ε (96)

holds for all u ∈ U , v ∈ V , and w ∈ W . Then there exists a functionϕ : U+V+W →
R such that

|A(p, q) − ϕ(p + q)| ≤ 2ε (p ∈ (U + V ), q ∈ W) (97)

and

|B(t , s) − ϕ(t + s)| ≤ ε (t ∈ U , s ∈ (V + W )) (98)

hold.
With the choice ε1 = ε2 = 0, we get the following theorem. Nevertheless, it was

proved in Maksa [66].

Corollary 1.3.3.2 Let U ,V , and W be real intervals, A : (U + V ) × W → R,
B : U × (V + W ) → R and suppose that

A(u + v, w) = B(u, v + w)

holds for all u ∈ U , v ∈ V , and w ∈ W . Then there exists a functionϕ : U+V+W →
R such that

A(p, q) = ϕ(p + q) (99)

for all p ∈ U + V and q ∈ W and

B(t , s) = ϕ(t + s) (100)

for all t ∈ U and s ∈ V + W .
In view of the results of the previous sections (that is Theorems 4 and 7 and with

the help of Theorem 13, the following result can be proved. For the details of the
proof, see [33].

Theorem 14 Let α, ε ∈ R, α �= 1, ε ≥ 0 and f : R
3+ → R be a function. Assume

that
∣∣∣∣f (x, y, z) − f (x, y + z, 0) − (y + z)αf

(
0,

y

y + z
,

z

y + z

)∣∣∣∣ ≤ ε1 (101)

and

|f (x, y, z) − f (σ (x), σ (y), σ (z))| ≤ ε2 (102)
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hold for all x, y, z ∈ R++ and for all permutations σ : {x, y, z} → {x, y, z}.
Then, in case α < 0, there exist a ∈ R and a function ϕ1 : R++ → R such that

∣∣f (x, y, z) − [axα + ayα + azα + ϕ1(x + y + z)
]∣∣ ≤ 2ε1 + 3ε2 (103)

holds for all x, y, z ∈ R++.
Furthermore, if α = 0, then there exists a function ϕ2 : R++ → R such that

|f (x, y, z) − ϕ2(x + y + z)| ≤ 191ε1 + 1263ε2 (104)

holds for all x, y, z ∈ R++.
Finally, if 1 �= α > 0, then for all n ∈ N, there exists a function ψn : ]0, 3n] → R

such that
∣∣f (x, y, z) − [axα + ayα + azα + ψn(x + y + z)

]∣∣ ≤ cn(α)εn + dn(α)ε2

holds for all x, y, z ∈ ]0, n], where

cn(α) = 2 + 7 · 2αnαK(α) and dn(α) = 4 + 7 · 2α+2nαK(α).

With the choice ε1 = ε2 = 0, we get the general solutions of Eq. (94), in the
investigated cases.

Corollary 1.3.3.3 Let α ∈ R, α �= 1 and suppose that the function f : R
3+ → R is

symmetric and satisfies functional Eq. (94) for all x, y, z ∈ R++.
Then, in case α �= 0, there exist a ∈ R and a function ϕ1 : R++ → R such that

f (x, y, z) = axα + ayα + azα + ϕ1(x + y + z)

holds for all x, y, z ∈ R++.
In case α = 0, there exists a function ϕ2 : R++ → R such that

f (x, y, z) = ϕ2(x + y + z)

is fulfilled for all x, y, z ∈ R++.
In view of Corollary 1.3.3.3, our theorem says that the modified entropy equation

is stable in the sense of Hyers and Ulam on its one-dimensional domain with the
multiplicative function μ(x) = xα (α ≤ 0, x ∈ R++).

In case 1 �= α > 0 we obtain however that functional Eq. (94) is stable on
every cartesian product of bounded real intervals of the form ]0, n]3, where n ∈ N.
Nevertheless, an easy computation shows that

lim
n→+∞ cn(α) = +∞ lim

n→+∞ dn(α) = +∞. (1 �= α > 0)

To the best of our knowledge, this is a new phenomenon in the stability theory of
functional equations. Since we cannot prove the “standard” Hyers–Ulam stability in
this case, the following problem can be raised.
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Open Problem 5 Let α, ε1, ε2 ∈ R, α > 0, ε1, ε2 ≥ 0, and f : R
3+ → R be a

function. Assume that
∣∣∣∣f (x, y, z) − f (x, y + z, 0) − (y + z)αf

(
0,

y

y + z
,

z

y + z

)∣∣∣∣ ≤ ε1

and

|f (x, y, z) − f (σ (x), σ (y), σ (z))| ≤ ε2

holds for all x, y, z ∈ R++ and for all σ : {x, y, z} → {x, y, z} permutations. Is it
true that there exists a solution h : R

3++ → R of equation (94) such that

|f (x, y, z) − h(x, y, z)| ≤ K1ε1 + K2ε2

holds for all x, y, z ∈ R++ with some K1,K2 ∈ R? The second open problem that
can be raised is the stability problem of the modified entropy equation itself, i.e.,
Eq. (95).

Open Problem 6 Let ε1, ε2 ≥ 0, μ : R
k++ → R be a given multiplicative function,

f : R
3k+ → R. Assume that

∣∣∣∣f (x, y, z) − f (x, y + z, 0) − μ(y + z)f

(
0,

y

y + z
,

z

y + z

)∣∣∣∣ ≤ ε1

and

|f (x, y, z) − f (σ (x), σ (y), σ (z))| ≤ ε2

holds for all x, y, z ∈ R
k++ and for all σ : {x, y, z} → {x, y, z} permutation.

Is it true that there exists a solution h : R
3k++ → R of Eq. (95) such that

|f (x, y, z) − h(x, y, z)| ≤ K1ε1 + K2ε2

holds for all x, y, z ∈ R
k++ with certain K1,K2 ∈ R?

3.4 Stability of Sum Form Equations

We have to begin with an open problem since there is no stability result on Eq. (9)

n∑

i=1

m∑

j=1

f (piqj ) =
n∑

i=1

f (pi) +
m∑

j=1

f (qj ) + (21−α − 1)
n∑

i=1

f (pi)
m∑

j=1

f (qj )

in case α = 1.
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Open Problem 7 Suppose that n ≥ 2,m ≥ 2, 0 ≤ ε ∈ R, f : I → R and the
stability inequality

∣∣∣∣∣∣

n∑

i=1

m∑

j=1

f (piqj ) −
n∑

i=1

f (pi) −
m∑

j=1

f (qj )

∣∣∣∣∣∣
≤ ε

holds for all (p1, . . . ,pn) ∈ Gn, (q1, . . . , qn) ∈ Gm. Prove or disprove that f is the
sum of a solution of (9) with α = 1 and a bounded function.

A somewhat related result however is proved in Kocsis–Maksa [51] which reads
as follows.

Theorem 15 Let n ≥ 3,m ≥ 3, 0 ≤ ε ∈ R, f : [0, 1] → R, α, β ∈ R and
suppose that

∣∣∣∣∣∣

n∑

i=1

m∑

j=1

f (piqj ) −
n∑

i=1

f (pi)
m∑

j=1

q
β

j −
m∑

j=1

f (qj )
n∑

i=1

pα
i

∣∣∣∣∣∣
≤ ε

holds for all (p1, . . . ,pn) ∈ Γn, (q1, . . . , qn) ∈ Γm.
Then there exists an additive function a : R → R, a function � : R+ → R, �(0) =

0, � is logarithmic on R++, a bounded function b : [0, 1] → R, and a real number
c such that a(1) = 0,

f (p) = a(p) + c(pα − pβ) + b(p) if p ∈ [0, 1], β �= α

and

f (p) = a(p) + pα�(p) + b(p) if p ∈ [0, 1], β = α �= 1.

If ε = 0 then b = 0 can be chosen here, so, the above theorem is of stability type
which however does not cover just with the Shannon case β = α = 1.

In case α �= 1, the problem of the stability of Eq. (9) can easily be handled at
least whenever both n and m are not less than three. First of all, introducing a new
function g by g(p) = p + (21−α − 1)f (p), p ∈ I , the stability inequality
∣∣∣∣∣∣

n∑

i=1

m∑

j=1

f (piqj ) −
n∑

i=1

f (pi) −
m∑

j=1

f (qj ) − (21−α − 1)
n∑

i=1

f (pi)
m∑

j=1

f (qj )

∣∣∣∣∣∣
≤ ε

goes over into
∣∣∣∣∣∣

n∑

i=1

m∑

j=1

g(piqj ) −
n∑

i=1

g(pi)
m∑

j=1

g(qj )

∣∣∣∣∣∣
≤ ε · ∣∣21−α − 1

∣∣ (105)

and the following theorem can be proved (see Maksa [65]).
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Theorem 16 Let n ≥ 3,m ≥ 3, 0 ≤ ε ∈ R, g : [0, 1] → R, and suppose that
(105) holds for all (p1, . . . ,pn) ∈ Γn, (q1, . . . , qn) ∈ Γm. Then e

g(p) = a(p) + m(p) + b(p) (p ∈ [0, 1])

where a : R → R is an additive, b : [0, 1] → R is a bounded, and m : [0, 1] → R

is a multiplicative function, respectively.
The corner point in the proofs of these theorems is the following stability result

(see [65]).

Theorem 17 Let n ≥ 3, 0 ≤ ε ∈ R, ϕ : [0, 1] → R, and suppose that
∣∣∣∣∣

n∑

i=1

ϕ(pi)

∣∣∣∣∣ ≤ ε (106)

holds for all (p1, . . . ,pn) ∈ Γn. Then there exist an additive function A : R → R

and a function b : [0, 1] → R such that b(0) = 0, |b(x)| ≤ ε for all x ∈ [0, 1] and

ϕ(p) − ϕ(0) = A(p) + b(p) (p ∈ [0, 1]).

By an argument similar to that we used in the subsection on sum form equations
in connection with the inequality (17), inequality (106) and the triangle inequality
imply that

|ϕ(x + y) − ϕ(x) − ϕ(y) + ϕ(0)| ≤ 2ε,

that is, the classical stability inequality holds for the functionϕ−ϕ(0) on the restricted
domain {(x, y) ∈ R

2 | x, y, x+y ∈ [0, 1]}. Therefore, the results (see Skof [73], Tabor
and Tabor [77]) on the stability of the Cauchy equation on restricted domain can be
applied to finish the proof of the above theorem.

We remark that the other basic tool for proving stability results for sum form
equations was the analysis of the methods with the help of which the solutions
of these equations were found. These and similar ideas proved to be fruitful in the
investigations on the stability of the sum form equations in an open domain (excluding
zero probabilities) and also of the several variable cases (See Kocsis [48–50]).
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Approximate Cauchy–Jensen Type Mappings
in Quasi-β-Normed Spaces

Hark-Mahn Kim, Kil-Woung Jun and Eunyoung Son

Abstract In this chapter, we find the general solution of the following Cauchy–
Jensen type functional equation

f

(
x + y

n
+ z

)
+f

(
y + z

n
+ x

)
+f

(
z + x

n
+ y

)
= n + 2

n
[f (x)+f (y)+f (z)],

and then investigate the generalized Hyers–Ulam stability of the equation in quasi-
β-normed spaces for any fixed nonzero integer n.

Keywords Cauchy-Jensen type mappings · Hyers-Ulam stability · Homomorphisms
· Quasi-β-normed spaces

1 Introduction

In 1940, S. M. Ulam gave a talk before the Mathematics Club of the University
of Wisconsin in which he discussed a number of unsolved problems. The stability
problem of functional equations originated from a question of S. M. Ulam [23]
concerning the stability of group homomorphisms.

We are given a group G1 and a metric group G2 with metric ρ(·, ·). Given
ε > 0, does there exist a number δ > 0 such that if f : G1 → G2 satisfies
ρ(f (xy), f (x)f (y)) < δ for all x, y ∈ G1, then a homomorphism h : G1 → G2

exists with ρ(f (x),h(x)) < ε for all x ∈ G1?
In 1941, D. H. Hyers [8] proved the following stability result for the case of

approximate additive mappings between Banach spaces. Suppose that E1 and E2
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are Banach spaces and f : E1 → E2 satisfies the following condition: if there is a
number ε ≥ 0 such that

‖f (x + y) − f (x) − f (y)‖ ≤ ε

for all x, y ∈ E1, then the limit h(x) = limn→∞ f (2nx)
2n exists for all x ∈ E1 and there

exists a unique additive mapping h : E1 → E2 such that

‖f (x) − h(x)‖ ≤ ε.

Moreover, if f (tx) is continuous in t ∈ R for each x ∈ E1, then the mapping h

is R-linear.
The method which was provided by D. H. Hyers, and which produces the addi-

tive mapping h, is called a direct method. This method is the most important and
most powerful tool for studying the stability of various functional equations. Hyers’
theorem was generalized by T. Aoki [1] and D. G. Bourgin [3] for additive map-
pings by considering an unbounded Cauchy difference. In 1978, Th. M. Rassias [15]
also provided a generalization of Hyers’ theorem for linear mappings which allows
the Cauchy difference to be unbounded. Let E1 and E2 be two Banach spaces and
f : E1 → E2 be a mapping such that f (tx) is continuous in t ∈ R for each fixed x.
Assume that there exist ε > 0 and 0 ≤ p < 1 such that

‖f (x + y) − f (x) − f (y)‖ ≤ ε(‖x‖p + ‖y‖p), ∀x, y ∈ E1.

Then, there exists a unique R-linear mapping T : E1 → E2 such that

‖f (x) − T (x)‖ ≤ 2ε

2 − 2p
‖x‖p

for all x ∈ E1. In 1990, Th. M. Rassias [16] during the 27th International Symposium
on Functional Equations asked the question whether such a theorem can also be
proved for p ≥ 1. In 1991, Z. Gajda [5], following the same approach as in [15],
gave an affirmative solution to this question for p > 1. However, it was shown by
Z. Gajda [5], as well as by Th. M. Rassias and P. S̆emrl [20], that one cannot prove
a Rassias’ type theorem when p = 1. The counterexamples of Z. Gajda [5], as well
as of Th. M. Rassias and P. S̆emrl [20], have stimulated several mathematicians to
invent new approximately additive or approximately linear mappings. A generalized
result of Rassias’ theorem was obtained by P. Gǎvruta in [6] and S. Jung in [10].
J. M. Rassias [18, 19] established the Hyers–Ulam stability of linear and nonlinear
mappings related to Jensen and Jensen type functional equations. In 1999, P. Gǎvruta
[7] answered a question of J. M. Rassias [14] concerning the stability of the Cauchy
equation. During the last two decades, the stability problems of several functional
equations have been intensively and extensively investigated by a number of authors
and there are many interesting volumes containing these stability problems of several
functional equations [4, 9, 11, 21].

The notion of quasi-β-normed space was introduced by J. M. Rassias and H. Kim
in [17].
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We fix a real number β with 0 < β ≤ 1 and let K denote either R or C. Let X be
a real linear space over K. A quasi-β-norm is a real-valued function on X satisfying
the following:

(1) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if and only if x = 0.
(2) ‖λx‖ = |λ|β‖x‖ for all λ ∈ K and all x ∈ X.

(3) There is a constant M ≥ 1 such that ‖x + y‖ ≤ M(‖x‖ + ‖y‖) for all x, y ∈ X.

The pair (X, ‖ · ‖) is called a quasi-β-normed space if ‖ · ‖ is a quasi-β-norm on
X. The smallest possible M is called the modulus of concavity of the quasi-β-norm
‖ · ‖.A quasi-β-Banach space is a complete quasi-β-normed space.

Let p be a real number with (0 < p ≤ 1). Then, the quasi-β-norm ‖ · ‖ on X is
called a (β,p)-norm if, moreover, ‖ · ‖p satisfies the following triangle inequality

‖x + y‖p ≤ ‖x‖p + ‖y‖p
for all x, y ∈ X. In this case, a quasi-β-Banach space is called a (β,p)-Banach space.
We can refer to [2, 22] for the concept of quasi-normed spaces and p-Banach spaces
for β = 1 as a special case.

Given a p-norm, the formula d(x, y) := ‖x − y‖p gives us a translation invariant
metric on X. By the Aoki–Rolewicz theorem [22], each quasi-norm is equivalent to
somep-norm (see also [2]). Since it is much easier to work withp-norms, henceforth,
we restrict our attention mainly to p-norms.

We observe that if x1, x2, . . . , xn are nonnegative real numbers, then
(

n∑

i=1

xi

)p

≤
n∑

i=1

xi
p,

where 0 < p ≤ 1 [13].
In 2007, A. Najati [12] has introduced the Hyers–Ulam stability of the Cauchy–

Jensen type functional equation

f

(
x + y

2
+ z

)
+ f

(
y + z

2
+ x

)
+ f

(
z + x

2
+ y

)
= 2[f (x) + f (y) + f (z)]

(1)

and then has investigated homomorphisms between JB*–triples, and derivations on
JB*–triples associated to the functional equation.

Now, we introduce a modified and generalized Cauchy–Jensen type functional
equation

f

(
x + y

n
+ z

)
+f

(
y + z

n
+x

)
+ f

(
z + x

n
+ y

)
= n + 2

n
[f (x) + f (y) + f (z)]

(2)

for any fixed nonzero integer n. This equation reduces to functional Eq. (1) for n = 2.
In this chapter, we establish the general solution of the functional Eq. (2).

In the sequel, we investigate the generalized Hyers–Ulam stability of (2) in (β,p)-
Banach spaces.
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2 Generalized Hyers–Ulam Stability of (2)

First, we present the general solution of the Eq. (2).

Lemma 1 Let both X and Y be vector spaces. A mapping f : X → Y satisfies (2)
if and only if f is additive.

Proof Suppose that a mapping f : X → Y satisfies (2) for all x, y, z ∈ X. If we put
x, y, z in (2) by 0, then we have f (0) = 0. If n = 1, then one can easily show that f
is additive. Now, let n �= 1. Setting y, z = 0 in (2), we get

f
(x
n

)
= 1

n
f (x) (3)

for all x ∈ X. Using (3), one obtains that

f (x + y + nz) + f (y + z + nz) + f (z + x + ny) = (n + 2)[f (x) + f (y) + f (z)]
(4)

for all x, y, z ∈ X. Putting z = 0 in (4), we have

f (x + y) + f (nx + y) + f (x + ny) = (n + 2)[f (x) + f (y)] (5)

for all x, y ∈ X. Replacing z by −y in (4) yields

f (x − (n − 1)y) + f (x + (n − 1)y) = 2 f (x) + (n + 2)[f (y) + f ( − y)] (6)

for all x, y ∈ X.
Now, we claim that f is an odd mapping by showing fe ≡ 0, where fe(x) =

f (x)+f (−x)
2 is the even part of f . Since the mapping f : X → Y satisfies (2), the even

mapping fe is also a solution of (2).
Thus, applying fe to (5) and (6), we have two equations

fe(x + y) + fe(nx + y) + fe(x + ny) = (n + 2)[fe(x) + fe(y)], (7)

fe(x − (n − 1)y) + fe(x + (n − 1)y) = 2fe(x) + 2(n + 2)fe(y) (8)

for all x, y ∈ X. Putting −x + y instead of y in (7), one has by the evenness of fe

fe(y) + fe((n − 1)x + y) + fe((n − 1)x − ny) = (n + 2)[fe(x) + fe( − x + y)]
(9)

for all x, y ∈ X. Replacing y by −y in (9) and using the evenness of fe, one arrives at

fe(y)+fe((n − 1)x − y)+fe((n − 1)x + ny) = (n + 2)[fe(x)+fe(x + y)] (10)
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for all x, y ∈ X. Adding (9) and (10), one obtains by using (8) that

2fe(y) + {fe((n − 1)x + y) + fe((n − 1)x − y)}
+ {fe((n − 1)x − ny) + fe((n − 1)x + ny)}

= 2fe(y) + {2fe(y) + 2(n + 2)fe(x)} + {2fe(ny) + 2(n + 2)fe(x)}
= (n + 2)[2fe(x) + fe(x + y) + fe(x − y)],

which yields

2(n + 2)fe(x) + 2(n + 2)fe(y) = (n + 2)[fe(x + y) + fe(x − y)] (11)

for all x, y ∈ X.
Thus, if n �= −2, then fe satisfies the quadratic functional equation

fe(x + y) + fe(x − y) = 2fe(x) + 2fe(y) (12)

for all x, y ∈ X. Combining (3) and (12), one can easily conclude that fe ≡ 0 if
n �= −2. If n = −2, then we see from (8) that fe satisfies the equation

fe(x + 3y) + fe(x − 3y) = 2fe(x)

for all x, y ∈ X. Thus, fe is a Jensen and an odd mapping, and so fe ≡ 0 since fe
is even. Hence, fe ≡ 0 for any fixed nonzero integer n �= 1. Therefore, f is an odd
mapping, as claimed.

Therefore, it follows from (6) that

f (x − (n − 1)y) + f (x + (n − 1)y) = 2 f (x)

for all x, y ∈ X, which is equivalent to the Cauchy–Jensen equation f (x + y) +
f (x − y) = 2 f (x). Therefore, f is additive.

The proof of the converse is trivial.
From now on, we assume that X is a linear space and Y is a (β,p)-Banach space

with (β,p)-norm ‖ · ‖ without any specific reference. For notational convenience,
given a mapping f : X → Y , we define the difference operator Df : X3 → Y of
the Eq. (2) by

Df (x, y, z) := f

(
x + y

n
+ z

)
+ f

(
y + z

n
+ x

)
+ f

(
z + x

n
+ y

)

− n + 2

n
[f (x) + f (y) + f (z)]

for all x, y, z ∈ X.

Theorem 1 Assume that a mapping f : X → Y satisfies the functional inequality

‖Df (x, y, z)‖ ≤ ϕ(x, y, z) (13)



248 H.-M. Kim et al.

for all x, y, z ∈ X, and the perturbing function ϕ : X3 → [0, ∞) satisfies

∞∑

i=0

1

|k|βpi ϕ(kix, kiy, kiz)p < ∞, (14)

for all x ∈ X, where k := n+2
n

. Then, there exists a unique additive mapping

A : X → Y defined by A(x) = limm→∞ f (kmx)
km

such that

‖f (x) − A(x)‖ ≤ 1

|3k|β
[ ∞∑

i=0

1

|k|βpi ϕ(kix, kix, kix)p
] 1

p

(15)

for all x ∈ X.

Proof Letting y = z := x in (1), we have
∥∥∥∥3f

((
n + 2

n

)
x

)
− 3

(
n + 2

n

)
f (x)

∥∥∥∥ ≤ ϕ(x, x, x) (16)

for all x ∈ X. Putting k := n+2
n

, we obtain

‖3f (kx) − 3kf (x)‖ ≤ ϕ(x, x, x) (17)

for all x ∈ X. If we replace x by kmx and divide both sides on (17) by |3|β |k|(m+1)β ,
we get

∥∥∥∥
f (km+1x)

km+1
− f (kmx)

km

∥∥∥∥ ≤ 1

|3|β |k|(m+1)β
ϕ(kmx, kmx, kmx) (18)

for all x ∈ X and all nonnegative integer m. It follows from (18) that

∥∥∥∥
f (km+1x)

km+1
− f (klx)

kl

∥∥∥∥
p

=
∥∥∥∥∥

m∑

i=l

1

ki+1
f (ki+1x) − 1

ki
f (kix)

∥∥∥∥∥

p

≤
m∑

i=l

∥∥∥∥
1

ki+1
f (ki+1x) − 1

ki
f (kix)

∥∥∥∥
p

≤ 1

|3k|βp
m∑

i=l

1

|k|βpi ϕ(kix, kix, kix)p (19)

for all nonnegative integers m and l with m > l ≥ 0 and x ∈ X. Since the right-hand
side of (19) tends to zero as l → ∞, we obtain that the sequence { f (kmx)

km
} is Cauchy

for all x ∈ X. Because of the fact that Y is a (β,p)-Banach space, it follows that the
sequence { f (kmx)

km
} converges in Y . Therefore, we can define a mappingA : X → Y as

A(x) = lim
m→∞

f (kmx)

km
, x ∈ X.
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Moreover, letting l = 0 and taking m → ∞ in (19), we get

‖f (x) − A(x)‖ ≤ 1

|3k|β
[ ∞∑

i=0

1

|k|βpi ϕ(kix, kix, kix)p
] 1

p

for all x ∈ X. It follows from (1) and (14) that

‖DA(x, y, z)‖p = lim
i→∞

∥∥∥∥
Df (kix, kiy, kiz)

ki

∥∥∥∥
p

≤ lim
i→∞

1

|k|βpi ϕ(kix, kiy, kiz)p = 0

for all x, y, z ∈ X. Therefore, the mapping A satisfies (2) and so the mapping A is
additive.

Now, to prove the uniqueness of the additive mapping A satisfying (15), let
A′ : X → Y be another additive mapping satisfying (15). Then, we have

‖A(x) − A′(x)‖p =
∥∥∥∥

1

kj
A(kjx) − 1

kj
A′(kjx)

∥∥∥∥
p

≤ 1

|k|βpj (‖A(kjx) − f (kjx)‖p + ‖f (kjx) − A′(kjx)‖p)

≤ 2

|3k|βp
∞∑

i=0

1

|k|βp(i+j )
ϕ(ki+j x, ki+j x, ki+j x)p

≤ 2

|3k|βp
∞∑

i=j

1

|k|βpi ϕ(kix, kix, kix)p

for all j ∈ N and all x ∈ X. Taking the limit as j → ∞, we conclude that

A(x) = A′(x)

for all x ∈ X. This completes the proof.

Corollary 1 Let X be a quasi-α-normed linear space with quasi-α-norm ‖ · ‖ and
let ri ,θi be nonnegative real numbers with 0 < αri < β for all i = 1, 2, 3. If a
mapping f : X → Y satisfies the following functional inequality

‖Df (x, y, z)‖ ≤ θ1‖x‖r1 + θ2‖y‖r2 + θ3‖z‖r3

for all x, y, z ∈ X, then there exists a unique additive mapping h : X → Y such that

‖f (x) − h(x)‖ ≤ 1

|3|β
[

3∑

i=1

θ
p

i

|k|βp − |k|αpri ‖x‖rip
]1/p

for all x ∈ X.
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Proof Considering ϕ(x, y, z) := θ1(‖x‖r1 + θ2‖y‖r2 + θ3‖z‖r3 ) in Theorem 1, we
lead to the desired results.

Theorem 2 Assume that a mapping f : X → Y satisfies the functional inequality

‖Df (x, y, z)‖ ≤ ϕ(x, y, z) (20)

for all x, y, z ∈ X, and the perturbing function ϕ : X3 → [0, ∞) satisfies

∞∑

i=1

|k|βpiϕ
( x
ki

,
y

ki
,

z

ki

)p
< ∞, (21)

for all x ∈ X, where k := n+2
n

. Then, there exists a unique additive mapping
A : X → Y defined by A(x) = limm→∞ kmf ( x

km
) such that

‖f (x) − A(x)‖ ≤ 1

|3k|β
[ ∞∑

i=1

|k|βpiϕ
( x
ki

,
x

ki
,
x

ki

)p
] 1

p

for all x ∈ X.

Proof Dividing both sides on (17) by |3|β , we obtain that

‖f (kx) − kf (x)‖ ≤ 1

|3|β ϕ(x, x, x) (22)

for all x ∈ X. If we replace x in x

km+1 in (22) and multiply both sides of (22) by |k|mβ ,
we have

∥∥∥km+1f
( x

km+1

)
− kmf

( x

km

)∥∥∥ ≤ |k|mβ
|3|β ϕ

( x

km+1
,

x

km+1
,

x

km+1

)

for all x ∈ X and all nonnegative integer m. Hence

∥∥∥km+1f
( x

km+1

)
− klf

( x
kl

)∥∥∥
p ≤

m∑

i=l

∥∥∥ki+1f
( x

ki+1

)
− kif

( x
ki

)∥∥∥
p

≤ 1

|3|βp
m∑

i=l

|k|βpiϕ
( x

ki+1
,

x

ki+1
,

x

ki+1

)p

≤ 1

|3k|βp
m∑

i=l

|k|βp(i+1)ϕ
( x

ki+1
,

x

ki+1
,

x

ki+1

)p

(23)

for all nonnegative integers m and l with m > l ≥ 0 and all x ∈ X. The remaining
proof is similar to the corresponding part of Theorem 1. This completes the proof.
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Corollary 2 Let X be a quasi-α-normed linear space with quasi-α-norm ‖ · ‖ and
let ri ,θi be nonnegative real numbers with αri > β for all i = 1, 2, 3. If a mapping
f : X → Y satisfies the following functional inequality

‖Df (x, y, z)‖ ≤ θ1‖x‖r1 + θ2‖y‖r2 + θ3‖z‖r3

for all x, y, z ∈ X, then there exists a unique additive mapping h : X → Y such that

‖f (x) − h(x)‖ ≤ 1

|3|β
[

3∑

i=1

θ
p

i

|k|αpri − |k|βp ‖x‖rip
] 1

p

for all x ∈ X.

Proof Putting ϕ(x, y, z) := θ1(‖x‖r1 + θ2‖y‖r2 + θ3‖z‖r3 ) in Theorem 2, we lead to
the desired results.

3 Alternative Generalized Hyers–Ulam Stability of (2)

From now on, we investigate the generalized Hyers–Ulam stability of the functional
inequality (2) using the contractive property of perturbing term of the inequality (2).

Theorem 3 Assume that a mapping f : X → Y satisfies the functional inequality

‖Df (x, y, z)‖ ≤ ϕ(x, y, z)

for all x, y, z ∈ X and there exists a constant L with 0 < |k|1−βL < 1 for which the
perturbing function ϕ : X3 → [0, ∞) satisfies

ϕ(kx, ky, kz) ≤ |k|Lϕ(x, y, z) (24)

for all x, y, z ∈ X, where k := n+2
n

. Then, there exists a unique additive mapping
A : X → Y given by A(x) = limm→∞ 1

km
f (kmx) such that

‖f (x) − A(x)‖ ≤ 1

|3|β p
√|k|βp − |k|pLp

ϕ(x, x, x) (25)

for all x ∈ X.

Proof It follows from (19) and (24) that
∥∥∥∥
f (km+1x)

km+1
− f (klx)

kl

∥∥∥∥
p

≤ 1

|3k|βp
m∑

i=l

1

|k|βpi ϕ(kix, kix, kix)p

≤ 1

|3k|βp
m∑

i=l

(|k|L)pi

|k|βpi ϕ(x, x, x)p

= 1

|3k|βp
m∑

i=l

(|k|1−βL)piϕ(x, x, x)p
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for all nonnegative integers m and l with m > l ≥ 0 and all x ∈ X. Thus, it follows
that the sequence { f (kmx)

km
} is Cauchy for all x ∈ X, and so we can define a mapping

A : X → Y by

A(x) = lim
m→∞

f (kmx)

km
, x ∈ X.

Moreover, letting l = 0 and m → ∞ in the last inequality yields the approxima-
tion (25).

The remaining proof is similar to the corresponding part of Theorem 1. This
completes the proof.

The following corollary is a generalization of the stability result of the special
case ξ (‖x‖) = ‖x‖r , r < 1 when X is a normed space with α = 1 and Y is a Banach
space with β = 1 = p.

Corollary 3 Let X be a quasi-α-normed linear space with quasi-α-norm ‖ · ‖. Let
ξ : [0, ∞) → [0, ∞) be a nontrivial function satisfying

ξ (|k|αt) ≤ ξ (|k|)αξ (t), (t ≥ 0), 0 < ξ (|k|)α < |k|β ,

where k := n+2
n

. If a mappingf : X → Y satisfies the following functional inequality

‖Df (x, y, z)‖ ≤ θ{ξ (‖x‖) + ξ (‖y‖) + ξ (‖z‖)}
for all x, y, z ∈ X and for some θ ≥ 0, then there exists a unique additive mapping
A : X → Y such that

‖f (x) − A(x)‖ ≤ 3θ

|3|β p
√|k|βp − ξ (|k|)αp ξ (‖x‖)

for all x ∈ X.

Proof Letting ϕ(x, y, z) = θ{ξ (‖x‖) + ξ (‖y‖) + ξ (‖z‖)}, and applying Theorem 3
with L := ξ (|k|)α

|k| , we obtain the desired result.

Theorem 4 Suppose that a mapping f : X → Y satisfies the functional inequality

‖Df (x, y, z)‖ ≤ ϕ(x, y, z)

for all x, y, z ∈ X and there exists a constant L with 0 < |k|β−1L < 1 for which the
perturbing function ϕ : X3 → [0, ∞) satisfies

ϕ
(x
k

,
y

k
,

z

k

)
≤ L

|k|ϕ(x, y, z) (26)

for all x, y, z ∈ X. Then, there exists a unique additive mapping A : X → Y defined
by A(x) = limm→∞ kmf ( x

km
) such that

‖f (x) − A(x)‖ ≤ L

|3|β p
√|k|p − |k|βpLp

ϕ(x, x, x)

for all x ∈ X.
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Proof It follows from (23) and (26) that

∥∥∥km+1f
( x

km+1

)
− klf

( x
kl

)∥∥∥
p ≤ 1

|3k|βp
m∑

i=l

|k|βp(i+1)ϕ
( x

ki+1
,

x

ki+1
,

x

ki+1

)p

= 1

|3k|βp
m+1∑

i=l+1

|k|βpiϕ
( x
ki

,
x

ki
,
x

ki

)p

≤ 1

|3k|βp
m+1∑

i=l+1

(|k|β−1L
)pi

ϕ(x, x, x)p

for all nonnegative integers m and l with m > l ≥ 0 and all x ∈ X.
The remaining proof is similar to the corresponding part of Theorem 1. This

completes the proof.

Corollary 4 Let X be a quasi-α-normed linear space with quasi-α-norm ‖ · ‖. Let
ξ : [0, ∞) → [0, ∞) be a nontrivial function satisfying

ξ

(
t

|k|α
)

≤ ξ

(
1

|k|
)α

ξ (t), (t ≥ 0), 0 < ξ

(
1

|k|
)α

< |k|−β ,

where k := n+2
n

. If a mappingf : X → Y satisfies the following functional inequality

‖Df (x, y, z)‖ ≤ θ{ξ (‖x‖) + ξ (‖y‖) + ξ (‖z‖)}
for all x, y, z ∈ X and for some θ ≥ 0, then there exists a unique additive mapping
A : X → Y such that

‖f (x) − A(x)‖ ≤ 3θξ ( 1
|k| )

α

|3|β p

√
1 − |k|βpξ ( 1

|k| )αp
ξ (‖x‖)

for all x ∈ X.

Proof Letting ϕ(x, y, z) = θ{ξ (‖x‖) + ξ (‖y‖) + ξ (‖z‖)} and applying Theorem 4
with L := |k|ξ ( 1

|k| )
α , we lead to the desired approximation.
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An AQCQ-Functional Equation in Matrix
Paranormed Spaces

Jung Rye Lee, Choonkil Park, Themistocles M. Rassias and Dong Yun Shin

Abstract In this chapter, we prove the Hyers–Ulam stability of an additive-quadratic-
cubic-quartic functional equation in matrix paranormed spaces. Moreover, we prove
the Hyers–Ulam stability of an additive-quadratic-cubic-quartic functional equation
in matrix β-homogeneous F -spaces.

Keywords Paranormed spaces· Hyers–Ulam stability· Statistical convergence·
Cauchy difference· Quadratic mapping

1 Introduction and Preliminaries

The concept of statistical convergence for sequences of real numbers was introduced
by Fast [13] and Steinhaus [37] independently and since then several generalizations
and applications of this notion have been investigated by various authors (see [14,
23, 26, 27, 35]). This notion was defined in normed spaces by Kolk [24].

We recall some basic facts concerning Fréchet spaces.

Definition 1 [39] Let X be a vector space. A paranorm P ( ·) : X → [0, ∞) is a
function on X such that

(1) P (0) = 0
(2) P (−x) = P (x)
(3) P (x + y) ≤ P (x) + P (y) (triangle inequality)
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(4) If {tn} is a sequence of scalars with tn → t and {xn} ⊂ X withP (xn−x) → 0,
then P (tnxn − tx) → 0 (continuity of multiplication).
The pair (X,P (·)) is called a paranormed space if P (·) is a paranorm on X.
The paranorm is called total if, in addition, we have

(5) P (x) = 0 implies x = 0.
A Fréchet space is a total and complete paranormed space.

Definition 2 Let X be a linear space. A nonnegative valued function ‖ · ‖ is an
F -norm if it satisfies the following conditions:

(FN1) ‖x‖ = 0 if and only if x = 0;
(FN2) ‖λx‖ = ‖x‖ for all x ∈ X and all λ with |λ| = 1;
(FN3) ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X;
(FN4) ‖λnx‖ → 0 provided λn → 0;
(FN5) ‖λxn‖ → 0 provided ‖xn‖ → 0.
Then (X, ‖·‖) is called an F ∗-space. An F -space is a complete F ∗-space.

An F -norm is called β-homogeneous (β > 0) if ‖tx‖ = |t |β‖x‖ for all x ∈ X

and all t ∈ R (see [33]).
The stability problem of functional equations originated from a question of Ulam

[38] concerning the stability of group homomorphisms.
The functional equation

f (x + y) = f (x) + f (y)

is called the Cauchy additive functional equation. In particular, every solution of the
Cauchy additive functional equation is said to be an additive mapping. Hyers [18]
gave a first affirmative partial answer to the question of Ulam for Banach spaces.
Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by Rassias
[30] for linear mappings by considering an unbounded Cauchy difference. A gen-
eralization of the Rassias theorem was obtained by Găvruta [16] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach.

In 1990, [31] during the 27th International Symposium on Functional Equations,
Rassias asked the question whether such a theorem can also be proved for p ≥ 1. In
1991, Gajda [15] following the same approach as in Rassias [30], gave an affirmative
solution to this question for p > 1. It was shown by Gajda [15], as well as by Rassias
and Šemrl [32] that one cannot prove a Rassias’ type theorem when p = 1 (cf. the
books of Czerwik [6] and Hyerset al. [19]).

The functional equation

f (x + y) + f (x − y) = 2f (x) + 2f (y)

is called a quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic mapping. A Hyers–Ulam stability prob-
lem for the quadratic functional equation was proved by Skof [36] for mappings
f : X → Y , where X is a normed space and Y is a Banach space. Cholewa [4]
noticed that the theorem of Skof is still true if the relevant domain X is replaced
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by an Abelian group. Czerwik [5] proved the Hyers–Ulam stability of the quadratic
functional equation.

In [21], Jun and Kim considered the following cubic functional equation

f (2x + y) + f (2x − y) = 2f (x + y) + 2f (x − y) + 12f (x). (1)

It is easy to show that the function f (x) = x3 satisfies the functional Eq. (1), which is
called a cubic functional equation and every solution of the cubic functional equation
is said to be a cubic mapping.

In [25], Lee et al. considered the following quartic functional equation

f (2x + y) + f (2x − y) = 4f (x + y) + 4f (x − y) + 24f (x) − 6f (y). (2)

It is easy to show that the function f (x) = x4 satisfies the functional Eq. (2), which
is called a quartic functional equation and every solution of the quartic functional
equation is said to be a quartic mapping. The stability problems of several functional
equations have been extensively investigated by a number of authors and there are
many interesting results concerning this problem (see [1, 10, 20, 22, 28]).

The abstract characterization given for linear spaces of bounded Hilbert space
operators in terms of matricially normed spaces [34] implies that quotients, mapping
spaces and various tensor products of operator spaces may again be regarded as
operator spaces. Owing in part to this result, the theory of operator spaces is having
an increasingly significant effect on operator algebra theory (see [8]).

The proof given in [34] appealed to the theory of ordered operator spaces [3].
Effros and Ruan [9] showed that one can give a purely metric proof of this important
theorem by using a technique of Pisier [29] and Haagerup [17] (as modified in [7]).

We will use the following notations:
Mn(X) is the set of all n × n-matrices in X;
ej ∈ M1,n(C) is that j -th component is 1 and the other components are 0;
Eij ∈ Mn(C) is that (i, j )-component is 1 and the other components are 0;
Eij ⊗ x ∈ Mn(X) is that (i, j )-component is x and the other components are 0;
For x ∈ Mn(X), y ∈ Mk(X),

x ⊕ y =
⎛

⎝ x 0

0 y

⎞

⎠ .

Note that (X, {‖·‖n}) is a matrix normed space if and only if (Mn(X), ‖·‖n) is
a normed space for each positive integer n and ‖AxB‖k ≤ ‖A‖‖B‖‖x‖n holds for
A ∈ Mk,n, x = [xij ] ∈ Mn(X) and B ∈ Mn,k , and that (X, {‖·‖n}) is a matrix Banach
space if and only if X is a Banach space and (X, {‖·‖n}) is a matrix normed space.

Definition 3 Let (X,P (·)) be a paranormed space.
(1) (X, {Pn(·)}) is a matrix paranormed space if (Mn(X),Pn(·)) is a paranormed

space for each positive integer n, Pn(Ekl ⊗ x) = P (x) for x ∈ X, and P (xkl) ≤
Pn([xij ]) for [xij ] ∈ Mn(X).
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(2) (X, {Pn(·)}) is a matrix Fréchet space if X is a Fréchet space and (X, {Pn(·)})
is a matrix paranormed space.

Definition 4 Let (X, ‖·‖) be an F ∗-space.
(1) (X, {‖·‖n}) is a matrixF ∗-space if (Mn(X), ‖·‖n) is anF ∗-space for each positive

integer n, ‖Ekl ⊗ x‖n = ‖x‖ for x ∈ X, and ‖xkl‖ ≤ ‖[xij ]‖n for [xij ] ∈ Mn(X).
(2) (X, {‖·‖n}) is a matrix F -space if X is an F -space and (X, {‖·‖n}) is a matrix

F ∗-space.
Let E,F be vector spaces. For a given mapping h : E → F and a given positive

integer n, define hn : Mn(E) → Mn(F ) by

hn([xij ]) = [h(xij )]

for all [xij ] ∈ Mn(E).
In this chapter, we prove the Hyers–Ulam stability of the following additive-

quadratic-cubic-quartic functional equation

f (x + 2y) + f (x − 2y) = 4f (x + y) + 4f (x − y) (3)

− 6f (x) + f (2y) + f (−2y) − 4f (y) − 4f (−y)

in matrix normed spaces and in matrix β-homogeneous F -spaces by the direct
method.

One can easily show that an odd mapping f : X → Y satisfies (3) if and only if
the odd mapping f : X → Y is an additive-cubic mapping, i.e.,

f (x + 2y) + f (x − 2y) = 4f (x + y) + 4f (x − y) − 6f (x).

It was shown in [12, Lemma 2.2] that g(x) := f (2x) − 2f (x) and h(x) := f (2x) −
8f (x) are cubic and additive, respectively, and that f (x) = 1

6g(x) − 1
6h(x).

One can easily show that an even mapping f : X → Y satisfies (3) if and only if
the even mapping f : X → Y is a quadratic-quartic mapping, i.e.,

f (x + 2y) + f (x − 2y) = 4f (x + y) + 4f (x − y) − 6f (x) + 2f (2y) − 8f (y).

It was shown in [11, Lemma 2.1] that g(x) := f (2x) − 4f (x) and h(x) := f (2x) −
16f (x) are quartic and quadratic, respectively, and that f (x) = 1

12g(x) − 1
12h(x).

2 Hyers–Ulam Stability of the AQCQ-Functional Equation (3)
in Matrix Paranormed Spaces: Odd Mapping Case

In this section, we prove the Hyers–Ulam stability of the AQCQ-functional equation
(3) in matrix paranormed spaces for an odd mapping case.

Throughout this section, let (X, {‖·‖n}) be a matrix Banach space and (Y , {Pn(·)})
a matrix Fréchet space.
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Lemma 1 Let (X, {Pn(·)}) be a matrix paranormed space. Then
(1) P (xkl) ≤ Pn([xij ]) ≤ ∑n

i,j=1 P (xij ) for [xij ] ∈ Mn(X).

(2) lims→∞ xs = x if and only if lims→∞ xsij = xij for xs = [xsij ], x = [xij ] ∈
Mk(X).

Proof (1) By Definition 3, P (xkl) ≤ Pn([xij ]).
Since [xij ] = ∑n

i,j=1 Eij ⊗ xij ,

Pn([xij ]) = Pn

⎛

⎝
n∑

i,j=1

Eij ⊗ xij

⎞

⎠ ≤
n∑

i,j=1

Pn(Eij ⊗ xij ) =
n∑

i,j=1

P (xij ).

(2) By (1), we have

P (xskl − xkl) ≤ Pn([xsij − xij ]) = Pn([xsij ] − [xij ]) ≤
n∑

i,j=1

P (xsij − xij ).

So we get the result.

Lemma 2 Let (X, {‖·‖n}) be a matrix normed space or a matrix F ∗-space. Then
(1) ‖Ekl ⊗ x‖n = ‖x‖ for x ∈ X.
(2) ‖xkl‖ ≤ ‖[xij ]‖n ≤ ∑n

i,j=1 ‖xij‖ for [xij ] ∈ Mn(X).

(3) limn→∞ xn = x if and only if limn→∞ xijn = xij for xn = [xijn], x = [xij ] ∈
Mk(X).

Proof (1) Since Ekl ⊗ x = e∗
kxel and ‖e∗

k‖ = ‖el‖ = 1, ‖Ekl ⊗ x‖n ≤ ‖x‖. Since
ek(Ekl ⊗ x)e∗

l = x, ‖x‖ ≤ ‖Ekl ⊗ x‖n. So ‖Ekl ⊗ x‖n = ‖x‖.

(2) Since ekxe
∗
l = xkl and ‖ek‖ = ‖e∗

l ‖ = 1, ‖xkl‖ ≤ ‖[xij ]‖n. Since [xij ] =∑n
i,j=1 Eij ⊗ xij ,

‖[xij ]‖n =
∥∥∥∥∥∥

n∑

i,j=1

Eij ⊗ xij

∥∥∥∥∥∥
n

≤
n∑

i,j=1

‖Eij ⊗ xij‖n =
n∑

i,j=1

‖xij‖.

(3) By

‖xkln − xkl‖ ≤ ‖[xijn − xij ]‖n = ‖[xijn] − [xij ]‖n ≤
n∑

i,j=1

‖xijn − xij‖,

we get the result.
For a mapping f : X → Y , define Df : X2 → Y and Dfn : Mn(X2) → Mn(Y )

by

Df (a, b) := f (a + 2b) + f (a − 2b) − 4f (a + b) − 4f (a − b) + 6f (a)

− f (2b) − f (−2b) + 4f (b) + 4f (−b),
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Dfn([xij ], [yij ]) := fn([xij ] + 2[yij ]) + fn([xij ] − 2[yij ]) − 4fn([xij ] + [yij ])

−4fn([xij ]−[yij ])+6fn([xij ])−fn(2[yij ])−fn(−2[yij ])+4fn([yij ])+4fn(−[yij ])

for all a, b ∈ X and all x = [xij ], y = [yij ] ∈ Mn(X).

Theorem 1 Let r , θ be positive real numbers with r > 1. Let f : X → Y be an
odd mapping such that

Pn

(
Dfn([xij ], [yij ])

) ≤
n∑

i,j=1

θ (‖xij‖r + ‖yij‖r ) (4)

for all x = [xij ], y = [yij ] ∈ Mn(X). Then there exists a unique additive mapping
A : X → Y such that

Pn

(
fn(2[xij ]) − 8fn([xij ]) − An([xij ])

) ≤
n∑

i,j=1

9 + 2r

2r − 2
θ‖xij‖r (5)

for all x = [xij ] ∈ Mn(X).

Proof Let n = 1 in (4). Then (4) is equivalent to

P (Df (a, b)) ≤ θ (‖a‖r + ‖b‖r ) (6)

for all a, b ∈ X.
Letting a = b in (6), we get

P (f (3b) − 4f (2b) + 5f (b)) ≤ 2θ‖b‖r (7)

for all b ∈ X.
Replacing a by 2b in (6), we get

P (f (4b) − 4f (3b) + 6f (2b) − 4f (b)) ≤ (1 + 2r )θ‖b‖r (8)

for all b ∈ X.
By (7) and (8),

P (f (4b) − 10f (2b) + 16f (b)) (9)

≤ P (4(f (3b) − 4f (2b) + 5f (b))) + P (f (4b) − 4f (3b) + 6f (2b) − 4f (b))

≤ 4P (f (3b) − 4f (2b) + 5f (b)) + P (f (4b) − 4f (3b) + 6f (2b) − 4f (b))

≤ (9 + 2r )θ‖b‖r

for all b ∈ X. Replacing b by a
2 and letting g(a) := f (2a) − 8f (a) in (9), we get

P
(
g(a) − 2g

(a
2

))
≤ 9 + 2r

2r
θ‖a‖r
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for all a ∈ X. Hence

P
(

2lg
( a

2l

)
− 2mg

( a

2m

))
≤ 9 + 2r

2r

m−1∑

j=l

2j

2rj
θ‖a‖r (10)

for all nonnegative integers m and l with m > l and all a ∈ X. It follows from
(10) that the sequence {2kg( a

2k )} is Cauchy for all a ∈ X. Since Y is complete, the
sequence {2kg( a

2k )} converges. So one can define the mapping A : X → Y by

A(a) := lim
k→∞ 2kg

( a
2k

)

for all a ∈ X.
By (6),

P (DA(a, b)) = lim
k→∞P

(
2kDg

(
a

2k
,
b

2k

))
≤ lim

k→∞
2k

2kr
(2r + 8)θ (‖a‖r + ‖b‖r ) = 0

for all a, b ∈ X. So DA(a, b) = 0. Since g : X → Y is odd, A : X → Y is odd. So
the mapping A : X → Y is additive.

Moreover, letting l = 0 and passing the limit m → ∞ in (10), we get

P (f (2a) − 8f (a) − A(a)) ≤ 9 + 2r

2r − 2
θ‖a‖r (11)

for all a ∈ X.
Now, let T : X → Y be another additive mapping satisfying (11). Then we have

P (A(a) − T (a)) = P
(

2qA
( a

2q

)
− 2qT

( a
2q

))

≤ P
(

2q
(
A
( a

2q

)
− g

( a
2q

)))
+ P

(
2q
(
T
( a

2q

)
− g

( a
2q

)))

≤2
2r + 9

2r − 2

2q

2qr
θ‖a‖r ,

which tends to 0 as q → ∞ for all a ∈ X. So we can conclude that A(a) = T (a)
for all a ∈ X. This proves the uniqueness of A. Thus the mapping A : X → Y is a
unique additive mapping.

By Lemma 1 and (11),

P
(
fn(2[xij ]) − 8fn([xij ]) − An([xij ])

) ≤
n∑

i,j=1

P (f (2xij ) − 8f (xij ) − A(xij ))

≤
n∑

i,j=1

9 + 2r

2r − 2
θ‖xij‖r

for all x = [xij ] ∈ Mn(X). Thus A : X → Y is a unique additive mapping satisfying
(5), as desired.



262 J. R. Lee et al.

Theorem 2 Let r , θ be positive real numbers with r < 1. Let f : Y → X be an
odd mapping such that

∥∥Dfn([xij ], [yij ])
∥∥
n

≤
n∑

i,j=1

θ (P (xij )r + P (yij )r ) (12)

for all x = [xij ], y = [yij ] ∈ Mn(Y ). Then there exists a unique additive mapping
A : Y → X such that

∥∥fn(2[xij ]) − 8fn([xij ]) − An([xij ])
∥∥
n

≤
n∑

i,j=1

9 + 2r

2 − 2r
θP (xij )r (13)

for all x = [xij ] ∈ Mn(Y ).

Proof Let n = 1 in (12). Then (12) is equivalent to

‖Df (a, b)‖ ≤ θ (P (a)r + P (b)r ) (14)

for all a, b ∈ Y .
Letting b = a in (14), we get

‖f (3b) − 4f (2b) + 5f (b)‖ ≤ 2θP (b)r (15)

for all a ∈ Y .
Replacing a by 2b in (14), we get

‖f (4b) − 4f (3b) + 6f (2b) − 4f (b)‖ ≤ (1 + 2r )θP (b)r (16)

for all b ∈ Y .
By (15) and (16),

‖f (4b) − 10f (2b) + 16f (b)‖ (17)

≤ ‖4(f (3b) − 4f (2b) + 5f (b))‖ + ‖f (4b) − 4f (3b) + 6f (2b) − 4f (b)‖
= 4‖f (3b) − 4f (2b) + 5f (b)‖ + ‖f (4b) − 4f (3b) + 6f (2b) − 4f (b)‖
≤ (9 + 2r )θP (b)r

for all b ∈ Y . Replacing b by a and letting g(a) := f (2a) − 8f (a) in (17), we get

‖2g(a) − g (2a)‖ ≤ (9 + 2r )θP (a)r

for all a ∈ Y . Hence

∥∥∥∥
1

2l
g
(
2la
)− 1

2m
g
(
2ma

)∥∥∥∥ ≤
m−1∑

j=l

9 + 2r

2

2jr

2j
θP (a)r (18)
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for all nonnegative integers m and l with m > l and all a ∈ Y . It follows from (18)
that the sequence

{
1
2k g(2ka)

}
is Cauchy for all a ∈ Y . Since X is complete, the

sequence
{

1
2k g(2ka)

}
converges. So one can define the mapping A : Y → X by

A(a) := lim
k→∞

1

2k
g
(
2ka
)

for all a ∈ Y .
By (14),

‖DA(a, b)‖ = lim
k→∞

∥∥∥∥
1

2k
Dg

(
2ka, 2kb

)∥∥∥∥ ≤ lim
k→∞

2kr

2k
(2r + 8)θ (P (a)r + P (b)r ) = 0

for all a, b ∈ Y . So DA(a, b) = 0. Since g : Y → X is odd, A : Y → X is odd. So
the mapping A : Y → X is additive.

Moreover, letting l = 0 and passing the limit m → ∞ in (18), we get

‖f (2a) − 8f (a) − A(a)‖ ≤ 9 + 2r

2 − 2r
θP (a)r (19)

for all a ∈ Y .
Now, let T : Y → X be another additive mapping satisfying (19). Then we have

‖A(a) − T (a)‖ =
∥∥∥∥

1

2q
A
(
2qa

)− 1

2q
T
(
2qa

)∥∥∥∥

≤
∥∥∥∥

1

2q
(
A
(
2qa

)− g
(
2qa

))∥∥∥∥+
∥∥∥∥

1

2q
(
T
(
2qa

)− g
(
2qa

))∥∥∥∥

≤ 2
2qr

2q
9 + 2r

2 − 2r
θP (a)r ,

which tends to 0 as q → ∞ for all a ∈ Y . So we can conclude that A(a) = T (a)
for all a ∈ Y . This proves the uniqueness of A. Thus the mapping A : Y → X is a
unique additive mapping.

By Lemma 2 and (19),

∥∥fn(2[xij ]) − 8fn([xij ]) − An([xij ])
∥∥
n

≤
n∑

i,j=1

‖f (2xij ) − 8f (xij ) − A(xij )‖

≤
n∑

i,j=1

9 + 2r

2 − 2r
θP (xij )r

for all x = [xij ] ∈ Mn(Y ). Thus A : Y → X is a unique additive mapping satisfying
(13), as desired.

Theorem 3 Let r , θ be positive real numbers with r > 3. Let f : X → Y be an
odd mapping satisfying (4). Then there exists a unique cubic mapping C : X → Y

such that

Pn

(
fn(2[xij ]) − 2fn([xij ]) − Cn([xij ])

) ≤
n∑

i,j=1

9 + 2r

2r − 8
θ‖xij‖r
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for all x = [xij ] ∈ Mn(X).

Proof Replacing b by a
2 and letting g(a) := f (2a) − 2f (a) in (9), we get

P
(
g(a) − 8g

(a
2

))
≤ 9 + 2r

2r
θ‖a‖r

for all a ∈ X.
The rest of the proof is similar to the proof of Theorem 1.

Theorem 4 Let r , θ be positive real numbers with r < 3. Let f : Y → X be an
odd mapping satisfying (12). Then there exists a unique cubic mapping C : Y → X

such that

∥∥fn(2[xij ]) − 2fn([xij ]) − Cn([xij ])
∥∥
n

≤
n∑

i,j=1

9 + 2r

8 − 2r
θP (xij )r

for all x = [xij ] ∈ Mn(Y ).

Proof Replacing b by a and letting g(a) := f (2a) − 2f (a) in (17), we get

‖8g(a) − g (2a)‖ ≤ (9 + 2r )θP (a)r

for all a ∈ Y .
The rest of the proof is similar to the proof of Theorem 2.

3 Hyers–Ulam Stability of the AQCQ-Functional Equation (3)
in Matrix Paranormed Spaces: Even Mapping Case

In this section, we prove the Hyers–Ulam stability of the AQCQ-functional equation
(3) in matrix paranormed spaces for an even mapping case.

Throughout this section, let (X, {‖·‖n}) be a matrix Banach space and (Y , {Pn(·)})
a matrix Fréchet space.

Theorem 5 Let r , θ be positive real numbers with r > 2. Let f : X → Y be an
even mapping satisfying f (0) = 0 and (4). Then there exists a unique quadratic
mapping Q : X → Y such that

Pn

(
fn(2[xij ]) − 16fn([xij ]) − Qn([xij ])

) ≤
n∑

i,j=1

9 + 2r

2r − 4
θ‖xij‖r

for all x = [xij ] ∈ Mn(X).

Proof Let n = 1. Then (4) is equivalent to

P (Df (a, b)) ≤ θ (‖a‖r + ‖b‖r ) (20)
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for all a, b ∈ X. Letting a = b in (20), we get

P (f (3b) − 6f (2b) + 15f (b)) ≤ 2θ‖b‖r (21)

for all b ∈ X.
Replacing a by 2b in (20), we get

P (f (4b) − 4f (3b) + 4f (2b) + 4f (b)) ≤ (1 + 2r )θ‖b‖r (22)

for all b ∈ X.
By (21) and (22),

P (f (4b) − 20f (2b) + 64f (b))

≤ P (4(f (3b) − 6f (2b) + 15f (b))) + P (f (4b) − 4f (3b) + 4f (2b) + 4f (b))

≤ 4P (f (3b) − 6f (2b) + 15f (b)) + P (f (4b) − 4f (3b) + 4f (2b) + 4f (b))

≤ (9 + 2r )θ‖b‖r (23)

for all b ∈ X. Replacing b by a
2 and letting g(a) := f (2a) − 16f (a) in (23), we get

P
(
g(a) − 4g

(a
2

))
≤ 9 + 2r

2r
θ‖a‖r

for all a ∈ X.
The rest of the proof is similar to the proof of Theorem 1.

Theorem 6 Let r , θ be positive real numbers with r < 2. Let f : Y → X be an
even mapping satisfying f (0) = 0 and (12). Then there exists a unique quadratic
mapping Q : Y → X such that

∥∥fn(2[xij ]) − 16fn([xij ]) − Qn([xij ])
∥∥
n

≤
n∑

i,j=1

9 + 2r

4 − 2r
θP (xij )r

for all x = [xij ] ∈ Mn(Y ).

Proof Let n = 1 in (12). Then (12) is equivalent to

‖Df (a, b)‖ ≤ θ (P (a)r + P (b)r ) (24)

for all a, b ∈ Y .
Letting b = a in (24), we get

‖f (3b) − 6f (2b) + 15f (b)‖ ≤ 2θP (b)r (25)

for all a ∈ Y .
Replacing a by 2b in (24), we get

‖f (4b) − 4f (3b) + 4f (2b) + 4f (b)‖ ≤ (1 + 2r )θP (b)r (26)
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for all b ∈ Y .
By (25) and (26),

‖f (4b) − 20f (2b) + 64f (b)‖ (27)

≤ ‖4(f (3b)−6f (2b)+15f (b))‖+‖f (4b)−4f (3b)+4f (2b)+4f (b)‖
= 4‖f (3b)−4f (2b)+5f (b)‖+‖f (4b)−4f (3b)+6f (2b)−4f (b)‖
≤ (9 + 2r )θP (b)r

for all b ∈ Y . Replacing b by a and letting g(a) := f (2a) − 16f (a) in (27), we get

‖4g(a) − g (2a)‖ ≤ (9 + 2r )θP (a)r

for all a ∈ Y .
The rest of the proof is similar to the proof of Theorem 2.

Theorem 7 Let r , θ be positive real numbers with r > 4. Let f : X → Y be
an even mapping satisfying f (0) = 0 and (4). Then there exists a unique quartic
mapping R : X → Y such that

Pn

(
fn(2[xij ]) − 4fn([xij ]) − Rn([xij ])

) ≤
n∑

i,j=1

9 + 2r

2r − 16
θ‖xij‖r

for all x = [xij ] ∈ Mn(X).

Proof Replacing b by a
2 and letting g(a) := f (2a) − 4f (a) in (23), we get

P
(
g(a) − 16g

(a
2

))
≤ 9 + 2r

2r
θ‖a‖r

for all a ∈ X.
The rest of the proof is similar to the proofs of Theorems 1 and 5.

Theorem 8 Let r , θ be positive real numbers with r < 4. Let f : Y → X be
an even mapping satisfying f (0) = 0 and (12). Then there exists a unique quartic
mapping R : Y → X such that

∥∥fn(2[xij ]) − 4fn([xij ]) − Rn([xij ])
∥∥
n

≤
n∑

i,j=1

9 + 2r

16 − 2r
θP (xij )r

for all x = [xij ] ∈ Mn(Y ).

Proof Replacing b by a and letting g(a) := f (2a) − 4f (a) in (27), we get

‖16g(a) − g(2a)‖ ≤ (9 + 2r )θP (a)r

for all a ∈ Y .
The rest of the proof is similar to the proofs of Theorems 2 and 6.
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4 Hyers–Ulam Stability of the AQCQ-Functional Equation (3)
in Matrix β-Homogeneous F ∗-Spaces: Odd Mapping Case

In this section, we prove the Hyers–Ulam stability of the AQCQ-functional equation
(3) in matrix β-homogeneous F ∗-spaces for an odd mapping case.

From now on, we assume that (X, {‖·‖n}) is a matrix β1-homogeneous F ∗-space
and (Y , {‖·‖n}) is a matrix β2-homogeneous F -space (0 < β1,β2 ≤ 1).

Lemma 3 Let (X, {‖·‖n}) be a matrix F ∗-space. Then
(1) ‖xkl‖ ≤ ‖[xij ]‖n ≤ ∑n

i,j=1 ‖xij‖ for [xij ] ∈ Mn(X).

(2) lims→∞ xs = x if and only if lims→∞ xsij = xij for xs = [xsij ], x = [xij ] ∈
Mk(X).

Proof (1) By Definition 4, ‖xkl‖ ≤ ‖[xij ]‖n.
Since [xij ] = ∑n

i,j=1 Eij ⊗ xij ,

‖[xij ]‖n =
∥∥∥∥∥∥

n∑

i,j=1

Eij ⊗ xij

∥∥∥∥∥∥
n

≤
n∑

i,j=1

‖Eij ⊗ xij‖n =
n∑

i,j=1

‖xij‖.

(2) By (1), we have

‖xskl − xkl‖ ≤ ‖[xsij − xij ]‖n = ‖[xsij ] − [xij ]‖n ≤
n∑

i,j=1

‖xsij − xij‖.

So we get the result.

Theorem 9 Let r , θ be positive real numbers with β1r > β2. Let f : X → Y be an
odd mapping such that

∥∥Dfn([xij ], [yij ])
∥∥
n

≤
n∑

i,j=1

θ (‖xij‖r + ‖yij‖r ) (28)

for all x = [xij ], y = [yij ] ∈ Mn(X). Then there exists a unique additive mapping
A : X → Y such that

∥∥fn(2[xij ]) − 8fn([xij ]) − An([xij ])
∥∥
n

≤
n∑

i,j=1

1 + 2 · 4β2 + 2β1r

2β1r − 2β2
θ‖xij‖r (29)

for all x = [xij ] ∈ Mn(X).

Proof Let n = 1 in (28). Then (28) is equivalent to

‖Df (a, b)‖ ≤ θ (‖a‖r + ‖b‖r ) (30)

for all a, b ∈ X.
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Letting a = b in (30), we get

‖f (3b) − 4f (2b) + 5f (b)‖ ≤ 2θ‖b‖r (31)

for all b ∈ X.
Replacing a by 2b in (30), we get

‖f (4b) − 4f (3b) + 6f (2b) − 4f (b)‖ ≤ (1 + 2β1r )θ‖b‖r (32)

for all b ∈ X.
By (31) and (32),

‖f (4b) − 10f (2b) + 16f (b)‖
≤ ‖4(f (3b) − 4f (2b) + 5f (b))‖ + ‖f (4b) − 4f (3b) + 6f (2b) − 4f (b)‖
≤ 4β2‖f (3b) − 4f (2b) + 5f (b)‖ + ‖f (4b) − 4f (3b) + 6f (2b) − 4f (b)‖
≤ (1 + 2 · 4β2 + 2β1r )θ‖b‖r (33)

for all b ∈ X. Replacing b by a
2 and letting g(a) := f (2a) − 8f (a) in (33), we get

∥∥∥g(a) − 2g
(a

2

)∥∥∥ ≤ 1 + 2 · 4β2 + 2β1r

2β1r
θ‖a‖r

for all a ∈ X. Hence

∥∥∥2lg
( a

2l

)
− 2mg

( a

2m

)∥∥∥ ≤ 1 + 2 · 4β2 + 2β1r

2β1r

m−1∑

j=l

2β2j

2β1rj
θ‖a‖r (34)

for all nonnegative integers m and l with m > l and all a ∈ X. It follows from
(34) that the sequence {2kg( a

2k )} is Cauchy for all a ∈ X. Since Y is complete, the
sequence {2kg( a

2k )} converges. So one can define the mapping A : X → Y by

A(a) := lim
k→∞ 2kg

( a
2k

)

for all a ∈ X.
By (30),

‖DA(a, b)‖= lim
k→∞

∥∥∥∥2kDg

(
a

2k
,
b

2k

)∥∥∥∥ ≤ lim
k→∞

2kβ2

2kβ1r
(2β1r + 8β2 )θ (‖a‖r + ‖b‖r )=0

for all a, b ∈ X. So DA(a, b) = 0. Since g : X → Y is odd, A : X → Y is odd. So
the mapping A : X → Y is additive.

Moreover, letting l = 0 and passing the limit m → ∞ in (34), we get

‖f (2a) − 8f (a) − A(a)‖ ≤ 1 + 2 · 4β2 + 2β1r

2β1r − 2β2
θ‖a‖r (35)
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for all a ∈ X.
Now, let T : X → Y be another additive mapping satisfying (35). Then we have

‖A(a) − T (a)‖ =
∥∥∥2qA

( a
2q

)
− 2qT

( a
2q

)∥∥∥

≤
∥∥∥2q

(
A
( a

2q

)
− g

( a
2q

))∥∥∥+
∥∥∥2q

(
T
( a

2q

)
− g

( a
2q

))∥∥∥

≤ 2
1 + 2 · 4β2 + 2β1r

2β1r − 2β2

2β2q

2qβ1r
θ‖a‖r ,

which tends to 0 as q → ∞ for all a ∈ X. So we can conclude that A(a) = T (a)
for all a ∈ X. This proves the uniqueness of A. Thus the mapping A : X → Y is a
unique additive mapping.

By Lemma 3 and (35),

∥∥fn(2[xij ]) − 8fn([xij ]) − An([xij ])
∥∥
n

≤
n∑

i,j=1

‖f (2xij ) − 8f (xij ) − A(xij )‖

≤
n∑

i,j=1

1 + 2 · 4β2 + 2β1r

2β1r − 2β2
θ‖xij‖r

for all x = [xij ] ∈ Mn(X). Thus A : X → Y is a unique additive mapping satisfying
(29), as desired.

Theorem 10 Let r , θ be positive real numbers with β2r < β1. Let f : Y → X be
an odd mapping such that

∥∥Dfn([xij ], [yij ])
∥∥
n

≤
n∑

i,j=1

θ (‖xij‖r + ‖yij‖r ) (36)

for all x = [xij ], y = [yij ] ∈ Mn(Y ). Then there exists a unique additive mapping
A : Y → X such that

∥∥fn(2[xij ]) − 8fn([xij ]) − An([xij ])
∥∥
n

≤
n∑

i,j=1

1 + 2 · 4β1 + 2β2r

2β1 − 2β2r
θ‖xij‖r (37)

for all x = [xij ] ∈ Mn(Y ).

Proof Let n = 1 in (36). Then (36) is equivalent to

‖Df (a, b)‖ ≤ θ (‖a‖r + ‖b‖r ) (38)

for all a, b ∈ Y .
Letting b = a in (38), we get

‖f (3b) − 4f (2b) + 5f (b)‖ ≤ 2θ‖b‖r (39)
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for all a ∈ Y .
Replacing a by 2b in (38), we get

‖f (4b) − 4f (3b) + 6f (2b) − 4f (b)‖ ≤ (1 + 2β2r )θ‖b‖r (40)

for all b ∈ Y .
By (39) and (40),

‖f (4b) − 10f (2b) + 16f (b)‖ (41)

≤ ‖4(f (3b) − 4f (2b) + 5f (b))‖ + ‖f (4b) − 4f (3b) + 6f (2b) − 4f (b)‖
= 4β1‖f (3b) − 4f (2b) + 5f (b)‖ + ‖f (4b) − 4f (3b) + 6f (2b) − 4f (b)‖
≤ (1 + 2 · 4β1 + 2β2r )θ‖b‖r

for all b ∈ Y . Replacing b by a and letting g(a) := f (2a) − 8f (a) in (41), we get

‖2g(a) − g(2a)‖ ≤ (1 + 2 · 4β1 + 2β2r )θ‖a‖r

for all a ∈ Y . Hence

∥∥∥∥
1

2l
g
(
2la
)− 1

2m
g
(
2ma

)∥∥∥∥ ≤
m−1∑

j=l

(1 + 2 · 4β1 + 2β2r )

2β1

2jβ2r

2β1j
θ‖a‖r (42)

for all nonnegative integers m and l with m > l and all a ∈ Y . It follows from (42)
that the sequence

{
1
2k g(2ka)

}
is Cauchy for all a ∈ Y . Since X is complete, the

sequence
{

1
2k g(2ka)

}
converges. So one can define the mapping A : Y → X by

A(a) := lim
k→∞

1

2k
g
(
2ka
)

for all a ∈ Y .
By (38),

‖DA(a, b)‖ = lim
k→∞

∥∥∥∥
1

2k
Dg

(
2ka, 2kb

)∥∥∥∥ ≤ lim
k→∞

2kβ2r

2β1k
(2β2r + 8β1 )θ (‖a‖r + ‖b‖r )=0

for all a, b ∈ Y . So DA(a, b) = 0. Since g : Y → X is odd, A : Y → X is odd. So
the mapping A : Y → X is additive.

Moreover, letting l = 0 and passing the limit m → ∞ in (42), we get

‖f (2a) − 8f (a) − A(a)‖ ≤ 1 + 2 · 4β1 + 2β2r

2β1 − 2β2r
θ‖a‖r (43)

for all a ∈ Y .
Now, let T : Y → X be another additive mapping satisfying (43). Then we have

‖A(a) − T (a)‖ =
∥∥∥∥

1

2q
A
(
2qa

)− 1

2q
T
(
2qa

)∥∥∥∥
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≤
∥∥∥∥

1

2q
(
A
(
2qa

)− g
(
2qa

))∥∥∥∥+
∥∥∥∥

1

2q
(
T
(
2qa

)− g
(
2qa

))∥∥∥∥

≤ 2
2qβ2r

2β1q

1 + 2 · 4β1 + 2β2r

2β1 − 2β2r
θ‖a‖r ,

which tends to 0 as q → ∞ for all a ∈ Y . So we can conclude that A(a) = T (a)
for all a ∈ Y . This proves the uniqueness of A. Thus the mapping A : Y → X is a
unique additive mapping.

By Lemma 2 and (43),

∥∥fn(2[xij ]) − 8fn([xij ]) − An([xij ])
∥∥
n

≤
n∑

i,j=1

‖f (2xij ) − 8f (xij ) − A(xij )‖

≤
n∑

i,j=1

1 + 2 · 4β1 + 2β2r

2β1 − 2β2r
θ‖xij‖r

for all x = [xij ] ∈ Mn(Y ). Thus A : Y → X is a unique additive mapping satisfying
(37), as desired.

Theorem 11 Let r , θ be positive real numbers with β1r > 3β2. Let f : X → Y be
an odd mapping satisfying (28). Then there exists a unique cubic mappingC : X → Y

such that

∥∥fn(2[xij ]) − 2fn([xij ]) − Cn([xij ])
∥∥
n

≤
n∑

i,j=1

1 + 2 · 4β2 + 2β1r

2β1r − 8β2
θ‖xij‖r

for all x = [xij ] ∈ Mn(X).

Proof Replacing b by a
2 and letting g(a) := f (2a) − 2 f (a) in (33), we get

∥∥∥g(a) − 8g
(a

2

)∥∥∥ ≤ 1 + 2 · 4β2 + 2β1r

2β1r
θ‖a‖r

for all a ∈ X.
The rest of the proof is similar to the proof of Theorem 9.

Theorem 12 Let r , θ be positive real numbers with β2r < 3β1. Let f : Y → X be
an odd mapping satisfying (36). Then there exists a unique cubic mappingC : Y → X

such that

∥∥fn(2[xij ]) − 2fn([xij ]) − Cn([xij ])
∥∥
n

≤
n∑

i,j=1

1 + 2 · 4β1 + 2β2r

8β1 − 2β2r
θ‖xij‖r

for all x = [xij ] ∈ Mn(Y ).

Proof Replacing b by a and letting g(a) := f (2a) − 2f (a) in (41), we get

‖8g(a) − g (2a)‖ ≤ (1 + 2 · 4β1 + 2β2r )θ‖a‖r
for all a ∈ Y .

The rest of the proof is similar to the proof of Theorem 10.
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5 Hyers–Ulam Stability of the AQCQ-Functional Equation (3)
in Matrix β-Homogeneous F ∗-Spaces: Even Mapping Case

In this section, we prove the Hyers–Ulam stability of the AQCQ-functional equation
(3) in matrix β-homogeneous F ∗-spaces for an even mapping case.

Theorem 13 Let r , θ be positive real numbers with β1r > 2β2. Let f : X → Y be
an even mapping satisfying f (0) = 0 and (28). Then there exists a unique quadratic
mapping Q : X → Y such that

∥∥fn(2[xij ]) − 16fn([xij ]) − Qn([xij ])
∥∥
n

≤
n∑

i,j=1

1 + 2 · 4β2 + 2β1r

2β1r − 4β2
θ‖xij‖r

for all x = [xij ] ∈ Mn(X).

Proof Let n = 1. Then (28) is equivalent to

‖Df (a, b)‖ ≤ θ (‖a‖r + ‖b‖r ) (44)

for all a, b ∈ X. Letting a = b in (44), we get

‖f (3b) − 6f (2b) + 15f (b)‖ ≤ 2θ‖b‖r (45)

for all b ∈ X.
Replacing a by 2b in (44), we get

‖f (4b) − 4f (3b) + 4f (2b) + 4f (b)‖ ≤ (1 + 2β1r )θ‖b‖r (46)

for all b ∈ X.
By (45) and (46),

‖f (4b) − 20f (2b) + 64f (b)‖
≤ ‖4(f (3b) − 6f (2b) + 15f (b))‖ + ‖f (4b) − 4f (3b) + 4f (2b) + 4f (b)‖
≤ 4β2‖f (3b) − 6f (2b) + 15f (b)‖ + ‖f (4b) − 4f (3b) + 4f (2b) + 4f (b)‖
≤ (1 + 2 · 4β2 + 2β1r )θ‖b‖r (47)

for all b ∈ X. Replacing b by a
2 and letting g(a) := f (2a) − 16f (a) in (47), we get

∥∥∥g(a) − 4g
(a

2

)∥∥∥ ≤ 1 + 2 · 4β2 + 2β1r

2β1r
θ‖a‖r

for all a ∈ X.
The rest of the proof is similar to the proof of Theorem 9.
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Theorem 14 Let r , θ be positive real numbers with β2r < 2β1. Let f : Y → X be
an even mapping satisfying f (0) = 0 and (36). Then there exists a unique quadratic
mapping Q : Y → X such that

∥∥fn(2[xij ]) − 16fn([xij ]) − Qn([xij ])
∥∥
n

≤
n∑

i,j=1

1 + 2 · 4β1 + 2β2r

4β1 − 2β2r
θ‖xij‖r

for all x = [xij ] ∈ Mn(Y ).

Proof Let n = 1 in (36). Then (36) is equivalent to

‖Df (a, b)‖ ≤ θ (‖a‖r + ‖b‖r ) (48)

for all a, b ∈ Y .
Letting b = a in (48), we get

‖f (3b) − 6f (2b) + 15f (b)‖ ≤ 2θ‖b‖r (49)

for all a ∈ Y .
Replacing a by 2b in (48), we get

‖f (4b) − 4f (3b) + 4f (2b) + 4f (b)‖ ≤ (1 + 2β2r )θ‖b‖r (50)

for all b ∈ Y .
By (49) and (50),

‖f (4b) − 20f (2b) + 64f (b)‖
≤ ‖4(f (3b) − 6f (2b) + 15f (b))‖ + ‖f (4b) − 4f (3b) + 4f (2b) + 4f (b)‖
= 4β1‖f (3b) − 4f (2b) + 5f (b)‖ + ‖f (4b) − 4f (3b) + 6f (2b) − 4f (b)‖
≤ (1 + 2 · 4β1 + 2β2r )θ‖b‖r (51)

for all b ∈ Y . Replacing b by a and letting g(a) := f (2a) − 16 f (a) in (51), we get

‖4g(a) − g(2a)‖ ≤ (1 + 2 · 4β1 + 2β2r )θ‖a‖r

for all a ∈ Y .
The rest of the proof is similar to the proof of Theorem 10.

Theorem 15 Let r , θ be positive real numbers with β1r > 4β2. Let f : X → Y be
an even mapping satisfying f (0) = 0 and (28). Then there exists a unique quartic
mapping R : X → Y such that

∥∥fn(2[xij ]) − 4fn([xij ]) − Rn([xij ])
∥∥
n

≤
n∑

i,j=1

1 + 2 · 4β2 + 2β1r

2β1r − 16β2
θ‖xij‖r

for all x = [xij ] ∈ Mn(X).
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Proof Replacing b by a
2 and letting g(a) := f (2a) − 4 f (a) in (47), we get

∥∥∥g(a) − 16g
(a

2

)∥∥∥ ≤ 1 + 2 · 4β2 + 2β1r

2β1r
θ‖a‖r

for all a ∈ X.
The rest of the proof is similar to the proofs of Theorems 9 and 13.

Theorem 16 Let r , θ be positive real numbers with β2r < 4β1. Let f : Y → X be
an even mapping satisfying f (0) = 0 and (36). Then there exists a unique quartic
mapping R : Y → X such that

∥∥fn(2[xij ]) − 4fn([xij ]) − Rn([xij ])
∥∥
n

≤
n∑

i,j=1

1 + 2 · 4β1 + 2β2r

16β1 − 2β2r
θ‖xij‖r

for all x = [xij ] ∈ Mn(Y ).

Proof Replacing b by a and letting g(a) := f (2a) − 4f (a) in (51), we get

‖16g(a) − g(2a)‖ ≤ (1 + 2 · 4β1 + 2β2r )θ‖a‖r

for all a ∈ Y .
The rest of the proof is similar to the proofs of Theorems 10 and 14.

6 Conclusions

Let fo(x) := f (x)−f (−x)
2 and fe(x) := f (x)+f (−x)

2 . Then fo is odd and fe is even.
fo, fe satisfy the functional equation (3). Let go(x) := fo(2x)−2fo(x) and ho(x) :=
fo(2x) − 8fo(x). Then fo(x) = 1

6go(x) − 1
6ho(x). Let ge(x) := fe(2x) − 4fe(x) and

he(x) := fe(2x) − 16fe(x). Then fe(x) = 1
12ge(x) − 1

12he(x). Thus

f (x) = 1

6
go(x) − 1

6
ho(x) + 1

12
ge(x) − 1

12
he(x).

We summarize the above results as follows.
Let (X, {‖·‖n}) be a matrix Banach space and (Y , {Pn( · )}) a matrix Fréchet space.

Theorem 17 Let r , θ be positive real numbers with r > 4. Let f : X → Y

be a mapping satisfying f (0) = 0 and (4). Then there exist an additive mapping
A : X → Y , a quadratic mapping Q : X → Y , a cubic mapping C : X → Y , and
a quartic mapping R : X → Y such that

Pn (24fn(x) − 4An(x) − 2Qn(x) − 4Cn(x) − 2Rn(x))

≤
(

4(9 + 2r )

2r − 2
+ 2(9 + 2r )

2r − 4
+ 4(9 + 2r )

2r − 8
+ 2(9 + 2r )

2r − 16

) n∑

i,j=1

θ‖xij‖r
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for all x = [xij ] ∈ Mn(X).

Theorem 18 Let r be a positive real number with r < 1. Let f : Y → X be
a mapping satisfying f (0) = 0 and (12). Then there exist an additive mapping
A : Y → X, a quadratic mapping Q : Y → X, a cubic mapping C : Y → X, and
a quartic mapping R : Y → X such that

‖24fn(x) − 4An(x) − 2Qn(x) − 4Cn(x) − 2Rn(x)‖n

≤
(

4(9 + 2r )

2 − 2r
+ 2(9 + 2r )

4 − 2r
+ 4(9 + 2r )

8 − 2r
+ 2(9 + 2r )

16 − 2r

) n∑

i,j=1

θP (xij )r

for all x = [xij ] ∈ Mn(Y ).
From now on, we assume that (X, {‖ · ‖n}) is a matrix β1-homogeneous F ∗-space

and (Y , {‖ · ‖n}) is a matrix β2-homogeneous F -space (0 < β1,β2 ≤ 1).

Theorem 19 Let r , θ be positive real numbers with β1r > 4β2. Let f : X → Y

be a mapping satisfying f (0) = 0 and (28). Then there exist an additive mapping
A : X → Y , a quadratic mapping Q : X → Y , a cubic mapping C : X → Y , and
a quartic mapping R : X → Y such that

‖24fn(x) − 4An(x) − 2Qn(x) − 4Cn(x) − 2Rn(x)‖n
≤
(

4

2β1r − 2β2
+ 2

2β1r − 4β2
+ 4

2β1r − 8β2
+ 2

2β1r − 18β2

)

× (1 + 2 · 4β2 + 2β1r )
n∑

i,j=1

θ‖xij‖r

for all x = [xij ] ∈ Mn(X).

Theorem 20 Let r be a positive real number with β2r < β1. Let f : Y → X

be a mapping satisfying f (0) = 0 and (36). Then there exist an additive mapping
A : Y → X, a quadratic mapping Q : Y → X, a cubic mapping C : Y → X, and
a quartic mapping R : Y → X such that

‖24fn(x) − 4An(x) − 2Qn(x) − 4Cn(x) − 2Rn(x)‖n
≤
(

4

2β1 − 2β2r
+ 2

4β1 − 2β2r
+ 4

8β1 − 2β2r
+ 2

16β1 − 2β2r

)

× (1 + 2 · 4β1 + 2β2r )
n∑

i,j=1

θ‖xij‖r

for all x = [xij ] ∈ Mn(Y ).
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On the Generalized Hyers–Ulam Stability
of the Pexider Equation on Restricted Domains

Youssef Manar, Elhoucien Elqorachi and Themistocles M. Rassias

Abstract Let σ : E −→ E be an involution of the normed space E and let p, M , d
be nonnegative real numbers, such that 0 < p < 1. In this chapter, we investigate
the Hyers–Ulam–Rassias stability of the Pexider functional equations

f (x + y) = g(x) + h(y), f (x + y) + g(x − y) = h(x) + k(y),

f (x + y) + g(x + σ (y)) = h(x) + k(y), x, y ∈ E

on restricted domains B = {(x, y) ∈ E2 : ‖x‖p + ‖y‖p ≥ Mp} and C = {(x, y) ∈
E2 : ‖x‖ ≥ d or ‖y‖ ≥ d}.

Keywords Hyers Ulam Rassias stability · Pexider functional equation · Metric group
· Cauchy difference · Restricted domain

1 Introduction

In 1940, the following stability problem for group homomorphisms was raised by
Ulam [70]. Given a group G1 and a metric group G2 with metric d(., .) and a pos-
itive number ε greater than zero, does there exist a positive number δ greater than
zero such that if a function f : G1 −→ G2 satisfies the functional inequality
d(f (xy), f (x)f (y)) ≤ δ for all x, y ∈ G1, then there exists a group homomor-
phism h : G1 −→ G2 with d(f (x),h(x)) ≤ ε for all x ∈ G1. The problem for
the case of approximately additive mappings was solved by Hyers [25] on Banach
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spaces. In 1950, Aoki [1] provided a generalization of the Hyers’ theorem for addi-
tive mappings and in 1978, Rassias [57] generalized the Hyers’ theorem for linear
mappings by considering an unbounded Cauchy difference for sum of powers of
norms ε(‖x‖p +‖y‖p). Rassias’ theorem has been generalized by Gǎvruta [22] who
permitted the Cauchy difference to be bounded by a general control function. Since
then, the stability problems for several functional equations have been extensively
investigated by a number mathematicians (cf. [10, 11, 16, 23, 35, 31, 41, 54, 58,
59, 61, 62, 65, and 72]). The terminology Hyers–Ulam–Rassias stability originates
from these historical backgrounds. This terminology can also be applied to the case
of other functional equations. For more detailed definitions of such terminologies,
we can refer to [2, 3, 17, 20, 21, 26, 28, 33, 37, 42, 47–53, 60, and 63]. Concerning
the stability of functional equations on a restricted domain, Skof [67] was the first
author to solve Ulam problem for additive mapping on a restricted domain. Given a
real normed vector spacesX andE, a function f : X → E will satisfy the functional
equation

f (x + y) = f (x) + f (y) f or all x, y ∈ X

if and only if

‖f (x + y) − f (x) − f (y)‖ → 0 as ‖x‖ + ‖y‖ → +∞.

In [27], Hyers, Isac, and Rassias considered the asymptotic aspect of Hyers–
Ulam–Rassias stability that is close to the asymptotic derivability. In [29], Jung
investigated the Hyers–Ulam stability for the quadratic equation

f (x + y) + f (x − y) = 2f (x) + 2f (y), x, y ∈ E (1)

on a restricted domain A := {(x, y) ∈ E2 : ‖x‖ + ‖y‖ ≥ d}. In [64], Rassias
and Rassias investigated the Hyers–Ulam stability on A for the Jensen functional
equations

f (x + y) + f (x − y) = 2f (x), x, y ∈ E (2)

and

f (x + y) − f (x − y) = 2f (y), x, y ∈ E. (3)

The more general equation is

f (x + y) + f (x + σ (y)) = 2f (x) + 2f (y), x, y ∈ E, (4)

where σ is an involution and has been solved by Stetkær [69] in abelian groups.
Recently, the stability theorem of Eq. (4) and the Jensen functional equations

f (x + y) + f (x + σ (y)) = 2f (x), x, y ∈ E (5)

f (x + y) − f (x + σ (y)) = 2f (y), x, y ∈ E (6)
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has been proved (see [12, 39, 43]). In [18, 19, 44], Elqorachi, Manar, and Rassias
investigated the stability of Eqs. (4), (5), and (6) on unbounded domains: {(x, y) ∈
E2 : ‖y‖ ≥ d} and {(x, y) ∈ E2 : ‖x‖ ≥ d}, respectively. In this chapter, we
consider the Pexider functional equations

f (x + y) = g(x) + h(y), x, y ∈ E, (7)

f (x + y) + g(x − y) = h(x) + k(y), x, y ∈ E (8)

and

f (x + y) + g(x + σ (y)) = h(x) + k(y), x, y ∈ E, (9)

where σ : E → E is an involution of the normed space E, i.e., σ (x + y) =
σ (x) + σ (y) and σ (σ (x)) = x, for all x, y ∈ E. Jung [31], and Jung and Sahoo [36]
investigated the Hyers–Ulam–Rassias stability of Eq. (8). Bouikhalene, Elqorachi,
and Rassias [6] proved the Hyers–Ulam stability of Eq. (9). Recently, Pourpasha,
Rassias, Saadati, and Vaezpour [55] investigated the Hyers–Ulam stability of Eq. (7)
and (8) by using the fixed point method. The stability problems of several functional
equations on a restricted domain have been extensively investigated by a number of
authors (cf. [4, 5, 7–9, 13–15, 24, 27, 30, 32, 34, 38, 40, 45, 50, 56, 66, 68, and 71]).
Chung [13] generalized the Hyers–Ulam stability of a Pexiderized logarithmic func-
tional equation in restricted domains. In the following, we present our results as
follows: In the next section, we will study the Hyers–Ulam–Rassias stability problem
for equations

f (x + y) = g(x) + h(y), x, y ∈ E,

on restricted domains:

B = {(x, y) ∈ E2 : ‖x‖p + ‖y‖p ≥ Mp}
and

C = {(x, y) ∈ E2 : ‖x‖ ≥ d or ‖y‖ ≥ d}.
In the Sect. 3, we will investigate the Hyers–Ulam–Rassias stability for the

equation
f (x + y) + g(x − y) = k(x) + h(y), x, y ∈ E,

on restricted domains B and C. In the last section, we study the Hyers–Ulam–Rassias
stability for equation

f (x + y) + g(x + σ (y)) = k(x) + h(y), x, y ∈ E,

on a restricted domain C. Throughout this paper, E denotes a normed space and F a
Banach space.
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2 Stability of Eq. (7) on Restricted Domains

In the present section, we prove the Hyers–Ulam–Rassias stability of the Pexider
functional equation of type (7) on restricted domains B and C. In the following
lemma, we will apply some ideas from [41] to the proof of Hyers–Ulam–Rassias
stability of Eq. (7). As an application, we study the Hyers–Ulam–Rassias stability
of that equation on restricted domains B and C.

Lemma 1 Let f1, f2, f3 : E → F satisfy the inequality

‖f1(x + y) − f2(x) − f3(y)‖ ≤ δ + ε(‖x‖p + ‖y‖p) (10)

for all x, y ∈ E, where δ, ε,p are given positive numbers such that 0 < p < 1.
Then, there exists a unique additive mapping A : E → F such that

‖f1(x) − A(x) − f1(0)‖ ≤ 6δ + 4ε

2 − 2p
‖x‖p, (11)

‖f2(x) − A(x) − f2(0)‖ ≤ 8δ + ε

(
6 − 2p

2 − 2p

)
‖x‖p (12)

and

‖f3(x) − A(x) − f3(0)‖ ≤ 8δ + ε

(
6 − 2p

2 − 2p

)
‖x‖p (13)

for all x ∈ E.

Proof For any function fi : E → F (i = 1, 2, 3), we introduce the functions
Fi(x) = fi(x) − fi(0), x ∈ E. From (10) and the triangle inequality, we obtain

‖F1(x + y) − F2(x) − F3(y)‖ ≤ 2δ + ε(‖x‖p + ‖y‖p). (14)

Setting y = 0 in (14), to obtain

‖F1(x) − F2(x)‖ ≤ 2δ + ε‖x‖p (15)

for all x ∈ E. Setting x = 0 in (14), we get

‖F1(y) − F3(y)‖ ≤ 2δ + ε‖y‖p (16)

for all y ∈ E. It follows from (15), (16) and the triangle inequality that

‖F1(x + y) − F1(x) − F1(y)‖
≤ ‖F1(x + y) − F2(x) − F3(y)‖ + ‖F1(x) − F2(x)‖ + ‖F1(y) − F3(y)‖
≤ 2δ + ε(‖x‖p + ‖y‖p) + 2δ + ε‖x‖p + 2δ + ε‖y‖p
≤ 6δ + 2ε(‖x‖p + ‖y‖p)
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for all x, y ∈ E. So, from [22] there exists a unique additive mapping A : E → F

given by A(x) = lim
n→+∞ 2−nF1(2nx) such that

‖F1(x) − A(x)‖ ≤ 6δ + 4ε

2 − 2p
‖x‖p (17)

for all x ∈ E. From (15) and (17), we obtain

‖F2(x) − A(x)‖ ≤ ‖F1(x) − A(x)‖ + ‖F1(x) − F2(x)‖

≤ 8δ + ε

(
6 − 2p

2 − 2p

)
‖x‖p (18)

for all x ∈ E. In a similar way, by using (16) and (17) we obtain the following
inequality

‖F3(x) − A(x)‖ ≤ 8δ + ε

(
6 − 2p

2 − 2p

)
‖x‖p (19)

for all x ∈ E.
In the following theorem, we establish the Hyers–Ulam–Rassias stability for the

Eq. (7) on restricted domains.

Theorem 1 Let a normed vector spaceE and a Banach spaceF are given. Suppose
d ≥ 0 and δ ≥ 0 be given. Assume that the mappings f1, f2, f3 : E → F satisfy the
inequality

‖f1(x + y) − f2(x) − f3(y)‖ ≤ δ (20)

for all (x, y) ∈ C = {(x, y) ∈ E2 such that ‖x‖ ≥ d or ‖y‖ ≥ d}. Then, there
exists a unique additive mapping A : E → F such that

‖f1(x) − A(x) − f1(0)‖ ≤ 36δ, (21)

‖f2(x) − A(x) − f2(0)‖ ≤ 48δ (22)

and

‖f3(x) − A(x) − f3(0)‖ ≤ 48δ (23)

for all x ∈ E.

Proof Let (x, y) ∈ E2\C. If x = 0 and y = 0, we choose an element z ∈ E with
‖z‖ ≥ d , and we use

[f1(0) − f2(0) − f3(0)] = [f1(0) − f2( − z) − f3(z)] + [f1(2z) − f2(0) − f3(2z)]

+ [f1(z) − f2(z) − f3(0)] − [f1(2z) − f2(z) − f3(z)]

− [f1(z) − f2( − z) − f3(2z)]
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to get

‖f1(0) − f2(0) − f3(0)‖ ≤ 5δ. (24)

If y �= 0 or x �= 0, we choose a z = 2ny if y �= 0 and we choose z = 2nx if
x �= 0, with n ∈ N large enough. We can easily verify that ‖z‖ ≥ d , ‖y − z‖ ≥ d or
‖x + z‖ ≥ d .

Therefore, from (20), the triangle inequality and the following equation:

2[f1(x + y) − f2(x) − f3(y)]

= [f1(x + y) − f2(x + z) − f3(y − z)] + [f1(x + y) − f2(y − z) − f3(x + z)]

+ 2[f1(y + z) − f2(z) − f3(y)] + 2[f1(x + 2z) − f2(x) − f3(2z)]

− [f1(x + 2z) − f2(x + z) − f3(z)] − [f1(y + z) − f2(2z) − f3(y − z)]

− [f1(x + 2z) − f2(z) − f3(x + z)] − [f1(y + z) − f2(y − z) − f3(2z)]

− [f1(3z) − f2(z) − f3(2z)] + [f1(3z) − f2(2z) − f3(z)],

we get

‖f1(x + y) − f2(x) − f3(y)‖ ≤ 6δ. (25)

Finally, inequality (25) holds true for all x, y ∈ E. From Lemma 1 with ε = 0,
the rest of the proof follows.

In the following theorem, we prove the Hyers–Ulam–Rassias stability of Eq. (7)
on restricted domain B.

Theorem 2 Assume a normed vector space E and a Banach space F are given.
Let δ, ε ≥ 0 and M ,p ≥ 0 with 0 < p < 1 be fixed. Let f1, f2, f3 : E → F be
mappings which satisfy the inequality

‖f1(x + y) − f2(x) − f3(y)‖ ≤ δ + ε(‖x‖p + ‖y‖p) (26)

for all (x, y) ∈ B = {(x, y) ∈ E2 : ‖x‖p +‖y‖p ≥ Mp}. Then, there exists a unique
additive mapping A : E → F such that

‖f1(x) − A(x) − f1(0)‖ ≤ 36δ + 6ε(4 × 3p + 3 × 2p + 3 × 4p)Mp

+ 4ε

2 − 2p
‖x‖p, (27)

‖f2(x) − A(x) − f2(0)‖ ≤ 48δ + 8ε(4 × 3p + 3 × 2p + 3 × 4p)Mp

+ ε

(
6 − 2p

2 − 2p

)
‖x‖p (28)

and

‖f3(x) − A(x) − f3(0)‖ ≤ 48δ + 8ε(4 × 3p + 3 × 2p + 3 × 4p)Mp

+ ε

(
6 − 2p

2 − 2p

)
‖x‖p (29)

for all x ∈ E.
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Proof Assume ‖x‖p + ‖y‖p < Mp. If x = y = 0, we choose an element z ∈ E

with ‖z‖ = M , and we use

[f1(0) − f2(0) − f3(0)] = [f1(0) − f2(−z) − f3(z)]

+ [f1(2z) − f2(0) − f3(2z)] + [f1(z) − f2(z) − f3(0)]

− [f1(2z) − f2(z) − f3(z)] − [f1(z) − f2(−z) − f3(2z)],

we deduce

‖f1(0) − f2(0) − f3(0)‖ ≤ 5δ + 2ε(3 + 2p)Mp. (30)

Otherwise, we take

z =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(‖x‖ + M)
x

‖x‖ , if ‖x‖ ≥ ‖y‖;

(‖y‖ + M)
y

‖y‖ , if ‖y‖ ≥ ‖x‖.

It’s clear that ‖z‖ ≥ M and

‖x + z‖p + ‖y − z‖p ≥ max{‖x + z‖p, ‖y − z‖p} ≥ Mp,

‖x + z‖p + ‖z‖p ≥ ‖z‖p ≥ Mp,

‖y − z‖p + ‖2z‖p ≥ ‖2z‖p ≥ Mp,

min{‖z‖p + ‖y‖p, ‖x‖p + ‖2z‖p, ‖2z‖p + ‖z‖p} ≥ ‖z‖p ≥ Mp.

Also we have

max{‖x + z‖, ‖y − z‖} < 3M , ‖z‖ < 2M.

Now, by using the following equation

2[f1(x + y) − f2(x) − f3(y)]

= [f1(x + y) − f2(x + z) − f3(y − z)] + [f1(x + y) − f2(y − z) − f3(x + z)]

+ 2[f1(y + z) − f2(z) − f3(y)] + 2[f1(x + 2z) − f2(x) − f3(2z)]

− [f1(x + 2z) − f2(x + z) − f3(z)] − [f1(y + z) − f2(2z) − f3(y − z)]

− [f1(x + 2z) − f2(z) − f3(x + z)] − [f1(y + z) − f2(y − z) − f3(2z)]

− [f1(3z) − f2(z) − f3(2z)] + [f1(3z) − f2(2z) − f3(z)],

we deduce

‖f1(x + y) − f2(x) − f3(y)‖ ≤ 6δ + ε(4 × 3p + 3 × 2p + 3 × 4p)Mp (31)

+ ε(‖x‖p + ‖y‖p).
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Therefore, inequality (31) holds true for all x, y ∈ E. According to Lemma 1, the
rest of the proof follows.

Now, by using ideas from [29] and Theorem 1, we provide a proof of an asymptotic
behavior of that equation.

Corollary 1 Assume a normed vector space E and a Banach space F are given.
The mappings f1, f2, f3 : E → F with fi(0) = 0 satisfy Eq. (7) if and only if the
asymptotic condition

‖f1(x + y) − f2(x) − f3(y)‖ → 0 as ‖x‖ + ‖y‖ → +∞
holds true.

Proof According to our asymptotic condition, there exists a sequence (δn)n which
is monotonically decreasing to zero such that

‖f1(x + y) − f2(x) − f3(y)‖ ≤ δn (32)

for all x, y ∈ E with ‖x‖ + ‖y‖ ≥ n. So

‖f1(x + y) − f2(x) − f3(y)‖ ≤ δn (33)

for all (x, y) ∈ C = {(x, y) ∈ E2 such that ‖x‖ ≥ n or ‖y‖ ≥ n}. By Theorem 1,
there exists a unique additive mapping An : E → F such that

‖f1(x) − An(x)‖ ≤ 36δn,

‖f2(x) − An(x)‖ ≤ 48δn

and

‖f3(x) − An(x)‖ ≤ 48δn

for all x ∈ E. Let n and m be integers. Since (δn)n is a monotonically decreasing
sequence, the additive mapping Am satisfies

‖f1(x) − Am(x)‖ ≤ 36δm ≤ 36δn,

‖f2(x) − Am(x)‖ ≤ 48δm ≤ 48δn

and

‖f3(x) − Am(x)‖ ≤ 48δm ≤ 48δn

for all x ∈ E. By using the uniqueness of An, we get An = Am for all n,m ∈ N.
By letting n → +∞, we get that f is an additive mapping. The reverse assertion is
obvious.
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3 Stability of Eq. (8) on Restricted Domains

In this section, we will investigate the stability of Pexider functional Eq. (8) on a
restricted domain

C = {(x, y) ∈ E2 such that ‖x‖ ≥ d or ‖y‖ ≥ d}
and

B = {(x, y) ∈ E2 : ‖x‖p + ‖y‖p ≥ Mp}.
First, we prove the following stability theorem.

Theorem 3 Assume a normed vector space E and a Banach space F are given. Let
δ, ε ≥ 0 and p with 0 < p < 1 be fixed. If the functions f1, f2, f3, f4 : E → F

satisfy the inequality

‖f1(x + y) + f2(x − y) − f3(x) − f4(y)‖ ≤ δ + ε(‖x‖p + ‖y‖p) (34)

for all x, y ∈ E, then there exists a unique quadratic mapping q : E → F , and
exactly two additive mappings a1, a2 : E → F such that

‖f1(x) − 1

2
q(x) − 1

2
a1(x) − 1

2
a2(x) − f1(0)‖ ≤ 44

6
δ + ε

(
1

2
+ 4 + 2p−1

4 − 2p

+3 + 2p−1 + 22−p

2 − 2p

)
‖x‖p, (35)

‖f2(x) − 1

2
q(x) − 1

2
a1(x) + 1

2
a2(x) − f2(0)‖ ≤ 44

6
δ + ε

(
1

2
+ 4 + 2p−1

4 − 2p

+3 + 2p−1 + 22−p

2 − 2p

)
‖x‖p, (36)

‖f3(x) − q(x) − a1(x) − f3(0)‖ ≤ 20

3
δ + ε

(
2p + 8

4 − 2p
+ 4 + 2p

2 − 2p

)
‖x‖p (37)

and

‖f4(x) − q(x) − a2(x) − q(x) − f4(0)‖ ≤ 32

3
δ + ε

(
16 − 2p

4 − 2p
+ 4 + 2p

2 − 2p

)
‖x‖p

(38)

for all x ∈ E.

Proof By applying the same argument as in the proof of Theorems 3.1 [6] and 1
[72], we obtain the proof of Theorem 3.
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Theorem 4 Let a normed vector space E and a Banach space F be given. Assume
that the functions f1, f2, f3, f4 : E → F satisfy the inequality

‖f1(x + y) + f2(x − y) − f3(x) − f4(y)‖ ≤ δ (39)

for all (x, y) ∈ C = {(x, y) ∈ E2 such that ‖x‖ ≥ d or ‖y‖ ≥ d}. Then, there ex-
ists a unique quadratic mapping q : E → F , and exactly two additive mappings
a1, a2 : E → F such that

‖f1(x) − 1

2
q(x) − 1

2
a1(x) − 1

2
a2(x) − f1(0)‖ ≤ 308

6
δ, (40)

‖f2(x) − 1

2
q(x) − 1

2
a1(x) + 1

2
a2(x) − f2(0)‖ ≤ 308

6
δ, (41)

‖f3(x) − a1(x) − q(x) − f3(0)‖ ≤ 140

3
δ (42)

and

‖f4(x) − a2(x) − q(x) − f4(0)‖ ≤ 224

3
δ (43)

for all x ∈ E.

Proof Let (x, y) ∈ E2\C. If x = 0 and y = 0, we choose an element z ∈ E with
‖z‖ = d , and we use

[f1(0) + f2(0) − f3(0) − f4(0)]

= [f1(0) + f2(2z) − f3(z) − f4( − z)]

+ [f1( − 4z) + f2(0) − f3( − 2z) − f4( − 2z)]

− [f1( − 4z) + f2(2z) − f3( − z) − f4( − 3z)]

+ [f1( − 3z) + f2(3z) − f3(0) − f4( − 3z)]

+ [f1( − z) + f2( − z) − f3( − z) − f4(0)]

− [f1( − z) + f2(3z) − f3(z) − f4( − 2z)]

− [f1( − 3z) + f2( − z) − f3( − 2z) − f4( − z)],

to get

‖f1(0) + f2(0) − f3(0) − f4(0‖ ≤ 7δ. (44)

Otherwise, if y �= 0 or x �= 0, we choose a z = 2ny if y �= 0 and we choose
z = 2nx if x �= 0 with n ∈ N large enough. We can easily verify that ‖y − z‖ ≥ d ,
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‖y−2z‖ ≥ d , ‖z‖ ≥ d and ‖x−z‖ ≥ d . Therefore, from (39), the triangle inequality
and the following decomposition:

[f1(x + y) + f2(x − y) − f3(x) − f4(y)]

= [f1(x + y) + f2(x − y + 2z) − f3(x + z) − f4(y − z)]

+ [f1(x + y − 4z) + f2(x − y) − f3(x − 2z) − f4(y − 2z)]

− [f1(x + y − 4z) + f2(x − y + 2z) − f3(x − z) − f4(y − 3z)]

+ [f1(x + y − 3z) + f2(x − y + 3z) − f3(x) − f4(y − 3z)]

+ [f1(x + y − z) + f2(x − y − z) − f3(x − z) − f4(y)]

− [f1(x + y − z) + f2(x − y + 3z) − f3(x + z) − f4(y − 2z)]

− [f1(x + y − 3z) + f2(x − y − z) − f3(x − 2z) − f4(y − z)],

we get

‖f1(x + y) + f2(x − y) − f3(x) − f4(y)‖ ≤ 7δ. (45)

Consequently, inequality (45) holds true for all x, y ∈ E. From Theorem 3 with
ε = 0, the rest of the proof follows.

Corollary 2 The functions f1, f2, f3, f4 : E → F with fi(0) = 0, i = 1, 2, 3, 4
satisfy Eq. (8) if and only if

‖f1(x + y) + f2(x − y) − f3(x) − f4(y)‖ → 0 as ‖x‖ + ‖y‖ → +∞.

Theorem 5 Suppose that a normed vector space E and a Banach space F are
given. If the functions f1, f2, f3, f4 : E → F satisfy the inequality

‖f1(x + y) + f2(x − y) − f3(x) − f4(y)‖ ≤ δ + ε(‖x‖p + ‖y‖p) (46)

for all (x, y) ∈ B = {(x, y) ∈ E2 : ‖x‖p + ‖y‖p ≥ Mp} where δ, ε,p are given pos-
itive numbers such that 0 < p < 1, then there exists a unique quadratic mapping
q : E → F , and exactly two additive functions a1, a2 : E → F such that

‖f1(x) − 1

2
q(x) − 1

2
a1(x) − 1

2
a2(x) − f1(0)‖

≤ 308

6
δ + 44

6
ε[12 × 7p]Mp + ε

(
1

2
+ 4 + 2p−1

4 − 2p
+ 3 + 2p−1 + 22−p

2 − 2p

)
‖x‖p,

(47)

‖f2(x) − 1

2
q(x) − 1

2
a1(x) + 1

2
a2(x) − f2(0)‖

≤ 308

6
δ + 44

6
ε[12 × 7p]Mp + ε

(
1

2
+ 4 + 2p−1

4 − 2p
+ 3 + 2p−1 + 22−p

2 − 2p

)
‖x‖p,

(48)
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‖f3(x) − a1(x) − q(x) − f3(0)‖ ≤ 140

3
δ + 20

3
ε[12 × 7p]Mp

+ ε

(
2p + 8

4 − 2p
+ 4 + 2p

2 − 2p

)
‖x‖p (49)

and

‖f4(x) − a2(x) − q(x) − f4(0)‖ ≤ 224

3
δ + 32

3
ε[12 × 7p]Mp

+ ε

(
16 − 2p

4 − 2p
+ 4 + 2p

2 − 2p

)
‖x‖p (50)

for all x ∈ E.

Proof Assume ‖x‖p + ‖y‖p < Mp. If x = y = 0, we choose a z ∈ E with
‖z‖ = M . Otherwise, we take

z =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(‖x‖ + M)
x

‖x‖ , if ‖x‖ ≥ ‖y‖;

(‖y‖ + M)
y

‖y‖ , if ‖y‖ ≥ ‖x‖.

It’s clear that ‖z‖ ≥ M ,

‖x + z‖p + ‖y − z‖p ≥ max{‖x + z‖p, ‖y − z‖p} ≥ Mp,

‖x − 2z‖p + ‖y − 2z|p ≥ max{‖x − 2z‖p, ‖y − 2z|p} ≥ Mp,

‖x − z‖p + ‖y − 3z‖p ≥ max{‖x − z‖p, ‖y − 3z‖p} ≥ Mp,

‖x − 2z‖p + ‖y − z‖p ≥ max{‖x − 2z‖p, ‖y − z‖p} ≥ Mp,

‖x + z‖p + ‖y − 2z‖p ≥ max{‖x + z‖p, ‖y − 2z‖p} ≥ Mp,

‖y‖p + ‖x − z‖p ≥ ‖x − z‖p ≥ Mp,

‖x‖p + ‖y − 3z‖p ≥ ‖y − 3z‖p ≥ Mp,

and
max{‖x + z‖, ‖y − z‖, ‖x − 2z‖, ‖y − 2z‖, ‖y − 3z‖} < 7M.

Consequently, we obtain

[f1(x + y) + f2(x − y) − f3(x) − f4(y)]
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= [f1(x + y) + f2(x − y + 2z) − f3(x + z) − f4(y − z)]

+ [f1(x + y − 4z) + f2(x − y) − f3(x − 2z) − f4(y − 2z)]

− [f1(x + y − 4z) + f2(x − y + 2z) − f3(x − z) − f4(y − 3z)]

+ [f1(x + y − 3z) + f2(x − y + 3z) − f3(x) − f4(y − 3z)]

+ [f1(x + y − z) + f2(x − y − z) − f3(x − z) − f4(y)]

− [f1(x + y − z) + f2(x − y + 3z) − f3(x + z) − f4(y − 2z)]

− [f1(x + y − 3z) + f2(x − y − z) − f3(x − 2z) − f4(y − z)].

Therefore, in view of inequality (46) and the triangle inequality, we get

‖f1(x + y) + f2(x − y) − f3(x) − f4(y)‖ ≤ 7δ + ε[12 × 7p]Mp (51)

+ ε(‖x‖p + ‖y‖p).

Then, inequality (51) holds true for all x, y ∈ E. According to Theorem 3, the
rest of the proof follows.

In the following corollaries, we prove the stability for the Drygas functional
equation

f (x + y) + f (x − y) = 2f (x) + f (y) + f ( − y), x, y ∈ E (52)

in a restricted domain

B = {(x, y) ∈ E2 : ‖x‖p + ‖y‖p ≥ Mp}
and

C = {(x, y) ∈ E2 : ‖x‖ ≥ d or ‖y‖ ≥ d}.
As an application, we use the result for the study of an asymptotic behavior of

that equation.

Corollary 3 Suppose that a normed vector space E and a Banach space F are
given. Let δ, ε ≥ 0 and M ,p ≥ 0 with 0 < p < 1 and let f : E → F a mapping
which satisfies the inequality

‖f (x + y) + f (x − y) − 2f (x) − f (y) − f (−y)‖ ≤ δ + ε(‖x‖p + ‖y‖p) (53)

for all (x, y) ∈ B = {(x, y) ∈ E2 : ‖x‖p + ‖y‖p ≥ Mp}. Then, there exists a unique
additive mapping a : E → F and a unique quadratic mapping q : E → F such
that

‖f (x) − 1

2
a(x) − 1

2
q(x)‖ ≤ 143

6
δ + 20

6
ε[12 × 7p]Mp

+ ε

(
2p + 8

4 − 2p
+ 2p + 4

2 − 2p

)
‖x‖p (54)

for all x ∈ E.
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Corollary 4 Suppose that a normed vector space E and a Banach space F are
given. A mapping f : E → F with f (0) = 0 is a solution of the Drygas functional
Eq. (52) if and only if

‖f (x + y) + f (x − y) − 2f (x) − f (y) − f (−y)‖ → 0 as ‖x‖ + ‖y‖ → +∞.

4 Stability of Eq. (9) on Restricted Domain

In this section, we will investigate the Hyers–Ulam stability of the Pexider functional
equation

f (x + y) + g(x + σ (y)) = k(x) + h(y), x, y ∈ E,

on a restricted domain C = {(x, y) ∈ E2 : ‖x‖ ≥ d or ‖y‖ ≥ d}.
Theorem 6 Let a normed vector spaceE and a Banach spaceF are given. Suppose
d ≥ 0 and δ ≥ 0 be given. Assume that the mappings f1, f2, f3, f4 : E → F satisfy
the inequality

‖f1(x + y) + f2(x + σ (y)) − f3(x) − f4(y)‖ ≤ δ (55)

for all (x, y) ∈ C. Then, there exists a unique function q : E → F solution of Eq. (4),
there exists a function v : E → F solution of equation

v(x + y) = v(x + σ (y)), x, y ∈ E, (56)

there exists exactly two additive functions A1,A2 : E → F such that Ai ◦ σ = −Ai

(i=1,2)

‖f1(x) − 1

2
A1(x) − 1

2
A2(x) − 1

2
v(x) − 1

2
q(x) − f1(0)‖ ≤ 133δ, (57)

‖f2(x) + 1

2
A1(x) − 1

2
A2(x) + 1

2
v(x) − 1

2
q(x) − f2(0)‖ ≤ 133δ, (58)

‖f3(x) − A2(x) − q(x) − f3(0)‖ ≤ 112δ (59)

and

‖f4(x) − A1(x) − q(x) − f4(0)‖ ≤ 112δ (60)

for all x ∈ E.

Proof Let (x, y) ∈ E2\C. If x = y = 0, then we have

2[f1(0) + f2(0) − f3(0) − f4(0)]

= 2[f1(0) + f2(0) − f3(−z − σ (z)) − f4(z + σ (z))]
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− [f1(−σ (z)) + f2(−z) − f3(−z − σ (z)) − f4(z)]

+ [f1(−σ (z)) + f2(−σ (z)) − f3(−σ (z)) − f4(0)]

− [f1(−z) + f2(−σ (z)) − f3(−z − σ (z)) − f4(σ (z))]

+ [f1(z) + f2(σ (z)) − f3(0) − f4(z)]

− [f1(z) + f2(z) − f3(−σ (z)) − f4(z + σ (z))]

+ [f1(σ (z)) + f2(z) − f3(0) − f4(σ (z))]

− [f1(σ (z)) + f2(σ (z)) − f3( − z) − f4(z + σ (z))]

+ [f1(−z) + f2(−z) − f3(−z) − f4(0)]

for all z ∈ E. Now if we choose z = 2nx0, with x0 �= 0, x0 + σ (x0) �= 0 and n large
enough, we obtain

‖f1(0) + f2(0) − f3(0) − f4(0)‖ ≤ 5δ. (61)

If x �= 0 and y �= 0, we choose z = 2nx or z = 2ny with n ∈ N. Case
1: σ (y) �= −y and σ (x) �= −x. For n large enough, we can easily verify that
‖−x − σ (z)‖ ≥ d , ‖−x + z‖ ≥ d , ‖x + z + σ (z)‖ ≥ d , ‖x − z − σ (z)‖≥d ,
‖y + z + σ (z)‖ ≥ d , ‖y − z − σ (z)‖ ≥ d , ‖ − y − σ (z)‖ ≥ d , and ‖ − y + z‖ ≥ d .

Therefore, from (39), the triangle inequality and the following decomposition

2[f1(x + y) + f2(x + σ (y)) − f3(x) − f4(y)]

= [f1(x + y) + f2(x + σ (y)) − f3(x − z − σ (z)) − f4(y + z + σ (z))]

+ [f1(x + y) + f2(x + σ (y)) − f3(x + z + σ (z)) − f4(y − z − σ (z))]

− [f1(−σ (z)) + f2(x − σ (x) − z) − f3(x − z − σ (z)) − f4(−x + z)]

+ [f1(−σ (z)) + f2(−y + σ (y) − σ (z)) − f3(−y − σ (z)) − f4(y)]

− [f1(z) + f2(x − σ (x) + σ (z)) − f3(x + z + σ (z)) − f4(−x − σ (z))]

+ [f1(−σ (z)) + f2(x − σ (x) − z) − f3(x) − f4(−x − σ (z))]

+ [f1(z) + f2(x − σ (x) + σ (z)) − f3(x) − f4( − x + z)]

+ [f1(z) + f2(−y + σ (y) + z) − f3(−y + z) − f4(y)]

− [f1(−σ (z)) + f2( − y + σ (y) − σ (z)) − f3(−y + z) − f4(y − z − σ (z))]

− [f1(z) + f2(−y + σ (y) + z) − f3(−y − σ (z)) − f4(y + z + σ (z))],

we get

‖f1(x + y) + f2(x + σ (y)) − f3(x) − f4(y)‖ ≤ 5δ. (62)

Case 2: σ (y) = −y or σ (x) = −x. Subcase 2.1: σ (y) = −y. By using the same
decomposition in Theorem 4, we obtain

‖f1(x + y) + f2(x − y) − f3(x) − f4(y)‖ ≤ 7δ. (63)
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Subcase 2.2: σ (x) = −x. Inequality (39) implies that

‖f1(y + x) + f2 ◦ σ (y − x) − f3(x) − f4(y)‖ ≤ δ. (64)

Now, by using the decomposition in Theorem 4, we get

‖f1(y + x) + f2 ◦ σ (y − x) − f3(x) − f4(y)‖ ≤ 7δ. (65)

Finally, in view of inequalities (62), (63), (64), and (65), we obtain

‖f1(x + y) + f2(x + σ (y)) − f3(x) − f4(y)‖ ≤ 7δ (66)

for all x, y ∈ E. According to Theorem 3.1 [6] one gets that there exists a unique
function q : E → F solution of Eq. (4), there exists a function v : E → F solution
of Eq. (56) and there exists exactly two additive functions A1,A2 : E → F such
that Ai ◦ σ = −Ai (i=1,2), and which satisfy the inequalities (57), (58), (59), and
(60). This completes the proof of theorem.

Corollary 5 The mappings f1, f2, f3, f4 : E → F with f1(0) = f2(0) = f3(0) =
f4(0) = 0 are solutions of Eq. (9) if and only if

‖f1(x + y) + f2(x + σ (y)) − f3(x) − f4(y)‖ → 0 as ‖x‖ + ‖y‖ → +∞.

Corollary 6 If the mappings f1, f2, f3, f4 : E → F satisfy the inequality

‖f1(x + y) + f2(x − y) − f3(x) − f4(y)‖ ≤ δ (67)

for all (x, y) ∈ C, then there exists a unique function q : E → F solution of Eq. (4),
there exists α ∈ F , there exist exactly two additive functions A1,A2 : E → F such
that

‖f1(x) − 1

2
A1(x) − 1

2
A2(x) − 1

2
q(x) − f1(0) − α‖ ≤ 133δ, (68)

‖f2(x) + 1

2
A1(x) − 1

2
A2(x) − 1

2
q(x) − f2(0) + α‖ ≤ 133δ, (69)

‖f3(x) − A2(x) − q(x) − f3(0)‖ ≤ 112δ (70)

and

‖f4(x) − A1(x) − q(x) − f4(0)‖ ≤ 112δ (71)

for all x ∈ E.



On the Generalized Hyers–Ulam Stability of the Pexider Equation . . . 295

Corollary 7 The mappings f1, f2, f3, f4 : E → F with f1(0) = f2(0) = f3(0) =
f4(0) = 0 are solutions of Eq. (8) if and only if

‖f1(x + y) + f2(x − y) − f3(x) − f4(y)‖ → 0 as ‖x‖ + ‖y‖ → +∞.

Corollary 8 If the mappings f , g,h : E → F satisfy the inequality

‖f (x + y) − g(x) − h(y)‖ ≤ δ (72)

for all (x, y) ∈ C, then there exists a unique additive function A : E → F such that

‖f (x) − A(x) − f (0)‖ ≤ 266δ, (73)

‖g(x) − A(x) − g(0)‖ ≤ 112δ (74)

and

‖h(x) − A(x) − h(0)‖ ≤ 112δ (75)

for all x ∈ E.

Corollary 9 The mappings f , g,h : E → F with f (0) = g(0) = h(0) = 0 are
solutions of Eq. (7) if and only if

‖f (x + y) − g(x) − h(y)‖ → 0 as ‖x‖ + ‖y‖ → +∞.

Corollary 10 The mapping f : E → F with f (0) = 0, is additive if and only if

‖f (x + y) − f (x) − f (y)‖ → 0 as ‖x‖ + ‖y‖ → +∞.

Corollary 11 The mapping f : E → F with f (0) = 0 is a quadratic function if
and only if

‖f (x + y) + f (x − y) − 2f (x) − 2f (y)‖ → 0 as ‖x‖ + ‖y‖ → +∞.

Corollary 12 The mapping f : E → F with f (0) = 0 is a solution of the quadratic
functional Eq. (4) if and only if

‖f (x + y) + f (x + σ (y)) − 2f (x) − 2f (y)‖ → 0 as ‖x‖ + ‖y‖ → +∞.

In the following corollaries, we state the Hyers–Ulam stability for Drygas
functional equation

f (x + y) + f (x + σ (y)) = 2f (x) + f (y) + f (σ (y)), (76)

in the restricted domain C.
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Corollary 13 If the mapping f : E → F satisfies the inequality

‖f (x + y) + f (x + σ (y)) − 2f (x) − f (y) − f (σ (y))‖ ≤ δ (77)

for all (x, y) ∈ C, then there exists a unique additive mapping A : E → F and a
unique quadratic mapping q : E → F such that A ◦ σ = −A and

‖f (x) − q(x) − A(x) − f (0)‖ ≤ 112δ (78)

for all x ∈ E.

Corollary 14 The mapping f : E → F with f (0) = 0 is a solution of Drygas
functional Eq. (76) if and only if

‖f (x+y)+f (x+σ (y))−2f (x)−f (y)−f (σ (y))‖ → 0 as ‖x‖+‖y‖ → +∞.
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Hyers-Ulam Stability of Some Differential
Equations and Differential Operators

Dorian Popa and Ioan Raşa

Abstract This chapter contains results on generalized Hyers–Ulam stability, ob-
tained by the authors, for linear differential equations, linear differential operators
and partial differential equations in Banach spaces. As a consequence we improve
some known estimates of the difference between the perturbed and the exact solution.

Keywords Hyers–Ulam stability · Differential operators · Linear differential
equations · Partial differential equations

1 Introduction

In 1940, on a talk given at Wisconsin University, S. M. Ulam posed the following
problem: “Under what conditions does there exist an homomorphism near an ap-
proximately homomorphism of a complete metric group?”, more precisely: “Given
a metric group (G, ·, ρ), a number ε > 0 and a mapping f : G → G which
satisfies the inequality ρ(f (xy), f (x)f (y)) < ε for all x, y ∈ G, does there exist
a homomorphism a of G and a constant k > 0, depending only on G, such that
ρ(a(x), f (x)) ≤ kε for all x ∈ G?”

If the answer is affirmative, the equation a(xy) = a(x)a(y) of the homomorphism
is called stable (for more details see [39]). A year later, D. H. Hyers in [12] gave
an answer to the problem of Ulam for the Cauchy functional equation in Banach
spaces. “Let E1,E2 be two real Banach spaces and ε > 0. Then, for every mapping
f : E1 → E2 satisfying

‖f (x + y) − f (x) − f (y)‖ ≤ ε (1)
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for all x, y ∈ E1, there exists a unique additive mapping g : E1 → E2 with the
property

‖f (x) − g(x)‖ ≤ ε, ∀ x ∈ E1.
′′ (2)

After Hyers’result many papers dedicated to this topic, extending Ulam’s problem
to other functional equations and generalizing Hyers’ result in various directions,
were published (see e.g., [3–7, 10, 11, 13, 14, 18, 28, 29]. A new direction of
research in the stability theory of functional equations, called today Hyers–Ulam
stability, was opened by the papers of Aoki and Rassias by considering instead of
ε in (1) a function depending on x and y ([2, 33]). Obłoza seems to be the first
author who investigated Hyers–Ulam stability of differential equations [26, 27].
Later Alsina and Ger proved that for every differentiable mapping f : I → R

satisfying |f ′(x) − f (x)| ≤ ε for every x ∈ I , where ε > 0 is a given number and
I is an open interval of R, there exists a differentiable function g : I → R with the
property g′(x) = g(x) and |f (x) − g(x)| ≤ 3ε for all x ∈ I . The result of Alsina
and Ger [1] was extended by Miura, Miyajima and Takahasi [24, 25, 37] and by
Takahasi, Takagi, Miura and Miyajima [38] to the Hyers–Ulam stability of the first
order linear differential equations and linear differential equations of higher order
with constant coefficients. Furthermore, S.-M. Jung [15, 16, 17, 19] obtained results
on the stability of linear differential equations extending the results of Takahasi,
Takagi and Miura. I. A. Rus obtained some results on the stability of differential
and integral equations using Gronwall lemma and the technique of weakly Picard
operators [35, 36]. Recently, G. Wang, M. Zhou and L. Sun [40] and Y. Liand Y.
Shen [20] proved the Hyers–Ulam stability of the linear differential equation of
the first order and the linear differential equation of the second order with constant
coefficients by using the method of integral factor.

An extension of the results given in [16, 20, 25] was obtained by D. S. Cîmpean
and D. Popa, and by D. Popa and I. Raşa for the linear differential equation of nth
order with constant coefficients and the linear differential operator of nth order with
nonconstant coefficients [8, 30, 31]. It seems that the first paper on Hyers–Ulam
stability of partial differential equations was written by Prastaro and Rassias [32].
For recent results on this subject we refer the reader to [9, 21–23, 34].

Throughout this paper by (X, ‖·‖) we denote a Banach space over the field K (K
is one of the fields R or C). In what follows by �z, we denote the real part of the
complex number z.

2 Stability of the Linear Differential Equation of Order One

In what follows, I = (a, b), a, b ∈ R ∪ {±∞} is an open interval in R, c ∈ [a, b],
C ∈ R, f ∈ C(I ,X), λ ∈ C(I ,K) and ε ∈ C(I , R) with ε ≥ 0. We deal with the
stability of the linear differential equation (see [30])

y′(x) − λ(x)y(x) = f (x), x ∈ I. (3)
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For a function g : (a, b) → X, define g(b) := lim
x→b

g(x) and g(a) := lim
x→a

g(x), if

the limits exist. Let L ∈ C1(I ,K) be an antiderivative of λ, i.e., L′ = λ on I . Define
ψc : I → R by

ψc(x) := e�L(x)

∣∣∣∣
∫ x

c

e−�L(t)ε(t)dt

∣∣∣∣ . (4)

If c ∈ {±∞} then we suppose that the integral which defines ψc is convergent for
every x ∈ I . Therefore, ψc(c) = 0 for all c ∈ I .

The following well-known lemma is useful in the proof of our stability results.

Lemma 1 The general solution of the equation

y ′(x) − λ(x)y(x) = f (x), x ∈ I (5)

is given by

y(x) = eL(x)

(∫ x

x0

f (t)e−L(t)dt + k

)
(6)

where x0 ∈ I and k ∈ X is an arbitrary constant.
The first result onAoki–Rassias stability for a first order linear differential equation

is contained in the next theorem.

Theorem 1 For every y ∈ C1(I ,X) satisfying

‖y ′(x) − λ(x)y(x) − f (x)‖ ≤ ε(x), x ∈ I (7)

there exists a unique solution u ∈ C1(I ,X) of the Eq. (5) with the property

‖y(x) − u(x)‖ ≤ ψc(x), x ∈ I. (8)

Proof Existence. Let y ∈ C1(I ,X) satisfying (7) and define

g(x) := y ′(x) − λ(x)y(x) − f (x), x ∈ I. (9)

Then, according to Lemma 1, it follows

y(x) = eL(x)

(∫ x

x0

e−L(t)f (t)dt +
∫ x

x0

e−L(t)g(t)dt + k

)
, x0 ∈ I , k ∈ X.

Let G : I → X be given by

G(x) :=
∫ x

c

e−L(t)g(t)dt , x ∈ I. (10)

If c ∈ {±∞}, the integral which defines G is convergent since

‖g(t)‖ ≤ ε(t) for all t ∈ I.

(See the remark after (4)).
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Now let u be defined by

u(x) := eL(x)

(∫ x

x0

f (t)e−L(t)dt + k − G(x0)

)
.

Then, obviously u satisfies the Eq. (5) and we get

‖y(x) − u(x)‖ = e�L(x)

∥∥∥∥
∫ x

x0

g(t)e−L(t)dt + G(x0)

∥∥∥∥ = e�L(x)‖G(x)‖

≤ e�L(x)

∣∣∣∣
∫ x

c

‖e−L(t)g(t)‖
∣∣∣∣ dt

≤ e�L(x)

∣∣∣∣
∫ x

c

e−�L(t)ε(t)dt

∣∣∣∣

= ψc(x), x ∈ I.

Therefore, the existence is proved.
Uniqueness. Suppose that for a y satisfying (7) there exist u1, u2, u1 �= u2, satisfying
(5) and (8). Then

uj (x) = eL(x)

(∫ x

x0

f (t)e−L(t)dt + kj

)
, kj ∈ X, j = 1, 2, k1 �= k2

and

e�L(x)‖k1 − k2‖ = ‖u1(x) − u2(x)‖
≤ ‖u1(x) − y(x)‖ + ‖y(x) − u2(x)‖

≤ 2e�L(x)

∣∣∣∣
∫ x

c

e−�L(t)ε(t)dt

∣∣∣∣

for all x ∈ I . Therefore,

‖k1 − k2‖ ≤ 2

∣∣∣∣
∫ x

c

e−�L(t)ε(t)dt

∣∣∣∣ , x ∈ I. (11)

Now letting x → c in (11) it follows k1 = k2, contradiction.
Theorem 1 leads to the following result for the Cauchy problem of Eq. (5).

Corollary 1 For every y ∈ C1(I ,X) satisfying

⎧
⎪⎪⎨

⎪⎪⎩

‖y ′(x) − λ(x)y(x) − f (x)‖ ≤ ε(x)

y(c) = C

, x ∈ I
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there exists a unique solution u ∈ C1(I ,X) of the Cauchy problem
⎧
⎪⎪⎨

⎪⎪⎩

u′(x) − λ(x)u(x) − f (x) = 0

u(c) = C

, x ∈ I ,

with the property
‖y(x) − u(x)‖ ≤ ψc(x), x ∈ I.

The result obtained in Theorem 1 is more general than the result of [8, [Lemma
2.2]] and [16, Theorem 1] since it gives a better estimation of the difference between
the approximate solution and the exact solution of Eq. (5). This is obvious in the
cases c = a and c = b, but for c ∈ (a, b) this better approximation is not always
valid on the entire interval (a, b). We will show in the next example that in some
cases, this estimation is global for c ∈ (a, b) and we will find the optimal ψc.

Example 1 Let θ ∈ R \ {0} and ε(x) = θ�λ(x), x ∈ I . Then

ψc(x) = |θ |·|1 − e�(L(x)−L(c))|, x ∈ I.

First we consider the case θ > 0, i.e., �λ(x) ≥ 0 for all x ∈ I . Then,

�L′(x) ≥ 0, x ∈ I ,

hence, �L is increasing on I ,

ψc(x) = θ ·

⎧
⎪⎪⎨

⎪⎪⎩

e�L(x)−�L(c) − 1, x ∈ [c, b),

1 − e�L(x)−�L(c), x ∈ (a, c),

and
‖ψc‖∞ = θmax

{
e�(L(b)−L(c)) − 1, 1 − e�(L(a)−L(c))

}
.

Obviously ‖ψc‖∞ is minimum for e�(L(b)−L(c)) − 1 = 1 − e�(L(a)−L(c)), i.e.,

e�L(c) = e�L(a) + e�L(b)

2
.

The relation from above gives c̃ optimal, therefore, the following estimation holds

‖y − u‖∞ ≤ ‖ψc̃‖∞,

where

‖ψc̃‖∞ = θ (e�(L(b)−L(̃c)) − 1) = θ · e
�L(b) − e�L(a)

e�L(b) + e�L(a)

i.e.,

min
c∈I ‖ψc‖∞ = θ · e

�L(b) − e�L(a)

e�L(b) + e�L(a)
. (12)
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The case θ < 0 leads analogously to

min
c∈I ‖ψc‖∞ = −θ · e

�L(a) − e�L(b)

e�L(b) + e�L(a)
;

therefore for all θ ∈ R \ {0}, we have

min
c∈I ‖ψc‖∞ = |θ | · |e�L(b) − e�L(a)|

e�L(b) + e�L(a)
.

Remark 1 Now let λ be constant with �λ �= 0. Then, L(x) = λx and

min
c∈I ‖ψc‖∞ = |θ | · |eb�λ − ea�λ|

eb�λ + ea�λ
. (13)

Taking now an arbitrary δ > 0 and θ = δ

|�λ| it is easy to check that

min
c

‖ψc‖∞ <
δ

|�λ| (1 − e−|�(λ)|(b−a))

if a, b ∈ R and

min
c

‖ψc‖∞ = δ

|�λ|
if a = −∞ or b = +∞, therefore, we improve the result obtained in [[8], [Corollary
2.4]], along all interval I in the case of classical Hyers–Ulam stability.

More precisely we have the following result.

Corollary 2 Suppose that λ ∈ C \ {0} and δ ≥ 0. Then, for every y ∈ C1(I ,X)
satisfying

‖y ′(x) − λy(x) − f (x)‖ ≤ δ, x ∈ I

there exists a unique solution of (5) such that

‖y(x) − u(x)‖ ≤

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ

|�λ| · |eb�λ − ea�λ|
eb�λ + ea�λ

, if a, b ∈ R

δ

|�λ| , if a = −∞ or b = +∞.

3 Stability of the Linear Differential Equation of Higher Order
with Constant Coefficients

The results proved in the previous theorems and corollaries lead to stability of the
linear differential equation with constant coefficients (see [31]). We will improve
in what follows the results obtained in [8] and [25] for this equation. Suppose that
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(X, ‖ · ‖) is a Banach space over C and a0, a1, . . . , an−1 ∈ C, n ≥ 1, are given
numbers. We study the stability of the linear differential equation

y(n)(x) −
n−1∑

j=0

ajy
(j )(x) = f (x), x ∈ I. (14)

Let

P (z) = zn −
n−1∑

j=0

aj zj (15)

be the characteristic polynomial of the Eq. (14) and denote by r1, r2, . . . , rn the
complex roots of (15). For λ ∈ C and c ∈ [a, b] define

φλ(h)(x) := e�(λ)x

∣∣∣∣
∫ x

c

e−�(λ)t h(t)dt

∣∣∣∣ , x ∈ I (16)

for all h with the property that the integral from the right hand side of (16) is con-
vergent. We suppose that φrk ◦ φrk−1 ◦ . . . ◦ φr1 (ε) exist for every k ∈ {1, 2, . . . , n} if
c = a or c = b.

Theorem 2 For every y ∈ Cn(I ,X) with the property
∥∥∥∥∥∥
y(n)(x) −

n−1∑

j=0

ajy
(j )(x) − f (x)

∥∥∥∥∥∥
≤ ε(x), x ∈ I (17)

there exists a solution of the Eq. (14) such that

‖y(x) − u(x)‖ ≤ φrn ◦ φrn−1 ◦ . . . ◦ φr1 (ε)(x), x ∈ I. (18)

Proof The proof by induction is analogous to the proof of [8, Theorem 2.3].
For n = 1, Theorem 2 holds in virtue of Theorem 1.
Now suppose that Theorem 2 holds for an n ∈ N. We have to prove that for all

y ∈ Cn+1(I ,X) satisfying the relation
∥∥∥∥∥∥
y(n+1)(x) −

n∑

j=0

ajy
(j )(x) − f (x)

∥∥∥∥∥∥
≤ ε(x), ∀ x ∈ I (19)

there exists a unique solution u ∈ Cn+1(I ,X) satisfying

u(n+1)(x) −
n∑

j=0

aju(j )(x) − f (x) = 0, ∀ x ∈ I (20)
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such that

‖y(x) − u(x)‖ ≤ φrn+1 ◦ φrn ◦ . . . ◦ φr1 (ε)(x), ∀ x ∈ I. (21)

Let y ∈ Cn+1(I ,X) be a mapping satisfying (19). According to Vieta’s relations
we get

‖y(n+1)(x)−(r1 + . . .+ rn+1)y(n)(x)+ . . .+ (−1)n+1r1r2 . . . rn+1y(x)−f (x)‖≤ε(x)

or

‖(y(n+1)(x) − rn+1y
(n)(x)) − (r1 + . . . + rn)(y(n)(x) − rn+1y

(n−1)(x)) + . . .+

+(−1)nr1 . . . rn(y ′(x) − rn+1y(x)) − f (x)‖ ≤ ε(x), x ∈ I. (22)

Let z be given by
z := y ′ − rn+1y.

Then, (22) becomes

‖z(n)(x) − (r1 + . . . + rn)z(n−1)(x) + . . . + (−1)nr1 . . . rnz(x) − f (x)‖ ≤ ε(x)

for all x ∈ I . Therefore, in virtue of the induction hypothesis, there exists a unique
v such that

v(n)(x) − (r1 + . . . + rn)v(n−1)(x) + . . . + (−1)nr1 . . . rnv(x) = f (x), x ∈ I

and
‖z(x) − v(x)‖ ≤ φrn ◦ . . . ◦ φr1 (ε)(x), x ∈ I

which is equivalent to

‖y ′(x) − rn+1(x)y(x) − v(x)‖ ≤ φrn ◦ . . . ◦ φr1 (ε)(x).

Taking account of Theorem 1, it follows that there exists a unique mapping u ∈
C1(I ,X) such that

u′(x) − rn+1u(x) − v(x) = 0, x ∈ I , (23)

and
‖y(x) − u(x)‖ ≤ φrn+1 ◦ φrn ◦ . . . ◦ φr1 (ε)(x), x ∈ I.

Finally taking into account the properties of u and v, it follows that u satisfies
(20). The theorem is proved.
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Theorem 3 Let δ be a positive number and suppose that all the roots of the char-
acteristic Eq. (15) have the property �rk �= 0, 1 ≤ k ≤ n. Then, for every mapping
y ∈ Cn(I ,X) satisfying the relation

∥∥∥∥∥∥
y(n)(x) −

n−1∑

j=0

ajy
(j )(x) − f (x)

∥∥∥∥∥∥
≤ δ, x ∈ I

there exists a solution u ∈ Cn(I ,X) of the equation

y(n)(x) −
n−1∑

j=0

ajy
(j )(x) − f (x) = 0, x ∈ I ,

such that
‖y(x) − u(x)‖ ≤ L

where

L =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ ·
n∏

k=1

1

|�rk| · |eb�rk − ea�rk |
eb�rk + ea�rk

, if a, b ∈ R,

δ
n∏

k=1

|�rk|
, if a = −∞ or b = +∞.

Proof The proof follows analogously to the proof of Theorem 2 taking account of
Corollary 2.

Remark 2 The uniqueness of the solution u in Theorem 3 holds if its characteristic
polynomial P has no pure imaginary roots and I = R (see [16]).

4 Stability of First Order Linear Differential Operator

In what follows, I = (a, b), a, b ∈ R∪{±∞} is an open interval, c ∈ (a, b), (X, ‖·‖)
is a Banach space over C, Cn(I ,X) is the set of all n-times strongly differentiable
functions f : I → X with f (n) continuous on I , n ∈ N, and C(I ,X) is the set of all
continuous functions f : I → X.

Let also λ, a1, . . . , an ∈ C(I , C) be given. We deal with the Hyers–Ulam stability
of the linear differential operator Dn : Cn(I ,X) → C(I ,X) defined by

Dn(y) = y(n) + a1y
(n−1) + . . . + any, y ∈ Cn(I ,X). (24)

For every h ∈ Cn(I ,X), define ‖h‖∞ by

‖h‖∞ = sup{‖h(t)‖ : t ∈ I }. (25)
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Then, ‖·‖∞ is a gauge function on Cn(I ,X). (Recall that ρ : Y → [0, ∞] is a
gauge function on the linear complex space Y if ρ(αx) = |α|ρ(x) for all x ∈ Y and
all α ∈ C, see [25]). For an arbitrary function f : A → B we denote by R(f ) the
range of f , i.e., R(f ) = {y | y = f (x), x ∈ A}.
Definition 1 The operator Dn is said to be stable in Hyers–Ulam sense if for every
ε ≥ 0 there exists δ ≥ 0 such that for every f ∈ R(Dn) and every y ∈ Cn(I ,X)
satisfying

‖Dn(y) − f ‖∞ ≤ ε (26)

there exists u ∈ Cn(I ,X) such that Dn(u) = f and

‖y − u‖∞ ≤ δ. (27)

Let ε be a non-negative number. As in Sect. 2, for a function g : (a, b) → X define
g(a) := lim

x→a
g(x), g(b) := lim

x→b
g(x), if the limits exist. Let L be an antiderivative of

λ, i.e., L ∈ C1(I , C) and L′ = λ on I . For n = 1 and a1 = λ, denote D1 by Dλ, i.e.

Dλ = y ′ + λy, y ∈ C1(I ,X).

The next results concern the Hyers–Ulam stability of the first order linear
differential operator and improve some results obtained in [24].

Theorem 4 Suppose that

inf
x∈I |�λ(x)| := m > 0. (28)

Then, for every f ∈ C(I ,X) and every y ∈ C1(I ,X) satisfying

‖Dλ(y) − f ‖∞ ≤ ε (29)

there exists u ∈ C1(I ,X) with the properties Dλ(u) = f and

‖y − u‖∞ ≤ ε

m
· δλ (30)

where

δλ =
⎧
⎨

⎩
1 − e�L(a)−�L(b), if �λ > 0 on I ,

1 − e�L(b)−�L(a), if �λ < 0 on I.

Moreover, if one of the following conditions

i) �L(a) = −∞, if �λ > 0 on I ,

ii) �L(b) = −∞, if �λ < 0 on I ,
(31)
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is satisfied, then u is uniquely determined.

Proof From (28), it follows that �λ �= 0 on I , therefore, �λ has constant sign on
I , in view of its continuity. We conclude that �L is strictly monotone on I , hence,
there exist �L(a) and �L(b), finite or infinite.
Existence. Let y ∈ C1(I ,X) satisfying (29) and define

g(x) := y ′(x) + λ(x)y(x) − f (x), x ∈ I.

Then, according to Lemma 1, we get

y(x) = e−L(x)

(∫ x

x0

eL(t)f (t)dt +
∫ x

x0

eL(t)g(t)dt + k

)
, x0 ∈ I , k ∈ X. (32)

1◦ Suppose first that �λ > 0 on I . Define

G(x) :=
∫ x

a

eL(t)g(t)dt , x ∈ I.

Since I is an open interval we have to prove that G(x) is defined for all x ∈ I .
We get

‖eL(t)g(t)‖ ≤ ε · e�L(t), t ∈ I (33)

and
∫ x

a

e�L(t)dt =
∫ x

a

1

�λ(t)
· �λ(t) · e�L(t)dt ≤ 1

m

∫ x

a

(e�L(t))′dt

= 1

m
(e�L(x) − e�L(a)) ≤ 1

m
e�L(x), x ∈ I. (34)

(�L(a) < �L(x) for all x ∈ I , since �L is increasing).
From (33) and (34), it follows that G(x) is absolutely convergent for all x ∈ I .

Now defining

u(x) := e−L(x)

(∫ x

x0

eL(t)f (t)dt + k − G(x0)

)
, x ∈ I ,

and using (34) we get

‖y(x) − u(x)‖ ≤ εe−�L(x)
∫ x

a

e�L(t)dt

≤ ε

m
e−�L(x)

(
e�L(x) − e�L(a)

)

≤ ε

m

(
1 − e�L(a)−�L(b)

)
, x ∈ I.
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2◦ The case �λ < 0 can be treated analogously, setting

G(x) := −
∫ b

x

eL(t)g(t)dt , x ∈ I.

The existence is proved.
Uniqueness. Suppose that one of the conditions (i), (ii) is satisfied and for a

function y ∈ C1(I ,X) satisfying (29) there exist two solutions u1, u2 of (5), u1 �= u2,
with the property (30). Then

uj (x) = e−L(x)

(∫ x

x0

eL(t)f (t)dt + kj

)
, kj ∈ X, j = 1, 2,

with k1 �= k2, according to Lemma 1, and

e−�L(x)‖k1 − k2‖ = ‖u1(x) − u2(x)‖
≤ ‖u1(x) − y(x)‖ + ‖y(x) − u2(x)‖

≤ 2ε

m
δλ, x ∈ I. (35)

Letting in (35) x → a if (i) is satisfied, or x → b if (ii) is satisfied, it follows

∞ ≤ 2ε

m
, contradiction.

The theorem is proved.

Theorem 5 Suppose that inf
x∈I |�λ(x)| := m > 0 and let f ∈ C(I ,X). Then, for

every y ∈ C1(I ,X) satisfying

‖Dλ(y) − f ‖∞ ≤ ε (36)

there exists u ∈ C1(I ,X) with the properties Dλ(u) = f and

‖y − u‖∞ ≤ ε

m
δλ(c), (37)

where

δλ(c) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max{|1 − e�L(c)−�L(b)|, |e�L(c)−�L(a) − 1|}, if �L(a) > −∞
and �L(b) > −∞,

1, if �L(a) = −∞ or �L(b) = −∞.

(38)

Proof If �L(a) = −∞ or �L(b) = −∞, the statement follows from Theorem 1.
Suppose now that �L(a) > −∞ and �L(b) > −∞.

Similarly to the proof of Theorem 1, we get that �λ has constant sign on I and
�L is strictly monotone on I .
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Let y ∈ C1(I ,X) satisfying (36) and

g(x) := y ′(x) + λ(x)y(x) − f (x), x ∈ I.

Then, y is given by (32). Define G and u by

G(x) :=
∫ x

c

eL(t)g(t)dt

u(x) := e−L(x)

(∫ x

x0

eL(t)f (t)dt + k − G(x0)

)
, x ∈ I.

We get, analogously to the proof of Theorem 1,

‖y(x) − u(x)‖ = e−�L(x)‖g(x)‖

≤ e−�L(x)

∣∣∣∣
∫ x

c

‖eL(t)g(t)‖dt
∣∣∣∣

≤ εe−�L(x)

∣∣∣∣
∫ x

c

e�L(t)dt

∣∣∣∣ , x ∈ I. (39)

On the other hand, since �λ · e�L has constant sign on I , it follows
∣∣∣∣
∫ x

c

e�L(t)dt

∣∣∣∣ =
∣∣∣∣
∫ x

c

1

�λ(t)
· �λ(t) · e�L(t)dt

∣∣∣∣

≤ 1

m
|e�L(x) − e�L(c)|, x ∈ I. (40)

The relations (39) and (40) lead to

‖y(x) − u(x)‖ ≤ ε

m
|1 − e�L(c)−�L(x)|, x ∈ I. (41)

The relation (37) follows from (41) taking account of the monotonicity of �L.
The theorem is proved.

Remark 3 If L(a) > −∞ and L(b) > −∞ it is easy to verify that δλ(c) is minimal
in Theorem 5 for

1 − e�L(c)−�L(b) = e�L(c)−�L(a) − 1

or

e−�L(c) = e−�L(a) + e−�L(b)

2
. (42)

The relation (42) gives c̃ optimal. Note that since �L is strictly increasing and
continuous on I , c̃ exists and is unique.

Choosing c = c̃ in Theorem 5, we get

δλ (̃c) = |e−�L(a) − e−�L(b)|
e−�L(a) + e−�L(b)

, (43)

therefore, the relation (37) becomes

‖y − u‖∞ ≤ ε

m
δλ (̃c). (44)
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5 Stability of Higher Order Linear Differential Operator

The results expressed in Theorems 4 and 5 lead to the Hyers–Ulam stability of the
operator Dn defined by (24), in appropriate conditions. We suppose that there exist
r1, r2, . . . , rn ∈ C(I , C) such that

Dn = Dr1 ◦ Dr2 ◦ . . . ◦ Drn. (45)

We remark thatDn is a surjective operator as a composition of surjective operators
(Dλ is a surjective operator in view of Lemma 1).

Let Rk be an antiderivative of rk , 1 ≤ k ≤ n and f ∈ C(I ,X) an arbitrary
function.

Theorem 6 Suppose that inf
x∈I |rk(x)| := mk > 0 for every k ∈ {1, 2, . . . , n}. Then,

for every y ∈ Cn(I ,X) satisfying the relation

‖Dn(y) − f ‖∞ ≤ ε (46)

there exists u ∈ Cn(I ,X) with the properties Dn(u) = f and

‖y − u‖∞ ≤ ε

m1m2 . . . mn

δr1δr2 . . . δrn . (47)

Proof We prove the theorem by induction on n.
For n = 1, Theorem 6 holds in virtue of Theorem 4.
Now suppose that Theorem 6 holds for an n ∈ N. We have to prove that for all

y ∈ Cn+1(I ,X) satisfying

‖Dn+1(y) − f ‖∞ ≤ ε (48)

there exists u ∈ Cn+1(I ,X), Dn+1(u) = f , such that

‖y − u‖∞ ≤ ε

m1m2 . . . mn+1
δr1δr2 . . . δrn+1 . (49)

Let y ∈ Cn+1(I ,X) satisfying (48). Then

‖Dn(z) − f ‖∞ ≤ ε

with z := Drn+1 (y). Hence, in virtue of the induction hypothesis, there exists v ∈
Cn(I ,X), Dn(v) = f , and

‖z − v‖∞ ≤ ε

m1m2 . . . mn

δr1δr2 . . . δrn

which is equivalent to

‖Drn+1 (y) − v‖∞ ≤ ε

m1m2 . . . mn

δr1δr2 . . . δrn . (50)
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Then, according to Theorem 4, from (50), it follows that there exists a mapping
u ∈ C1(I ,X), Drn+1 (u) = v, and

‖y − u‖∞ ≤ ε

m1m2 . . . mn+1
δr1δr2 . . . δrn+1 .

Finally the relationsDn(v) = f andDrn+1 (u) = v lead toDn+1(u) = f . The theorem
is proved.

An analogous result follows from Theorem 5.

Theorem 7 Suppose that inf
x∈I |rk(x)| = mk > 0 for every k ∈ {1, 2, . . . , n}. Then,

for every y ∈ Cn(I ,X) satisfying

‖Dn(y) − f ‖∞ ≤ ε

there exists u ∈ Cn(I ,X), Dn(u) = f , such that

‖y − u‖∞ ≤ ε

m1m2 . . . mn

δr1 (c) . . . δrn (c). (51)

Proof Analogous to the proof of Theorem 6.

Remark 4 If �(Rk(a)) > −∞ for all k ∈ {1, 2, . . . , n}, choosing c = c̃ in Theorem
7 the estimate (51) can be improved to

‖y − u‖∞ ≤ ε

m1m2 . . . mn

n∏

k=1

|e−�Rk (a) − e�Rk (b)|
e−�Rk (a) + e−�Rk (b)

.

Proof Follows from Theorem 7 and Remark 3.
The results obtained in Theorems 6, 7 and their consequences improve and extend

the estimates given in [8, Theorem 1.1], on the Hyers–Ulam stability for the linear
differential operator with constant coefficients. The estimates obtained in (47) and
(51), concerning the difference between the perturbed and the exact solution, improve
also the results on stability inAoki–Rassias sense for systems of differential equations
[17, Theorem 2], and for linear differential equations with constant coefficients in
Banach spaces, given in [8, Theorem 2.3] and [30, Theorem 3.2].

6 Stability of Partial Differential Equations

In what follows, let D = [a, b) × R, a ∈ R, b ∈ R ∪ {+∞} be a subset of R
2. We

deal with the Hyers–Ulam stability of the linear partial differential equation

p(x, y)
∂u

∂x
+ q(x, y)

∂u

∂y
= p(x, y)r(x)u + f (x, y) (52)
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where p, q ∈ C(D,K), f ∈ C(D,X), r ∈ C([a, b), R) are given functions and
u ∈ C1(D,X) is the unknown function (see [21]). We suppose that p(x, y) �= 0 for
every (x, y) ∈ D.

Let ε ≥ 0 be a given number. The Eq. (52) is said to be stable in Hyers–Ulam
sense if there exists δ ≥ 0 such that for every function u ∈ C1(D,X) satisfying
∥∥∥∥p(x, y)

∂u

∂x
(x, y) + q(x, y)

∂u

∂y
(x, y) − p(x, y)r(x)u(x, y) − f (x, y)

∥∥∥∥ ≤ ε (53)

for all (x, y) ∈ D, there exists a solution v ∈ C1(D,X) of (52) with the property

‖u(x, y) − v(x, y)‖ ≤ δ, ∀ (x, y) ∈ D. (54)

We will prove in what follows that the existence of a global prime integral ϕ :
[a, b) → R of the Eq. (52) leads, in appropriate conditions, to the stability of the
Eq. (52). The following lemma is a useful tool in the proof of the main result of this
section.

Lemma 2 Let ϕ : [a, b) → R be a solution of the differential equation

y ′ = q(x, y)

p(x, y)
.

Then, u is a solution of the Eq. (52) if and only if there exists a function F ∈ C1(I ,X)
such that

u(x, y) = e−L(x)

(∫ x

a

f (θ ,ϕ(θ ) + y − ϕ(x))

p(θ ,ϕ(θ ) + y − ϕ(x))
eL(θ )dθ + F (y − ϕ(x))

)
(55)

for every (x, y) ∈ D, where L(x) = −
∫ x

a

r(θ )dθ , x ∈ [a, b) and I = {y − ϕ(x) :

(x, y) ∈ D}.
Proof Let u be a solution of the Eq. (52) and consider the change of coordinates

⎧
⎨

⎩
s = x

t = y − ϕ(x)
⇔
⎧
⎨

⎩
x = s

y = ϕ(s) + t
(56)

Define the function v by

v(s, t) = u(s,ϕ(s) + t) ⇔ u(x, y) = v(x, y − ϕ(x)). (57)

Then
∂u

∂x
= ∂v

∂s
− ϕ′(s) · ∂v

∂t
,

∂u

∂y
= ∂v

∂t

and replacing in (52) it follows

∂v

∂s
− r(s) · v = f (s,ϕ(s) + t)

p(s,ϕ(s) + t)
. (58)
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Equation (58) is equivalent to

∂

∂s
(v · eL(s)) = f (s,ϕ(s) + t)

p(s,ϕ(s) + t)
· eL(s). (59)

An integration on the interval [a, s), s ∈ [a, b), leads to

v(s, t) = e−L(s)

(∫ s

a

f (θ ,ϕ(θ ) + t)

p(θ ,ϕ(θ ) + t)
eL(θ )dθ + F (t)

)
(60)

where F is an arbitrary function of class C1.
Replacing s, t from (56) in (60) the relation (55) is obtained.
Now let u be given by (55), we have to prove that u is a solution of (52). Taking

account of the change of coordinates (56), it is sufficient to prove that v, given by
(60), satisfies (58). A simple calculation shows that v is a solution of (58).

The main result of this section is given in the next theorem.

Theorem 8 Let ε ≥ 0 be a given number. Suppose that the equation y ′ = q(x, y)

p(x, y)
admits a solution ϕ : [a, b) → R and inf

(x,y)∈D |p(x, y)| · r(x) =: m > 0. Then, for

every solution u of (53) there exists a solution v of (52) with the property

‖u(x, y) − v(x, y)‖ ≤ ε

m
, (x, y) ∈ D. (61)

Moreover, if L(b) =: lim
x→b

L(x) = −∞ then v is uniquely determined.

Proof Existence. Let u be a solution of (53) and put

p(x, y)
∂u

∂x
(x, y) + q(x, y)

∂u

∂y
(x, y) − p(x, y)r(x)u(x, y) − f (x, y) =: g(x, y)

for every (x, y) ∈ D. Then, according to Lemma 2, we have:

u(x, y) = e−L(x)

(∫ x

a

f (θ ,ϕ(θ ) + y − ϕ(x)) + g(θ ,ϕ(θ ) + y − ϕ(x))

p(θ ,ϕ(θ ) + y − ϕ(x))
eL(θ )dθ

+ F (y − ϕ(x))

)

where F ∈ C1(I ,X) is an arbitrary function.
Let v be defined by

v(x, y) = e−L(x)

(∫ x

a

f (θ ,ϕ(θ ) + y − ϕ(x))

p(θ ,ϕ(θ ) + y − ϕ(x))
eL(θ )dθ

+
∫ b

a

g(θ ,ϕ(θ ) + y − ϕ(x))

p(θ ,ϕ(θ ) + y − ϕ(x))
eL(θ )dθ + F (y − ϕ(x))

)
, (x, y) ∈ D.
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The function v is well defined since the integral

G(t) :=
∫ b

a

g(θ ,ϕ(θ ) + t)

p(θ ,ϕ(θ ) + t)
eL(θ )dθ , t ∈ I

is convergent. Indeed,

‖ G(t) ‖ ≤
∫ b

a

∥∥∥∥
g(θ ,ϕ(θ ) + t)

p(θ ,ϕ(θ ) + t) · r(θ )
· r(θ )eL(θ )

∥∥∥∥ dθ

≤ ε

m

∫ b

a

r(θ )eL(θ )dθ

= − ε

m

∫ b

a

(eL(θ ))′dθ = ε

m
(1 − eL(b)) ≤ ε

m
, t ∈ I ,

therefore G(t) is absolutely convergent.
(Since r is positive on [a, b) it follows that the function L is decreasing on

[a, b), a monotone function has left and right limits at every point, therefore

L(b) = − lim
x→b

∫ x

a

r(θ )dθ exists and is negative).

On the other hand v is a solution of (52) being of the form (55). We have:

‖u(x, y) − v(x, y)‖ =
∥∥∥∥e

−L(x)

(
−
∫ b

x

g(θ ,ϕ(θ ) + y − ϕ(x))

p(θ ,ϕ(θ ) + y − ϕ(x))
· eL(θ )dθ

)∥∥∥∥

≤ e−L(x)
∫ b

x

ε

|p(θ ,ϕ(θ ) + y − ϕ(x))|e
L(θ )dθ

= e−L(x)
∫ b

x

ε

|p(θ ,ϕ(θ ) + y − ϕ(x))|r(θ )
r(θ )eL(θ )dθ

≤ ε

m
e−L(x)

∫ b

x

(−eL(θ ))′dθ

= ε

m
(1 − eL(b)−L(x)) ≤ ε

m
, (x, y) ∈ D.

Uniqueness. Suppose that L(b) = −∞ and for a solution u of (53), there exist two
solutions v1, v2 of (52), v1 �= v2, with the property (61), given by

vk(x, y) = e−L(x)

(∫ x

a

f (θ ,ϕ(θ ) + y − ϕ(x))

p(θ ,ϕ(θ ) + y − ϕ(x))
eL(θ )dθ + Fk(y − ϕ(x))

)

(x, y) ∈ D, k ∈ {1, 2}. We have

‖v1(x, y) − v2(x, y)‖ ≤ ‖v1(x, y) − u(x, y)‖ + ‖u(x, y) − v2(x, y)‖

≤ 2ε

m
, (x, y) ∈ D
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which is equivalent to

e−L(x)‖F1(y − ϕ(x)) − F2(y − ϕ(x))‖ ≤ 2ε

m
, (x, y) ∈ D. (62)

Since v1 �= v2 it follows that there exists x0 such that F1(x0) �= F2(x0). For
y = ϕ(x) + x0, the relation (62) becomes

e−L(x)‖F1(x0) − F2(x0)‖ ≤ 2ε

m
, x ∈ [a, b). (63)

Now letting x → b in (63), it follows ∞ ≤ 2ε

m
, contradiction. Uniqueness is

proved.

Corollary 3 Let D = (0, ∞) × R and p, q ∈ C(D, R), r ∈ C([0, ∞), R),
f ∈ C(D,X). Suppose that p, q are homogeneous functions of the same degree,
q(x, y)

p(x, y)
�= y

x
on D and inf

(x,y)∈D |p(x, y)| · r(x) = m > 0. Then, for every ε ≥ 0 and

every solution u of (53) there exists a solution v of (52) with the property (54). If∫ ∞

0
r(θ )dθ = ∞, then v is uniquely determined.

Proof Suppose that p, q are homogeneous functions of nth degree. First, we prove
that the equation

y ′ = q(x, y)

p(x, y)
(64)

admits a solution ϕ : (0, ∞) → R.
Taking account of the homogeneity of p and q, it follows

q(x, y)

p(x, y)
=

q
(
x · 1, x · y

x

)

p
(
x · 1, x · y

x

) =
xnq

(
1,
y

x

)

xnp
(

1,
y

x

) =
q
(

1,
y

x

)

p
(

1,
y

x

) =: h
(y
x

)

for all (x, y) ∈ D, therefore the Eq. (64) is equivalent to the homogeneous differential
equation

y ′ = h
(y
x

)
. (65)

Let H : R → R be given by

H (z) =
∫ z

0

dθ

h(θ ) − θ
, z ∈ R. (66)

Obviously H is well defined since h(θ ) �= θ for all θ ∈ R.
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The change of variable in (65) given by

y(x) = xz(x), x ∈ (0, ∞)

leads to the equation with separate variables

dz

h(z) − z
= dx

x

with a solution given by

H (z) = ln x, x ∈ (0, ∞). (67)

By the condition h(θ ) �= θ , θ ∈ R and the continuity of h it follows that h(θ ) − θ

has constant sign on R, therefore H is strictly monotone.
In this case, there existsH−1 : H (R) → R. From (67), we get the explicit solution

of the Eq. (65) given by
z(x) = H−1( ln x)

and finally the prime integral

ϕ(x) = x · H−1( ln x), x ∈ (0, ∞).

Now the conclusion follows from Theorem 8.

Remark 5 If m = 0, then the result obtained in Theorem 8 is not generally true.
Indeed consider the equation

x
∂u

∂x
+ y

∂u

∂y
= 0, x, y ∈ [a, ∞), a > 0. (68)

and let ε > 0. A solution of the equation x ∂u
∂x

+ y ∂u
∂y

= ε is of the form u(x, y) =
ε ln x+ϕ( y

x
) where ϕ : (0, ∞) −→ X is an arbitrary function of class C1, according

to Lemma 2.
Let v(x, y) = ψ( y

x
) be an arbitrary solution of (68), ψ ∈ C1((0, ∞),X). The

condition ∥∥∥∥x
∂u

∂x
(x, y) + y

∂u

∂y
(x, y)

∥∥∥∥ ≤ ε

is satisfied for all x, y ∈ (0, ∞), but

sup
x∈[a,∞)

‖u(x, x) − v(x, x)‖ = +∞,

and therefore, the Eq. (68) is not stable.



Hyers-Ulam Stability of Some Differential Equations and Differential Operators 321

References

1. Alsina, C., Ger, R. On some inequalities and stability results related to the exponential function,
J. Inequal. Appl., 2(1998), 373–380.

2. Aoki, T.: On the stability of the linear transformations in Banach spaces. J. Math. Soc. Japan.
2, 64–66 (1950)

3. Brillouet-Beluot, N., Brzdek, J., Cieplinski, K. On some recent developments in Ulam’s type
stability, Abstract and Applied Analysis, vol. 2012, article ID716936, 41 pag.

4. Brzdek, J.: On the quotient stability of a family of functional equations. Nonlinear Analysis.
71, 4396–4404 (2009)

5. Brzdek, J., Popa, D., Xu, B.: The Hyers-Ulam stability of nonlinear recurrences. J. Math. Anal.
Appl. 335, 443–449 (2007)

6. Brzdek, J., Th., M.. Rassias: Functional Equations in Mathematical Analysis, Springer, 2011
7. Cadariu, L., Radu, V. Fixed point methods for the generalized stability of functional equations

in a single variable, Fixed Point Theory A., vol. 2008, article ID749392, 15 pag.
8. Cîmpean, D.S., Popa, D.: On the stability of the linear differential equation of higher order

with constant coefficients. Appl. Math. Comput. 217, 4141–4146 (2010)
9. Cîmpean, D.S., Popa, D.: Hyers-Ulam stability of Euler’s equation. Appl. Math. Lett. 24,

1539–1543 (2011)
10. Czerwik, S., Functional Equations and Inequalities in Several Variables, World Scientific,

2002
11. Forti, G.-L.: Comments on the core of the direct method for proving Hyers-Ulam stability of

functional equations. J. Math. Anal. Appl. 295, 127–133 (2004)
12. Hyers, D.H.: On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S.A.

27, 222–224 (1941)
13. Hyers, D.H., Isac, G., Th., M. Rassias: Stability of Functional Equations in Several Variables.

Birkhäuser, Basel (1998)
14. Jung, S.-M., Hyers-Ulam Rassias Stability of Functional Equations in Mathematical Analysis,

Hadronic Press, Palm Harbour, 2001
15. Jung, S.-M.: Hyers-Ulam stability of linear differential equation of the first order (III). J. Math.

Anal. Appl. 311, 139–146 (2005)
16. Jung, S.-M.: Hyers-Ulam stability of linear differential equations of first order (II). Appl. Math.

Lett. 19, 854–858 (2006)
17. Jung, S.-M.: Hyers-Ulam stability of a system of first order linear differential equations with

constant coefficients. J. Math. Anal. Appl. 320, 549–561 (2006)
18. Jung, S.M., Popa, D., Rassias, M.Th, On the stability of the linear functional equation in a

single variable on complete metric groups, J. Glob. Optim. DOI 10.1007/s10898-013-0083-9.
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Results and Problems in Ulam Stability
of Operatorial Equations and Inclusions

Ioan A. Rus

Abstract In this chapter we survey some results and problems in Ulam stability
of fixed point equations, coincidence point equations, operatorial inclusions, in-
tegral equations, ordinary differential equations, partial differential equations and
functional inclusions. Some new results and problems are also presented.

Keywords Ulam stability · Inclusions · Operational equations · Coincidence point ·
Differential equations

1 Introduction

In the general theory of differential equations, integral equations, operatorial
equations and operatorial inclusions the data dependence (monotony, continuity,
differentiability, stability, . . . ) is a crucial part ([3, 8, 11, 17, 22, 28, 33, 35, 43–46,
68, 69, 73, 74, 88, 93, 107, 108, 110, 115, 125, 126, 127, 134, 135, 136, . . . ]). On
the other hand, in the theory of functional equations ([12, 30, 42, 103, 104, . . . ])
there are some special kind of data dependence (Ulam (1940; [133]), Hyers (1941;
[48]), Hyers-Ulam (1945; [53]), Aoki (1950; [4]), Bourgin (1951; [15]), Gruber
(1978; [45]), Rassias (1978: [95]), Hyers (1983; [49]), Baker (1951; [9]), Găvruţă
(1994; [39]), Radu (2003, [94]); see also: [2, 7, 16, 18–20, 23–27, 37, 38, 40, 41,
47, 50–66, 67, 77–79, 81–83, 85, 86, 89–91, 96–101, 102, 103–106, 129–132, 137,
. . . ]). With these results in mind, we introduced in [117] and [122] six types of Ulam
stability for operatorial equations in metric and generalized metric spaces.

The aim of this paper is to revisit these results and to present some open problems.
Throughout this paper we shall use the terminology and the notations in [117]

and [122]. We shall specify some of them along the paper.
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2 Operatorial Equations and Inclusions

Let X be a nonempty set, f : X → X be a singlevalued operator and T : X � X

be a multivalued operator. Then we denote:

P (X) : = {Y ⊂ X | Y �= ∅}
f 0 : = 1X, f 1 := f , f 2 := f ◦ f , . . . , f n := f ◦ f n−1 - the iterates of f

T (Y ) : =
⋃

y∈Y
T (y), forY ⊂ X

T 1(Y ) : = T (Y ), T 2(Y ) := T (T (Y )), . . . , T n(Y ) := T (T n−1(Y )) - the iterates of T .

We consider the following operatorial equations:

(a) x = f (x)

A solution of this equation is by definition a fixed point of the operator f and
we denote by Ff the solution set of this equation. By Ff = {x∗} we mean that the
operator f has a unique fixed point and we denote this fixed point by x∗.

(b) x ∈ T (x)

A solution of this equation is by definition a fixed point of the multivalued operator
T and we denote by FT the solution set of this equation. We name equation (b),
operatorial inclusion.

(c) {x} = T (x)

By definition, a solution of this equation is a strict fixed point of the multivalued
operator T and we denote the solution set of equation (c) by (SF )T .

Let X and Y be two nonempty sets, f , g : X → Y be two singlevalued operators
and T , S : X → P (Y ) be two multivalued operators. In this case we consider the
following operatorial equations:

(d) f (x) = g(x)

A solution x ∈ X of this equation is by definition a coincidence point of the pair
f , g. We denote by C(f , g) := {x ∈ X | f (x) = g(x)} the solution set of equation
(d).

(e) T (x) ∩ S(x) �= ∅
A solution x ∈ X of this equation is by definition a coincidence point of the pair

T , S. We denote by C(T , S) := {x ∈ X | T (x) ∩ S(x) �= ∅} the solution set of
equation (e).

The basic problems of the operatorial equations and inclusions are the following:
In which conditions we have:

Problem 1 Ff �= ∅ ?

Problem 2 Ff = {x∗} ?
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Problem 3 FT �= ∅ ?

Problem 4 FT = {x∗} ?

Problem 5 (SF )T �= ∅ ?

Problem 6 (SF )T = {x∗} ?

Problem 7 FT = (SF )T ?

Problem 8 FT = (SF )T = {x∗} ?

Problem 9 (SF )T �= ∅ ⇒ FT = (SF )T = {x∗} ?

Problem 10 C(f , g) �= ∅ ?

Problem 11 C(f , g) = {x∗} ?

Problem 12 C(T , S) �= ∅ ?

Problem 13 C(T , S) = {x∗} ?
Other problems of the theory of operatorial equations and inclusions are in con-

nection with data dependence of solutions. In what follows we shall present some of
them.

Let (X, d) be a metric space and f , g : X → X be two operators. Let us consider,
for example, the fixed point equations

x = f (x), (1)

x = g(x) (2)

Problem 14 We suppose that:

(i) Ff = {x∗
f };

(ii) Fg �= ∅.

In which conditions there exists a function θ : R+ → R+ such that we have the
following implication

η > 0 and d(f (x), g(x)) ≤ η, ∀ x ∈ X ⇒ d(x∗
f , x∗

g ) ≤ θ (η), ∀ x∗
g ∈ Fg ?

For example if f is an α-contraction, i.e., 0 ≤ α < 1 and

d(f (x), f (y)) ≤ αd(x, y), ∀ x, y ∈ X,

then, Ff = {x∗
f } and θ (η) = (1 − α)−1η.

Indeed, let x∗
g be a fixed point of g. We have

d(x∗
f , x∗

g ) = d(f (x∗
f ), g(x∗

g )) ≤ d(f (x∗
f ), f (x∗

g )) + d(f (x∗
g ), g(x∗

g ))

≤ αd(x∗
f , x∗

g ) + η.

So, d(x∗
f , x∗

g ) ≤ (1 − α)−1η.
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Problem 15 (Ulam problem) Let (X, d) be a metric space and f : X → X be an
operator. We consider the fixed point equation, (1), and for each ε > 0 the inequation

d(y, f (y)) ≤ ε. (3)

In which conditions there exists a function θ : R+ → R+ such that for each
solution y∗ of (3) there exists a solution x∗ of (2) with the following property,
d(x∗, y∗) ≤ θ (ε)?

Since the problem is suggested by the well-known Ulam problem (see section 3 of
this paper) we call it Ulam Problem of Data Dependence of a Fixed Point Equation.

For the theory of fixed point equations, i.e., the fixed point theory see: [13, 17,
33, 44, 68, 69, 110, 113, 124], . . .

For the theory of coincidence equations, i.e., the coincidence theory, see: [17, 21,
33, 68, 69, 113, 124], . . .

For the theory of fixed point equations with multivalued operator, i.e., the inclusion
theory, see: [33, 68, 88, 110, 113, 124], . . .

The aim of this paper is to study the Ulam Problem of Data Dependence.

3 From the Ulam Problem to the Notion of Ulam-Hyers
Stability of an Operatorial Equation

In 1940, S.M. Ulam proposed the following problem (see [133]; see also [23, 51,
56, 63], . . . ):

Let (G1, +) be a group and (G2, ⊕, d) be a metric group. For each ε > 0 find a
positive number δ(ε) such that for every mapping f : G1 → G2 satisfying

d(f (x + y), f (x) ⊕ f (y)) ≤ δ(ε)

there exists a group homomorphism h : G1 → G2 with

d(f (x),h(x)) ≤ ε, ∀ x ∈ G1.

In 1941, D.H. Hyers [48] gave the following answer to the Ulam Problem:
Hyers Theorem. Let (E1, +, R, ‖ · ‖, (E2, +, R, ‖ · ‖ be two Banach spaces and let
f : E1 → E2 be a mapping satisfying:

‖f (x + y) − f (x) − f (y)‖ ≤ ε, ∀ x, y ∈ E1

with ε > 0. Then, there exists a unique additive mapping h : E1 → E2 which
satisfies

‖f (x) − h(x)‖ ≤ ε, ∀ x ∈ E1.

In 1945, D.R. Hyers and S.M. Ulam [53] considered the following problem:
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Ulam-Hyers Problem. Let (X, d) and (Y , ρ) be two metric spaces. In which con-
ditions there exists a constant k(X,Y ) > 0 such that for each ε > 0 and for each
mapping f : X → Y with

|d(x, y) − ρ(f (x), f (y))| ≤ ε, ∀ x, y ∈ X,

there exists an isometry h : X → Y such that

ρ(f (x),h(x)) ≤ k(X,Y )ε?

In 1978, P.M. Gruber presented the following problem ([45]):
General Stability Problem of Gruber. Suppose that a mathematical object satisfies
a certain property approximately. Is then possible to approximate this object by
objects satisfying the property exactly?

It is not a problem to remark that the Ulam problem has generated a lot of research
directions in the theory of functional equations, operatorial equations and inclusions.
With these results in mind, we introduced in [117] and [122] some types of Ulam
stability for the operatorial equations in a metric space. In what follows we shall
present some of them, in the case of a fixed point equation.

Definition 1 Let (X, d) be a metric space and f : X → X be an operator. By
definition, the fixed point equation

x = f (x) (4)

is Ulam-Hyers stable if there exists a constant cf > 0 such that: for each ε > 0 and
each solution y∗ ∈ X of the inequation

d(y, f (y)) ≤ ε (5)

there exists a solution x∗ of the Eq. (4) such that

d(y∗, x∗) ≤ cf ε.

Definition 2 The Eq. (4) is generalized Ulam-Hyers stable if there exists θ : R+ →
R+ increasing and continuous in 0 with θ (0) = 0 such that: for each ε > 0 and for
each solution y∗ of (5) there exists a solution x∗ of (4) such that

d(y∗, x∗) ≤ θ (ε).

Remark 1 A solution of the inequation (5) is called an ε-solution of the Eq. (4).
Let us denote by Sε the ε-solution set of (4) and by Hd the Pompeiu-Hausdorff

functional (see [10, 33, 88, 124]). Then from Definition 2 we have that if the Eq. 4
is generalized Ulam-Hyers stable, then

Hd (Ff , Sε) ≤ θ (ε).

Indeed, this follows from the following property of the functional Hd (see [110],
p. 76).
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Lemma 1 Let (X, d) be a metric space and A,B ∈ P (X). Then, if η > 0 is such
that:

(1) for each a ∈ A, there exists b ∈ B such that d(a, b) ≤ η;
(2) for each b ∈ B, there exists a ∈ A such that d(a, b) ≤ η;

then, Hd (A,B) ≤ η.

Remark 2 Let d and ρ be two metrics on a nonempty set X and f : X → X be an
operator. We suppose that the metrics d and ρ are metric equivalent, i.e., there exists
c1, c2 > 0 such that

c1d(x, y) ≤ ρ(x, y) ≤ c2d(x, y), ∀ x, y ∈ X.

Then the following statements are equivalent:

(1) the Eq. (4) is Ulam-Hyers stable in (X, d);
(2) the Eq. (4) is Ulam-Hyers stable in (X, ρ).

We have a similar result for the generalized Ulam-Hyers stability.
For more considerations on the role of metric in Ulam-Hyers stability see [117]

and [122].

4 ψ-Weakly Picard Operators and Ulam-Hyers Stability
of a Fixed Point Equation

Let (X, d) be a metric space. Following [112] we shall present some notions and
examples from weakly Picard operatory theory.

Definition 3 An operator f : X → X is weakly Picard operator (WPO) if the
sequence (f n(x))n∈N of successive approximations converges for all x ∈ X and the
limit (which may depend of x) is a fixed point of f . If f is WPO and Ff = {x∗},
then by definition f is Picard operator (PO).

Definition 4 If f : X → X is WPO, then we define the operator f∞ : X → X

by f∞(x) = lim
n→∞ f n(x).

From the definition of f∞ it follows that f∞(x) ∈ Ff and f∞(X) = Ff .

Definition 5 A WPO f : X → X is c-WPO if c is a positive constant and

d(x, f∞(x)) ≤ cd(x, f (x)), ∀ x ∈ X.

Definition 6 A WPO is ψ-WPO if ψ : R+ → R+ is increasing, continuous in 0
with ψ(0) = 0 and

d(x, f∞(x)) ≤ ψ(d(x, f (x))), ∀ x ∈ X.

It is clear that if f is ψ-WPO and ψ(t) = ct then f is c-WPO.
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Example 1 Let (X, d) be a complete metric space and f : X → X be an α -
contraction. Then, f is (1 − α)−1-PO.

Indeed, by the contraction principle f is PO. Let Ff = {x∗}. Then, f∞(x) = x∗,
∀ x ∈ X and we have

d(x, f∞(x)) = d(x, x∗) ≤ d(x, f (x)) + d(f (x), f (x∗)) ≤
≤ d(x, f (x)) + αd(x, x∗).

So,

d(x, f∞(x)) ≤ (1 − α)−1d(x, f (x)), ∀ x ∈ X.

Example 2 Let (X, d) be a complete metric space and ϕ : R+ → R+ be a strict
comparison function, i.e.,

(1) ϕ is increasing;
(2) ϕn(t) → 0 as n → ∞, ∀ t ∈ R+;
(3) t − ϕ(t) → ∞ as t → ∞.

Let f : X → X satisfying the following condition

d(f (x), f (y)) ≤ ϕ(d(x, y)), ∀ x, y ∈ X.

Then, f is ψϕ-PO, where ψϕ is defined by

ψϕ(t) := sup{s ∈ R+ | s − ϕ(s) ≤ t}.
Indeed, by the Matkowski fixed point theorem (see [68, 110, 124]) f is PO. Let

Ff = {x∗}. We have

d(x, f∞(x)) = d(x, x∗) ≤ d(x, f (x)) + d(f (x), f (x∗)) ≤
≤ d(x, f (x)) + ϕ(d(x, x∗)), ∀ x ∈ X.

Hence

d(x, x∗) − ϕ(d(x, x∗)) ≤ d(x, f (x)).

So,

d(x, x∗) ≤ ψϕ(d(x, f (x))), ∀ x ∈ X.

Example 3 Let (X, d) be a complete metric space, α ∈ [0, 1[ and f : X → X be
an operator. We suppose that:

(i) d(f 2(x), f (x)) ≤ αd(x, f (x)), ∀ x ∈ X;
(ii) f is with closed graphic.

Then, f is (1 − α)−1-WPO.
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Indeed, by the graphic contraction principle (see [110, 124]) f is WPO. Let
x ∈ X. We have

d(x, f∞(x)) ≤ d(x, f n(x)) + d(f n(x), f∞(x)) ≤
≤ d(x, f (x)) + . . . + d(f n−1(x), f n(x)) + d(f n(x), f∞(x)) ≤

≤ 1 − αn

1 − α
d(x, f (x)) + d(f n(x), f∞(x)), ∀ n ∈ N

∗.

So,

d(x, f∞(x)) ≤ (1 − α)−1d(x, f (x)), ∀ x ∈ X.

For other examples of ψ-WPO see [13, 29, 110, 124], . . .
The basic results of this section are the following:

Theorem 1 Let (X, d) be a metric space. If f : X → X is c-WPO, then the
equation

x = f (x) (6)

is Ulam-Hyers stable.

Proof For ε > 0 we consider the inequation

d(y, f (y)) ≤ ε. (7)

Let y∗ ∈ X be a solution of the inequation (7). Then, x∗ := f∞(y∗) is a solution
of (6). Since f is c-WPO we have

d(y∗, x∗) ≤ cd(y∗, f (y∗)) ≤ cε.

So, the Eq. (6) is Ulam-Hyers stable. �
In a similar way we have

Theorem 2 Let (X, d) be a metric space. If f : X → X is ψ-WPO, then the
Eq. (6) is generalized Ulam-Hyers stable.

Now, some applications of Theorems 1 and 2.

Example 4 Let X := R, d(x, y) := |x − y|, 0 < m < 1 and M > 0. We consider
the Kepler equation

x = m sin x + M

where f (x) := m sin x + M .
It is clear that f is a m-contraction and by Example 1 and Theorem 1, the Kepler

equation is Ulam-Hyers stable.

Example 5 Let X := {x : R → R | xis bounded} and the metric d(x, y) :=
sup
t∈R

|x(t) − y(t)|. Then (X, d) is a complete metric space. Let ϕ : R → R be a

function and 0 < λ < 1. Let us consider the Schröder functional equation

x(t) = λx(ϕ(t)), t ∈ R. (8)
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In this case f is defined by

f (x)(t) := λx(ϕ(t)).

We have that

|f (x)(t) − f (y)(t)| ≤ λ|x(ϕ(t)) − y(ϕ(t))| ≤ λd(x, y), ∀ x, y ∈ X.

Hence,

d(f (x), f (y)) ≤ λd(x, y), i.e., f is a λ-contraction.

By Example 1 and Theorem 1, the Schröder equation is Ulam-Hyers stable.
Moreover, if y∗ ∈ X is a solution of the inequation

d(y, λy(ϕ)) ≤ ε (9)

then there exists a solution x∗ ∈ X of (8) such that

d(y∗, x∗) ≤ (1 − λ)−1ε.

Here x∗ is the unique solution of (8).

Remark 3 Let y∗ ∈ X be a solution of the inequation

|y(t) − λy(ϕ(t))| ≤ ε, ∀ t ∈ R (10)

then
|y∗(t) − x∗(t)| ≤ ε, ∀ t ∈ R.

Indeed, we observe that if y∗ is a solution of (10), then y∗ is a solution of (9).

Example 6 Let X := C(Ω) := {x : Ω → R | xis continuous}, where Ω is a
bounded domain in R

m. We consider on C(Ω) the Chebyshev metric, d(x, y) :=
maxt∈Ω |x(t) −y(t)|. With this metric C(Ω) is a complete metric space. We consider
on C(Ω) the following integral equation of Fredholm type

x(t) =
∫

Ω

K(t , s, x(s))ds + k(t), t ∈ Ω. (11)

We have

Theorem 3 We suppose that:

(i) K ∈ C(Ω × Ω × R) and k ∈ C(Ω);
(ii) there exists LK > 0 such that

|K(t , s, u) − K(t , s, v)| ≤ LK |u − v|, ∀ t , s ∈ Ω , ∀ u, v ∈ R;

(iii) LKmes(Ω) < 1.
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Then, the integral Eq. (11) is Ulam-Hyers stable. Moreover, if y∗ ∈ C(Ω) is a
solution of the inequation

d

⎛

⎝y,
∫

Ω

K(( · ), s, y(s))ds + k

⎞

⎠ ≤ ε (12)

and x∗ is a unique solution of (11) then

d(y∗, x∗) ≤ (1 − LKmes(Ω))−1ε.

Proof Let f : C(Ω) → C(Ω) be defined by

f (x)(t) :=
∫

Ω

K(t , s, x(s))ds + k(t), t ∈ Ω.

We have

|f (x)(t) − f (y)(t)| ≤
∫

Ω

|K(t , s, x(s)) − K(t , s, y(s))|ds ≤

≤ LK

∫

Ω

|x(s) − y(s)|ds ≤

≤ LKd(x, y)
∫

Ω

ds = LKmes(Ω)d(x, y).

Hence,

d(f (x).f (y)) ≤ LKmes(Ω)d(x, y), ∀ x, y ∈ C(Ω).

From the condition (iii) it follows that f is a contraction. By Example 1 and
Theorem 1, the integral Eq. (11) is Ulam-Hyers stable. �
Remark 4 If y∗ ∈ C(Ω) is a solution of the inequation

|y(t) −
∫

Ω

K(t , s, y(s))ds − k(t)| ≤ ε, ∀ t ∈ Ω (13)

then

|y∗(t) − x∗(t)| ≤ (1 − LKmes(Ω))−1ε, ∀ t ∈ Ω.

Indeed, we observe that if y∗ is a solution of (13), then y∗ is a solution of (12).
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Example 7 We consider the Fredholm integral Eq. (11) on C(Ω), but we shall
endow the set C(Ω) with two metrics, the metric d of Chebyshev and the metric ρ
defined by

ρ(x, y) :=
⎛

⎝
∫

Ω

|x(s) − y(s)|2ds
⎞

⎠

1
2

=: ‖x − y‖L2(Ω).

We have

Theorem 4 We suppose that:

(i) K ∈ C(Ω × Ω × R) and k ∈ C(Ω);
(ii) there exists L ∈ C(Ω × Ω) such that

|K(t , s, u) − K(t , s, v)| ≤ L(t , s)|u − v|, ∀ t , s ∈ Ω , u, v ∈ R;

(iii)
∫

Ω×Ω

|L(t , s)|2dtds < 1.

Then, the integral Eq. (11) is Ulam-Hyers stable with respect to the metric ρ.
Moreover, if y∗ ∈ C(Ω) is a solution of the inequation

ρ

⎛

⎝y,
∫

Ω

K(( · ), s, y(s))ds + k

⎞

⎠ ≤ ε

and x∗ is the unique solution of (11) then

ρ(y∗, x∗) ≤ cε

where c :=
⎛

⎜⎝1 −
⎛

⎝
∫

Ω×Ω

|L(t , s)|2dtds
⎞

⎠

1
2

⎞

⎟⎠

−1

.

Proof Let f be defined as in Example 7. The conditions (i)-(iii) imply that f
satisfies the conditions of the fixed point theorem of Maia (see [110], pp. 28–29;
[124], pp. 39–40). From this theorem it follows that f is c-PO with respect to the
metric ρ, where c = (1 − (

∫

Ω×Ω

|L(t , s)|2dtds) 1
2 )−1. So, by Theorem 1, the Eq. (11)

is Ulam-Hyers stable with respect to the metric ρ. �
Example 8 Let X := C[a, b] with Chebyshev metric d. We consider on C[a, b] the
following Volterra integral equation

x(t) =
t∫

a

K(t , s, x(s))ds + k(t), t ∈ [a, b] (14)
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In a similar way as in Example 6 we have

Theorem 5 We suppose that:

(i) K ∈ C([a, b] × [a, b] × R) and k ∈ C[a, b];
(ii) there exists LK > 0 such that

|K(t , s, u) − K(t , s, v)| ≤ LK |u − v|, ∀ t , s ∈ Ω , ∀ u, v ∈ R;

(iii) LK (b − a) < 1.

Then, the integral Eq. (14) is Ulam-Hyers stable. Moreover, if y∗ ∈ C[a, b] is a
solution of the inequation

d

⎛

⎝x,

(·)∫

a

K(( · ), s, x(s))ds + k

⎞

⎠ ≤ ε (15)

and x∗ is a unique solution of (14), then

d(y∗, x∗) ≤ (1 − LK (b − a))−1ε.

Remark 5 If y∗ ∈ C[a, b] is a solution of the inequation
∣∣∣∣∣∣
x(t) −

t∫

a

K(t , s, x(s))ds − k(t)

∣∣∣∣∣∣
≤ ε, ∀ t ∈ [a, b] (16)

then

|y∗(t) − x∗(t)| ≤ (1 − LK (b − a))−1ε.

Example 9 Let X := C[a, b] and we consider on C[a, b] the Bielecki metric (for
τ > 0)

dτ (x, y) := maxa≤t≤b(|x(t) − y(t)|e−τ (t−a)).

With respect to dτ , C[a, b] is a complete metric space.
We consider on C[a, b] the Volterra integral Eq. (14). We have

Theorem 6 We suppose that:

(i) K ∈ C([a, b] × [a, b] × R) and k ∈ C[a, b];
(ii) there exists LK > 0 such that

|K(t , s, u) − K(t , s, v)| ≤ LK |u − v|, ∀ t , s ∈ [a, b], u, v ∈ R.

If τ > 0 is such that LK

τ
< 1, then the Eq. (14) Is Ulam-Hyers stable with respect

to Bielecki metric, dτ .
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Proof Let f : C[a, b] → C[a, b] be defined by

f (x)(t) :=
t∫

a

K(t , s, x(s))ds + k(t), t ∈ [a, b].

Then we have

|f (x)(t) − f (y)(t)| ≤ LK

t∫

a

|x(s) − y(s)|ds ≤

≤ LK

t∫

a

|x(s) − y(s)|e−τ (s−a)eτ (s−a)ds ≤ LK

τ
dτ (x, y)eτ (t−a).

Hence,

dτ (f (x), f (y)) ≤ LK

τ
dτ (x, y), ∀ x, y ∈ C[a, b].

Since LK

τ
< 1, from Example 1 and Theorem 1 it follows that the Volterra integral

Eq. (14) is Ulam-Hyers stable. Moreover, if y∗ is a solution of the inequation

dτ

(
y,

(·)∫

a

K(( · ), s, y(s))ds + k
)

≤ ε

and x∗ is the unique solution of (14), then

dτ (y∗, x∗) ≤
(

1 − LK

τ

)
ε. �

For the theory of integral equations see: [46, 61, 69, 108, 119] . . .

5 Ulam-Hyers Stability of a Coincidence Equation

Let (X, d) and (Y , ρ) be two metric spaces and f , g : X → X be two operators.

Definition 7 Let ψ : R+ → R+ be increasing, continuous in 0 with ψ(0) = 0. By
definition, the pair f , g isψ-weakly Picard pair if there exists an operator h : X → X

such that

(i) h is WPO;
(ii) Fh = C(f , g);

(iii) d(x,h∞(x)) ≤ ψ(ρ(f (x), g(x))), ∀ x ∈ X.

If the pair is ψ-weakly Picard and ψ(t) = ct , then the pair f , g is called c-weakly
Picard.
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Definition 8 The coincidence equation

f (x) = g(x) (17)

is Ulam-Hyers stable if there exists c > 0 such that: for each ε > 0 and for each
solution y∗ of the inequation

ρ(f (y), g(y)) ≤ ε (18)

there exists a solution x∗ of (17) such that

d(y∗, x∗) ≤ cε.

Definition 9 The coincidence Eq. (17) is generalized Ulam-Hyers stable if there
exists an increasing function ψ : R+ → R+, continuous in 0 with ψ(0) = 0, such
that: for each ε > 0 and for each solution y∗ of the coincidence inequation (18) there
exists a solution x∗ of (17) such that

d(y∗, x∗) ≤ ψ(ε).

The following results are very useful to study Ulam-Hyers stability of coincidence
equations.

Theorem 7 If a pair f , g : X → Y is c-weakly Picard pair, then the Eq. (17) is
Ulam-Hyers stable.

Proof Let y∗ be a solution of (18). Let h : X → X be the operator which appears
in Definition 7. We take x∗ := h∞(y∗). For this solution of (17) we have

d(y∗, x∗) ≤ cρ(f (y∗), g(y∗)) ≤ cε. �

In a similar way we have

Theorem 8 If a pair f , g : X → Y is ψ-weakly Picard pair, then the coincidence
Eq. (17) is generalized Ulam-Hyers stable.

For some examples of c-weakly Picard pairs see [21], pp. 37–40.
For the coincidence point theory see [17, 21, 33, 44, 110, 113, 124].

Problem 16 To construct a theory of ψ-weakly Picard pairs.

Problem 17 To give some relevant applications of Theorem 7 and Theorem 8.
References: [21, 117, 122].

6 The Case of Spaces of Functions: Ulam-Hyers
and Ulam-Hyers-Rassias Stability

Let Ω ⊂ R
m be a nonempty subset of R

m, X be a set of functions x : Ω → R and
f , g : X → X. If we have on X a metric then we have for the coincidence equation

f (x) = g(x) (19)
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the notions of Ulam-Hyers stability given by Definitions 8 and 9.
Now, we consider on X the generalized metric d : X × X → X+ := {x : Ω →

R | x ≥ 0}, defined by

d(x, y)(t) := |x(t) − y(t)|, ∀ t ∈ Ω.

With respect to this generalized metric we have the following notions of Ulam
stability.

Definition 10 The Eq. (19) is Ulam-Hyers stable with respect to the generalized
metric d if there exists a real number c > 0 such that: for each ε > 0 and for each
y∗ ∈ X solution of the inequation

|f (y)(t) − g(y)(t)| ≤ ε, ∀ t ∈ Ω (20)

there exists a solution x∗ of (19) such that

|y∗(t) − x∗(t)| ≤ cε, ∀ t ∈ Ω.

Definition 11 The Eq. (19) is generalized Ulam-Hyers stable with respect to the
generalized metric d if there exists an increasing functionψ : R+ → R+ continuous
in 0 with ψ(0) = 0, such that: for each ε > 0 and for each solution y∗ of (20) there
exists a solution x∗ of (19) such that

|y∗(t) − x∗(t)| ≤ ψ(ε), ∀ t ∈ Ω.

Definition 12 Let ϕ : Ω → R+ be a function. The Eq. (19) is Ulam-Hyers-Rassias
stable with respect to ϕ and to the generalized metric d if there exists c > 0 such
that: for each ε > 0 and for each solution y∗ of the inequation

|f (y)(t) − g(y)(t)| ≤ εϕ(t), ∀ t ∈ Ω (21)

there exists a solution x∗ of (19) with

|y∗(t) − x∗(t)| ≤ cεϕ(t), ∀ t ∈ Ω.

Definition 13 Let ϕ : Ω → R+ be a function. The Eq. (19) is generalized Ulam-
Hyers-Rassias stable with respect to ϕ and to the generalized metric d if there exists
c > 0 such that: for each solution y∗ of the inequation

|f (y(t)) − g(y(t))| ≤ ϕ(t), ∀ t ∈ Ω (22)

there exists a solution x∗ of (19) with

|y∗(t) − x∗(t)| ≤ cϕ(t), ∀ t ∈ Ω.

Example 10 Let Ω := [a, b] and X := C1[a, b]. Let us consider the differential
equation

x ′(t) = h(t , x(t)), t ∈ [a, b] (23)
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and the differential inequation

|y ′(t) − h(t , y(t))| ≤ ϕ(t), t ∈ [a, b]. (24)

We have

Theorem 9 We suppose that:

(i) h ∈ C([a, b] × R);
(ii) ϕ ∈ C([a, b], R+) is increasing;

(iii) there exists lh ∈ L1[a, b] such that

|h(t , u) − h(t , v)| ≤ lh(t)|u − v|, ∀ t ∈ [a, b], ∀ u, v ∈ R.

Then, the differential Eq. (23) is generalized Ulam-Hyers-Rassias stable.

Proof Let y ∈ C1[a, b] be a solution of the differential inequation (24). Let x be
the unique solution of the Cauchy problem (conditions (i)-(iii) imply the existence
and uniqueness of Cauchy problem!)

x ′(t) = h(t , x(t)), t ∈ [a, b]

x(a) = y(a).

For such y and x we have

x(t) = y(a) +
t∫

a

h(s, x(s))ds, t ∈ [a, b]

and
∣∣∣y(t) − y(a) −

t∫

a

h(s, y(s))ds
∣∣∣ ≤

t∫

a

ϕ(s)ds ≤ ϕ(t), t ∈ [a, b].

From these relations it follows

|y(t) − x(t)| ≤
∣∣∣y(t) − y(a) −

t∫

a

h(s, y(s))ds
∣∣∣+

t∫

a

|h(s, y(s)) − h(s, x(s)|ds ≤

≤ ϕ(t) +
t∫

a

lh(s)|y(s) − x(s)|ds.

By a well-known Gronwall lemma (see [3, 28, 134], . . . ) we have

|y(t) − x(t)| ≤ cϕ(t), t ∈ [a, b]

where c := exp

b∫

a

lh(s)ds. �
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For other results on Ulam stability of integral equations, of differential equations
and of partial differential equations see: [2, 36, 41, 57–59, 61, 62, 64–68, 71, 72, 75,
76, 80, 92, 117–120, 122], . . .

For the basic theory of differential and integral equations see: [3, 11, 28, 43, 46,
93, 108, 116, 127, 134–136], . . .

Problem 18 To give some abstract results for Ulam stabilities as in Definitions
10–13.

References: [21, 56, 63, 82, 87, 104, 107, 112, 117, 119–122, 137], . . .

7 Equations with Multivalued Operators

Let (X, d) be a metric space. Let us denote
Pcl(X) := {Y ∈ P (X) | Y is closed},
Pcp(X) := {Y ∈ P (X) | Y is compact},
Pb(X) := {Y ∈ P (X) | Y is bounded}.

In what follows we need the following functionals:

• δd : P (X) × P (X) → R+ ∪ {+∞},
δd (Y ,Z) := sup{d(y, z) | y ∈ Y , z ∈ Z}- the diameter functional,

• Dd : P (X) × P (X) → R+,

Dd (Y ,Z) := inf{d(y, z) | y ∈ Y , z ∈ Z}- the gap functional,

• Hd : P (X) × P (X) → R+ ∪ {+∞},
Hd (Y ,Z) := max

{
sup
y∈Y

Dd (y,Z), sup
z∈Z

Dd (Y , z)
}

- the generalized Pompeiu-Hausdorff functional.

Following [123] we shall present some notions from multivalued weakly Picard
operator theory.

Definition 14 Let (X, d) be a metric space and T : X → P (X) be a multivalued
operator. By definition T is WPO if for each x ∈ X and each y ∈ T (x) there exists
a sequence of successive approximations (xn)n∈N, xn+1 ∈ T (xn), n ∈ N, such that

x0 = x, x1 = y and xn
d→ x∗ ∈ FT .

Definition 15 Let T : X → P (X) be a multivalued WPO. Then we define the
multivalued operator T∞ : G(T ) → P (FT ) by,

T∞(x, y) := {z ∈ FT | there exists a sequence of successive approximations of

T starting from(x, y)that converges toz}.
Here G(T ) denotes the graphic of T .
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Definition 16 Let ψ : R+ → R+ be an increasing function, continuous in 0 with
ψ(0) = 0. An WPO T : X → P (X) is ψ-weakly Picard multivalued operator if
there exists a selection t∞ of T∞ such that

d(x, t∞(x, y)) ≤ ψ(d(x, y)), ∀ x, y ∈ G(T ).

If ψ(t) = ct , then T is called c-multivalued WPO.

Definition 17 Let us consider the multivalued fixed point equation

x ∈ T (x) (25)

and the multivalued inequation

Dd (u, T u) ≤ ε (26)

for ε > 0.
The Eq. (25) is Ulam-Hyers stable if there exists c > 0 such that: for each ε > 0

and for each solution u∗ of (26) there exists a solution x∗ of (25) such that

d(u∗, x∗) ≤ cε.

The Eq. (25) is generalized Ulam-Hyers stable if there exists an increasing function
ψ : R+ → R+, continuous in 0 with ψ(0) = 0 such that: for each ε > 0 and for
each solution u∗ of (26) there exists a solution x∗ of (25) such that

d(u∗, x∗) ≤ ψ(ε).

Now let us consider the strict fixed point equation

{x} = T (x) (27)

and the strict fixed point inequation

Hd ({u}, T (u)) ≤ ε. (28)

We observe that Hd ({u}, T (u)) = δd ({u}, T (u)).

Definition 18 The Eq. (27) is Ulam-Hyers stable if there exists c > 0 such that:
for each ε > 0 and for each solution u∗ of (28) there exists a solution x∗ of (27) such
that

d(u∗, x∗) ≤ cε.

The Eq. (27) is generalized Ulam-Hyers stable if there exists an increasing function
ψ : R+ → R+, continuous in 0 with ψ(0) = 0 such that: for each ε > 0 and each
solution u∗ of (28) there exists a solution x∗ of (27) such that

d(u∗, x∗) ≤ ψ(ε).

We have
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Theorem 10 Let (X, d) be a metric space and T : X → Pcp(X) be a multivalued
ψ-WPO. Then, the inclusion (25) is generalized Ulam-Hyers stable.

Proof Let u∗ be a solution of (25). Let y∗ ∈ T (u∗) be such that Dd (u∗, T (u∗)) =
d(u∗, y∗). If we take x∗ := t∞(u∗, y∗), then we have

d(u∗, x∗) = d(u∗, t∞(u∗, y∗)) ≤ ψ(d(u∗, y∗)) ≤ ψ(ε). �

For other results for Ulam stabilities in the case of multivalued operators see
[14, 87, 117, 128].

Problem 19 To study the Ulam-Hyers stability of a strict fixed point equation.
References: [87, 111, 124].
Another operatorial equation with multivalued operators is the coincidence

equation.
Let (X, d) and (Y , ρ) be two metric spaces and T , S : X → P (Y ) be two

multivalued operators from X to Y . Let us consider the coincidence equation

T (x) ∩ S(x) �= ∅ (29)

and the inequation

Dρ(T (u), S(u)) ≤ ε (30)

for ε > 0.
By definition the Eq. (29) is generalized Ulam-Hyers stable if there exists an

increasing function ψ : R+ → R+, continuous in 0 with ψ(0) = 0 such that: for
each ε > 0 and for each solution u∗ ∈ X of (30) there exists a solution x∗ of (29)
such that

d(u∗, x∗) ≤ ψ(ε).

Problem 20 To study the Ulam-Hyers stability of a multivalued coincidence
equation.

References: [14] and the references therein.

8 Other Problems

8.1 Ulam Stability in the Case of a Generalized Metric
Space (d(x, y) ∈ R+)

There are several concepts of generalized metric of type d : X × X → R+. The
following axioms appear in different definitions of such metrics:

(i) d(x, y) = 0 ⇔ x = y, ∀ x, y ∈ X;
(i1) d(x, x) = 0, ∀ x ∈ X;
(i2) d(x, y) = 0 ⇒ x = y, ∀ x, y ∈ X;
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(i3) d(x, y) = d(y, x) = 0 ⇔ x = y, ∀ x, y ∈ X;
(i4) d(x, y) = d(y, x) = 0 ⇒ x = y, ∀ x, y ∈ X;
(i5) d(x, x) = d(y, y) = d(x, y) ⇔ x = y, ∀ x, y ∈ X;
(i6) d(x, x) ≤ d(x, y), ∀ x, y ∈ X;
(i7) d(y, y) ≤ d(x, y), ∀ x, y ∈ X;
(ii) d(x, y) = d(y, x), ∀ x, y ∈ X;

(ii1) there exists c > 0 such that d(x, y) ≤ cd(y, x), ∀ x, y ∈ X;
(iii) d(x, y) ≤ d(x, z) + d(z, y), ∀ x, y, z ∈ X;

(iii1) d(x, y) ≤ d(x, z) + d(y, z), ∀ x, y, z ∈ X;
(iii2) d(x, y) ≤ max(d(x, z), d(z, y)), ∀ x, y, z ∈ X;
(iii3) ∀ ε > 0 d(x, z) ≤ ε, d(z, y) ≤ ε ⇒ d(x, y) ≤ ε, ∀ x, y, z ∈ X;
(iii4) there exists a ≥ 1 such that: d(x, y) ≤ a(d(x, z) + d(z, y)), ∀ x, y, z ∈ X;
(iii5) there exists a ≥ 1 such that:

d(x, y) ≤ amax(d(x, y), d(y, z)), ∀ x, y, z ∈ X;

(iii6) d(x, y) ≤ d(x, z) + d(z, y) − d(z, z), ∀ x, y, z ∈ X.

By definition d is a:

1) premetric if it satisfies: (i1) + (iii);
2) pseudometric if it satisfies: (i1) + (ii) + (iii);
3) quasimetric if it satisfies: (i3) + (iii);
4) semimetric if it satisfies: (i) + (ii);
5) symmetric if it satisfies: (i2) + (ii);
6) dislocated metric if it satisfies: (i4) + (ii) + (iii);
7) ultrametric if it satisfies: (i) + (ii) + (iii2) or (i) + (ii) + (iii3);
8) quasiultrametric if it satisfies: (i) + (ii1) + (iii5);
9) b-metric if it satisfies: (i) + (ii) + (iii4);

10) partial metric if it satisfies: (i5) + (i6) + (ii) + (iii6).

Problem 21 To study Ulam stability of operatorial equations and inclusions in each
of the above generalized metric spaces.

References: [34, 114, 124] and the references therein.
Commentaries: Let X be a nonempty set and f : X → X be an operator. Let us

consider the fixed point equation

x = f (x)

and the functional d : X ×X → R+. If d is a semimetric, an ultrametric, a quasiul-
trametric or a b-metric then the definitions of Ulam-Hyers stability and of gneralized
Ulam-Hyers stability can be given as in Definitions 1 and 2. If the functional d do
not satisfies axiom (i) then it is necessary to take instead of inequation (5) another
inequation. Let us consider, for example, that d is a partial metric. In this case a good
candidate for (5) is the following inequation

2d(x, f (x)) − d(x, x) − d(f (x), f (x)) ≤ ε,

since the functional ρ : X ×X → R+ definded by, ρ(x, y) := 2d(x, y) − d(x, x) −
d(y, y) is a metric (see [114]).
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8.2 Ulam Stability in the Case of a Generalized Metric
Space (d(x, y) ∈ E+)

Let (E, +, R, ≤, → ) be an ordered linear L-space (see [121] and [122]). Let

E+ := {e ∈ E | e ≥ 0}
and

E∗
+ := {e ∈ E | e ≥ 0ande �= 0}.

Let X be a nonempty set and d : X × X → E+ be a generalized metric on X,
i.e., d satisfies the following axioms:

(i) d(x, y) = 0 ⇔ x = y, ∀ x, y ∈ X;
(ii) d(x, y) = d(y, x), ∀ x, y ∈ X;

(iii) d(x, y) ≤ d(x, z) + d(z, y), ∀ x, y, z ∈ X.

Following [122] we present the following definitions and results.

Definition 19 Let (X, d) be a generalized metric space with d(x, y) ∈ E+, ∀ x, y ∈
X. Let f : X → X be an operator. By definition the equation

x = f (x) (31)

is Ulam-Hyers stable if there exists a linear increasing operator c : E → E such
that: for each ε ∈ E∗+ and each solution y∗ ∈ X of the inequation

d(y, f (y)) ≤ ε (32)

there exists a solution x∗ ∈ X of (31) with

d(y∗, x∗) ≤ c(ε).

Definition 20 The Eq. (31) is generalized Ulam-Hyers stable if there exists an
increasing operator ψ : E+ → E+, continuous in 0 with ψ(0) = 0, such that: for
each ε ∈ E∗+ and for each solution y∗ ∈ X of (32) there exists a solution x∗ ∈ X of
(31) such that

d(y∗, x∗) ≤ ψ(ε).

Example 11 Let E := R
m, X := C(Ω , Rm), Ω ⊂ R

p is a bounded domain and

d(x, y) :=

⎛

⎜⎜⎜⎝

max
t∈Ω |x1(t) − y1(t)|

...

max
t∈Ω |xm(t) − ym(t)|

⎞

⎟⎟⎟⎠ ∈ R
m
+

where x = (x1, . . . , xm), y = (y1, . . . , ym) are from C(Ω , Rm).
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Let f : C(Ω , Rm) → C(Ω , Rm) be defined by

f (x)(t) :=
∫

Ω

K(t , s, x(s))ds + k(t), t ∈ Ω

and we consider the fixed point equation

x(t) = f (x)(t), t ∈ Ω. (33)

We have

Theorem 11 We suppose that:

(i) K ∈ C(Ω × Ω × R
m, Rm) and k ∈ C(Ω , Rm);

(ii) there exists a matrix LK ∈ R
m×m
+ such that

⎛

⎜⎜⎜⎝

|K1(t , s, u) − K1(t , s, v)|
...

|Km(t , s, u) − Km(t , s, v)|

⎞

⎟⎟⎟⎠ ≤ LK

⎛

⎜⎜⎜⎝

|u1 − v1|
...

|um − vm|

⎞

⎟⎟⎟⎠ ,

∀ t , s ∈ Ω , ∀ u, v ∈ R
m.

(iii) the matrix mes(Ω)LK is such that

(mes(Ω)LK )n → 0asn → ∞.

Then, the Eq. (33) has a unique solution and is Ulam-Hyers stable.

Proof
First of all, we observe that

d(f (x), f (y)) ≤ mes(Ω)LKd(x, y), ∀ x, y ∈ C(Ω , Rm). (34)

From the Perov fixed point theorem (see [110], pp. 96–97; [124], pp. 83) the
Eq. (33) has a unique solution x∗. Let y∗ be a solution of the inequation (ε ∈ R

∗+)

d(y, f (y)) ≤ ε, ∀ x ∈ C(Ω , Rm). (35)

From (34) we have that

d(y∗, x∗) ≤ (Im − mes(Ω)LK )−1ε.

So, the Eq. (33) is Ulam-Hyers stable. �
For more considerations on Ulam-Hyers stability in a generalized metric space

with d(x, y) ∈ E+ see [122].
For a fixed point theory in a such generalized metric space see [31, 32, 124, 139].
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Problem 22 To construct a theory of WPO in a generalized metric space (d(x, y)
∈ E+) and to apply this theory to Ulam-Hyers stability of a fixed point equation in
a such space.

References: [122].

8.3 Ulam Stability in the Case of Equations with Set-To-Point
Operators

Let (X, d) and (Y , ρ) be two metric spaces, Z ⊂ P (X), Z �= ∅ and T , S : Z → Y

be two set-to-point operators. We consider on Z the equation

T (A) = S(A). (36)

Definition 21 The Eq. (36) is Ulam-Hyers stable if there exists c > 0 such that:
for each ε > 0 and each solution B∗ ∈ Z of the inequation

ρ(T (B), S(B)) ≤ ε (37)

there exists a solution A∗ ∈ Z of (36) such that

Hd (B∗,A∗) ≤ cε.

In a similar way we define the generalized Ulam-Hyers stability of the set-to-point
Eq. (36).

Problem 23 To study Ulam stability of (36).

Problem 24 Let (X, d) be a metric space, Z ⊂ P (X), Z �= ∅ and T : Z → R+ be a
point-to-set functional. Let r>0 be a given positive real number (S(A) := r , ∀A∈Z).
The problem is to study Ulam stability of the equation

T (A) = r (38)

We can take in Problem 8.3, T := δd , T := α - an abstract measure of
noncompactness, T := β - an abstract measure of nonconvexity, . . .

References: [122]. For the measures of noncompactness see: [5, 6, 10, 33, 44,
68, 113, 124]. For the measures of nonconvexity see: [10, 113] and the references
therein.

8.4 Difference Equations as Operatorial Equations

Let k ∈ N
∗ and fn : R

k → R, n ∈ N
∗ be some given functions. We consider, for

example, the following difference equation

xn = fn(xn−k , xn−k+1, . . . , xn−1). (39)
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Let us denote
s(R) := {(xn)n∈N∗ | xn ∈ R}

and
M(R) := {(xij )∞1 | xij ∈ R, i, j ∈ N

∗}.
We consider on s(R) the generalized metric

d(x, y) := (|xn − yn‖n∈N∗

and on M(R) the generalized metric

d(A,B) := sup
i∈N∗

∞∑

j=1

|aij |.

Let us consider the operator

T : R
k × s(R) → R

k × s(R)

defined by

(x−k+1, . . . , x0, x1, . . . , xn, . . . ) �→ (x−k+1, . . . , x0, f1(x−k+1, . . . , x0), . . . ,

fn(xn−k , . . . , xn−1), . . . ).

In terms of the operator T , the difference Eq. (39) takes the following form:

x = T (x). (40)

The Eq. (40) is a fixed point equation on the generalized metric space, R
k × s(R).

Problem 25 To study the Ulam stability of the Eq. (39) by operatorial equations
tehniques.

References: [1, 70, 92, 117, 122], . . .
For the Ulam stability of the difference equations see [18–20, 90, 91, 138], . . .

8.5 Ulam Stability of Fractal Equations

Let (X, d) be a metric space and T : X → Pcp(X) be an upper semicontinuous
operator. Let T̂ be the fractal operator corresponding to T , i.e., T̂ : Pcp(X) →
Pcp(X), defined by T̂ (A) :=

⋃

a∈A
T (a). Let us consider the equations:

x ∈ T (x) (41)

and

A = T̂ (A). (42)

Equation (41) is an operatorial inclusion onX and Eq. (42) is a fixed point equation
with singlevalued operator on Pcp(X).
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Problem 26 In which conditions we have that: If the Eq. (41) is Ulam-Hyers stable
on (X, d), then the Eq. (42) is Ulam-Hyers stable on (Pcp(X),Hd )?

For fractal operators see: [113], pp. 19–20; [124], pp. 275–277.
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Ştiinţifice ale Univ. “Al. I. Cuza” din Iaşi, Matematica 97, 65–74 (2011)
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Superstability of Generalized Module Left
Higher Derivations on a Multi-Banach Module

T. L. Shateri and Z. Afshari

Abstract The problem of stability of functional equations was originally raised
by Ulam in 1940. During the last decades, several stability problems for various
functional equations have been investigated by several authors. In this chapter, by
defining a multi-Banach space, we introduce a multi-Banach module. Also, we
define the notion of generalized module left higher derivations and approximate
generalized module left higher derivations. Then, we discuss the superstability of an
approximate generalized module left higher derivation on a multi-Banach module.
In fact, we show that an approximate generalized module left higher derivation on a
multi-Banach module is a generalized module left higher derivation. Finally, we get
the similar result for a linear generalized module left higher derivation.

Keywords Superstability · Multi-Banach module · Derivation · Normed space ·
Group homomorphisms · Bimodule · Multi-Banach space

1 Introduction and Preliminaries

The problem of stability of functional equations was originally raised by Ulam [26]
in 1940 concerning the stability of group homomorphisms. Hyers [12] provided
an affirmative partial solution to the question of Ulam for the case of approximate
additive mappings between banach spaces. Superstability, the result of Hyers was
generalized byAoki [1], Bourgin [4] and Rassias [22]. During the last decades several
stability problems for various functional equations have been investigated by several
authors. We refer the reader to the monographs [2, 6, 13, 15, 16, 18, 21, 23, 24].

Let (E, ‖.‖) be a complex-normed space, and let k ∈ IN. We denote by Ek the
linear space E ⊕ · · · ⊕E consisting of k-tuples (x1, · · · , xk), where x1, · · · , xk ∈ E.
The linear operations on Ek are defined coordinatewise. The zero element of either
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E or Ek is denoted by 0. We denote by INk the set {1, 2, · · · , k} and by Ck the group
of permutations on k symbols.

Definition 1 A multi-norm on {Ek : k ∈ IN} is a sequence (‖.‖k) = (‖.‖k : k ∈ IN)
such that ‖.‖k is a norm on Ek for each k ∈ IN, ‖x‖1 = ‖x‖ for each x ∈ E, and the
following axioms are satisfied for each k ∈ IN with k ≥ 2
(M1) ‖(xσ (1), · · · , xσ (k))‖k = ‖(x1, · · · , xk)‖k (σ ∈ Ck , x1, · · · , xk ∈ E)
(M2) ‖(α1x1, · · · ,αkxk)‖k ≤ (maxi∈INk

|αi |)‖(x1, · · · , xk)‖k
(α1, · · · ,αk ∈ �C, x1, · · · , xk ∈ E)
(M3) ‖(x1, · · · , xk−1, 0)‖k = ‖(x1, · · · , xk−1)‖k−1 (x1, · · · , xk ∈ E)
(M4) ‖(x1, · · · , xk−1, xk−1)‖k = ‖(x1, · · · , xk−1)‖k−1 (x1, · · · , xk ∈ E).
In this case, we say that ((Ek , ‖.‖), k ∈ IN) is a multi-normed space.

We recall that the notion of multi-normed space was introduced by H. G. Dales
and M. E. Polyakov in [7]. Motivations for the study of multi-normed spaces and
many examples are given in [7].

Suppose that ((Ek , ‖.‖k) : k ∈ IN) is a multi-normed space, and k ∈ IN. The
following properties are almost immediate consequences of the axioms.

(i) ‖(x, · · · , x)‖k = ‖x‖ (x ∈ E)
(ii) maxi∈INk

‖xi‖≤‖(x1, · · · , xk)‖k≤∑k
i=1 ‖xi‖ ≤ k maxi∈INk

‖xi‖(x1, · · · , xk ∈ E).

It follows from (ii) that, if (E, ‖.‖) is a Banach space, then (Ek , ‖.‖k) is a Banach
space for each k ∈ IN. In this case, ((Ek , ‖.‖k) : k ∈ IN) is a multi-Banach space. By
(ii), we get the following lemma.

Lemma 1 Suppose that k ∈ IN and (x1, · · · , xk) ∈ Ek . For each j ∈ INk ,
let {xjn}n∈IN be a sequence in E such that limn→∞ x

j
n = xj . Then, for each

(y1, · · · , yk) ∈ Ek , we have

lim
n→∞ (x1

n − y1, · · · , xkn − yk) = (x1 − y1, · · · , xk − yk).

Definition 2 Let ((Ek , ‖.‖k) : k ∈ IN) be a multi-normed space. A sequence {xn}
in E is a multi-null sequence if, for each ε > 0, there exists n0 ∈ IN such that

sup
k∈IN

‖(xn, · · · , xn+k−1)‖k < ε (n ≥ n0).

Let x ∈ E. We say that limn→∞ xn = x if {xn − x} is a multi-null sequence.

Definition 3 Let (A, ‖.‖) be a normed algebra such that ((Ak , ‖.‖k) : k ∈ IN) is a
multi-normed space. Then, ((Ak , ‖.‖k) : k ∈ IN) is a multi-normed algebra if

‖(a1b1, · · · , akbk)‖k ≤ ‖(a1, · · · , ak)‖k‖(b1, · · · , bk)‖k (1)

for k ∈ IN and x1, · · · , xk , y1, · · · , yk ∈ A. Furthermore, if ((Ak , ‖.‖k) : k ∈ IN) is a
multi-Banach space, then ((Ak , ‖.‖k) : k ∈ IN) is a multi-Banach algebra. Let X be
a Banach A-bimodule such that ((X k , ‖.‖k) : k ∈ IN) is a multi-normed space, then
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((Ak , ‖.‖k)k ∈ IN) is said to be a multi-Banach A-bimodule if there is a non-negative
number M

‖(a1x1, · · · , akxk)‖k ≤ M‖(a1, · · · , ak)‖k‖(x1, · · · , xk)‖k , (2)

‖(x1a1, · · · , xkak)‖k ≤ M‖(a1, · · · , ak)‖k‖(x1, · · · , xk)‖k (3)

for k ∈ IN and a1, · · · , ak ∈ A, x1, · · · , xk ∈ X .
Let A be an algebra and k0 ∈ {0, 1, · · · , } ∪ {∞}. A family {Dj }k0

j=0 of linear
mappings on A is said to be a higher derivation of rank k0 if the functional equation
Dj (xy) = ∑j

i=0 Di(x)Dj−i(y), holds for all x, y ∈ A, j = 0, 1, 2, . . ., k0. If
D0 = idA, where idA is the identity map on A, then D1 is a derivation and {Dj }k0

j=0
is called a strongly higher derivation. A standard example of a higher derivation of
rank k0 is {Dj

j ! }k0
j=0 where D : A → A is a derivation. The reader may find more

information about higher derivations in [3, 8–11, 14, 27].
Let A be an algebra over the real or complex field �F and X be an A-bimodule.

Definition 4 A family {δj }k0
j=0 of mappings from A into A is called a module-X

additive if

xδj (a + b) = xδj (a) + xδj (b) (a, b ∈ A, x ∈ X , j = 0, 1, 2, · · · , k0). (4)

A module-X additive family {δj }k0
j=0 is called a module-X left higher derivation

(resp., module-X higher derivation) if δ0 = idA and for all 1 ≤ j ≤ k0

xδj (ab) = axδj (b) + bxδj (a) +
j−1∑

i=1

xδi(b)δj−i(a) (a, b ∈ A, x ∈ X ) (5)

(resp.,

xδj (ab) =
j∑

i=0

δi(a)xδj−i(b) (a, b ∈ A, x ∈ X )) (6)

holds.

Definition 5 A family {fj }k0
j=0 of mappings from X into X is called a module-A-

additive if

afj (x + y) = afj (x) + afj (y) (a ∈ A, x, y ∈ X , j = 0, 1, 2, · · · , k0) (7)

A module-A additive family {fj }k0
j=0 is called a generalized module-A left higher

derivation (resp., generalized module-A higher derivation) if f0 = idA and there
exists a module-X left higher derivation {δj }k0

j=0 such that for all 1 ≤ j ≤ k0

afj (bx) = abfj (x) + a

j∑

i=1

fj−i(x)δi(b) (a, b ∈ A, x ∈ X ). (8)
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(resp.,

afj (bx) = abfj (x) + a

j∑

i=1

δi(b)fj−i(x) (a, b ∈ A, x ∈ X )). (9)

Remark 1 If X = A is a unital algebra or a Banach algebra with an approximate
unit, then module-A left higher derivations, module-A higher derivations, general-
ized module-A left higher derivations and generalized module-A higher derivations
on A become left higher derivations, higher derivations, generalized left higher
derivations and generalized higher derivations on A. Superstability of generalized
higher derivations discussed in [25].

The stability of derivations was studied by C.-G.Park [19, 20]. In this chapter,
using some ideas from [17, 5], we investigate the superstability of generalized module
left higher derivations in multi-Banach algebras.

2 Main Results

In this section, we define the notion of an approximate generalized module-
A left higher derivation. Then, we show that an approximate generalized left
higher derivation on a multi-Banach algebra is a generalized module-A left higher
derivation.

Lemma 2 Let ((Ek , ‖.‖k)k ∈ IN) be a multi-Banach space. Letψ : E×E → [0, ∞)
satisfies the following conditions

(i) limn→∞ t−nψ(
∑k

i=1 t
nxi ,

∑k
i=1 t

nyi) = 0,
(ii) ψ̃(x1, · · · , xk) = ∑∞

n=0 t
1−nψ(

∑k
i=1 t

nxi , 0) < ∞
for x1, · · · , xk , y1, · · · , yk ∈ E. Suppose that f : E → E is a mapping satisfying
f (0) = 0 and

sup
k∈ �N

∥∥∥∥

(
f
(x1

t
+ y1

l

)
+ f

(x1

t
− y1

l

)
− 2f (x1)

t
, · · · , f

(xk
t

+ yk

l

)

+f
(xk
t

− yk

l

)
− 2f (xk)

t

)∥∥∥∥
k

≤ ψ

(
k∑

i=1

xi ,
k∑

i=1

yi

)
, (10)

for all integer t , l > 1 and all x1, · · · , xk , y1, · · · , yk ∈ E. Then, there exists an
additive mapping d : E → E such that

‖(f (x1) − d(x1), · · · , f (xk) − d(xk))‖ ≤ ψ̃(x1, · · · , xk) (11)
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for x1, · · · , xk ∈ E.

Proof Substituting yi = 0 for i = 1, · · · , k and replacing xi by tx1, · · · , txk in (10),
we get

sup
k∈IN

∣∣∣∣

∣∣∣∣

(
f (x1) − f (tx1)

t
, · · · , f (xk) − f (txk)

t

)∣∣∣∣

∣∣∣∣
k

≤ 1

2
ψ(tx1 + · · · + txk , 0). (12)

From (12), we have that

sup
k∈IN

∣∣∣∣

∣∣∣∣

(
f (x1) − f (t2x1)

t2
, · · · , f (xk) − f (t2xk)

t2

)∣∣∣∣

∣∣∣∣
k

≤ 1

2
ψ

(
k∑

i=1

txi , 0

)

+ 1

2
t−1ψ

(
k∑

i=1

t2xi , 0

)
. (13)

An induction argument implies that

sup
k∈IN

∣∣∣∣

∣∣∣∣

(
f (x1) − f (tnx1)

tn
, · · · , f (xk) − f (tnxk)

tn

)∣∣∣∣

∣∣∣∣
k

≤ 1

2

n∑

j=1

t1−jψ

(
k∑

i=1

t j xi , 0

)

(14)

for x1, · · · , xk ∈ E and n ∈ IN. Let n > m, then by (14) and condition (ii), we
obtain that

sup
k∈ �N

∣∣∣∣

∣∣∣∣

(
f (tnx1)

tn
− f (tmx1)

tm
, · · · ,

f (tnxk)

tn
− f (tmxk)

tm

)∣∣∣∣

∣∣∣∣
k

≤ 1

tm
sup
k∈ �N

∣∣∣∣

∣∣∣∣

(
f (tn−mtmx1)

tn−m
− f (tmx1), · · · ,

f (tn−mtmxk)

tn−m
− f (tmxk)

)∣∣∣∣

∣∣∣∣
k

≤ 1

tm

1

2

n−m∑

j=1

t1−jψ

(
k∑

i=1

t j .tmxi , 0

)

≤1

2

∞∑

j=m

t1−jψ

(
k∑

i=1

t j xi , 0

)
→ 0 (m → ∞).

Hence, the sequence { f (tnx)
tn

} is a cauchy sequence in the multi-Banach space E

and therefore converges for all x ∈ E. Put d(x) = limn→∞ f (tnx)
tn

(x ∈ E), so
d(0) = f (0) = 0. By (14), we get

sup
k∈IN

∣∣∣∣

∣∣∣∣

(
f (tnx1)

tn
− d(x1), · · · ,

f (tnxk)

tn
− d(xk)

)∣∣∣∣

∣∣∣∣
k

≤ ψ̃(x1, · · · , xk). (15)

In particular, the property (ii) of multi-norm implies that

lim
n→∞ ‖f (tnx)

tn
− d(x)‖ = 0 (x ∈ E). (16)
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Now, we show that d is additive. To do this, let x, y ∈ E put x1 = · · · = xk =
tnx, y1 = · · · = yk = tny in (10). Therefore

∣∣∣∣

∣∣∣∣t
−nf

(
tnx

t
+ tny

l

)
+t−nf

(
tnx

t
− tny

l

)
− 1

t
2
f (tnx)

tn

∣∣∣∣

∣∣∣∣≤ t−nψ

(
k∑

i=1

tnx,
k∑

i=1

tny

)
.

(17)

By letting n → ∞, the condition (i) yields that

d
(x
t

+ y

l

)
+ d

(x
t

− y

l

)
= 2

t
d(x) (18)

for all x, y ∈ E. Since d(0) = 0, taking y = 0 and y = l
t
x, respectively, we

get d( 2x
t

) = 2d( x
t
), and hence, d(2x) = 2d(x) for all x ∈ E. We obtain that

d(x + y) + d(x − y) = 2d(x) for all x, y ∈ E. Now, for all z, w ∈ E, put
x = t

2 (z + w), y = l
2 (z − w). Then by (18), we see that

d(z) + d(w) = d
(x
t

+ y

l

)
+ d

(x
t

− y

l

)
= 2

t
d(x) = 2

t
d

(
t

2
(z + w)

)
= d(z + w).

(19)

Therefore, d is additive.

Definition 6 Let ((Ak , ‖.‖k) : k ∈ IN) be a multi-Banach algebra and ((X k , ‖.‖k)k
∈ IN) a multi-Banach A-bimodule. Suppose that t , l > 1 are integers, 0 < α < t

and ψ : X × X × A × X → [0, ∞) satisfy the following conditions
(i) limn→∞ t−n[ψ(

∑k
i=1 t

nxi ,
∑k

i=1 t
nyi , 0, 0) + ψ(0, 0,

∑k
i=1 t

nai ,
∑k

i=1 zi )] = 0
(ii) ψ̃(x1, · · · , xk) = ∑∞

n=0 t
−n+1ψ(

∑k
i=1 t

nxi , 0, 0, 0) < ∞
(iii) limn→∞ t−2nψ(0, 0,

∑k
i=1 t

nai ,
∑k

i=1 t
nzi )] = 0

for all x1, · · · , xk , y1, · · · , yk , z1, · · · , zk ∈ X , a1, · · · , ak ∈ A and
(iv) ψ(0, 0, tna, tmx) ≤ αn+mψ(0, 0, a, x) (a ∈ A, x ∈ X ,m, n ∈ IN).

Let {fj : X → X }k0
j=0 and {gj : A → A}k0

j=0 be two families of mappings such that
fj (0) = 0 and δj (a) := limn→∞ 1

tn
gj (tna) exists for all a ∈ A and 0 < j ≤ k0. If

for each 0 < j ≤ k0

sup
k∈ �N

∥∥∥
(
fj

(x1

t
+ y1

l
+ a1z1

)
+ fj

(x1

t
− y1

l
+ a1z1

)
− 2

fj (x1)

t
− 2a1fj (z1)

− 2z1gj (a1), · · · , fj
(xk
t

+ yk

l
+ akzk

)
+ fj

(xk
t

− yk

l
+ akzk

)
− 2

fj (xk)

t

− 2akfj (zk) − 2zkgj (ak)
)∥∥∥

k

≤ ψ

(
k∑

i=1

xi ,
k∑

i=1

yi ,
k∑

i=1

ai ,
k∑

i=1

zi

)
(20)

for all x1, · · · , xk , y1, · · · , yk , z1, · · · , zk ∈ X , a1, · · · , ak ∈ A and
∣∣∣∣∣

∣∣∣∣∣afj (bx) − abfj (x) − a

j∑

i=1

fj−i(x)gi(b)

∣∣∣∣∣

∣∣∣∣∣ ≤ ψ(0, 0, b, x) (21)
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for all x ∈ X , a, b ∈ A. Then, {fj }k0
0 and {gj }k0

0 are called (ψ ,α)-approximate
generalized module-A left higher derivation and (ψ ,α)-approximate module-X left
higher derivation, respectively.

In the following theorem, we show that a (ψ ,α)-approximate generalized module-
A left higher derivation on a multi-Banach A-bimodule is a generalized module left
higher derivation.

Theorem 1 Let A be a Banach algebra with unit e and X a Banach A-bimodule.
Suppose that {fj }k0

0 is a (ψ ,α)-approximate generalized module-A left higher
derivation on the multi-Banach A-bimodule ((X k , ‖.‖k) : k ∈ IN) and {gj }k0

0 is
a (ψ ,α)-approximate module-X left higher derivation on the multi-Banach algebra
((A‖, ‖.‖‖) : ‖ ∈ IN). Then, {fj }k0

0 is a generalized module-A left higher derivation
and {gj }k0

0 is a module-X left higher derivation.

Proof Letting ai = zi = 0 for i = 1, · · · k in (20), Lemma 2 implies that for
each 0 < j ≤ k0, there exists an additive mapping dj on X defined by dj (x) =
limn→∞

fj (tnx)
tn

such that

‖(f (x1) − d(x1), · · · , f (xk) − d(xk))‖ ≤ ψ̃(x1, · · · , xk) (22)

for x1, · · · , xk ∈ E and dj (0) = fj (0) = 0. If j = 1 [5, Theorem 2.1] implies that
f1 is a generalized module-A left derivation and δ1, g1 are module-X left derivation
on A and for all a, b ∈ A and x ∈ X

af1(bx) = abf1(x) + axδ1(b), d1(x) = f1(x), (23)

xg1(ab) = axg1(b) + bxg1(a), xg1(a) = xδ1(a).

By induction for 1 ≤ j ≤ k0 − 1, we assume that

afj (bx) = abfj (x) + a

j∑

i=1

fj−i(x)δi(b), dj (x) = fj (x)

xδj (ab) = axδj (b) + bxδj (a) +
j−1∑

i=1

xδi(b)δj−i(a)

xgj (ab) = axgj (b) + bxgj (a) + x

j−1∑

i=1

gj−i(b)gi(a), xgj (a) = xδj (a) (24)

and each δj is module-X additive. Then, we prove that

afk0 (bx) = abfk0 (x) + a

k0∑

i=1

fk0−i(x)δi(b), dk0 (x) = fk0 (x) (25)

xδk0 (ab) = axδk0 (b) + bxδk0 (a) +
k0−1∑

i=1

xδi(b)δk0−i(a)

xgk0 (ab) = axgk0 (b) + bxgk0 (a) + x

k0−1∑

i=1

gk0−i(b)gi(a), xgk0 (a) = xδk0 (a).
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Let b ∈ A, x ∈ X , by replacing b with tnb, x with tnx in (21), respectively and
a = e, we obtain

∣∣∣∣∣

∣∣∣∣∣
1

t2n
fk0 (t2nbx) − b

tn
fk0 (tnx) − 1

t2n

k0∑

i=1

f
k0 −i(t

nx)gk0 (tnb)

∣∣∣∣∣

∣∣∣∣∣

≤ 1

t2n
ψ(0, 0, tnb, tnx) ≤

(α
t

)2n
ψ(0, 0, b, x) → 0 (n → ∞). (26)

Therefore,

dk0 (bx) = bdk0 (x) +
k0∑

i=1

d
k0 −i(x)δi(b) (27)

for all b ∈ A and x ∈ X . Since dk0 is additive and δs (1 ≤ s ≤ k0 − 1) are
module-X additive, δk0 is module-X additive. Put Fk0 (b, x) = fk0 (bx) − bfk0 (x) −∑k0

i=1 fk0−i(x)gi(b), then we see that

1

tn
‖Fk0 (tnb, x)‖ ≤

(α
t

)n
ψ(0, 0, b, x) → 0 (n → ∞) (28)

for all b ∈ A and x ∈ X . Hence

dk0 (bx)= lim
n→∞

fk0 (tnbx)

tn
= lim

n→∞

(
Fk0 (tnb, x) + tnbfk0 (x) +∑k0

i=1 fk0−i(x)gi(tnb)

tn

)

= bfk0 (x) +
k0∑

i=1

fk0−i(x)δi(b) = bfk0 (x) +
k0∑

i=1

dk0−i(x)δi(b).

It follows from (27) that bdk0 (x) = bfk0 (x) for all b ∈ A and x ∈ X , and hence,
dk0 (x) = fk0 (x) for all x ∈ X . Since dk0 is additive, fk0 is module-A additive.
Therefore, for all a, b ∈ A and x ∈ X ,

afk0 (bx) = adk0 (bx) = abfk0 (x) + a

k0∑

i=1

fk0−i(x)δi(b)

and then (24) implies that

xδk0 (ab) = fk0 (abx) − abfk0 (x) −
k0−1∑

i=1

fk0−i(x)δi(ab)

= afk0 (bx) +bxδk0 (a) +
k0−1∑

i=1

fk0−i(bx)δi(a)−abfk0 (x)−
k0−1∑

i=1

fk0−i(x)δi(ab)

= abfk0 (x) + axδk0 (b) + a

k0−1∑

i=1

fk0−i(x)δi(b) + bxδk0 (a)



Superstability of Generalized Module Left Higher Derivations . . . 361

+
k0−1∑

i=1

[
bfk0−i(x) + xδk0−i(b) +

k0−i−1∑

k=1

fk0−i−k(x)δk(b)

]
δi(a)

− abfk0 (x) −
k0−1∑

i=1

[afk0−i(x)δi(b) + bfk0−i(x)δi(a)

+ sumi−1
k=1fk0−i(x)δk(b)δi−k(b)]

= axδk0 (b)+bxδk0 (a)+
k0−1∑

i=1

xδk0−i(b)δi(a)+
k0−1∑

i=1

k0−i−1∑

k=1

fk0−k−i(x)δk(b)δi(a)

−
k0−1∑

i=1

i−1∑

k=1

fk0−i(x)δk(b)δi−k(a)=axδk0 (b)+bxδk0 (a)+
k0−1∑

i=1

xδk0−i(b)δi(a).

This shows that {δj }k0
j=0 is a module-X left higher derivation on A and then {fj }k0

j=0

is a generalized module-A left higher derivation on X . Finally, we prove that {gj }k0
j=0

is a module-X left higher derivation on A. We conclude from (21) and the condition
(i) that

∣∣∣∣∣

∣∣∣∣∣
1

tn
fk0 (tnbx) − b

tn
fk0 (tnx) − 1

tn

k0∑

i=1

fk0−i(t
nx)gk0 (b)

∣∣∣∣∣

∣∣∣∣∣

≤ 1

tn
ψ(0, 0, b, tnx) ≤ (

α

t
)nψ(0, 0, b, x) → 0,

as n → ∞. Therefore,

dk0 (bx) = bdk0 (x) +
k0∑

i=1

dk0−i(x)gi(b)

for all b ∈ A and x ∈ X . Now, the induction assumptions in (24) and Eq. (27)
implies that xgk0 (a) = xδk0 (a), for all b ∈ A and x ∈ X . Therefore, {gj }k0

j=0 is a
module-X left higher derivation on A, and this completes the proof.

Remark 2 A typical example of the function ψ in Theorem 1 is

ψ(x, y, a, z) = ε(‖xp‖ + ‖y‖q + ‖a‖r‖z‖s)
in which ε ≥ 0 and p, q, r , s ∈ [0, 1).

If we put X = A in Theorem 1, we get the next corollary.

Corollary 1 Let A be a Banach algebra with unit e, ε ≥ 0 and t , l ≥ 1 be integers.
Suppose that {fj }k0

j=0 and {gj }k0
j=0 are two family mappings from A into A with

fj (0) = 0 (0 ≤ j ≤ k0) such that
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sup
k∈ �N

∥∥∥
(
fj

(x1

t
+ y1

l
+a1z1

)
+fj

(x1

t
− y1

l
+a1z1

)
−2

fj (x1)

t
− 2a1fj (z1) − 2z1gj (a1)

, · · · , fj
(xk
t

+ yk

l
+ akzk

)
+ fj

(xk
t

− yk

l
+ akzk

)
− 2

fj (xk)

t

− 2akfj (zk) − 2zkgj (ak)
)∥∥∥

k

≤ ε, (29)

for all x1, · · · , xk , y1, · · · , yk , z1, · · · , zk , a1, · · · , ak ∈ A and

∥∥∥afj (bx) − abfj (x) − a

j∑

i=1

fj−i(x)gi(b)
∥∥∥ ≤ ε (30)

for all x, a, b ∈ A. Then, {fj }k0
0 is a generalized left higher derivation and {gj }k0

0 is
a left higher derivation.

Proof [5, Corollary 2.3] implies that f1 is a generalized left derivation and g1 is a
left derivation. By induction, let the result holds for {fj }k0−1

0 and {gj }k0−1
0 . If we put

ψ(x, y, a, z) = ε in Theorem 1 and a = e in (25), then we have

fj (bx)= bfj (x) +
j∑

i=1

fj−i(x)δi(b), gj (ab) = agj (b) + bgj (a) +
j−1∑

i=1

gi(b)gj−i(a)

for all a, b, x ∈ A. This completes the proof.
With the help of Theorem 1, we get the following result for a linear generalized

module left higher derivation.

Theorem 2 Let A be a Banach algebra with unit e and X a Banach A-bimodule.
Suppose that {fj }k0

0 is a (ψ ,α)-approximate generalized module-A left higher
derivation on the multi-Banach A-bimodule ((X k , ‖.‖k)k ∈ IN) and {gj }k0

0 is a
(ψ ,α)-approximate module-X left higher derivation on the multi-Banach algebra
((A‖, ‖.‖‖)‖ ∈ IN) such that

sup
k∈IN

∥∥∥
(
fj

(
βx1

t
+ γy1

l
+ a1z1

)
+ fj

(
βx1

t
− γy1

l
+ a1z1

)
− 2βfj (x1)

t

− 2a1fj (z1) − 2z1gj (a1)

, · · · , fj

(
βxk

t
+ γyk

l
+ akzk

)
+ fj

(
βxk

t
− γyk

l
+ akzk

)
− 2βfj (xk)

t

− 2akfj (zk) − 2zkgj (ak)
)∥∥∥

k

≤ ψ

(
k∑

i=1

xi ,
k∑

i=1

yi ,
k∑

i=1

ai ,
k∑

i=1

zi

)
(31)

for all x1, · · · , xk , y1, · · · , yk , z1, · · · , zk ∈ X , a1, · · · , ak ∈ A and all β, γ ∈ �T =
{z ∈ �C : |z| = 1}. Then, {fj }k0

0 is a linear generalized module-A left higher
derivation and {gj }k0

0 is a linear module-X left higher derivation.
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Proof It is clear that the inequality (20) is satisfied. Theorem (1) shows that {fj }k0
0 is

a generalized module-A left higher derivation and {gj }k0
0 is a module-X left higher

derivation with

fj (x) = lim
n→∞

fj (tnx)

tn
, gj (b) = fj (b) − bfj (e) −

j−1∑

i=1

fj−i(e)gi(b) (32)

for all x ∈ X , b ∈ A and j = 1, · · · , k0. Taking ai = zi = 0 and replacing xi and yi
with tnx and tny for i = 1, · · · k and x, y ∈ X in (31), respectively, then we see that

∣∣∣∣

∣∣∣∣
1

tn
fj

(
βtnx

t
+ γ tny

l

)
+ 1

tn
fj

(
βtnx

t
− γ tny

l

)
− 1

tn

2βfj (tnx)

t

∣∣∣∣

∣∣∣∣

≤ 1

tn
ψ
(
ktnx, ktny, 0, 0

) → 0

as n → ∞, for all x, y ∈ X and all β, γ ∈ �T . Therefore,

fj

(
βx

t
+ γy

l

)
+ fj

(
βx

t
− γy

l

)
= 2βfj (x)

t
(33)

for all x, y ∈ X and all β, γ ∈ �T . Taking y = 0 in (33) implies that fj (βx) = βfj (x)
for all x ∈ X and all β ∈ �T . Since fj is additive, [5, Lemma 2.4] shows that fj is
linear and (32) yields that gj is linear.

Employing the similar way as in the proof of Theorem 2, we get the next corollary
for a linear generalized left higher derivation.

Corollary 2 Let A be a Banach algebra with unit e, ε ≥ 0 and t , l ≥ 1 be integers.
Suppose that {fj }k0

j=0 and {gj }k0
j=0 are two family mappings from A into A with

fj (0) = 0 (0 ≤ j ≤ k0) such that

sup
k∈IN

∥∥∥
(
fj

(
βx1

t
+ γy1

l
+ a1z1

)
+ fj

(
βx1

t
− γy1

l
+ a1z1

)
− 2βfj (x1)

t

− 2a1fj (z1) − 2z1gj (a1)

, · · · , fj

(
βxk

t
+ γyk

l
+ akzk

)
+ fj

(
βxk

t
− γyk

l
+ akzk

)
− 2βfj (xk)

t

− 2akfj (zk) − 2zkgj (ak)
)∥∥∥

k

≤ ε, (34)

for all x1, · · · , xk , y1, · · · , yk , z1, · · · , zk , a1, · · · , ak ∈ A and β, γ ∈ �T . If

‖afj (bx) − abfj (x) − a

j∑

i=1

fj−i(x)gi(b)‖ ≤ ε (35)

for all x, a, b ∈ A, then {fj }k0
0 is a linear generalized left higher derivation and

{gj }k0
0 is a linear left higher derivation.
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D’Alembert’s Functional Equation and
Superstability Problem in Hypergroups

D. Zeglami, A. Roukbi and Themistocles M. Rassias

Abstract Our main goal is to determine the continuous and bounded complex valued
solutions of the functional equation

〈δx ∗ δy , g〉 + 〈δx ∗ δy̌ , g〉 = 2g(x)g(y), x, y ∈ X,

where X is a hypergroup. The solutions are expressed in terms of 2 -dimensional
representations ofX. The papers of Davison [10] and Stetkær [25, 26] are the essential
motivation for this first part of the present work and the methods used here are closely
related to and inspired by those in [10, 25, 26]. In addition, superstability problem
for this functional equation on any hypergroup and without any condition on f is
considered.

Keywords Superstability · Hypergroup · D’Alembert’s functional equation ·
Involution · Wilson’s functional equation

1 Introduction

A number of results have been obtained for the d’Alembert’s functional equation (1)
and the corresponding Wilson’s functional equation (2) on groups

g(xy) + g(xσ (y)) = 2g(x)g(y), x, y ∈ G, (1)

D. Zeglami (�)
Department of Mathematics, E.N.S.A.M., Moulay Ismail University, B.P.: 15290, Al Mansour,
Meknes, Morocco
e-mail: zeglamidriss@yahoo.fr

A. Roukbi
Department of Mathematics, Ibn Tofail University, 14000 Kenitra, Morocco
e-mail: rroukbi.a2000@gmail.com

T. M. Rassias
Department of Mathematics, National Technical University of Athens,
Zofrafou Campus, 15780 Athens, Greece
e-mail: trassias@math.ntua.gr

© Springer Science+Business Media, LLC 2014 367
T. M. Rassias (ed.), Handbook of Functional Equations,
Springer Optimization and Its Applications 96, DOI 10.1007/978-1-4939-1286-5_17



368 D. Zeglami et al.

f (xy) + f (xσ (y)) = 2f (x)g(y), x, y ∈ G, (2)

where f , g are complex-valued functions on a group G and σ : G → G be an
involution of G, i.e., σ (xy) = σ (y)σ (x) and σ (σ (x)) = x, for all x, y ∈ G. In
[15], from 1968, Kannappan proved that the non-zero complex valued functions g
satisfying

g(x + y) + g(x − y) = 2g(x)g(y), x, y ∈ G

are the functions of the form

g(x) = m(x) + m(−x)

2
, x ∈ G

where m is an homomorphism of (G, +). Mathematicians extended Kannappan’s
result to an even more general setting; the group inversion is below replaced by a
general involution, and the group by a semigroup (See Baker [3], Sinopoulos [21]
and Stetkaer [22]). In this context, the most general result is the following:

Theorem 1 Let S be a semigroup, and let σ : S → S be an involution of S. Assume
that g : S → C satisfies Kannappan’s condition, i.e., that g(xyz) = g(xzy) for all
x, y, z ∈ S. Then, g is a solution of the functional Eq. (1) if and only if there exists
a multiplicative homomorphism m : S → C, such that

g = m + m ◦ σ
2

.

and m is unique, except that it can be replaced by m ◦ σ.
The problem was how to find solutions of (1) in the non-abelian case. I. Corovei

(see, e.g., [8, 9]) discussed them on certain nilpotent groups. H. Stetkær [23, 24]
solved d’Alembert’s and Wilson’s functional equations on Step 2 nilpotent groups
and derived many properties of d’Alembert functions on groups (see[26]). In 2008, T.
Davison [10] proved, with algebraic methods only, the following structure theorem,
which encompasses both abelian and non-abelian d’Alembert functions.

Theorem 2 [10] Let G be a topological group and f : G → C a continuous
function with f (e) = 1 satisfying

f (xy) + f (xy−1) = 2f (x)f (y) (3)

for all x, y in G. Then, there is a continuous (group) homomorphism h : G →
SL2(C) such that

f (x) = 1

2
tr(h(x)), x ∈ G.

In [25], H. Stetkær gave solutions of (3) introducing the theory of representation.
Precisely, he proved that the non-zero continuous solutions f of the Eq. (3) are the
functions of the form f = 1

2χπ , where π ranges over the 2-dimensional continuous
representations ofG for which π (x) ∈ SL2(C) for all x ∈ G.

The study of functional equations on hypergroups started with some recent results.
Székelyhidy [27, 28] and Orosz and Székelyhidi [16] described moment functions,
additive functions and multiplicative functions in special cases of hypergroups. In
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[17], sine and cosine functional equations are considered and solved on arbitrary
polynomial hypergroups in a single variable and the method of solution is based on
spectral synthesis. Recently, Roukbi and Zeglami [19] studied the abelian solutions
of the d’Alembert’s functional equation

〈δx ∗ δy , g〉 + 〈δx ∗ δy̌ , g〉 = 2g(x)g(y), x, y ∈ X, (4)

where g is an unknown complex-valued function to be determined on a
hypergroup (X, ∗), and obtains the following result.

Theorem 3 Let (X, ∗) be a hypergroup and g ∈ Cb(X). Assume that g is abelian
(i.e., satisfies Kannappan’s type condition defined below).

Then, g is a solution of the functional equation (4), if and only if there exists
a continuous multiplicative function χ : X −→ C, such that g = χ+χ̌

2 and χ is
unique, except that it can be replaced by χ̌ .

The purpose of this chapter is to develop a coherent theory for d’Alembert’s func-
tional equation (4) on hypergroups that includes most of the results just mentioned.
Precisely, we determine the continuous and bounded solutions of the functional
equation (4). In this context, the papers [10] of Davison and [25, 26] of Steatkær just
mentioned are the essential motivation for the present work and the methods used
here are closely related to and inspired by those in [10, 25, 26].

In the last section of this chapter, we shall extend the investigation given by J. A.
Baker [3], L. Székelyhidi [27, 29], R. Badora [2], and E. Elqorachi and M. Akkouchi
[11] to Eq. (4). We consider the superstability of the Eq. (4) on any hypergroup.
This chapter has the following content. In Sect. 2, we give some preliminaries on
hypergroups and some notations and definitions which will be used in this work. In
Sect. 3, we derive a series of elementary but useful properties of d’Alembert functions
on hypergroups. In Sect. 4, for a non-abelian d’Alembert function g, we study the
spaceW (g) of Wilson functions corresponding to g. In particular, we prove thatW (g)
is a finite-dimensional subspace of Cb(X), invariant under the left representation L

of X and dimW (g) = 4. The main results (Theorem 6) will be proved in Sect. 5. In
Sect. 6, superstability problem for the Eq. (4) is considered. On the stability problem,
the interested reader should refer to [1–5, 11–13, 18, 20, 27, 29–36].

2 Preliminaries and Notations

Our notations and definitions are described in this section. We will, without further
mentioning, keep them in rest of the chapter.

2.1 Hypergroups

We start with some notations. For a locally compact Hausdorff space X, let M(X)
denote the complex space of all bounded Borel measures on X, if μ ∈ M(X),
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supp(μ) is the support of μ. The unit point mass concentrated at x is indicated by
δx . Let K(X) be the complex algebra of all continuous complex-valued functions
on X with compact support and C(X) (resp. Cb(X)) the complex algebra of all
continuous (resp. continuous and bounded) complex-valued functions on X. Now,
recall some basic notions and used notation from the hypergroup theory.

Definition 1 If M(X) is a Banach algebra with an associative multiplication ∗
(called a convolution), then (X, ∗) is a hypergroup if the following axioms are
satisfied:

X1. If μ and ν are probability measures, then so is μ ∗ ν.
X2. The mapping (μ, ν) −→ μ ∗ ν is continuous from M(X) ×M(X) into M(X),

where M(X) is endowed with the weak topology with respect to K(X).
X3. There is an element e ∈ X such that δe ∗ μ = μ∗ δe = μ for all μ ∈ M(X).
X4. There is a homeomorphic mapping x −→ x̌ of X into itself such that (x̌ )̌ = x

and e ∈ supp(δx ∗ δy) if and only if y = x̌.
X5. For all μ, ν ∈ M(X), (μ ∗ ν )̌ = ν̌ ∗ μ̌, where μ̌ is defined by

〈μ̌, f 〉 = 〈μ, f̌ 〉 =
∫

X

f (ť)dμ(t); f ∈ Cb(X).

X6. The mapping (x, y) −→ supp(δx ∗ δy) is continuous from X × X into the
space of compact subsets of X with the topology described in ([14], Sect. 2.5).

The definitive set of axioms was given first by Jewett in his encyclopedic article
[14]. A hypergroup (X, ∗) is called commutative if its convolution is commutative.

We review some notations: Let f ∈ Cb(X), for all x ∈ X and μ ∈ M(X), we put

〈δx , f 〉 = f (x)

〈μ, f 〉 =
∫

X

〈δx , f 〉 dμ(x)

f̌ (x) = f (x̌), x ∈ X.

If μ, ν ∈ M(X), we define the convolution measure μ ∗ ν by

〈μ ∗ ν, f 〉 =
∫

X

∫

X

〈
δx ∗ δy , f

〉
dμ(x)dμ(y).

f is said to be even or invariant, (resp. odd), if f̌ = f , (resp. f̌ = −f ).

Definition 2 [6] Let (X, ∗) be a hypergroup and χ : X −→ C be a function, we say
that

(i) χ is a multiplicative function of (X, ∗) if it has the the property
〈
δx ∗ δy ,χ

〉 = χ (x)χ (y) for all x, y ∈ X.

(ii) χ is a hermitian function if χ (x̌) = χ (x), for all x ∈ X.

(iii) χ is a hypergroup character of (X, ∗) if it is bounded, continuous, multiplicative,
and hermitian function.
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Definition 3 ([14], Sect. 11.3) Let H be a Hilbert space, let I be the identity
operator, and let B(H) be the space of all bounded operators on H. We say that π is
a representation of X on H if the following four conditions are satisfied:

i) The mapping μ �−→ π (μ) is a ∗-homomorphism from M(X) into B(H).
ii) If μ ∈ M(X) then ‖π (μ)‖ ≤ ‖μ‖.

iii) π (δe) = I.

iv) If a, b ∈ H, then the mapping μ �−→ 〈π (μ)a, b〉 is bounded and continuous.

Let L and R denote, respectively, the left and right representation of X on Cb(X),
i.e., [L(y)f ](x) = 〈

δy̌ ∗ δx , f
〉

and [R(y)f ](x) = 〈
δx ∗ δy , f

〉
for all x, y ∈ X and

f ∈ Cb(X). Note that L(a) and R(b) commute for all a, b ∈ X as it is well known
and also easy to check.

2.2 D’Alembert Function on Hypergroups

Definition 4 Let f : X −→ C be a continuous and bounded function on X.

(i) f is said to satisfy Kannappan’s type condition if

〈μ ∗ ν ∗ w, f 〉 = 〈μ ∗ w ∗ ν, f 〉, for all μ, ν, w ∈ M(X) (5)

(ii) We say that f is abelian if it satisfies (5).

Definition 5 Let (X, ∗) be a hypergroup.

(i) A d’Alembert function on X is a continuous and bounded non-zero solution
g : X −→ C of d’Alembert’s functional equation (4).

(ii) A solution of Wilson functional equation is a pair {f , g} of functions in Cb(X)
satisfying

〈δx ∗ δy , f 〉 + 〈δx ∗ δy̌ , f 〉 = 2f (x)g(y), x, y ∈ X. (6)

We say that the function f in the solution {f , g} is a Wilson function
corresponding to g.

3 Properties of D’Alembert Functions

In this section, let (X, ∗) denotes a hypergroup with neutral element e. First, the
notation of some pertinent functions.

Definition 6 Let g ∈ Cb(X). We define

(i) d = dg : M(X) −→ C by 〈μ, d〉 := 2〈μ, g〉2 − 〈μ ∗ μ, g〉 for all μ ∈ M(X).
In particular, d(x) = 2g(x)2 − 〈δx ∗ δx , g〉 for all x ∈ X.
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(ii) gμ : X −→ C by gμ(y) = 〈μ ∗ δy , g〉 − 〈μ, g〉g(y) for all μ ∈ M(X), y ∈ X.
In particular, gx(y) = 〈δx ∗ δy , g〉 − g(x)g(y) for all x, y ∈ X.

(iii) Δ : M(X) × M(X) −→ C by 〈μ ⊗ ν,Δ〉 := 〈μ, gμ〉〈ν, gν〉 − 〈ν, gμ〉2 for all
μ, ν ∈ M(X). In particular, Δ(x, y) = gx(x)gy(y) − gx(y)2 for all x, y ∈ X.

The functionΔwas introduced by Davison in [10]. Let us start by collecting a number
of results for d’Alembert function.

Proposition 1 Let g : X −→ C be a d’Alembert function on X and gμ be as in
Definition 6, then

(i) g is invariant, that is ǧ = g.
(ii) g is central, that is 〈μ ∗ ν, g〉 = 〈ν ∗ μ, g〉 for all μ, ν ∈ M(X).

(iii) If e ∈ X is the neutral element, then g(e) = 1.
(iv) For all μ, ν, w ∈ M(X), we have the following equalities

〈μ, gν〉 = 〈ν, gμ〉. (7)

〈ν̌, gμ〉 = −〈ν, gμ〉. (i.e., gμis odd) (8)

〈ν ∗ w, gμ〉 + 〈ν ∗ w̌, gμ〉 = 2〈ν, gμ〉〈w, g〉. (9)

〈ν ∗ w, gμ〉 + 〈w ∗ ν, gμ〉 = 2〈ν, gμ〉〈w, g〉 + 2〈ν, g〉〈w, gμ〉 (10)

〈μ ∗ ν, gμ〉 = 〈ν ∗ μ, gμ〉 = 〈μ, g〉〈ν, gμ〉 + 〈ν, g〉〈μ, gμ〉. (11)

Proof (i) The left hand side of (4) does not change if ν is replaced by ν̌. Applying
this to the right hand side, we infer that 〈ν̌, g〉 = 〈ν, g〉 for all ν ∈ M(X), proving
(i). (ii) If we interchange μ and ν in (4), we obtain

〈ν ∗ μ, g〉 + 〈ν ∗ μ̌, g〉 = 2〈μ, g〉〈ν, g〉.
Since g is an invariant, we get that

〈ν ∗ μ, g〉 + 〈μ ∗ ν̌, g〉 = 2〈μ, g〉〈ν, g〉,
for all μ, ν ∈ M(X). By (4), we conclude that

〈μ ∗ ν, g〉 = 〈ν ∗ μ, g〉for all μ, ν ∈ M(X).

(iii) Noting that ě = e, we get with ν = δe in (4) that

〈μ, g〉 + 〈μ, g〉 = 2〈μ, g〉g(e) for all μ ∈ M(X).

This implies, since g �= 0, that g(e) = 1. (iv) The first property follows from
the definition of gμ and the fact that g is central. The rest of the proof consists of
straightforward computations except possibly for (10); to get (10), we interchange ν
and w in (9) and add the identities. We get the result by using (8).

The following results are also hold.
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Proposition 2 Let g ∈ Cb(X) be a d’Alembert function on X and d be as in
Definition 6.

(i) If w ∈ M(X) such that w = w̌, then 〈μ∗w, g〉 = 〈μ, g〉〈w, g〉 for allμ ∈ M(X).
In particular,

〈μ ∗ ν ∗ ν̌, g〉 = 〈μ, g〉〈ν, d〉, for all μ, ν ∈ M(X).

(ii) d : X −→ C is a multiplicative invariant function satisfying 〈μ, d〉 = 〈μ∗μ̌, g〉
for all μ ∈ M(X), and d(e) = 1.

(iii) For all μ, ν, w ∈ M(X), we have

〈μ ∗ ν ∗ w, g〉 + 〈μ ∗ w ∗ ν, g〉 = 2〈μ, g〉〈ν ∗ w, g〉 + 2〈ν, g〉〈w ∗ μ, g〉 (12)

+ 2〈w, g〉〈μ ∗ ν, g〉 − 4〈μ, g〉〈ν, g〉〈w, g〉.

Proof (i) From the functional equation (4), we get that

2〈μ, g〉〈w, g〉 = 〈μ ∗ w, g〉 + 〈μ ∗ w̌, g〉
= 〈μ ∗ w, g〉 + 〈μ ∗ w, g〉
= 2〈μ ∗ w, g〉,

which implies (i). (ii) By definition of d and the fact that g is central, we have

〈μ ∗ ν, d〉 = 〈μ ∗ ν ∗ (μ ∗ ν )̌, g〉 = 〈μ̌ ∗ μ ∗ ν ∗ ν̌, g〉
= 〈μ̌ ∗ μ, g〉〈ν ∗ ν̌, g〉 = 〈μ, d〉〈ν, d〉.

(iii) Since

〈μ ∗ ν, g〉 = 〈ν, gμ〉 + 〈μ, g〉〈ν, g〉,
we may write

〈μ ∗ ν ∗ w, g〉 + 〈μ ∗ w ∗ ν, g〉 = 〈ν ∗ w, gμ〉 + 〈μ, g〉〈ν ∗ w, g〉
+ 〈w ∗ ν, gμ〉 + 〈μ, g〉〈w ∗ ν, g〉,

from which we, using (10) and the fact that g is central, derive that

〈μ ∗ ν ∗ w, g〉+〈μ ∗ w ∗ ν, g〉= 2〈w, g〉〈ν, gμ〉 + 2〈ν, g〉〈w, gμ〉 + 2〈μ, g〉〈ν ∗ w, g〉
= 2〈w, g〉〈μ ∗ ν, g〉 − 2〈μ, g〉〈ν, g〉〈w, g〉

+ 2〈ν, g〉〈μ ∗ w, g〉
− 2〈μ, g〉〈ν, g〉〈w, g〉 + 2〈μ, g〉〈ν ∗ w, g〉,
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which is the stated result.
We now derive some properties of the function Δ introduced in Definition 6.

Proposition 3 Let g ∈ Cb(X) be a d’Alembert function on X and Δ be as in
Definition 6. Then

(i) For all μ, ν ∈ M(X), we have

〈μ ⊗ ν,Δ〉 = 〈ν ⊗ μ,Δ〉 = 〈μ ⊗ ν̌,Δ〉. (13)

〈μ ⊗ ν,Δ〉 = [〈μ, g〉2 − 〈μ, d〉] [〈ν, g〉2 − 〈ν, d〉]

− [〈μ ∗ ν, g〉 − 〈μ, g〉〈ν, g〉]2 (14)

〈μ ⊗ ν,Δ〉 = 1

2
(〈μ, d〉〈ν, d〉 − 〈μ ∗ ν ∗ μ̌ ∗ ν̌, g〉). (15)

〈μ ⊗ ν,Δ〉 = 1

2
(〈μ ∗ μ ∗ ν ∗ ν, g〉 − 〈μ ∗ ν ∗ μ ∗ ν, g〉. (16)

(ii) The right representation R of X on Cb(X) has the property

(
R(μ ∗ ν) − R(ν ∗ μ)

2

)2

g = −〈μ ⊗ ν,Δ〉g, for all μ, ν ∈ M(X). (17)

Proof (i) The equalities (13) and (14) sign come immediately from the definition of
Δ and the equality

〈μ, gμ〉 = 〈μ, g〉2 − 〈μ, d〉, for all μ ∈ M(X).

For the proof of (15), substituting w = μ̌ ∗ ν̌ in (12), we get that

〈μ∗ν ∗ (μ̌ ∗ ν̌), g〉 + 〈μ ∗ μ̌ ∗ ν̌ ∗ ν), g〉
= 2〈μ, g〉〈ν ∗ μ̌ ∗ ν̌), g〉 + 2〈ν, g〉〈μ̌ ∗ ν̌ ∗ μ, g〉

+ 2〈μ̌ ∗ ν̌, g〉〈μ ∗ ν, g〉 − 4〈μ, g〉〈ν, g〉〈μ̌ ∗ ν̌, g〉
= 2〈μ, g〉〈μ̌ ∗ ν̌ ∗ ν, g〉 + 2〈ν, g〉〈ν̌ ∗ μ ∗ μ̌, g〉 + 2〈μ ∗ ν, g〉2

− 4〈μ, g〉〈ν, g〉〈μ̌ ∗ ν̌, g〉
= 2〈μ, g〉〈μ̌, g〉〈ν̌ ∗ ν, g〉 + 2〈ν, g〉〈ν̌, g〉〈μ ∗ μ̌, g〉

+ 2〈μ ∗ ν, g〉2 − 4〈μ, g〉〈ν, g〉〈μ̌ ∗ ν̌, g〉
= 2〈μ, g〉2〈ν, d〉 + 2〈ν, g〉2〈μ, d〉) + 2〈μ ∗ ν, g〉2

− 4〈μ, g〉〈ν, g〉〈μ ∗ ν, g〉.
Using the fact that d is multiplicative, we get the second equality sign. To get

(16), we compute 〈μ ∗ ν ∗ (μ̌ ∗ ν̌), g〉 as follows:
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〈μ ∗ ν ∗ (μ̌ ∗ ν̌), g〉 = 〈μ ∗ ν ∗ (ν∗̌μ), g〉 + 〈μ ∗ ν ∗ ν ∗ μ, g〉 − 〈μ ∗ ν ∗ ν ∗ μ, g〉
= 2〈μ ∗ ν, g〉〈ν ∗ μ), g〉 − 〈μ ∗ ν ∗ ν ∗ μ), g〉
= 2〈μ ∗ ν, g〉2 − 〈μ ∗ μ ∗ ν ∗ ν), g〉
= 〈μ ∗ ν ∗ μ ∗ ν, g〉 + 〈μ ∗ ν ∗ (ν∗̌μ), g〉 − 〈μ ∗ μ ∗ ν ∗ ν, g〉
= 〈μ ∗ ν, g〉 + 〈μ ∗ ν, d〉 − 〈μ ∗ μ ∗ ν ∗ ν), g〉,

from which the result follows.
(ii) By definition, for all μ1, ν1 ∈ M(X), we have

(R(μ1 ∗ ν1) − R(ν1 ∗ μ1))2 = R(μ1 ∗ ν1 ∗ μ1 ∗ ν1) − R(μ1 ∗ ν1 ∗ ν1 ∗ μ1)

− R(ν1 ∗ μ1 ∗ μ1 ∗ ν1) + R(ν1 ∗ μ1 ∗ ν1 ∗ μ1),

we get for any w ∈ M(X) that

〈w, (R(μ1 ∗ ν1) − R(ν1 ∗ μ1))2 g〉 = 〈w ∗ μ1 ∗ ν1 ∗ μ1 ∗ ν1, g〉
− 〈w ∗ μ1 ∗ ν1 ∗ ν1 ∗ μ1, g〉
+ 〈w ∗ ν1 ∗ μ1 ∗ μ1 ∗ ν1, g〉
− 〈w ∗ ν1 ∗ μ1 ∗ ν1 ∗ μ1, g〉.

Using the definition of gw, we have

〈w, (R(μ1 ∗ ν1)−R(ν1 ∗ μ1))2 g〉=〈μ1 ∗ ν1 ∗ μ1 ∗ ν1, gw〉 + 〈ν1 ∗ μ1 ∗ ν1 ∗ μ1, gw〉
−〈μ1 ∗ ν1 ∗ ν1 ∗ μ1, gw〉 − 〈ν1 ∗ μ1 ∗ μ1 ∗ ν1, gw〉+〈μ, g〉 × {〈μ1 ∗ ν1 ∗ μ1 ∗ ν1, g〉
+ 〈ν1 ∗ μ1 ∗ ν1 ∗ μ1, g〉 − 〈μ1 ∗ ν1 ∗ ν1 ∗ μ1, g〉 − 〈ν1 ∗ μ1 ∗ μ1 ∗ ν1, g〉}.

The first four terms on the right hand side cancel. Indeed, on the two first terms
we apply the property (10) with ν = μ1 ∗ ν1 and w = μ1 ∗ ν1, then we get

〈μ ∗ ν ∗ μ ∗ ν, gw〉 = 2〈μ ∗ ν, gw〉〈μ ∗ ν, g〉,
and on the two next terms we apply (10) with μ = μ1 ∗ ν1 and w = ν1 ∗ μ1. Using
freely that g is central, we get that

〈w, (R(μ ∗ ν) − R(ν ∗ μ))2 g〉 = 2〈w, g〉(〈μ ∗ ν ∗ μ ∗ ν, g〉 − 〈μ ∗ μ ∗ ν ∗ ν, g〉),
we get (ii) by referring to (16).

We now characterize the abelian solution of d’Alembert’s equation (4) by using
the function Δ.

Theorem 4 Let (X, ∗) be a hypergroup and g : X −→ C be a d’Alembert function,
then

(i) g is abelian if and only if Δ = 0.
(ii) If g is non-abelian then there are elements μ0, ν0 ∈ M(X) such that gμ0 �= 0

and simultaneously 〈μ0 ⊗ ν0,Δ〉 �= 0.
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Proof The proof of Theorem 4 consists of modifications of the corresponding com-
putations of [25] and [26]. (i) That Δ = 0 if g satisfies Kannappan’s type condition,
which is an immediate consequence of the formula (16).

Let us conversely assume that Δ = 0. We get from (15) that

〈μ ∗ ν ∗ μ̌ ∗ ν̌, g〉 = 〈μ, d〉〈ν, d〉f or allμ, ν ∈ M(X).

But more is true whenΔ = 0, viz. that the following holds for allμ, ν, w ∈ M(X) :

〈w ∗ μ ∗ ν ∗ μ̌ ∗ ν̌, g〉 = 〈w, g〉〈μ ∗ ν ∗ μ̌ ∗ ν̌, g〉 = 〈w, g〉〈μ, d〉〈ν, d〉. (18)

Indeed, writing w instead of μ and μ ∗ ν ∗ μ̌ ∗ ν̌ instead of ν in (14), we find

[〈w ∗ μ ∗ ν ∗ μ̌ ∗ ν̌, g〉 − 〈w, g〉〈μ ∗ ν ∗ μ̌ ∗ ν̌, g〉]2

= [〈w, g〉2 − 〈w, d〉][〈μ ∗ ν ∗ μ̌ ∗ ν̌, g〉2 − 〈μ ∗ ν ∗ μ̌ ∗ ν̌, d〉]
= [〈w, g〉2 − 〈w, d〉][〈μ ∗ ν ∗ μ̌ ∗ ν̌, g〉2 − 〈μ, d〉2〈ν, d〉2]

= [〈w, g〉2 − 〈w, d〉][〈μ ∗ ν ∗ μ̌ ∗ ν̌, g〉 + 〈μ, d〉〈ν, d〉]
× [〈μ ∗ ν ∗ μ̌ ∗ ν̌, g〉 − 〈μ, d〉〈ν, d〉]

= [〈w, g〉2 − 〈w, d〉][〈μ ∗ ν ∗ μ̌ ∗ ν̌, g〉 + 〈μ, d〉〈ν, d〉] × 0 = 0.

When we replace w by μ ∗ ν ∗ w in (18), we find using the fact that g is central
and Proposition 2(i) that

〈μ ∗ ν ∗ w, g〉〈μ, d〉〈ν, d〉 = 〈μ ∗ ν ∗ w, g〉〈ν, d〉〈μ, d〉
= 〈(μ ∗ ν ∗ w) ∗ ν ∗ μ ∗ ν̌ ∗ μ̌, g〉
= 〈(μ ∗ ν) ∗ w ∗ ν ∗ μ ∗ ν̌ ∗ μ̌, g〉
= 〈w ∗ ν ∗ μ ∗ ν̌ ∗ μ̌ ∗ (μ ∗ ν), g〉
= 〈w ∗ ν ∗ μ ∗ (μ ∗ ν )̌ ∗ (μ ∗ ν), g〉
= 〈w ∗ ν ∗ μ, g〉〈μ ∗ ν, d〉
= 〈w ∗ ν ∗ μ, g〉〈μ, d〉〈ν, d〉,

so

[〈μ ∗ ν ∗ w, g〉 − 〈μ ∗ w ∗ ν, g〉]〈μ, d〉〈ν, d〉 = 0, (19)

for all μ, ν, w ∈ M(X). If d vanishes nowhere, we get that 〈μ ∗ ν ∗ w, g〉 = 〈μ ∗
w ∗ ν, g〉, i.e., that g satisfies Kannappan’s type condition. In general case, we must
work a bit longer to get the desired conclusion:

〈μ ∗ ν ∗ w, g〉 = 〈μ ∗ w ∗ ν, g〉, for all μ, ν, w ∈ M(X).

Case 1 Assume that 〈μ, gμ〉 = 0, then for any ν ∈ M(X), we find that

0 = 〈ν ⊗ μ,Δ〉 = 〈ν, gν〉〈μ, gμ〉 − 〈μ, gν〉2 = 0 − [〈ν ∗ μ, g〉 − 〈ν, g〉〈μ, g〉]2,
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so 〈ν ∗ μ, g〉 = 〈ν, g〉〈μ, g〉. For any ν, w ∈ M(X), we now get

〈ν ∗ w ∗ μ, g〉=〈ν ∗ w, g〉〈μ, g〉=〈w ∗ ν, g〉〈μ, g〉=〈w ∗ ν ∗ μ, g〉=〈ν ∗ μ ∗ w, g〉,
so that the desired conclusion holds in this case.

Case 2 Assume that 〈ν, gμ〉 = 0. We have also the desired conclusion. In this
case, 0 = 〈μ ⊗ ν,Δ〉 = 〈μ, gμ〉〈ν, gν〉 − 〈ν, gμ〉2 = 〈μ, gμ〉〈ν, gν〉, so either

〈μ, gμ〉 = 0 or 〈ν, gν〉 = 0.

We are thus back in the Case 1.
General Case Let μ, ν, w ∈ M(X), since g is central we get that

〈ν ∗ w, gν∗w〉 = 〈ν ∗ w ∗ ν ∗ w, g〉 − 〈ν ∗ w, g〉2

= 〈w ∗ ν ∗ w ∗ ν, g〉 − 〈w ∗ ν, g〉2 = 〈w ∗ ν, gw∗ν〉,
and so (using 〈μ ⊗ (ν ∗ w),Δ〉 = 0) that

〈ν ∗ w, gμ〉2 = 〈μ, gμ〉〈ν ∗ w, gν∗w〉 = 〈μ, gμ〉〈w ∗ ν, gw∗ν〉 = 〈w ∗ ν, gμ〉2,

which means that

[〈ν ∗ w, gμ〉 − 〈w ∗ ν, gμ〉][〈ν ∗ w, gμ〉 + 〈w ∗ ν, gμ〉] = 0.

Rewriting the individual factors by using the definition of gμ on the first factor
and (10) on the second one, we get that

[〈μ ∗ ν ∗ w, g〉 − 〈μ ∗ w ∗ ν, g〉][〈ν, gμ〉〈w, g〉 + 〈ν, g〉〈w, gμ〉] = 0,

for all μ, ν, w ∈ M(X). Replacing w by w̌ only changes the sign of the first factor,
while we in the second factor get that 〈w̌, gμ〉 = −〈w, gμ〉, so that

[〈μ ∗ ν ∗ w, g〉 − 〈μ ∗ w ∗ ν, g〉][〈ν, gμ〉〈w, g〉 − 〈ν, g〉〈w, gμ〉] = 0.

Adding the two identities yields

[〈μ ∗ ν ∗ w, g〉 − 〈μ ∗ w ∗ ν, g〉]〈ν, gμ〉〈w, g〉 = 0. (20)

If 〈ν, gμ〉 = 0 then 〈μ ∗ ν ∗ w, g〉 = 〈μ ∗ w ∗ ν, g〉 from the second case above. In
particular, [〈μ ∗ ν ∗ w, g〉 − 〈μ ∗ w ∗ ν, g〉]〈w, g〉 = 0, an identity which also holds
if 〈ν, gμ〉 �= 0 as we see from (20). Renaming letters we have in any case that

[〈μ ∗ ν ∗ w, g〉 − 〈μ ∗ w ∗ ν, g〉]〈μ, g〉 = 0 for all μ, ν, w ∈ M(X). (21)

Writing 〈μ, gμ〉 = 〈μ, g〉2 − 〈μ, d〉 and similarly for gν we get for any μ, ν, w ∈
M(X) by help of (20) and (21) that

[〈μ ∗ ν ∗ w, g〉 − 〈μ ∗ w ∗ ν, g〉]〈μ, gμ〉〈ν, gν〉]
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= [〈μ ∗ ν ∗ w, g〉 − 〈μ ∗ w ∗ ν, g〉](〈μ, g〉2 − 〈μ, d〉)(〈ν, g〉2 − 〈ν, d〉)
= 0.

Applying the first case we get that 〈μ ∗ ν ∗ w, g〉 − 〈μ ∗ w ∗ ν, g〉 = 0. i.e., the
function g is abelian.

(ii) By (i) there exist σ , υ ∈ M(X) such that

〈σ ⊗ υ,Δ〉 = 〈σ , gσ 〉〈υ, gυ〉 − 〈υ, gσ 〉2 �= 0. (22)

If 〈σ , gσ 〉 �= 0, we have the desired conclusion with μ0 = σ and ν0 = υ.
Similarly if 〈υ, gυ〉 �= 0. So, we may in the remainder of the proof assume that
〈σ , gσ 〉 = 〈υ, gυ〉 = 0. We get from (22) that 〈υ, gσ 〉 �= 0. From 〈σ , gσ 〉 = 0, we get
that

〈σ ∗ σ , g〉 = 〈σ , g〉2 = 〈σ ∗ σ̌ , g〉 �= 0,

where the inequality sign was established in Proposition 2(ii). By the formula (11)
in Proposition 2(iv), we get that

〈σ ∗ υ, gσ 〉 = 〈σ , g〉〈υ, gσ 〉 + 〈σ , gσ 〉〈υ, g〉 = 〈σ , g〉〈υ, gσ 〉 �= 0.

So the pair {σ , σ ∗υ} also satisfies the inequality (22), i.e., 〈σ ⊗ (σ ∗υ),Δ〉 �= 0.
We are through if 〈σ ∗ υ, gσ∗υ〉 �= 0, So we may from now assume that 〈σ ∗

υ, gσ∗υ〉 = 0. This means that

〈(σ ∗ υ) ∗ (σ ∗ υ), g〉 = 〈σ ∗ υ, g〉2 = 〈(σ ∗ υ) ∗ (σ ∗ υ )̌, g〉
= 〈σ ∗ υ ∗ υ̌ ∗ σ̌ , g〉
= 〈σ ∗ σ̌ , g〉〈υ ∗ υ̌, g〉 = 〈σ , g〉2〈υ, g〉2

Now,

[〈σ ∗ υ, g〉 + 〈σ , g〉〈υ, g〉]〈υ, gσ 〉
= [〈σ ∗ υ, g〉 + 〈σ , g〉〈υ, g〉][〈σ ∗ υ, g〉 + 〈σ , g〉〈υ, g〉]
= 〈σ ∗ υ, g〉2 − 〈σ , g〉2〈υ, g〉2 = 0,

which, since 〈υ, gσ 〉 �= 0, implies that 〈σ ∗ υ, g〉 + 〈σ , g〉〈υ, g〉 = 0.
Since 〈σ ⊗υ,Δ〉 = 〈σ ⊗ υ̌,Δ〉 �= 0 we may go through the considerations above

with υ replaced by υ̌. This will give us 〈σ ∗ υ̌, g〉 + 〈σ , g〉〈υ̌, g〉 = 0, i.e., that
〈σ ∗ υ̌, g〉+〈σ , g〉〈υ, g〉 = 0, unless we on the way get a pair {μ0, ν0} of measures in
M(X) such that 〈μ0, gμ0〉〈μ0⊗ν0,Δ〉 �= 0.Adding this to 〈σ∗υ, g〉+〈σ , g〉〈υ, g〉 = 0
gives 4〈σ , g〉〈υ, g〉 = 0, contradicting that 〈σ , g〉 �= 0 and 〈υ, g〉 �= 0.
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4 The Space W (g) of Wilson Functions

We discuss Wilson functions corresponding to a non-abelian d’Alembert function.
Throughout this section, let g denote a non-abelian d’Alembert function on a hy-
pergroup X. That g is non-abelian means that there exist μ0, ν0 ∈ M(X) such that
〈μ0 ⊗ ν0,Δ〉 �= 0 (Theorem 4(i)). We choose such element μ0, ν0 ∈ M(X), keep
them fixed during the remainder of this section.

Definition 7 We let W (g) denote the space of functions f ∈ Cb(X) satisfying

〈μ ∗ ν, f 〉 + 〈μ ∗ ν̌, f 〉 = 2〈μ, f 〉〈ν, g〉, μ, ν ∈ M(X). (23)

The elements of W (g) are called Wilson functions on X. The set of even (resp.
odd) Wilson functions is denoted W (g)e (resp. W (g)o). Even/odd is meant with
respect to the involution of X.

A consequence that we will derive below, is that W (g) is finite-dimensional and
invariant under the right and the left representation of X. We generalize the result
for groups obtained recently by Davison in [10] and Stetkær in [25]. For the reader’s
convenience we include proofs. It is an adaptation of Davison’s and Stetkær’s proofs
to the hypergroup status.

Proposition 4 Let g ∈ Cb(X) be a d’Alembert function on X.

(i) A Wilson function f is odd if and only if f (e) = 0.
(ii) g ∈ W (g)e while gμ ∈ W (g)o for all μ ∈ M(X).

(iii) W (g) is a vector subspace of Cb(X), and it is invariant under the left
representation L of X.

(iv) W (g)e and W (g)o are vector subspaces of W (g) such that W (g) = W (g)e ⊕
W (g)o. Furthermore, W (g)e = Cg. Finally, if f ∈ W (g)o then for all μ, ν ∈
M(X)

〈μ ∗ ν, f 〉 + 〈ν ∗ μ, f 〉 = 2〈μ, f 〉〈ν, g〉 + 2〈ν, f 〉〈μ, g〉. (24)

Proof (i) Assume that f (e) = 0. In (23), we replace μ by δe then we get that
〈ν, f 〉 + 〈ν̌, f 〉 = 0. The other implication is obvious.

(ii) It follows from Proposition 1.
(iii) Using the definition of the left regular representation of X, we get that

〈μ ∗ ν,L(w)f 〉 + 〈μ ∗ ν̌,L(w)f 〉 = 〈w̌ ∗ μ ∗ ν, f 〉 + 〈w̌ ∗ μ ∗ ν̌, f 〉
= 2〈w̌ ∗ μ, f 〉〈ν, g〉
= 2〈μ,L(w)f 〉〈ν, g〉

which shows that L(w)f ∈ W (g) for all w ∈ M(X).

(iv) f ∈ W (g) is by
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f = f + f̌

2
+ f − f̌

2
,

decomposed into its even and odd parts in Cb(X). The only problem is to show that

the parts belong to W (g). Taking μ = δe in (23), we see that f+f̌

2 = f (e)g ∈ W (g).

It follows that f−f̌

2 = f − f+f̌

2 = f − f (e)g ∈ W (g) as well. To get (24), we
interchange μ, ν in (23) and add the result to (23).

We have so far in this section not used that g is non-abelian. But the assumption
will be essential from now on. We need a pair {μ0, ν0} of measures in M(X) such
that Δ0 = 〈μ0 ⊗ ν0,Δ〉 �= 0.

Lemma 1 If f ∈ Cb(X) is an odd Wilson function such that 〈μ0, f 〉 = 〈ν0, f 〉 =
〈μ0 ∗ ν0, f 〉 = 0, then f = 0.

Proof Let f ∈ W (g)o satisfies the conditions of the lemma, and let μ, ν, w ∈ M(X)
be arbitrary. We take our point of departure in (24) which gives us the two identities

〈μ ∗ ν ∗ w, f 〉 + 〈ν ∗ w ∗ μ, f 〉 = 2〈μ, f 〉〈ν ∗ w, f 〉 + 2〈μ, g〉〈ν ∗ w, f 〉,
〈ν ∗ w ∗ μ, f 〉 + 〈w ∗ μ ∗ ν, f 〉 = 2〈ν, f 〉〈w ∗ μ, g〉 + 2〈ν, g〉〈w ∗ μ, f 〉.

We get two more identities by interchanging μ and ν in these two identities.
Adding all four identities we get, using (24) and that g is central to get reductions on
the left and right hand sides, that

〈μ ∗ w ∗ ν, f 〉 + 〈ν ∗ w ∗ μ, f 〉 = 2〈μ, f 〉〈ν ∗ w, g〉 + 2〈ν, f 〉〈μ ∗ w, g〉 (25)

+ 2〈w, f 〉[2〈μ, f 〉〈ν, f 〉 − 〈μ ∗ ν, f 〉].
In (25), we put ν = μ and get by the definition of d that

〈μ ∗ w ∗ μ, f 〉 = 2〈μ, f 〉〈μ ∗ w, g〉 + 〈w, f 〉〈μ, d〉. (26)

In (26), we replace w by ν ∗ w ∗ ν, and add it to the same identity with μ and ν

interchanged. Using (26), we get

〈μ ∗ ν ∗ w ∗ ν ∗ μ, f 〉 + 〈ν ∗ μ ∗ w ∗ μ ∗ ν, f 〉 = 2〈μ, f 〉[〈μ ∗ ν ∗ w ∗ ν, g〉
+ 〈ν, d〉〈μ ∗ w, f 〉] + 2〈ν, f 〉[〈ν ∗ μ ∗ w ∗ μ, f 〉
+ 〈μ, d〉〈ν ∗ w, f 〉] + 2〈w, f 〉〈μ, d〉〈ν, d〉.

We note that the left hand side is the left hand side of (25) if we in (25) replace μ
by ν ∗ μ and ν by μ ∗ ν, so equating the right hand sides we obtain, using (16) that

2〈μ, f 〉[〈μ ∗ ν ∗ w ∗ ν, g〉 + 〈ν, d〉〈μ ∗ w, g〉] + 2〈ν, f 〉[〈ν ∗ μ ∗ w ∗ μ, g〉
+ 〈μ, d〉〈w ∗ ν, g〉] + 2〈w, f 〉〈μ, d〉〈ν, d〉

= 2〈ν ∗ μ, f 〉〈μ ∗ ν ∗ w, g〉 + 2〈μ ∗ ν, f 〉〈ν ∗ μ ∗ w, g〉 + 2〈w, f 〉
[2〈ν ∗ μ, g〉2 − 〈ν ∗ μ ∗ μ ∗ ν, g〉]
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Using (14), (23), and

2〈ν ∗ μ, g〉2 = 2〈ν ∗ μ, g〉〈μ ∗ ν, g〉 = 〈ν ∗ μ ∗ μ ∗ ν, g〉 + 〈ν ∗ μ ∗ ν̌ ∗ μ̌, g〉

we obtain

2〈μ, f 〉[〈μ ∗ ν ∗ w ∗ ν, g〉 + 〈ν, d〉〈μ ∗ w, g〉 + 2〈ν, f 〉[〈ν ∗ μ ∗ w ∗ μ, g〉
+ 〈μ, d〉〈ν ∗ w, g〉] + 2〈w, f 〉〈μ, d〉〈ν, d〉

= 2[− 〈μ ∗ ν, f 〉 + 2〈μ, f 〉〈ν, g〉 + 2〈ν, f 〉〈μ, g〉]〈μ ∗ ν ∗ w, g〉
+ 2〈μ ∗ ν, g〉〈ν ∗ μ ∗ w, g〉 + 2〈w, f 〉[〈μ, d〉〈ν, d〉 − 2〈μ ⊗ ν,Δ〉].

This simplifies enormously for μ = μ0 and ν = ν0 because 〈μ0, f 〉 = 〈ν0, f 〉 =
〈μ0 ∗ ν0, f 〉 = 0. Indeed, we get

2〈w, f 〉〈μ0, d〉〈ν0, d〉 = 2〈w, f 〉[〈μ0, d〉〈ν0, d〉 − 4〈μ0 ⊗ ν0,Δ〉],
which implies that 〈w, f 〉 = 0, since 〈μ0 ⊗ ν0,Δ〉 �= 0.

Corollary 1 The central Wilson functions corresponding to a non-abelian
d’Alembert function g are the complex multiples of g.

Proof g ∈ W (g) is central, so any complex multiple of g is a central Wilson function.
To get the converse, let f ∈ W (g) be a central function. According to Proposition
4(iv) we may write it in the form f = cg + f0 where c ∈ C and f0 ∈ W (g)o. It
suffices to prove that f0 = 0. Noting that f0 = f − cg is central, we get from (24)
that

〈μ ∗ ν, f0〉 = 〈μ, f0〉〈ν, g〉 + 〈ν, f0〉〈μ, g〉 for all μ, ν ∈ M(X).

That we use a number of times in the following computation

〈ν, gμ〉〈μ, f0〉 = 〈μ ∗ ν, g〉〈μ, f0〉 − 〈μ, g〉〈ν, g〉〈μ, f0〉
= 〈μ ∗ ν, g〉〈μ, f0〉 + 〈μ ∗ ν, f0〉〈μ, g〉 − 〈μ, g〉[〈μ, f0〉〈ν, g〉

+ 〈ν, f0〉〈μ, g〉] − 〈μ, g〉〈ν, g〉〈μ, f0〉
= 〈μ ∗ μ ∗ ν, f0〉 − 〈μ, g〉2〈ν, f0〉 − 2〈μ, g〉〈ν, g〉〈μ, f0〉
= 〈μ ∗ μ, f0〉〈ν, g〉 + 〈μ ∗ μ, g〉〈ν, f0〉 − 〈μ, g〉2〈ν, f0〉

− 2〈μ, g〉〈ν, g〉〈μ, f0〉
= 2〈μ, f0〉〈μ, g〉〈ν, g〉 + [〈μ ∗ μ, g〉

− 〈μ, g〉2]〈ν, f0〉 − 2〈μ, g〉〈ν, g〉〈μ, f0〉
= [〈μ ∗ μ, g〉 − 〈μ, g〉2]〈ν, f0〉
= 〈μ, gμ〉〈ν, f0〉
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Taking first μ = μ0 and ν = ν0, and then μ = ν0 and ν = μ0 we find that

〈μ0, gμ0〉〈ν0, f0〉 − 〈ν0, gμ0〉〈μ0, f0〉 = 0,

and

〈μ0, gν0〉〈ν0, f0〉 − 〈ν0, gν0〉〈μ0, f0〉 = 0.

This is a system of equations in the unknowns 〈ν0, f0〉 and 〈μ0, f0〉. Its determinant

〈μ0, gμ0〉〈ν0, gν0〉 − 〈ν0, gμ0〉2 = 〈μ0 ⊗ ν0,Δ〉 �= 0,

then 〈ν0, f0〉 = 〈μ0, f0〉 = 0 and

〈μ0 ∗ ν0, f0〉 = 〈μ0, f0〉〈ν0, g〉 + 〈ν0, f0〉〈μ0, g〉 = 0.

By Lemma 1, we conclude that f0 = 0.

Definition 8 Let g ∈ Cb(X) be a non-abelian d’Alembert function on X, let

f1 := gμ0 , f2 := gν0 and f3 := (
R(μ0 ∗ ν0) − R(ν0 ∗ μ0)

2
)g,

and define α,β, γ ∈ C by

α := 1

Δ0
〈μ0, gμ0〉, β := 1

Δ0
〈ν0, gμ0〉 and γ := 1

Δ0
〈ν0, gν0〉.

Lemma 2 (i) We list a couple of formulas that will be used later

αγ − β2 = 1

Δ0
, (27)

〈μ0 ∗ ν0, f1〉 = 〈ν0 ∗ μ0, f1〉, (28)

〈μ0 ∗ ν0, f2〉 = 〈ν0 ∗ μ0, f2〉, (29)

〈μ0, f3〉 = 〈ν0, f3〉 = 0, (30)

〈μ0 ∗ ν0, f3〉 = −〈ν0 ∗ μ0, f3〉 = −Δ0. (31)

(ii) The functions f1, f2, and f3 presented in Definition 8 are odd.

Proof (i) The first equality follows from the definition of Δ. The equalities (28) and
(29) follow from (11). For the last statement of (i) we refer to (17).

(ii) We have seen in Proposition 2 that f1 := gμ0 and f2 := gν0 are odd functions,
so it is left to verify, using the fact that g is central and invariant, and that the functions
gμ : μ ∈ M(X) are odd, that f3 is odd:

〈μ̌, f3〉 =
〈
μ̌,

R(μ0 ∗ ν0) − R(ν0 ∗ μ0)

2
g

〉



D’Alembert’s Functional Equation and Superstability Problem in Hypergroups 383

= 1

2
(〈μ̌ ∗ μ0 ∗ ν0, g〉 − 〈μ̌ ∗ ν0 ∗ μ0, g〉)

= 1

2
(〈μ0 ∗ ν0 ∗ μ̌, g〉 − 〈ν0 ∗ μ0 ∗ μ̌, g〉)

= 1

2
(〈μ̌, gμ0∗ν0〉 + 〈μ0 ∗ ν0, g〉〈μ̌, g〉 − 〈μ̌, gν0∗μ0〉 − 〈ν0 ∗ μ0, g〉〈μ̌, g〉)

= 1

2
(−〈μ, gμ0∗ν0〉 + 〈μ0 ∗ ν0, g〉〈μ, g〉 + 〈μ, gν0∗μ0〉 − 〈ν0 ∗ μ0, g〉〈μ, g〉)

= −1

2
(〈μ0 ∗ ν0 ∗ μ, g〉 − 〈ν0 ∗ μ0 ∗ μ, g〉)

= −
〈
μ,

R(μ0 ∗ ν0) − R(ν0 ∗ μ0)

2
g

〉)

= −〈μ, f3〉,
so f3 is odd.

The next theorem is one of the important results of this chapter. It was derived for
groups in [25].

Theorem 5 Let (X, ∗) be a hypergroup and g ∈ Cb(X) be a non-abelian d’Alembert
function, then

(a) dimW (g) = 4.
(b) A basis of W (g)o is {f1, f2, f3} . If f ∈ W (g)o then

f = [
γ 〈μ0, f 〉 − β〈ν0, f 〉] f1 + [−β〈μ0, f 〉 + α〈ν0, f 〉] f2 (32)

− 1

2Δ0
[〈μ0 ∗ ν0, f 〉 − 〈ν0 ∗ μ0, f 〉]f3,

where the functions f1, f2, f3 and the constants α,β, γ are introduced in the
Definition 8.

(c) W (g) = span {L(μ)g : μ ∈ M(X)} = span {R(μ)g : μ ∈ M(X)}.
(d) As operators on W (g) we have the identity

L(μ) + L(μ̌) = 2〈μ, g〉I. (33)

(e) The matrix-coefficients of subrepresentations of L/W (g) and R/W (g) are
in W (g).

(f) If E is an L-invariant subspace of W (g). Then, χL/E = dim(E)g where the
character χL/E of L/E is defined by

χL/E(x) = tr(L(x)/E), x ∈ X.

Proof (a) follows from (b) and Proposition 4(iv). (b) We first show that the formula
(32) holds. Let h be the function on X defined by

h = [
γ 〈μ0, f 〉 − β〈ν0, f 〉] f1 + [−β〈μ0, f 〉 + α〈ν0, f 〉] f2 −



384 D. Zeglami et al.

1

2Δ0
[〈μ0 ∗ ν0, f 〉 − 〈ν0 ∗ μ0, f 〉]f3.

Since bothf andh belong toW (g)0 it suffices by Lemma 1, to show that 〈μ0, f 〉 =
〈μ0,h〉, 〈ν0, f 〉 = 〈ν0,h〉 and 〈μ0 ∗ ν0, f 〉 = 〈μ0 ∗ ν0,h〉. Noting that 〈μ0, f3〉 =
〈ν0, f3〉 = 0, it is easy to see that 〈μ0, f 〉 = 〈μ0,h〉 and that 〈ν0, f 〉 = 〈ν0,h〉, so it
is left to verify that 〈μ0 ∗ ν0,h〉 = 〈μ0 ∗ ν0, f 〉.

Since 〈μ0 ∗ ν0, f3〉 = −Δ0 by using the formula (23) and (30), we get that

〈μ0 ∗ ν0,h〉 − 〈μ0 ∗ ν0, f 〉
= [

γ 〈μ0, f 〉 − β〈ν0, f 〉] 〈μ0 ∗ ν0, gμ0〉 + [−β〈μ0, f 〉 + α〈ν0, f 〉] 〈μ0 ∗ ν0, gν0〉

+ 1

2
(〈μ0 ∗ ν0, f 〉 − 〈ν0 ∗ μ0, f 〉) − 〈μ0 ∗ ν0, f 〉

= [
γ 〈μ0, f 〉 − β〈ν0, f 〉] 〈μ0 ∗ ν0, gμ0〉 + [−β〈μ0, f 〉 + α〈ν0, f 〉] 〈μ0 ∗ ν0, gν0〉

− 〈μ0, f 〉〈ν0, g〉 − 〈ν0, f 〉〈μ0, g〉
= 〈μ0, f 〉 {γ 〈μ0 ∗ ν0, gμ0〉 − β〈μ0 ∗ ν0, gν0〉 − 〈ν0, g〉}

+ 〈ν0, f 〉 {−β〈μ0 ∗ ν0, gμ0〉 + α〈μ0 ∗ ν0, gν0〉 − 〈μ0, g〉} .
By (11), we find that the coefficient of 〈μ0, f 〉 vanishes. Indeed

Δ0
{
γ 〈μ0 ∗ ν0, gμ0〉 − β〈μ0 ∗ ν0, gν0〉

}

= 〈ν0, gν0〉
[〈μ0, g〉〈ν0, gμ0〉 + 〈μ0, gμ0〉〈ν0, g〉]

− 〈ν0, gμ0〉
[〈ν0, g〉〈μ0, gν0〉 + 〈ν0, gν0〉〈μ0, g〉]− Δ0〈ν0, g〉

= [〈ν0, gμ0〉〈μ0, gμ0〉 − 〈ν0, gμ0〉2
] 〈ν0, g〉 − Δ0〈ν0, g〉 = 0.

Similar arguments show that the coefficient of 〈ν0, f 〉 vanishes. We have now
shown that the formula (32) holds, so that {f1, f2, f3} spansW (g)o. It remains to show
that {f1, f2, f3} is a linearly independent set. So assume that c1f1 +c2f2 +c3f3 = 0,
where c1, c2, c3 ∈ C are constants. Using 〈μ0, f3〉 = 〈ν0, f3〉 = 0, we find that

⎧
⎨

⎩
c1〈μ0, f1〉 + c2〈μ0, f2〉 = 0

c1〈ν0, f1〉 + c2〈ν0, f2〉 = 0
,

The determinant of this system is
∣∣∣∣∣∣
〈μ0, f1〉 〈μ0, f2〉
〈ν0, f1〉 〈ν0, f2〉

∣∣∣∣∣∣
=
∣∣∣∣∣∣
〈μ0, gμ0〉 〈μ0, gν0〉
〈ν0, gμ0〉 〈ν0, gν0〉

∣∣∣∣∣∣
=

〈μ0, gμ0〉〈ν0, gν0〉 − 〈ν0, gμ0〉2 = Δ0 �= 0,

so c1 = c2 = 0. Appliquing at μ0 ∗ ν0, we now find that 0 = c3〈μ0 ∗ ν0, f3〉 =
c3(−Δ0) = −c3Δ0, so that also c3 = 0.

(c) As mentioned in Proposition 4, W (g) is an invariant under the left represen-
tation L of X. Now g ∈ W (g), so span {L(μ)g : μ ∈ M(X)} ⊆ W (g). On the other
hand
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〈μ, gν〉 = 〈ν ∗ μ, g〉 − 〈μ, g〉〈ν, g〉
= 〈μ,L(ν̌)g〉 − 〈ν, g〉〈μ,L(δe)g〉,

which means that gν = L(ν̌)g − 〈ν, g〉L(δe)g ∈ span {L(μ)g : μ ∈ M(X)} for
any ν ∈ M(X). As R and L commute, we have f3 ∈ span {L(μ)g : μ ∈ M(X)}.
Since {g, gμ0 , gν0 , R(μ0∗ν0)−R(ν0∗μ0)

2 g} is a basis of W (g), then W (g) ⊆
span {L(μ)g : μ ∈ M(X)} .Thus

W (g) = span {L(μ)g : μ ∈ M(X)} .
The last equality of (c) comes from the fact that g is central, so that L(μ̌)g =

R(μ)g for any μ ∈ M(X).
(d) Using that g is central we get that

〈ν, (L(μ) + L(μ̌))g〉 = 〈μ̌ ∗ ν, g〉 + 〈μ ∗ ν, g〉
= 2〈ν, g〉〈μ, g〉 for all μ, ν ∈ M(X),

which means that [L(μ) + L(μ̌)]g = 2〈μ, g〉g for all μ, ν ∈ M(X).

For any f =
n∑

j=1
cjR(μj )g ∈ W (g) we get, since L and R commute, that

(
L(μ) + L(μ̌)

)
f = (

L(μ) + L(μ̌)
) n∑

j=1

cjR(μj )g

=
n∑

j=1

cjR(μj )
(
L(μ) + L(μ̌)

)
g

=
n∑

j=1

cjR(μj )2〈μ, g〉g = 2〈μ, g〉f ,

proving the equality (33).
(e) Fix a basis of W (g) and let for any x ∈ X

M(x) =

⎛

⎜⎜⎜⎜⎜⎝

a11(x) a12(x) a13(x) a14(x)

a21(x) a22(x) a23(x) a24(x)

a31(x) a32(x) a33(x) a34(x)

a41(x) a42(x) a43(x) a44(x)

⎞

⎟⎟⎟⎟⎟⎠
,

be the corresponding matrix for L(x). Noting that

〈μ,M〉 =

⎛

⎜⎜⎜⎜⎜⎝

〈μ, a11〉 〈μ, a12〉 〈μ, a13〉 〈μ, a14〉
〈μ, a21 〈μ, a22〉 〈μ, a23〉 〈μ, a24〉
〈μ, a31〉 〈μ, a32〉 〈μ, a33〉 〈μ, a34〉
〈μ, a41〉 〈μ, a42〉 〈μ, a43〉 〈μ, a44〉

⎞

⎟⎟⎟⎟⎟⎠
,
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for all μ ∈ M(X). The identity (33) translates to

〈μ,M〉 + 〈μ̌,M〉 = 2〈μ, g〉I4,

which means, for any μ ∈ M(X) and 1 ≤ i, j ≤ 4, that we have

〈μ, aii〉 + 〈μ̌, aii〉 = 2〈μ, g〉 and 〈μ, aij 〉 + 〈μ̌, aij 〉 = 0 for i �= j . (34)

Since L is a representation of X, then

〈μ ∗ ν,M〉 = 〈μ,M〉〈ν,M〉 for all μ, ν ∈ M(X),

this identity translates to

〈μ ∗ ν, aij 〉 =
4∑

k=1

〈μ, aik〉〈ν, akj 〉,1 ≤ i, j ≤ 4 (35)

Using the formulas (34) and (35), we get that

〈μ ∗ ν, aij 〉 + 〈μ ∗ ν̌, aij 〉 =
4∑

k=1

〈μ, aik〉〈ν, akj 〉 +
4∑

k=1

〈μ, aik〉〈ν̌, akj 〉

=
4∑

k=1

〈μ, aik〉
(〈ν, akj 〉 + 〈ν̌, akj 〉

)

= 〈μ, aij 〉
(〈ν, ajj 〉 + 〈ν̌, ajj 〉

)

= 2〈μ, aij 〉〈ν, g〉,
which means that the matrix-coefficients of subrepresentations of L/W (g) are
in W (g).

(f ) Let E be an L-invariant subspace of W (g). The character χL/E is a central
function and hence (by (e)) a central Wilson function. By Corollary 1, there exists a
constant c ∈ C such that χL/E = cg. Evaluating at e ∈ X we find that c = cg(e) =
χL/E(e) = tr(IE) = dim(E). So g = 1

dimE
tr(χL/E).

Lemma 3 There are no 1-dimensional L-invariant subspaces of W (g) where L is
the left regular representation of X on W (g).

Proof We assume to the contrary that Cf is a 1-dimensionalL-invariant subspace of
W (g). Then, f �= 0 and L(μ)f has for any μ ∈ M(X) the form L(μ)f = 〈μ,χ〉f ,
where 〈μ,χ〉 ∈ C. Since L is a representation of X, then

〈μ ∗ ν,χ〉f = L(μ)〈ν,χ〉f = 〈μ,χ〉〈ν,χ〉f for all μ, ν ∈ M(X),

which implies that

〈μ ∗ ν,χ〉 = 〈μ,χ〉〈ν,χ〉 for all μ, ν ∈ M(X),
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this means thatχ is a multiplicative function ofX andχ (e) = 1. EvaluatingL(μ)f =
〈μ,χ〉f at e we get that

〈μ̌, f 〉 = 〈μ,χ〉f (e).

In particular, f (e) �= 0, because otherwise f = 0. Since f is a Wilson function
then so is the function χ̌ = f

f (e) , thus, we get

〈μ ∗ ν, χ̌〉 + 〈μ ∗ ν̌, χ̌〉 = 2〈μ, χ̌〉〈ν, g〉.
For μ = δe, we obtain 〈ν, g〉 = 1

2

{〈ν, χ̌〉 + 〈ν,χ〉} . But this implies the con-
tradiction that g is non-abelian, because χ is multiplicative function and hence
abelian.

However, there are 2-dimensional L-invariant vector subspaces of W (g).

Proposition 5 Fix δ ∈ C such that δ2 = −Δ0. Then

W (g)± := {f ∈ W (g) :
R(μ0 ∗ ν0) − R(ν0 ∗ μ0)

2
f = ±δf },

are two 2-dimensionalL-invariant subspaces ofW (g), andW (g) = W (g)+⊕W (g)−
as direct sum. Furthermore,

(a) π := L/W (g)+ is a continuous and irreducible representation of X on W (g)+
with character χπ = 2g.

(b) π (μ̌) = adj (π (μ)) for all μ ∈ M(X), where adj : L(W (g)+) → L(W (g)+)
the adjugate map defined by

adj

⎛

⎝a c

b d

⎞

⎠ =
⎛

⎝ d −c

−b a

⎞

⎠ .

Proof The statement about the invariance of W (g)+ and W (g)−is easily deduced
from the fact that, the left and the right representations commute, L leaves any
eigenspace of R(μ0∗ν0)−R(ν0∗μ0)

2 invariant. We start by proving that

(
R(μ0 ∗ ν0) − R(ν0 ∗ μ0)

2

)2

= −Δ0I as operators on W (g). (36)

We know from (33) that

(
R(μ0 ∗ ν0) − R(ν0 ∗ μ0)

2

)2

g = −Δ0g.

Since the left and right representations commute, we get that

(
R(μ0 ∗ ν0) − R(ν0 ∗ μ0)

2

)2

f = −Δ0f ,
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for any f of the form f =
n∑

j=1
cjL(μj )g, where cj ∈ C and μj ∈ M(X), j =

1, 2. . ., n. But these functions f constitute W (g) by Theorem 5(c). This proves (36).
Let T := R(μ0∗ν0)−R(ν0∗μ0)

2δ , so that T 2 = I . Then

f = f + Tf

2
+ f − Tf

2
,

is the desired decomposition of f ∈ W (g) into elements from W (g)+ and W (g)−.
So W (g) = W (g)+ ⊕ W (g)−.

We next prove that dimW (g)+ = dimW (g)− = 2. Let f3 be the function defined
in Definition 8. The computation

R(μ0 ∗ ν0) − R(ν0 ∗ μ0)

2
(f3 + δg) = R(μ0 ∗ ν0) − R(ν0 ∗ μ0)

2
f3

+ δ
R(μ0 ∗ ν0) − R(ν0 ∗ μ0)

2
g

=
(
R(μ0 ∗ ν0) − R(ν0 ∗ μ0)

2

)2

g + δf3

= −Δ0g + δf3

= δ

(
f3 + −Δ0

δ
g

)

= δ(f3 + δg),

shows that f3 + δg ∈ W (g)+. Similarly we find that f3 − δg ∈ W (g)−. Thus,
both W (g)+ and W (g)− have dimensions, at least one. However, there are no 1-
dimensional invariant subspaces (by Lemma 3), so both W (g)+ and W (g)− must be
at least 2-dimensional. But dimW (g) = 4 (Theorem 5(a)), so none of them can have
dimension strictly bigger than 2.

(a) W (g)+ is irreducible under L, because a nontrivial invariant subspace of it
would be 1-dimensional, and there are no such subspaces according to Lemma 3. By
definition of L we see that π is continuous [3]. The statement about the character is
immediate from Theorem 5(f ).
(b) Fix a basis of W (g)+ and let for any μ ∈ M(X)

π (μ) =
⎛

⎝〈μ, a11〉 〈μ, a12〉
〈μ, a21〉 〈μ, a22〉

⎞

⎠ ∈ M(2, C),

be the corresponding matrix for π (μ). The formula L(μ) + L(μ) = 2〈μ, g〉I on
W (g) translates to
⎛

⎝〈μ, a11〉 〈μ, a12〉
〈μ, a21〉 〈μ, a22〉

⎞

⎠+
⎛

⎝ 〈μ̌, a11〉 〈μ̌, a12〉
〈μ̌, a21〉 〈μ̌, a22〉

⎞

⎠ =
⎛

⎝2〈μ, g〉 0

0 2〈μ, g〉

⎞

⎠
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while the formula tr(π (μ)) = χπ (μ) = 2〈μ, g〉 from (a) translates to 〈μ, a11〉 +
〈μ, a22〉 = 2〈μ, g〉. Using these two formulas, we find for any μ ∈ M(X) that

〈μ̌, a11〉 = 2〈μ, g〉 − 〈μ, a11〉 = 2〈μ, g〉 − [〈μ, a11〉 + 〈μ, a22〉] + 〈μ, a22〉
= 2〈μ, g〉 − 2〈μ, g〉 + 〈μ, a22〉 = 〈μ, a22〉.

Replacing μ by μ̌ we get that 〈μ̌, a22〉 = 〈μ, a11〉. Furthermore, we find that
〈μ̌, a12〉 = −〈μ, a12〉 and 〈μ̌, a21〉 = −〈μ, a21〉. Thus,

π (μ̌) =
⎛

⎝ 〈μ, a22〉 −〈μ, a12〉
−〈μ, a21〉 〈μ, a11〉

⎞

⎠ = adj

⎛

⎝〈μ, a11〉 〈μ, a12〉
〈μ, a21〉 〈μ, a22〉

⎞

⎠ = adj (π (μ)).

5 The General Case

We return to general d’Alembert functions on hypergroups, i.e., nonzero solution
g ∈ Cb(X) of (4). The first main result of this chapter is the following Davison’s
structure theorem [10, 25].

Theorem 6 (a) The d’Alembert functions on (X, ∗) are the functions of the form

g(x) = 1

2
tr(π (x)),

where π range over the 2-dimensional continuous representations of X for which
π (x̌) = adjoπ (x) for all x ∈ X.

(b) g = 1
2 troπ is non-abelian if and only if π is irreducible. If g is non-abelian,

then π is unique up to equivalence.
(c) Ifg is abelian, thenπ can be chosen as a direct sum of two 1-dimensional repre-

sentations ofX, i.e., of two multiplicative functions. If χ is one of these multiplicative
functions, then χ̌ is the other.

Proof (a) It is easy to verify that any function of the form g = 1
2χπ , where π is

a 2-dimensional continuous representation of X such that π (x̌) = adjoπ (x) for all
x ∈ X, is a d’Alembert function on X.

The converse, if g is non-abelian d’Alembert functions on X, then we refer to
Proposition 5 for a representation π with the desired properties. If g is an abelian
d’Alembert functions on X, we may in the notation of theorem 3 as π choose

π (x) =
⎛

⎝χ (x) 0

0 χ (x̌)

⎞

⎠ for all x ∈ X.

(b) Assume first that g = 1
2χπ is non-abelian, we show that π is irreducible.

By contradiction, if π were no irreducible, then there would exists an invariant 1-
dimensional subspace C.f of the representation space. So π (μ)f = χ (μ)f for all
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μ ∈ M(X), where χ (μ) ∈ C. Let {f ,h} be a basis of the representation space with
respect to that basis, π takes the form

π (μ) =
⎛

⎝χ (μ) a(μ)

0 χ1(μ)

⎞

⎠ for all μ ∈ M(X),

where a,χ1 are complex valued functions. It follows from π being a representation
that χ and χ1 : X −→ C are multiplicative functions on X. Multiplicative function
on X is abelian function on X. Hence, so does g = 1

2χπ = 1
2 (χ + χ1), i.e., g is

abelian. But that contradicts our assumption.
Assume conversely that π is irreducible. We prove that g is non-abelian by con-

tradiction. If g were abelian, then g can, according to Theorem 3, be written in the
form g = 1

2 (φ + φ̌) where φ is multiplicative function on X. Thus, χπ = φ + φ̌.

Viewing φ and φ̌ as 1-dimensional and hence, irreducible representation, we see
that the three multiplicative functions χπ ,φ, and φ̌ are not linearly independent. But
multiplicative functions are linearly independent (see [19, Proposition 3]). If φ and
φ̌ are equivalent, they coincide, so χπ and φ are linearly dependent, and thus π and
φ are equivalent. But they cannot be, being of dimension 2 and 1, respectively. Other
possibilities cannot occur; π and φ are not equivalent, being of different dimension.
Similarly for π and φ̌.

The essential uniqueness of π is a consequence of the fact that characters of
inequivalent irreducible finite-dimensional representations are linearly independent
([7], Proposition 2, Chap. V III , §13, no. 3).

(c) We saw in the beginning of the proof that π can be chosen as a direct sum
of two 1-dimensional representation of M(X), i.e., of two multiplicative functions.
The uniqueness follows from ([19], Proposition 3).

As an immediate consequence of Theorem 6 we have the following Corollary.

Corollary 2 If g is a d’Alembert function on (X, ∗) then there is a continuous and
multiplicative map ϕ : X −→ Mat2(C) with ϕ̌ = adj ◦ ϕ such that

g = 1

2
tr ◦ ϕ,

where Mat2(C) is the space of complex matrix of order 2 and adj : Mat2(C) −→

Mat2(C)

⎛

⎝ a b

c d

⎞

⎠ −→
⎛

⎝ d −b

−c a

⎞

⎠.

6 Superstability of the D’Alembert Equation (4)

There is a strong stability phenomenon which is known as a superstability. An equa-
tion of homomorphism is called superstable if each approximate homomorphism
is actually a true homomorphism. This property was first observed by J. Baker, J.
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Lawrence, and F. Zorzitto [4] in the following Theorem: Let V be a vector space. If
a functionf : V −→ R satisfies the inequality

|f (x + y) − f (x)f (y)| ≤ ε

for some ε > 0 and for all x; y ∈ V . Then, eitherf is a bounded function or

f (x + y) = f (x)f (y), x, y ∈ V

Later this result was generalized by J. Baker [3] and L. Székelyhidi [29].
Székelyhidy in [27] (Theorem 7.1), dealt with the superstability of exponential

(i.e., multiplicative) functions on hypergroups. Precisely, he proved the following
result. LetKbe a hypergroup and letf , g : K −→ C be continuous functions with
the property that the function

y �−→
∫

K

f d(δx ∗ δy) − f (x)g(y),

is bounded for all y in K . Then, eitherf is bounded, or g is exponential (i.e.,
multiplicative function).

In present section, we shall extend the investigation given by J. Baker [3], L.
Székelyhidi [27, 29], R. Badora [2], and E. Elqorachi and M. Akkouchi [11] to the
Eq. (4).
In Theorem 7, the superstability of Eq. (4) will be investigated on any hypergroup.

Lemma 4 Let δ > 0 be given. Assume that the continuous function f : X −→ C

satisfies the inequality
∣∣〈δx ∗ δy , f 〉 + 〈δx ∗ δy̌ , f 〉 − 2f (x)f (y)

∣∣ ≤ δ, x, y ∈ X (37)

If f is unbounded then it satisfies the d’Alembert’s long functional equation

〈δx ∗ δy , f 〉 + 〈δx ∗ δy̌ , f 〉 + 〈δy ∗ δx , f 〉 + 〈δy̌ ∗ δx , f 〉 = 4f (x)f (y). (38)

Proof Assume that f is an unbounded function satisfying the inequality (37). For
all x, y, z ∈ X, we have

|2f (z)| ∣∣〈δx ∗ δy , f 〉 + 〈δx ∗ δy̌ , f 〉 + 〈δy ∗ δx , f 〉 + 〈δy̌ ∗ δx , f 〉 − 4f (x)f (y)
∣∣

= ∣∣2f (z)〈δx ∗ δy , f 〉 + 2f (z)〈δx ∗ δy̌ , f 〉 + 2f (z)〈δy ∗ δx , f 〉
+ 2f (z)〈δy̌ ∗ δx , f 〉 − 8f (z)f (x)f (y)

∣∣

=
∣∣∣∣∣∣

∫

X

2f (z)f (t)d(δx ∗ δy)(t) +
∫

X

2f (z)f (t)d(δx ∗ δy̌)(t)

+
∫

X

2f (z)f (t)d(δy ∗ δx)(t) +
∫

X

2f (z)f (t)d(δy̌ ∗ δx)(t) − 8f (z)f (x)f (y)

∣∣∣∣∣∣
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≤
∣∣∣∣∣∣

∫

X

(〈δz ∗ δt , f 〉 + 〈δz ∗ δť , f 〉 − 2f (z)f (t)
)
d(δx ∗ δy)(t)

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∫

X

(〈δz ∗ δt , f 〉 + 〈δz ∗ δť , f 〉 − 2f (z)f (t)
)
d(δx ∗ δy̌)(t)

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∫

X

(〈δz ∗ δt , f 〉 + 〈δz ∗ δť , f 〉 − 2f (z)f (t)
)
d(δy ∗ δx)(t)

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∫

X

(〈δz ∗ δt , f 〉 + 〈δz ∗ δť , f 〉 − 2f (z)f (t)
)
d(δy̌ ∗ δx)(t)

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∫

X

(〈δt ∗ δy , f 〉 + 〈δt ∗ δy̌ , f 〉 − 2f (t)f (y)
)
d(δz ∗ δx)(t)

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∫

X

(〈δt ∗ δx , f 〉 + 〈δt ∗ δx̌ , f 〉 − 2f (t)f (x)) d(δz ∗ δy)(t)

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∫

X

(〈δt ∗ δx , f 〉 + 〈δt ∗ δx̌ , f 〉 − 2f (t)f (x)) d(δz ∗ δy̌)(t)

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∫

X

(〈δt ∗ δy , f 〉 + 〈δt ∗ δy̌ , f 〉 − 2f (t)f (x)
)
d(δz ∗ δx̌)(t)

∣∣∣∣∣∣

+ |2f (y)| |〈δz ∗ δx , f 〉 + 〈δz ∗ δx̌ , f 〉 − 2f (z)f (x)|
+ 2 |f (x)| ∣∣〈δz ∗ δy , f 〉 + 〈δz ∗ δy̌ , f 〉 − 2f (z)f (y)

∣∣ .

By virtue of inequality (37), we have

|2f (z)| ∣∣〈δx ∗ δy , f 〉 + 〈δx ∗ δy̌ , f 〉 + 〈δy ∗ δx , f 〉 + 〈δy̌ ∗ δx , f 〉 − 4f (x)f (y)
∣∣

≤ 8δ + 2(|f (y)| + |f (x)|)δ. (39)

If we fix x, y, the right hand side of the above inequality is bounded function of
z. Since f is unbounded, from the preceding (39), we conclude that f is a solution
of the d’Alembert long equation(38), which ends the proof.

We have the following result on the superstability of the d’Alembert equation
which generalizes the Baker’s result on the classical d’Alembert functional equation
on an abelian group [3] (Theorem 5).
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Theorem 7 Let δ > 0 be given. Assume that the continuous function f : X −→ C

satisfies the inequality
∣∣〈δx ∗ δy , f 〉 + 〈δx ∗ δy̌ , f 〉 − 2f (x)f (y)

∣∣ ≤ δ, x, y ∈ X (40)

then either

|f (x)| ≤ 1 + √
1 + 2δ

2
, x ∈ X,

or

〈δx ∗ δy , f 〉 + 〈δx ∗ δy̌ , f 〉 = 2f (x)f (y), x, y ∈ X.

Proof Assume that f satisfies inequality (40). If f is bounded, let A = sup |f | ,
then we get for all x ∈ X that |2f (x)f (x)| ≤ δ + 2A, from which we obtain that
2A2 − 2A − δ ≤ 0 such that

A ≤ 1 + √
1 + 2δ

2
, x ∈ X.

Now we consider the case of f unbounded. For all x, y, z ∈ X, we have

|2f (z)| ∣∣〈δx ∗ δy , f 〉 + 〈δx ∗ δy̌ , f 〉 − 2f (x)f (y)
∣∣

=
∣∣∣∣∣∣

∫

X

2f (z)f (t)d(δx ∗ δy)(t) +
∫

X

2f (z)f (t)d(δx ∗ δy̌)(t) − 4f (x)f (y)f (z)

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

∫

X

(〈δt ∗ δz, f 〉 + 〈δt ∗ δž, f 〉 − 2f (t)f (z)) d(δx ∗ δy)(t)

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∫

X

(〈δt ∗ δz, f 〉 + 〈δt ∗ δž, f 〉 − 2f (t)f (z)) d(δx ∗ δy̌)(t)

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∫

X

(〈δx ∗ δt , f 〉 + 〈δx ∗ δť , f 〉 − 2f (x)f (t)
)
d(δy ∗ δz)(t)

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∫

X

(〈δx ∗ δt , f 〉 + 〈δx ∗ δť , f 〉 − 2f (x)f (t)
)
d(δy ∗ δž)(t)

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∫

X

(〈δx ∗ δt , f 〉 + 〈δx ∗ δť , f 〉 − 2f (x)f (t)
)
d(δž ∗ δy)(t)

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∫

X

(〈δx ∗ δt , f 〉 + 〈δx ∗ δť , f 〉 − 2f (x)f (t)
)
d(δz ∗ δy)(t)

∣∣∣∣∣∣
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+
∣∣∣∣∣∣

∫

X

(〈δt ∗ δy , f 〉 + 〈δt ∗ δy̌ , f 〉 − 2f (t)f (y)
)
d(δx ∗ δž)(t)

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∫

X

(〈δt ∗ δy , f 〉 + 〈δt ∗ δy̌ , f 〉 − 2f (t)f (y)
)
d(δx ∗ δz)(t)

∣∣∣∣∣∣

+ ∣∣2f (x)〈δy ∗ δz, f 〉 + 2f (x)
〈
δy ∗ δž, f

〉+ 2f (x)
〈
δž ∗ δy , f

〉

+ 2f (x)
〈
δz ∗ δy , f

〉− 8f (x)f (y)f (z)
∣∣

+ |2〈δx ∗ δz, f 〉f (y) + 2〈δx ∗ δž, f 〉f (y) − 4f (x)f (y)f (z)|
≤ 8δ + 2δ |f (y)| + |2f (x)| ∣∣〈δy ∗ δz, f 〉 + 〈δy ∗ δž, f

〉

+ 〈δz ∗ δy , f
〉+ 〈δž ∗ δy , f

〉− 4f (y)f (z)
∣∣ .

In virtue of inequality (40), we obtain

|2f (z)| ∣∣〈δx ∗ δy , f 〉 + 〈δx ∗ δy̌ , f 〉 − 2f (x)f (y)
∣∣

≤ 8δ + 2δ |f (y)| + |2f (x)| ∣∣〈δy ∗ δz, f 〉 + 〈δy ∗ δž, f
〉+ 〈δz ∗ δy , f

〉+ 〈δž ∗ δy , f
〉

−4f (y)f (z)| .
Or f is unbounded then by Lemma 4 it is a solution of (38). We conclude that

|2f (z)| ∣∣〈δx ∗ δy , f 〉 + 〈δx ∗ δy̌ , f 〉 − 2f (x)f (y)
∣∣ ≤ 8δ + 2δ |f (y)| . (41)

Again the right hand side of (41) as a function of z is bounded for all fixed x, y.
Since f is unbounded, from the preceding (41), we conclude that f satisfies the
Eq. (4), and the proof of the theorem is finished.

Acknowledgement Our sincere regards and gratitude go to Professor Henrik Stetkær for fruitful
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