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Abstract In very recent papers, using delicate tools of functional analysis, a general
equilibrium model of financial flows and prices is studied. In particular, without using
a technical language, but using the universal language of mathematics, some signif-
icant laws, such as the Deficit formula, the Balance law and the Liability formula
for the management of the world economy are provided. Further a simple but useful
economical indicatorE(t) is considered. In this paper, considering the Lagrange dual
formulation of the financial model, the Lagrange variables called “deficit” and “sur-
plus” variables are considered. By means of these variables, we study the possible
insolvencies related to the financial instruments and their propagation to the entire
system, producing a “financial contagion”.

Keywords Financial networks · Deficit and surplus variables · Shadow market ·
Balance law · Financial contagion

1 Introduction

In the papers [4–7], the authors study a general model of financial flows and prices
related to individual entities called sectors. They are able to provide the equilibrium
conditions and to express them in terms of a variational inequality. Then, they study
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the governing variational inequality and provide existence theorems, develop the
Lagrange duality theory, and introduce an appropriate Evaluation Index E(t). As
a byproduct of the Lagrange duality, they get a dual formulation of the financial
equilibrium in which the significance Lagrange functions ρ∗1

j (t) and ρ∗2
j (t) appear.

These functions ρ∗1
j (t), ρ∗2

j (t), j = 1, . . . , n represent the deficit and the surplus,
respectively, for the financial instrument j shared by the sectors. Studying the balance
of all sectors given by

n∑

j=1

ρ∗1
j (t)−

n∑

j=1

ρ∗2
j (t)

and the single difference

ρ∗1
j (t)− ρ∗2

j (t) j = 1, . . . , n

we are able to study the possible insolvencies related to the financial instruments
and to understand when they propagate to the entire system, producing a “financial
contagion”.

2 The Financial Network and the Equilibrium Flows and Prices

The first authors to develop a multi-sector, multi-instrument financial equilibrium
model using the variational inequality theory were Nagurney et al. [34]. These results
were, subsequently, extended by Nagurney in [30, 31] to include more general
utility functions and by Nagurney and Siokos in [32, 33] to the international domain
(see also [24, 36] for related papers). In [18], the authors apply for the first time
the methodology of projected dynamical systems to develop a multi-sector, multi-
instrument financial model, whose set of stationary points coincided with the set of
solutions to the variational inequality model developed in [30], and then to study it
qualitatively, providing stability analysis results.

Now, we describe in detail the model we are dealing with. We consider a financial
economy consisting of m sectors, for example, households, domestic businesses,
banks and other financial institutions, as well as state and local governments, with
a typical sector denoted by i, and of n instruments, for example mortgages, mutual
funds, saving deposits, money market funds, with a typical financial instrument
denoted by j , in the time interval [0, T ]. Let si(t) denote the total financial volume
held by sector i at time t as assets, and let li(t) be the total financial volume held by
sector i at time t as liabilities. Then, unlike previous papers (see [9–13] and [15]),
we allow markets of assets and liabilities to have different investments si(t) and
li(t), respectively. Since we are working in the presence of uncertainty and of risk
perspectives, the volumes si(t) and li(t) held by each sector cannot be considered
stable with respect to time and may decrease or increase. For example, depending on
the crisis periods, a sector may decide not to invest on instruments and to buy goods
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as gold and silver. At time t , we denote the amount of instrument j held as an asset
in sector i’s portfolio by xij (t) and the amount of instrument j held as a liability in
sector i’s portfolio by yij (t). The assets and liabilities in all the sectors are grouped
into the matrices

x(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1(t)

. . .

xi(t)

. . .

xn(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x11(t) . . . x1j (t) . . . x1n(t)

. . . . . . . . . . . . . . .

xi1(t) . . . xij (t) . . . xin(t)

. . . . . . . . . . . . . . .

xm1(t) . . . xmj (t) . . . xmn(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

y(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1(t)

. . .

yi(t)

. . .

yn(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y11(t) . . . y1j (t) . . . y1n(t)

. . . . . . . . . . . . . . .

yi1(t) . . . yij (t) . . . yin(t)

. . . . . . . . . . . . . . .

ym1(t) . . . ymj (t) . . . ymn(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

We denote the price of instrument j held as an asset at time t by rj (t) and the
price of instrument j held as a liability at time t by (1 + hj (t))rj (t), where hj
is a nonnegative function defined into [0, T ] and belonging to L∞([0, T ]). We in-
troduce the term hj (t) because the prices of liabilities are generally greater than
or equal to the prices of assets in order to describe, in a more realistic way, the
behaviour of the markets for which the liabilities are more expensive than the as-
sets. In such a way, this paper appears as an improvement in various directions of
the previous ones ([9–13] and [15]). We group the instrument prices held as as-
sets into the vector r(t) = [r1(t), r2(t), . . . , ri(t), . . . , rn(t)]T and the instrument
prices held as liabilities into the vector (1 + h(t))r(t) = [(1 + h1(t))r1(t), (1 +
h2(t))r2(t), . . . , (1 + hi(t))ri(t), . . . , (1 + hn(t))rn(t)]T . In our problem, the prices
of each instrument appear as unknown variables. Under the assumption of perfect
competition, each sector will behave as if it has no influence on the instrument prices
or on the behaviour of the other sectors, whereas the instrument prices depend on
the total amount of the investments and the liabilities of each sector. In order to
express the time dependent equilibrium conditions by means of an evolutionary vari-
ational inequality, we choose as a functional setting the very general Lebesgue space
L2([0, T ], Rp) = {f : [0, T ] → R

p :
∫ T

0 ‖f (t)‖2
pdt < +∞}. Then, the set of

feasible assets and liabilities for each sector i = 1, . . . ,m, becomes

Pi =
{

(xi(t), yi(t)) ∈ L2
(
[0, T ], R2n

)
:

n∑

j=1

xij (t) = si(t),
n∑

j=1

yij (t) = li(t)

a.e. in [0, T ], xi(t) ≥ 0, yi(t) ≥ 0, a.e. in [0, T ]
}

∀i = 1, . . . ,m.
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In such a way, the set of all feasible assets and liabilities becomes

P =
{

(x(t), y(t)) ∈ L2
(
[0, T ], R2mn

)
:

n∑

j=1

xij (t) = si(t),
n∑

j=1

yij (t) = li(t),

∀ i= 1, . . . ,m, a.e. in [0, T ], xi(t) ≥ 0, yi(t) ≥ 0, ∀ i= 1, . . . ,m, a.e. in [0, T ]
}
.

Now, in order to improve the model of competitive financial equilibrium described
in [4], which represents a significant but still partial approach to the complex problem
of financial equilibrium, we consider the possibility of policy interventions in the
financial equilibrium conditions and incorporate them in the form of taxes and price
controls and, mainly, we consider a more complete definition of equilibrium prices
r(t), based on the demand–supply law, imposing that the equilibrium prices vary
between floor and ceiling prices.

To this aim, denote the ceiling price associated with instrument j by rj and the
nonnegative floor price associated with instrument j by rj , with rj (t) > rj (t), a.e. in
[0, T ]. The floor price rj (t) is determined on the basis of the official interest rate fixed
by the central banks, which in turn take into account the consumer price inflation.
Then, the equilibrium prices r∗j (t) cannot be less than these floor prices. The ceiling
price rj (t) derives from the financial need to control the national debt arising from
the amount of public bonds and of the rise in inflation. It is a sign of the difficulty
on the recovery of the economy. However, it should be not overestimated because it
produced an availability of money.

In detail, the meaning of the lower and upper bounds is that to each investor a
minimal price rj for the assets held in the instrument j is guaranteed, whereas each
investor is requested to pay for the liabilities in any case a minimal price

(
1+ hj

)
rj .

Analogously each investor cannot obtain for an asset a price greater than rj and as a
liability the price cannot exceed the maximum price

(
1+ hj

)
rj .

Denote the given tax rate levied on sector i’s net yield on financial instrument j ,
as τij . Assume that the tax rates lie in the interval [0, 1) and belong to L∞([0, T ]).
Therefore, the government in this model has the flexibility of levying a distinct tax
rate across both sectors and instruments.

Let us group the instrument ceiling prices rj into the column vector rj (t) =
[r1(t), . . . , ri(t), . . . , rn(t)]

T , the instrument floor prices rj into the column vector
rj (t) = [r1(t), . . . , ri(t), . . . , rn(t)]

T , and the tax rates τij into the matrix

τ (t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

τ11(t) . . . τ1j (t) . . . τ1n(t)

. . . . . . . . . . . . . . .

τi1(t) . . . τij (t) . . . τin(t)

. . . . . . . . . . . . . . .

τm1(t) . . . τmj (t) . . . τmn(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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The set of feasible instrument prices becomes:

R = {r ∈ L2([0, T ], Rn) : rj (t) ≤ rj (t) ≤ rj (t), j = 1, . . . , n, a.e. in [0, T ]
}

,

where r and r are assumed to belong to L2([0, T ], Rn).
In order to determine for each sector i, the optimal composition of instruments

held as assets and as liabilities, we consider, as usual, the influence due to risk-
aversion and the process of optimization of each sector in the financial economy,
namely, the desire to maximize the value of the asset holdings while minimizing
the value of liabilities. An example of risk aversion is given by the well-known
Markowitz quadratic function based on the variance–covariance matrix denoting
the sector’s assessment of the standard deviation of prices for each instrument
(see [25, 26]).

In our case, however, the Markowitz utility or other more general ones are consid-
ered time-dependent in order to incorporate the adjustment in time which depends
on the previous equilibrium states. A way in order to obtain the adjustments is to
introduce a memory term as it happens in other deterministic models (see [1–3, 8,
20–22, 29]). Then, we introduce the utility function Ui(t , xi(t), yi(t), r(t)), for each
sector i, defined as follows

Ui(t , xi(t), yi(t), r(t)) = ui(t , xi(t), yi(t))

+
n∑

j=1

rj (t)(1− τij (t))
[
xij (t)−

(
1+ hj (t)

)
yij (t)

]
,

where the term −ui(t , xi(t), yi(t)) represents a measure of the risk of the financial
agent and rj (t)

(
1− τij (t)

) [
xi(t)−

(
1+ hj (t)

)
yi(t)

]
represents the value of the dif-

ference between the asset holdings and the value of liabilities. We suppose that the
sector’s utility function Ui(t , xi(t), yi(t)) is defined on [0, T ] × R

n × R
n, is mea-

surable in t and is continuous with respect to xi and yi . Moreover, we assume that
∂ui/∂xij and ∂ui/∂yij exist and that they are measurable in t and continuous with
respect to xi and yi . Further, we require that ∀i = 1, . . . ,m, ∀j = 1, . . . , n, and a.e.
in [0, T ] the following growth conditions hold true:

|ui(t , x, y)| ≤ αi(t)‖x‖‖y‖, ∀x, y ∈ R
n, (1)

and
∣
∣
∣
∣
∂ui(t , x, y)

∂xij

∣
∣
∣
∣ ≤ βij (t)‖y‖,

∣
∣
∣
∣
∂ui(t , x, y)

∂yij

∣
∣
∣
∣ ≤ γij (t)‖x‖, (2)

where αi , βij , γij are nonnegative functions of L∞([0, T ]). Finally, we suppose that
the function ui(t , x, y) is concave.

We remind that the Markowitz utility function verifies conditions (1) and (2).
In order to determine the equilibrium prices, we establish the equilibrium con-

dition which expresses the equilibration of the total assets, the total liabilities and
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the portion of financial transactions per unit Fj employed to cover the expenses of
the financial institutions including possible dividends and manager bonus, as in [4].
Hence, the equilibrium condition for the price rj of instrument j is the following:

m∑

i=1

(
1− τij (t)

) [
x∗ij (t)−

(
1+ hj (t)

)
y∗ij (t)

]+Fj (t)

⎧
⎪⎪⎨

⎪⎪⎩

≥ 0 if r∗j (t) = rj (t)
= 0 if rj (t) < r

∗
j (t) < rj (t)

≤ 0 if r∗j (t) = rj (t)
(3)

where (x∗, y∗, r∗) is the equilibrium solution for the investments as assets and as
liabilities and for the prices.

In other words, the prices are determined taking into account the amount of the
supply, the demand of an instrument and the charges Fj , namely, if there is an actual
supply excess of an instrument as assets and of the charges Fj in the economy, then
its price must be the floor price. If the price of an instrument is positive, but not at
the ceiling, then the market of that instrument must clear. Finally, if there is an actual
demand excess of an instrument as liabilities and of the charges Fj in the economy,
then the price must be at the ceiling.

Now, we can give different but equivalent equilibrium conditions, each of which
is useful to illustrate the particular features of the equilibrium.

Definition 1 A vector of sector assets, liabilities and instrument prices (x∗(t), y∗(t),
r∗(t)) ∈ P × R is an equilibrium of the dynamic financial model if and only if
∀i = 1, . . . ,m,∀j = 1, . . . , n, and a.e. in [0, T ], it satisfies the system of inequalities

−∂ui(t , x∗, y∗)
∂xij

− (1− τij (t)
)
r∗j (t)− μ(1)∗

i (t) ≥ 0, (4)

−∂ui(t , x∗, y∗)
∂yij

+ (1− τij (t)
) (

1+ hj (t)
)
r∗j (t)− μ(2)∗

i (t) ≥ 0, (5)

and equalities

x∗ij (t)
[

−∂ui(t , x∗, y∗)
∂xij

− (1− τij (t)
)
r∗j (t)− μ(1)∗

i (t)

]

= 0, (6)

y∗ij (t)
[

−∂ui(t , x∗, y∗)
∂xij

+ (1− τij (t)
) (

1+ hj (t)
)
r∗j (t)− μ(2)∗

i (t)

]

= 0, (7)

where μ(1)∗
i (t), μ(2)∗

i (t) ∈ L2([0, T ]) are Lagrange multipliers, and verifies condition
(3) a.e. in [0, T ].

Let us explain the meaning of the above conditions. To each financial volumes
si and li held by sector i, we associate the functions μ(1)∗

i (t),μ(2)∗
i (t), related, re-

spectively, to the assets and to the liabilities, and which represent the “equilibrium
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disutilities” per unit of the sector i. Then, (4) and (6) mean that the financial vol-
ume invested in instrument j as assets x∗ij is greater than or equal to zero if the j th

component −∂ui(t , x∗, y∗)
∂xij

− (1 − τij (t))r∗j (t) of the disutility is equal to μ(1)∗
i (t),

whereas if −∂ui(t , x∗, y∗)
∂xij

− (1− τij (t))r∗j (t) > μ(1)∗
i (t), then x∗ij (t) = 0. The same

occurs for the liabilities and the meaning of (3) is already illustrated.
The functions μ(1)∗

i (t) and μ(2)∗
i (t) are Lagrange multipliers associated a.e. in

[0, T ] with the constraints
n∑

j=1

xij (t) − si(t) = 0 and
n∑

j=1

yij (t) − li(t) = 0, respec-

tively. They are unknown a priori, but this fact has no influence because we will prove
in the following theorem that Definition 1 is equivalent to a variational inequality in
which μ(1)∗

i (t) and μ(2)∗
i (t) do not appear.

The following Theorem is proved in [6] (see Theorem 2.1).

Theorem 1 A vector
(
x∗, y∗, r∗

) ∈ P × R is a dynamic financial equilibrium if
and only if it satisfies the following variational inequality:

Find (x∗, y∗, r∗) ∈ P ×R:

m∑

i=1

∫ T

0

⎧
⎨

⎩

n∑

j=1

[

−∂ui(t , x∗i (t), y∗i (t))

∂xij
− (1− τij (t))r∗j (t)

]

× [xij (t)− x∗ij (t)
]

+
n∑

j=1

[

−∂ui(t , x∗i (t), y∗i (t))

∂yij
+ (1− τij (t))r∗j (t)(1+ hj (t))

]

× [yij (t)− y∗ij (t)
]
⎫
⎬

⎭
dt

+
n∑

j=1

∫ T

0

m∑

i=1

{(
1− τij (t)

) [
x∗ij (t)− (1+ hj (t))y∗ij (t)

]+ Fj (t)
}

× [rj (t)− r∗j (t)]dt ≥ 0, ∀(x, y, r) ∈ P ×R. (8)

We are also able to provide existence theorems for the variational inequality (8).
To this end, we remind some definitions (see [27, 35]). LetX be a reflexive Banach

space and let K be a subset of X and X∗ be the dual space of X.

Definition 2 A mapping A : K → X∗ is pseudomonotone in the sense of Brezis
(B-pseudomonotone) iff

1. For each sequence un weakly converging to u (in short un ⇀ u) in K and such
that lim supn〈Aun, un − v〉 ≤ 0, it results that:

lim inf
n

〈Aun, un − v〉 ≥ 〈Au, u− v〉, ∀v ∈ K.

2. For each v ∈ K, the function u �→ 〈Au, u− v〉 is lower bounded on the bounded
subset of K.
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Definition 3 A mapping A : K → X∗ is hemicontinuous in the sense of Fan (F-
hemicontinuous) iff for all v ∈ K the function u �→ 〈Au, u − v〉 is weakly lower
semicontinuous on K.

Now, we recall the following hemicontinuity definition, which will be used
together with some kinds of monotonicity assumptions.

Definition 4 A mappingA : K → X∗ is lower hemicontinuous along line segments,
iff the function ξ �→ 〈Aξ , u− v〉 is lower semicontinuous for all u, v ∈ K on the line
segments [u, v].

Definition 5 The map A : K → X∗ is said to be pseudomonotone in the sense of
Karamardian (K-pseudomonotone) iff for all u, v ∈ K

〈Av, u− v〉 ≥ 0 �⇒ 〈Au, u− v〉 ≥ 0.

Then, the following existence theorems hold (see [27]). The first one does not
require any kind of monotonicity assumptions.

Theorem 2 Let K ⊂ X be a nonempty closed convex bounded set and let A :
K ⊂ E → X∗ be B-pseudomonotone or F-hemicontinuous. Then, the variational
inequality

〈Au, v− u〉 ≥ 0 ∀v ∈ K (9)

admits a solution.
The next theorem requires the K-pseudomonotonicity assumption.

Theorem 3 Let K ⊂ X be a closed convex bounded set and let A : K → X∗ be a
K-pseudomonotone map which is lower hemicontinuous along line segments. Then,
variational inequality (9) admits solutions.

We can apply such theorems to our model, setting:

v =
((
xij
)
i=1,... ,m j=1,... ,n ,

(
yij
)
i=1,... ,m j=1,... ,n ,

(
rj
)
j=1,... ,n

)
;

A : L2
(
[0, T ], R2mn+n)→ L2

(
[0, T ], R2mn+n) ,

A(v) =
([

−∂ui(x, y)

∂xij
− (1− τij )rj

]

i=1,... ,m j=1,... ,n

,

[

−∂ui(x, y)

∂yij
+ (1− τij )(1+ hj )rj

]

i=1,... ,m j=1,... ,n

,

[
m∑

i=1

(1− τij )
(
xij − (1+ hj )yij

)
]

j=1,... ,n

⎞

⎠ ;

K = P ×R =
{

v ∈ L2
(
[0, T ], R2mn+n) : xi(t) ≥ 0, yi(t) ≥ 0, a.e. in [0, T ],
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n∑

j=1

xij (t) = si(t),
n∑

j=1

yij (t) = li(t) a.e. in [0, T ], ∀i = 1, . . . ,m,

rj (t) ≤ rj (t) ≤ rj (t), a.e. in [0, T ], ∀j = 1, . . . , n
}
.

Hence, evolutionary variational inequality (8) becomes (9) and we can apply
Theorems 2 and 3, assuming that A is B-pseudomonotone or K-hemicontinuous, or
assuming that A is K-pseudomonotone, lower hemicontinuous along line segments
and noting that K is a nonempty closed convex and bounded set.

Moreover, we recall that condition (2) is sufficient to guarantee that the operator
A is lower hemicontinuous along line segments (see [19]).

3 The Lagrange Dual Problem. The Deficit
and Surplus Variables

First, let us present the infinite dimensional Lagrange duality, which represents an
important and very recent achievement (see [14, 16, 17, 28]) and which we will use.

First, we recall the definition of the tangent cone. IfX denote a real normed space
and C is a subset of X, given an element x ∈ X, the set:

TC(x) =
{
h ∈ X :

h = lim
n→∞ λn(xn − x), λn ∈ R, λn > 0, ∀n ∈ N, xn ∈ C ∀n ∈ N, lim

n→∞ xn = x
}

is called the tangent cone to C at x (see [23]).
Now, let us present the new duality principles for a convex optimization problem.

Let X be a real normed space and S a nonempty convex subset of X; let (Y , ‖ · ‖)
be a real normed space partially ordered by a convex cone C, with C∗ = {λ ∈ Y ∗ :
〈λ, y〉 ≥ 0 ∀y ∈ C} the dual cone ofC, Y ∗ topological dual of Y , and let (Z, ‖·‖Z) be
a real normed space with topological dual Z∗. Let us set −C = {−x ∈ Y : x ∈ C}.
Let f : S → R and g : S → Y be two convex functions and let h : S → Z be an
affine-linear function.

Let us consider the problem

min
x∈K

f (x) (10)

where K = {x ∈ S : g(x) ∈ −C, h(x) = θZ} and the dual problem

max
λ∈C∗
μ∈Z∗

inf
x∈S{f (x)+ 〈λ, g(x)〉 + 〈μ,h(x)〉}. (11)

Remember that λ and μ are the so-called Lagrange multipliers, associated to the
sign constraints and to equality constraints, respectively. They play a fundamental
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role to better understand the behaviour of the financial equilibrium. Moreover, as it
is well known, it always results:

min
x∈K

f (x) ≤ max
λ∈C∗
μ∈Z∗

inf
x∈S{f (x)+ 〈λ, g(x)〉 + 〈μ,h(x)〉}, (12)

and, if problem (10) is solvable, and in (12), the equality holds, we say that the strong
duality between primal problem (10) and dual problem (11) holds. When we have
the strong duality, we may consider the so-called “shadow market", namely, the dual
Lagrange problem associated to the primal problem.

In order to obtain the strong duality, we need that delicate conditions, called
“constraint qualification conditions”, hold. In the infinite dimensional settings, the
next assumption, the so-called Assumption S, results to be a necessary and sufficient
condition for the strong duality (see [14, 16, 17, 28]).

Definition of Assumption S We shall say that Assumption S is fulfilled at a point
x0 ∈ K, if it results to be

TM̃ (0, θY , θZ) ∩ (]−∞, 0[× {θY } × {θZ}
) = ∅, (13)

where

M̃ = {(f (x)− f (x0)+ α, g(x)+ y,h(x)) : x ∈ S \K, α ≥ 0, y ∈ C}.
The following theorem holds (see Theorem 1.1 in [17] for the proof).

Theorem 4 Under the above assumptions on f , g, h and C, if problem (10) is
solvable and Assumption S is fulfilled at the extremal solution x0 ∈ K, then also
problem (11) is solvable, the extreme values of both problems are equal, namely, if
(x0, λ∗,μ∗) ∈ K× C∗ × Z∗ is the optimal point of problem (11),

f (x0) = min
x∈K

f (x) = f (x0)+ 〈λ∗, g(x0)〉 + 〈μ∗,h(x0)〉
= max
λ∈C∗
μ∈Z∗

inf
x∈S{f (x)+ 〈λ, g(x)〉 + 〈μ,h(x)〉} (14)

and, it results to be:

〈λ∗, g(x0)〉 = 0.

Let us recall that the following one is the so-called Lagrange functional

L(x, λ,μ) = f (x)+ 〈λ, g(x)〉 + 〈μ,h(x)〉, ∀x ∈ S, ∀λ ∈ C∗, ∀μ ∈ Z∗. (15)

Using the Lagrange functional, (14) may be rewritten as

f (x0) = min
x∈K

f (x) = L(x0, λ∗,μ∗) = max
λ∈C∗
μ∈Z∗

inf
x∈S L(x, λ,μ).

By means of Theorem 4, it is possible to show the usual relationship between a
saddle point of the Lagrange functional and the solution of the constraint optimization
problem (10) (see Theorem 5 in [16] for the proof).
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Theorem 5 Let us assume that the assumptions of Theorem 4 are satisfied. Then,
x0 ∈ K is a minimal solution to problem (10) if and only if there exist λ ∈ C∗ and
μ ∈ Z∗ such that (x0, λ,μ) is a saddle point of the Lagrange functional (15), namely,

L(x0, λ,μ) ≤ L(x0, λ∗,μ∗) ≤ L(x, λ∗,μ∗), ∀x ∈ S, λ ∈ C∗, μ ∈ Z∗

and, moreover, it results that

〈λ∗, g(x0)〉 = 0. (16)

Now, we apply the infinite dimensional duality theory to our general model. To
this end, as usual, let us set

f (x, y, r) =
∫ T

0

{ m∑

i=1

n∑

j=1

[

−∂ui(t , x∗(t), y∗(t))
∂xij

− (1− τij (t))r∗j (t)

]

× [xij (t)− x∗ij (t)]

+
m∑

i=1

n∑

j=1

[

−∂ui(t , x∗(t), y∗(t))
∂yij

+ (1− τij (t))(1+ hj (t))r∗j (t)

]

× [yij (t)− y∗ij (t)]

+
n∑

j=1

[
m∑

i=1

(1− τij (t))
[
x∗ij (t)− (1+ hj (t))y∗ij (t)

]+ Fj (t)
]

× [rj (t)− r∗j (t)
] }
dt.

Then, the Lagrange functional is

L
(
x, y, r , λ(1), λ(2),μ(1),μ(2), ρ(1), ρ(2)

) = f (x, y, r)−
m∑

i=1

n∑

j=1

∫ T

0
λ

(1)
ij (t)xij (t) dt

−
m∑

i=1

n∑

j=1

∫ T

0
λ

(2)
ij yij (t) dt −

m∑

i=1

∫ T

0
μ

(1)
i (t)

⎛

⎝
n∑

j=1

xij (t)− si(t)
⎞

⎠ dt

−
m∑

i=1

∫ T

0
μ

(2)
i (t)

⎛

⎝
n∑

j=1

yij (t)− li(t)
⎞

⎠ dt +
n∑

j=1

∫ T

0
ρ

(1)
j (t)(rj (t)− rj (t)) dt

+
n∑

j=1

∫ T

0
ρ

(2)
j (t)(rj (t)− rj (t)) dt , (17)

where (x, y, r) ∈ L2([0, T ], R2mn+n), λ(1), λ(2) ∈ L2([0, T ], Rmn+ ), μ(1),μ(2) ∈
L2([0, T ], R

m), ρ(1), ρ(2) ∈ L2([0, T ], Rn+).
Remember that λ(1), λ(2), ρ(1), ρ(2) are the Lagrange multipliers associated, a.e.

in [0, T ], to the sign constraints xi(t) ≥ 0, yi(t) ≥ 0, rj (t) − rj (t) ≥ 0, rj (t) −
rj (t) ≥ 0, respectively. The functionsμ(1)(t) andμ(2)(t) are the Lagrange multipliers
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associated, a.e. in [0, T ], to the equality constraints
n∑

j=1

xij (t) − si(t) = 0 and

n∑

j=1

yij (t)− li(t) = 0, respectively.

The following theorem holds (see [6] Theorem 6.1).

Theorem 6 Let (x∗, y∗, r∗) ∈ P × R be a solution to variational inequality (8)
and let us consider the associated Lagrange functional (17). Then, Assumption S is
satisfied and the strong duality holds and there exist λ(1)∗, λ(2)∗ ∈ L2([0, T ], Rmn+ ),
μ(1)∗,μ(2)∗ ∈ L2([0, T ], Rm), ρ(1)∗, ρ(2)∗ ∈ L2([0, T ], Rn+) such that (x∗, y∗, r∗, λ(1)∗,
λ(2)∗, μ(1)∗, μ(2)∗, ρ(1)∗, ρ(2)∗) is a saddle point of the Lagrange functional, namely,

L
(
x∗, y∗, r∗, λ(1), λ(2),μ(1),μ(2), ρ(1), ρ(2)

)

≤ L(x∗, y∗, r∗, λ(1)∗, λ(2)∗,μ(1)∗,μ(2)∗, ρ(1)∗, ρ(2)∗) (18)

≤ L(x, y, r , λ(1)∗, λ(2)∗,μ(1)∗,μ(2)∗, ρ(1)∗, ρ(2)∗)

∀(x, y, r) ∈ L2
(
[0, T ], R2mn+n) , ∀λ(1), λ(2) ∈ L2([0, T ], R

mn+ ), ∀μ(1),μ(2) ∈
L2([0, T ], R

m), ∀ρ(1), ρ(2) ∈ L2([0, T ], Rn+) and, a.e. in [0, T ],

−∂ui(t , x∗(t), y∗(t))
∂xij

− (1− τij (t))r∗j (t)− λ(1)∗
ij (t)− μ(1)∗

i (t) = 0,

∀i = 1, . . . ,m, ∀j = 1 . . . , n;

−∂ui(t , x∗(t), y∗(t))
∂yij

+ (1− τij (t))(1+ hj (t))r∗j (t)− λ(2)∗
ij (t)− μ(2)∗

i (t) = 0,

∀i = 1, . . . ,m, ∀j = 1 . . . , n;

m∑

i=1

(1− τij (t))
[
x∗ij (t)− (1+ hj (t))y∗ij (t)

]+ Fj (t)+ ρ(2)∗
j (t) = ρ(1)∗

j (t),

∀j = 1, . . . , n; (19)

λ
(1)∗
ij (t)x∗ij (t) = 0, λ

(2)∗
ij (t)y∗ij (t) = 0, ∀i = 1, . . . ,m, ∀j = 1, . . . , n (20)

μ
(1)∗
i (t)

⎛

⎝
n∑

j=1

x∗ij (t)− si(t)
⎞

⎠ = 0, μ
(2)∗
i (t)

⎛

⎝
n∑

j=1

y∗ij (t)− li(t)
⎞

⎠ = 0,

∀i = 1, . . . ,m (21)
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ρ
(1)∗
j (t)(rj (t)− r∗j (t)) = 0, ρ

(2)∗
j (t)(r∗j (t)− rj (t)) = 0, ∀j = 1, . . . , n. (22)

Let us now call Balance Law the following one

m∑

i=1

li(t) =
m∑

i=1

si(t)−
m∑

i=1

n∑

j=1

τij (t)
[
x∗ij (t)−y∗ij (t)

]−
m∑

i=1

n∑

j=1

(1− τij (t))hj (t)y∗ij (t)

+
n∑

j=1

Fj (t)−
n∑

j=1

ρ
(1)∗
j (t)+

n∑

j=1

ρ
(2)∗
j (t).

The following theorem holds.

Theorem 7 Let
(
x∗, y∗, r∗

) ∈ P × R be the dynamic equilibrium solution to
variational inequality (8), then the Balance Law

m∑

i=1

li(t) =
m∑

i=1

si(t)−
m∑

i=1

n∑

j=1

τij (t)
[
x∗ij (t)−y∗ij (t)

]−
m∑

i=1

n∑

j=1

(1− τij (t))hj (t)y∗ij (t)

+
n∑

j=1

Fj (t)−
n∑

j=1

ρ
(1)∗
j (t)+

n∑

j=1

ρ
(2)∗
j (t) (23)

is verified.

Remark 1 Let us recall that from the Liability Formula we get the following index
E(t), called “Evaluation Index”, that is very useful for the rating procedure:

E(t) =

m∑

i=1

li(t)

m∑

i=1

s̃i(t)+
n∑

j=1

F̃j (t)

,

where we set

s̃i(t) = si(t)

1+ i(t) , F̃j (t) = Fj (t)

1+ i(t)− θ (t)− θ (t)i(t)
.

From the Liability Formula, we obtain

E(t)=1−

n∑

j=1

ρ
(1)∗
j (t)

(1− θ (t))(1+ i(t))
⎛

⎝
m∑

i=1

s̃i(t)+
n∑

j=1

F̃j (t)

⎞

⎠
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+

n∑

j=1

ρ
(2)∗
j (t)

(1− θ (t))(1+ i(t))
⎛

⎝
m∑

i=1

s̃i(t)+
n∑

j=1

F̃j (t)

⎞

⎠

(24)

4 Analysis of Financial Contagion

Let us consider (19), namely, the Deficit Formula for the generic instrument j
m∑

i=1

(1− τij (t))
[
x∗ij (t)− (1+ hj (t))y∗ij (t)

]+ Fj (t)+ ρ(2)∗
j (t) = ρ(1)∗

j (t),

∀j = 1, . . . , n a.e. in [0, T ]

together with the complementary Eq. (22)

ρ
(1)∗
j (t)(rj (t)− r∗j (t)) = 0, ρ(2)∗

j (t)(r∗j (t)− rj (t)) = 0, ρ(1)∗
j (t) · ρ(2)∗

j (t) = 0

∀j = 1, . . . , n a.e. in [0, T ].

Let us note that if ρ(1)∗
j (t) > 0

r∗j (t) = rj (t)
and hence, ρ(2)∗

j (t) = 0. From (19), we get

m∑

i=1

(1− τij (t))x∗ij (t) >
m∑

i=1

(1− τij (t))(1+ hj (t))y∗ij (t)+ Fj (t),

namely, the amount of the assets exceeds the one of the liabilities and of the expenses
Fj (t). Then, all the individual entities i, i = 1, . . . ,m, have the deficit

m∑

i=1

(1− τij (t))x∗ij (t)ρ(1)∗
j (t)−

m∑

i=1

(1− τij (t))(1+ hj (t))y∗ij (t)rj (t)− Fj (t)r∗j (t)

= ρ(1)∗
j (t)rj (t) > 0

because for the sectors, the quantity
m∑

i=1

(1− τij (t))x∗ij (t)ρ(1)
j (t)

represents the outcome, whereas
m∑

i=1

(1− τij (t))(1+ hj (t))y∗ij (t)rj (t)− Fj (t)r∗j (t)

represents the income.
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Then, when ρ∗(1)
j (t) is positive, formula (19) represents the deficit, whereas when

ρ
∗(2)
j (t) > 0, formula (19) represents the surplus. From formula (19), the Balance

Law is derived as

m∑

i=1

si(t)−
m∑

i=1

li(t)−
m∑

i=1

n∑

j=1

τij (t)
[
x∗ij (t)− y∗ij (t)

]−
m∑

i=1

n∑

j=1

(
1− τij (t)

)
hj (t)y

∗
ij (t)

+
n∑

j=1

Fj (t) =
n∑

j=1

ρ
(1)∗
j (t)−

n∑

j=1

ρ
(2)∗
j (t)

and we see that the balance of all the financial entities depends on the difference

n∑

j=1

ρ
(1)∗
j (t)−

n∑

j=1

ρ
(2)∗
j (t).

If

n∑

j=1

ρ
(1)∗
j (t) >

n∑

j=1

ρ
(2)∗
j (t), (25)

the balance is negative, the whole deficit exceeds the sum of all the surplus and
a negative contagion appears and the insolvencies of individual entities propagate
through the entire system. As we can see, it is sufficient that only one deficit ρ(1)∗

j (t)

is large to obtain, even if the other ρ(2)∗
j (t) are lightly positive, a negative balance for

all the system. Moreover, we can obtain ρ∗j (t) > 0 even if for only a sector has a big
insolvency.

Remark 2 When condition (25) is verified, we get E(t) ≤ 1 and, hence, also E(t)
is a significant indicator that the financial contagion happens.

5 The “Shadow Financial Market”

We remark that the financial problem can be considered from two different perspec-
tives: one from the Point of View of the Sectors which try to maximize the utility
and a second point of view, that we can call System Point of View, which regards the
whole equilibrium, namely, the respect of the previous laws. For example, from the
point of view of the sectors, li(t), for i = 1, . . . ,m, are liabilities, whereas for the
economic system they are investments and, hence, the Liability Formula, from the
system point of view, can be called Investments Formula. The system point of view
coincides with the dual Lagrange problem (the so-called “shadow market") in which
ρ

(1)
j (t) and ρ(2)

j (t) are the dual multipliers, representing the deficit and the surplus
per unit arising from instrument j . Formally, the dual problem is given as follows.
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Find
(
ρ(1)∗, ρ(2)∗) ∈ L2([0, T ], R2n+ ) such that

n∑

j=1

∫ T

0

(
ρ

(1)
j (t)− ρ(1)∗

j (t)
) (
rj (t)− r∗j (t)

)
dt +

n∑

j=1

∫ T

0

(
ρ

(2)
j (t)− ρ(2)∗

j (t)
)

(
r∗j (t)− rj (t)

)
dt ≤ 0, ∀ (ρ(1), ρ(2)

) ∈ L2
(
[0, T ], R2n

+
)
. (26)

In fact, taking into account the inequality in the left hand side of (18), we get

−
m∑

i=1

n∑

j=1

∫ T

0

(
λ

(1)
ij (t)− λ(1)∗

ij (t)
)
x∗ij (t) dt −

m∑

i=1

n∑

j=1

∫ T

0

(
λ

(2)
ij − λ(2)∗

ij

)
y∗ij (t) dt

−
m∑

i=1

∫ T

0

(
μ

(1)
i (t)− μ(1)∗

i (t)
)
⎛

⎝
n∑

j=1

x∗ij (t)− si(t)
⎞

⎠ dt

−
m∑

i=1

∫ T

0

(
μ

(2)
i (t)− μ(2)∗

i (t)
)
⎛

⎝
n∑

j=1

y∗ij (t)− li(t)
⎞

⎠ dt

+
n∑

j=1

∫ T

0

(
ρ

(1)
j (t)− ρ(1)∗

j (t)
) (
rj (t)− r∗j (t)

)
dt

+
n∑

j=1

∫ T

0

(
ρ

(2)
j (t)− ρ(2)∗

j (t)
) (
r∗j (t)− rj (t)

)
dt ≤ 0

∀λ(1), λ(2) ∈L2
(
[0, T ], Rmn+

)
, μ(1),μ(2) ∈L2([0, T ], Rm), ρ(1), ρ(2) ∈L2([0, T ], Rn+).

Choosing λ(1) = λ(1)∗, λ(2) = λ(2)∗, μ(1) = μ(1)∗, μ(2) = μ(2)∗, we obtain the dual
problem (26).

Note that, from the System Point of View, also the expenses of the institutions
Fj (t) are supported by the liabilities of the sectors.
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