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Abstract Let W be a Banach space, (V ,+) be a commutative group, p be an
endomorphism of V , and p : V → V be defined by p(x) := x−p(x) for x ∈ V . We
present some results on the Hyers–Ulam type stability for the following functional
equation

f (p(x)+ p(x))+ f (p(x)+ p(y)) = f (x)+ f (y),

in the class of functions f : V → W .

Keywords Hyers–Ulam stability · p-Wright affine function · Polynomial function

1 Introduction

Let 0 < p < 1 be a fixed real number and P be a nonempty subset of a real linear
space X. Assume that P is p-convex, i.e., px + (1− p)y ∈ P for x, y ∈ P . We say
that a function f mapping P into the set of reals R is p-Wright convex (see, e.g.,
[7, 8, 14, 17, 26]) if it satisfies the inequality

f (px + (1− p)y)+ f ((1− p)x + py) ≤ f (x)+ f (y) x, y ∈ P. (1)

Note that we obtain (1) by adding the following usual p-convexity inequality

f (px + (1− p)y) ≤ pf (x)+ (1− p)f (y) x, y ∈ P (2)

to its corresponding version (with x and y interchanged)

f (py + (1− p)x) ≤ pf (y)+ (1− p)f (x) x, y ∈ P. (3)

J. Brzdȩk (�)
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Analogously, we say that g : P → R is p-Wright concave provided the
subsequent inequality holds:

f (px + (1− p)y)+ f ((1− p)x + py) ≥ f (x)+ f (y) x, y ∈ P.
The functions that are simultaneously p-Wright convex and p-Wright concave,

i.e., satisfy the functional equation

f (px + (1− p)y)+ f ((1− p)x + py) = f (x)+ f (y), (4)

are called p-Wright affine (see [7]).
Note that for p = 1/2, Eq. (4) is just the well-known Jensen functional equation

f

(
x + y

2

)

= f (x)+ f (y)

2
.

If p = 1/3, then Eq. (4) can be written in the form

f (x + 2y)+ f (2x + y) = f (3x)+ f (3y). (5)

Solutions and stability of the latter equation have been investigated in [16] (cf. [5]) in
connection with a generalized notion of the Jordan derivations on Banach algebras.
Solutions and stability of Eq. (4), for more arbitrary p, have been studied in [4, 6, 7]
(see also [13, 23]). (For further information and references on stability of functional
equations, we refer to, e.g., [3, 10, 11, 15, 18–22, 25]). In particular, the following
results have been obtained in [4] (C denotes the set of complex numbers).

Theorem 1 Let X be a normed space over a field F ∈ {R, C}, Y be a Banach
space, p ∈ F, A, k ∈ (0,∞), |p|k + |1− p|k < 1, and g : X→ Y satisfy

‖g(px + (1− p)y)+ g((1− p)x + py)− g(x)− g(y)‖ ≤ A(‖x‖k + ‖y‖k) (6)

for all x, y ∈ X. Then there is a unique solution G : X→ Y of Eq. (4) with

‖g(x)−G(x)‖ ≤ A‖x‖k
1− |p|k − |1− p|k x ∈ X. (7)

Theorem 2 Let X be a normed space over a field F ∈ {R, C}, Y be a Banach
space, p ∈ F, A, k ∈ (0,∞), |p|2k + |1− p|2k < 1, and g : X→ Y satisfy

‖g(px + (1− p)y)+ g((1− p)x + py)− g(x)− g(y)‖ ≤ A‖x‖k‖y‖k

for all x, y ∈ X. Then g is a solution to (4).
In this chapter, we complement these two theorems by considering the inequality

‖g(px + (1− p)y)+ g((1− p)x + py)− g(x)− g(y)‖ ≤ δ x, y ∈ X (8)

with a fixed positive real δ. In particular, we also obtain a description of solutions to
(4).
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Note that if we write p := 1− p, then Eq. (4) can be rewritten as follows:

f (px + py)+ f (px + py) = f (x)+ f (y). (9)

We use this form of (4) in the sequel. Moreover, we consider a generalization of it with
p and p being suitable functions, using the notions px := p(x) and px := px − x
(x ∈ X) for simplicity.

Actually, some results in such situation can be derived from [23]. Namely, from
[23, Theorem 2] we can deduce the following.

Theorem 3 Let δ ∈ (0,∞), (X,+) be a commutative group, p : X → X be
additive (i.e., p(x+y) = p(x)+p(y) for x, y ∈ X), p(X) = p(X), and g : X→ C

satisfy

|g(px + (1− p)y)+ g((1− p)x + py)− g(x)− g(y)| ≤ δ x, y ∈ X
for all x, y ∈ X. Then there is a solution G : X→ C of Eq. (4) with

sup
x∈X

|g(x)−G(x)| <∞. (10)

In this chapter, we provide a bit more precise estimations than (10), though we
apply reasonings similar to those in [23].

2 Auxiliary Information and Lemmas

Let us start with a result that follows easily from [2, 24] (cf. [9]). We need for it the
notion of the Fréchet difference operator. Let us recall that for a function f , mapping
a semigroup (S,+) into a group (G,+),

Δyf (x) = Δ1
y f (x) := f (x + y)− f (x) x, y ∈ S,

Δ2
t ,z := Δt ◦Δz, Δ2

t := Δ2
t , t t , z ∈ S,

Δ3
t ,u,z := Δt ◦Δu ◦Δz, Δ3

t := Δ3
t , t , t t , u, z ∈ S.

It is easy to check that

Δ2
t ,zf (x) = f (x + t + z)− f (x + t)− f (x + z)+ f (x) x, t , z ∈ S,

Δ3
t ,z,uf (x) = f (x + t + z + u)− f (x + t + z)− f (x + t + u)− f (x + z + u)

+f (x + t)+ f (x + z)+ f (x + u)− f (x) x, t , z, u ∈ S.
We refer to [12] for more information and further references concerning this subject.
From [2, Theorem 4] (cf. [10, Theorem 7.6]) and [24, Theorem 9.1] we can easily
derive the following proposition.
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Proposition 1 Let W be a normed space, (V ,+) be a commutative group, ε ≥ 0,
and G : V → W satisfy the inequality

‖(Δ3
yG)(x)‖ ≤ ε x, y ∈ V. (11)

Assume that one of the following two hypotheses is valid.

(a) ε = 0.
(b) W is complete and V is divisible by 6 (i.e., for each x ∈ V , there is y ∈ V with
x = 6y).

Then there exist a constant c ∈ W , an additive mapping a : V → W , and a
symmetric biadditive mapping b : V 2 → W such that

‖G(x)− b(x, x)− a(x)− c‖ ≤ 2ε

3
x ∈ V.

Let us now recall two more stability results (see, e.g., [10, p. 13 and Theorem 3.1]).

Lemma 1 Let (V ,+) be a commutative group, W be a Banach space, ε ≥ 0, and
g : V → W satisfy the inequality

‖g(x + y)− g(x)− g(y)‖ ≤ ε x, y ∈ V.
Then there exists the limit

A(x) = lim
n→∞ 2−ng(2nx) x ∈ V (12)

and the function A : V → W , defined in this way, is additive and

‖g(x)− A(x)‖ ≤ ε x ∈ V.

Lemma 2 Let (V ,+) be a commutative group, W be a Banach space, ε ≥ 0, and
g : V → W satisfy the inequality

‖g(x + y)+ g(x − y)− 2 g(x)− 2 g(y)‖ ≤ ε x, y ∈ V.
Then there exists the limit

b(x) = lim
n→∞ 4−ng(2nx) x ∈ V (13)

and the function b : V → W , defined in this way, is quadratic and fulfills the
inequality

‖g(x)− b(x)‖ ≤ ε
2

x ∈ V.
In what follows, given a function p mapping a group (V ,+) into itself, for the

sake of simplicity we write,

px := p(x), px := x − px x ∈ V.
The next proposition will be very useful in the proofs of our main results.
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Lemma 3 Let (V ,+) be a commutative group, ε ≥ 0, p : V → V be a homo-
morphism with p(V ) = p(V ), andW be a normed space. Assume that g : V → W

satisfies the inequality

‖g(px + py)+ g(px + py)− g(x)− g(y)‖ ≤ ε x, y ∈ V. (14)

Then the following two statements are valid.

(i) If g is odd, then ‖Δ2
z,ug(x)‖ ≤ 4ε for x, z, u ∈ V .

(ii) ‖Δ3
t ,u,z g(x)‖ ≤ 8ε for x, z, u, t ∈ V.

Proof This proof is patterned on some reasonings from [23].
Take z ∈ V . There exists w ∈ V with pw = −pz, because p(V ) = p(V ) is a

subgroup of V . Note that

p(x + z)+ p(y + w) = px + py x, y ∈ V ,

whence replacing x by x + z and y by y + w in (14), we get

‖g(px + py + pz + pw)+ g(px + py) (15)

− g(x + z)− g(y + w)‖ ≤ ε x, y ∈ V.
Now, (14) and (15) yield

‖g(x + z) − g(x)− g(px + py + pz + pw) (16)

+ g(px + py)+ g(y + w)− g(y)‖
≤‖g(px + py + pz + pw)+ g(px + py)− g(x + z)− g(y + w)‖
+ ‖g(px + py)+ g(px + py)− g(x)− g(y)‖ ≤ 2ε x, y ∈ V.

Take u ∈ V .Analogously as before, we deduce that there is v ∈ V withpv = −pu.
Clearly

p(x + u)+ p(y + v) = px + py x, y ∈ V.
Hence, replacing x by x + u and y by y + v in (16), we have

‖g(x + u+ z) − g(x + u)− g(px + py + pz + pw)+ g(px + py) (17)

+ g(y + w+ v)− g(y + v)‖ ≤ 2ε x, y ∈ V.
It is easily seen that (16) and (17) imply

‖g(x + u+ z)− g(x + u)− g(x + z)+ g(x) (18)

+ g(y + w+ v)− g(y + w)− g(y + v)+ g(y)‖
≤‖g(px + py + pz + pw)− g(px + py)
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− g(x + z)− g(y + w)+ g(x)+ g(y)‖
+‖g(px + py + pz + pw)− g(px + py)

− g(x + u+ z)− g(y + w+ v)

+ g(x + u)+ g(y + v)‖ ≤ 4ε x, y ∈ V ,

which with x replaced by x + t yields

‖g(x + t + u+ z) − g(x + t + u)− g(x + t + z)+ g(x + t)+ g(y + w+ v)

− g(y + w)− g(y + v)+ g(y)‖ ≤ 4ε t , x, y ∈ V.
Combining (18) and the latter inequality, we get statement (ii).

For the proof of (i), observe that (18) with x replaced by −x − z − u, under the
assumption of the oddness of g, brings

‖ − g(x) + g(x + z)+ g(x + u)− g(x + z + u) (19)

+ g(y + w+ v)− g(y + w)− g(y + v)+ g(y)‖ ≤ 4ε x, y ∈ V ,

whence and from (18) we have

‖2 g(x)− 2 g(x + z)− 2 g(x + u)+ 2 g(x + z + u)‖ ≤ 8ε x, y ∈ V. (20)

This yields statement (i). �

The next corollary provides a description of solutions to (9), which will be useful
in the sequel.

Corollary 1 Let V and W be as in Proposition 1 and p : V → V be a homo-
morphism with p(V ) = p(V ). Then f : V → W satisfies Eq. (9) if and only if there
exist c ∈ W , an additive a : V → W and a biadditive and symmetric L : V 2 → W

such that

f (x) = L(x, x)+ a(x)+ c x ∈ V , (21)

L(px,px) = 0 x ∈ V. (22)

Proof Let f : V → W be a solution of Eq. (9). Then (14) holds with ε = 0.
Consequently, according to Lemma 3 (ii),

(Δ3
yf )(x) = 0 x, y ∈ V.

Hence, on account of Proposition 1, there exist c ∈ W , an additive a : V → W , and
a quadratic b : V → W such that f (x) = b(x) + a(x) + c for x ∈ V . Further, it
is well known (see, e.g., [1]) that there exists a symmetric biadditive L : V 2 → W

such that b(x) = L(x, x) for x ∈ V , whence (21) holds. Now, it is easily seen that
(9) (with y = 0) and (21) yield

L(px,px)+ L(px,px) = L(x, x) x ∈ V
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and consequently

−2 L(px,px) = L(px,px)+ L(px,px)− L(x, x) = 0 x ∈ V , (23)

which gives (22).
The converse is a routine task. �

We need yet the following very simple lemma.

Lemma 4 Let (V ,+) be a commutative group,W be a normed space, a, a0 : V →
W be additive, L,L0 : V 2 → W be biadditive, c ∈ W and

M := sup
x∈V

‖a0(x)− a(x)+ L0(x, x)− L(x, x)+ c‖ <∞. (24)

Then a = a0 and L = L0.

Proof That proof is actually a routine by now, but we present it here for the
convenience of readers.

Note that

‖L0(x, x)− L(x, x)‖ ≤ ‖a(x)− a0(x)‖ + ‖c‖ +M x ∈ V ,

whence

‖L(x, x)− L0(x, x)‖ = n−2‖L(nx, nx)− L0(nx, nx)‖
≤ n−2(‖a(nx)− a0(nx)‖ + ‖c‖ +M)

= n−1‖a(x)− a0(x)‖ + n−2(‖c‖ +M) x ∈ V , n ∈ N,

which yields L = L0. Hence, by (24),

‖a(x)− a0(x)‖ = n−1‖a(nx)− a0(nx)‖
≤ n−1(‖c‖ +M) x ∈ V , n ∈ N,

and consequently a = a0. �

3 The Main Stability Results

We start with two theorems describing odd and even solutions of functional inequality
(14). They will help us to obtain the main result of the chapter (but they seem to be
interesting, as well).

Theorem 4 Let (V ,+) be a commutative group, ε ≥ 0, p : V → V be a homo-
morphism, p(V ) = p(V ), and W be a Banach space. Assume that g : V → W is
odd and satisfies the inequality

‖g(px + py)+ g(px + py)− g(x)− g(y)‖ ≤ ε x, y ∈ V. (25)
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Then there exists a unique additive function, A : V → W , such that

‖g(x)− A(x)‖ ≤ 4ε x ∈ V. (26)

Moreover, (12) holds and for every solution h : V → W of (9) such that

sup
x∈V

‖g(x)− h(x)‖ <∞,

the function A− h is constant.

Proof According to Lemma 3 (i),

‖g(x + z + u)− g(x + z)− g(x + u)+ g(x)‖ ≤ 4ε x, z, u ∈ V ,

which with x = 0 yields

‖g(z + u)− g(z)− g(u)‖ ≤ 4ε z, u ∈ V.
Hence Lemma 1 implies the existence and the form of A. It remains to show the
statements on the uniqueness of A.

So, suppose that A0 : V → W is additive and

sup
x∈V

‖g(x)− A0(x)‖ ≤ 4ε.

Then
sup
x∈V

‖A(x)− A0(x)‖ ≤ 8ε,

which implies that A = A0.
Now, let h : V → W be a solution of (9) such that

sup
x∈V

‖g(x)− h(x)‖ <∞.

Then
M := sup

x∈V
‖A(x)− h(x)‖ <∞.

Further, by Corollary 1, h(x) = a(x) + L(x, x) + c with some c ∈ W , an additive
a : V → W , and a biadditive and symmetric L : V 2 → W . So, Lemma 4 implies
that

L(x, x) = 0 x ∈ V
and A = a. �

Theorem 5 Let (V ,+) be a commutative group, ε ≥ 0, p : V → V be a homomor-
phism, p(V ) = p(V ), and W be a Banach space. Assume that g : V → W is even
and satisfies inequality (25). Then there exists a unique biadditive and symmetric
mapping L : V 2 → W such that

‖L(x, x)− g(x)+ g(0)‖ ≤ 4ε x ∈ V. (27)
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Moreover, (22) holds,

L(x, x) = lim
n→∞ 4−ng(2nx) x ∈ V (28)

and, for every solution h : V → W of (9) with

sup
x∈V

‖g(x)− h(x)‖ <∞,

there is c ∈ W such that h(x) = L(x, x)+ c for x ∈ V .

Proof Let g0 := g− g(0). Then g0 fulfills (25) as well. According to Lemma 3 (ii),

‖g0(x+ t + z + u)− g0(x + t + z)− g0(x + t + u)− g0(x + z + u)

+ g0(x + t)+ g0(x + z)+ g0(x + u)− g0(x)‖ ≤ 8ε x, t , z, u ∈ S,

whence (with x = 0 and u = −t) we obtain

‖g0(z)− g0(t + z)− g0(0)− g0(z − t)+ g0(t)+ g0(z)+ g0(− t)− g0(0)‖
≤ 8ε t , u, z ∈ V

and consequently

‖2g0(z)− g0(t + z)− g0(z − t)+ 2g0(t)‖ ≤ 8ε t , z ∈ V.
Hence Lemma 2 implies the existence of L and (28).

Now we show that (22) holds. Clearly, (25) (with y = 0) yields

‖g(px)+ g(px)− g(x)− g(0)‖ ≤ ε x ∈ V.
So, (27) implies that

‖L(px,px) + L(px,px)− L(x, x)‖ (29)

≤‖L(px,px)+ g(0)− g(px)‖
+ ‖L(px,px)+ g(0)− g(px)‖
+ ‖g(x)− L(x, x)− g(0)‖
+ ‖g(px)+ g(px)− g(x)− g(0)‖ ≤ 13ε x ∈ V.

Since b is biadditive and it is very easy to check that

−2 L(px,px) = L(px,px)+ L(px,px)− L(x, x) x ∈ V ,

from (29), we get

2k2‖L(px,px)‖ = ‖L(pkx,pkx)+ L(pkx,pkx)− L(kx, kx)‖ (30)

≤ 13ε x ∈ V , k ∈ N,
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which means that (22) holds.
It remains to show the statements on the uniqueness of L. So, first suppose that

L0 : V 2 → W is symmetric, biaddititve, and

sup
x∈V

‖L0(x, x)− g(x)+ g(0)‖ ≤ 4ε.

Then
sup
x∈V

‖L0(x, x)− L(x, x)‖ ≤ 8ε,

whence from Lemma 4 we deduce that L0 = L.
Now, assume that h : V → W is a solution of (9) with

sup
x∈V

‖g(x)− h(x)‖ <∞.

This implies that

M := sup
x∈V

‖L(x, x)− h(x)‖ <∞.

Further, according to Corollary 1,

h(x) = a(x)+ S(x, x)+ c x ∈ V
with some c ∈ W , an additive a : V → W , and a biadditive and symmetric
S : V 2 → W . Clearly, by Lemma 4, L = S and a(x) = 0 for every x ∈ V . Hence

h(x) = L(x, x)+c x ∈ V. �

In what follows, given a function g mapping a group (V ,+) into a real linear
spaceW , by go and ge, we denote the odd and even parts of g, i.e.,

go(x) := g(x)− g(− x)

2
x ∈ V ,

ge(x) := g(x)+ g(− x)

2
x ∈ V.

The next theorem is the main result in this chapter.

Theorem 6 Let (V ,+) be a commutative group, p : V → V be a homomorphism
such that p(V ) = p(V ), W be a Banach space, ε ≥ 0 and g : V → W satisfy
inequality (25). Then there exist a unique additive function a : V → W and a
unique biadditive function L : V 2 → W such that

‖g(x)− a(x)− L(x, x)− g(0)‖ ≤ 8ε x ∈ V. (31)

Moreover, (22) holds,

a(x) = lim
n→∞ 2−ngo(2nx), L(x, x) = lim

n→∞ 4−nge(2nx) x ∈ V (32)
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and, for every solution h : V → W of (9) with

sup
x∈V

‖g(x)− h(x)‖ <∞, (33)

there is c ∈ W such that h(x) = a(x)+ L(x, x)+ c for x ∈ V .
If V is divisible by 6, then there exists c0 ∈ W with

‖g(x)− a(x)− L(x, x)− c0‖ ≤ 16ε

3
x ∈ V. (34)

Proof It is easily seen that go and ge satisfy inequalities analogous to (25). So, by
Theorems 4 and 5, there exist an additive function a : V → W and a symmetric
biadditive function L : V 2 → W such that

‖go(x)− a(x)‖ ≤ 4ε, ‖ge(x)− L(x, x)− g(0)‖ ≤ 4ε x ∈ V. (35)

Moreover, (32) holds and, clearly,

‖g(x)− a(x)− L(x, x)− g(0)‖ ≤ ‖go(x)− a(x)‖ (36)

+‖ge(x)− L(x, x)− g(0)‖ ≤ 8ε x ∈ V.
Further, (25) (with y = 0) yields

‖ge(px)+ ge(px)− ge(x)− g(0)‖ ≤ ε x ∈ V.
Hence analogous to (29), from (35) we derive that

‖L(px,px)+ L(px,px)− L(x, x)‖ ≤ 13ε x ∈ V , (37)

whence (30) holds, which implies (22).
For the proof of uniqueness of a and L, suppose that a0 : V → W is additive,

L0 : V 2 → W is biadditive, and

‖g(x)− a0(x)− L0(x, x)− g(0)‖ ≤ 8ε x ∈ V. (38)

Then

‖a0(x)− a(x)− L0(x, x)− L(x, x)‖ ≤ 16ε x ∈ V (39)

and consequently, by Lemma 4, L = L0 and a = a0.
Now, let h : V → W be a solution of (9) fulfilling condition (33). Then, in view

of (31),

M := sup
x∈V

‖a(x)+ L(x, x)+ g(0)− h(x)‖ <∞ (40)

and, according to Corollary 1, h(x) = a0(x) + L0(x, x) + c with some c ∈ W , an
additive a0 : V → W and a biadditive and symmetric L0 : V 2 → W . Hence, again
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Lemma 4 implies that L = L0 and a = a0. Consequently h(x) = L(x, x)+ a(x)+ c
for x ∈ V .

Finally assume that V is divisible by 6. Then, in view of Lemma 3 (ii), we have

‖(Δ3
yg)(x)‖ ≤ 8ε x, y ∈ V.

Further, by Proposition 1, there are c0 ∈ W , an additive a0 : V → W and a biadditive
and symmetric b0 : V 2 → W such that

‖g(x)− b0(x, x)− a0(x)− c‖ ≤ 16

3
ε x ∈ V. (41)

In view of (31) and Lemma 4, we must have a0 = a and L0 = L. �

For some discussions on a special case of condition (22), we refer to [7] (see also
[6, 8, 13]).

Remark 1 There arises natural questions whether (under reasonable suitable as-
sumptions) we can get some better estimations than in (31) and (34) and whether
the assumption of divisibility of V by 6 is necessary to get (34). Also, it would be
interesting to know if we can have c0 = g(0) in (34).
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