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Abstract In this chapter, we investigate some unified iterative methods for solv-
ing the general equilibrium problems using the auxiliary principle technique. The
convergence of the proposed methods is analyzed under some suitable conditions.
As special cases, we obtain a number of known and new classes of equilibrium and
variational inequality problems. Results obtained in this chapter continue to hold for
these new and previously known problems. The ideas and techniques of this chapter
may inspire the interested readers to explore applications of the general equilibrium
problems in pure and applied sciences.
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1 Introduction

Equilibrium problems theory provides us a natural, novel, and unified framework
to study a wide class of problems arising in economics, finance, transportation,
network, and structural analysis, elasticity and optimization. Equilibrium problems
were introduced by Blum and Oettli [1] and Noor and Oettli [20] in 1994. Since then,
the ideas and techniques of this theory are being used in a variety of diverse areas
and proved to be productive and innovative; see [1, 2, 3–22]. Equilibrium problems
also include variational inequalities and related optimization problems as special
cases. Inspired and motivated by the recent research work going in this field, Noor
and Rassias [19] considered and investigated a new class of equilibrium problems,
which is called mixed quasi general equilibrium problems. There are several meth-
ods including projection and its variant forms, Wiener–Hopf equations, and auxiliary
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principle for solving variational inequalities. It is known that projection methods and
variant forms including Wiener–Hopf equations can not be extended for equilibrium.
This fact has motivated to use the auxiliary principle technique. Glowinski, Lions,
and Tremolieres [5] used this technique to study the existence of a solution of the
mixed variational inequalities, whereas Noor–Noor–Rassias [11] used this technique
to suggest and analyze an iterative method for solving mixed quasi variational in-
equalities. It is well known that a substantial number of numerical methods can be
obtained as special cases from this technique; see [5, 13–15, 17–19]. We again use
the auxiliary principle technique to suggest a class of new iterative methods for solv-
ing mixed quasi general equilibrium problems. The convergence of these methods
requires only the jointly monotonicity of the trifunction in conjunction with skew
symmetry of the bifunction. Since mixed quasi general equilibrium problems include
equilibrium, general variational inequalities, and complementarity problems as spe-
cial cases, results obtained in this chapter continue to hold for these problems. Our
results can be considered an important and significant extension of the known results
for solving equilibrium, variational inequalities, and complementarity problems.

2 Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·, ·〉 and
‖.‖ respectively. Let K be a nonempty and closed set in H. We recall the following
concepts and notations, which are needed.

Definition 1 ([3, 21]). Let K be any set in H. The set K is said to be g-convex
(relative convex), if there exists a function g : K −→ K such that

g(u)+ t(g(v)− g(u)) ∈ K , ∀u, v ∈ H : g(u), g(v) ∈ K , t ∈ [0,1].

Note that every convex set is a relative convex, but the converse is not true, see
[3, 21]. In passing, we remark that the notion of the relative convex set was introduced
by Noor [10] implicitly in 1988.

Definition 2 The function f : K −→ H is said to be g-convex (relative convex),
if there exists a function g such that

f (g(u)+ t(g(v)− g(u))) ≤ (1− t)f (g(u))+ tf (g(v)),

∀u, v ∈ H : g(u), g(v) ∈ K , t ∈ [0,1].

Clearly every convex function is relative convex, but the converse is not true;
see [3, 21]. For the properties, applications and other aspects of the relative convex
functions and convex sets, see [1, 12, 16, 17] and the references therein.

For given continuous trifunction F (., ., .) : K × K × K −→ R, continuous
bifunction ϕ(., .) : H ×H −→ R ∪ {∞} and nonlinear operators T , g : H −→ H ,
consider the problem of finding u ∈ H : g(u) ∈ K such that

F (g(u), T (g(u)), g(v))+ ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0, ∀v ∈ H : g(v) ∈ K ,
(1)
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which is called the mixed quasi general equilibrium problem with trifunction,
introduced and studied by Noor and Rassias [19].

We now discuss some special cases.

I. If g ≡ I , where I is the identity operator, then problem (1) is equivalent to
finding u ∈ K such that

F (u, T (u), v)+ ϕ(v, u)− ϕ(u, u) ≥ 0, ∀v ∈ K , (2)

which is the mixed quasi equilibrium problem with trifunction, introduced and
studied by Noor [15, 17].

II. We note that for F (g(u), T (g(u)), g(v)) = 〈T (g(u)), g(v) − g(v)〉, problem (1)
is equivalent to finding u ∈ H : g(u) ∈ K such that

〈T (g(u)), g(v)− g(u)〉 + ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0, ∀v ∈ H : g(v) ∈ K.
(3)

Inequality (3) is known as the mixed quasi general variational inequality, which
was introduced by Noor [15].

III. If ϕ(., .) = ϕ(.) is the indicator function of a closed and relative convex-valued
set K(u), then problem (1) reduces to finding u ∈ H : g(u) ∈ K(u) such that

F (g(u), T (g(u)), g(v)) ≥ 0, ∀v ∈ H : g(v) ∈ K(u), (4)

which is called the general quasi equilibrium problem and appears to be a new
one.

IV. IfF (g(u), T (g(u)), g(v) = 〈T (g(u)), g(v)−g(u)〉, then problem (4) is equivalent
to finding u ∈ H : g(u) ∈ K(u) such that

〈T (g(u)), g(v)− g(u)〉 ≥ 0,∀v ∈ H : g(v) ∈ K(u), (5)

which is known as the general quasi variational inequality introduced by Noor
[15]. For the applications and numerical methods of general quasi variational
inequalities; see [3–20] and the references therein.

V. If g = I , the identity operator, the general quasi variational inequalities (3) are
equivalent to finding u ∈ K such that

〈T u, v− u〉 + ϕ(v, u)− ϕ(u, u) ≥ 0, ∀ v ∈ K , (6)

which are known as the mixed quasi variational inequalities; see [3–19].
VI. We note that for F (g(u), T (g(u)), g(v)) = B(g(u)), T (g(u)), g(v) − g(v)〉,

problem (1) is equivalent to finding u ∈ H : g(u) ∈ K such that

B(g(u), T (g(u)), g(v)− g(u))+ ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0,

∀v ∈ H : g(v) ∈ K. (7)

Inequality (7) is known as the mixed quasi general trifunction variational inequality,
which appears to be new one.
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It is clear that problems (2)–(7) are special cases of the general equilibrium prob-
lems (1). In brief, for a suitable and appropriate choice of the operators T, g, and
the space H, one can obtain a wide class of equilibrium, variational inequalities,
and complementarity problems. This clearly shows that problem (1) is quite general
and unifying one. Furthermore, problem (1) has important applications in various
branches of pure and applied sciences; see [1, 2, 3–22].

Definition 3 [19]. The trifunction F (., ., .) : K ×K ×K → R with respect to the
operators T , g, is said to be:

(i) partially relaxed jointly strongly monotone, if there exists a constant α > 0 such
that

F (g(u), T (g(u))g(v))+ F (g(v), T (g(v)), g(z)) ≤ α‖g(z)− g(u)‖2, ∀u, v, z ∈ K.
(ii) jointly monotone, if

F (g(u), T (g(u)), g(v))+ F (g(v), T (g(v)), g(u)) ≤ 0, ∀u, v ∈ K.
(iii) jointly pseudomonotone, if

F (g(u), T (g(u)), g(v))+ ϕ(g(v)− g(u))− ϕ(g(u), g(u)) ≥ 0

�⇒
− F (g(v), T (g(v)), g(u))+ ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0, ∀u, v ∈ K.

(iv) jointly hemicontinuous, ∀u, v ∈ K , t ∈ [0,1], if the mapping F (g(u)+ t(g(v)−
g(u)), T (g(u)+ t(g(v)− g(u)), g(v)) is continuous.

We remark that if z = u, then partially relaxed jointly strongly monotonicity is
exactly jointly monotonicity of the operatorF (., ., .). For g ≡ I , the identity operator,
Definition 2.1 reduces to the standard definition of partially relaxed jointly strongly
monotonicity, jointly monotonicity, and jointly pseudomonotonicity. It is known
that monotonicity implies pseudomonotonicity, but not conversely. This implies that
the concepts of partially relaxed strongly monotonicity and pseudomonotonicity are
weaker than monotonicity.

Noor and Rassias [19] have proved that problem (1) is equivalent to its dual
problem under some conditions. We include this result due to its importance. We
include all the details for the sake of completeness and to convey the main idea of
the technique involved.

Lemma 1 Let F (., ., .) be jointly pseudomonotone, jointly hemicontinuous, and
relative convex with respect to third argument. If the bifunction ϕ(., .) is relative
convex with respect to first argument, then the general equilibrium problem (1) is
equivalent to finding u ∈ H : g(u) ∈ K such that

−F (g(v), T (g(v)), g(u))+ ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0, ∀v ∈ H : g(v) ∈ K.
(8)
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Proof Let u ∈ H : g(u) ∈ K be a solution of (1). Then

F (g(u), T (g(u)), g(v))+ ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0, ∀v ∈ H : g(v) ∈ K
which implies

−F (g(v), T (g(v)), g(u))+ ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0, ∀v ∈ H : g(v) ∈ K ,
(9)

since F (., ., .) is jointly monotone
Conversely, let u ∈ K satisfy (8). Since K is a g-convex set, ∀u, v ∈ H :

g(u), g(v) ∈ K , t ∈ [0,1], g(vt ) = g(u)+ t(g(v)− g(u)) ≡ (1− t)g(u)+ tg(v) ∈ K.
Taking g(v) = g(vt ) in (9), we have

F (g(vt ), T (g(vt )), g(u)) ≤ ϕ(g(vt ), g(u))− ϕ(g(u), g(u))

≤ t{ϕ(g(v), g(u))− ϕ(g(u), g(u))}. (10)

Now using (10) and relative convexity of F (., .) with respect to third argument,
we have

0 ≤ F (g(vt ), T (g(vt )), g(vt ))

= F (g(vt ), T (g(vt )), (1− t)g(u)+ tg(v))

≤ tF (g(vt ), T (g(vt )), g(v))+ (1− t)F (g(vt ), T (g(vt )), g(u))

≤ tF (g(vt ), T (g(vt )), g(v))+ t(1− t){ϕ(g(v), g(u))− ϕ(g(u), g(u))} (11)

Dividing (11) by t and letting t −→ 0, we have

F (g(u), T (g(u)), g(v))+ ϕ(g(v), g(u))− ϕ(g(u), g(u)) ≥ 0, ∀v ∈ K ,

the required (1). �

Remark 1 Problem (8) is known as the dual mixed quasi general equilibrium prob-
lem. One can easily show that the solution set of problem (8) is closed and relative
convex set. From Lemma 2.1, it follows that the solution set of problems (1) and
(8) are the same. This inter relationship has played an important role in the study of
well-posedness of equilibrium problems and variational inequalities. In fact, Lemma
2.1 can be viewed as a natural generalization and extension of a well-known Minty’s
Lemma in variational inequalities theory; see [5, 6, 8].

Definition 4 The bifunction ϕ(., .) : H × H −→ R ∪ {+∞} is called skew
symmetric, if and only if,

ϕ(u, u)− ϕ(u, v)− ϕ(v, u)− ϕ(v, v) ≥ 0, ∀u, v ∈ H.
Clearly if the skew-symmetric bifunction ϕ(., .) is bilinear, then

ϕ(u, u)− ϕ(u, v)− ϕ(v, u)+ ϕ(v, v) = ϕ(u− v, u− v) ≥ 0, ∀u, v ∈ H.
This shows that the bifunction ϕ(., .) is positive.
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3 Main Results

In this section, we suggest and analyze some new iterative methods for solving the
problem (1) by using the auxiliary principle technique [5] as developed by Noor
[13, 15, 17] and Noor et al. [18] in recent years.

For a given u ∈ H : g(u) ∈ K satisfying (1), consider the problem of finding a
unique w ∈ H : g(w) ∈ K such that

ρF (g(w), T (g(w)), g(v))+ 〈(1− λ)(g(w)− g(u)), g(v)− g(w)〉
≥ ρ{ϕ(g(w), g(w))− ϕ(g(v), g(w))}, ∀v ∈ H : g(v) ∈ K , (12)

which is called the auxiliary mixed quasi general equilibrium problem and where
ρ > 0 is a constant.

We note that if w = u, then clearly w is a solution of the nonconvex equilibrium
problems (1). This observation enables us to suggest the following method for solving
(1).

Algorithm 1 For a given u0 ∈ H , compute the approximate solution un+1 by the
iterative schemes

ρF (g(un+1), T (g(un+1)), g(v))+ 〈(1− λ)(g(un+1 − g(un)), g(v)− g(un+1)〉
≥ ρ{ϕ(g(un+1), g(un+1)− ϕ(g(v), g(un+1))}, ∀v ∈ H : g(v) ∈ K , (13)

where λ > 0 is a constant. Algorithm 1 is called the implicit method for solving (1).
We may write Algorithm 1 in the following equivalent form, which is useful to

derive other iterative methods for solving (1) and related problems.

Algorithm 2 For a given u0 ∈ H , compute the approximate solution un+1 by the
iterative schemes

ρF (g(un), T (g(un)), g(v))+ 〈g(yn − g(un), g(v)− g(un+1)〉
≥ ρ{ϕ(g(yn), g(yn)− ϕ(g(v), g(yn))}, ∀g(v) ∈ K
ρF (g(yn), T (g(yn)), g(v))+ 〈g(un+1 − g(un)− λ(g(yn)− g(un)), g(v)− g(un+1)〉
≥ ρ{ϕ(g(un+1), g(un+1)− ϕ(g(v), g(un+1))}, ∀g(v) ∈ K

For λ = 0, Algorithm 2 collapses to:

Algorithm 3 For a given u0 ∈ H , compute the approximate solution un+1 by the
iterative schemes

ρF (g(un), T (g(un)), g(v))+ 〈g(yn − g(un), g(v)− g(un+1)〉
≥ ρ{ϕ(g(yn), g(yn)− ϕ(g(v), g(yn))}, ∀g(v) ∈ K
ρF (g(yn), T (g(yn)), g(v))+ 〈g(un+1 − g(un), g(v)− g(un+1)〉
≥ ρ{ϕ(g(un+1), g(un+1)− ϕ(g(v), g(un+1))}, ∀g(v) ∈ K.



Some New Algorithms for Solving General Equilibrium Problems 413

Algorithm 3 is analogues of the extragradient method of Korpelevich, see [16] and
appears to be a new one.

For λ = 1, Algorithm 3.2 reduces to the following two-step iterative method
for solving (1). Such type of methods have been studied and investigated by Noor
[16, 17] for general variational inequalities.

Algorithm 4 For a given u0 ∈ H , compute the approximate solution un+1 by the
iterative schemes

ρF (g(un), T (g(un)), g(v))+ 〈g(yn − g(un), g(v)− g(un+1)〉
≥ ρ{ϕ(g(yn), g(yn)− ϕ(g(v), g(yn))}, ∀g(v) ∈ K
ρF (g(yn), T (g(yn)), g(v))+ 〈g(un+1 − g(yn), g(v)− g(un+1)〉
≥ ρ{ϕ(g(un+1), g(un+1)− ϕ(g(v), g(un+1))}, ∀g(v) ∈ K

For λ = 1
2 , Algorithm 2 reduces to:

Algorithm 5 [17]. For a given u0 ∈ H , compute the approximate solution un+1 by
the iterative schemes

ρF (g(un), T (g(un)), g(v))+ 〈g(yn − g(un), g(v)− g(un+1)〉
≥ ρ{ϕ(g(yn), g(yn)− ϕ(g(v), g(yn))}, ∀g(v) ∈ K

ρF (g(yn), T (g(yn)), g(v))+ 〈g(un+1 − 1

2
(g(yn)+ g(un)), g(v)− g(un+1)〉

≥ ρ{ϕ(g(un+1), g(un+1)− ϕ(g(v), g(un+1))}, ∀g(v) ∈ K
Note that if g ≡ I , the identity operator, Algorithm 1 reduces to a method for

solving the equilibrium problems with trifunction (2), which are mainly due to Noor
[17].

Algorithm 6 For a given u0 ∈ H , compute un+1 by the iterative scheme

ρF (un+1, T (un+1, v)+ (1− λ)(un+1 − un), v− un+1〉
≥ ρ{ϕ(un+1, un+1)− ϕ(v, un+1)} ≥ 0,∀v ∈ K.

For the convergence analysis of Al; Algorithm 6, see Noor [17].
For F (g(u), T (g(u)), (v)) = 〈T (g(u)), g(v)− g(u)〉, Algorithm 1 reduces to:

Algorithm 7 For a given u0 ∈ H , compute the approximate solution un+1 by the
iterative scheme

〈ρT (g(un+1))+ (1− λ)(g(un+1 − (g(un)), g(v)− g(un+1)〉
≥ ρ{ϕ(g(un+1), g(un+1))− ϕ(g(v), g(un+1))}, ∀v ∈ K ,

for solving mixed quasi general variational inequalities [17].
For suitable and appropriate choice of the operators and the space H, one can

obtain various new and known methods for solving general equilibrium, variational
inequalities, and complementarity problems.

We now study the convergence analysis of Algorithm 1.
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Theorem 1 Let the trifunction F (., ., .) be jointly pseudomonotone. If the bifunc-
tion ϕ(., .) is skew symmetric, then the approximate solution un+1obtained from
Algorithm 1 satisfies the inequality

‖g(u)− g(un+1)‖2 ≤ ‖g(u)− g(un)‖2 − ‖g(un)− g(un+1)‖2, (14)

where u is the exact solution of (1).

Proof Let u ∈ H : g(u) ∈ K be a solution of (1). Then

F (g(u), T (g(u)), g(v)) ≥ ϕ(g(u), g(u))− ϕ(g(v), g(u))∀v ∈ H : g(v) ∈ K ,

which implies that

−F (g(v), T (g(v), g(u)) ≥ ϕ(g(u), g(u))− ϕ(g(v), g(u)), ∀v ∈ H : g(v) ∈ K , (15)

since F (., ., .) is jointly pseudomonotone.
Taking v = un+1 in (15), we have

−F (g(un+1), T (g(un+1)), g(u)) ≥ ϕ(g(u), g(u))− ϕ(g(un+1), g(u)) (16)

Taking v = u in (13), we have

ρF (g(un+1), T (g(un+1)), g(u))+ 〈(1− λ)(g(un+1)− g(un)), g(u)− g(un+1)〉
≥ ρ{ϕ(g(un+1), g(un+1)− ϕ(g(u), g(un+1))}. (17)

From (16) and (17), we have

(1− λ)〈g(un+1)− g(un)〉
≥ ρ{ϕ(g(un), g(un))− ϕ(g(n+1), g(u))− ϕ(g(u), g(un+1)+ ϕ(g(un+1), g(un+1))}
≥ 0, (18)

where we have used the fact that the bifunction ϕ(., .) is a skew symmetric.
From (18) and using the inequality

2〈v, u〉 = ‖u+ v‖2 − ‖u‖2 − ‖v‖2, ∀u, v ∈ H ,

we obtain

‖g(u)− g(un+1)‖2 ≤ ‖g(u)− g(u)‖2 − ‖g(un)− g(un+1)‖2,

which is the required result. �
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Theorem 2 Let H be a finite dimensional space. Let the trifunction F (., ., .) be
jointly pseudomonotone and the bifunction ϕ(., .) be skew symmetric. If un+1 is the
approximate solution obtained from Algorithm 3.1, and g−1 exists, then

lim
n−→∞ un = u,

where u ∈ H ; g(u) ∈ K is a solution of (1).

Proof Let u ∈ H : g(u) ∈ K be a solution of (1). From (14), we see that the
sequences {‖g(u) − g(un)‖} is nonincreasing under the assumptions of Theorem 2
and consequently {g(un)} is bounded. Also from (14), we have

∞∑

n=0

‖g(un+1 − g(un)‖2 ≤ ‖g(u)− g(un)‖2,

which implies that

lim
n−→∞‖un+1 − un‖ = 0, (19)

since g−1 exists.
Let û be a cluster point of {un} and the subsequence {uni } of this sequence con-

verges to û ∈ H : g(û) ∈ K. Replacing un by uni in (13) and taking the limit as
ni −→∞ and using (19), we have

F (g(û), T (g(û)), g(v))+ ϕ(g(v), g(û))− ϕ(g(û), g(û)) ≥ 0, ∀v ∈ H : g(v) ∈ K ,

which shows that û solves (1) and

‖g(un+1)− g(û)‖ ≤ ‖g(un)− g(û)‖2.

Thus, it follows that from the above inequality that the sequence {un} has exactly
one cluster point and

lim
n−→∞ = û,

the required result. �

Algorithm 1 is an implicit method, which is its difficult to implement. In order to
overcome this drawback, we again use the auxiliary principle technique to suggest
an explicit iterative method for solving problem (1). This is the main motivation of
next Algorithm.

For a given u ∈ H : g(u) ∈ K satisfying (1), consider the problem of finding a
unique w ∈ H : g(w) ∈ K such that

ρF (g(u), T (g(u)), g(v))+ 〈(1− λ)(g(w)− g(u)), g(v)− g(w)〉
≥ ρ{ϕ(g(w), g(w))− ϕ(g(v), g(w))}, ∀v ∈ H : g(v) ∈ K , (20)

which is called the auxiliary mixed quasi general equilibrium problem. we would
like to emphasize that problems (12) and (20) are quite different from each other.

We note that if w = u, then clearly w is a solution of the nonconvex equilibrium
problems (1). This observation enables us to suggest the following method for solving
(1).
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Algorithm 8 For a given u0 ∈ H , compute the approximate solution un+1 by the
iterative schemes

ρF (g(un+1), T (g(un+1)), g(v))+ 〈(1− λ)(g(un+1 − g(un)), g(v)− g(un+1)〉
≥ ρ{ϕ(g(un+1), g(un+1)− ϕ(g(v), g(un+1))}, ∀v ∈ H : g(v) ∈ K.

Algorithm 1 is called the explicit method for solving (1). Using the technique of
Theorem 1 and Theorem 2, one can study the convergence analysis of Algorithm 8.

Conclusion In this chapter, we have suggested some new unified iterative methods for
solving a class of mixed quasi general equilibrium problems, introduced and studied
by Noor and Rassias [19]. The comparison of these methods with other methods is an
interesting and fascinating problem for future research. One may find the novel and
innovative applications of these general equilibrium problems in various branches
of pure and applied sciences.
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