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Preface

I am truly elated to have had the opportunity to write the present third edition of this
book, which is a sequel to GTM 249 Classical Fourier Analysis, 3rd Edition. This
edition was born from my desire to improve the exposition, to fix a few inaccuracies,
and to add a new chapter on multilinear operators. I am very fortunate that diligent
readers across the globe have shared with me numerous corrections and suggestions
for improvements.

Based on my experience as a graduate student, I decided to include great detail
in the proofs presented. I hope that this will not make the reading unwieldy. First
time readers may prefer to skim through the technical aspects of the presentation
and concentrate on the flow of ideas.

This second volume Modern Fourier Analysis is addressed to graduate students
who wish to delve deeper into Fourier analysis. I believe that after completing a
study of this text, a student will be prepared to begin research in the topics covered
by the book. While there is more material than can be covered in a semester course,
the list of sections that could be taught in a semester without affecting the logical
coherence of the book is: 1.1, 1.2, 1.3, 2.1, 2.2, 3.1, 3.2, 3.3, 4.1, 4.2, 4.3, and 5.1.

In such a large piece of work, it is impossible to have no mistakes or omissions.
I encourage you to send your corrections to me directly (grafakosl@missouri.edu).
The website

http://math.missouri.edu/˜loukas/FourierAnalysis.html

will be updated with any significant corrections. Solutions to all of the exercises for
the present edition will be available to instructors who teach a course out of this
book.

Athens, Greece, Loukas Grafakos
March 2014
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and Dachun Yang.

Third edition acknowledgments: Marco Annoni, Vinita Arokianathan, Mark
Ashbaugh, Daniel Azagra, Andrew Bailey, Árpad Bényi, Dmitriy Bilyk, Nicholas
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Chapter 1
Smoothness and Function Spaces

We embark on the study of smoothness with a quick examination of differentiabil-
ity properties of functions. There are several ways to measure differentiability and
numerous ways to quantify smoothness. In this chapter we measure smoothness us-
ing the Laplacian, which is easily related to the Fourier transform. This relation
becomes the foundation of a very crucial and deep connection between smoothness
and Littlewood–Paley theory.

Certain spaces of functions are introduced to serve the purpose of measuring
and fine-tuning smoothness. The main function spaces we study in this chapter are
Sobolev and Lipschitz spaces. Before undertaking their study, we introduce relevant
notation and we review basic facts about smooth functions and tempered distribu-
tions.

1.1 Smooth Functions and Tempered Distributions

We denote by Rn the Euclidean space of n tuples of real numbers. The magnitude
of a point x = (x1, . . . ,xn) ∈ Rn is |x| = (x21+ · · ·+ x2n)

1/2. An open ball centered at
x0 ∈Rn of radius R> 0 is denoted by B(x0,R). The partial derivative of a function f
onRn with respect to the jth variable x j is denoted by ∂ j f . Themth partial derivative
with respect to the jth variable is denoted by ∂m

j f . The gradient of a function f is the
vector ∇ f = (∂1 f , . . . ,∂n f ). A multi-index α is an ordered n-tuple of nonnegative
integers. Given α,β multi-indices, we write α ≤ β if α j ≤ β j for all j = 1, . . . ,n.
For a multi-index α = (α1, . . . ,αn), ∂α f denotes the derivative ∂α11 · · ·∂αnn f . If α =
(α1, . . . ,αn) is a multi-index, then the number |α|= α1+ · · ·+αn is called the size
of α and indicates the total order of differentiation of ∂α f . The space of functions
in Rn all of whose derivatives of order at most N ∈ Z+ are continuous is denoted by
C N(Rn) and the space of all infinitely differentiable functions onRn byC ∞(Rn). The
space of smooth functions with compact support on Rn is denoted by C ∞

0 (Rn). The
class of Schwartz functionsS (Rn) is the space of allC ∞(Rn) functions all of whose
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2 1 Smoothness and Function Spaces

derivatives are bounded byCN(1+ |ξ |2)−N for every N ∈Z+. The spaceS (Rn) can
be canonically equipped with a topology induced by the family of seminorms

ρα ,β (ϕ) = sup
ξ∈Rn

|ξα∂βϕ(ξ )| ,

indexed by all multi-indices α,β , or the alternative family of seminorms

ρ ′
α ,β (ϕ) = sup

ξ∈Rn

∣
∣∂β
(

ξαϕ(ξ )
)∣
∣ ,

also indexed by all multi-indices α,β (Exercise 1.1.1). According to this topology
a sequence of Schwartz functions ϕ j converges to another Schwartz function ϕ in
S (Rn) if and only if ρα ,β (ϕ j −ϕ) → 0 as j → ∞ for all multi-indices α,β . This
statement is equivalent to the statement that ρ ′

α ,β (ϕ̂ j− ϕ̂)→ 0 as j→ ∞.
The dual ofS (Rn)with respect to this topology is the spaceS ′(Rn) of tempered

distributions on Rn. The Fourier transform of a Schwartz function ϕ is defined by

ϕ̂(ξ ) =
∫

Rn
ϕ(x)e−2πix·ξ dx

where x · ξ = x1ξ1+ · · ·+ xnξn if x = (x1, . . . ,xn) and ξ = (ξ1, . . . ,ξn). The inverse
Fourier transform of ϕ in S (Rn) is defined by ϕ∨(ξ ) = ϕ̂(−ξ ). The operations
of differentiation and the Fourier (and inverse Fourier) transform, as well as many
other operations on Schwartz functions can be passed on to tempered distributions
via duality.

1.1.1 Space of Tempered Distributions Modulo Polynomials

We begin by introducing the space of polynomials. We denote by P(Rn) the set of
all polynomials of n real variables, i.e., functions of the form

∑
|β |≤m

cβ x
β = ∑

β j∈Z+∪{0}
β1+···+βn≤m

cβ1,...,βn x
β1
1 · · ·xβnn ,

where m is an arbitrary integer and cβ are complex coefficients. We then define an
equivalence relation ≡ onS ′(Rn) by setting

u≡ v ⇐⇒ u− v ∈P(Rn) .

The space of all resulting equivalence classes is denoted by S ′(Rn)/P(Rn) and
is called the space of tempered distributions modulo polynomials. To avoid cum-
bersome notation, two elements u,v of the same equivalence class in S ′/P are
identified, and in this case we write u= v inS ′/P .
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Definition 1.1.1. We defineS0(Rn) to be the space of all Schwartz functions ϕ with
the property

∫

Rn
xγϕ(x)dx= 0

for all multi-indices γ . This condition is equivalent to the statement that ∂ γ(ϕ̂)(0) =
0 for all multi-indices γ . Then S0(Rn) is a subspace of S (Rn) that inherits the
same topology as S (Rn).

Example 1.1.2. Let η(ξ ) be a compactly supported smooth function. The inverse
Fourier transform of the function e−1/|ξ |2η(ξ ) lies inS0(Rn). Indeed, every deriva-
tive of e−1/|ξ |2η(ξ ) at the origin is equal to a finite linear combination of expressions
of the form

lim
ξ→0

∂βξ (|ξ |−2)e−1/|ξ |2 = 0 ,

and thus it is zero.

Proposition 1.1.3. The dual space of S0(Rn) under the topology inherited from
S (Rn) is

S ′
0(R

n) =S ′(Rn)/P(Rn) .

Proof. To identify the dual of S0(Rn) we argue as follows. For each u in S ′(Rn),
let J(u) be the restriction of u on the subspaceS0(Rn) ofS (Rn). Then J is a linear
map from S ′(Rn) to S ′

0(R
n), and we claim that the kernel of J is exactly P(Rn).

Indeed, if 〈u,ϕ〉= 0 for all ϕ ∈S0(Rn), then 〈û,ϕ∨〉= 0 for all ϕ ∈S0(Rn), that
is, 〈û,ψ〉= 0 for all ψ inS (Rn) supported inRn \{0}. It follows that û is supported
at the origin and thus u must be a polynomial; see Proposition 2.4.1 in [156]. This
proves that the kernel of the map J is P(Rn). We also claim that the range of J is
the entire S ′

0(R
n). Indeed, given v ∈S ′

0(R
n), v is a linear functional on S0, which

is a subspace of the vector space S , and |〈v,φ〉| ≤ p(φ) for all φ ∈ S0, where
p(φ) is equal to a constant times a finite sum of Schwartz seminorms of φ . By the
Hanh–Banach theorem (Appendix G in [156]), v has an extension V onS such that
|〈V,Φ〉| ≤ p(Φ) for all Φ ∈S . Then J(V ) = v, and this shows that J is surjective.
Combining these two facts we conclude that there is an identification

S ′(Rn)/P(Rn) =S ′
0(R

n) ,

as claimed. �

In view of the identification in Proposition 1.1.3, we have that u j → u in S ′/P
if and only if u j,u are elements of S ′(Rn)/P(Rn) and

〈

u j,ϕ
〉→ 〈

u,ϕ
〉

as j → ∞ for all ϕ in S0(Rn). Note that convergence in S implies convergence in
S0, and consequently, convergence inS ′ implies convergence inS ′/P .

The Fourier transform ofS0(Rn) functions can be multiplied by |ξ |z, z ∈C, and
still be smooth and vanish to infinite order at zero. Indeed, let ϕ be inS0(Rn). Then
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we show that ∂ j(|ξ |zϕ̂(ξ ))(0) exists. Since every Taylor polynomial of ϕ̂ at zero is
identically equal to zero, it follows from Taylor’s theorem that |ϕ̂(ξ )| ≤CM|ξ |M for
every M ∈ Z+, whenever ξ lies in a compact set. Consequently, ifM > 1−Rez,

|te j|zϕ̂(te j)
t

tends to zero as t → 0 when e j is the vector with 1 in the jth entry and zero
elsewhere. This shows that all partials of |ξ |zϕ̂(ξ ) at zero exist and are equal to
zero. By induction we assume that ∂ γ(|ξ |zϕ̂(ξ ))(0) = 0, and we need to prove that
∂ j∂ γ(|ξ |zϕ̂(ξ ))(0) also exists and equals zero. Applying Leibniz’s rule, we express
∂ γ(|ξ |zϕ̂(ξ )) as a finite sum of derivatives of |ξ |z times derivatives of ϕ̂(ξ ). But for
each |β | ≤ |γ | we have |∂β (ϕ̂)(ξ )| ≤ CM,β |ξ |M for all M ∈ Z+ whenever |ξ | ≤ 1.
Picking M > |γ |+ 1−Rez and using the fact that |∂ γ−β (|ξ |z)| ≤Cα |ξ |Rez−|γ |+|β |,
we deduce that ∂ j∂ γ(|ξ |zϕ̂(ξ ))(0) also exists and equals zero.

We have now proved that if ϕ belongs to S0(Rn), then so does
(|ξ |zϕ̂(ξ ))∨ for

all z ∈ C. This allows us to introduce the operation of multiplication by |ξ |z on the
Fourier transforms of distributions modulo polynomials. This is described in the
following definition.

Definition 1.1.4. Let s ∈C and u ∈S (Rn)/P(Rn). We define another distribution
(|ξ |sû)∨ in u ∈S (Rn)/P(Rn) by setting for all ϕ inS0(Rn)

〈(| · |sû)∨,ϕ〉= 〈u,(| · |sϕ∨)̂〉 .

This definition is consistent with the corresponding operations on functions and
makes sense since, as observed, ϕ in S0(Rn) implies that (| · |sϕ̂)∨ also lies in
S0(Rn), and thus the action of u on this function is defined.

The next proposition allows us to deduce that an infinite sum of C s functions is
also in C s under certain circumstances.

Proposition 1.1.5. Let N ∈ Z+. Suppose that {gi}i∈Z are functions in C |α |(Rn) for
all multi-indices α with |α| ≤ N and that ∑i∈Z ‖∂αgi‖L∞ < ∞ for all |α| ≤ N. Then
the function g= ∑i∈Z gi is in C |α |(Rn) and

∂αg=∑
i∈Z

∂αgi

for all |α| ≤ N.

Proof. Let e j be the vector in Rn with 1 in the jth coordinate and zero in the re-
maining ones. For h ∈ R\{0} we have

g(x+he j)−g(x)
h

=∑
i∈Z

gi(x+he j)−gi(x)
h

.
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The functions
gi(x+he j)−gi(x)

h
converge pointwise to ∂ jgi(x) as h→ 0 and are (uniformly in h) bounded above by
‖∂ jgi‖L∞ , which satisfy ∑i∈Z ‖∂ jgi‖L∞ < ∞. The Lebesgue dominated convergence
theorem implies that

∑
i∈Z

gi(x+he j)−gi(x)
h

→∑
i∈Z

∂ jgi(x)

as h→ 0. This shows that g has partial derivatives and these are continuous in view
of the uniform convergence of the series. We can continue this process by induc-
tion for all multi-indices α with |α| ≤ N, since for these multi-indices we have by
assumption that ∑i∈Z ‖∂αgi‖L∞ < ∞. �

1.1.2 Calderón Reproducing Formula

Given t > 0 and a function g on Rn, we denote by gt(x) = t−ng(t−1x) the L1 dilation
of g. Given an integrable functionΨ on Rn whose Fourier transform vanishes at the
origin and j ∈ Z, we denote by ΔΨ

j the Littlewood–Paley operator defined by

ΔΨ
j ( f ) = f ∗Ψ2− j =

(

f̂ (ξ )Ψ̂(2− jξ )
)∨

for a distribution f ∈S ′(Rn). Given an integrable function Φ whose Fourier trans-
form does not vanish at the origin, for j ∈ Z we define the averaging operator

SΦj ( f ) = f ∗Φ2− j =
(

f̂ (ξ )Φ̂(2− jξ )
)∨

whenever f ∈S ′(Rn).

Proposition 1.1.6. (a) Let Φ̂ be a C ∞
0 function that is equal to 1 on B(0,1). Then for

all ϕ ∈S (Rn) we have
SΦN (ϕ)→ ϕ (1.1.1)

inS (Rn) as N → ∞. Also, for all f ∈S ′(Rn),

SΦN ( f )→ f (1.1.2)

as N → ∞ in the topology of S ′(Rn).
(b) LetΦ be a Schwartz function whose Fourier transform is supported in a compact
set that contains an open ball centered at zero, and let Ψ be a Schwartz function
whose Fourier transform is supported in an annulus that does not contain the origin
and satisfies

Φ̂(ξ )+
∞

∑
j=1

Ψ̂(2− jξ ) = 1
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for all ξ ∈ Rn. Then for all ϕ ∈S (Rn) we have

SΦ0 (ϕ)+ ∑
| j|<N

ΔΨ
j (ϕ)→ ϕ (1.1.3)

inS (Rn) as N → ∞. Also, for all f ∈S ′(Rn),

SΦ0 ( f )+ ∑
| j|<N

ΔΨ
j ( f )→ f (1.1.4)

as N → ∞ in the topology of S ′(Rn).
(c) LetΨ be a Schwartz function whose Fourier transform is supported in an annulus
that does not contain the origin and satisfies

∑
j∈Z

Ψ̂(2− jξ ) = 1

for all ξ �= 0. Then for all ϕ inS0(Rn) we have

∑
| j|<N

ΔΨ
j (ϕ)→ ϕ (1.1.5)

inS0(Rn) as N → ∞. Also for all f in S ′(Rn)/P(Rn) we have that

∑
| j|<N

ΔΨ
j ( f )→ f (1.1.6)

inS ′(Rn)/P(Rn) as N → ∞.

Proof. (a) Let Φ̃(x) =Φ(−x). We observe that for any f ∈S ′(Rn) and ϕ ∈S (Rn)
we have

〈

SΦN ( f ),ϕ
〉

=
〈

f ,SΦ̃N (ϕ)
〉

.

In view of this, (1.1.2) follows from (1.1.1) via duality, since Φ̃ and Φ have the same
properties. To prove (1.1.1), we fix a function ϕ in S . It is equivalent to show that
(SΦN (ϕ))̂→ ϕ̂ inS (Rn). Fix multi-indices α,β . It will suffice to show that

ρ ′
α ,β ((S

Φ
N (ϕ))̂− ϕ̂) = sup

ξ∈Rn

∣
∣∂βξ
[

(1− Φ̂(2−Nξ ))ϕ̂(ξ )ξα
]∣
∣→ 0 (1.1.7)

as N → ∞. Since Φ̂ is equal to 1 on the unit ball, it follows that the supremum in
(1.1.7) is over the set |ξ | ≥ 2N . By Leibniz’s rule, the ∂β derivative in the preceding
expression is equal to a sum of ∂ γ derivatives falling on (1− Φ̂(2−Nξ )) times ∂β−γ
derivatives falling on ϕ̂(ξ )ξα , where γ ≤ β . If γ �= 0, then then a factor of 2−N

appears from the differentiation in γ . If γ = 0, then then the conclusion follows in
view of the rapid decay of ∂β (ϕ̂(ξ )ξα) on the set |ξ | ≥ 2N .

The proof of (b) follows in the same way as the proof of (a) with the function
Φ(ξ )+∑N

j=1Ψ̂(2− jξ ) in place of Φ̂(2−Nξ ), which has similar support properties.



1.1 Smooth Functions and Tempered Distributions 7

(c) Assertion (1.1.6) follows from (1.1.5) by duality. To prove (1.1.5), we use the
Fourier transform. We have that if ϕN ,ϕ lie in S0, then ϕN → ϕ in S0 if and only
if ϕN → ϕ in S which happens if and only if ϕ̂N → ϕ̂ in S . Thus to show that
∑| j|<N ΔΨ

j (ϕ) → ϕ , it suffices to show that ∑| j|≥N ϕ̂(ξ )Ψ̂(2− jξ ) → 0 in S (Rn).

But ∂βξ
(

ξαϕ̂(ξ )∑ j≥N Ψ̂(2− jξ )
)

is supported in |ξ | ≥ c2N , for some constant c> 0,
and decays rapidly at infinity, so

sup
ξ∈Rn

|∂βξ
(

ξαϕ̂(ξ ) ∑
j≥N

Ψ̂(2− jξ )
)| → 0

as N → ∞. Also, ∂βξ
(

ξαϕ̂(ξ )∑ j≤−N Ψ̂(2− jξ )
)

is supported in |ξ | ≤ c′2−N and
vanishes at zero to infinite order; thus, it satisfies

∣
∣∂βξ
(

ξαϕ̂(ξ ) ∑
j≤−N

Ψ̂(2− jξ )
)∣
∣≤ cα ,β ,ϕ,Ψ sup

|ξ |≤2−N+1
|ξ | ,

which tends to zero as N → ∞. �

Corollary 1.1.7. (Calderón reproducing formula) LetΨ ,Ω be Schwartz functions
whose Fourier transforms are supported in annuli that do not contain the origin and
satisfy

∑
j∈Z

Ψ̂(2− jξ )Ω̂(2− jξ ) = 1

for all ξ �= 0. Then for all f ∈S ′(Rn)/P(Rn) we have

∑
j∈Z

Ψ2− j ∗Ω2− j ∗ f = ∑
j∈Z

ΔΨ
j ΔΩ

j ( f ) = f , (1.1.8)

where the convergence is inS ′(Rn)/P(Rn).

Proof. The assertion is contained in the conclusion of Proposition 1.1.6(c) with
Ψ ∗Ω in place ofΨ . �

Exercises

1.1.1. Given multi-indices α,β , show that there are constants C,C′ such that

ρα ,β (ϕ)≤C ∑
|γ |≤|α |

∑
|δ |≤|β |

ρ ′
γ ,δ (ϕ) ,

ρ ′
α ,β (ϕ)≤C′ ∑

|γ |≤|α |
∑

|δ |≤|β |
ργ ,δ (ϕ) .

for all Schwartz functions ϕ .
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[

Hint: The first inequality follows by Leibniz’s rule. Conversely, to express ξα∂βϕ
in terms of linear combinations of ∂β (ξ γϕ(ξ )), proceed by induction on |α|, using
that ξ j∂βϕ = ∂β (ξ jϕ)−∂βϕ− (β j−1)∂β−e jϕ if β j ≥ 1 and ξ j∂βϕ = ∂β (ξ jϕ) if
β j = 0. Here β = (β1, . . . ,βn) and e j = (0, . . . ,1, . . . ,0) with 1 in the jth entry.

]

1.1.2. Suppose that a function ϕ lies in C ∞(Rn \{0}) and that for all multi-indices
α there exist constants Lα such that ϕ satisfies

lim
t→0

∂αϕ(t) = Lα .

Then ϕ lies in C ∞(Rn) and ∂αϕ(0) = Lα for all multi-indices α .

1.1.3. Let uN ∈S ′(Rn). Suppose that uN → u in S ′/P and uN → v in S ′. Then
prove that u− v is a polynomial.
[

Hint: Use Proposition 1.1.3 or directly Proposition 2.4.1 in [156].
]

1.1.4. Suppose thatΨ is a Schwartz function whose Fourier transform is supported
in an annulus that does not contain the origin and satisfies ∑ j∈ZΨ̂(2− jξ ) = 1 for all
ξ �= 0. Show that for functions g∈ L1(Rn)with ĝ∈ L1(Rn)we have∑ j∈ZΔΨ

j (g) = g
pointwise everywhere.

1.1.5. LetΘ and Φ be Schwartz functions whose Fourier transforms are compactly
supported and let Ψ ,Ω be Schwartz functions whose Fourier transforms are sup-
ported in annuli that do not contain the origin and satisfy

Φ̂(ξ )Θ̂(ξ )+
∞

∑
j=1

Ψ̂(2− jξ )Ω̂(2− jξ ) = 1

for all ξ ∈ Rn. Then for all f ∈S ′(Rn) we have

Φ ∗Θ ∗ f +
∞

∑
j=1

ΔΨ
j ΔΩ

j ( f ) = f

where the series converges in S ′(Rn).

1.1.6. (a) Show that for any multi-index α on Rn there is a polynomial Qα of n
variables of degree |α| such that for all ξ ∈ Rn we have

∂α(e−|ξ |2) = Qα(ξ )e−|ξ |2 .

(b) Show that for all multi-indices |α| ≥ 1 and for each k in {0,1, . . . , |α|−1} there
is a polynomial Pα ,k of n variables of degree at most |α| such that

∂α(e−|ξ |) =
|α |−1

∑
k=0

1
|ξ |k Pα ,k

(
ξ1
|ξ | , . . . ,

ξn
|ξ |
)

e−|ξ |
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for every ξ ∈ Rn \{0}. Conclude that for |α| ≥ 1 we have

∣
∣∂α(e−|ξ |)

∣
∣≤Cα

(

1+
1
|ξ | + · · ·+ 1

|ξ ||α |−1

)

e−|ξ |

for some constant Cα and all ξ �= 0.
[

Hint: For the two identities use induction on |α|. Part (b): Use that the ∂ j deriva-
tive of a homogeneous polynomial of degree at most |α| is another homogeneous
polynomial of degree at most |α|+1 times |ξ |−1.

]

1.2 Laplacian, Riesz Potentials, and Bessel Potentials

The Laplacian is the operator

Δ = ∂ 2
1 + · · ·+∂ 2

n ,

which may act on functions or tempered distributions. The Laplacian satisfies the
following identity for all f ∈S (Rn):

−Δ̂ f (ξ ) = 4π2|ξ |2 f̂ (ξ ) .

Motivated by this identity, we replace the exponent 2 by a complex exponent z and
we define (−Δ)z/2 as the operator given by the multiplication with the function
(2π|ξ |)z on the Fourier transform. More precisely, for z ∈C and Schwartz functions
f we define

(−Δ) z
2 f (x) = ((2π|ξ |)z f̂ (ξ ))∨(x) . (1.2.1)

Roughly speaking, the operator (−Δ)z/2 acts as a derivative of order z if z is an even
integer. If z is a complex number with real part less than−n, then the function |ξ |z is
not locally integrable on Rn and so (1.2.1) may not be well defined. For this reason,
whenever we write (1.2.1), we assume that either Rez > −n or Rez ≤ −n and that
f̂ vanishes to sufficiently high order at the origin so that the expression |ξ |z f̂ (ξ )
is integrable. Note that the family of operators (−Δ)z satisfies the semigroup
property

(−Δ)z(−Δ)w = (−Δ)z+w

for all z,w∈Cwhen acting on Schwartz functions whose Fourier transform vanishes
in a neighborhood of the origin.

The operator (−Δ)z/2 is given by convolution with the inverse Fourier transform
of (2π)z|ξ |z. Theorem 2.4.6 in [156] gives that this inverse Fourier transform is
equal to

(2π)z(|ξ |z)∨(x) = (2π)z
π− z

2

π z+n
2

Γ ( n+z
2 )

Γ (−z
2 )

|x|−z−n , (1.2.2)
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provided −n < Rez < 0, in which case both |ξ |z and |x|−z−n are locally integrable
functions. Dividing both sides of (1.2.2) by Γ ( n+z

2 ) allows one to extend (1.2.2) to
all complex numbers z as an identity between distributions; see Theorem 2.4.6 in
[156] for details.

1.2.1 Riesz Potentials

When s is a positive real number, the operation f �→ (−Δ)−s/2 f is not really differ-
entiating f ; rather, it is integrating. For this reason, we introduce a slightly different
notation that better reflects the nature of this operator.

Definition 1.2.1. Let s be a complex number with 0< Res<∞. The Riesz potential
operator of order s is

Is = (−Δ)−s/2.

Clearly Is is well defined on Schwartz functions whose Fourier transform vanishes
in a neighborhood of the origin; if Res < n, the function ξ �→ |ξ |−s is locally in-
tegrable, and thus Is is well defined on the entire Schwartz class. Using identity
(1.2.2), we express

Is( f )(x) = 2−sπ− n
2
Γ ( n−s

2 )

Γ ( s2 )

∫

Rn
f (x− y)|y|−n+s dy ,

and since this integral is convergent for all functions f in the Schwartz class, Is is
well defined on this space for all s with Res> 0.

We begin with a simple remark concerning the homogeneity of the operator Is.
Remark 1.2.2. Suppose that for some s ∈ C, with Res> 0, we had an estimate

∥
∥Is( f )

∥
∥
Lq(Rn)

≤C(p,q,n,s)
∥
∥ f
∥
∥
Lp(Rn)

(1.2.3)

for some positive indices p,q and all f ∈S (Rn). Then p and q must be related by

1
p
− 1

q
=

Res
n

. (1.2.4)

This follows by applying (1.2.3) to the dilation δλ ( f )(x) = f (λx), λ > 0, in lieu
of f . Indeed, replacing f by δλ ( f ) in (1.2.3) and using the identity

Is(δλ ( f )) = λ−Resδλ (Is( f ))

which follows by a changes of variables, we obtain

λ− n
q−Res∥∥Is( f )

∥
∥
Lq(Rn)

≤C(p,q,n,s)λ− n
p
∥
∥ f
∥
∥
Lp(Rn)

(1.2.5)
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or, equivalently,

∥
∥Is( f )

∥
∥
Lq(Rn)

≤C(p,q,n,s)λ
n
q− n

p+Res∥∥ f
∥
∥
Lp(Rn)

. (1.2.6)

If 1
p > 1

q +
Res
n , then we let λ → ∞ in (1.2.6), whereas if 1

p < 1
q +

Res
n , then we let

λ → 0 in (1.2.6). In both cases we obtain that Is( f ) = 0 for all Schwartz functions
f , but this is obviously not the case for the function f (x) = e−π|x|2 . It follows that
(1.2.4) must necessarily hold.

This example provides an excellent paradigm of situations where the homogene-
ity (or the dilation structure) of an operator dictates a relationship on the indices p
and q for which it (may) map Lp to Lq.

As we saw in Remark 1.2.2, if the Riesz potentials map Lp to Lq for some p,q,
then we must have q> p. Such operators that improve the integrability of a function
are called smoothing. The importance of the Riesz potentials lies in the fact that
they are indeed smoothing operators. This is the essence of the Hardy–Littlewood–
Sobolev theorem on fractional integration, which we now formulate and prove.
Since

|Is( f )| ≤ IRes(| f |) ,
one may restrict the study of Is( f ) to nonnegative functions f and s> 0.

Theorem 1.2.3. Let s be a real number, with 0< s< n, and let 1< p< q<∞ satisfy

1
p
− 1

q
=

s
n
.

Then there exist constants C(n,s, p),C(s,n) < ∞ such that for all f in S (Rn) we
have

∥
∥Is( f )

∥
∥
Lq ≤C(n,s, p)

∥
∥ f
∥
∥
Lp

and
∥
∥Is( f )

∥
∥
L

n
n−s ,∞ ≤C(n,s)

∥
∥ f
∥
∥
L1 .

Consequently Is has a unique extension on Lp(Rn) for all p with 1 ≤ p < ∞ such
that the preceding estimates are valid.

Proof. For a given nonnegative (and nonzero) function f in the Schwartz class we
write ∫

Rn
f (x− y)|y|s−n dy= I1( f )(x)+ I2( f )(x),

where I1 and I2 are defined by

I1( f )(x) =
∫

|y|<R(x)
f (x− y)|y|s−n dy,

I2( f )(x) =
∫

|y|≥R(x)
f (x− y)|y|s−n dy,
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for some R(x)> 0 to be determined later. Note that the functionK(y)= |y|−n+sχ|y|<1
is radial, integrable, and symmetrically decreasing about the origin and that

I1( f )(x) = R(x)s( f ∗KR(x))(x)

where Kε(x) = ε−nK(x/ε). It follows from Theorem 2.1.10 in [156] that

I1( f )(x)≤ R(x)sM( f )(x)
∫

|y|<1
|y|−n+s dy= ωn−1

s R(x)sM( f )(x), (1.2.7)

where M is the Hardy–Littlewood maximal function, defined by

M(g)(x) = sup
B�x

B open ball in Rn

1
|B|

∫

B
|g(y)|dy .

Let p′ = p
p−1 if 1< p<∞ and 1′ =∞. Observe that (n−s)p′ = n+ p′n

q > n. Hölder’s
inequality gives that

|I2( f )(x)| ≤
(∫

|y|≥R(x)
|y|−(n−s)p′ dy

) 1
p′ ∥
∥ f
∥
∥
Lp(Rn)

=

(
qωn−1

p′n

) 1
p′
R(x)−

n
q
∥
∥ f
∥
∥
Lp(Rn)

,

(1.2.8)

and note that this estimate is also valid when p= 1 (in which case q= n
n−s ), provided

the Lp′ norm is interpreted as the L∞ norm and the constant
( qωn−1

p′n
) 1

p′ is replaced
by 1. Combining (1.2.7) and (1.2.8), we obtain that

Is( f )(x)≤C′
n,s,p

(

R(x)sM( f )(x)+R(x)−
n
q
∥
∥ f
∥
∥
Lp
)

. (1.2.9)

We choose
R(x) =

∥
∥ f
∥
∥

p
n
Lp
(

M( f )(x)
)− p

n

to minimize the expression on the right-hand side in (1.2.9). We observe that if f is
nonzero, thenM( f )(x)> 0 for all x ∈ Rn and thus R(x) is well defined. This choice
of R(x) yields the estimate

Is( f )(x)≤Cn,s,pM( f )(x)
p
q
∥
∥ f
∥
∥
1− p

q
Lp . (1.2.10)

The required inequality for p> 1 follows by raising (1.2.10) to the power q, integrat-
ing over Rn, and using the boundedness of the Hardy–Littlewood maximal operator
M on Lp(Rn) (Theorem 2.1.6 in [156]). The case p = 1, q = n

n−s also follows from
(1.2.10) by the weak type (1,1) property of M (see also Theorem 2.1.6 in [156]).
Indeed for all λ > 0 we have
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∣
∣{Cn,s,1M( f )

n−s
n
∥
∥ f
∥
∥

s
n
L1 > λ}∣∣ =

∣
∣
∣

{

M( f )>
(

λ

Cn,s,1
∥
∥ f
∥
∥

s
n
L1

) n
n−s}∣

∣
∣

≤ 3n
(Cn,s,1

∥
∥ f
∥
∥

s
n
L1

λ

) n
n−s ∥
∥ f
∥
∥
L1

= C(n,s)
(∥
∥ f
∥
∥
L1

λ

) n
n−s

.

This estimate says that T maps L1(Rn) to weak L
n

n−s (Rn). �

1.2.2 Bessel Potentials

While the behavior of the kernels |x|−n+s as |x| → 0 is well suited to their smooth-
ing properties, their decay as |x| → ∞ gets worse as s increases. We can slightly
adjust the Riesz potentials so that we maintain their essential behavior near zero
but achieve exponential decay at infinity. The simplest way to achieve this is by re-
placing the nonnegative operator −Δ by the strictly positive operator I−Δ . Here
the terms nonnegative and strictly positive, as one may have surmised, refer to the
Fourier multipliers of these operators.

Definition 1.2.4. Let z be a complex number satisfying 0 < Rez < ∞. The Bessel
potential operator of order z is

Jz = (I−Δ)−z/2.

This operator acts on functions f as follows:

Jz( f ) =
(

f̂ Ĝz
)∨

= f ∗Gz ,

where
Gz(x) =

(

(1+4π2|ξ |2)−z/2)∨(x) .

The Bessel potential is obtained by replacing 4π2|ξ |2 in the Riesz potential by the
smooth term 1+ 4π2|ξ |2. This adjustment creates smoothness, which yields rapid
decay for Gz at infinity. The next result quantifies the behavior of Gz near zero and
near infinity.

Proposition 1.2.5. Let z be a complex number with Rez > 0. Then the function Gz
is smooth on Rn \{0}. Moreover, if s is real, then Gs is strictly positive, ‖Gs‖L1 = 1,
and there exist positive finite constants C(s,n), c(s,n) such that

Gs(x)≤C(s,n)e−
|x|
2 when |x| ≥ 2 (1.2.11)



14 1 Smoothness and Function Spaces

and such that

1
c(s,n)

≤ Gs(x)
Hs(x)

≤ c(s,n) when |x| ≤ 2, (1.2.12)

where Hs is equal to

Hs(x) =

⎧

⎪⎨

⎪⎩

|x|s−n+1+O(|x|s−n+2) for 0< s< n,
log 2

|x| +1+O(|x|2) for s= n,

1+O(|x|s−n) for s> n,

and O(t) is a function with the property |O(t)| ≤ |t| for t ≥ 0.
Now let z be a complex number with Rez > 0. Then there exist finite positive

constants C′(Rez,n) and c′(Rez,n) such that when |x| ≥ 2, we have

|Gz(x)| ≤ C′(Rez,n)
|Γ ( z2 )|

e−
|x|
2 (1.2.13)

and when |x| ≤ 2, we have

|Gz(x)| ≤ c′(Rez,n)
|Γ ( z2 )|

⎧

⎪⎨

⎪⎩

|x|Rez−n for Rez< n,
log 2

|x| for Rez= n,

1 for Rez> n.

Proof. For A> 0 and z with Rez> 0 we have the gamma function identity

A− z
2 =

1
Γ ( z2 )

∫ ∞

0
e−tAt

z
2
dt
t
,

which we use to obtain

(1+4π2|ξ |2)− z
2 =

1
Γ ( z2 )

∫ ∞

0
e−t e−π|2

√
πt ξ |2t

z
2
dt
t
.

Note that the preceding integral converges at both ends. Now take the inverse Fourier
transform in ξ and use the fact that the function e−π|ξ |2 is equal to its Fourier trans-
form (Example 2.2.9 in [156]) to obtain

Gz(x) =
(2
√
π )−n

Γ ( z2 )

∫ ∞

0
e−t e−

|x|2
4t t

z−n
2

dt
t
.

This identity shows thatGz is smooth onRn \{0}. Moreover, taking z= s> 0 proves
that Gs(x)> 0 for all x ∈ Rn. Consequently, ‖Gs‖L1 =

∫

Rn Gs(x)dx= Ĝs(0) = 1.
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Now suppose |x| ≥ 2. Then t+ |x|2
4t ≥ t+ 1

t and t+
|x|2
4t ≥ |x|. This implies that

−t− |x|2
4t

≤− t
2
− 1

2t
− |x|

2
,

from which it follows that when |x| ≥ 2,

|Gz(x)| ≤ (2
√
π )−n

|Γ ( z2 )|
(∫ ∞

0
e−

t
2 e−

1
2t t

Rez−n
2

dt
t

)

e−
|x|
2 =

C′(Rez,n)
|Γ ( z2 )|

e−
|x|
2 .

This proves (1.2.13) and (1.2.11) with C(s,n) = Γ ( s2 )
−1C′(s,n) when s> 0.

Suppose now that |x| ≤ 2 and s> 0. WriteGs(x) =G1
s (x)+G2

s (x)+G3
s (x), where

G1
s (x) =

(2
√
π )−n

Γ ( s2 )

∫ |x|2

0
e−t ′e−

|x|2
4t′ (t ′)

s−n
2

dt ′

t ′

= |x|s−n (2
√
π )−n

Γ ( s2 )

∫ 1

0
e−t|x|2e−

1
4t t

s−n
2

dt
t
,

G2
s (x) =

(2
√
π )−n

Γ ( s2 )

∫ 4

|x|2
e−t e−

|x|2
4t t

s−n
2

dt
t
,

G3
s (x) =

(2
√
π )−n

Γ ( s2 )

∫ ∞

4
e−t e−

|x|2
4t t

s−n
2

dt
t
.

Since t|x|2 ≤ 4, in G1
s we have e−t|x|2 = 1+O(t|x|2) by the mean value theorem,

where O(t) is a function with the property |O(t)| ≤ |t|. Thus, we can write

G1
s (x) = |x|s−n (2

√
π )−n

Γ ( s2 )

∫ 1

0
e−

1
4t t

s−n
2

dt
t
+O(|x|s−n+2)

(2
√
π )−n

Γ ( s2 )

∫ 1

0
e−

1
4t t

s−n
2 dt .

Since 0≤ |x|2
4t ≤ 1

4 and 0≤ t ≤ 4 inG2
s , we have e

− 17
4 ≤ e−t− |x|2

4t ≤ 1; thus, we deduce

G2
s (x) ≈

∫ 4

|x|2
t
s−n
2

dt
t
=

⎧

⎪⎨

⎪⎩

2
n−s |x|s−n− 2s−n+1

n−s for s< n,
2 log 2

|x| for s= n,
1

s−n 2
s−n+1− 2

s−n |x|s−n for s> n.

Finally, we have e−
1
4 ≤ e−

|x|2
4t ≤ 1 in G3

s , which yields that G3
s (x) is bounded above

and below by fixed positive constants. Combining the estimates for G1
s (x), G

2
s (x),

and G3
s (x), we obtain (1.2.12).

When z is complex, with Rez> 0, we write as before Gz = G1
z +G2

z +G3
z . When

|x| ≤ 2, we have that |G1
z (x)| ≤ c1(Rez,n)|Γ ( z2 )|−1|x|Rez−n. For G2

z we have
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|G2
z (x)| ≤

(2
√
π )−n

|Γ ( z2 )|

⎧

⎪⎨

⎪⎩

2
n−Rez |x|Rez−n− 2Rez−n+1

n−Rez for Rez< n,
2 log 2

|x| for Rez= n,
1

Rez−n 2
Rez−n+1− 2

Rez−n |x|Rez−n for Rez> n

≤ c2(Rez,n)
|Γ ( z2 )|

⎧

⎪⎨

⎪⎩

|x|Rez−n for Rez< n,
log 2

|x| for Rez= n,

1 for Rez> n,

when |x| ≤ 2. Finally, |G3
z (x)| ≤ c3(Rez,n)|Γ ( z2 )|−1 when |x| ≤ 2. Combining these

estimates we obtain the claimed conclusion for Gz(x) when |x| ≤ 2. �

We end this section with a result analogous to that of Theorem 1.2.3 for the
operator Js.

Corollary 1.2.6. (a) For all 0 < s < ∞, the operator Js maps Lr(Rn) to itself with
norm 1 for all 1≤ r ≤ ∞.
(b) Let 0 < s < n and 1 ≤ p < q < ∞ satisfy (1.2.4). Then there exist constants
Cp,q,n,s < ∞ such that for all f in Lp(Rn), with p> 1, we have

∥
∥Js( f )

∥
∥
Lq ≤Cp,q,n,s

∥
∥ f
∥
∥
Lp

and
∥
∥Js( f )

∥
∥
Lq,∞ ≤C1,q,n,s

∥
∥ f
∥
∥
L1 when p= 1.

Proof. (a) Since Ĝs(0) = 1 and Gs > 0, it follows that Gs has L1 norm 1. The op-
erator Js is given by convolution with the positive function Gs, which has L1 norm
1; thus, it maps Lr(Rn) to itself with at most norm 1 for all 1 ≤ r ≤ ∞; in fact this
norm is exactly 1 in view of Exercise 1.2.9 in [156].
(b) In the special case 0< s< n, we have that the kernel Gs of Js satisfies

Gs(x)≈
{

|x|−n+s when |x| ≤ 2,

e−
|x|
2 when |x| ≥ 2.

Then we can write

Js( f )(x) ≤ Cn,s

[∫

|y|≤2
| f (x− y)| |y|−n+s dy+

∫

|y|≥2
| f (x− y)|e− |y|

2 dy
]

≤ Cn,s

[

Is(| f |)(x)+
∫

Rn
| f (x− y)|e− |y|

2 dy
]

.

Using that the function y �→ e−|y|/2 is in Lr for all r < ∞, Young’s inequality (Theo-
rem 1.2.12 in [156]), and Theorem 1.2.3, we complete the proof. �
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Exercises

1.2.1. (a) Let 0< s, t <∞ be such that s+ t < n. Show that IsIt = Is+t as operators
acting on S (Rn).
(b) Let Res> 2Rez. Prove the operator identities

Is(−Δ)z = (−Δ)zIs = Is−2z = (−Δ)z− s
2

on functions whose Fourier transforms vanish in a neighborhood of zero.
(c) Prove that for all z ∈ C we have

〈

(−Δ)z f |(−Δ)−zg
〉

=
〈

f |g〉

whenever the Fourier transforms of f and g vanish to sufficiently high order at the
origin.
(d) Given s with Res> 0, find an α ∈ C such that the identity

〈Is( f ) | f
〉

=
∥
∥(−Δ)α f∥∥2L2

is valid for all functions f as in part (c).

1.2.2. Prove that for −∞< α < n/2< β < ∞ and that for all f ∈S (Rn) we have

∥
∥ f
∥
∥
L∞(Rn)

≤C
∥
∥Δα/2 f

∥
∥

β−n/2
β−α
L2(Rn)

∥
∥Δβ/2 f

∥
∥

n/2−α
β−α
L2(Rn)

,

where C depends only on α,n,β .
[

Hint: You may want to use Exercise 2.2.14 in [156].
]

1.2.3. Show that when 0< s< n we have

sup
‖ f‖L1(Rn)=1

∥
∥Is( f )

∥
∥
L

n
n−s (Rn)

= sup
‖ f‖L1(Rn)=1

∥
∥Js( f )

∥
∥
L

n
n−s (Rn)

= ∞ .

Thus, neither Is nor Js is of strong type (1, n
n−s ).

1.2.4. Let 0< s< n. Consider the function h(x)= |x|−s(log 1
|x| )

− s
n (1+δ ) for |x| ≤ 1/e

and zero otherwise. Prove that when 0 < δ < n−s
s we have h ∈ L

n
s (Rn) but that

limx→0Is(h)(x) = ∞. Conclude that Is does not map L
n
s (Rn) to L∞(Rn).

1.2.5. For 1 < p < ∞ and 0 < s < ∞ define the Bessel potential space L p
s (Rn) as

the space of all functions f ∈ Lp(Rn) for which there exists another function f0 in
Lp(Rn) such that Js( f0) = f . Define a norm on these spaces by setting ‖ f‖L p

s
=

‖ f0‖Lp . Prove the following properties of these spaces:
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(a) ‖ f‖Lp ≤ ‖ f ‖L p
s
; hence, L p

s (Rn) is a subspace of Lp(Rn).
(b) For all 0< t,s< ∞ we have Gs ∗Gt = Gs+t and thus

L p
s (R

n)∗L q
t (Rn)⊆L r

s+t(R
n) ,

where 1< p,q,r < ∞ and 1
p +

1
q =

1
r +1.

(c) The sequence of norms ‖ f‖L p
s
increases, and therefore the spaces L p

s (Rn) de-
crease as s increases.
(d) The map Jt is a one-to-one and onto isometry from L p

s (Rn) toL p
s+t(Rn).

[

The Bessel potential space L p
s (Rn) coincides with the Sobolev space Lp

s (Rn), in-
troduced in Section 1.3.

]

1.2.6. For 0≤ s< n define the fractional maximal function

Ms( f )(x) = sup
t>0

1

(vntn)
n−s
n

∫

|y|≤t
| f (x− y)|dy ,

where vn is the volume of the unit ball in Rn.
(a) Show that for some constant C we have

Ms( f )≤CIs( f )

for all f ≥ 0 and conclude that Ms maps Lp to Lq whenever Is does.
(b) ([1]) Let 0 < s < n, 1 < p < n

s , 1 ≤ q ≤ ∞ be such that 1
r =

1
p − s

n +
sp
nq . Show

that there is a constant C > 0 (depending on the previous parameters) such that for
all positive functions f we have

∥
∥Is( f )

∥
∥
Lr ≤C

∥
∥M

n
p ( f )

∥
∥

sp
n
Lq
∥
∥ f
∥
∥1−

sp
n

Lp .

[

Hint: For f �= 0, write Is( f ) = I1+ I2, where

I1 =
∫

|x−y|≤δ
f (y) |x− y|s−n dy , I2 =

∫

|x−y|>δ
f (y) |x− y|s−n dy .

Show that I1 ≤Cδ sM0( f ) and that I2( f ) ≤Cδ s− n
pM

n
p ( f ). Optimize over δ > 0 to

obtain
Is( f )≤C

(

M
n
p ( f )

) sp
n
(

M0( f )
)1− sp

n ,

from which the required conclusion follows easily.
]

1.2.7. Suppose that a function K defined on Rn satisfies |K(y)| ≤C(1+ |y|)s−n−ε ,
where 0< s< n and 0<C,ε < ∞. Prove that the maximal operator

TK( f )(x) = sup
t>0

t−n+s
∣
∣
∣
∣

∫

Rn
f (x− y)K(y/t)dy

∣
∣
∣
∣

maps Lp(Rn) to Lq(Rn) whenever Is maps Lp(Rn) to Lq(Rn).
[

Hint: Control TK by the maximal function Ms of Exercise 1.2.6.
]
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1.2.8. Let 0 < s < n. Use the following steps to obtain another proof of Theorem
1.2.3 via a more delicate interpolation.
(a) Prove that there is a constant cs,n <∞ such that for any measurable set E we have
∥
∥Is(χE)

∥
∥
L∞ ≤ cs,n|E| sn .

(b) Prove that for some c′s,n < ∞ and any two measurable sets E and F we have
∫

F
|Is(χE)(x)|dx≤ c′s,n|E| |F |

s
n .

(c) Use Exercise 1.1.12 in [156] to find a constant Cn,s such that for all measurable
sets E we have

∥
∥Is(χE)

∥
∥
L

n
n−s ,∞ ≤Cn,s|E| .

(d) Use parts (a) and (c) and Theorem 1.4.19 in [156] to obtain another proof of
Theorem 1.2.3.
[

Hint: Parts (a) and (b): Use that when λ > 0, the integral
∫

E |y|−λ dy becomes
largest when E is a ball centered at the origin equimeasurable to E.

]

1.2.9. ([366]) Let 0< α < n, and suppose 0< ε <min(α,n−α). Show that there
exists a constant depending only on α,ε , and n such that for all compactly supported
bounded functions f we have

|Iα( f )| ≤C
√

Mα−ε( f )Mα+ε( f ) ,

where Mβ ( f ) is the fractional maximal function of Exercise 1.2.6.
[

Hint:Write

|Iα( f )(x)| ≤ c
∫

|x−y|<s

| f (y)|dy
|x− y|n−α + c

∫

|x−y|≥s

| f (y)|dy
|x− y|n−α

and split each integral into a sum of integrals over annuli centered at x to obtain the
estimate

|Iα( f )| ≤C
(

sεMα−ε( f )+ s−εMα+ε( f )
)

.

Then optimize over s.
]

1.2.10. The discrete maximal operator of a sequence a= {a j} j∈Zn is the sequence
Md(a) = {Md(a)m}m∈Zn whose terms are

Md(a)m = sup
Q�m

1
#(Q∩Zn) ∑

k∈Q∩Zn
|ak|,

where m ∈ Zn, and the supremum is taken over all cubes Q in Rn.
(a) Show that Md is bounded from �p(Zn) to itself.
(b) Prove that for all m ∈ Zn

(b∗a)m ≤ ‖b‖�1(Zn)Md(a)m

whenever b = {bm}m is an �1 sequence of positive numbers that satisfies bm = bm′
when |m|= |m′| and bm ≥ bm′ when |m| ≤ |m′|.
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(c) Use these results to prove that the discrete fractional integral operator

{a j} j∈Zn �→
{

∑
k∈Zn

ak
(| j− k|+1)n−α

}

j∈Zn

maps �s(Zn) to �t(Zn) when 0< α < n, 1< s< t, and 1
s − 1

t =
α
n .

1.2.11. Show that the operator,

Iα ,α( f )(x1,x2) =
∫

Rn

∫

Rn
f (x1− y1,x2− y2)|y1|−n+α |y2|−n+αdy1dy2 ,

acting on Schwartz functions f on R2n, maps Lp(R2n) to Lq(R2n) whenever 0 <
α < n, αn +

1
q =

1
p , and 1< p< q< ∞.

[

Hint: Write Iα ,α( f )(x1,x2) = c0I(1)
α
(I(2)

α ( f )(x2)
)

(x1), where I(2)
α is a fractional

integral operator acting in the x2 variable of the function f (x1,x2) with x1 frozen,
and I(1)

α is defined analogously.
]

1.2.12. Fill in the following steps to provide an alternative proof of Theorem 2.1.3
when p = 1. Without loss of generality assume that f is nonnegative and smooth,
has compact support, and satisfies ‖ f‖L1 = 1. Let Eλ = {x∈Rn : Is( f )(x)> λ} for
λ > 0. Prove that

Is( f )(x)≤ ∑
j∈Z

2( j−1)(s−n)
∫

|y|≤2 j
f (x− y)dy,

and that ∫

Eλ

∫

|y|≤2 j
f (x− y)dydx≤min(|Eλ |,vn2 jn) .

Using these facts and |Eλ | ≤ 1
λ
∫

Eλ
Is( f )(x)dx conclude that |Eλ | ≤C(n,s) 1λ |Eλ |

s
n .

1.3 Sobolev Spaces

In this section we study a quantitative way of measuring the smoothness of func-
tions. Sobolev spaces serve exactly this purpose. They measure the smoothness of
functions in terms of the integrability of their derivatives. We begin with the classi-
cal definition of Sobolev spaces.

Definition 1.3.1. Let k be a nonnegative integer, and let 1 < p < ∞. The Sobolev
space Lp

k (R
n) is defined as the space of functions f in Lp(Rn) all of whose distribu-

tional derivatives ∂α f are also in Lp(Rn) for all multi-indices α that satisfy |α| ≤ k.
This space is normed by the expression

∥
∥ f
∥
∥
Lpk

= ∑
|α |≤k

∥
∥∂α f

∥
∥
Lp , (1.3.1)

where ∂ (0,...,0) f = f .
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Sobolev norms quantify smoothness. The index k indicates the degree of smooth-
ness of a given function in Lp

k . As k increases the functions become smoother. Equiv-
alently, these spaces form a decreasing sequence

Lp ⊃ Lp
1 ⊃ Lp

2 ⊃ Lp
3 ⊃ ·· · ,

meaning that each Lp
k+1(R

n) is a proper subspace of Lp
k (R

n). This property, which
coincides with our intuition of smoothness, is a consequence of the definition of
Sobolev norms.

We next observe that the space Lp
k (R

n) is complete. Indeed, if f j is a Cauchy
sequence in the norm given by (1.3.1), then {∂α f j} j are Cauchy sequences for all
|α| ≤ k. By the completeness of Lp, there exist functions fα in Lp(Rn) such that
∂α f j → fα in Lp for all |α| ≤ k, in particular f j → f0 in Lp as j → ∞. This implies
that for all ϕ in the Schwartz class we have

(−1)|α |
∫

Rn
f j (∂αϕ)dx=

∫

Rn
(∂α f j)ϕ dx→

∫

Rn
fα ϕ dx.

Since the first expression converges to

(−1)|α |
∫

Rn
f0 (∂αϕ)dx ,

it follows that the distributional derivative ∂α f0 is fα . This implies that f j → f0 in
Lp
k (R

n) and proves the completeness of this space.
Our goal in this section is to investigate relations between these spaces and

the Riesz and Bessel potentials discussed in the previous section and to obtain a
Littlewood–Paley characterization of them. Before we embark on this study, we note
that we can extend the definition of Sobolev spaces to the case in which the index k
is not necessarily an integer. In fact, we extend the definition of the spaces Lp

k (R
n)

to the case in which the number k is real.

1.3.1 Definition and Basic Properties of General Sobolev Spaces

Definition 1.3.2. Let s be a real number and let 1 < p < ∞. The inhomogeneous
Sobolev space Lp

s (Rn) is defined as the space of all tempered distributions u in
S ′(Rn) with the property that

((1+ |ξ |2) s
2 û)∨ (1.3.2)

is an element of Lp(Rn). For such distributions u we define
∥
∥u
∥
∥
Lps

=
∥
∥((1+ | · |2) s

2 û)∨
∥
∥
Lp(Rn)

.
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Note that the function (1+ |ξ |2) s
2 is C ∞ and has at most polynomial growth at

infinity. Since û ∈S ′(Rn), the product in (1.3.2) is well defined.

Several observations are in order. First, we note that when s = 0, Lp
s = Lp. It is

natural to ask whether elements of Lp
s are always Lp functions. We show that this is

the case when s ≥ 0 but not when s < 0. We also show that the space Lp
s coincides

with the space Lp
k given in Definition 1.3.1 when s= k and k is an integer.

To prove that elements of Lp
s are indeed Lp functions when s≥ 0, we simply note

that if fs = ((1+ |ξ |2)s/2 f̂ )∨, then

f =
(

f̂s(ξ )Ĝs(ξ/2π)
)∨

= fs ∗ (2π)nGs(2π(·)) ,

where Gs is given in Definition 1.2.4. Thus Corollary 1.2.6 yields that

c−1∥∥ f
∥
∥
Lp ≤

∥
∥ fs
∥
∥
Lp =

∥
∥ f
∥
∥
Lps

< ∞ ,

for some constant c.
We now prove that if s= k is a nonnegative integer and 1< p<∞, then the norm

of the space Lp
k as given in Definition 1.3.1 is comparable to that in Definition 1.3.2.

Suppose that f ∈ Lp
k according to Definition 1.3.2. Then for all |α| ≤ k we have that

the distributional derivatives ∂α f are equal to

∂α f = cα( f̂ (ξ )ξα)∨ = cα

(

f̂ (ξ )(1+ |ξ |2) k
2

ξα

(1+ |ξ |2) k
2

)∨
. (1.3.3)

Theorem 6.2.7 in [156] gives that the function

ξα

(1+ |ξ |2)k/2

is an Lp multiplier. Since by assumption
(

f̂ (ξ )(1+ |ξ |2) k
2
)∨ is in Lp(Rn), it follows

from (1.3.3) that the distributional derivatives ∂α f lie in Lp(Rn) and that

∑
|α |≤k

∥
∥∂α f

∥
∥
Lp ≤Cp,n,k

∥
∥((1+ | · |2) k

2 f̂ )∨
∥
∥
Lp < ∞ .

Conversely, suppose that f ∈ Lp
k according to Definition 1.3.1; then

(1+ξ 2
1 + · · ·+ξ 2

n )
k
2 = ∑

|α |≤k

k!
α1! · · ·αn!(k−|α|)! ξ

α ξα

(1+ |ξ |2) k
2
.

As we have observed, the functions mα(ξ ) = ξα(1+ |ξ |2)− k
2 are Lp multipliers

whenever |α| ≤ k. Since

(

(1+ |ξ |2) k
2 f̂
)∨

= ∑
|α |≤k

cα ,k
(

mα(ξ )ξα f̂
)∨

= ∑
|α |≤k

c′α ,k
(

mα(ξ )∂̂ α f
)∨

,



1.3 Sobolev Spaces 23

it follows that
∥
∥( f̂ (ξ )(1+ |ξ |2) k

2 )∨
∥
∥
Lp ≤Cp,n,k ∑

|γ |≤k

∥
∥( f̂ (ξ )ξ γ)∨

∥
∥
Lp < ∞ .

Example 1.3.3. Every Schwartz function lies in Lp
s (Rn) for s real. Sobolev spaces

with negative indices can indeed contain tempered distributions that are not locally
integrable functions. For example, consider the Dirac mass at the origin δ0. Then
‖δ0‖Lp−s(Rn) = ‖G∨

s ‖Lp when s > 0. For s ≥ n this quantity is always finite in view

of Proposition 1.2.5. For 0 < s < n the function Gs(x) =
(

(1+ |ξ |2)− s
2
)∨
(x) is in-

tegrable to the power p as long as (s− n)p > −n, that is, when 1 < p < n
n−s . We

conclude that δ0 lies in Lp
−s(Rn) for 1< p< n

n−s when 0< s< n and in Lp
−s(Rn) for

all 1< p< ∞ when s≥ n.

Example 1.3.4. We consider the function h(t) = 1− t for 0≤ t ≤ 1, h(t) = 1+ t for
−1≤ t < 0, and h(t) = 0 for |t|> 1. Obviously, the distributional derivative of h is
the function h′(t) = χ(−1,0)−χ(0,1). The distributional second derivative h′′ is equal
to δ1+δ−1−2δ0; see Exercise 2.3.4(a) in [156]. Clearly, h′′ does not belong to any
Lp space; hence h is not in Lp

2(R). But for 1 < p < ∞, h lies in Lp
1(R), and we thus

have an example of a function in Lp
1(R) but not in L

p
2(R).

Definition 1.3.2 allows us to fine-tune the smoothness of h by finding all s for
which h lies in Lp

s (R). An easy calculation gives

ĥ(ξ ) =
e2πixξ + e−2πixξ −2

4π2|ξ |2 .

Fix a smooth function ϕ that is equal to one in a neighborhood of infinity and van-
ishes in the interval [−2,2]. Then

(

ĥ(ξ )(1+ |ξ |2)s/2(1− ϕ(ξ ))
)∨ is the inverse

Fourier transform of a smooth function with compact support; hence it is a Schwartz
function and belongs to all Lp spaces. It suffices to examine for which p the function

u=
(

(1+ |ξ |2)s/2 e
2πixξ + e−2πixξ −2
4π2(1+ |ξ |2) ϕ(ξ )

1+ |ξ |2
|ξ |2

)∨
(1.3.4)

lies in Lp(R). We first observe that the function u in (1.3.4) lies in Lp(R) if and only
if the function

v=
(

(1+ |ξ |2)s/2 e
2πixξ + e−2πixξ −2
4π2(1+ |ξ |2)

)∨
(1.3.5)

lies in Lp(R). Indeed, if v lies in Lp, then u lies in Lp for 1 < p < ∞ in view of

Theorem 6.2.7 in [156], since the bounded function m(ξ ) = ϕ(ξ ) 1+|ξ |2
|ξ |2 satisfies the

Mihlin condition |m′(ξ )| ≤C|ξ |−1. Conversely, if u lies in Lp, then

v=
(

v̂(ξ )(1−ϕ)(ξ )
)∨

+

(

û(ξ )
|ξ |2

1+ |ξ |2
)∨

,
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which also lies in Lp(R) since the function m0(ξ ) = |ξ |2
1+|ξ |2 also satisfies the Mih-

lin condition |m′
0(ξ )| ≤ C|ξ |−1 and

(

v̂(1−ϕ)
)∨ is in the Schwartz class. But the

function v can be explicitly calculated. In fact, for 0< s< 2 one has

v(x) = 2πG2−s(2π(·))∗ (δ1+δ−1−2δ0)(x)
= 2πG2−s(2π(x−1))+2πG2−s(2π(x+1))+2πG2−s(2πx),

where G2−s is the Bessel potential of order 2− s. If 2− s< 1, i.e., when 1< s< 2,
then G2−s(x) has a spike at zero of order |x|1−s; this is integrable to the power p
only when 1< s< 1+ 1

p . The function v(x) has similar spikes at the points −1,1,0
and it lies in Lp only when 1< s< 1+ 1

p as well. Thus, h lies in Lp
s (R) if and only

if s< 1+ 1
p .

Next we have a result concerning the embedding of Sobolev spaces.

Theorem 1.3.5. (Sobolev embedding theorem) (a) Let 0 < s < n
p and 1 < p < ∞.

Then the Sobolev space Lp
s (Rn) continuously embeds in Lq(Rn) when

1
p
− 1

q
=

s
n
.

(b) Let 0< s= n
p and 1< p< ∞. Then Lp

s (Rn) continuously embeds in Lq(Rn) for
any n

s < q< ∞.
(c) Let n

p < s < ∞ and 1 < p < ∞. Then every element of Lp
s (Rn) can be modified

on a set of measure zero so that the resulting function is bounded and uniformly
continuous.

Proof. (a) If f ∈ Lp
s , then fs(x) = ((1+ |ξ |2) s

2 f̂ )∨(x) is in Lp(Rn). Thus,

f (x) = ((1+ |ξ |2)− s
2 f̂s )∨(x) ;

hence, f = Gs ∗ fs. Since s< n, Proposition 1.2.5 gives that

|Gs(x)| ≤Cs,n|x|s−n

for all x ∈ Rn. This implies that | f | = |Gs ∗ fs| ≤ Cs,nIs(| fs|). Theorem 1.2.3 now
yields the required conclusion:

∥
∥ f
∥
∥
Lq ≤C′

s,n
∥
∥Is(| fs|)

∥
∥
Lq ≤C′′

s,n
∥
∥ f
∥
∥
Lps
.

(b) Given any n
s < q< ∞, we can find t > 1 such that

1+
1
q
=

s
n
+

1
t
=

1
p
+

1
t
.
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Then 1< s
n +

1
t , which implies that (−n+s)t >−n. Thus, the function |x|−n+sχ|x|≤2

is integrable to the tth power, which implies that Gs is in Lt(Rn). Since f = Gs ∗ fs,
Young’s inequality (Theorem 1.2.12 in [156]) gives that

∥
∥ f
∥
∥
Lq(Rn)

≤ ∥∥ fs
∥
∥
Lp(Rn)

∥
∥Gs

∥
∥
Lt (Rn)

=Cn,s
∥
∥ f
∥
∥
Lpn/p

.

(c) As before, we have f = Gs ∗ fs. If s ≥ n, then Proposition 1.2.5 gives that
the function Gs is in Lp′(Rn). If 0 < s < n, then Gs(x) is bounded by a multiple of
|x|−n+s near zero and has exponential decay at infinity. This function is integrable to
the power p′ near the origin if and only if (−n+ s)p′ > −n, i.e., s > n/p, which is
what we are assuming; thus, Gs ∈ Lp′(Rn) when 0< s< n. Hence, f is given as the
convolution of an Lp function and an Lp′ function, and thus it is bounded and can be
identified with a uniformly continuous function (cf. Exercise 1.2.3 in [156]). �

1.3.2 Littlewood–Paley Characterization of Inhomogeneous
Sobolev Spaces

We now present the first main result of this section, the characterization of the inho-
mogeneous Sobolev spaces using Littlewood–Paley theory.

For the purposes of the next theorem we need the following setup. We fix a
Schwartz functionΨ on Rn whose Fourier transform is nonnegative, supported in
the annulus 1− 1

7 ≤ |ξ | ≤ 2, equal to 1 on the smaller annulus 1≤ |ξ | ≤ 2− 2
7 , and

satisfies Ψ̂(ξ )+Ψ̂(ξ/2) = 1 on the annulus 1≤ |ξ | ≤ 4− 4
7 . This function has the

property
∑
j∈Z

Ψ̂(2− jξ ) = 1 (1.3.6)

for all ξ �= 0. We define the associated Littlewood–Paley operators ΔΨ
j given by

multiplication on the Fourier transform side by the function Ψ̂(2− jξ ), that is,

ΔΨ
j ( f ) =Ψ2− j ∗ f . (1.3.7)

Notice that the support properties of the operators ΔΨ
j yield the simple identity

ΔΨ
j =

(

ΔΨ
j−1+ΔΨ

j +ΔΨ
j+1
)

ΔΨ
j

for all j ∈ Z. We also define a Schwartz function Φ such that

Φ̂(ξ ) =

{

∑ j≤0Ψ̂(2− jξ ) when ξ �= 0,
1 when ξ = 0.

(1.3.8)
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Note that Φ̂(ξ ) is equal to 1 for |ξ | ≤ 2− 2
7 , vanishes when |ξ | ≥ 2, and satisfies

Φ̂(ξ )+
∞

∑
j=1

Ψ̂(2− jξ ) = 1 (1.3.9)

for all ξ in Rn. We now introduce an operator SΦ0 by setting

S0( f ) =Φ ∗ f , (1.3.10)

for f ∈S ′(Rn). Identity (1.3.9) yields the operator identity

SΦ0 +
∞

∑
j=1

ΔΨ
j = I ,

in which the series converges in S ′(Rn), in view of Proposition 1.1.6(b).
Having introduced the relevant background, we are now ready to state and prove

the following result.

Theorem 1.3.6. Let Ψ satisfy (1.3.6), Φ be as in (1.3.8), and let ΔΨ
j , S

Φ
0 be as in

(1.3.7) and (1.3.10), respectively. Fix s ∈ R and 1 < p < ∞. Then there exists a
constant C1 that depends only on n,s, p, Φ , andΨ such that for all f ∈ Lp

s we have

∥
∥SΦ0 ( f )

∥
∥
Lp +

∥
∥
∥

( ∞

∑
j=1

(2 js|ΔΨ
j ( f )|)2

) 1
2
∥
∥
∥
Lp

≤C1
∥
∥ f
∥
∥
Lps
. (1.3.11)

Conversely, there exists a constant C2 that depends on the parameters n,s, p,Φ , and
Ψ such that every tempered distribution f that satisfies

∥
∥SΦ0 ( f )

∥
∥
Lp +

∥
∥
∥

( ∞

∑
j=1

(2 js|ΔΨ
j ( f )|)2

) 1
2
∥
∥
∥
Lp

< ∞

is an element of the Sobolev space Lp
s with norm

∥
∥ f
∥
∥
Lps

≤C2

(∥
∥SΦ0 ( f )

∥
∥
Lp +

∥
∥
∥

( ∞

∑
j=1

(2 js|ΔΨ
j ( f )|)2

) 1
2
∥
∥
∥
Lp

)

. (1.3.12)

Proof. We denote byC a generic constant that depends on the parameters n,s, p,Φ ,
andΨ and that may vary in different occurrences. For a given tempered distribution
f we define another tempered distribution fs by setting

fs =
(

(1+ | · |2) s
2 f̂
)∨

,

so that we have ‖ f‖Lps = ‖ fs‖Lp if f ∈ Lp
s .
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We first assume that the expression on the right-hand side in (1.3.12) is finite, and
we show that the tempered distribution f lies in the space Lp

s by controlling the Lp

norm of fs by a multiple of this expression. We begin by writing

fs =
(

Φ̂ f̂s
)∨

+
(

(1− Φ̂) f̂s
)∨

,

and we plan to show that both quantities on the right are in Lp. Pick a smooth func-
tion with compact support η0 that is equal to 1 on the support of Φ̂ . It is a simple
fact that for all s ∈ R the function (1+ |ξ |2) s

2η0(ξ ) lies in Mp(Rn) (i.e., it is an Lp

Fourier multiplier). Since

(

Φ̂ f̂s
)∨

(x) =
{(

(1+ |ξ |2) s
2η0(ξ )

)
̂SΦ0 ( f )(ξ )

}∨
(x) , (1.3.13)

we have the estimate
∥
∥
(

Φ̂ f̂s
)∨∥∥

Lp ≤C‖SΦ0 ( f )‖Lp . (1.3.14)

We now introduce a smooth function η∞ that vanishes in a neighborhood of the
origin and is equal to 1 on the support of 1− Φ̂ . Using Theorem 6.2.7 in [156], we
easily see that the function

(1+ |ξ |2) s
2

|ξ |s η∞(ξ )

is inMp(Rn) (with norm depending on n, p, η∞, and s). Since

(

(1+ |ξ |2) s
2 (1− Φ̂(ξ )) f̂

)∨
(x) =

( (1+ |ξ |2) s
2η∞(ξ )

|ξ |s |ξ |s(1− Φ̂(ξ )) f̂
)∨

(x) ,

we obtain the estimate
∥
∥
(

(1− Φ̂) f̂s
)∨∥∥

Lp ≤C
∥
∥ f∞

∥
∥
Lp , (1.3.15)

where f∞ is another tempered distribution defined via

f∞ =
(|ξ |s(1− Φ̂(ξ )) f̂

)∨
.

We will show that the quantity ‖ f∞‖Lp is finite using Littlewood–Paley theory. To
achieve this, we introduce a smooth bump ̂ζ supported in the annulus 1

2 ≤ |ξ | ≤ 4
and equal to 1 on the support of Ψ̂ . Then we define θ̂(ξ ) = |ξ |ŝζ (ξ ) and introduce
the Littlewood–Paley operators

Δθ
j (g) = g∗θ2− j ,

where θ2− j(t) = 2 jnθ(2 jt). Recalling that

1− Φ̂(ξ ) = ∑
k≥1

Ψ̂(2−kξ ) ,
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we obtain that

f̂∞ =
∞

∑
j=1

|ξ |sΨ̂(2− jξ )̂ζ (2− jξ ) f̂ =
∞

∑
j=1

2 jsΨ̂(2− jξ )θ̂(2− jξ ) f̂

and hence

f∞ =
∞

∑
j=1

Δθ
j (2

jsΔΨ
j ( f )) ,

where all series converge inS ′(Rn). We now invoke the estimate

∥
∥
∥∑

j∈Z
Δθ

j ( f j)
∥
∥
∥
Lp(Rn)

≤C(n, p,θ)
∥
∥
∥

(

∑
j∈Z

| f j|2
)1

2
∥
∥
∥
Lp(Rn)

proved in Remark 6.1.3 in [156]. Setting f j = 2 jsΔΨ
j ( f ), we obtain

∥
∥ f∞

∥
∥
Lp ≤C

∥
∥
( ∞

∑
j=1

|2 jsΔΨ
j ( f )|2

) 1
2
∥
∥
Lp < ∞ . (1.3.16)

Combining (1.3.14), (1.3.15), and (1.3.16), we deduce the estimate in (1.3.12). This
argument also shows that f∞ is a function.

To obtain the converse inequality (1.3.11), we must essentially reverse our steps.
Here we assume that f ∈ Lp

s , and we show the validity of (1.3.11). First, we have the
estimate

∥
∥SΦ0 ( f )

∥
∥
Lp ≤C

∥
∥ fs
∥
∥
Lp =C

∥
∥ f
∥
∥
Lps
, (1.3.17)

since we can obtain the Fourier transform of SΦ0 ( f ) = Φ ∗ f by multiplying f̂s by
the Lp Fourier multiplier (1+ |ξ |2)− s

2 Φ̂(ξ ). Second, setting σ̂(ξ ) = |ξ |−sΨ̂(ξ ) and
letting Δσ

j be the Littlewood–Paley operator associated with the bump σ̂(2− jξ ), we
have

2 jsΨ̂(2− jξ ) f̂ = σ̂(2− jξ )|ξ |s f̂ = σ̂(2− jξ )|ξ |s(1− Φ̂(ξ )) f̂

when j ≥ 2, since Φ̂ vanishes on the support of σ̂(2− jξ ) when j ≥ 2. This yields
the operator identity

2 jsΔΨ
j ( f ) = Δσ

j ( f∞) . (1.3.18)

Using identity (1.3.18) we obtain

∥
∥
∥

( ∞

∑
j=2

|2 jsΔΨ
j ( f )|2

) 1
2
∥
∥
∥
Lp

=
∥
∥
∥

( ∞

∑
j=2

|Δσ
j ( f∞)|2

) 1
2
∥
∥
∥
Lp

≤C
∥
∥ f∞

∥
∥
Lp , (1.3.19)

where the last inequality follows by Theorem 6.1.2 in [156]. Notice that

f∞ =
(|ξ |s(1− Φ̂(ξ )) f̂

)∨
=
( |ξ |s(1− Φ̂(ξ ))

(1+ |ξ |2) s
2

f̂s
)∨
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and that the function |ξ |s(1− Φ̂(ξ ))(1+ |ξ |2)− s
2 is in Mp(Rn) by Theorem 6.2.7

in [156]. It follows that
∥
∥ f∞

∥
∥
Lp ≤C

∥
∥ fs
∥
∥
Lp =C

∥
∥ f
∥
∥
Lps
,

which, combined with (1.3.19), yields

∥
∥
∥

( ∞

∑
j=2

|2 jsΔΨ
j ( f )|2

) 1
2
∥
∥
∥
Lp

≤C
∥
∥ f
∥
∥
Lps
. (1.3.20)

Finally, we have

2sΔ1( f ) = 2s
(

Ψ̂( 12ξ )(1+ |ξ |2)− s
2 (1+ |ξ |2) s

2 f̂
)∨

= 2s
(

Ψ̂( 12ξ )(1+ |ξ |2)− s
2 f̂s

)∨
,

and since the function Ψ̂( 12ξ )(1+ |ξ |2)− s
2 being smooth with compact support lies

inMp(Rn), it follows that
∥
∥2sΔΨ

1 ( f )
∥
∥
Lp ≤C

∥
∥ fs
∥
∥
Lp =C

∥
∥ f
∥
∥
Lps
. (1.3.21)

Combining estimates (1.3.17), (1.3.20), and (1.3.21), we conclude the proof of
(1.3.11). �

1.3.3 Littlewood–Paley Characterization of Homogeneous
Sobolev Spaces

We now introduce the homogeneous Sobolev spaces
.
Lp
s . The main difference with

the inhomogeneous spaces Lp
s is that elements of

.
Lp
s may not themselves be elements

of Lp. Another point of differentiation is that elements of homogeneous Sobolev
spaces whose differences are polynomials are identified.

For the purposes of the following definition, for 1 < p < ∞ we define
.
Lp(Rn)

as the space of all elements in S ′(Rn)/P(Rn) such that every equivalence class
[

formed from the relationship u≡ v if u− v ∈P(Rn)
]

contains a unique represen-
tative that belongs to Lp(Rn). One defines the

.
Lp(Rn) norm of every element of

the equivalence class to be the Lp norm of the unique Lp representative. Under this
definition we have

∥
∥ f +P

∥
∥.
Lp =

∥
∥ f
∥
∥.
Lp =

∥
∥ f
∥
∥
Lp

whenever f ∈ Lp and P is a polynomial.

Definition 1.3.7. Let s be a real number, and let 1 < p < ∞. The homogeneous
Sobolev space

.
Lp
s (Rn) is defined as the space of all u in S ′(Rn)/P(Rn) for which

the well-defined distribution
(|ξ |sû)∨
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coincides with a function in
.
Lp(Rn). For distributions u in

.
Lp
s (Rn) we define

‖u‖.Lps =
∥
∥(| · |sû)∨∥∥.Lp(Rn)

. (1.3.22)

As noted earlier, to avoid working with equivalence classes of functions, we identify
two distributions in

.
Lp
s (Rn) whose difference is a polynomial. Under this identifica-

tion, the quantity in (1.3.22) is a norm.

Theorem 1.3.6 also has a homogeneous version.

Theorem 1.3.8. LetΨ satisfy (1.3.6), and let ΔΨ
j be the Littlewood–Paley operator

associated withΨ . Let s ∈ R and 1 < p < ∞. Then there exists a constant C1 that
depends only on n,s, p, andΨ such that for all f ∈ .

Lp
s (Rn) we have

∥
∥
∥

(

∑
j∈Z

(2 js|ΔΨ
j ( f )|)2

) 1
2
∥
∥
∥
Lp

≤C1
∥
∥ f
∥
∥.
Lps
. (1.3.23)

Conversely, there exists a constant C2 that depends on the parameters n,s, p, andΨ
such that every element f of S ′(Rn)/P(Rn) that satisfies

∥
∥
∥

(

∑
j∈Z

(2 js|ΔΨ
j ( f )|)2

) 1
2
∥
∥
∥
Lp

< ∞

lies in the homogeneous Sobolev space
.
Lp
s and we have

∥
∥ f
∥
∥.
Lps

≤C2

∥
∥
∥

(

∑
j∈Z

(2 js|ΔΨ
j ( f )|)2

) 1
2
∥
∥
∥
Lp
. (1.3.24)

Proof. The proof of the theorem is similar to but a bit simpler than that of Theorem
1.3.6. To obtain (1.3.23), we start with f ∈ .

Lp
s and note that

2 jsΔ j( f ) = 2 js(|ξ |s|ξ |−sΨ̂(2− jξ ) f̂
)∨

=
(

σ̂(2− jξ ) f̂s
)∨

= Δσ
j ( fs) ,

where σ̂(ξ ) = Ψ̂(ξ )|ξ |−s and Δσ
j is the Littlewood–Paley operator given on the

Fourier transform side by multiplication with the function σ̂(2− jξ ). We have

∥
∥
∥

(

∑
j∈Z

|2 jsΔΨ
j ( f )|2

) 1
2
∥
∥
∥
Lp

=
∥
∥
∥

(

∑
j∈Z

|Δσ
j ( fs)|2

) 1
2
∥
∥
∥
Lp

≤C
∥
∥ fs
∥
∥.
Lp =C

∥
∥ f
∥
∥.
Lps
,

where the last inequality follows from Theorem 6.1.2 in [156]. This proves (1.3.23).
Next we show that if the expression on the right-hand side in (1.3.24) is finite,

then the distribution f in S ′(Rn)/P(Rn) must lie in the homogeneous Sobolev
space

.
Lp
s with norm controlled by a multiple of this expression.
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Define Littlewood–Paley operators Δη
j given by convolution with η2− j , where η̂

is a smooth bump supported in the annulus 4
5 ≤ |ξ | ≤ 2 that satisfies

∑
k∈Z

η̂(2−kξ ) = 1, ξ �= 0 (1.3.25)

or, in operator form,
∑
k∈Z

Δη
k = I ,

where the convergence is in the sense ofS ′/P in view of Proposition 1.1.6(c). We
introduce another family of Littlewood–Paley operators Δθ

j given by convolution

with θ2− j , where θ̂(ξ ) = η̂(ξ )|ξ |s. Given f ∈S ′(Rn)/P , we set fs =
(|ξ |s f̂ )∨,

which is also an element of S ′(Rn)/P . In view of (1.3.25) we use Theorem 6.1.2
in [156] to obtain the existence of a polynomial Q such that

∥
∥ f
∥
∥.
Lps

=
∥
∥ fs−Q

∥
∥.
Lp ≤C

∥
∥
∥

(

∑
j∈Z

|Δη
j ( fs)|2

) 1
2
∥
∥
∥
Lp

=C
∥
∥
∥

(

∑
j∈Z

|2 jsΔθ
j ( f )|2

) 1
2
∥
∥
∥
Lp
.

Recalling the definition of Δ j (see the discussion before the statement of Theorem
1.3.6), we notice that the function

Ψ̂( 12ξ )+Ψ̂(ξ )+Ψ̂(2ξ )

is equal to 1 on the support of θ̂ (which is the same as the support of η). It follows
that

Δθ
j =

(

ΔΨ
j−1+ΔΨ

j +ΔΨ
j+1
)

Δθ
j .

We therefore have the estimate

∥
∥
∥

(

∑
j∈Z

|2 jsΔθ
j ( f )|2

) 1
2
∥
∥
∥
Lp

≤
1

∑
r=−1

∥
∥
∥

(

∑
j∈Z

|Δθ
j ΔΨ

j+r(2
js f )|2

) 1
2
∥
∥
∥
Lp
,

and, applying Proposition 6.1.4 in [156], we control the right-hand side of the pre-
ceding expression

(

and thus ‖ f‖.Lps
)

by a constant multiple of

∥
∥
∥

(

∑
j∈Z

|ΔΨ
j (2

js f )|2
) 1

2
∥
∥
∥
Lp
.

This proves that the homogeneous Sobolev norm of f is controlled by a multiple of
the expression in (1.3.24). In particular, the distribution f lies in the homogeneous
Sobolev space

.
Lp
s . This ends the proof of the converse direction and completes the

proof of the theorem. �
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Exercises

1.3.1. Let 1 < p < ∞ and s ∈ R. Show that the spaces
.
Lp
s and Lp

s are complete and
that the latter decrease as s increases.

1.3.2. (a) Let 1 < p < ∞ and s ∈ Z+. Suppose that f ∈ Lp
s (Rn) and that ϕ is in

S (Rn). Prove that ϕ f is also an element of Lp
s (Rn).

(b) Let v be a function whose Fourier transform is a bounded compactly supported
function. Prove that if f is in L2s (Rn), then so is v f .

1.3.3. Fix s > 0 and let α be a multi-index. Let δ0 be the Dirac mass at the origin
on Rn.
(a) If 0< s−|α|< n, show that ∂αδ0 ∈ Lp

−s whenever 1< p< n
n+|α |−s .

(b) If n≤ s−|α|, prove that ∂αδ0 ∈ Lp
−s for all p ∈ (1,∞).

[

Hint: Use Proposition 1.2.5.
]

1.3.4. Let I be the identity operator, I1 the Riesz potential of order 1, and Rj the
usual Riesz transform. Prove that

I =
n

∑
j=1

I1Rj∂ j ,

and use this identity to obtain Theorem 1.3.5(a) when s= 1.
[

Hint: Take the Fourier transform.
]

1.3.5. Let f be in Lp
s for some 1< p< ∞. Prove that ∂α f is in Lp

s−|α |.

1.3.6. Prove that for all C 1 functions f that are supported in a ball B we have

| f (x)| ≤ 1
ωn−1

∫

B
|∇ f (y)||x− y|−n+1 dy ,

where ωn−1 = |Sn−1|. For such functions obtain the local Sobolev inequality
∥
∥ f
∥
∥
Lq(B) ≤Cq,r,n

∥
∥∇ f

∥
∥
Lp(B) ,

where 1< p< q< ∞ and 1/p= 1/q+1/n.
[

Hint: Start from f (x) =
∫ ∞
0 ∇ f (x− tθ) ·θ dt and integrate over θ ∈ Sn−1.

]

1.3.7. Show that there is a constant C such that for all C 1 functions f that are
supported in a ball B we have

1
|B′|

∫

B′
| f (x)− f (z)|dz≤C

∫

B
|∇ f (y)||x− y|−n+1 dy

for all B′ balls contained in B and all x ∈ B′.
[

Hint: Start with f (z)− f (x) =
∫ 1
0 ∇ f (x+ t(z− x)) · (z− x)dt.

]
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1.3.8. Let 1< p< ∞ and s> 0. Prove that
.
Lp
s ∩Lp = Lp

s by showing that

‖ f‖Lps ≈ ‖ f‖Lp +‖ f‖.Lps .

[

Hint: Write (1+ |ξ |2) s
2 = (1+ |ξ |2) s

2 φ(ξ )+
{ (1+|ξ |2) s2

|ξ |s (1−φ(ξ ))
}|ξ |s for some

smooth compactly supported function φ equal to one on the ball B(0,1). Then show
that the term in the curly brackets is a Mihlin multiplier (i.e., it satisfies the hypothe-
ses of Theorem 6.2.7 in [156]) to deduce that ‖ f‖Lps is controlled by ‖ f‖Lp +‖ f‖.Lps .
Conversely, use that |ξ |s

(1+|ξ |2) s2
is also a Mihlin multiplier.

]

1.3.9. ([148], [285]) Prove that all Schwartz functions on Rn satisfy the estimate

∥
∥ f
∥
∥
Lq ≤

n

∏
j=1

∥
∥∂ j f

∥
∥1/n
L1 ,

where 1/q+1/n= 1.
[

Hint: Use induction beginning with the case n= 1. Assuming that the inequality is
valid for n−1, set I j(x1) =

∫

Rn−1 |∂ j f (x1,x′)|dx′ for j= 2, . . . ,n, where x= (x1,x′)∈
R×Rn−1 and I1(x′) =

∫

R1 |∂1 f (x1,x′)|dx1. Apply the induction hypothesis to obtain
∥
∥ f (x1, ·)

∥
∥
Lq′ ≤

n

∏
j=2

I j(x1)1/(n−1)

and use that | f |q ≤ I1(x′)1/(n−1)| f | and Hölder’s inequality to calculate ‖ f‖Lq .
]

1.3.10. Prove that there is a constant cn > 0 such that for all f ∈ L21(R
n) we have

∫

Rn

∫

Rn

| f (x+ t)+ f (x− t)−2 f (x)|2
|t|n+2 dxdt = cn

∫

Rn

n

∑
j=1

|∂ j f (x)|2 dx.

1.3.11. ([75]) Let 0≤ β < ∞, let g ∈ L2(Rn), and suppose

C0 =
∫

Rn
|ĝ(ξ )|2(1+ |ξ |)n( log(2+ |ξ |))−β dξ < ∞ .

(a) Prove that there is a constant C(n,β ,C0) such that for every q> 2 we have

∥
∥g
∥
∥
Lq(Rn)

≤C(n,β ,C0)q
β+1
2 .

(b) Conclude that for any compact subset K of Rn we have
∫

K
e|g(x)|

γ
dx< ∞

whenever γ < 2
β+1 .
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[

Hint: Part (a): For q > 2 control ‖g‖Lq(Rn) by ‖ĝ‖Lq′ (Rn)
and apply Hölder’s in-

equality with exponents 2
q′ and

2(q−1)
q−2 . Part (b): Expand the exponential in Taylor

series.
]

1.3.12. Suppose that m ∈ L2s (Rn) for some s> n
2 , and let λ > 0. Define the operator

Tλ by setting ̂Tλ ( f )(ξ ) =m(λξ ) f̂ (ξ ). Show that there exists a constantC=C(n,s)
such that for all f and u≥ 0 and λ > 0 we have

∫

Rn
|Tλ ( f )(x)|2 u(x)dx≤C‖m‖2L2s

∫

Rn
| f (y)|2M(u)(y)dy .

[

Hint: Prove that |Tλ ( f )(x)|2 ≤C‖m‖2L2s
∫

Rn
λ−n(1+4π2|λ−1(x−y)|2)−s| f (y)|2 dy

using the Cauchy-Schwarz inequality.
]

1.4 Lipschitz Spaces

Lipschitz spaces measure the degree of fractional smoothness of functions. Accord-
ing to the classical definition, a function f onRn is Lipschitz (or Hölder) continuous
of order γ ∈ (0,1) if there is a constant C < ∞ such that for all x,y ∈ Rn we have

| f (x+ y)− f (x)| ≤C|y|γ . (1.4.1)

Lipschitz norms are introduced to quantify the smoothness measured by the quan-
tity γ in (1.4.1), and Lipschitz spaces are defined in terms of these norms. In this
section we discuss analogs of condition (1.4.1) for γ > 1 and explore connections
with the Fourier transform and orthogonality. The main achievement of this section
is a characterization of Lipschitz spaces using Littlewood–Paley theory.

1.4.1 Introduction to Lipschitz Spaces

Definition 1.4.1. Let 0≤ γ < 1. A function f on Rn is said to be Lipschitz of order
γ if it is continuous and bounded, and satisfies (1.4.1). In this case, we set

∥
∥ f
∥
∥
Λγ (Rn)

=
∥
∥ f
∥
∥
L∞ + sup

x∈Rn
sup

h∈Rn\{0}

| f (x+h)− f (x)|
|h|γ

and we define the space

Λγ(Rn) = { f : Rn → C : continuous and ‖ f‖Λγ (Rn) < ∞}.
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We callΛγ(Rn) an inhomogeneous Lipschitz space of order γ . We note thatΛ0(Rn)=
L∞(Rn)∩C (Rn), where C (Rn) is the space of all continuous functions on Rn, and
the ‖ · ‖Λ0 norm is comparable with the L∞ norm; see Exercise 1.4.2.

Obviously, only constants satisfy

sup
x∈Rn

sup
h∈Rn\{0}

|h|−γ | f (x+h)− f (x)|< ∞

for γ > 1, and the preceding definition would not be applicable in this case. To extend
Definition 1.4.1 for indices γ ≥ 1, for h ∈ Rn we define the difference operator Dh
by setting

Dh( f )(x) = f (x+h)− f (x)

for a continuous function f : Rn → C. One easily verifies that

D2
h( f )(x) = Dh(Dh f )(x) = f (x+2h)−2 f (x+h)+ f (x),

D3
h( f )(x) = Dh(D2

h f )(x) = f (x+3h)−3 f (x+2h)+3 f (x+h)− f (x) ,

and in general, that Dk+1
h ( f ) = Dk

h(Dh( f )) is given by

Dk+1
h ( f )(x) =

k+1

∑
s=0

(−1)k+1−s
(
k+1
s

)

f (x+ sh) (1.4.2)

for a nonnegative integer k. See Exercise 1.4.3.

Definition 1.4.2. For γ > 0 define

∥
∥ f
∥
∥
Λγ

=
∥
∥ f
∥
∥
L∞ + sup

x∈Rn
sup

h∈Rn\{0}

|D[γ ]+1
h ( f )(x)|

|h|γ ,

where [γ ] denotes the integer part of γ , and set

Λγ =
{

f : Rn → C continuous : ‖ f‖Λγ < ∞
}

.

We call Λγ(Rn) an inhomogeneous Lipschitz space of order γ ∈ R+.

We note that functions in Λγ and
.
Λγ are required to be continuous, since this

does not necessarily follow from the definition when γ ≥ 1. This is because of the
axiom of choice, which implies the existence of a basis {vi}i∈I of the vector space
R over Q. Without loss of generality we may assume that 1 is an element of the
basis. Define a function f by setting f (1) = 1 and f (vi) =−1 if vi �= 1, and extend
f to R by linearity. Then f is everywhere discontinuous1 but Dh( f )(x) = f (h) for
all x,h ∈ R, and thus Dk

h( f ) = 0 for all k ≥ 2.

1 If vi �= 1, then vi is irrational. Let qk ∈ Q such that qk → vi as k → ∞. Then f (qk) = qk → vi as
k→ ∞ but f (vi) =−1 �= vi; thus, f is discontinuous at vi and by linearity everywhere else.
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We now define the homogeneous Lipschitz spaces.

Definition 1.4.3. For γ > 0 we define

∥
∥ f
∥
∥ .
Λγ

= sup
x∈Rn

sup
h∈Rn\{0}

|D[γ ]+1
h ( f )(x)|

|h|γ

and we let
.
Λγ be the space of all continuous functions f on Rn that satisfy

‖ f‖ .Λγ < ∞. We call
.
Λγ a homogeneous Lipschitz space of order γ .

We verify that elements of
.
Λγ have at most polynomial growth at infinity. Indeed,

identity (1.4.2) implies for all h ∈ Rn

Dk+1
h ( f − f (0))(0) =

k+1

∑
s=1

(−1)k+1−s
(
k+1
s

)

( f (sh)− f (0))

and thus

| f ((k+1)h)− f (0)| ≤
k

∑
s=1

(
k+1
s

)

| f (sh)− f (0)|+‖ f‖ .Λγ |h|
k+1

≤ 2k+1[ sup
s∈{1,...,k}

| f (sh)− f (0)|+‖ f‖ .Λγ |h|
k+1] .

Iterating, we obtain for all h ∈ Rn

| f ((k+1)2h)− f (0)| ≤ 2k+1[ sup
s∈{1,...,k}

| f (s(k+1)h)− f (0)|+‖ f‖ .Λγ |h|
k+1]

≤ 2k+1[2k+1 sup
s,s′∈{1,...,k}

| f (ss′h)− f (0)|+2‖ f‖ .Λγ |h|
k+1]

≤ (2k+1)2
[

sup
s∈{1,...,k2}

| f (sh)− f (0)|+‖ f‖ .Λγ |h|
k+1] ,

and thus by induction for all M ∈ Z+ and h ∈ Rn we deduce

| f ((k+1)Mh)− f (0)| ≤ (2k+1)M
[

sup
s∈{1,...,kM}

| f (sh)− f (0)|+‖ f‖ .Λγ |h|
k+1] .

It follows from this that

| f (h)− f (0)| ≤ (2k+1)M
[

sup
s∈{1,...,kM}

| f (s(k+1)−Mh)− f (0)|+‖ f‖ .Λγ
]

.

Given |h| > 1, there is an M ∈ Z+ such that ( k+1
k )M−1 < |h| ≤ ( k+1

k )M . Then, if
c(k) = (k+1)/ log2(

k+1
k ), we have

(2k+1)M = ( k+1
k )Mc(k) ≤ ( k+1

k )c(k)|h|c(k) .
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But f is continuous, so ‖ f‖L∞(B(0,1)) <∞, and consequently for all |h|> 1 we obtain

| f (h)− f (0)| ≤ ( k+1
k )c(k)

[

2‖ f‖L∞(B(0,1)) +‖ f‖ .Λγ
] |h|c(k) .

We conclude that functions in
.
Λγ have at most polynomial growth at infinity and

they can be thought of as elements ofS ′(Rn).
Since elements of

.
Λγ can be viewed as tempered distributions, we extend the

definition of Dk
h(u) to tempered distributions. For u ∈ S ′(Rn) we define another

tempered distribution Dk
h(u) via the identity

〈

Dk
h(u),ϕ

〉

=
〈

u,Dk
−h(ϕ)

〉

for all ϕ in the Schwartz class.
Constant functions f satisfy Dh( f )(x) = 0 for all h,x ∈ Rn, and therefore the

quantity ‖ · ‖ .Λγ is insensitive to constants. Similarly, the expressions D[γ ]+1
h ( f ) and

‖ f‖ .Λγ do not recognize polynomials of degree up to [γ ]. Moreover, polynomials are
the only continuous functions with this property; see Exercise 1.4.1. This means
that the quantity ‖ · ‖ .Λγ is not a norm but only a seminorm. It can be made a norm
if we consider equivalent classes of functions modulo polynomials. For this reason
we often view

.
Λγ as a subspace of S ′(Rn)/P[γ ](Rn), where Pd is the space of

polynomials of degree at most d for d ≥ 0.

Examples 1.4.4. Let a ∈ Rn, and let 0< γ < 1. Then the function h(x) = cos(x ·a)
lies in Λγ(Rn) since |h(x)−h(y)| ≤min(2, |a| |x− y|), and thus

|h(x)−h(y)| ≤ 21−γ |a|γ |x− y|γ .

Also, the function x �→ |x|γ lies in .
Λγ(Rn) since ||x+h|γ−|x|γ | ≤ |h|γ for 0< γ < 1.

Interesting examples of functions in Lipschitz spaces of higher order arise by the
powers of the absolute value. Consider, for instance, the function |x|2 on Rn: we
have Dh(|x|2) = 2|h|2, and thus |x|2 ∈ .

Λγ(Rn) if and only if γ ≥ 2.
Another example is given by the function |x|3/2 on Rn which has continuous

partial derivatives at any point: ∂ j|x|3/2 = 3
2x j|x|−1/2, j = 1, . . . ,n, on Rn (with a

value of 0 at the origin), while (|x|3/2)′ = 3
2 |x|1/2 when n = 1. We claim that the

function |x|3/2 lies in .
Λ 3/2(Rn) and that the functions x j|x|−1/2 lie in

.
Λ 1/2(Rn). To

verify these assertions, we first prove the inequality
∣
∣
∣
∣

x j+h j

|x+h| 12
− x j

|x| 12

∣
∣
∣
∣
≤C |h| 12 (1.4.3)

by considering the following three cases: (a) x = 0 and h �= 0, which is trivial; (b)
x �= 0 and 2|h| < |x|, in which case both functions are smooth and the mean value
theorem yields a bound of the form c |h| |x+ ξ |−1/2 for some |ξ | ≤ |h|, proving



38 1 Smoothness and Function Spaces

(1.4.3), since |x+ξ | ≥ |x|− |ξ | ≥ |x|− |h| ≥ |h|; and (c) 2|h| ≥ |x| and h �=−x �= 0,
in which case the left-hand side of (1.4.3) is bounded by

|x+h|1/2+ |x|1/2 ≤C|h|1/2.

Now for some ξ ,ξ ′ ∈ Rn, with |ξ |, |ξ ′| ≤ |h|, we have2

D2
h(|x|3/2) = ∇(|x|3/2)(x+h+ξ ) ·h−∇(|x|3/2)(x+ξ ′) ·h

and applying (1.4.3) we deduce that

|D2
h(|x|3/2)| ≤C |h|3/2.

We will make use of the following properties of the difference operators Dk
h.

Proposition 1.4.5. Let f be a C m function on Rn for some m ∈ Z+. Then for all
h= (h1, . . . ,hn) and x ∈ Rn the following identity holds:

Dh( f )(x) =
∫ 1

0

n

∑
j=1

h j (∂ j f )(x+ sh)ds . (1.4.4)

More generally, we have that

Dm
h ( f )(x) =
∫ 1

0
· · ·
∫ 1

0

n

∑
j1=1

· · ·
n

∑
jm=1

h j1 · · ·h jm(∂ j1 · · ·∂ jm f )(x+(s1+· · ·+sm)h)ds1 · · ·dsm. (1.4.5)

Consequently, if, for some γ ∈ (0,1), ∂α f lies in
.
Λγ for all multi-indices |α| = m,

then f lies in
.
Λm+γ .

Proof. Identity (1.4.4) is a consequence of the fundamental theorem of calculus
applied to the function t �→ f ((1− t)x+ t(x+h)) on [0,1], whereas identity (1.4.5)
follows from (1.4.4) by induction.

Now suppose that ∂α f lie in
.
Λγ for all multi-indices |α|= m. Apply Dh on both

sides of (1.4.5); using that

|Dh(∂ j1 · · ·∂ jm f )(x+(s1+· · ·+sm)h)| ≤
∥
∥∂ j1 · · ·∂ jm f

∥
∥ .
Λγ
|h|γ

we obtain

|Dm+1
h ( f )(x)| ≤ |h|m+γ

n

∑
j1=1

· · ·
n

∑
jm=1

∥
∥∂ j1 · · ·∂ jm f

∥
∥ .
Λγ

,

which proves that f lies in
.
Λm+γ . �

2 We used that g(b)− g(a) =
∫ 1
0 ∇g

(

(1− t)a+ tb
) · (b− a)dt = ∇g

(

(1− t∗)a+ t∗b
) · (b− a) for

all a,b ∈ Rn, for a C 1 function g on Rn and some t∗ ∈ (0,1), depending on g,a,b.
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1.4.2 Littlewood–Paley Characterization of Homogeneous
Lipschitz Spaces

We now characterize the homogeneous Lipschitz spaces using the Littlewood–Paley
operators Δ j. As in the previous section, we fix a radial Schwartz functionΨ whose
Fourier transform is nonnegative, is supported in the annulus 1− 1

7 ≤ |ξ | ≤ 2, is
equal to one on the annulus 1≤ |ξ | ≤ 2− 2

7 , and satisfies

∑
j∈Z

Ψ̂(2− jξ ) = 1 (1.4.6)

for all ξ �= 0. The Littlewood–Paley operators ΔΨ
j associated withΨ are given by

multiplication on the Fourier transform side by the smooth bump Ψ̂(2− jξ ). Since
a given f in

.
Λγ has polynomial growth at infinity, it is a tempered distribution, and

thus the convolutionΨ2− j ∗ f = ΔΨ
j ( f ) is a well-defined smooth function of at most

polynomial growth at infinity (cf. Theorem 2.3.20 in [156]).

Theorem 1.4.6. Let Ψ , ΔΨ
j be as above and γ > 0. Then there is a constant C =

C(n,γ ,Ψ) such that for all f in
.
Λγ we have the estimate

sup
j∈Z

2 jγ∥∥ΔΨ
j ( f )

∥
∥
L∞ ≤C

∥
∥ f
∥
∥ .
Λγ

. (1.4.7)

Conversely, given f inS ′(Rn) satisfying

sup
j∈Z

2 jγ∥∥ΔΨ
j ( f )

∥
∥
L∞ =C0 < ∞ , (1.4.8)

there is a polynomial Q such that | f (x)−Q(x)| ≤Cn,γC0(1+ |x|)[γ ]+1 for all x ∈Rn

and some constantCn,γ . Moreover, f −Q lies inC [γ ](Rn) and in
.
Λγ(Rn) and satisfies

∥
∥ f −Q

∥
∥ .
Λγ

≤C′(n,γ ,Ψ)C0 (1.4.9)

for some constant C′(n,γ ,Ψ).
In particular, functions in

.
Λγ(Rn) are in C [γ ](Rn).

Proof. We begin with the proof of (1.4.7). We first consider the case 0 < γ < 1,
which is very simple. Since each ΔΨ

j is given by convolution with a function with
mean value zero, for a function f ∈ .

Λγ and every x ∈ Rn we write

ΔΨ
j ( f )(x) =

∫

Rn
f (x− y)Ψ2− j(y)dy

=

∫

Rn
( f (x− y)− f (x))Ψ2− j(y)dy

= 2− jγ
∫

Rn

D−y( f )(x)
|y|γ |2 jy|γ2 jnΨ(2 jy)dy ,



40 1 Smoothness and Function Spaces

and the previous expression is easily seen to be controlled by a constant multiple
of 2− jγ‖ f‖ .Λγ . This proves (1.4.7) when 0 < γ < 1. In the case γ ≥ 1 we work a bit
harder.

Notice that for any u ∈S ′(Rn) we have the identity

D[γ ]+1
h (u) =

(

(e2πiξ ·h−1)[γ ]+1 û(ξ )
)∨

,

where inside the inverse Fourier transform we have the well-defined operation of
multiplication of a tempered distribution by a bounded smooth function.

Let us now fix f ∈ .
Λγ for some γ ≥ 1. To express ΔΨ

j ( f ) in terms of D[γ ]+1
h ( f ),

we need to introduce the function

ξ �→ Ψ̂(2− jξ )(e2πiξ ·h−1)−[γ ]−1 .

But as the support of Ψ̂(2− jξ ) may intersect the set of all ξ for which ξ · h is an
integer, the previous function is not well defined. To deal with this problem, we pick
a finite family of unit vectors {ur}r so that the annulus 1

2 ≤ |ξ | ≤ 2 is covered by the
union of sets

Ur =
{

ξ ∈ Rn : 1
2 ≤ |ξ | ≤ 2, 1

4 ≤ |ξ ·ur| ≤ 2
}

.

Then we write Ψ̂ as a finite sum of smooth functions ̂Ψ (r), where each ̂Ψ (r) is
supported inUr. Setting

hr, j =
1
8
2− jur ,

we note that for the given f ∈ .
Λγ we have f̂ ∈S ′(Rn) and

(Ψ (r))2− j ∗ f =
(
̂Ψ (r)(2− jξ )(e2πiξ ·hr, j −1)−[γ ]−1(e2πiξ ·hr, j −1)[γ ]+1 f̂ (ξ )

)∨

=
(
̂Ψ (r)(2− jξ )(e2πi2

− jξ · 18 ur −1)−[γ ]−1 ̂

D[γ ]+1
hr, j

( f )(ξ )
)∨

, (1.4.10)

and we observe that the exponential is never equal to 1 since

2− jξ ∈Ur =⇒ 1
32 ≤ |2− jξ · 18ur| ≤ 1

4 .

Since the function ̂ζ (r) = ̂Ψ (r)(ξ )(e2πiξ ·
1
8 ur − 1)−[γ ]−1 is well defined and smooth

with compact support, it follows that

(Ψ (r))2− j ∗ f = (ζ (r))2− j ∗D[γ ]+1
hr, j

( f ) ,

which implies that

∥
∥(Ψ (r))2− j ∗ f

∥
∥
L∞ ≤ ∥

∥(ζ (r))2− j
∥
∥
L1
∥
∥D[γ ]+1

2− j 1
8 ur

( f )
∥
∥
L∞ ≤ ∥

∥ζ (r)∥∥
L1
∥
∥ f
∥
∥ .
Λγ

2− jγ .
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Summing over the finite number of r, we obtain the estimate
∥
∥ΔΨ

j ( f )
∥
∥
L∞ ≤C

∥
∥ f
∥
∥ .
Λγ
2− jγ , (1.4.11)

where C depends on n,γ , andΨ but is independent of j.
We now prove the converse statement (1.4.9) assuming (1.4.8). We pick a Schwartz

function η on Rn whose Fourier transform is nonnegative, is supported in the annu-
lus 4

5 ≤ |ξ | ≤ 2, and satisfies

∑
j∈Z

η̂(2− jξ )2 = 1 (1.4.12)

for all ξ �= 0. Associated with η , we define the Littlewood–Paley operators Δη
j given

by multiplication on the Fourier transform side by the smooth bump η̂(2− jξ ). With
Ψ as in (1.4.6) we set

Θ̂(ξ ) = Ψ̂( 12ξ )+Ψ̂(ξ )+Ψ̂(2ξ ) ,

and we denote by ΔΘ
j = ΔΨ

j−1 + ΔΨ
j + ΔΨ

j+1 the Littlewood–Paley operator given

by multiplication on the Fourier transform side by the smooth bump Θ̂(2− jξ ). It
follows from (1.4.8) that for all j ∈ Z

∥
∥ΔΘ

j ( f )
∥
∥
L∞ ≤C0(2γ +1+2−γ)2− jγ . (1.4.13)

The fact that Θ̂ is equal to 1 on the support of η̂ , together with identity (1.4.12),
yields the operator identity

I = ∑
j∈Z

(Δη
j )

2 = ∑
j∈Z

ΔΘ
j Δ

η
j Δ

η
j ,

with convergence in the sense of the space S ′(Rn)/P(Rn); see (1.1.8).
Throughout the rest of the proof we fix f ∈S ′(Rn) such that (1.4.8) holds. For

L= 1,2,3, . . . we define

fL = ∑
| j|≤L

ΔΘ
j Δ

η
j Δ

η
j ( f ) = ∑

| j|≤L
ΔΘ

j ( f ) ∗ η2− j ∗ η2− j .

Obviously, fL is a C ∞ function for all L and fL → f inS ′/P as L→ ∞.
Since convolution is a linear operation, we have D[γ ]+1

h (F ∗G) = F ∗D[γ ]+1
h (G),

from which we deduce

D[γ ]+1
h ( fL) = ∑

| j|≤L
ΔΘ

j ( f ) ∗ D[γ ]+1
h (η2− j) ∗ η2− j

= ∑
| j|≤L

D[γ ]+1
h (ΔΘ

j ( f )) ∗ (η ∗η)2− j .
(1.4.14)
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Using (1.4.2), we easily obtain the estimate

∥
∥D[γ ]+1

h (ΔΘ
j ( f ))∗ (η ∗η)2− j

∥
∥
L∞ ≤ 2[γ ]+1∥∥η ∗η∥∥L1

∥
∥ΔΘ

j ( f )
∥
∥
L∞ . (1.4.15)

Let k = [γ ]. We first integrate over (s1, . . . ,sk+1) ∈ [0,1]k+1 the identity

n

∑
r1=1

· · ·
n

∑
rk+1=1

hr1 · · ·hrk+1(∂r1 · · ·∂rk+1η2− j)(x+(s1+ · · ·+ sk+1)h)

= 2 j(k+1)
n

∑
r1=1

· · ·
n

∑
rk+1=1

hr1 · · ·hrk+1(∂r1 . . .∂rk+1η)2− j(x+(s1+ · · ·+ sk+1)h) .

We then use (1.4.5), with m= k+1, and we integrate over x ∈ Rn to obtain

∥
∥Dk+1

h (η2− j)
∥
∥
L1 ≤ 2 j(k+1)|h|k+1

n

∑
r1=1

· · ·
n

∑
rk+1=1

∥
∥∂r1 · · ·∂rk+1η

∥
∥
L1 .

We deduce the validity of the estimate

∥
∥ΔΘ

j ( f ) ∗ D[γ ]+1
h (η2− j)∗η2− j

∥
∥
L∞

≤ ∥
∥ΔΘ

j ( f )
∥
∥
L∞
∥
∥D[γ ]+1

h (η2− j)∗η2− j
∥
∥
L1

≤ ∥
∥ΔΘ

j ( f )
∥
∥
L∞ |2 jh|[γ ]+1cγ ∑

|α |≤[γ ]+1

∥
∥∂αη

∥
∥
L1
∥
∥η
∥
∥
L1 .

(1.4.16)

Combining (1.4.15) and (1.4.16), we obtain

∥
∥ΔΘ

j ( f )∗D[γ ]+1
h (η2− j)∗η2− j

∥
∥
L∞ ≤Cη ,n,γ

∥
∥ΔΘ

j ( f )
∥
∥
L∞ min

(

1, |2 jh|[γ ]+1). (1.4.17)

We insert estimate (1.4.17) into (1.4.14) to deduce

∥
∥D[γ ]+1

h ( fL)
∥
∥
L∞

|h|γ ≤ Cn,γ

|h|γ ∑| j|≤L
2 jγ∥∥ΔΘ

j ( f )
∥
∥
L∞ min

(

2− jγ ,2 j([γ ]+1−γ)|h|[γ ]+1) ,

from which it follows that

∥
∥ fL
∥
∥ .
Λγ

≤ sup
h∈Rn\{0}

Cn,γ

|h|γ ∑| j|≤L
2 jγ∥∥ΔΘ

j ( f )
∥
∥
L∞ min

(

2− jγ ,2 j([γ ]+1−γ)|h|[γ ]+1)

≤ C′
n,γ sup

j∈Z
2 jγ∥∥ΔΘ

j ( f )
∥
∥
L∞ sup

h �=0
∑
j∈Z

min
(|h|−γ2− jγ ,2 j([γ ]+1−γ)|h|[γ ]+1−γ)

≤ C′′
n,γ sup

j∈Z
2 jγ∥∥ΔΘ

j ( f )
∥
∥
L∞

≤ C′′
n,γ(2

γ +1+2−γ)C0 , (1.4.18)

since the numerical series converges. In the last inequality we used (1.4.13).
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We now write fL = f 1L + f 2L , where

f 1L =
−1

∑
j=−L

ΔΘ
j ( f ) ∗ η2− j ∗ η2− j , f 2L =

L

∑
j=0

ΔΘ
j ( f ) ∗ η2− j ∗ η2− j .

It follows from (1.4.13) that withC′
0 = (2γ +1+2−γ)C0 we have

‖ΔΘ
j ( f ) ∗ η2− j ∗ η2− j‖L∞ ≤ ‖ΔΘ

j ( f )‖L∞‖η2− j ∗ η2− j‖L1 ≤C′
0‖η ∗η‖L12− jγ ;

thus, f 2L converges uniformly to a continuous and bounded function g2 as L → ∞.
Also, ∂β f 2L converges uniformly for all |β | < γ as L → ∞. Using Lemma 1.4.7 we
conclude that g2 is in C [γ ] and that ∂β f 2L converges uniformly to ∂βg2 as L→∞ for
all |β |< γ .

We now turn our attention to f 1L . Obviously, f
1
L is in C ∞ and

∂α f 1L =
−1

∑
j=−L

ΔΘ
j ( f ) ∗ 2 j|α |(∂αη)2− j ∗ η2− j .

Thus for all multi-indices α with |α| ≥ [γ ]+1 we have

sup
L∈Z+

‖∂α f 1L‖L∞ ≤
−1

∑
j=−∞

C′
02

− jγ2 j([γ ]+i)‖∂αη ∗η‖L1 = cα ,γC0 < ∞ . (1.4.19)

Let Pd
L be the Taylor polynomial of f 1L of degree d. By Taylor’s theorem we have

f 1L (x)−P[γ ]
L (x) = ([γ ]+1) ∑

|α |=[γ ]+1

xα

α!

∫ 1

0
(1− t)[γ ](∂α f 1L )(tx)dt . (1.4.20)

Using (1.4.19), with |α| ∈ {[γ ] + 1, . . . , [γ ] + |β |+ 2}, we obtain that the sequence
{∇(∂β ( f 1L −P[γ ]

L ))}∞L=1 is uniformly bounded on every ball B(0,K); thus, the se-
quence {∂β ( f 1L −P[γ ]

L )}∞L=1 is equicontinuous on every such ball. By the Arzelà–
Ascoli theorem, for everyK= 1,2, . . . and for every |β |< γ there is a subsequence of
{∂β ( f 1L −P[γ ]

L )}∞L=1 that converges uniformly on B(0,K). The diagonal subsequence
of these subsequences converges uniformly on every compact subset of Rn for all
|β |< γ . Hence, there is a continuous function g1 on Rn and a subsequence Lm of Z+

such that f 1Lm −P[γ ]
Lm → g1 uniformly on compact sets as m→ ∞ and ∂β ( f 1Lm −P[γ ]

Lm)
converges uniformly on compact sets for all |β | ≥ [γ ]. Using Lemma 1.4.7, stated at
the end of this proof, we deduce that g1 is C [γ ] and that ∂β ( f 1Lm −P[γ ]

Lm)→ ∂βg1 as
m→ ∞ for all |β | ≤ [γ ].

Set g = g1 + g2. It follows from (1.4.20) and from supL∈Z+ ‖ f 2L‖L∞ < ∞ that
|g(x)| ≤ Cn,γC0(1+ |x|)[γ ]+1 for all x ∈ Rn. Thus, g can be viewed as an element
of S ′, and one has fLm −P[γ ]

Lm → g in S ′(Rn). Since both g1 and g2 are in C [γ ], it
follows that so is g.
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But we know that fL → f in S ′/P as L → ∞; see (1.1.8). Thus, given ϕ in
S (Rn) whose Fourier transform is supported away from the origin, we have

〈 fLm −P[γ ]
Lm ,ϕ〉= 〈 fLm ,ϕ〉 → 〈 f ,ϕ〉 .

We also have 〈 fLm −P[γ ]
Lm ,ϕ〉 → 〈g,ϕ〉. Hence, 〈 f − g,ϕ〉 = 0 for all such ϕ , and

thus f − g is a distribution whose Fourier transform is supported at the origin. By
Proposition 2.4.1 in [156] we conclude that f −g is equal to a polynomial.

Using (1.4.18) we obtain that

|D[γ ]+1
h ( fL)(x)| ≤C′′′

n,γC0|h|γ

for all L and in particular for Lm. Since D
[γ ]+1
h (P[γ ]

Lm) = 0, letting m→ ∞, we deduce
that

|D[γ ]+1
h (g)(x)| ≤C′′′

n,γC0|h|γ

for all h �= 0. This proves (1.4.9). �

Lemma 1.4.7. Let hk, k= 1,2, . . . be C N functions onRn such that hk → h uniformly
on compact subsets of Rn as k→∞. Suppose that there exist finite constants Cα ,Mα
such that supk∈Z+ |∂αhk(x)| ≤ Cα(1+ |x|)Mα for all x ∈ Rn. Suppose also that for
all multi-indices |α| ≤ N, ∂αhk → uα uniformly on compact subsets of Rn to some
continuous function uα . Then h lies in C N and ∂αh= uα for all |α| ≤ N.

Proof. It follows from the hypothesis that h has at most polynomial growth at in-
finity, and thus it can be thought of as an element on S ′(Rn). Then ∂αh exist as
elements ofS ′(Rn) for all multi-indices α . We show that ∂αh= uα for all |α| ≤N.
Fix a function ϕ ∈S (Rn). Given |α| ≤ N and ε > 0, there exists an Rα > 0 such
that ∫

|x|≥Rα
|ϕ(x)|2Cα(1+ |x|)Mα dx< ε/4

and ∫

|x|≥Rα
|∂αϕ(x)|2Cα(1+ |x|)Mα dx< ε/4 .

On the compact ball B(0,Rα) we have that hk → h and ∂αhk → uα uniformly. Thus
there is a k0 ∈ Z+ such that for all k ≥ k0 we have

∫

|x|≤Rα
|ϕ(x)|dx ∥∥∂αhk−uα

∥
∥
L∞(B(0,Rα ))

< ε/4

and ∫

|x|≤Rα
|∂αϕ(x)|dx ∥∥hk−h

∥
∥
L∞(B(0,Rα ))

< ε/4 .

Combining these elements we obtain that for k ≥ k0
∫

Rn
|hk(x)−h(x)| |∂αϕ(x)|dx+

∫

Rn
|∂αhk(x)−uα(x)| |ϕ(x)|dx< ε
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and thus

|〈∂αh−uα ,ϕ〉| ≤ |〈∂αh−∂αhk,ϕ〉|+ |〈∂αhk−uα ,ϕ〉|
= |〈h−hk,∂αϕ〉|+ |〈∂αhk−uα ,ϕ〉|< ε .

Since ε was arbitrary, we deduce that ∂αh= uα , in particular h ∈ C N . �

Corollary 1.4.8. Any function f in
.
Λγ lies inC |β | for any |β |< γ , and its derivatives

∂β f lie in
.
Λγ−|β | and satisfy

∥
∥∂β f

∥
∥ .
Λγ−|β |

≤Cn,γ ,β
∥
∥ f
∥
∥ .
Λγ

. (1.4.21)

Proof. We proved in Theorem 1.4.6 that if f lies in
.
Λγ , then (1.4.7) holds, and that

(1.4.7) implies that there exists a polynomial Q such that f −Q lies in C [γ ] and in.
Λγ . It follows that f lies in C [γ ]. It also follows that Q lies in

.
Λγ , and this imposes a

restriction on the degree of Q; in view of the result of Exercise 1.4.1, we have that
Q must have degree at most [γ ]; thus, f ≡ f −Q in the space S ′/P[γ ], i.e., they
belong to the same equivalence class.

Let Ψ be a Schwartz function on Rn whose Fourier transform is supported in
1− 1

7 ≤ |ξ | ≤ 2 and is equal to one on 1 ≤ |ξ | ≤ 2− 2
7 . Given a multi-index β

with |β | < γ , we denote by Δ∂βΨ
j the Littlewood–Paley operator associated with

(∂βΨ)2− j . Then one has

ΔΨ
j (∂β f ) = 2 j|β |Δ∂βΨ

j ( f )

for all f ∈Λγ . One can easily check that

2 j(γ−|β |)ΔΨ
j (∂β f ) = 2 jγΔ∂βΨ

j (ΔΨ
j−1+ΔΨ

j +ΔΨ
j+1)( f ) ,

and from this it easily follows that

sup
j∈Z

2 j(γ−|β |)∥∥ΔΨ
j (∂β f )

∥
∥
L∞ ≤ (2γ +1+2−γ)

∥
∥∂βΨ

∥
∥
L1 sup

j∈Z
2 jγ∥∥ΔΨ

j ( f )
∥
∥
L∞ ,

which implies that ∂β f lies in
.
Λγ−|β | when |β |< γ . �

1.4.3 Littlewood–Paley Characterization of Inhomogeneous
Lipschitz Spaces

We have seen that quantities involving the Littlewood–Paley operators Δ j character-
ize homogeneous Lipschitz spaces. We now address the same question for inhomo-
geneous Lipschitz spaces.
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We fix a radial Schwartz functionΨ whose Fourier transform Ψ̂ is nonnegative,
is supported in the annulus 1− 1

7 ≤ |ξ | ≤ 2, is equal to one on the annulus 1≤ |ξ | ≤
2− 2

7 , and satisfies

∑
j∈Z

Ψ̂(2− jξ ) = 1

for all ξ �= 0. We define a Schwartz function Φ introduced by setting

Φ̂(ξ ) =

{

∑ j≤0Ψ̂(2− jξ ) when ξ �= 0,
1 when ξ = 0.

(1.4.22)

Note that Φ̂(ξ ) is equal to 1 for |ξ | ≤ 2− 2
7 and vanishes when |ξ | ≥ 2. Finally, we

define ΔΨ
j ( f ) =Ψ2− j ∗ f and SΦ0 ( f ) =Φ ∗ f for any f ∈S ′(Rn).

Theorem 1.4.9. Let Ψ , Φ , ΔΨ
j , and SΦ0 be as above, and let γ > 0. Then there is

a constant C = C(n,γ) such that for every function f in Λγ the following estimate
holds:

∥
∥SΦ0 ( f )

∥
∥
L∞ + sup

j≥1
2 jγ∥∥ΔΨ

j ( f )
∥
∥
L∞ ≤C

∥
∥ f
∥
∥
Λγ

. (1.4.23)

Conversely, suppose that a tempered distribution f satisfies
∥
∥SΦ0 ( f )

∥
∥
L∞ + sup

j≥1
2 jγ∥∥ΔΨ

j ( f )
∥
∥
L∞ < ∞ . (1.4.24)

Then f is in C [γ ], and the derivatives ∂α f are bounded for all |α| ≤ [γ ]. Moreover,
f lies in Λγ , and there is a constant C′ =C′(n,γ) such that

∥
∥ f
∥
∥
Λγ

≤C′
(∥
∥SΦ0 ( f )

∥
∥
L∞ + sup

j≥1
2 jγ∥∥ΔΨ

j ( f )
∥
∥
L∞

)

. (1.4.25)

In particular, functions in Λγ are in C [γ ] and have bounded derivatives up to
order [γ ]. Also,

∥
∥ f
∥
∥
Λγ

≈ ∑
|α |<[γ ]

∥
∥∂α f

∥
∥
L∞ + ∑

|α |=[γ ]

∥
∥∂α f

∥
∥
Λγ−[γ]

.

Proof. The proof of (1.4.23) is immediate since we trivially have
∥
∥SΦ0 ( f )

∥
∥
L∞ =

∥
∥ f ∗Φ∥∥L∞ ≤ ∥∥Φ∥∥L1

∥
∥ f
∥
∥
L∞ ≤C

∥
∥ f
∥
∥
Λγ

,

and, in view of estimate (1.4.11), we have

sup
j≥1

2 jγ∥∥ΔΨ
j ( f )

∥
∥
L∞ ≤C

∥
∥ f
∥
∥ .
Λγ

≤C
∥
∥ f
∥
∥
Λγ

.
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We may therefore focus on the proof of the converse estimate (1.4.25). We fix
f ∈ S ′(Rn) which satisfies (1.4.24). We introduce Schwartz functions ζ ,η such
that

̂ζ (ξ )2+
∞

∑
j=1

η̂(2− jξ )2 = 1

and such that η̂ is supported in the annulus 2
5 ≤ |ξ | ≤ 1 and ̂ζ is supported in the ball

|ξ | ≤ 1. We associate Littlewood–Paley operators Δη
j given by convolution with the

functions η2− j and we let ΔΘ
j = ΔΨ

j−1+ΔΨ
j +ΔΨ

j+1. Using this identity and (1.4.24)
we obtain for some C0 < ∞

‖ΔΘ
j ( f )‖L∞ ≤C02− jγ . (1.4.26)

Note that Φ̂ is equal to one on the support of ̂ζ . Moreover, ΔΘ
j Δ

η
j = Δη

j ; hence,
for our given tempered distribution f we have the identity

f = ζ ∗ζ ∗Φ ∗ f +
∞

∑
j=1

η2− j ∗η2− j ∗ΔΘ
j ( f ) , (1.4.27)

where the series converges in S ′(Rn), in view of the result of Exercise 1.1.5.
But this series also converges in L∞ since, in view of (1.4.26),

∥
∥η2− j ∗η2− j ∗ΔΘ

j ( f )‖L∞ ≤ ‖η ∗η‖L1‖ΔΘ
j ( f )‖L∞ ≤C02− jγ ,

and thus f is a continuous and bounded function. Also, for all |α|< γ we have
∥
∥∂α(η2− j ∗η2− j ∗ΔΘ

j ( f ))‖L∞ ≤ 2 j|α |‖∂α(η ∗η)‖L1‖ΔΘ
j ( f )‖L∞ ≤C02− j(γ−|α |) ,

and thus Proposition 1.1.5 yields that our given tempered distribution f is a C α

function whose derivatives are bounded for all |α|< γ .
It remains to show that the function f is in Λγ . With k = [γ ] we write

Dk+1
h ( f )
|h|γ = ζ ∗ Dk+1

h (ζ )
|h|γ ∗Φ ∗ f +

∞

∑
j=1

η2− j ∗ Dk+1
h (η2− j)

|h|γ ∗ΔΘ
j ( f ) . (1.4.28)

We use Proposition 1.4.5 to estimate the L∞ norm of the term ζ ∗ Dk+1
h (ζ )
|h|γ ∗Φ ∗ f in

the previous sum as follows:

∥
∥ζ ∗ Dk+1

h (ζ )
|h|γ ∗Φ ∗ f

∥
∥
L∞ ≤ ∥

∥
Dk+1
h (ζ )
|h|γ

∥
∥
L∞
∥
∥ζ ∗Φ ∗ f

∥
∥
L1

≤ C′min
( 1
|h|γ ,

|h|k+1

|h|γ
)∥
∥Φ ∗ f

∥
∥
L∞

≤ C′∥∥Φ ∗ f
∥
∥
L∞ .

(1.4.29)
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The corresponding L∞ estimates for ΔΘ
j ( f ) ∗ η2− j ∗Dk+1

h (η2− j) were already ob-
tained in (1.4.17). Indeed, we obtained

∥
∥Dk+1

h (η2− j)∗η2− j ∗ΔΘ
j ( f )

∥
∥
L∞ ≤Cη ,n,k

∥
∥ΔΘ

j ( f )
∥
∥
L∞ min

(

1, |2 jh|k+1) ,

from which it follows that

∥
∥
∥

∞

∑
j=1

η2− j ∗ Dk+1
h (η2− j)

|h|γ ∗ΔΘ
j ( f )

∥
∥
∥
L∞

≤ C′
(

sup
j≥1

2 jγ∥∥ΔΘ
j ( f )

∥
∥
L∞

) ∞

∑
j=1

2− jγ |h|−γmin
(

1, |2 jh|k+1)

≤ C′′
(

sup
j≥1

2 jγ∥∥ΔΨ
j ( f )

∥
∥
L∞

) ∞

∑
j=1

min
(|2 jh|−γ , |2 jh|k+1−γ)

≤ C′′′ sup
j≥1

2 jγ∥∥ΔΨ
j ( f )

∥
∥
L∞ ,

(1.4.30)

where the last series is easily seen to converge uniformly in h ∈ Rn since k+ 1 =
[γ ]+1> γ . We now combine (1.4.28) with estimates (1.4.29) and (1.4.30) to deduce
that our given distribution f is indeed an element of Λγ that satisfies (1.4.25). �

Next, we obtain consequences of the Littlewood–Paley characterization of Lip-
schitz spaces.

Corollary 1.4.10. For 0< γ < δ <∞ there is a constant Cn,γ ,δ <∞ such that for all
f ∈Λδ (Rn) we have

∥
∥ f
∥
∥
Λγ

≤Cn,γ ,δ
∥
∥ f
∥
∥
Λδ
.

In other words, the space Λδ (Rn) can be identified with a subspace of Λγ(Rn).

Proof. If 0< γ < δ and j ≥ 1, then we must have 2 jγ < 2 jδ , and thus

sup
j≥1

2 jγ∥∥ΔΨ
j ( f )

∥
∥
L∞ ≤ sup

j≥1
2 jδ∥∥ΔΨ

j ( f )
∥
∥
L∞ .

Adding ‖SΦ0 ( f )‖L∞ and using Theorem 1.4.9, we obtain the required conclusion. �

Corollary 1.4.11. Let γ > 0, and let α be a multi-index with |α|< γ .
Then any function f in Λγ lies in C α , ∂α f lies in Λγ−|α |, and the estimate

∥
∥∂α f

∥
∥
Λγ−|α|

≤Cn,γ ,α
∥
∥ f
∥
∥
Λγ

(1.4.31)

holds for some constant Cn,γ ,α .

Proof. Let α be a multi-index with |α| < γ . We denote by Δ∂αΨ
j the Littlewood–

Paley operator associated with the bump (∂αΨ)2− j . Let f ∈ Λγ . Theorem 1.4.9



1.4 Lipschitz Spaces 49

implies that f ∈ C α for all |α|< γ and ∂α f are bounded functions. It is straightfor-
ward to check the identity

ΔΨ
j (∂α f ) = 2 j|α |Δ∂αΨ

j ( f ) .

Using the support properties ofΨ , we obtain

2 j(γ−|α |)ΔΨ
j (∂α f ) = 2 jγΔ∂αΨ

j (ΔΨ
j−1+ΔΨ

j +ΔΨ
j+1)( f ) , (1.4.32)

and from this it easily follows that

sup
j≥1

2 j(γ−|α |)∥∥ΔΨ
j (∂α f )

∥
∥
L∞ ≤ (2γ+2)

∥
∥∂αΨ

∥
∥
L1 sup

j≥1
2 jγ∥∥ΔΨ

j ( f )
∥
∥
L∞ <∞ . (1.4.33)

Additionally, we note that

SΦ0 (∂α f ) =Φ ∗ (∂α f ) = ∂αΦ ∗ f = ∂αΦ ∗ (Φ+Ψ2−1)∗ f ,

since the function Φ̂+Ψ̂2−1 is equal to 1 on the support of ̂∂αΦ . Taking L∞ norms,
we obtain

∥
∥SΦ0 (∂α f )

∥
∥
L∞ ≤ ∥

∥∂αΦ
∥
∥
L1
(∥
∥Φ ∗ f

∥
∥
L∞ +

∥
∥Ψ2−1 ∗ f

∥
∥
L∞
)

≤ ∥
∥∂αΦ

∥
∥
L1

(∥
∥SΦ0 ( f )

∥
∥
∥
L∞

+ sup
j≥1

∥
∥ΔΨ

j ( f )
∥
∥
L∞

)

,

which, combined with (1.4.33), yields (1.4.31) for all |α|< γ . �

We end this section by noting that the specific choice of the functionsΨ andΦ is
unimportant in the Littlewood–Paley characterization of the spacesΛγ . In particular,
if we know (1.4.25) and (1.4.8) for some choice of Littlewood–Paley operators ΔΨ̃

j

and some Schwartz function Φ̃ whose Fourier transform is supported in a neighbor-
hood of the origin, then (1.4.25) and (1.4.8) would also hold for our fixed choice of
ΔΨ

j and Φ .

Exercises

1.4.1. Fix k ∈ Z+, α1, . . . ,αn ∈ Z+∪{0}, and γ > 0. Set |α|= α1+ · · ·+αn.
(a) Let Q(x) = xα11 · · ·xαnn be a monomial on Rn of degree |α|. Define C(k,m) =
∑k

j=0
(k
j

)

(−1)k− j jm for m ∈ Z+. Show that when |α| ≥ k for all x,h ∈ Rn we have

Dk
h(Q)(x) = ∑

β≤α
|β |≥k

(
α1

β1

)

· · ·
(
αn

βn

)

C(k, |β |) hβ xα−β
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and note that C(k, |β |) = 0 if |β | < k and C(k, |β |) = k! if |β | = k. Conclude that
D|α |
h (Q)(x)= |α|!Q(h). Also, observe thatDm

h (Q)(x)= 0 ifm> |α| for all h,x∈Rn.
(b) Show that a continuous function f satisfies Dk

h( f )(x) = 0 for all x,h in Rn if and
only if f is a polynomial of degree at most k−1.
(c) Prove that a polynomial lies in

.
Λγ if and only if it has degree at most [γ ].

[

Hint: (a) Use the Fourier transform. (b) One direction follows by part (a) while for
the converse direction, use a partition of unity as in the proof of Theorem 1.4.6 to
show that f̂ is supported at the origin and use Proposition 2.4.1 in [156].

]

1.4.2. (a) Show that for all continuous and bounded functions f we have
∥
∥ f
∥
∥
L∞ ≤ ∥∥ f∥∥Λ0

≤ 3
∥
∥ f
∥
∥
L∞ ;

hence, the space (Λ0(Rn),‖ · ‖Λ0) can be identified with (L∞(Rn)∩C (Rn),‖ · ‖L∞).
(b) Given a continuous function f on Rn, we define

∥
∥ f
∥
∥.
L∞ = inf

{‖ f + c‖L∞ : c ∈ C
}

.

Let
.
L∞(Rn) be the space of equivalence classes of continuous functions whose dif-

ference is a constant equipped with this norm. Show that for all continuous functions
f on Rn we have

∥
∥ f
∥
∥.
L∞ ≤ sup

x,h∈Rn
| f (x+h)− f (x)| ≤ 2

∥
∥ f
∥
∥.
L∞ .

In other words, (
.
Λ0(Rn),‖ · ‖ .Λ0

) can be identified with (
.
L∞(Rn)∩C (Rn),‖ · ‖.L∞).

1.4.3. Let f be a continuous function on Rn.
(a) Prove the identity

Dk+1
h ( f )(x) =

k+1

∑
s=0

(−1)k+1−s
(
k+1
s

)

f (x+ sh)

for all x,h ∈ Rn and k ∈ Z+∪{0}.
(b) Prove that Dk

hD
l
h = Dk+l

h for all k, l ∈ Z+∪{0} and all h ∈ Rn.
(c) Prove that Dh1Dh2 = Dh1+h2 −Dh1 −Dh2 for all h1,h2 ∈ Rn.
(d) Suppose that |D2

t ( f )(x)| ≤C|t|M for all t,x ∈ Rn and some constants C,M > 0.
Prove that

|DtDs( f )(x)| ≤C′(|t|+ |s|)M

for all t,s,x ∈ Rn and some other constant C′ that depends onC and M.

1.4.4. For x ∈ R let

f (x) =
∞

∑
k=1

2−ke2πi2
kx .
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(a) Prove that f ∈Λγ(R) for all 0< γ < 1.
(b) Prove that there is an A< ∞ such that

sup
x,t �=0

| f (x+ t)+ f (x− t)−2 f (x)| |t|−1 ≤ A ;

thus, f ∈Λ1(R).
(c) Show, however, that

sup
0<t<1

| f (t)− f (0)| t−1 = ∞ ;

thus, f is not differentiable at zero.
[

Hint: Part (c). Given t > 0, cut the series at k0 = [log2(4t)
−1].

]

1.4.5. For 0< a,b< ∞ and x ∈ R let

gab(x) =
∞

∑
k=1

2−ake2πi2
bkx .

Show that gab lies in Λ a
b
(R).

[

Hint: Use the estimate |DL
h(e

2πi2bkx)| ≤ Cmin
(

1,(2bk|h|)L), with L = [a/b] + 1,
and split the sum into two parts.

]

1.4.6. Let γ > 0, and let k = [γ ].
(a) Use Exercise 1.4.3(a) and (b) to prove that if |Dk

h( f )(x)| ≤C|h|γ for all x,h ∈Rn,
then |Dk+l

h ( f )(x)| ≤C2l |h|γ for all l ≥ 1.
(b) Conversely, assuming that for some l ≥ 1 we have

sup
x,h∈Rn

∣
∣Dk+l

h ( f )(x)
∣
∣

|h|γ < ∞ ,

show that f ∈ .
Λγ .[

Hint: Part (b): Use (1.4.10), but replace [γ ]+1 by k+ l.
]

1.4.7. Let Ψ and ΔΨ
j be as in Theorem 1.4.6. Define a continuous operator Qt by

setting
Qt( f ) = f ∗Ψt , Ψt(x) = t−nΨ(t−1x) .

Show that all tempered distributions f satisfy

sup
t>0

t−γ
∥
∥Qt( f )

∥
∥
L∞ ≈ sup

j∈Z
2 jγ∥∥ΔΨ

j ( f )
∥
∥
L∞

with the interpretation that if either term is finite, then it controls the other term by
a constant multiple of itself.
[

Hint: Observe that Qt = Qt(ΔΨ
j−2+ΔΨ

j−1+ΔΨ
j +ΔΨ

j+1) when 2− j ≤ t ≤ 21− j.
]
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1.4.8. (a) Let 0≤ γ < 1, and suppose that ∂ j f ∈
.
Λγ for all 1≤ j ≤ n. Show that

∥
∥ f
∥
∥ .
Λγ+1

≤
n

∑
j=1

∥
∥∂ j f

∥
∥ .
Λγ

,

and conclude that f ∈ .
Λγ+1.

(b) Let γ ≥ 0. If we have ∂α f ∈ .
Λγ for all multi-indices α with |α| = r, then there

is an estimate
∥
∥ f
∥
∥ .
Λγ+r

≤ ∑
|α |=r

∥
∥∂α f

∥
∥ .
Λγ

,

and thus f ∈ .
Λγ+r.

(c) Use Corollary 1.4.8 to obtain that the estimates in both (a) and (b) can be reversed
with the insertion of a multiplicative constant.
[

Hint: Part (a): Write

D2
h( f )(x) =

∫ 1

0

n

∑
j=1

[

∂ j f (x+ th+2h)−∂ j f (x+ th+h)
]

h j dt .

Part (b): Use induction.
]

1.4.9. Introduce the difference operator

Dβ ( f )(x) =
[∫

Rn

|D[β ]+1
y ( f )(x)|2
|y|n+2β dy

] 1
2
,

where β > 0. Show that for some constant c0(n,β ) we have

∥
∥Dβ ( f )

∥
∥2
L2(Rn)

= c0(n,β )
∫

Rn
| f̂ (ξ )|2 |ξ |2β dξ

for all functions f in the Sobolev space
.
L2β (R

n).

1.4.10. Suppose that a continuous function f (x) on the real line satisfies:

|D2
h( f )(x)| ≤C |h|1+γ

for some γ ∈ (0,1) and all x,h ∈R. Follow the steps below to show, without appeal-
ing to Theorem 1.4.6, that f is differentiable.
(a) The hypothesis implies that |D2h( f )(x)−2Dh( f )(x+ ih)| ≤C |h|1+γ for i= 0,1.
Iterate to obtain |D2 jh( f )(x)−2 jDh( f )(x+ ih)| ≤Cγ |2 jh|1+γ for all 0≤ i< 2 j.
(b) Given a positive integer m find a j such that 2 j−1 ≤ m< 2 j and use the estimate
in part (a) to conclude that |Dh( f )(x+mh)−Dh( f )(x)| ≤ 2γ+1Cγ |mh|γ |h| for all
integers m.
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(c) Use the result of Exercise 1.4.3(d) and a telescoping argument to conclude that
f (x+nh)− f (x) = n( f (x+h)− f (x))+O(|nh|1+γ). Conclude that for all h �= 0 and
n ∈ Z\{0} we have

∣
∣
∣
∣

f (x+h)− f (x)
h

− f (x+h/n)− f (x)
h/n

∣
∣
∣
∣
≤C′′|h|γ .

(d) Deduce that for all nonzero rationals h,h′ and all x ∈ R we have

f (x+h)− f (x)
h

− f (x+h′)− f (x)
h′

= O(|h|γ + |h′|γ).

Use the continuity of f to extend this identity to all reals and obtain that f (x+h)− f (x)
h

satisfies the Cauchy criterion.

HISTORICAL NOTES

The strong type Lp → Lq estimates in Theorem 1.2.3 were obtained by Hardy and Littlewood
[182] (see also [183]) when n = 1 and by Sobolev [319] for general n. The weak type estimate
L1 → L

n
n−s ,∞ first appeared in Zygmund [376]. The proof of Theorem 1.2.3 using estimate (1.2.10) is

taken from Hedberg [188]. The best constants in this theorem when p= 2n
n+s , q=

2n
n−s , and 0< s< n

were precisely evaluated by Lieb [246]. A generalization of Theorem 1.2.3 for nonconvolution
operators was obtained by Folland and Stein [141].

The Riesz potentials were systematically studied by Riesz [304] on Rn, although their one-
dimensional version appeared in earlier work of Weyl [368]. The Bessel potentials were introduced
by Aronszajn and Smith [7] and by Calderón [53], who was the first to observe that the potential
space L p

s (i.e., the Sobolev space Lp
s ) coincides with the space Lp

k given in the classical Defini-
tion 1.3.1 when s = k is an integer. Theorem 1.3.5 is due to Sobolev [319] when s is a positive
integer. The case p= 1 of Sobolev’s theorem (Exercise 1.3.9) was later obtained independently by
Gagliardo [148] and Nirenberg [285]. We refer to the books of Adams [2], Lieb and Loss [247],
and Maz’ya [260] for a more systematic study of Sobolev spaces and their use in analysis.

An early characterization of Lipschitz spaces using Littlewood–Paley type operators (built from
the Poisson kernel) appears in the work of Hardy and Littlewood [184]. These and other charac-
terizations were obtained and extensively studied in higher dimensions by Taibleson [335], [336],
[337] in his extensive study. Lipschitz spaces can also be characterized via mean oscillation over
cubes. This idea originated in the simultaneous but independent work of Campanato [62], [63] and
Meyers [266] and led to duality theorems for these spaces. Incidentally, the predual of the space.
Λα is the Hardy space Hp, with p= n

n+α , as shown by Duren, Romberg, and Shields [128] for the
unit circle and by Walsh [363] for higher-dimensional spaces; see also Fefferman and Stein [139].
We refer to the book of Garcı́a-Cuerva and Rubio de Francia [150] for a nice exposition of these
results. An excellent expository reference on Lipschitz spaces is the article of Krantz [229]. The
solution to Exercise 1.4.10 was suggested by T. Tao.



Chapter 2
Hardy Spaces, Besov Spaces,
and Triebel–Lizorkin Spaces

The main function spaces we study in this chapter are Hardy spaces which measure
smoothness within the realm of rough distributions. Hardy spaces also serve as a
substitute for Lp when p < 1. We also take a quick look at Besov–Lipschitz and
Triebel–Lizorkin spaces, which provide an appropriate framework that unifies the
subject of function spaces.

One of the main achievements of this chapter is the characterization of these
spaces using Littlewood–Paley theory. Another major accomplishment of this chap-
ter is the atomic characterization of these function spaces. This is obtained from the
Littlewood–Paley characterization of these spaces in a single way for all of them.

2.1 Hardy Spaces

The Hardy spaces Hp(Rn), 0 < p < ∞, are spaces of distributions which become
more singular as p decreases. These function spaces have remarkable similarities to
Lp and, in many ways, serve as a substitute for Lp when p< 1. In previous sections,
we have been able to characterize Lp spaces, Sobolev spaces, and Lipschitz spaces
using Littlewood–Paley theory, and it should not come as a surprise that a similar
characterization is available for the Hardy spaces as well.

There exists an abundance of equivalent characterizations for Hardy spaces, of
which only a few representative ones are discussed in this section. A reader inter-
ested in going through the material quickly may define the Hardy space Hp as the
space of all tempered distributions f modulo polynomials for which

∥
∥ f
∥
∥
Hp =

∥
∥
∥

(

∑
j∈Z

|Δ j( f )|2
) 1

2
∥
∥
∥
Lp

< ∞ (2.1.1)

whenever 0 < p ≤ 1. An atomic decomposition for Hardy spaces can be obtained
from this definition (see Section 2.3), and once this is available, the analysis of
these spaces is significantly simplified. For historical reasons, however, we choose
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56 2 Hardy Spaces, Besov Spaces, and Triebel–Lizorkin Spaces

to define Hardy spaces using a more classical approach, and, as a result, we have to
go through a considerable amount of work to obtain the characterization in (2.1.1).

2.1.1 Definition of Hardy Spaces

To give the definition of Hardy spaces on Rn, we need some background. We say
that a tempered distribution v is bounded if ϕ ∗v∈ L∞(Rn)whenever ϕ is inS (Rn).
We observe that if v is a bounded tempered distribution and h ∈ L1(Rn), then the
convolution h∗ v can be defined as a distribution via the convergent integral

〈

h∗ v,ϕ〉= 〈ϕ̃ ∗ v, h̃〉=
∫

Rn
(ϕ̃ ∗ v)(x)h̃(x)dx,

where ϕ is a Schwartz function and ϕ̃(x) = ϕ(−x), h̃(x) = h(−x).
The Poisson kernel P is the function

P(x) =
Γ ( n+1

2 )

π n+1
2

1

(1+ |x|2) n+1
2

. (2.1.2)

For t > 0, let Pt(x) = t−nP(t−1x). If v is a bounded tempered distribution, then Pt ∗v
is a well-defined distribution, since Pt is in L1. We claim that Pt ∗ v can be identified
with a well-defined bounded function. To see this, write 1= ϕ̂(ξ )+1− ϕ̂(ξ ), where
ϕ̂ ∈S (Rn) is equal to 1 in a neighborhood of the origin. Then δ0 = ϕ +(δ0−ϕ)
and

Pt ∗ v= Pt ∗ (ϕ ∗ v)+Pt ∗ (δ0−ϕ)∗ v .
Since Pt lies in L1 and ϕ ∗ v in L∞, it follows that Pt ∗ (ϕ ∗ v) is a bounded function.
Also the Fourier transform of Pt ∗(δ0−ϕ) is e−2πt|ξ |(1− ϕ̂(ξ ))which is a Schwartz
function. Thus, Pt ∗ (δ0−ϕ) is also a Schwartz function, and since v is a bounded
distribution, it follows that Pt ∗(δ0−ϕ)∗v is a bounded function. These observations
prove that Pt ∗ v is a bounded function, whenever v is a bounded distribution.

An important property of bounded tempered distributions f is that

Pt ∗ f → f inS ′(Rn) as t → 0. (2.1.3)

For this, see Exercise 2.1.4.

Definition 2.1.1. Let f be a bounded tempered distribution onRn and let 0< p<∞.
We say that f lies in the Hardy space Hp(Rn) if the Poisson maximal function

M( f ;P)(x) = sup
t>0

|(Pt ∗ f )(x)| (2.1.4)

lies in Lp(Rn). If this is the case, we set
∥
∥ f
∥
∥
Hp =

∥
∥M( f ;P)

∥
∥
Lp .



2.1 Hardy Spaces 57

It is quite easy to see that the Dirac mass δ0 does not belong in any Hardy space;
indeed, δ0 ∗Pt = Pt and supt>0Pt(x) is comparable to |x|−n which does not lie in
Lp(Rn) for any p. However, the difference of Dirac masses δ1− δ−1 lies in Hp(R)
for 1/2< p< 1. To see this, notice that

sup
t>0

∣
∣
∣(δ1 ∗Pt)(x)− (δ−1 ∗Pt)(x)

∣
∣
∣= sup

t>0

4|x|
π

t
(t2+ |x−1|2)(t2+ |x+1|2) . (2.1.5)

Suppose that |x+1|< |x−1|, i.e., x< 0. Then we have

sup
t≤|x+1|

t |x|
(t2+ |x−1|2)(t2+ |x+1|2) ≈ sup

t≤|x+1|

t |x|
|x−1|2|x+1|2 =

|x|
|x−1|2|x+1| .

Also,

sup
|x+1|≤t≤|x−1|

t |x|
(t2+ |x−1|2)(t2+ |x+1|2) ≈ sup

|x+1|≤t≤|x−1|

t |x|
|x−1|2t2 =

|x|
|x−1|2|x+1| ,

while

sup
t≥|x−1|

t |x|
(t2+ |x−1|2)(t2+ |x+1|2) ≈ sup

t≥|x−1|

t |x|
t4

=
|x|

|x−1|3 .

Thus (2.1.5) is comparable to |x|
|x−1|2|x+1| for x < 0 and analogously to |x|

|x+1|2|x−1| for
x> 0. Consequently, (2.1.5) lies in Lp(R) if and only if 1/2< p< 1.

At this point we don’t know whether the Hp spaces coincide with any other
known spaces for some values of p. In the next theorem we show that this is the
case when 1< p< ∞.
Theorem 2.1.2. (a) Let 1< p< ∞. Then every bounded tempered distribution f in
Hp is an element of Lp. Moreover, there is a constant Cn,p such that for all such f
we have

∥
∥ f
∥
∥
Lp ≤

∥
∥ f
∥
∥
Hp ≤Cn,p

∥
∥ f
∥
∥
Lp ,

and therefore Hp(Rn) coincides with Lp(Rn).
(b) When p = 1, every element of H1 is an integrable function. In other words,
H1(Rn)⊆ L1(Rn) and for all f ∈ H1 we have

∥
∥ f
∥
∥
L1 ≤

∥
∥ f
∥
∥
H1 . (2.1.6)

Proof. (a) Let f ∈ Hp(Rn) for some 1 < p < ∞. The set {Pt ∗ f : t > 0} lies in a
multiple of the unit ball of Lp(Rn), which is the dual space of the separable Banach
space Lp′(Rn), and hence it is sequentially compact by the Banach–Alaoglu theo-
rem. Therefore, there exists a sequence t j → 0 such that Pt j ∗ f converges to some Lp

function f0 in the weak∗ topology of Lp. On the other hand, in view of (2.1.3), Pt j ∗ f
in S ′(Rn) as t j → 0, and thus the bounded tempered distribution f coincides with
the Lp function f0. Since the family {Pt}t>0 is an approximate identity, Theorem
1.2.19 in [156] gives that

∥
∥Pt ∗ f − f

∥
∥
Lp → 0 as t → 0,
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from which it follows that
∥
∥ f
∥
∥
Lp ≤

∥
∥sup

t>0
|Pt ∗ f |∥∥Lp =

∥
∥ f
∥
∥
Hp . (2.1.7)

The converse inequality is a consequence of the fact that

sup
t>0

|Pt ∗ f | ≤M( f ) ,

whereM is the Hardy–Littlewood maximal operator. (See Corollary 2.1.12 in [156].)
(b) The case p = 1 requires only a small modification of the case p > 1. We

embed L1 in the space of finite Borel measures M which is the dual of the separa-
ble space C∞

00(R
n) of all continuous functions on Rn that vanish at infinity. By the

Banach-Alaoglu theorem, the unit ball ofM is weak∗ sequentially compact, and we
can extract a sequence t j → 0 such that Pt j ∗ f converges to some measure μ in the
topology of measures. In view of (2.1.3), it follows that the distribution f can be
identified with the measure μ .

It remains to show that μ is absolutely continuous with respect to Lebesgue mea-
sure, which would imply that it coincides with some L1 function. We show that μ is
absolutely continuous with respect to Lebesgue measure by showing that for all sub-
sets E of Rn we have |E|= 0 =⇒ |μ(E)|= 0. Since supt>0 |Pt ∗ f | lies in L1(Rn),
given ε > 0, there exists a δ > 0 such that for any measurable subset F of Rn we
have

|F |< δ =⇒
∫

F
sup
t>0

|Pt ∗ f |dx< ε .

Given E with |E|= 0, we can find an open setU such that E ⊆U and |U |< δ . Let
us denote by C00(U) the space of continuous functions g(x) that are supported inU
and tend to zero as |x| → ∞. Then for any g in C00(U) we have

∣
∣
∣
∣

∫

Rn
gdμ

∣
∣
∣
∣
= lim

j→∞

∣
∣
∣
∣

∫

Rn
g(x)(Pt j ∗ f )(x)dx

∣
∣
∣
∣

≤ ∥
∥g
∥
∥
L∞

∫

U
sup
t>0

|(Pt ∗ f )(x)|dx

< ε
∥
∥g
∥
∥
L∞ .

Let |μ | be the total variation of μ . Then we have (see [190] (20.49))

|μ |(U) =
∫

U
1d|μ |= sup

{∣
∣
∣
∣

∫

Rn
gdμ

∣
∣
∣
∣
: g ∈ C00(U),

∥
∥g
∥
∥
L∞ ≤ 1

}

,

which implies |μ |(U) < ε . Since ε was arbitrary, it follows that |μ |(E) = 0 and
thus μ(E) = 0; hence μ is absolutely continuous with respect to Lebesgue measure.
Finally, (2.1.6) is a consequence of (2.1.7), which is also valid for p= 1. �
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We may wonder whether H1 coincides with L1. We show in Corollary 2.4.8 that
elements of H1 have integral zero; thus H1 is a proper subspace of L1.

2.1.2 Quasi-norm Equivalence of Several Maximal Functions

We now obtain some characterizations of these spaces.

Definition 2.1.3. Let a,b> 0. LetΦ be a Schwartz function and let f be a tempered
distribution on Rn. We define the smooth maximal function of f with respect to Φ
as

M( f ;Φ)(x) = sup
t>0

|(Φt ∗ f )(x)| .

We define the nontangential maximal function (with aperture a) of f with respect to
Φ as

M∗
a( f ;Φ)(x) = sup

t>0
sup
y∈Rn

|y−x|≤at

|(Φt ∗ f )(y)| .

We also define the auxiliary maximal function

M∗∗
b ( f ;Φ)(x) = sup

t>0
sup
y∈Rn

|(Φt ∗ f )(x− y)|
(1+ t−1|y|)b , (2.1.8)

and we observe that

M( f ;Φ)≤M∗
a( f ;Φ)≤ (1+a)bM∗∗

b ( f ;Φ) (2.1.9)

for all a,b > 0. We note that if Φ is merely integrable, for example, if Φ is the
Poisson kernel, the maximal functions M( f ;Φ), M∗

a( f ;Φ), and M∗∗
b ( f ;Φ) are well

defined only for bounded tempered distributions f on Rn.
For a fixed positive integer N and a Schwartz function ϕ we define the quantity

NN(ϕ) =
∫

Rn
(1+ |x|)N ∑

|α |≤N+1
|∂αϕ(x)|dx . (2.1.10)

We now define
FN =

{

ϕ ∈S (Rn) : NN(ϕ)≤ 1
}

, (2.1.11)

and we also define the grand maximal function of f (with respect to N) as

MN( f )(x) = sup
ϕ∈FN

M∗
1( f ;ϕ)(x) .

It is a fact that all the maximal functions of the preceding subsection have compa-
rable Lp quasi-norms for all 0< p<∞. This is the essence of the following theorem.
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Theorem 2.1.4. Let 0< p< ∞. Then the following statements are valid:
(a) There exists a Schwartz function Φo with

∫

RnΦo(x)dx= 1 such that
∥
∥M( f ;Φo)

∥
∥
Lp ≤ 500

∥
∥ f
∥
∥
Hp (2.1.12)

for all bounded distributions f ∈S ′(Rn).
(b) For every a> 0 and every Φ inS (Rn) there exists C2(n, p,a,Φ)< ∞ such that

∥
∥M∗

a( f ;Φ)
∥
∥
Lp ≤C2(n, p,a,Φ)

∥
∥M( f ;Φ)

∥
∥
Lp (2.1.13)

for all distributions f ∈S ′(Rn).
(c) For every a > 0, b > n/p, and every Φ in S (Rn) there exists a constant
C3(n, p,a,b,Φ)< ∞ such that

∥
∥M∗∗

b ( f ;Φ)
∥
∥
Lp ≤C3(n, p,a,b,Φ)

∥
∥M∗

a( f ;Φ)
∥
∥
Lp (2.1.14)

for all distributions f ∈S ′(Rn).
(d) For every b > 0 and every Φ in S (Rn) with

∫

RnΦ(x)dx = 1 there exists a
constant C4(b,Φ)< ∞ such that if N = [b]+1 we have

∥
∥MN( f )

∥
∥
Lp ≤C4(b,Φ)

∥
∥M∗∗

b ( f ;Φ)
∥
∥
Lp (2.1.15)

for all distributions f ∈S ′(Rn).
(e) For every positive integer N there exists a constant C5(n,N) such that every
tempered distribution f with

∥
∥MN( f )

∥
∥
Lp <∞ is a bounded distribution and satisfies

∥
∥ f
∥
∥
Hp ≤C5(n,N)

∥
∥MN( f )

∥
∥
Lp , (2.1.16)

that is, it lies in the Hardy space Hp.

Choosing Φ =Φo in parts (b), (c), and (d), n
p < b< [ np ]+1, and N = [ np ]+1, we

conclude that for bounded distributions f we have
∥
∥ f
∥
∥
Hp ≈

∥
∥MN( f )

∥
∥
Lp .

Moreover, for any Schwartz function Φ with
∫

RnΦ(x)dx= 1 and any bounded dis-
tribution f inS ′(Rn), the following quasi-norms are equivalent

∥
∥ f
∥
∥
Hp ≈

∥
∥M( f ;Φ)

∥
∥
Lp ,

with constants that depend only on Φ ,n, p.
Before we begin the proof of Theorem 2.1.4, we state and prove a useful lemma.

Lemma 2.1.5. Let m ∈ Z+ and let Φ in S (Rn) satisfy
∫

RnΦ(x)dx= 1. Then there
exists a constant C0(Φ ,m) such that for anyΨ in S (Rn), there are Schwartz func-
tionsΘ (s), 0≤ s≤ 1, with the properties

Ψ(x) =
∫ 1

0
(Θ (s) ∗Φs)(x)ds (2.1.17)
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and ∫

Rn
(1+ |x|)m|Θ (s)(x)|dx≤C0(Φ ,m)smNm(Ψ). (2.1.18)

Proof. We start with a smooth function ζ supported in [0,1] that satisfies

0≤ ζ (s)≤ 2sm

m!
for all 0≤ s≤ 1 ,

ζ (s) =
sm

m!
for all 0≤ s≤ 1

2
,

drζ
dtr

(1) = 0 for all 0≤ r ≤ m+1 .

We define

Θ (s) = Ξ (s)− dm+1ζ
dsm+1 (s)

m+1 terms
︷ ︸︸ ︷

Φs ∗ · · · ∗Φs ∗Ψ , (2.1.19)

where

Ξ (s) = (−1)m+1ζ (s)
dm+1

dsm+1

(
m+2 terms

︷ ︸︸ ︷

Φs ∗ · · · ∗Φs

)

∗Ψ ,

and we claim that (2.1.17) holds for this choice of Θ (s). To verify this assertion, we
apply m+1 integration by parts to write

∫ 1

0
Θ (s) ∗Φs ds=

∫ 1

0
Ξ (s) ∗Φs ds+

dmζ
dsm

(0) lim
s→0+

(
m+2 terms
︷ ︸︸ ︷

Φ ∗ · · · ∗Φ )s ∗Ψ

− (−1)m+1
∫ 1

0
ζ (s)

dm+1

dsm+1

(
m+2 terms

︷ ︸︸ ︷

Φs ∗ · · · ∗Φs

)

∗Ψ ds ,

noting that all the boundary terms vanish except for the term at s = 0 in the first
integration by parts. The first and the third terms in the previous expression on the
right add up to zero, while the second term is equal toΨ , since Φ has integral one.
This implies that the family {(Φ ∗ · · · ∗Φ)s}s>0 is an approximate identity as s→ 0.
Therefore, (2.1.17) holds.

We now prove estimate (2.1.18). Let Ω be the (m+1)-fold convolution of Φ . For
the second term on the right in (2.1.19), we note that the (m+1)st derivative of ζ (s)
vanishes on

[

0, 12
]

, so that we may write

∫

Rn
(1+ |x|)m

∣
∣
∣
dm+1ζ (s)
dsm+1

∣
∣
∣ |Ωs ∗Ψ(x)|dx

≤ Cm χ[ 12 ,1](s)
∫

Rn
(1+ |x|)m

[∫

Rn

1
sn
∣
∣Ω( x−y

s )
∣
∣ |Ψ(y)|dy

]

dx

≤ Cm χ[ 12 ,1](s)
∫

Rn

∫

Rn
(1+ |y+ sx|)m|Ω(x)| |Ψ(y)|dydx

≤ Cm χ[ 12 ,1](s)
∫

Rn

∫

Rn
(1+ |sx|)m|Ω(x)|(1+ |y|)m|Ψ(y)|dydx
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≤ Cm χ[ 12 ,1](s)
(∫

Rn
(1+ |x|)m|Ω(x)|dx

)(∫

Rn
(1+ |y|)m|Ψ(y)|dy

)

≤ C′
0(Φ ,m)sm Nm(Ψ) ,

since χ[ 12 ,1](s)≤ 2msm. To obtain a similar estimate for the first term on the right in
(2.1.19), we argue as follows:

∫

Rn
(1+ |x|)m|ζ (s)|

∣
∣
∣
dm+1(Ωs ∗Ψ)

dsm+1 (x)
∣
∣
∣dx

=
∫

Rn
(1+ |x|)m |ζ (s)|

∣
∣
∣
∣

dm+1

dsm+1

∫

Rn

1
sn
Ω
(x− y

s

)

Ψ(y)dy
∣
∣
∣
∣
dx

=
∫

Rn
(1+ |x|)m |ζ (s)|

∣
∣
∣
∣

∫

Rn
Ω(y)

dm+1Ψ(x− sy)
dsm+1 dy

∣
∣
∣
∣
dx

≤C′
m

∫

Rn
(1+ |x|)m |ζ (s)|

∫

Rn
|Ω(y)|

[

∑
|α |≤m+1

|∂αΨ(x− sy)| |y||α |
]

dydx

≤C′
m|ζ (s)|

∫

Rn

∫

Rn
(1+ |x+ sy|)m|Ω(y)| ∑

|α |≤m+1
|∂αΨ(x)|(1+ |y|)m+1 dydx

≤C′
m|ζ (s)|

∫

Rn
(1+ |y|)m+1 |Ω(y)|(1+ |y|)m dy

∫

Rn
(1+ |x|)m ∑

|α |≤m+1
|∂αΨ(x)|dx

≤C′′
0 (Φ ,m)sm Nm(Ψ) .

We now setC0(Φ ,m) =C′
0(Φ ,m)+C′′

0 (Φ ,m) to conclude the proof of (2.1.18). �

Next, we discuss the proof of Theorem 2.1.4.

Proof. (a) We pick a continuous and integrable function ψ(s) on the interval [1,∞)
that decays faster than any negative power of s (i.e., |ψ(s)| ≤CNs−N for all N > 0)
and such that

∫ ∞

1
skψ(s)ds=

{

1 if k = 0,
0 if k = 1,2,3, . . . .

(2.1.20)

Such a function exists; see Exercise 2.1.3. In fact, we may take

ψ(s) =
e
π
1
s
e−

√
2
2 (s−1)

1
4 sin

(
√
2
2

(s−1)
1
4

)

. (2.1.21)

We now define the function

Φo(x) =
∫ ∞

1
ψ(s)Ps(x)ds , (2.1.22)

where Ps is the Poisson kernel. Note that the double integral
∫

Rn

∫ ∞

1

s

(s2+ |x|2) n+1
2

s−N dsdx



2.1 Hardy Spaces 63

converges and so it follows from (2.1.20) and (2.1.22) via Fubini’s theorem that
∫

Rn
Φo(x)dx= 1 .

Moreover, another application of Fubini’s theorem yields that

Φ̂o(ξ ) =
∫ ∞

1
ψ(s)P̂s(ξ )ds=

∫ ∞

1
ψ(s)e−2πs|ξ | ds

using that P̂s(ξ ) = e−2πs|ξ | (cf. Exercise 2.2.11 in [156]). This function is rapidly
decreasing as |ξ | → ∞ and the same is true for all the derivatives

∂αΦ̂o(ξ ) =
∫ ∞

1
ψ(s)∂αξ

(

e−2πs|ξ |)ds . (2.1.23)

Moreover, the function Φ̂o is clearly smooth on Rn \{0} and we will show that it is
also smooth at the origin. Notice that for all multi-indices α we have

∂αξ (e
−2πs|ξ |) = s|α |pα(ξ )|ξ |−mα e−2πs|ξ |

for some mα ∈ Z+ and some polynomial pα(ξ ). By Taylor’s theorem, for some
function v(s, |ξ |) with 0≤ v(s, |ξ |)≤ 2πs|ξ |, we have

e−2πs|ξ | =
L

∑
k=0

(−2π)k
|ξ |k
k!

sk+
(−2πs|ξ |)L+1

(L+1)!
e−v(s,|ξ |) .

Choosing L> mα gives

∂αξ (e
−2πs|ξ |) =

L

∑
k=0

(−2π)k
|ξ |k
k!

sk+|α | pα(ξ )
|ξ |mα

+ s|α |
pα(ξ )
|ξ |mα

(−2πs|ξ |)L+1

(L+1)!
e−v(s,|ξ |),

which, inserted in (2.1.23) and in view of (2.1.20), yields that when |α| > 0, the
derivative ∂αΦ̂o(ξ ) tends to zero as ξ → 0 and when α = 0, Φ̂o(ξ )→ 1 as ξ → 0.
We conclude that Φ̂o is continuously differentiable and hence smooth at the origin
(cf. Exercise 1.1.1); hence it lies in the Schwartz class, and thus so does Φo.

Finally, we have the estimate

M( f ;Φo)(x) = sup
t>0

|(Φo
t ∗ f )(x)|

= sup
t>0

∣
∣
∣
∣

∫ ∞

1
ψ(s)( f ∗Pts)(x)ds

∣
∣
∣
∣

≤
∫ ∞

1
|ψ(s)|ds M( f ;P)(x) ,
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and the required conclusion follows since
∫ ∞
1 |ψ(s)|ds≤ 500. Note that we actually

obtained the stronger pointwise estimate

M( f ;Φo)≤ 500M( f ;P)

rather than (2.1.12).

(b) The control of the nontagential maximal function M∗
a(· ;Φ) in terms of the

vertical maximal function M( · ;Φ) is the hardest and most technical part of the
proof. For matters of exposition, we present the proof only in the case that a = 1
and we note that the case of general a > 0 presents only notational differences. We
derive (2.1.13) as a consequence of the estimate

∥
∥M∗

1( f ;Φ)
∥
∥p
Lp ≤C′′

2 (n, p,Φ)p
∥
∥M( f ;Φ)

∥
∥p
Lp +

1
2

∥
∥M∗

1( f ;Φ)
∥
∥p
Lp , (2.1.24)

which is useful only if we know that ‖M∗
1( f ;Φ)‖Lp < ∞. This presents a signif-

icant hurdle that needs to be overcome by an approximation. For this reason we
introduce a family of maximal functions M∗

1( f ;Φ)ε ,N for 0 ≤ ε ,N < ∞ such that
‖M∗

1( f ;Φ)ε ,N‖Lp < ∞ and such thatM∗
1( f ;Φ)ε ,N ↑M∗

1( f ;Φ) as ε ↓ 0 and we prove
(2.1.24) withM∗

1( f ;Φ)ε ,N in place of M∗
1( f ;Φ)ε ,N . In other words we prove

∥
∥M∗

1( f ;Φ)ε ,N
∥
∥p
Lp ≤C′

2(n, p,Φ ,N)p
∥
∥M( f ;Φ)

∥
∥p
Lp +

1
2

∥
∥M∗

1( f ;Φ)ε ,N
∥
∥p
Lp , (2.1.25)

where there is an additional dependence on N in the constant C′
2(n, p,Φ ,N), but

there is no dependence on ε . TheM∗
1( f ;Φ)ε ,N are defined as follows: for a bounded

distribution f inS ′(Rn) such that M( f ;Φ) ∈ Lp we define

M∗
1( f ;Φ)ε ,N(x) = sup

0<t< 1
ε

sup
|y−x|≤t

∣
∣(Φt ∗ f )(y)

∣
∣

( t
t+ ε

)N 1
(1+ ε |y|)N .

We first show that M∗
1( f ;Φ)ε ,N lies in Lp(Rn)∩ L∞(Rn) if N is large enough

depending on f . Indeed, using that (Φt ∗ f )(x) = 〈 f ,Φt(x−·)〉 and the fact that f is
inS ′(Rn), we obtain constants Cf and m= mf such that:

|(Φt ∗ f )(y)| ≤ Cf ∑
|γ |≤m,|β |≤m

sup
w∈Rn

|wγ(∂βΦt)(y−w)|

≤ Cf ∑
|β |≤m

sup
z∈Rn

(1+ |y|m+ |z|m)|(∂βΦt)(z)|

≤ Cf (1+ |y|m) ∑
|β |≤m

sup
z∈Rn

(1+ |z|m)|(∂βΦt)(z)|

≤ Cf
(1+ |y|m)

min(tn, tn+m) ∑
|β |≤m

sup
z∈Rn

(1+ |z|m)|(∂βΦ)(z/t)|
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≤ Cf
(1+ |y|)m

min(tn, tn+m)
(1+ tm) ∑

|β |≤m
sup
z∈Rn

(1+ |z/t|m)|(∂βΦ)(z/t)|

≤ Cf ,Φ(1+ ε |y|)mε−m(1+ tm)(t−n+ t−n−m) .

Multiplying by ( t
t+ε )

N(1+ ε |y|)−N for some 0< t < 1
ε and |y− x|< t yields

∣
∣(Φt ∗ f )(y)

∣
∣

( t
t+ ε

)N 1
(1+ ε |y|)N ≤Cf ,Φ

ε−m(1+ ε−m)(εn−N + εn+m−N)

(1+ ε |y|)N−m ,

and using that 1+ ε |y| ≥ 1
2 (1+ ε |x|), we obtain for some C′′( f ,Φ ,ε ,n,m,N)< ∞,

M∗
1( f ;Φ)ε ,N(x)≤ C′′( f ,Φ ,ε ,n,m,N)

(1+ ε |x|)N−m .

Taking N > m+ n/p, we have that M∗
1( f ;Φ)ε ,N lies in Lp(Rn). This choice of N

depends on m and hence on the distribution f .
We now introduce functions

U( f ;Φ)ε ,N(x) = sup
0<t< 1

ε

sup
|y−x|<t

t
∣
∣∇(Φt ∗ f )(y)

∣
∣

( t
t+ ε

)N 1
(1+ ε |y|)N

and

V ( f ;Φ)ε ,N(x) = sup
0<t< 1

ε

sup
y∈Rn

∣
∣(Φt ∗ f )(y)

∣
∣

( t
t+ ε

)N 1
(1+ ε |y|)N

(
t

t+ |x− y|
)[ 2np ]+1

.

LetC(n) = ‖M‖L2(Rn)→L2(Rn), whereM is the Hardy–Littlewood maximal operator.
We need the norm estimate

∥
∥V ( f ;Φ)ε ,N

∥
∥
Lp ≤C(n)

2
p
∥
∥M∗

1( f ;Φ)ε ,N
∥
∥
Lp (2.1.26)

and the pointwise estimate

U( f ;Φ)ε ,N ≤ A(n, p,Φ ,N)V ( f ;Φ)ε ,N , (2.1.27)

where

A(Φ ,N,n, p) = 2[
2n
p ]+1C0(∂ jΦ ,N+[ 2np ]+1)NN+[ 2np ]+1(∂ jΦ) .

To prove (2.1.26) we observe that when z ∈ B(y, t)⊆ B(x, |x− y|+ t) we have

∣
∣(Φt ∗ f )(y)

∣
∣

( t
t+ ε

)N 1
(1+ ε |y|)N ≤M∗

1( f ;Φ)ε ,N(z) ,
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from which it follows that for any y ∈ Rn

∣
∣(Φt ∗ f )(y)

∣
∣

( t
t+ ε

)N 1
(1+ ε |y|)N

≤
(

1
|B(y, t)|

∫

B(y,t)

[

M∗
1( f ;Φ)ε ,N(z)

] p
2 dz

) 2
p

≤
( |x− y|+ t

t

)2n
p
(

1
|B(x, |x− y|+ t)|

∫

B(x,|x−y|+t)

[

M∗
1( f ;Φ)ε ,N(z)

] p
2 dz

)2
p

≤
( |x− y|+ t

t

)[ 2np ]+1

M
([

M∗
1( f ;Φ)ε ,N

] p
2
) 2

p
(x) .

We now use the boundedness of the Hardy–Littlewood maximal operator M on L2

to obtain (2.1.26).
In proving (2.1.27), we may assume that Φ has integral 1; otherwise we can

multiply Φ by a suitable constant to arrange for this to happen. We note that

t
∣
∣∇(Φt ∗ f )

∣
∣=

∣
∣(∇Φ)t ∗ f

∣
∣≤√

n
n

∑
j=1

|(∂ jΦ)t ∗ f | ,

and it suffices to work with each partial derivative ∂ jΦ of Φ . Using Lemma 2.1.5
we write

∂ jΦ =
∫ 1

0
Θ (s) ∗Φs ds

for suitable Schwartz functionsΘ (s). Fix x ∈Rn, t > 0, and y with |y−x|< t < 1/ε .
Then we have

∣
∣
(

(∂ jΦ)t ∗ f
)

(y)
∣
∣

( t
t+ ε

)N 1
(1+ ε |y|)N

=
( t
t+ ε

)N 1
(1+ ε |y|)N

∣
∣
∣
∣

∫ 1

0

(

(Θ (s))t ∗Φst ∗ f
)

(y)ds
∣
∣
∣
∣

≤
( t
t+ ε

)N ∫ 1

0

∫

Rn
t−n∣∣Θ (s)(t−1z)

∣
∣

∣
∣
(

Φst ∗ f
)

(y− z)
∣
∣

(1+ ε |y|)N dz ds .

(2.1.28)

Inserting the factor 1 written as

(
ts

ts+ |x− (y− z)|
)[ 2np ]+1( ts

ts+ ε

)N( ts+ |x− (y− z)|
ts

)[ 2np ]+1( ts+ ε
ts

)N

in the preceding z-integral and using that

1
(1+ ε |y|)N ≤ (1+ ε |z|)N

(1+ ε |y− z|)N
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and the fact that |x− y|< t < 1/ε , we obtain the estimate

( t
t+ ε

)N ∫ 1

0

∫

Rn
t−n∣∣Θ (s)(t−1z)

∣
∣

∣
∣
(

Φst ∗ f
)

(y− z)
∣
∣

(1+ ε |y|)N dzds

≤ V ( f ;Φ)ε ,N(x)
∫ 1

0

∫

Rn
(1+ ε |z|)N

(
ts+ |x− (y− z)|

ts

)[ 2np ]+1

t−n∣∣Θ (s)(t−1z)
∣
∣dz

ds
sN

≤ V ( f ;Φ)ε ,N(x)
∫ 1

0

∫

Rn
s−[ 2np ]−1−N(1+ εt|z|)N(s+1+ |z|)[ 2np ]+1∣∣Θ (s)(z)

∣
∣dzds

≤ 2[
2n
p ]+1C0(∂ jΦ ,N+[ 2np ]+1)NN+[ 2np ]+1(∂ jΦ)V ( f ;Φ)ε ,N(x)

in view of conclusion (2.1.18) of Lemma 2.1.5. Combining this estimate with
(2.1.28), we deduce (2.1.27). Estimates (2.1.26) and (2.1.27) together yield

∥
∥U( f ;Φ)ε ,N

∥
∥
Lp ≤C(n)A(n, p,Φ ,N)

∥
∥M∗

1( f ;Φ)ε ,N
∥
∥
Lp . (2.1.29)

We now set

Eε =
{

x ∈ Rn : U( f ;Φ)ε ,N(x)≤ KM∗
1( f ;Φ)ε ,N(x)

}

for some constant K to be determined shortly. With A= A(n, p,Φ ,N), we have
∫

(Eε )c

[

M∗
1( f ;Φ)ε ,N(x)

]p dx ≤ 1
Kp

∫

(Eε )c

[

U( f ;Φ)ε ,N(x)
]p dx

≤ 1
Kp

∫

Rn

[

U( f ;Φ)ε ,N(x)
]p dx

≤ C(n)p Ap

Kp

∫

Rn

[

M∗
1( f ;Φ)ε ,N(x)

]p dx

≤ 1
2

∫

Rn

[

M∗
1( f ;Φ)ε ,N(x)

]p dx ,

(2.1.30)

provided we choose K such that Kp = 2C(n)p A(n, p,Φ ,N)p. Obviously K is a func-
tion of n, p,Φ ,N and in particular depends on N.

It remains to estimate the contribution of the integral of
[

M∗
1( f ;Φ)ε ,N(x)

]p over
the set Eε . We claim that the following pointwise estimate is valid:

M∗
1( f ;Φ)ε ,N(x)≤ 4C′(n,N,K)

1
q
[

M
(

M( f ;Φ)q
)

(x)
] 1
q

(2.1.31)

for any x ∈ Eε and 0< q<∞ and some constantC′(n,N,K), whereM is the Hardy–
Littlewood maximal operator. To prove (2.1.31) we fix x ∈ Eε and we also fix y such
that |y− x|< t.

By the definition of M∗
1( f ;Φ)ε ,N(x) there exists a point (y0, t) ∈ Rn+1

+ such that
|x− y0|< t < 1

ε and

∣
∣(Φt ∗ f )(y0)

∣
∣

( t
t+ ε

)N 1
(1+ ε |y0|)N ≥ 1

2
M∗

1( f ;Φ)ε ,N(x) . (2.1.32)
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Also by the definitions of Eε andU( f ;Φ)ε ,N , for any x ∈ Eε we have

t
∣
∣∇(Φt ∗ f )(ξ )

∣
∣

( t
t+ ε

)N 1
(1+ ε |ξ |)N ≤ KM∗

1( f ;Φ)ε ,N(x) (2.1.33)

for all ξ satisfying |ξ − x|< t < 1
ε . It follows from (2.1.32) and (2.1.33) that

t
∣
∣∇(Φt ∗ f )(ξ )

∣
∣≤ 2K

∣
∣(Φt ∗ f )(y0)

∣
∣

(
1+ ε |ξ |
1+ ε |y0|

)N

(2.1.34)

for all ξ satisfying |ξ − x| < t < 1
ε . We let z be such that |z− x| < t. Applying the

mean value theorem and using (2.1.34), we obtain, for some ξ between y0 and z,
∣
∣(Φt ∗ f )(z)− (Φt ∗ f )(y0)

∣
∣ =

∣
∣∇(Φt ∗ f )(ξ )

∣
∣ |z− y0|

≤ 2K
t

∣
∣(Φt ∗ f )(ξ )

∣
∣

(
1+ ε |ξ |
1+ ε |y0|

)N

|z− y0|

≤ 2N+1K
t

∣
∣(Φt ∗ f )(y0)

∣
∣ |z− y0|

≤ 1
2

∣
∣(Φt ∗ f )(y0)

∣
∣ ,

provided z also satisfies |z− y0| < 2−N−2K−1t in addition to |z− x| < t. Therefore,
for z satisfying |z− y0|< 2−N−2K−1t and |z− x|< t we have

∣
∣(Φt ∗ f )(z)

∣
∣≥ 1

2

∣
∣(Φt ∗ f )(y0)

∣
∣≥ 1

4
M∗

1( f ;Φ)ε ,N(x) ,

where the last inequality uses (2.1.32). Thus we have

M
(

M( f ;Φ)q
)

(x) ≥ 1
|B(x, t)|

∫

B(x,t)

[

M( f ;Φ)(w)
]q dw

≥ 1
|B(x, t)|

∫

B(x,t)∩B(y0,2−N−2K−1t)

[

M( f ;Φ)(w)
]q dw

≥ 1
|B(x, t)|

∫

B(x,t)∩B(y0,2−N−2K−1t)

1
4q
[

M∗
1( f ;Φ)ε ,N(x)

]q dw

≥ |B(x, t)∩B(y0,2−N−2K−1t)|
|B(x, t)|

1
4q
[

M∗
1( f ;Φ)ε ,N(x)

]q

≥ C′(n,N,K)−14−q[M∗
1( f ;Φ)ε ,N(x)

]q
,

where we used the simple geometric fact that if |x− y0| ≤ t and δ > 0, then

|B(x, t)∩B(y0,δ t)|
|B(x, t)| ≥ cn,δ > 0 ,

the minimum of this constant being obtained when |x− y0|= t. See Figure 2.1.
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Fig. 2.1 The ball B(y0,δ t)
captures at least a fixed pro-
portion of the ball B(x, t). . .

t

x
y
0tδ

This proves (2.1.31). Taking q= p/2 and applying the boundedness of the Hardy–
Littlewood maximal operator on L2 yields

∫

Eε

[

M∗
1( f ;Φ)ε ,N(x)

]p dx≤C′
2(n, p,Φ ,N)

∫

Rn
M( f ;Φ)(x)p dx . (2.1.35)

Combining this estimate with (2.1.30), we finally prove (2.1.25).
Recalling the fact (obtained earlier) that ‖M∗

1( f ;Φ)ε ,N‖Lp < ∞, we deduce from
(2.1.25) that

∥
∥M∗

1( f ;Φ)ε ,N
∥
∥
Lp ≤ 2

1
pC′

2(n, p,Φ ,N)
∥
∥M( f ;Φ)

∥
∥
Lp . (2.1.36)

The previous constant depends on f but is independent of ε . Notice that

M∗
1( f ;Φ)ε ,N(x)≥ 2−N

(1+ ε |x|)N sup
0<t<1/ε

( t
t+ ε

)N
sup

|y−x|<t

∣
∣(Φt ∗ f )(y)

∣
∣

and that the preceding expression on the right increases to

2−NM∗
1( f ;Φ)(x)

as ε ↓ 0. Since the constant in (2.1.36) does not depend on ε , an application of the
Lebesgue monotone convergence theorem yields

‖M∗
1( f ;Φ)‖Lp ≤ 2N+

1
pC′

2(n, p,Φ ,N)‖M( f ;Φ)‖Lp . (2.1.37)

The problem with this estimate is that the finite constant 2NC′
2(n, p,Φ ,N) depends

on N and thus on f . However, we have managed to show that under the assumption
‖M( f ;Φ)‖Lp < ∞, one must necessarily have ‖M∗

1( f ;Φ)‖Lp < ∞ .
Keeping this significant observation in mind, we repeat the preceding argument

from the point where the functionsU( f ;φ)ε ,N andV ( f ;φ)ε ,N are introduced, setting
ε = N = 0. Then we arrive at (2.1.24) with a constant C′′

2 (n, p,Φ) =C′
2(n, p,Φ ,0)

which is independent of N and thus of f . We conclude the validity of (2.1.13) with
C2(n, p,1,Φ) = 21/pC′′

2 (n, p,Φ) when a = 1. A similar constant (depending on a)
is obtained for different values of a> 0.

(c) As usual, B(x,R) denotes a ball centered at x with radius R. Recall that

M∗∗
b ( f ;Φ)(x) = sup

t>0
sup
y∈Rn

|(Φt ∗ f )(x− y)|
( |y|

t +1
)b .
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It follows from the definition of M∗
a( f ;Φ)(z) = supt>0 sup|w−z|<at |(Φt ∗ f )(w)| that

|(Φt ∗ f )(x− y)| ≤M∗
a( f ;Φ)(z) if z ∈ B(x− y,at) .

But the ball B(x− y,at) is contained in the ball B(x, |y|+at); hence it follows that

|(Φt ∗ f )(x− y)| nb ≤ 1
|B(y,at)|

∫

B(y,at)
M∗

a( f ;Φ)(z)
n
b dz

≤ 1
|B(y,at)|

∫

B(x,|y|+at)
M∗

a( f ;Φ)(z)
n
b dz

≤
( |y|+at

at

)n

M
(

M∗
a( f ;Φ)

n
b
)

(x)

≤ max(1,a−n)

( |y|
t
+1
)n

M
(

M∗
a( f ;Φ)

n
b
)

(x) ,

from which we conclude that for all x ∈ Rn we have

M∗∗
b ( f ;Φ)(x)≤max(1,a−b)

{

M
(

M∗
a( f ;Φ)

n
b
)

(x)
} b

n
.

Raising to the power p and using the fact that p > n/b and the boundedness of the
Hardy–Littlewood maximal operatorM on Lpb/n, we obtain the required conclusion
(2.1.14).

(d) In proving (d) we may replace b by the integer b0 = [b] + 1. Let Φ be a
Schwartz function with integral equal to 1. Applying Lemma 2.1.5 with m= b0, we
write any function ϕ inFN as

ϕ(y) =
∫ 1

0
(Θ (s) ∗Φs)(y)ds

for some choice of Schwartz functionsΘ (s). Then we have

ϕt(y) =
∫ 1

0
((Θ (s))t ∗Φts)(y)ds

for all t > 0. Fix x ∈ Rn. Then for y in B(x, t) we have

|(ϕt ∗ f )(y)| ≤
∫ 1

0

∫

Rn
|(Θ (s))t(z)| |(Φts ∗ f )(y− z)|dz ds

≤
∫ 1

0

∫

Rn
|(Θ (s))t(z)|M∗∗

b0 ( f ;Φ)(x)
( |x− (y− z)|

st
+1
)b0

dz ds

≤
∫ 1

0
s−b0

∫

Rn
|(Θ (s))t(z)|M∗∗

b0 ( f ;Φ)(x)
( |x− y|

t
+

|z|
t
+1
)b0

dz ds

≤ 2b0M∗∗
b0 ( f ;Φ)(x)

∫ 1

0
s−b0

∫

Rn
|Θ (s)(w)|(|w|+1

)b0 dw ds

≤ 2b0M∗∗
b0 ( f ;Φ)(x)

∫ 1

0
s−b0C0(Φ ,b0)sb0 Nb0(ϕ)ds ,
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where we applied conclusion (2.1.18) of Lemma 2.1.5. Setting N = b0 = [b]+1, we
obtain for y in B(x, t) and ϕ ∈FN ,

|(ϕt ∗ f )(y)| ≤ 2b0C0(Φ ,b0)M∗∗
b0 ( f ;Φ)(x) .

Taking the supremum over all y in B(x, t), over all t > 0, and over all ϕ in FN , we
obtain the pointwise estimate

MN( f )(x)≤ 2b0C0(Φ ,b0)M∗∗
b0 ( f ;Φ)(x) , x ∈ Rn,

where N = b0+1. This clearly yields (2.1.15) if we set C4 = 2b0C0(Φ ,b0).

(e) We fix an f ∈S ′(Rn) that satisfies ‖MN( f )‖Lp < ∞ for some fixed positive
integer N. To show that f is a bounded distribution, we fix a Schwartz function ϕ
and we observe that for some positive constant c= cϕ , we have that cϕ is an element
of FN and thus M∗

1( f ;cϕ)≤MN( f ). Then

cp |(ϕ ∗ f )(x)|p ≤ inf
|y−x|≤1

sup
|z−y|≤1

|(cϕ ∗ f )(z)|p

≤ inf
|y−x|≤1

M∗
1( f ;cϕ)(y)p

≤ 1
vn

∫

|y−x|≤1
M∗

1( f ;cϕ)(y)p dy

≤ 1
vn

∫

Rn
M∗

1( f ;cϕ)(y)p dy

≤ 1
vn

∫

Rn
MN( f )(y)p dy< ∞ ,

which implies that ϕ ∗ f is a bounded function. We conclude that f is a bounded
distribution. We now proceed to show that f is an element of Hp. We fix a smooth
radial nonnegative compactly supported function θ such that

θ(x) =

{

1 if |x|< 1,
0 if |x|> 2.

We observe that the identity

P(x) = P(x)θ(x)+
∞

∑
k=1

(

θ(2−kx)P(x)−θ(2−(k−1)x)P(x)
)

= P(x)θ(x)+
Γ ( n+1

2 )

π n+1
2

∞

∑
k=1

2−k
(
θ( ·)−θ(2( ·))
(2−2k+ | · |2) n+1

2

)

2k
(x)

is valid for all x ∈ Rn. We set

Φ (k)(x) =
(

θ(x)−θ(2x)
) 1

(2−2k+ |x|2) n+1
2

,
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and we claim that for all bounded tempered distributions f and for all t > 0 we have

Pt ∗ f = (θP)t ∗ f +
Γ ( n+1

2 )

π n+1
2

∞

∑
k=1

2−k(Φ (k))2kt ∗ f , (2.1.38)

where the series converges in S ′(Rn); see Exercise 2.1.5.
Assuming (2.1.38), we claim that for some fixed constant c0 = c0(n,N), the func-

tions c0 θ P and c0Φ (k) lie inFN uniformly in k = 1,2,3, . . . .
To verify this assertion for |α| ≤ N+1, we apply Leibniz’s rule to write

∣
∣
∣
∣
∣
∂α
[

θ(x)−θ(2x)
(2−2k+ |x|2) n+1

2

]
∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣
∑
β≤α

cα ,β ∂α−βx (θ(x)−θ(2x))∂βx

(
1

(2−2k+ |x|2) n+1
2

)
∣
∣
∣
∣
∣

≤ ∑
β≤α

|c′α ,β |χ 1
2≤|x|≤2

Kβ

(2−2k+ |x|2) n+1
2 −|β | ,

where

Kβ = sup
m,γ

m+|γ |=|β |
sup
t,x

t2+|x|2

∣
∣
∣
∣

∂m

∂ tm
∂ γ

∂xγ
1

(t2+ |x|2) n+1
2

∣
∣
∣
∣
,

and this estimate follows from the fact that the function (t2+ |x|2)− n+1
2 is homoge-

neous of degree −n−1 on Rn+1 and smooth on the sphere Sn. These estimates are
uniform in k = 0,1,2, . . . and thus NN(θP)+NN(Φ (k)) ≤ 1/c0(n,N) for all some
constant c0 = c0(n,N) for all k = 0,1,2, . . . .

Then we obtain

sup
t>0

|Pt ∗ f | ≤ sup
t>0

|(θP)t ∗ f |+ 1
c0

Γ ( n+1
2 )

π n+1
2

∞

∑
k=1

2−k sup
t>0

∣
∣(c0Φ (k))2kt ∗ f

∣
∣

≤ C5(n,N)MN( f ) ,

which proves the required conclusion (2.1.16).
We observe that the last estimate also yields the stronger estimate

M∗
1( f ;P)(x) = sup

t>0
sup
y∈Rn

|y−x|≤t

|(Pt ∗ f )(y)| ≤C5(n,N)MN( f )(x) . (2.1.39)

It follows that the quasi-norm ‖M∗
1( f ;P)‖Lp(Rn) is also equivalent to ‖ f‖Hp . �

Remark 2.1.6. To simplify the understanding of the equivalences just proved, a first-
time reader may wish to define the Hp quasi-norm of a distribution f as

∥
∥ f
∥
∥
Hp =

∥
∥M∗

1( f ;P)
∥
∥
Lp

and then study only the implications (a) =⇒ (c), (c) =⇒ (d), (d) =⇒ (e), and
(e) =⇒ (a) in the proof of Theorem 2.1.4. In this way one avoids passing through
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the statement in part (b). For many applications, the identification of ‖ f‖Hp with
‖M∗

1( f ;Φ)‖Lp for some Schwartz function Φ (with nonvanishing integral) suffices.
We also remark that the proof of Theorem 2.1.4 yields

∥
∥ f
∥
∥
Hp(Rn)

≈ ∥∥MN( f )
∥
∥
Lp(Rn)

,

where N = [ np ]+1.

2.1.3 Consequences of the Characterizations of Hardy Spaces

In this subsection we look at a few consequences of Theorem 2.1.4. In many appli-
cations we need to be working with dense subspaces of Hp. It turns out that both
Hp∩L2 and Hp∩L1 are dense in Hp.

Proposition 2.1.7. Let 0< p≤ 1 and let r satisfy p≤ r ≤ ∞. Then Lr ∩Hp is dense
in Hp. Hence, Hp∩L2 and Hp∩L1 are dense in Hp.

Proof. Let f be a distribution in Hp(Rn). Recall the Poisson kernel P(x) and set
N = [ np ]+1. For any fixed x ∈ Rn and t > 0 we have

|(Pt ∗ f )(x)| ≤M∗
1( f ;P)(y)≤CMN( f )(y) (2.1.40)

for any |y−x| ≤ t. Indeed, the first estimate in (2.1.40) follows from the definition of
M∗

1( f ;P), and the second estimate by (2.1.39). Raising (2.1.40) to the power p and
averaging over the ball B(x, t), we obtain

|(Pt ∗ f )(x)|p ≤ Cp

vntn

∫

B(x,t)
MN( f )(y)p dy≤ Cp

1
tn
∥
∥ f‖pHp . (2.1.41)

It follows that the function Pt ∗ f is in L∞(Rn) with norm at most a constant multiple
of t−n/p

∥
∥ f‖Hp . Moreover, this function is also in Lp(Rn), since it is controlled by

M( f ;P). Therefore, the functions Pt ∗ f lie in Lr(Rn) for all r with p ≤ r ≤ ∞. It
remains to show that Pt ∗ f also lie in Hp and that Pt ∗ f → f in Hp as t → 0.

To see that Pt ∗ f lies in Hp, we use the semigroup formula Pt ∗Ps = Pt+s for the
Poisson kernel, which is a consequence of the fact that P̂t(ξ ) = e−2πt|ξ | by applying
the Fourier transform. Therefore, for any t > 0 we have

sup
s>0

|Ps ∗Pt ∗ f |= sup
s>0

|Ps+t ∗ f | ≤ sup
s>0

|Ps ∗ f | ,

which implies that
∥
∥Pt ∗ f

∥
∥
Hp ≤

∥
∥ f
∥
∥
Hp

for all t > 0. We now need to show that Pt ∗ f → f in Hp as t → 0. This will be a
consequence of the Lebesgue dominated convergence theorem once we know that

sup
s>0

|Ps ∗Pt ∗ f −Ps ∗ f | ≤ 2sup
s>0

|Ps ∗ f | ∈ Lp(Rn) (2.1.42)
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and also that

sup
s>0

|(Ps ∗Pt ∗ f −Ps ∗ f )(x)| → 0 as t → 0 (2.1.43)

pointwise for all x∈Rn. Statement (2.1.42) is a trivial consequence of the semigroup
formula for the Poisson kernel.

The proof of (2.1.43) requires considerable more work. In proving (2.1.43), by a
translation, we may assume that x= 0. Let us fix ε > 0. In view of (2.1.41), we have

sup
s≥M

|(Ps ∗Pt ∗ f −Ps ∗ f )(0)| ≤C′M−n/p

and we pick M such that C′M−n/p < ε . It will suffice to show that

sup
0<s<M

|Pt ∗Ps ∗ f (0)−Ps ∗ f (0)|< 3ε (2.1.44)

for t sufficiently close to zero. Let η0 be a Schwartz function whose Fourier trans-
form η̂0 is equal to 1 on the ball B(0,1) and vanishes outside B(0,2). We write
1= η̂0+ η̂∞. Then η∞ = δ0−η0,

Ps ∗ f = Ps ∗η0 ∗ f +Ps ∗η∞ ∗ f ,

and we will show that

sup
0<s<M

|Pt ∗Ps ∗η0 ∗ f (0)−Ps ∗η0 ∗ f (0)|< 2ε (2.1.45)

and
sup

0<s<M
|Pt ∗Ps ∗η∞ ∗ f (0)−Ps ∗η∞ ∗ f (0)|< ε (2.1.46)

for t sufficiently small. In order to prove (2.1.45), we write

Pt ∗Ps ∗η0 ∗ f (0)−Ps ∗η0 ∗ f (0)

=

∫

Rn
Ps(y)(Pt ∗η0 ∗ f (y)−η0 ∗ f (y))dy

=
∫

Rn
Ps(y)

(∫

Rn
Pt(z)

(

η0 ∗ f (y− z)−η0 ∗ f (y)
)

dz
)

dy .

Note that η0 ∗ f and Pt ∗η0 ∗ f are in L∞ ∩C ∞, since f is a bounded distribution.
There is an A> 0 such that

∫

|y|≥A/M P(y)dy< ε and so

∣
∣
∣
∣

∫

|y|≥A
Ps(y)

(

Pt ∗η0 ∗ f (y)−η0 ∗ f (y)
)

dy
∣
∣
∣
∣
≤ ‖η0 ∗ f‖L∞

∫

|y|≥A
Ps(y)dy< ε
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for all s≤M. For |y| ≤ A, η0 ∗ f is uniformly continuous in this region, so

sup
0<s<M

∫

|y|≤A
Ps(y)

∥
∥Pt ∗η0 ∗ f −η0 ∗ f

∥
∥
L∞ dy< ε‖Ps‖L1 = ε

for t sufficiently small, since {Pt}t>0 is an approximate identity; see Theorem 1.2.19
(2) in [156]. Therefore (2.1.45) holds.

Next, we write (2.1.46) as

sup
0<s<M

|〈 f ,Ps ∗η∞ ∗Pt −Ps ∗η∞〉|,

and since f ∈S ′(Rn), this is controlled by a finite sum of expressions of the form:

sup
0<s<M

sup
x∈Rn

|xα∂βx (Ps ∗η∞ ∗Pt −Ps ∗η∞)(x)|

= sup
0<s<M

sup
x∈Rn

∣
∣
∣
∣
xα
∫

Rn
(∂βx (Ps ∗η∞ ∗Pt −Ps ∗η∞))̂(ξ )e2πiξ ·xdξ

∣
∣
∣
∣

=(2π)|β | sup
0<s<M

sup
x∈Rn

∣
∣
∣
∣
xα
∫

Rn
ξβ η̂∞(ξ )(e−2πt|ξ | −1)e−2πs|ξ |e2πiξ ·xdξ

∣
∣
∣
∣
. (2.1.47)

For a fixed x, find a j such that |x j| = sup1≤k≤n |xk|. Set N = |α|+ |β |+ n+ 2.
Integrate (2.1.47) by parts to rewrite it as

(2π)|β | sup
0<s<M

sup
x∈Rn

∣
∣
∣
∣

xα

(2πix j)N
∫

Rn
∂N
j

(

ξβ η̂∞(ξ )(e−2πt|ξ | −1)e−2πs|ξ |
)

e2πiξ ·xdξ
∣
∣
∣
∣
.

Note that the choice of N yields supx∈Rn
|x||α|
|x j |N < ∞. To compute the ∂N

j derivative,
we need the estimate for 0≤ m≤ N:

|∂m
j ξβ | ≤C|ξ ||β |−m

and the following estimates for 1≤ m≤ N (c.f. Exercise 1.1.6(b)):

|∂m
j η̂∞(ξ )| ≤Cχ[1,2](ξ )

|∂m
j e

−s|ξ || ≤ C
|ξ |m

s|ξ |+ · · ·+(s|ξ |)m
es|ξ |

|∂m
j (e

−t|ξ | −1)|≤ C
|ξ |m

t|ξ |+ · · ·+(t|ξ |)m
et|ξ |

.

Let N = a1+a2+a3+a4, where a1,a2,a3,a4 ∈ {0,1, . . . ,N}. Then

∂N
j

(

ξβ η̂∞(ξ )(e−2πt|ξ | −1)e−2πs|ξ |
)

= ∑
a1,a2,a3,a4

c(a1,a2,a3,a4)(∂ a1
j ξβ )(∂ a2

j η̂∞)(ξ )(∂ a3
j (e−2πt|ξ | −1))(∂ a4

j e−2πs|ξ |) ,
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for some suitable constants c(a1,a2,a3,a4), in view of Leibniz’s rule. We claim that
for all a1,a2,a3,a4 ∈ {0,1, . . . ,N} we have

∫

Rn

∣
∣(∂ a1

j ξβ )(∂ a2
j η̂∞(ξ ))(∂ a3

j (e−2πt|ξ | −1))(∂ a4
j e−2πs|ξ |)

∣
∣dξ ≤C′ t (2.1.48)

for all 0< s<M. ObviouslyC′ t multiplied by (2π)|β | supx∈Rn
|x||α|
|x j |N <∞ can be made

smaller than the given ε if t is sufficiently close to zero.
Let us now prove (2.1.48). If a2 > 0, then the integral is over the annulus

1≤ |ξ | ≤ 2 and we can easily derive (2.1.48), since for ξ in this range we have
|∂ a3

j (e−t|ξ | −1)| ≤C′′t. If a2 = 0, a3 > 0, a4 > 0 then the integral is over the region
|ξ | ≥ 1, and using the preceding estimates we write

∫

|ξ |≥1
|(∂ a1

j ξβ )η̂∞(ξ )(∂ a3
j (e−2πt|ξ | −1))(∂ a4

j e−2πs|ξ |)|dξ

= t
∫

|ξ |≥1
C|ξ ||β |−a1−a3−a4+1 1+(t|ξ |)2+ · · ·+(t|ξ |)a3−1

et|ξ |
s|ξ |+ · · ·+(s|ξ |)a4

es|ξ |
dξ

≤Ct
∫

|ξ |≥1
|ξ ||β |−N+1C1C2dξ

≤C′t,

by the choice of N. In the case a2 = a3 = 0, a4 > 0 we use the inequality |et−1| ≤Ct
and argue in a similar fashion to prove (2.1.48). The same argument is valid in the
last case a2 = a3 = a4 = 0. �

Next we observe the following consequence of Theorem 2.1.4.

Corollary 2.1.8. For any two Schwartz functions Φ and Θ with nonvanishing inte-
gral we have

∥
∥sup

t>0
|Θt ∗ f |∥∥Lp ≈

∥
∥sup

t>0
|Φt ∗ f |∥∥Lp ≈

∥
∥ f
∥
∥
Hp

for all f ∈S ′(Rn), with constants depending only on n, p,Φ , andΘ .

Proof. See the discussion after Theorem 2.1.4. �

Next we define a norm on Schwartz functions relevant in the theory of Hardy
spaces:

NN(ϕ;x0,R) =
∫

Rn

(

1+
∣
∣
∣
x− x0
R

∣
∣
∣

)N
∑

|α |≤N+1
R|α ||∂αϕ(x)|dx .

Note that NN(ϕ;0,1) =NN(ϕ).

Corollary 2.1.9. (a) For any 0 < p ≤ 1, every f ∈ Hp(Rn), and any ϕ ∈ S (Rn),
we have

∣
∣
〈

f ,ϕ
〉∣
∣≤NN(ϕ) inf

|z|≤1
MN( f )(z) , (2.1.49)
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where N = [ np ]+1, and consequently there is a constant Cn,p such that

∣
∣
〈

f ,ϕ
〉∣
∣≤NN(ϕ)Cn,p

∥
∥ f
∥
∥
Hp . (2.1.50)

(b) Let 0< p≤ 1, N = [n/p]+1, and p≤ r ≤ ∞. Then there is a constant C(p,n,r)
such that for any f ∈ Hp and ϕ ∈S (Rn) we have

∥
∥ϕ ∗ f

∥
∥
Lr ≤C(p,n,r)NN(ϕ)

∥
∥ f
∥
∥
Hp . (2.1.51)

(c) For any x0 ∈ Rn, for all R> 0, and any ψ ∈S (Rn), we have
∣
∣
〈

f ,ψ
〉∣
∣≤NN(ψ;x0,R) inf

|z−x0|≤R
MN( f )(z) . (2.1.52)

Proof. (a) We use that 〈 f ,ϕ〉 = (ϕ̃ ∗ f )(0), where ϕ̃(x) = ϕ(−x) and we observe
that NN(ϕ) =NN(ϕ̃). Then (2.1.49) follows from the inequality

|(ϕ̃ ∗ f )(0)| ≤NN(ϕ)M∗
1

(

f ;
ϕ̃

NN(ϕ)

)

(z)≤NN(ϕ)MN( f )(z)

for all |z| < 1, which is valid, since ϕ̃/NN(ϕ) lies in FN . We deduce (2.1.50) as
follows:

∣
∣
〈

f ,ϕ
〉∣
∣p ≤ NN(ϕ)p inf

|z|≤1
MN( f )(z)p

≤ NN(ϕ)p
1

|B(0,1)|
∫

|z|≤1
MN( f )p dz

≤ NN(ϕ)pCp
n,p
∥
∥ f
∥
∥p
Hp .

(b) For any fixed x ∈ Rn and t > 0 we have

|(ϕt ∗ f )(x)| ≤NN(ϕ)M∗
1

(

f ;
ϕ

NN(ϕ)

)

(y)≤NN(ϕ)MN( f )(y) (2.1.53)

for all y satisfying |y− x| ≤ t. Restricting to t = 1 yields

|(ϕ ∗ f )(x)|p ≤ NN(ϕ)p

|B(x,1)|
∫

B(x,1)
MN( f )p(y)dy≤NN(ϕ)pCp

p,n
∥
∥ f
∥
∥p
Hp .

This implies that ‖ϕ ∗ f‖L∞ ≤ Cp,nNN(ϕ)‖ f‖Hp . Choosing y = x and t = 1 in
(2.1.53) and then taking Lp quasi-norms yields a similar estimate for ‖ϕ ∗ f‖Lp .
By interpolation we deduce ‖ϕ ∗ f‖Lr ≤C(p,n,r)NN(ϕ)‖ f‖Hp , when r ≤ p≤ ∞.

(c) To prove (2.1.52), given a Schwartz function ψ and R > 0, define ϕ(y) =
ψ(−Ry+ x0) so that ψ(x) = ϕ( x0−x

R ) = RnϕR(x0− x). In view of (2.1.53) we have
∣
∣
〈

f ,ψ
〉∣
∣= Rn∣∣(ϕR ∗ f )(x0)

∣
∣≤ RnNN(ϕ) inf

|z−x0|≤R
MN( f )(z) .



78 2 Hardy Spaces, Besov Spaces, and Triebel–Lizorkin Spaces

But a simple change of variables shows that RnN(ϕ) =N(ψ;x0,R) and this com-
bined with the preceding inequality yields (2.1.52).

�
Proposition 2.1.10. Let 0< p≤ 1. Then the following statements are valid:
(a) Convergence in Hp implies convergence inS ′.
(b) If fk ∈ Hp satisfy supk∈Z+ ‖ fk‖Hp ≤ C < ∞ and fk → f in S ′(Rn) as k → ∞,
then f ∈ Hp.
(c) Hp is a complete quasi-normed metrizable space.

Proof. (a) Let f j, f in Hp(Rn) and suppose that f j → f in Hp(Rn). Applying
(2.1.50) we obtain that for any ϕ ∈S (Rn) we have 〈 f j− f ,ϕ〉 → 0; hence f j → f
inS ′(Rn).

(b) For any Φ ∈S (Rn) with integral one and t > 0 we have Φt ∗ fk →Φt ∗ f as
k→ ∞, since fk → f inS ′(Rn). Thus

|Φt ∗ f |= liminf
k→∞

|Φt ∗ fk| ≤ liminf
k→∞

sup
t>0

|Φt ∗ fk| .

Taking the supremum over t, we obtain supt>0 |Φt ∗ f | ≤ liminfk→∞ supt>0 |Φt ∗ fk|.
Then we apply Lp quasi-norms and Fatou’s lemma to deduce that ‖M( f ;Φ)‖Lp is
bounded by a multiple of C; thus, f ∈ Hp.

(c) Suppose { f j}∞j=1 is a Cauchy sequence inH
p(Rn). Then there is a constantC0

such that sup j≥1 ‖ f j‖Hp ≤C0. Using (2.1.50) (with f j− fk in place of f ) we obtain
that for every ϕ in S ′(Rn) the sequence {〈 f j,ϕ〉}∞j=1 is Cauchy in C and thus it
converges to a complex number f (ϕ). We claim that the mapping ϕ �→ f (ϕ) is a
tempered distribution. We clearly have

| f (ϕ)|= lim
k→∞

∣
∣〈 fk,ϕ〉

∣
∣≤Cn,pNN(ϕ)C0 .

But an easy calculation shows that NN(ϕ) is controlled by the finite sum of semi-
norms ρα ,β (ϕ) with |α|, |β | ≤ N+n+1. This yields that f lies in S ′(Rn), in par-
ticular f is a bounded distribution, and obviously f j → f inS ′(Rn). Part (b) implies
that f is an element of Hp(Rn).

Next we show that fk → f in Hp. Given Φ ∈S (Rn) with integral 1, we have for
any t > 0 and any k ≥ 1

|( fk− f )∗Φt |= liminf
�→∞

|( fk− f�)∗Φt | ≤ liminf
�→∞

sup
t>0

|( fk− f�)∗Φt | .

Taking the supremum over t > 0 on the left and then the Lp quasi-norm and applying
Fatou’s lemma we deduce that

∥
∥M( fk− f ;Φ)

∥
∥
Lp ≤ liminf

�→∞

∥
∥M( fk− f�;Φ)

∥
∥
Lp .

Letting k→ ∞ we obtain that

limsup
k→∞

∥
∥M( fk− f ;Φ)

∥
∥
Lp ≤ limsup

k,�→∞

∥
∥M( fk− f�;Φ)

∥
∥
Lp = 0;
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thus ‖ fk− f‖Hp → 0 as k → ∞. Therefore Hp is complete. Finally we observe that
the map ( f ,g) �→ ‖ f −g‖pHp is a metric on Hp that generates the same topology as
the quasi-norm f �→ ‖ f‖Hp ; hence Hp is metrizable. �

2.1.4 Vector-Valued Hp and Its Characterizations

We now obtain a vector-valued analogue of Theorem 2.1.4 crucial in the character-
ization of Hardy spaces using Littlewood–Paley theory. To state this analogue we
need to extend the definitions of the maximal operators to finite sequences of distri-
butions. Let a,b > 0 and let Φ be a Schwartz function on Rn. In accordance with
Definition 2.1.3, we give the following definitions.

Definition 2.1.11. Let L ∈ Z+. We denote by �2L the space of all complex-valued
sequences �a = (a1, . . . ,aL) of length L with norm ‖�a‖�2L = (|a1|2+ · · ·+ |aL|2)1/2.
For a sequence �f = { f j}Lj=1 of tempered distributions on Rn we define the smooth
maximal function of �f with respect to Φ as

M(�f ;Φ)(x) = sup
t>0

∥
∥{(Φt ∗ f j)(x)} j

∥
∥
�2L
.

We define the nontangential maximal function (with aperture a) of f with respect to
Φ as

M∗
a(�f ;Φ)(x) = sup

t>0
sup
y∈Rn

|y−x|≤at

∥
∥{(Φt ∗ f j)(y)} j

∥
∥
�2L
.

We also define the auxiliary maximal function

M∗∗
b (�f ;Φ)(x) = sup

t>0
sup
y∈Rn

∥
∥{(Φt ∗ f j)(x− y)} j

∥
∥
�2L

(1+ t−1|y|)b .

We note that if the function Φ is not assumed to be Schwartz but merely inte-
grable, for example, if Φ is the Poisson kernel, the maximal functions M(�f ;Φ),
M∗

a(�f ;Φ), andM∗∗
b (�f ;Φ) are well defined for sequences �f = { f j}Lj=1 whose terms

are bounded tempered distributions on Rn.
For a fixed positive integer N we define the grand maximal function of �f (with

respect to N) as
M N(�f ) = sup

ϕ∈FN

M∗
1(�f ;ϕ) , (2.1.54)

where
FN =

{

ϕ ∈S (Rn) : NN(ϕ)≤ 1
}
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is as defined in (2.1.11) and

NN(ϕ) =
∫

Rn
(1+ |x|)N ∑

|α |≤N+1
|∂αϕ(x)|dx .

We note that as in the scalar case, we have the sequence of simple inequalities

M(�f ;Φ)≤M∗
a(�f ;Φ)≤ (1+a)bM∗∗

b (�f ;Φ) . (2.1.55)

We now define the vector-valued Hardy space Hp(Rn, �2L).

Definition 2.1.12. Let �f = { f j}Lj=1 be a finite sequence of bounded tempered dis-
tributions on Rn and let 0 < p < ∞. We say that �f lies in the vector-valued Hardy
space Hp(Rn, �2L) if the Poisson maximal function

M(�f ;P)(x) = sup
t>0

∥
∥{(Pt ∗ f j)(x)} j

∥
∥
�2L

lies in Lp(Rn). If this is the case, we set

∥
∥�f
∥
∥
Hp(Rn,�2L)

=
∥
∥M(�f ;P)

∥
∥
Lp(Rn)

=
∥
∥
∥sup
ε>0

( L

∑
j=1

| f j ∗Pε |2
)1

2
∥
∥
∥
Lp(Rn)

.

The next theorem provides a vector-valued analogue of Theorem 2.1.4.

Theorem 2.1.13. Let 0< p< ∞, L ∈ Z+. Then the following statements are valid:
(a) There exists a Schwartz function Φo with

∫

RnΦo(x)dx = 1 and a constant C1
(C1 = 500 works) such that

∥
∥M(�f ;Φo)

∥
∥
Lp(Rn)

≤C1
∥
∥�f
∥
∥
Hp(Rn,�2L)

(2.1.56)

for every sequence �f = { f j}Lj=1 of bounded tempered distributions.
(b) For every a> 0 and Φ inS (Rn) there exists a constant C2(n, p,a,Φ) such that

∥
∥M∗

a(�f ;Φ)
∥
∥
Lp(Rn)

≤C2(n, p,a,Φ)
∥
∥M(�f ;Φ)

∥
∥
Lp(Rn,�2L)

(2.1.57)

for every sequence �f = { f j}Lj=1 of tempered distributions.
(c) For every a> 0, b> n/p, andΦ inS (Rn) there exists a constantC3(n, p,a,b,Φ)
such that

∥
∥M∗∗

b (�f ;Φ)
∥
∥
Lp(Rn)

≤C3(n, p,a,b,Φ)
∥
∥M∗

a(�f ;Φ)
∥
∥
Lp(Rn,�2L)

(2.1.58)

for every sequence �f = { f j}Lj=1 of tempered distributions.
(d) For every b > 0 and Φ in S (Rn) with

∫

RnΦ(x)dx �= 0 there exists a constant
C4(b,Φ) such that if N = [ np ]+1 we have

∥
∥M N(�f )

∥
∥
Lp(Rn)

≤C4(b,Φ)
∥
∥M∗∗

b (�f ;Φ)
∥
∥
Lp(Rn,�2L)

(2.1.59)

for every sequence �f = { f j}Lj=1 of tempered distributions.
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(e) For every positive integer N there exists a constant C5(n,N) such that for all
f j ∈ S ′(Rn), j = 1, . . . ,L with ‖M N(�f )‖Lp(Rn,�2L)

< ∞ (where �f = { f j}Lj=1) we
must have that f j are bounded distributions and satisfy

∥
∥�f
∥
∥
Hp(Rn)

≤C5(n,N)
∥
∥M N(�f )

∥
∥
Lp(Rn,�2L)

, (2.1.60)

that is, �f lies in the Hardy space Hp(Rn, �2L).

Proof. The proof of this theorem is obtained via a step-by-step repetition of the
proof of Theorem 2.1.4 in which the scalar absolute values of complex numbers are
replaced by �2L norms. The verification of the details of this extension is omitted.
The crucial observation in the adaptation of the proof of Theorem 2.1.4 is that the
constants that appear in all inequalities do not depend on L. �

We end this subsection by observing the validity of the following vector-valued
analogue of (2.1.52):

( L

∑
j=1

∣
∣
〈

f j,ϕ
〉∣
∣2
)1

2 ≤NN(ϕ;x0,R) inf
|z−x0|≤R

M N(�f )(z) . (2.1.61)

The proof of (2.1.61) is identical to the corresponding estimate for scalar-valued
functions. Set ψ(x) = ϕ(−Rx+ x0). It follows directly from Definition 2.1.11 that
for any fixed z with |z− x0| ≤ R we have

( L

∑
j=1

∣
∣
〈

f j,ϕ
〉∣
∣2
) 1

2
= Rn∥∥{( f j ∗ψR)(x0)} j

∥
∥
�2L

≤ sup
y: |y−z|≤R

Rn∥∥{( f j ∗ψR)(y)} j
∥
∥
�2L

≤ RnNN(ψ)M N(�f )(z) ,

which, combined with the observation

RnNN(ψ) =NN(ϕ;x0,R) ,

yields (2.1.61) when we take the infimum over all z with |z− x0| ≤ R.

2.1.5 Singular Integrals on vector-valued Hardy Spaces

To obtain the Littlewood–Paley characterization of Hardy spaces, we need a multi-
plier theorem for vector-valued Hardy spaces.
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Fix L∈Z+. Suppose that {Kj(x)}Lj=1 is a family of functions defined on Rn \{0}
with the following properties: There exist constants A,B< ∞ and an integer N such
that for all multi-indices α with |α| ≤ N and x �= 0 we have

L

∑
j=1

∣
∣∂αKj(x)

∣
∣≤ A |x|−n−|α | < ∞ (2.1.62)

and also

sup
ξ∈Rn

L

∑
j=1

∣
∣K̂ j(ξ )

∣
∣≤ B< ∞ . (2.1.63)

Note that for h ∈ L1(Rn), Kj ∗h is a well-defined function in L1,∞(Rn).
An example of such a sequence of kernels is given by Kj(x) =Ψ2− j(x), where

Ψ is a fixed Schwartz function on Rn whose Fourier transform is supported in a
compact annulus that does not contain the origin.

Theorem 2.1.14. Suppose that a finite sequence of kernels {Kj}Lj=1 satisfies (2.1.62)
and (2.1.63) with N = [ np ] + 1, for some 0 < p ≤ 1. Then there exists a constant
Cn,p that depends only on the dimension n and on p such that for all sequences of
integrable functions { f j}Lj=1 we have the estimate

∥
∥
∥

L

∑
j=1

Kj ∗ f j
∥
∥
∥
Hp(Rn)

≤Cn,p(A+B)
∥
∥{ f j} j

∥
∥
Hp(Rn,�2L)

.

Moreover, the space L1(Rn, �2L) is dense in Hp(Rn, �2L) and thus there is a unique
bounded extension of the operator

{ f j}Lj=1 �→
L

∑
j=1

Kj ∗ f j (2.1.64)

from Hp(Rn, �2L) to H
p(Rn).

Proof. We fix a smooth positive function Φ supported in the unit ball B(0,1) with
∫

RnΦ(x)dx= 1 and we consider the maximal function

M
( L

∑
j=1

Kj ∗ f j;Φ
)

= sup
ε>0

∣
∣Φε ∗

L

∑
j=1

Kj ∗ f j
∣
∣ ,

defined for f j ∈ L1(Rn).We will show that this maximal function lies in Lp(Rn).
We now fix a λ > 0 and we set N = [ np ]+1. We also fix γ > 0 to be chosen later

and we define the set

Ωλ = {x ∈ Rn : M N(�f )(x)> γ λ} .
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The set Ωλ is open, and we may use the Whitney decomposition (Appendix J in
[156]) to write it as a union of cubes Qk such that

(a)
⋃

k Qk =Ωλ and the Qk’s have disjoint interiors;

(b)
√
n�(Qk)≤ dist (Qk,(Ωλ )

c)≤ 4
√
n�(Qk).

We denote by c(Qk) the center of the cube Qk. For each k we set

dk = dist (Qk,(Ωλ )
c)+2

√
n�(Qk)≈ �(Qk) ,

so that
B(c(Qk),dk)∩ (Ωλ )

c �= /0 .

We now introduce a partition of unity {ϕk}k adapted to the sequence of cubes {Qk}k
such that

(c) χΩλ = ∑kϕk and each ϕk satisfies 0≤ ϕk ≤ 1;

(d) each ϕk is supported in 6
5 Qk and satisfies Ik =

∫

Rn ϕk dx≈ dnk ;

(e) ‖∂αϕk‖L∞ ≤ Cαd
−|α |
k for all multi-indices α and some constants Cα indepen-

dent of k.

We fix a sequence of integrable functions f j and we decompose each function as

f j = g j+∑
k
b j,k ,

where g j is the good function of the decomposition given by

g j = f jχRn\Ωλ
+∑

k

∫

Rn f jϕk dx
Ik

ϕk

and b j = ∑k b j,k is the bad function of the decomposition given by

b j,k =

(

f j−
∫

Rn f jϕk dx
Ik

)

ϕk .

We note that each b j,k has integral zero. We define �g = {g j}Lj=1 and�b = {b j}Lj=1 .
At this point we appeal to (2.1.61) and to properties (d) and (e) to obtain

( L

∑
j=1

∣
∣
∣

∫

Rn f jϕk dx
Ik

∣
∣
∣

2)1
2 ≤ NN

(

ϕk;c(Qk),dk
)

Ik
inf

|z−c(Qk)|≤dk
M N(�f )(z) . (2.1.65)

But since

NN
(

ϕk;c(Qk),dk
)

Ik
≤
[∫

6
5Qk

(

1+
|x− c(Qk)|

dk

)N
∑

|α |≤N+1

d|α |k Cαd
−|α |
k

Ik
dx
]

≤CN,n ,
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it follows that (2.1.65) is at most a constant multiple of λ , since the ball B(c(Qk),dk)
meets the complement of Ωλ . We conclude that

∥
∥�g
∥
∥
L∞(Ωλ ,�

2
L)
≤CN,n γ λ . (2.1.66)

We now estimate M(∑L
j=1Kj ∗b j,k;Φ). For fixed k and ε > 0 we have

(

Φε ∗
L

∑
j=1

Kj ∗b j,k
)

(x)

=
∫

Rn

(

Φε ∗
L

∑
j=1

Kj

)

(x− y)
[

f j(y)ϕk(y)−
∫

Rn f jϕk dx
Ik

ϕk(y)
]

dy

=
∫

Rn

L

∑
j=1

{
(

Φε ∗Kj
)

(x−z)−
∫

Rn

(

Φε ∗Kj
)

(x−y)
ϕk(y)
Ik

dy
}

ϕk(z) f j(z)dz

=
∫

Rn

L

∑
j=1

Rj,k(x,z)ϕk(z) f j(z)dz ,

where we set Rεj,k(x,z) for the expression inside the curly brackets. Using (2.1.52),
we obtain
∣
∣
∣
∣

∫

Rn

L

∑
j=1

Rεj,k(x,z)ϕk(z) f j(z)dz
∣
∣
∣
∣

≤
L

∑
j=1

NN(Rεj,k
(

x, ·)ϕk;c(Qk),dk
)

inf
|z−c(Qk)|≤dk

MN( f j)(z)

≤
L

∑
j=1

NN(Rεj,k
(

x, ·)ϕk;c(Qk),dk
)

inf
|z−c(Qk)|≤dk

M N(�f )(z) . (2.1.67)

Since ϕk(z) is supported in 6
5Qk, the term (1+ |z−c(Qk)|

dk
)N contributes only a constant

factor in the integral defining NN(Rεj,k
(

x, ·)ϕk;c(Qk),dk
)

, and we obtain

NN(Rεj,k
(

x, ·)ϕk;c(Qk),dk
)

≤CN,n

∫

6
5Qk

∑
|α |≤N+1

d|α |k

∣
∣
∣
∂α

∂ zα
(

Rεj,k(x,z)ϕk(z)
)
∣
∣
∣dz .

(2.1.68)

For notational convenience we set Kε
j =Φε ∗Kj .We observe that the family {Kε

j } j

satisfies (2.1.62) and (2.1.63) with constants A′ and B′ that are only multiples of A
and B, respectively, uniformly in ε; see Exercise 2.1.13. We now obtain a pointwise
estimate for NN(Rεj,k

(

x, ·)ϕk;c(Qk),dk
)

when x ∈ Rn \Ωλ . For fixed x ∈ Rn \Ωλ
we have

Rεj,k(x,z)ϕk(z) =
∫

Rn
ϕk(z)

{

Kε
j (x− z)−Kε

j (x− y)
}ϕk(y)dy

Ik
,
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from which it follows that
∣
∣
∣
∂α

∂ zα
Rεj,k(x,z)ϕk(z)

∣
∣
∣≤

∫

Rn

∣
∣
∣
∣

∂α

∂ zα

{

ϕk(z)
[

Kε
j (x− z)−Kε

j (x− y)
]}
∣
∣
∣
∣

ϕk(y)dy
Ik

.

Using hypothesis (2.1.62), we can obtain the estimate

L

∑
j=1

∣
∣
∣
∣

∂α

∂ zα

{

ϕk(z)
{

Kε
j (x−z)−Kε

j (x−y)
}}
∣
∣
∣
∣
≤CN,n A

dkd
−|α |
k

|x− c(Qk)|n+1 (2.1.69)

for all |α| ≤ N, for all y,z ∈ Qk and all x ∈ Rn \Ωλ . Indeed, by Leibniz’s rule, the
left-hand side of (2.1.69) is controlled by

C′
α ∑
|β |≤|α |

d−|α |+|β |
k

L

∑
j=1

∣
∣
∣
∣

∂β

∂ zβ
{

Kε
j (x−z)−Kε

j (x−y)
}
∣
∣
∣
∣

≤ C′′
α

[

∑
|β |≤|α |
β �=0

Ad−|α |+|β |
k

|x− z|n+|β | +
d−|α |
k Adk

|x− z|n+1

]

= C′′
αA
[

∑
|β |≤|α |
β �=0

d−|α |+1
k

|x− z|n+1

(
dk

|x− z|
)|β |−1

+
d−|α |
k dk

|x− z|n+1

]

≤ CN,n
d−|α |
k Adk

|x− c(Qk)|n+1

since |x− z| ≥ cdk and |x− z| ≈ |x− c(Qk)|. This proves (2.1.69).
It follows from (2.1.69) that

d|α |k

L

∑
j=1

∣
∣
∣
∂α

∂ zα
{

Rεj,k(x,z)ϕk(z)
}
∣
∣
∣≤CN,nA

dk
|x− c(Qk)|n+1 .

Inserting this estimate in (2.1.68) and summing over all j yields for x ∈ Rn \Ωλ

L

∑
j=1

NN(Rεj,k
(

x, ·)ϕk;c(Qk),dk
)≤CN,n A

dn+1
k

|x− c(Qk)|n+1 . (2.1.70)

Combining (2.1.70) with (2.1.67) gives for x ∈ Rn \Ωλ ,

L

∑
j=1

∣
∣
∣
∣

∫

Rn
Rεj,k(x,z)ϕk(z) f j(z)dz

∣
∣
∣
∣
≤ CN,nAdn+1

k
|x− c(Qk)|n+1 inf

|z−c(Qk)|≤dk
M N(�f )(z) .
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This provides the estimate

sup
ε>0

∣
∣

L

∑
j=1

(Kε
j ∗b j,k)(x)

∣
∣≤ CN,n Adn+1

k
|x− c(Qk)|n+1 γ λ

for all x ∈ Rn \Ωλ , since the ball B(c(Qk),dk) intersects (Ωλ )
c. Summing over k

and using the sublinearity of M(·;Φ) results in

M
( L

∑
j=1

Kj ∗b j;Φ
)

(x)≤∑
k

CN,n Aγ λ dn+1
k

|x− c(Qk)|n+1 ≤∑
k

C′
N,n Aγ λ dn+1

k

(dk+ |x− c(Qk)|)n+1

for all x ∈ (Ωλ )
c. It is a simple fact that theMarcinkiewicz function below satisfies

∫

Rn
∑
k

dn+1
k

(dk+ |x− c(Qk)|)n+1 dx≤Cn∑
k
|Qk|=Cn |Ωλ |;

see Exercise 5.6.6 in [156]. We have therefore shown that

λ
2

∣
∣(Ωλ )

c∩{M(�K ∗�b ;Φ)> λ
2

}∣
∣≤

∫

(Ωλ )
c
M(�K ∗�b ;Φ)(x)dx

≤CN,n Aγ λ |Ωλ | , (2.1.71)

where we used the notation �K ∗�b= ∑L
j=1Kj ∗b j . Also define �K ∗�g= ∑L

j=1Kj ∗g j .
We now combine the information we have acquired so far. First we have
∣
∣{M(�K ∗�f ;Φ)> λ}∣∣≤ ∣∣{M(�K ∗�g ;Φ)> λ

2 }
∣
∣+
∣
∣{M(�K ∗�b ;Φ)> λ

2 }
∣
∣ .

For the good function �g we have the estimate

∣
∣{M(�K ∗�g ;Φ)> λ

2 }
∣
∣ ≤ 4

λ 2

∫

Rn
M(�K ∗�g ;Φ)(x)2 dx

≤ 4
λ 2

∫

Rn
M(�K ∗�g)(x)2 dx

≤ Cn

λ 2

∫

Rn
|(�K ∗�g)(x)|2 dx

=
Cn

λ 2

∫

Rn

∣
∣
∣

L

∑
j=1

K̂ j(ξ )ĝ j(ξ )
∣
∣
∣

2
dξ

≤ Cn

λ 2

∫

Rn

( L

∑
j=1

|K̂ j(ξ )|
)2( L

∑
j=1

|ĝ j(ξ )|2
)

dξ

≤ CnB2

λ 2

∫

Rn

L

∑
j=1

|g j(x)|2 dx
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≤ CnB2

λ 2

∫

Ωλ

L

∑
j=1

|g j(x)|2 dx+ CnB2

λ 2

∫

(Ωλ )
c

L

∑
j=1

| f j(x)|2 dx

≤ B2CN,nγ2 |Ωλ |+
CnB2

λ 2

∫

(Ωλ )
c
M N(�f )(x)2 dx ,

where we used Corollary 2.1.12 in [156], the L2 boundedness of the Hardy–Littlewood
maximal operator, hypothesis (2.1.63), the fact that f j = g j on (Ωλ )

c, estimate
(2.1.66), and the fact that ‖�f ‖�2L ≤M N(�f ) in the preceding sequence of estimates.

On the other hand, estimate (2.1.71) gives
∣
∣{M(�K ∗�b ;Φ)> λ

2 }
∣
∣≤ |Ωλ |+2CN,nAγ |Ωλ | ,

which, combined with the previously obtained estimate for�g, gives

∣
∣
{

M(�K ∗�f ;Φ)> λ
}∣
∣≤ 2CN,n(1+Aγ+B2 γ2) |Ωλ |+

CnB2

λ 2

∫

(Ωλ )
c
M N(�f )(x)2 dx .

Multiplying this estimate by pλ p−1, recalling that Ωλ = {M N(�f ) > γ λ}, and in-
tegrating in λ from 0 to ∞, we can easily obtain
∥
∥M(�K ∗�f ;Φ)

∥
∥p
Lp(Rn)

≤ 2CN,n(1+Aγ+B2γ2)γ−p∥∥M N(�f )
∥
∥p
Lp(Rn,�2L)

. (2.1.72)

Choosing γ = (A+B)−1 and recalling that N = [ np ]+1 gives the required conclusion
for some constant Cn,p that depends only on n and p.

Finally, we discuss the extension of the operator (2.1.64) to the entire Hp(Rn, �2L).
In view of Proposition 2.1.7, L1(Rn)∩Hp(Rn) is dense in Hp(Rn). It follows that
L1(Rn, �2L)∩Hp(Rn, �2L) is dense in Hp(Rn, �2L). Indeed, given �f = ( f1, . . . , fL) in
Hp(Rn, �2L), find sequences h(k)j in L1(Rn) such that h(k)j → f j in Hp(Rn) as k→ ∞.

Set�h(k) = (h(k)1 , . . . ,h(k)L ). Then for any Φ ∈S (Rn) with integral one we have

M(�f −�h(k);Φ)≤M( f1−�h(k)1 ;Φ)+ · · ·+M( fL−�h(k)L ;Φ) .

Apply the Lp quasi-norm on both sides of the preceding expression and then let
k → ∞ to obtain the density of L1(Rn, �2L)∩Hp(Rn, �2L) in Hp(Rn, �2L). In view of
this, the operator in (2.1.64) admits a unique bounded extension from Hp(Rn, �2L) to
Hp(Rn). �

Exercises

2.1.1. Prove that if v is a bounded tempered distribution and h1,h2 are in S (Rn),
then

(h1 ∗h2)∗ v= h1 ∗ (h2 ∗ v).
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2.1.2. (a) Show that the H1 norm remains invariant under the L1 dilation ft(x) =
t−n f (t−1x).
(b) Show that the Hp norm remains invariant under the Lp dilation tn−n/p ft(x) in-
terpreted in the sense of distributions.

2.1.3. Show that the continuous function ψ(s) = e
π

1
s e

−
√
2
2 (s−1)

1
4 sin

(√2
2 (s− 1)

1
4
)

defined on [1,∞) satisfies

∫ ∞

1
skψ(s)ds=

{

1 if k = 0,
0 if k = 1,2,3, . . . .

[

Hint: Consider the analytic function F(z) = 4e
π z3 (z4+1)k−1e−

√
2
2 zei

√
2
2 z integrated

over the boundary of the domain formed by the disc of radius R intersected with the
quadrant Rez≥ 0, Imz≥ 0. Apply Cauchy’s residue theorem to F over this contour,
noting that a pole appears only when k = 0. In this case a simple pole at the point√
2
2 + i

√
2
2 produces a nonzero residue.

]

2.1.4. Let Pt be the Poisson kernel. Show that for any bounded tempered distribution
f we have

Pt ∗ f → f inS ′(Rn) as t → 0.
[

Hint: Fix a smooth function φ whose Fourier transform is equal to 1 in a neigh-
borhood of zero. Show that Pt ∗ (φ ∗ f )→ φ ∗ f in S ′(Rn) and that P̂t(1− φ̂) f̂ →
(1− φ̂) f̂ inS ′(Rn) as t → 0.

]

2.1.5. Fix a smooth radial nonnegative compactly supported function θ on Rn such
that θ = 1 on the unit ball and vanishing outside the ball of radius 2. Set Φ (k)(x) =
(

θ(x)− θ(2x)
)

(2−2k+ |x|2)− n+1
2 for k ≥ 1. Prove that for all bounded tempered

distributions f and for all t > 0 we have

Pt ∗ f = (θP)t ∗ f +
Γ ( n+1

2 )

π n+1
2

∞

∑
k=1

2−k(Φ (k))2kt ∗ f ,

where the series converges in S ′(Rn). Here P(x) = Γ ( n+1
2 )/π n+1

2 (1+ |x|2) n+1
2 is

the Poisson kernel.
[

Hint: Fix a function φ ∈S (Rn) whose Fourier transform is equal to 1 in a neigh-
borhood of zero and prove the required conclusion for φ ∗ f and for (δ0−φ)∗ f . In
the first case use the Lebesgue dominated convergence theorem and in the second
case the Fourier transform.

]

2.1.6. Let 0< p< ∞ be fixed. Show that a bounded tempered distribution f lies in
Hp if and only if the nontangential Poisson maximal function

M∗
1( f ;P)(x) = sup

t>0
sup
y∈Rn

|y−x|≤t

|(Pt ∗ f )(y)|

lies in Lp, and in this case we have ‖ f‖Hp ≈ ‖M∗
1( f ;P)‖Lp .
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[

Hint: Observe that M( f ;P) can be replaced with M∗
1( f ;P) in the proof of part (e)

of Theorem 2.1.4.
]

2.1.7. (a) Let 1< q≤∞ and let g in Lq(Rn) be a compactly supported function with
integral zero. Show that g lies in the Hardy space H1(Rn).
(b) Prove the same conclusion when Lq is replaced by L log+L.
[

Hint: Part (a): Pick a C ∞
0 function Φ supported in the unit ball with nonvanishing

integral and suppose that the support of g is contained in the ball B(0,R). For |x| ≤
2R we have thatM( f ;Φ)(x)≤CΦM(g)(x), and sinceM(g) lies in Lq, it also lies in
L1(B(0,2R)). For |x| > 2R, write (Φt ∗ g)(x) =

∫

Rn
(

Φt(x− y)−Φt(x)
)

g(y)dy and
use the mean value theorem to estimate this expression by t−n−1‖∇Φ‖L∞‖g‖L1 ≤
|x|−n−1CΦ‖g‖Lq , since t ≥ |x−y| ≥ |x|− |y| ≥ |x|/2 whenever |x| ≥ 2R and |y| ≤ R.
Thus M( f ;Φ) lies in L1(Rn). Part (b): You may use Exercise 2.1.4(b) in [156] to
deduce that M(g) is integrable over B(0,2R).

]

2.1.8. Show that for every integrable function g with mean value zero and support
inside a ball B, we have M(g;Φ) ∈ Lp((3B)c) for p> n/(n+1). Here Φ is inS .

2.1.9. Show that the space of all Schwartz functions whose Fourier transform is
supported away from a neighborhood of the origin is dense in Hp.
[

Hint: Use the square function characterization of Hp.
]

2.1.10. (a) Suppose that f ∈ Hp(Rn) for some 0 < p ≤ 1 and Φ in S (Rn). Then
show that for all t > 0 the function Φt ∗ f belongs to Lr(Rn) for all p≤ r ≤ ∞. Find
an estimate for the Lr norm of Φt ∗ f in terms of ‖ f‖Hp and t > 0.
(b) Let 0 < p ≤ 1. Show that for all f in Hp(Rn), f̂ is a continuous function and
prove that there exists a constant Cn,p such that for all ξ �= 0

| f̂ (ξ )| ≤Cn,p |ξ |
n
p−n∥∥ f

∥
∥
Hp .

[

Hint: Part (a): Use Proposition 2.1.7. Part (b): Use part (a) with r = 1.
]

2.1.11. Show that Hp(Rn, �2) = Lp(Rn, �2) whenever 1< p<∞ and that H1(Rn, �2)
is contained in L1(Rn, �2).
[

Hint: Prove these assertions for �2L first for some L ∈ Z+.
]

2.1.12. For a sequence of tempered distributions �f = { f j} j, define the following
variant of the grand maximal function:

M̃ N(�f )(x) = sup
{ϕ j} j∈F̃N

sup
ε>0

sup
y∈Rn

|y−x|<ε

(

∑
j

∣
∣((ϕ j)ε ∗ f j)(y)

∣
∣2
) 1

2
,

where N ≥ [ np ]+1 and

F̃N =

{

{ϕ j} j ∈S (Rn) :
(

∑
j
NN(ϕ j)

2
)1/2 ≤ 1

}

.
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Show that for all sequences of tempered distributions �f = { f j} j we have

∥
∥M̃ N(�f )

∥
∥
Lp(Rn,�2)

≈ ∥∥M N(�f )
∥
∥
Lp(Rn,�2)

with constants depending only on n and p.
[

Hint: Fix Φ inS (Rn) with integral 1. Using Lemma 2.1.5, write

(ϕ j)t(y) =
∫ 1

0
((Θ (s)

j )t ∗Φts)(y)ds

and adapt the proof of part (d) of Theorem 2.1.4 to obtain the pointwise estimate

M̃ N(�f )≤Cn,pM∗∗
m (�f ;Φ) ,

where m> n/p.
]

2.1.13. Suppose that the family {Kj}Lj=1 satisfies (2.1.62) and (2.1.63) and let Φ be
a smooth function supported in the unit ball B(0,1). If Φε(x) = ε−nΦ(x/ε), then
the family {Φε ∗Kj}Lj=1 also satisfies (2.1.62) and (2.1.63) with constants A′ and B′
proportional to A+B and B, respectively.
[

Hint: In the proof of (2.1.62) consider the cases |x| ≥ 2ε and |x| ≤ 2ε . In the second
case write

p.v.
∫

Rn
Φε(x− y)Kj(y)dy=

∫

Rn

(

Φε(x− y)−Φε(x)
)

Kj(y)Φ0(y/ε)dy

+

(

p.v.
∫

Rn
Kj(y)Φ0(y/ε)dy

)

Φε(x) ,

whereΦ0(y) is a smooth function which is equal to 1 on the ball |y| ≤ 3 and vanishes
outside the ball |y| ≤ 4.

]

2.2 Function Spaces and the Square Function Characterization
of Hardy Spaces

In Sections 1.2 and 1.3 we obtained a remarkable characterization of Sobolev and
Lipschitz using the Littlewood–Paley operators Δ j. In this section we achieve a sim-
ilar characterization for the Hardy spaces. These characterizations motivate the in-
troduction of classes of spaces defined in terms of mixed (discrete and continuous)
quasi-norms of the sequences ΔΨ

j ( f ), for a suitableΨ ∈S (Rn). Within the general
framework of these classes, one can launch a study of function spaces from a unified
perspective.
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We have encountered two expressions involving the operators ΔΨ
j in the charac-

terizations of Sobolev and Lipschitz spaces. Sobolev spaces were characterized by
an Lp norm of the Littlewood–Paley square function

(

∑
j
|2 jαΔΨ

j ( f )|2
) 1

2
,

but Lipschitz spaces were characterized by an �q norm of the sequence of quanti-
ties

∥
∥2 jαΔΨ

j ( f )
∥
∥
Lp . These examples motivate the introduction of two fundamental

scales of function spaces, called the Triebel–Lizorkin and Besov–Lipschitz spaces,
respectively.

2.2.1 Introduction to Function Spaces

Before we give the pertinent definitions, we recall the setup that we developed in
Section 1.3 and used in Section 1.4. Throughout this section we fix a radial Schwartz
functionΨ on Rn whose Fourier transform is nonnegative, is supported in the an-
nulus 1− 1

7 ≤ |ξ | ≤ 2, is equal to one on the smaller annulus 1 ≤ |ξ | ≤ 2− 2
7 , and

satisfies
∑
j∈Z

Ψ̂(2− jξ ) = 1 , ξ �= 0 . (2.2.1)

Associated with this bump, we define the Littlewood–Paley operators ΔΨ
j given by

multiplication on the Fourier transform side by the function Ψ̂(2− jξ ). We also de-
fine a Schwartz function Φ such that

Φ̂(ξ ) =

{

∑ j≤0Ψ̂(2− jξ ) when ξ �= 0,
1 when ξ = 0.

(2.2.2)

Note that Φ̂(ξ ) is equal to 1 for |ξ | ≤ 2− 2
7 and vanishes when |ξ | ≥ 2. It follows

from these definitions that

S0+
∞

∑
j=1

ΔΨ
j = I , (2.2.3)

where S0 is the operator given by convolution with the bumpΦ and the convergence
of the series in (2.2.3) is inS ′(Rn). Moreover, we also have the identity

∑
j∈Z

ΔΨ
j = I , (2.2.4)

where the convergence of the series in (2.2.4) is in the sense ofS ′(Rn)/P .
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Definition 2.2.1. Let α ∈ R and 0< p,q≤ ∞. For f ∈S ′(Rn) we set

∥
∥ f
∥
∥
Bα,qp

=
∥
∥S0( f )

∥
∥
Lp +

( ∞

∑
j=1

(

2 jα∥∥ΔΨ
j ( f )

∥
∥
Lp
)q
) 1

q

with the obvious modification when p,q= ∞. When p,q< ∞ we also define

∥
∥ f
∥
∥
Fα,q
p

=
∥
∥S0( f )

∥
∥
Lp +

∥
∥
∥

( ∞

∑
j=1

(

2 jα |ΔΨ
j ( f )|

)q
) 1

q
∥
∥
∥
Lp
.

The space of all tempered distributions f for which the quantity ‖ f‖Bα,qp
is finite

is called the (inhomogeneous) Besov–Lipschitz space with indices α, p,q and is
denoted by Bα ,qp . The space of all tempered distributions f for which the quantity
‖ f‖Fα,q

p
is finite is called the (inhomogeneous) Triebel–Lizorkin space with indices

α, p,q and is denoted by Fα ,q
p .

We now define the corresponding homogeneous versions of these spaces. For an
element f of S ′(Rn)/P we let

∥
∥ f
∥
∥ .
Bα,qp

=
(

∑
j∈Z

(

2 jα∥∥ΔΨ
j ( f )

∥
∥
Lp
)q
) 1

q

and
∥
∥ f
∥
∥ .
Fα,q
p

=
∥
∥
∥

(

∑
j∈Z

(

2 jα |ΔΨ
j ( f )|

)q
) 1

q
∥
∥
∥
Lp
.

The space of all f inS ′(Rn)/P for which the quantity ‖ f‖ .Bα,qp
is finite is called the

(homogeneous) Besov–Lipschitz space with indices α, p,q and is denoted by Ḃα ,qp .
The space of f in S ′(Rn)/P such that ‖ f‖ .Fα,q

p
< ∞ is called the (homogeneous)

Triebel–Lizorkin space with indices α, p,q and is denoted by
.
Fα ,q
p .

We now make several observations related to these definitions. First we note that
the expressions ‖·‖ .Fα,q

p
, ‖·‖Fα,q

p
, ‖·‖ .Bα,qp

, and ‖·‖Bα,qp
are built in terms of Lp quasi-

norms of �q quasi-norms of 2 jαΔ j or �q quasi-norms of Lp quasi-norms of the same
expressions. As a result, we can see that these quantities satisfy the triangle inequal-
ity with a constant (which may be taken to be 1 when 1 ≤ p,q < ∞). To determine
whether these quantities are indeed quasi-norms, we need to check whether the fol-
lowing property holds:

∥
∥ f
∥
∥
X = 0 =⇒ f = 0 , (2.2.5)

where X is one of the
.
Fα ,q
p , Fα ,q

p ,
.
Bα ,qp , and Bα ,qp . Since these are spaces of distribu-

tions, the identity f = 0 in (2.2.5) should be interpreted in the sense of distributions.
If ‖ f‖X = 0 for some inhomogeneous space X , then S0( f ) = 0 and ΔΨ

j ( f ) = 0 for
all j ≥ 1. Using (2.2.3), we conclude that f = 0; thus the quantities ‖ · ‖Fα,q

p
and

‖·‖Bα,qp
are indeed quasi-norms. Let us investigate what happens when ‖ f‖X = 0 for

some homogeneous space X . In this case we must have Δ j( f ) = 0, and using (2.2.4)
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we conclude that f̂ must be supported at the origin. Proposition 2.4.1 in [156] yields
that f must be a polynomial and thus f must be zero (since distributions whose
difference is a polynomial are identified in homogeneous spaces).

Remark 2.2.2. We interpret the previous definition in certain cases. According to
what we have seen so far, we have

.
F0,2
p ≈ F0,2

p ≈ Lp , 1< p< ∞,

Fs,2
p ≈ Lp

s , 1< p< ∞,
.
Fs,2
p ≈ .

Lp
s , 1< p< ∞,

Bγ ,∞∞ ≈ Λγ , γ > 0,
.
Bγ ,∞∞ ≈ .

Λγ , γ > 0 ,

where ≈ indicates that the corresponding norms are equivalent. Moreover, later in
this section we will see that

.
F0,2
p ≈ Hp 0< p≤ 1.

Although in this text we restrict attention to the case p < ∞, it is worth noting
that when p= ∞,

.
Fα ,q
∞ can be defined as the space of all f ∈S ′/P that satisfy

∥
∥ f
∥
∥ .
Fα,q
∞

= sup
Q dyadic cube

∫

Q

1
|Q|
( ∞

∑
j=− log2 �(Q)

(2 jα |ΔΨ
j ( f )|)q

)1
q

< ∞ .

In the particular case q= 2 and α = 0, the space obtained in this way is called BMO
and coincides with the space introduced and studied in Chapter 3; this space serves
as a substitute for L∞ and plays a fundamental role in analysis. It should now be clear
that several important spaces in analysis can be thought of as elements of the scale
of Triebel–Lizorkin spaces.

It would have been more natural to denote Besov–Lipschitz and Triebel–Lizorkin
spaces by Bp

α ,q and Fp
α ,q to maintain the upper and lower placements of the corre-

sponding indices analogous to those in the previously defined Lebesgue, Sobolev,
Lipschitz, and Hardy spaces. However, the notation in Definition 2.2.1 is more or
less prevalent in the field of function spaces, and we adhere to it.

2.2.2 Properties of Functions with Compactly Supported Fourier
Transforms

The definitions of the quasi-norms of the spaces Bα ,qp , Fα ,q
p ,

.
Bα ,qp , and

.
Fα ,q
p depend

on the function Ψ (and Φ which is defined in terms of Ψ ). It is not clear from
Definition 2.2.1 whether a different choice of bump Ψ produces equivalent quasi-
norms for these spaces. In this subsection we show that if Ω is another function that
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satisfies (2.2.1) andΘ is defined in terms of Ω in the same way that Φ is defined in
terms ofΨ , [i.e., via (2.2.2)], then the norms defined in Definition 2.2.1 with respect
to the pairs (Φ ,Ψ) and (Θ ,Ω) are comparable. To prove this assertion we need the
following lemma.

Lemma 2.2.3. Let 0< r < ∞. Then there exist constants C1 and C2 such that for all
t > 0 and for all C 1 functions u on Rn whose distributional Fourier transform is
supported in the ball |ξ | ≤ t we have

sup
z∈Rn

1
t
|∇u(x− z)|
(1+ t|z|) n

r
≤C1 sup

z∈Rn

|u(x− z)|
(1+ t|z|) n

r
, (2.2.6)

sup
z∈Rn

|u(x− z)|
(1+ t|z|) n

r
≤C2M(|u|r)(x) 1

r , (2.2.7)

where M denotes the Hardy–Littlewood maximal operator. The constants C1 and C2
depend only on the dimension n and r; in particular they are independent of t.

Proof. Select a Schwartz function Φ whose Fourier transform is supported in the
ball |ξ | ≤ 2 and is equal to 1 on the unit ball |ξ | ≤ 1. Then Φ̂( ξt ) is equal to 1 on
the support of û and we can write

u(x− z) = (Φ ∗u)(x− z) =
∫

Rn
tnΦ(t(x− z− y))u(y)dy .

Taking partial derivatives and using that Φ is a Schwartz function, we obtain

|∇u(x− z)| ≤CN

∫

Rn
tn+1(1+ t|x− z− y|)−N |u(y)|dy ,

where N is arbitrarily large. Using that for all x,y,z ∈ Rn we have

1≤ (1+ t|x− z− y|) n
r

(1+ t|z|) n
r

(1+ t|x− y|) n
r
,

we obtain

1
t
|∇u(x− z)|
(1+ t|z|) n

r
≤CN

∫

Rn
tn(1+ t|x− z− y|) n

r−N |u(y)|
(1+ t|x− y|) n

r
dy ,

from which (2.2.6) follows easily by choosing N = n+1+n/r.
We now turn to the proof of (2.2.7). We first prove this estimate under the ad-

ditional assumption that u is a bounded function. Let |y| ≤ δ for some δ > 0 to be
chosen later. We now apply the mean value theorem to write

u(x− z) = (∇u)(x− z−ξy) · y+u(x− z− y)
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for some ξy satisfying |ξy| ≤ |y| ≤ δ . This implies that

|u(x− z)| ≤ sup
|w|≤|z|+δ

|(∇u)(x−w)|δ + |u(x− z− y)|.

Raising the preceding inequality to the power r, averaging over the ball |y| ≤ δ , and
then raising to the power 1

r yields

|u(x− z)| ≤ cr

[

sup
|w|≤|z|+δ

|(∇u)(x−w)|δ +
(

1
vnδ n

∫

|y|≤δ
|u(x− z− y)|r dy

) 1
r
]

with cr =max(21/r,2r). Here vn is the volume of the unit ball in Rn. Then

|u(x− z)|
(1+ t|z|) n

r
≤ cr

[

sup
|w|≤|z|+δ

|(∇u)(x−w)|
(1+ t|z|) n

r
δ +

(
1

vnδ n

∫

|y|≤δ+|z|
|u(x− y)|r dy

) 1
r

(1+ t|z|) n
r

]

.

We now set δ = ε/t for some ε ≤ 1. Then we have

|w| ≤ |z|+ ε
t

=⇒ 1
1+ t|z| ≤

2
1+ t|w| ,

and we can use this to obtain the estimate

|u(x− z)|
(1+ t|z|) n

r
≤ cr,n

[

sup
w∈Rn

1
t
|(∇u)(x−w)|
(1+ t|w|) n

r
ε+

(
tn

vnεn
∫

|y|≤ 1
t +|z|

|u(x− y)|r dy
) 1

r

(1+ t|z|) n
r

]

with cr,n =max(21/r,2r)2n/r. It follows that

sup
z∈Rn

|u(x− z)|
(1+ t|z|) n

r
≤ cr,n

[

sup
w∈Rn

1
t
|(∇u)(x−w)|
(1+ t|w|) n

r
ε+ ε−

n
r M(|u|r)(x) 1

r

]

.

We apply inequality (2.2.6) and we select ε = 1
2 (cr,nC1)

−1, whereC1 is the constant
in the inequality in (2.2.6). We obtain

sup
z∈Rn

|u(x− z)|
(1+ t|z|) n

r
≤ 1

2
sup
z∈Rn

|u(x− z)|
(1+ t|z|) n

r
+ cr,nε−

n
r M(|u|r)(x) 1

r .

Using that

sup
z∈Rn

|u(x− z)|
(1+ t|z|) n

r
≤ ‖u‖L∞ < ∞ ,

we deduce (2.2.7) with constant C2 = 2cr,n ε−n/r, where ε = 1
2 (cr,nC1)

−1.
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We now discuss inequality (2.2.7) when u is not a bounded function. Since

u= (û)∨ =
(

ûΦ̂( ·t )
)∨

= u∗ tnΦ(t(·))

and tnΦ(tx) is a Schwartz function, we have that |u(x)| ≤C′(t,u)(1+ |x|)Qu for some
constantC′(t,u) and someQu ∈Z+; see Theorem 2.3.20 in [156].We pick a function
φ in S (Rn) whose Fourier transform is nonnegative, is supported in the unit ball,
and has integral one. For δ ≤ min(1, t) consider the C 1 function x �→ φ(δx)u(x)
whose Fourier transform is supported in B(0,δ )+B(0, t), which is contained in the
ball B(0,2t). Certainly φ is a Schwartz function, and so for every N > 0 there is a
constant C0(N) such that |φ(y)| ≤C0(N)(1+ |y|)−N for all y ∈ Rn. For N = Qu and
y= δx, δ ≤ 1, we have

|φ(δx)u(x)| ≤C0(Qu)
C′(t,u)(1+ |x|)Qu

(1+ |δx|)Qu
≤C0(Qu)C′(t,u)

1
δQu

(1+ |x|)Qu

(1+ |x|)Qu

and this is a bounded function with L∞ normC0(Qu)C′(t,u)δ−Qu . By the preceding
case, we have

φ(δ (x− z))|u(x− z)|
(1+2t|z|) n

r
≤C2M(|u|r)(x) 1

r ‖φ‖L∞

for every x,z ∈ Rn. Letting δ → 0 and using that φ(0) = 1 we deduce (2.2.7) with
the constant 2n/rC2‖φ‖L∞ in place of C2. �
Corollary 2.2.4. Let 0< p≤ ∞ and α a multi-index. Then there are constants C =
C(α,n, p) and C′ = C(α,n, p) such that for all Schwartz functions u on Rn whose
Fourier transform is supported in the ball B(0, t), for some t > 0, we have

∥
∥∂αu

∥
∥
Lp(Rn)

≤Ct |α |‖u‖Lp(Rn) (2.2.8)

and
∥
∥∂αu

∥
∥
L∞(Rn)

≤C′ t |α |+
n
p ‖u‖Lp(Rn) . (2.2.9)

Proof. Given 0< p≤ ∞, pick 0< r < p. Then (2.2.6) and (2.2.7) imply that

1
t
|∇u(x)| ≤ sup

z∈Rn

1
t
|∇u(x− z)|
(1+ t|z|) n

r
≤C1C2M(|u|r)(x) 1

r , (2.2.10)

where M is the Hardy–Littlewood maximal operator and C1 and C2 depend only
on n and r. Taking Lp quasi-norms and using the boundedness of M on Lp/r we
obtain (2.2.8) when |α| = 1. Since every derivative of u also has Fourier transform
supported in B(0, t), we obtain (2.2.8) for |α| ≥ 2 by iteration.

Select a Schwartz function Φ whose Fourier transform is supported in the ball
|ξ | ≤ 2 and is equal to 1 on the unit ball |ξ | ≤ 1. Then Φ̂( ξt ) is equal to 1 on the
support of û and we can write u= u∗ tnΦ(t(·)), hence

∂αu(x) =
∫

Rn
tn+|α |(∂αΦ)(t(x− y))u(y)dy . (2.2.11)
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If 1≤ p≤ ∞, Hölder’s inequality gives that

‖∂αu‖L∞ ≤ t |α |+
n
p ‖u‖Lp‖∂αΦ‖Lp′ .

When 0< p< 1 we obtain from (2.2.11) that

|∂αu(x)| ≤ tn+|α |‖∂αΦ‖L∞‖u‖1−p
L∞

∫

Rn
|u(y)|p dy , (2.2.12)

which certainly implies (2.2.9) when t = 1, by taking the supremum over all x in
Rn. If û is supported in B(0, t) for some t �= 1, we apply (2.2.9) when t = 1 to
the Schwartz function ut(x) = t−nu(t−1x) whose Fourier transform is supported in
B(0,1). The inequality

∥
∥∂αut

∥
∥
L∞(Rn)

≤C′ ‖ut‖Lp(Rn) .

transforms into (2.2.9) by changing variables. We note that if p< 1 and t < 1, then

(2.2.12) implies the estimate ‖∂αu‖L∞(Rn) ≤ C′ t
|α|
p + n

p ‖u‖Lp(Rn), which is stronger
than (2.2.9). �

2.2.3 Equivalence of Function Space Norms

We now derive other consequences of Lemma 2.2.3 that will allow us to prove that
different norms in Triebel–Lizorkin spaces are equivalent.

Corollary 2.2.5. Let Φ ,Ω ,Ψ ∈ S (Rn). Suppose that the Fourier transforms of
Ω ,Ψ are supported in the annulus 1− 1

7 ≤ |ξ | ≤ 2. Let 0 < r < ∞. Then for all
f inS ′(Rn)/P(Rn) and for all x ∈ Rn and t > 0 we have

|Φt ∗ΔΨ
j ( f )(x)| ≤CΦ ,n,r(M(|ΔΨ

j ( f )|r)(x))
1
r . (2.2.13)

In particular, for any k, j ∈ Z and x ∈ Rn we have

∣
∣ΔΩ

k ΔΨ
j ( f )(x)

∣
∣≤CΩ ,n,r(M(|ΔΨ

j ( f )|r)(x))
1
r . (2.2.14)

Proof. Given r pick N = n
r +n+1. Then we have

∣
∣(Φt ∗ΔΨ

j ( f ))(x)
∣
∣ ≤ CΦ ,N

∫

Rn

∣
∣ΔΨ

j ( f )(x− z)
∣
∣

(1+ t−1|z|) n
r

t−ndz
(1+ t−1|z|)N− n

r

≤ C′
Φ ,n,r sup

z∈Rn

∣
∣ΔΨ

j ( f )(x− z)
∣
∣

(1+ t−1|z|) n
r

∫

Rn

t−ndz
(1+ t−1|z|)N− n

r

≤ CΦ ,n,r(M(|ΔΨ
j ( f )|r)(x))

1
r ,

(2.2.15)
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in view of Lemma 2.2.3, since ΔΨ
j ( f ) is a C

1 function whose Fourier transform is
supported in the ball B(0,2 j+1). This proves (2.2.13), which implies (2.2.14). �

We now return to a point alluded to earlier, that replacingΨ by another function
Ω with similar properties yields equivalent quasi-norms for the function spaces in
Definition 2.2.1.

Corollary 2.2.6. LetΨ ,Ω be Schwartz functions whose Fourier transforms are sup-
ported in the annulus 1− 1

7 ≤ |ξ | ≤ 2 and satisfy (2.2.1). Let Φ be as in (2.2.2) and
let

Θ̂(ξ ) =

{

∑ j≤0 Ω̂(2− jξ ) when ξ �= 0,
1 when ξ = 0.

Then the homogeneous Triebel–Lizorkin and Besov–Lipschitz quasi-norms defined
with respect to Ψ and Ω are equivalent. Likewise, the inhomogeneous Triebel–
Lizorkin and Besov–Lipschitz quasi-norms defined with respect to the pairs (Ψ ,Φ)
and (Ω ,Θ) are also equivalent.

Proof. The support properties ofΨ and Ω imply the identity

ΔΩ
j = ΔΩ

j (ΔΨ
j−1+ΔΨ

j +ΔΨ
j+1) . (2.2.16)

Thus for any f ∈S ′(Rn)/P(Rn), the Lp quasi-norm of ΔΩ
j ( f ) is controlled by the

finite sum of the Lp quasi-norms of ΔΩ
j ΔΨ

j+i( f ) over i ∈ {−1,0,1}. Using (2.2.14)
with r< p and applying the boundedness of the Hardy–Littlewood maximal operator
on Lp/r(Rn), we deduce that any homogeneous Besov–Lipschitz quasi-norm defined
in terms of Ω is controlled by the corresponding norm defined in terms ofΨ .

The corresponding result for Triebel–Lizorkin quasi-norms is as follows:

∥
∥
∥

(

∑
j∈Z

∣
∣2 jαΔΩ

j ( f )
∣
∣q
) 1

q
∥
∥
∥
Lp

≤ Cp,q ∑
i∈{−1,0,1}

∥
∥
∥

(

∑
j∈Z

∣
∣2 jαΔΩ

j ΔΨ
j+i( f )

∣
∣q
) 1

q
∥
∥
∥
Lp

≤ Cp,q,n,r,Ω

∥
∥
∥

(

∑
j∈Z

∣
∣M(|2 jαΔΨ

j ( f )|r)
∣
∣
q
r
) 1

q
∥
∥
∥
Lp

= Cp,q,n,r,Ω

∥
∥
∥

(

∑
j∈Z

∣
∣M(|2 jαΔΨ

j ( f )|r)
∣
∣
q
r
) r

q
∥
∥
∥

1
r

Lp/r

for all f ∈ S ′(Rn). Picking r < p,q, we use the Lp/r(Rn, �q/r) to Lp/r(Rn, �q/r)
boundedness of the Hardy–Littlewood maximal operator (Theorem 5.6.6 in [156])
to complete the proof of the equivalence of the Triebel–Lizorkin quasi-norms in the
homogeneous case.

In the case of the inhomogeneous spaces, we let SΦ0 and SΘ0 be the operators given
by convolution with the bumpsΦ andΘ , respectively. Then for f ∈S ′(Rn)we have

Θ ∗ f =Θ ∗ (Φ ∗ f )+Θ ∗ (Ψ2−1 ∗ f ) , (2.2.17)
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since the Fourier transform of the function Φ+Ψ2−1 is equal to 1 on the support of
Θ̂ . Applying Corollary 2.2.5 (with t = 1), we obtain that

|Θ ∗ (Φ ∗ f )| ≤CrM(|Φ ∗ f |r) 1
r

and also
|Θ ∗ (Ψ2−1 ∗ f )| ≤CrM(|Ψ2−1 ∗ f |r) 1

r

for any 0< r < ∞. Picking r < p, we obtain that
∥
∥Θ ∗ (Φ ∗ f )

∥
∥
Lp ≤C

∥
∥SΦ0 ( f )

∥
∥
Lp

and also
∥
∥Θ ∗ (Ψ2−1 ∗ f )

∥
∥
Lp ≤C

∥
∥ΔΨ

1 ( f )
∥
∥
Lp .

Inserting the last two estimates in (2.2.17), we obtain that ‖SΘ0 ( f )‖Lp is controlled
by a multiple of

‖SΦ0 ( f )‖Lp +‖ΔΨ
1 ( f )‖Lp

which is in turn bounded by a multiple of the Fα ,q
p quasi-norm of f defined in terms

of the pair (Ψ ,Φ). This gives the equivalence of quasi-norms in the inhomogeneous
case. �

The idea behind the proof of the equivalence of function space quasi-norms de-
fined in terms of different bumps is quite useful. In the rest of this subsection, we
take this idea a bit further.

Definition 2.2.7. LetΨ ∈S (Rn). For b> 0, j ∈ R, and f ∈S ′(Rn), we introduce
the notation

M∗∗
b, j( f ;Ψ)(x) = sup

y∈Rn

|(Ψ2− j ∗ f )(x− y)|
(1+2 j|y|)b .

Note that
sup
j>0

M∗∗
b, j( f ;Ψ)≤M∗∗

b ( f ;Ψ) ,

where M∗∗
b was introduced in (2.1.8). The operator M∗∗

b, j( f ;Ψ) is called the Peetre
maximal function of f (with respect toΨ ).

We clearly have
|ΔΨ

j ( f )| ≤M∗∗
b, j( f ;Ψ) ,

but the next result shows that a certain converse of this inequality is also valid.

Theorem 2.2.8. Let α ∈ R, b > n(min(p,q))−1, and 0 < p,q < ∞. Let Ψ be a
Schwartz function whose Fourier transform is supported in the annulus 1− 1

7 ≤
|ξ | ≤ 2, is equal to 1 on the annulus 1 ≤ |ξ | ≤ 2− 2

7 , and satisfies (2.2.1). Let
Ω be another Schwartz function which has vanishing moments of all order, i.e.,
∫

Ω(y)yγ dy = 0 for all multi-indices γ . Then there is a constant C =Cα ,p,q,n,b,Ψ ,Ω ,
such that
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∥
∥
∥

(

∑
j∈Z

∣
∣2 jαM∗∗

b, j( f ;Ω)
∣
∣q
) 1

q
∥
∥
∥
Lp

≤C
∥
∥
∥

(

∑
j∈Z

∣
∣2 jαΔΨ

j ( f )
∣
∣q
) 1

q
∥
∥
∥
Lp

(2.2.18)

for all f ∈S ′(Rn)/P(Rn).

Proof. We start with a Schwartz function Θ whose Fourier transform is nonnega-
tive, supported in the annulus 1− 2

7 ≤ |ξ | ≤ 2, and satisfies

∑
j∈Z

Θ̂(2− jξ )2 = 1, ξ ∈ Rn \{0} . (2.2.19)

Using (2.2.19), we have

Ω2−k ∗ f = ∑
j∈Z

(Ω2−k ∗Θ2− j)∗ (Θ2− j ∗ f ) .

It follows that

2kα
|(Ω2−k ∗ f )(x− z)|

(1+2k|z|)b

≤ ∑
j∈Z

2kα
∫

Rn
|(Ω2−k ∗Θ2− j)(y)| |(Θ2− j ∗ f )(x− z− y)|

(1+2k|z|)b dy

= ∑
j∈Z

2kα
∫

Rn
2kn|(Ω ∗Θ2−( j−k) )(2ky)| (1+2 j|y+ z|)b

(1+2k|z|)b
|(Θ2− j ∗ f )(x−z−y)|

(1+2 j|y+ z|)b dy

≤ ∑
j∈Z

2kα
∫

Rn
|(Ω ∗Θ2−( j−k) )(y)| (1+2 j|2−ky+ z|)b

(1+2k|z|)b
|(Θ2− j ∗ f )(x−z−2−ky)|

(1+2 j|2−ky+ z|)b dy

≤ ∑
j∈Z

2(k− j)α
∫

Rn
|(Ω ∗Θ2−( j−k) )(y)| (1+2 j−k|y|+2 j|z|)b

(1+2k|z|)b dy2 jαM∗∗
b, j( f ;Θ)(x)

≤ ∑
j∈Z

2(k− j)α
∫

Rn
|(Ω ∗Θ2−( j−k) )(y)|(1+2 j−k)b(1+2 j−k|y|)bdy2 jαM∗∗

b, j( f ;Θ)(x) .

We conclude that

2kαM∗∗
b,k( f ;Ω)(x)≤ ∑

j∈Z
Vj−k 2 jαM∗∗

b, j( f ;Θ)(x) , (2.2.20)

where
Vj = 2− jα(1+2 j)b

∫

Rn
|(Ω ∗Θ2− j)(y)|(1+2 j|y|)b dy .

We now use the facts that both Ω andΘ have vanishing moments of all orders and
the result in Appendix B.4 to obtain

|(Ω ∗Θ2− j)(y)| ≤CL,N,n,Θ ,Ω
2 jn2−| j|L

(1+2min(0, j)|y|)N
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for all L,N > 0. We deduce the estimate

|Vj| ≤CL,M,n,Θ ,Ω2−| j|M

for allM sufficiently large, which, in turn, yields the estimate

∑
j∈Z

|Vj|min(1,q) < ∞ .

We deduce from (2.2.20) that for all x ∈ Rn we have
∥
∥{2kαM∗∗

b,k( f ;Ω)(x)}k
∥
∥
�q
≤Cα ,p,q,n,Θ ,Ω

∥
∥{2kαM∗∗

b,k( f ;Θ)(x)}k
∥
∥
�q
. (2.2.21)

Lemma 2.2.3 gives

2kαM∗∗
b,k( f ;Θ)≤C22kαM(|ΔΘ

k ( f )|r) 1
r =C2M(|2kαΔΘ

k ( f )|r) 1
r . (2.2.22)

In view of (2.2.1) we have the identity

ΔΘ
k = ΔΘ

k
(

ΔΨ
k−1+ΔΨ

k +ΔΨ
k+1
)

,

and applying (2.2.14) to each term of the preceding sum yields

M(|2kαΔΘ
k ( f )|r) 1

r ≤C′
(

MM(|2kαΔΨ
k ( f )|r)

) 1
r
. (2.2.23)

We now choose r < min(p,q), we combine (2.2.21), (2.2.22), (2.2.23), and we
use twice the Lp/r(Rn, �q/r) to Lp/r(Rn, �q/r) boundedness of the Hardy–Littlewood
maximal operator (Theorem 5.6.6 in [156]) to complete the proof. �

2.2.4 The Littlewood–Paley Characterization of Hardy Spaces

We discuss an important characterization of Hardy spaces in terms of Littlewood–
Paley square functions. The vector-valued Hardy spaces and the action of singular
integrals on them are crucial tools in obtaining this characterization.

We have the following.

Theorem 2.2.9. Let Ψ be a Schwartz function on Rn whose Fourier transform is
nonnegative, supported in 6

7 ≤ |ξ | ≤ 2, equal to 1 on 1≤ |ξ | ≤ 12
7 , and satisfies for

all ξ �= 0

∑
j∈Z

Ψ̂(2− jξ ) = 1 . (2.2.24)

Let ΔΨ
j be the Littlewood–Paley operators associated with Ψ and let 0 < p ≤ 1.

Then there exists a constant C =Cn,p,Ψ such that for all f ∈ Hp(Rn) we have

∥
∥
∥

(

∑
j∈Z

|ΔΨ
j ( f )|2

)1
2
∥
∥
∥
Lp

≤C
∥
∥ f
∥
∥
Hp . (2.2.25)
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Conversely, suppose that a tempered distribution f satisfies

∥
∥
∥

(

∑
j∈Z

|ΔΨ
j ( f )|2

)1
2
∥
∥
∥
Lp

< ∞ . (2.2.26)

Then there exists a unique polynomial Q(x) such that f −Q lies in the Hardy space
Hp and satisfies for some constant C =Cn,p,Ψ

1
C

∥
∥ f −Q

∥
∥
Hp ≤

∥
∥
∥

(

∑
j∈Z

|ΔΨ
j ( f )|2

)1
2
∥
∥
∥
Lp
. (2.2.27)

Proof. We fix Φ ∈ S (Rn) with integral equal to 1 and we take f ∈ Hp ∩ L1 and
M in Z+. Let r j be the Rademacher functions, defined in Appendix C.1 in [156],
reindexed so that their index set is the set of all integers (not the set of nonnegative
integers). We begin with the estimate

∣
∣
∣

M

∑
j=−M

r j(ω)ΔΨ
j ( f )

∣
∣
∣≤ sup

ε>0

∣
∣
∣Φε ∗

M

∑
j=−M

r j(ω)ΔΨ
j ( f )

∣
∣
∣ ,

which holds since {Φε}ε>0 is an approximate identity. We raise this inequality to the
power p, we integrate over x ∈ Rn and ω ∈ [0,1], and we use the maximal function
characterization of Hp [Theorem 2.1.4(a)] to obtain

∫ 1

0

∫

Rn

∣
∣
∣

M

∑
j=−M

r j(ω)ΔΨ
j ( f )(x)

∣
∣
∣

p
dxdω ≤Cp

p,n

∫ 1

0

∥
∥
∥

M

∑
j=−M

r j(ω)ΔΨ
j ( f )

∥
∥
∥

p

Hp
dω .

Applying Fubini’s theorem and the lower inequality for the Rademacher functions
in Appendix C.2 in [156], yields

∫

Rn

( M

∑
j=−M

|ΔΨ
j ( f )(x)|2

)p
2
dx≤Cp

pC
p
p,n

∫ 1

0

∥
∥
∥

M

∑
j=−M

r j(ω)ΔΨ
j ( f )

∥
∥
∥

p

Hp
dω . (2.2.28)

Next, for any fixed M ∈ Z+ and ω ∈ [0,1], we consider the mapping

f �→
M

∑
j=−M

r j(ω)ΔΨ
j ( f )

whose kernel
M

∑
k=−M

rk(ω)Ψ2−k(x)

satisfies (2.1.62) and (2.1.63) with constants A and B depending only on n and Ψ
(thus, independent of ω and M). Applying Theorem 2.1.14 (the scalar version, i.e.,
the case where L= 1) we obtain

∥
∥
∥

M

∑
j=−M

r j(ω)ΔΨ
j ( f )

∥
∥
∥

p

Hp
≤C(n, p,Ψ)

∥
∥ f
∥
∥p
Hp .
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Using this fact and (2.2.28), we conclude that

∥
∥
∥

( M

∑
j=−M

|ΔΨ
j ( f )|2

)1
2
∥
∥
∥
Lp

≤Cn,p,Ψ
∥
∥ f
∥
∥
Hp ,

from which (2.2.25) follows directly by letting M → ∞. We have now established
(2.2.25) for f ∈ Hp∩L1. Using density, we can extend this estimate to all f ∈ Hp.

We now turn to the converse statement of the theorem. Assume that (2.2.26)
holds for some tempered distribution f .

Set η̂(ξ ) = Ψ̂( 12ξ )+Ψ̂(ξ )+Ψ̂(2ξ ). Then η̂ is supported in an annulus and is
equal to 1 on the support of Ψ̂ . Using Theorem 2.1.14 we obtain that for any L ∈ Z+

and L′ ∈ Z+∪{0} with L′ < L the mapping

{ f j}L′≤| j|<L �→ ∑
L′≤| j|<L

Δη
j ( f j)

maps Hp(Rn, �22L−2L′) to Hp(Rn); note that if L′ = 0, then �22L−2L′ should be �22L−1.
Indeed, Theorem 2.1.14 can be applied, since the family of kernels {η2− j}L′≤| j|<L

satisfies ∑L′≤| j|<L |∂αx (η2− j)(x)| ≤ Cα |x|−n−|α |, x �= 0, for all multilindices α and
∑L′≤| j|<L |η̂2− j | ≤ c′ with constants independent of L,L′. Thus we have

∥
∥
∥ ∑
L′≤| j|<L

Δη
j ( f j)

∥
∥
∥
Hp

≤Cp,n,Φ

∥
∥
∥sup

t>0

(

∑
L′≤| j|<L

|Φt ∗ f j|2
) 1

2
∥
∥
∥
Lp

for any Φ Schwartz function with nonvanishing integral and any f j ∈ Hp. Taking1

f j = ΔΨ
j ( f ) and using that Δη

j ΔΨ
j = ΔΨ

j , we deduce that for all L ∈ Z+ we have

∥
∥
∥ ∑
L′≤| j|<L

ΔΨ
j ( f )

∥
∥
∥
Hp

≤Cp,n,Φ

∥
∥
∥sup

t>0

(

∑
L′≤| j|<L

|Φt ∗ΔΨ
j ( f )|2

) 1
2
∥
∥
∥
Lp
.

Applying Corollary 2.2.5 for some r < p we arrive at the estimate

∥
∥
∥ ∑
L′≤| j|<L

ΔΨ
j ( f )

∥
∥
∥
Hp

≤ Cp,n

∥
∥
∥

(

∑
L′≤| j|<L

|M(|ΔΨ
j ( f )|r)|

2
r

) 1
2
∥
∥
∥
Lp

= Cp,n

∥
∥
∥

(

∑
L′≤| j|<L

|M(|ΔΨ
j ( f )|r)|

2
r

) r
2
∥
∥
∥

1
r

L
p
r
.

Since r <min(2, p), we use the Lp/r(Rn, �
2/r
2L−2L′) to Lp/r(Rn, �

2/r
2L−2L′) boundedness

of the Hardy–Littlewood maximal operator (Theorem 5.6.6 in [156]) to obtain the
inequality

1 f j ∈ Hp since supt>0 |Φt ∗ΔΨ
j ( f )| ≤C′M(|ΔΨ

j ( f )|r)1/r ∈ Lp for r < p in view of (2.2.26).
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sup
L∈Z+

sup
0≤L′<L

∥
∥
∥ ∑
L′≤| j|<L

ΔΨ
j ( f )

∥
∥
∥
Hp

≤C′
p,n

∥
∥
∥
∥

(

∑
L′≤| j|<L

|ΔΨ
j ( f )|2

) 1
2
∥
∥
∥
∥
Lp
. (2.2.29)

Thus the sequence SL( f ) = ∑| j|<LΔΨ
j ( f ), L = 1,2, . . . is Cauchy in Hp and by

the completeness of Hp [Proposition 2.1.10(c)] it converges to an element u f ∈ Hp.
Obviously (2.2.29) has as a consequence that

‖u f ‖Hp ≤C′
p,n

∥
∥
∥
∥

(

∑
j∈Z

|ΔΨ
j ( f )|2

) 1
2
∥
∥
∥
∥
Lp
. (2.2.30)

It remains to relate u f and f . In view of (1.1.6) we know that SL( f ) → f in
S ′(Rn)/P(Rn); thus for any Schwartz function ψ whose support is disjoint from
{0} we have 〈SL( f )̂,ψ〉 → 〈 f̂ ,ψ〉. Thus 〈û f ,ψ〉= 〈 f̂ ,ψ〉 and this implies that the
support of û f − f̂ is {0}. Proposition 2.4.1 in [156] gives the existence of a unique
polynomial Q such that u f = f −Q. Then clearly (2.2.30) implies (2.2.27). �

The preceding proof can be modified to provide the following extension.

Corollary 2.2.10. FixΨ inS (Rn)with Fourier transform supported in 6
7 ≤ |ξ | ≤ 2,

equal 1 on the annulus 1 ≤ |ξ | ≤ 12
7 , and satisfying ∑ j∈ZΨ̂(2− jξ ) = 1 for ξ �= 0.

Fix b1,b2 with b1 < b2 and define a Schwartz function Ω via

Ω̂(ξ ) =
b2

∑
j=b1

Ψ̂(2− jξ ) .

Define ΔΩ
k (g)̂(ξ ) = ĝ(ξ )Ω̂(2−kξ ), k ∈ Z. Let q = b2−b1+1, 0 < p ≤ 1, and fix

r ∈ {0,1, . . . ,q− 1}. Then there exists a constant C = Cn,p,b1,b2,Ψ such that for all
f ∈ Hp(Rn) we have

∥
∥
∥

(

∑
j=r mod q

|ΔΩ
j ( f )|2

)1
2
∥
∥
∥
Lp

≤C
∥
∥ f
∥
∥
Hp . (2.2.31)

Conversely, suppose that a tempered distribution f satisfies

∥
∥
∥

(

∑
j=r mod q

|ΔΩ
j ( f )|2

)1
2
∥
∥
∥
Lp

< ∞ . (2.2.32)

Then there exists a unique polynomial Q(x) such that f −Q lies in the Hardy space
Hp and satisfies for some constant C =Cn,p,b1,b2,Ψ

1
C

∥
∥ f −Q

∥
∥
Hp ≤

∥
∥
∥

(

∑
j=r mod q

|ΔΩ
j ( f )|2

)1
2
∥
∥
∥
Lp
. (2.2.33)
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Proof. Inequality (2.2.31) is a direct consequence of (2.2.25) since ΔΩ
k can be writ-

ten as a finite sum of ΔΩ
j ’s. Conversely, we introduce a Schwartz function η whose

Fourier transform η̂ is supported in an annulus of the form 0 < c1 ≤ |ξ | ≤ c2 < ∞
and is equal to 1 on the support ofΩ . Then (2.2.30) withΩ in place ofΨ follows as
in the preceding proof. Since ∑ j=r mod qΔΩ

j ( f ) = f in S ′(Rn)/P(Rn), which is a

consequence of the fact that ∑ j=r mod q Ω̂(2− jξ ) = 1 for all ξ �= 0, we conclude that
there is a unique polynomial such that f −Q lies in Hp and satisfies (2.2.33).

Exercises

2.2.1. Let 0< q0 ≤ q1 < ∞, 0< p< ∞, ε > 0, and α ∈ R. Prove the embeddings

Bα ,q0p � Bα ,q1p ,

Fα ,q0
p � Fα ,q1

p ,

Bα+ε ,q0p � Bα ,q1p ,

Fα+ε ,q0
p � Fα ,q1

p ,

where p and q1 are allowed to be infinite in the case of Besov spaces.

2.2.2. Let 0< q< ∞, 0< p< ∞, and α ∈ R. Prove that the embeddings

Bα ,min(p,q)
p � Fα ,q

p � Bα ,max(p,q)
p

hold with norm one, if the norms in the spaces are defined with respect to the same
Schwartz functionΨ .
[

Hint: When p≥ q use Minkowski’s inequality for Lp/q for one embedding and the
embedding �q � �p for the other. When p< q use the reverse Minkowski inequality
for Lp/q for one embedding and the fact (∑k |ak|)p/q ≤ ∑k |ak|p/q for the other.

]

2.2.3. Let−∞< α <∞ and 0< p,β <∞. Let 1′ =∞ and p′ = p/(p−1) for p �= 1.
(a) Suppose that the Fourier transform of function g is C ∞ and is equal to |ξ |−α for
|ξ | ≥ 10. Show that g lies in Bγ ,qp (Rn) if and only if 0 < q < ∞ and γ < α − n

p′ or
q= ∞ and γ ≤ α− n

p′ .

(b) If the Fourier transform of function g is C ∞ and is equal to |ξ |−α(log |ξ |)−β for

|ξ | ≥ 10, then show that g lies in B
α− n

p′ ,q
p (Rn) if and only if q> 1/β .

2.2.4. Let 0 < p,q < ∞ and α ∈ R. Show that the space of Schwartz functions is
dense in all the spaces Bα ,qp (Rn) and Fα ,q

p (Rn).
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[

Hint: Fix a function ϕ ∈ S (Rn) whose Fourier transform has integral one and is
supported in a ball of radius 1 centered at zero. Given f ∈ Fα ,q

p (Rn) consider the
family of Schwartz functions

fN,δ (x) = SΦ0 ( f )(x)ϕ(δx)+
N

∑
j=1

ΔΨ
j ( f )(x)ϕ(δx)

for 0< δ < 1/10.
]

2.2.5. Let α ∈ R, let 0< p,q< ∞, and let N = [ n2 +
n

min(p,q) ]+1. Assume that m is
a C N function on Rn \{0} that satisfies

|∂ γm(ξ )| ≤Cγ |ξ |−|γ |

for all |γ | ≤ N. Show that there exists a constant C such that for all f ∈S ′/P ′ we
have

∥
∥(m f̂ )∨

∥
∥ .
Bα,qp

≤C
∥
∥ f
∥
∥ .
Bα,qp

.

[

Hint: Pick r <min(p,q) such that N > n
2 +

n
r . Write mj(ξ ) = m(ξ )(Ψ̂(2− j+1ξ )+

Ψ̂(2− jξ )+Ψ̂(2− j−1ξ )). Then ΔΨ
j ((m f̂ )∨) = m∨

j ∗ΔΨ
j ( f ). Obtain the estimate

∣
∣
(

m∨
j ∗ΔΨ

j ( f )
)

(x)
∣
∣≤C sup

y∈Rn

∣
∣ΔΨ

j ( f )(x− y)
∣
∣

(1+2 j|y|) n
r

∫

Rn
|m∨

j (y)|(1+2 j|y|) n
r dy

≤C′M(|ΔΨ
j ( f )|r)

1
r (x)

(∫

Rn
|mj(2 j( ·))∨(y)|2(1+ |y|)2N dy

) 1
2
.

The hypothesis on m implies that the preceding integral is bounded by a constant.
]

2.2.6. ([293]) Letm be as in Exercise 2.2.5. Show that there exists a constantC such
that for all f ∈S ′(Rn)/P ′(Rn) we have

∥
∥(m f̂ )∨

∥
∥ .
Fα,q
p

≤C
∥
∥ f
∥
∥ .
Fα,q
p

.

[

Hint: Use the hint of Exercise 2.2.5 and Theorem 5.6.6 in [156].
]

2.2.7. (a) Suppose that Bα0,q0p0 = Bα1,q1p1 with equivalent norms. Prove that α0 = α1
and p0 = p1. Prove the same result for the scale of Triebel–Lizorkin spaces.
(b) Suppose that Bα0,q0p0 = Bα1,q1p1 with equivalent norms. Prove that q0 = q1. Argue
similarly with the scale of Triebel–Lizorkin spaces.
[

Hint: Part (a): Test the corresponding norms on the function η(2 jx), where η is
chosen so that its Fourier transform is supported in 1≤ |ξ | ≤ 12

7 . Part (b): Try a func-
tion f of the form f̂ (ξ ) =∑N

j=1 a jϕ̂(ξ1−2 j,ξ2, . . . ,ξn), where ϕ is a Schwartz func-
tion whose Fourier transform is supported in a small neighborhood of the origin.

]
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2.3 Atomic Decomposition of Homogeneous Triebel–Lizorkin
Spaces

In this section we focus attention on the homogeneous Triebel–Lizorkin spaces
.
Fα ,q
p ,

which include the Hardy spaces discussed in Section 2.1. Most results discussed in
this section are also valid for the inhomogeneous Triebel–Lizorkin spaces and for
the Besov–Lipschitz spaces via a similar or simpler analysis.

2.3.1 Embeddings and Completeness of Triebel–Lizorkin Spaces

Proposition 2.3.1. Let 0< p,q<∞, and α ∈R. The homogeneous Triebel–Lizorkin
space

.
Fα ,q
p (Rn) is continuously embedded in the Besov space

.
Bα ,∞p (Rn) which is in

turn continuously embedded in S ′(Rn)/P(Rn). Moreover, the space
.
Fα ,q
p (Rn) is

complete.

Proof. Given f ∈S ′(Rn)/P(Rn) we have the sequence of inequalities

sup
j∈Z

2 jα‖ΔΨ
j ( f )‖Lp ≤

∥
∥
∥sup

j∈Z
|2 jαΔΨ

j ( f )|
∥
∥
∥
Lp

≤
∥
∥
∥

(

∑
j∈Z

|2 jαΔΨ
j ( f )|q

) 1
q
∥
∥
∥
Lp
, (2.3.1)

which shows that ‖ f‖ .Bα,∞p
≤ ‖ f‖ .Fα,q

p
. Thus we proved the embedding

.
Fα ,q
p �

.
Bα ,∞p .

Next we prove that
.
Bα ,∞p (Rn) continuously embeds inS ′(Rn)/P(Rn). Let ψ be

inS0(Rn). Then givenΨ as in (2.2.1), let Ω̂(ξ ) = Ψ̂( 12ξ )+Ψ̂(ξ )+Ψ̂(2ξ ). Given
f ∈S ′(Rn)/P(Rn) we have

〈 f ,ψ〉= ∑
j∈Z

〈ΔΨ
j ( f ),ψ〉= ∑

j∈Z
〈ΔΨ

j ( f ),ΔΩ
j (ψ)〉 ,

where the first identity is due to the fact that the series ∑ j∈ZΔΨ
j converges in

S ′(Rn)/P(Rn) and the second identity to the fact that Ω̂ is equal to one on the
support of Ψ̂ . It follows that

∣
∣〈 f ,ψ〉∣∣ ≤ ∑

j∈Z

∥
∥ΔΨ

j ( f )
∥
∥
L∞
∥
∥ΔΩ

j (ψ)
∥
∥
L1

≤ C∑
j∈Z

2
jn
p − jα∥∥2 jαΔΨ

j ( f )
∥
∥
Lp
∥
∥ΔΩ

j (ψ)
∥
∥
L1

≤ ‖ f‖ .Fα,q
p

C∑
j∈Z

2
jn
p − jα∥∥ΔΩ

j (ψ)
∥
∥
L1

= C‖ f‖ .Fα,q
p

‖ψ‖ .
B
n
p−α,1
1

,

where we used Corollary 2.2.4 in the second inequality and (2.3.1) in the last in-
equality.
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Next, we show that ‖ψ‖ .
B
n
p−α,1
1

is controlled by a finite sum of Schwartz semi-

norms of ψ ∈ S0(Rn). Using the result in Appendix B.4, we obtain the following
estimate for all L ∈ Z+ and N > 0 satisfying N < N′ − (L+1+n)

∣
∣ΔΩ

j (ψ)(x)
∣
∣≤C′′

N,N′,L,n

[

sup
|γ |≤L

sup
x∈Rn

|∂ γψ(x)|(1+ |x|)N′
]
2min( j,0)n−| j|(L+1)

(1+2min( j,0)|x|)N ,

where the constant C′′
N,N′,L,n also depends on Ω . Consequently we obtain that

∥
∥ΔΩ

j (ψ)
∥
∥
Lp ≤C′′′

N,N′,L,n

[

sup
|γ |≤L

sup
x∈Rn

|∂ γψ(x)|(1+ |x|)N′
]

2min( j,0) n
p′ −| j|(L+1)

if N > n/p. Choosing L> n+ |α|, it follows that
∥
∥ψ
∥
∥ .
B
n
p−α,1
1

= ∑
j∈Z

2 j( np−α)∥∥ΔΩ
j (ψ)

∥
∥
Lp

is bounded by a constant multiple of the expression

sup
|γ |≤L

sup
x∈Rn

|∂ γψ(x)|(1+ |x|)N′

which is controlled by a finite sum of seminorms ρα ,β (ψ). This proves that
.
Bα ,∞p (Rn)

is continuously embedded inS ′(Rn)/P(Rn).
Finally, we turn to the last assertion that the space

.
Fα ,q
p (Rn) is complete. Since.

Fα ,q
p (Rn) is continuously embedded in S ′/P , every Cauchy sequence {uM}∞M=0

in
.
Fα ,q
p (Rn) is Cauchy in S ′/P and thus it converges to an element u ∈ S ′/P ,

defined by 〈u,ψ〉= limM→∞〈uM,ψ〉 for all ψ ∈S0(Rn).
Since uM → u inS ′/P , it follows that for every j ∈ Z

ΔΨ
j (uM −uM′)→ ΔΨ

j (u−uM′)

as M → ∞. Thus for any J ∈ Z+ we have

(

∑
| j|≤J

(2 jα |ΔΨ
j (u−uM′)|)q

) 1
q
= liminf

M→∞

(

∑
| j|≤J

(2 jα |ΔΨ
j (uM −uM′)|)q

) 1
q

≤ liminf
M→∞

(

∑
j∈Z

(2 jα |ΔΨ
j (uM −uM′)|)q

) 1
q
.

First we let J → ∞, then we take Lp quasi-norms and we apply Fatou’s lemma. We
obtain

‖u−uM′‖ .Fα,q
p

≤ liminf
M→∞

‖uM −uM′‖ .Fα,q
p

.
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If we replace uM′ by 0, this implies that u lies in
.
Fα ,q
p since supM≥0 ‖uM‖ .Fα,q

p
< ∞.

Then we have

limsup
M′→∞

‖u−uM′ ‖ .Fα,q
p

≤ limsup
M′→∞

limsup
M→∞

‖uM −uM′‖ .Fα,q
p

,

but the expression on the right is zero since the sequence {uM}∞M=0 is Cauchy in.
Fα ,q
p . It follows that uM → u in

.
Fα ,q
p as M → ∞; thus

.
Fα ,q
p is complete. �

2.3.2 The Space of Triebel–Lizorkin Sequences

To provide further intuition into the understanding of the homogeneous Triebel–
Lizorkin spaces we introduce a related space consisting of sequences of scalars.
This space is denoted by

.
f α ,qp and is related to

.
Fα ,q
p in a way similar to that in which

�2(Z) is related to L2([0,1]).

Definition 2.3.2. Let 0< q≤ ∞ and α ∈ R. Let D be the set of all dyadic cubes in
Rn. We consider the set of all sequences {sQ}Q∈D such that the function

gα ,q({sQ}Q) =
(

∑
Q∈D

(|Q|− α
n − 1

2 |sQ|χQ)q
) 1

q
(2.3.2)

is in Lp(Rn). For such sequences s= {sQ}Q we set

‖s‖ .fα,qp
=
∥
∥gα ,q(s)

∥
∥
Lp(Rn)

.

2.3.3 The Smooth Atomic Decomposition of Homogeneous
Triebel–Lizorkin Spaces

We discuss the smooth atomic decomposition of homogeneous Triebel–Lizorkin
spaces. We denote by D the space of all dyadic cubes on Rn. For any fixed j ∈ Z we
let D j = {Q ∈ D : �(Q) = 2− j}. We begin with the definition of smooth atoms on
Rn.

Definition 2.3.3. Let Q be a dyadic cube and let L be a nonnegative integer. A C ∞

function aQ on Rn is called a smooth L-atom for Q if it satisfies the following prop-
erties:

(a) aQ is supported in 3Q (the cube concentric with Q having three times its side
length);

(b)
∫

Rn
xγaQ(x)dx= 0 for all multi-indices γ with |γ | ≤ L;

(c) |∂ γaQ| ≤ |Q|− |γ|
n − 1

2 for all multi-indices γ satisfying |γ | ≤ L+1.
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In view of properties (a) and (c) of Definition 1.3.2, for every M > 0 there is a
constant C(n,M,L) such that every smooth L-atom aQ supported in Q with center
cQ and side length �(Q) satisfies

|∂ γaQ(x)| ≤C(n,M,L)�(Q)
n
2

�(Q)−n−|γ |
(

1+ |x−cQ|
�(Q)

)M
(2.3.3)

for all x ∈ Rn and for all multi-indices γ with |γ | ≤ L+1.
We now prove a theorem stating that elements of

.
Fα ,q
p can be decomposed as

sums of smooth atoms.

Theorem 2.3.4. Let 0< p,q< ∞, α ∈ R, and let

L=
[

max
(

nmax(1, 1p ,
1
q )−n−α,α

)]

.

Then there is a constant Cn,p,q,α such that for every sequence of smooth L-atoms
{aQ}Q∈D and every sequence of complex scalars {sQ}Q∈D in

.
f α ,qp we have that the

series ∑μ∈Z
(

∑Q∈Dμ sQaQ
)

converges in
.
Fα ,q
p (Rn) to an element f of

.
Fα ,q
p (Rn) with

quasi-norm
∥
∥ f
∥
∥ .
Fα,q
p

≤Cn,p,q,α
∥
∥{sQ}Q

∥
∥ .
fα,qp

. (2.3.4)

Conversely, there is a constantC′
n,p,q,α such that given any distribution f in

.
Fα ,q
p and

any L ∈ Z+, there exist a sequence of smooth L-atoms {aQ}Q∈D and a sequence of
complex scalars {sQ}Q∈D such that the series ∑μ∈Z

(

∑Q∈Dμ sQaQ
)

converges to f
in

.
Fα ,q
p (Rn) and

∥
∥{sQ}Q

∥
∥ .
fα,qp

≤C′
n,p,q,α

∥
∥ f
∥
∥ .
Fα,q
p

. (2.3.5)

We observe that for any given x the expression ∑Q∈Dμ sQaQ(x) is a finite sum
with at most 3n summands, so the convergence concerns the series in μ .

Proof. We prove the first assertion of the theorem. We let ΔΨ
j be the Littlewood–

Paley operator associated with a Schwartz function Ψ whose Fourier transform is
compactly supported away from the origin in Rn. Let aQ be a smooth L-atom sup-
ported in a cube 3Q with center cQ and let the side length of Q be �(Q) = 2−μ . It
follows from (2.3.3) that aQ satisfies

|∂ γy aQ(y)| ≤CN′,n 2
− μn

2
2μ |γ |+μn

(1+2μ |y− cQ|)N′ (2.3.6)

for allN′> 0 and for all multi-indices γ satisfying |γ | ≤ L+1. Moreover, the function
y �→Ψ2− j(y− x) satisfies

|∂βy Ψ2− j(y− x)| ≤CN′,n,β
2 j|β |+ jn

(1+2 j|y− x|)N′ (2.3.7)

for all N′ > 0 and for all multi-indices β .
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The function aQ has vanishing moments of all orders up to and including L =
(L+1)−1 and satisfies (2.3.6) for all multi-indices γ with |γ | ≤ L+1. The function
y �→Ψ2− j(y− x) has vanishing moments of all orders and satisfies (2.3.7) for all
multi-indices β . Using the result in Appendix B.4, we deduce the following estimate
for all N > 0 satisfying N < N′ − (L+1+n)

∣
∣ΔΨ

j (aQ)(x)
∣
∣≤CN,n,L 2−

μn
2

2min( j,μ)n−|μ− j|(L+1)

(1+2min( j,μ)|x− cQ|)N
. (2.3.8)

Now fix 0< b<min(1, p,q) so that

L+1>
n
b
−n−α . (2.3.9)

This can be achieved by taking b close enough to min(1, p,q), since our assumption
L =

[

max
(

nmax
(

1, 1p ,
1
q

)− n−α,α
)]

yields that L+ 1 > nmax
(

1, 1p ,
1
q

)− n−α
and also that L+1 > α . These two conditions imply that the function d(k) defined
for k ∈ Z by

d(k) = 2min(k,0)(n− n
b )+kα−|k|(L+1)

satisfies for some δ > 0
d(k)≤C2−|k|δ (2.3.10)

for all k ∈ Z. Using Exercise 2.3.6, we obtain

∑
Q∈Dμ

|sQ|
(1+2min( j,μ)|x− cQ|)N

≤ c2max(μ− j,0) nb

{

M
(

∑
Q∈Dμ

|sQ|bχQ
)

(x)
}1

b

whenever N > n/b, where M is the Hardy–Littlewood maximal operator. It follows
from the preceding estimate and (2.3.8) that

2 jα ∑
μ∈Z

∑
Q∈Dμ

|sQ|
∣
∣ΔΨ

j (aQ)
∣
∣≤C0 ∑

μ∈Z
d( j−μ)

{

M
(

∑
Q∈Dμ

(|sQ| |Q|− 1
2− α

n
)bχQ

)}
1
b
,

where C0 = cCN,n,L. In particular this estimate is valid for any finite subset Z′ of Z.
For such a subset we have

2 jαΔΨ
j

(

∑
μ∈Z′

∑
Q∈Dμ

sQaQ
)

= 2 jα ∑
μ∈Z′

∑
Q∈Dμ

sQΔΨ
j (aQ) . (2.3.11)

Raise the last displayed inequality to the power q and sum over j ∈ Z; then raise
to the power 1/q and take ‖ · ‖Lp quasi-norms. We obtain

∥
∥ ∑
μ∈Z′

∑
Q∈Dμ

sQaQ
∥
∥ .
Fα,q
p

≤C0

∥
∥
∥
∥

{

∑
j∈Z

[

∑
μ∈Z′

d( j−μ)
{

M
(

∑
Q∈Dμ

(|sQ| |Q|− 1
2− α

n
)bχQ

)} 1
b
]q} 1

q
∥
∥
∥
∥
Lp
.
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We now estimate the expression inside the preceding Lp norm by

{

∑
j∈Z

d( j)min(1,q)
} 1

min(1,q)
{

∑
μ∈Z′

{

M
(

∑
Q∈Dμ

(|sQ| |Q|− 1
2− α

n
)bχQ

)} q
b
} 1

q

,

and we note that the first term is a constant in view of (2.3.10). We conclude that

∥
∥
∥ ∑
μ∈Z′

∑
Q∈Dμ

sQ
∥
∥
∥ .
Fα,q
p

≤ C0C
∥
∥
∥
∥

{

∑
μ∈Z′

{

M
(

∑
Q∈Dμ

(|sQ| |Q|− 1
2− α

n
)bχQ

)} q
b
} 1

q
∥
∥
∥
∥
Lp

= C0C
∥
∥
∥
∥

{

∑
μ∈Z′

{

M
(

∑
Q∈Dμ

(|sQ| |Q|− 1
2− α

n
)bχQ

)} q
b
} b

q
∥
∥
∥
∥

1
b

L
p
b

≤ C0C′
∥
∥
∥
∥

{

∑
μ∈Z′

{

∑
Q∈Dμ

(|sQ| |Q|− 1
2− α

n
)bχQ

} q
b
} b

q
∥
∥
∥
∥

1
b

L
p
b

= C0C′
∥
∥
∥
∥

{

∑
μ∈Z′

∑
Q∈Dμ

(|sQ| |Q|− 1
2− α

n
)qχQ

} 1
q
∥
∥
∥
∥
Lp
, (2.3.12)

where in the last inequality we used Theorem 5.6.6 in [156], which is valid under
the assumption 1< p

b ,
q
b <∞. We now take Z′ = {μ ∈ Z : M′ < |μ | ≤M}, for some

integersM′ <M, and we use the following consequence of the Lebesgue dominated
convergence theorem

lim
M′,M→∞

∥
∥
∥
∥

{

∑
M′<|μ |≤M

∑
Q∈Dμ

(|sQ| |Q|− 1
2− α

n
)qχQ

} 1
q
∥
∥
∥
∥
Lp

= 0 ,

since s= {sQ}Q∈D ∈ .
f α ,qp . We obtain that the sequence

FM = ∑
|μ |≤M

∑
Q∈Dμ

sQaQ

is Cauchy in
.
Fα ,q
p . Proposition 2.3.1 yields that it converges to an element f in

.
Fα ,q
p .

We now repeat the preceding argument replacing Z′ by Z and ∑μ∈Z′∑Q∈Dμ sQ
by f noting that (2.3.11) holds for Z in place of Z′ since we can interchange ΔΨ

j
with the infinite sum over μ (and certainly with the finite sum in Q ∈ Dμ ) in view
of the convergence of the sequence ∑|μ |≤M

(

∑Q∈Dμ sQaQ
)

to f in
.
Fα ,q
p (and thus in

S ′/P). This proves (2.3.4) since (2.3.12) is controlled by ‖s‖ .fα,qp
.

We now turn to the converse statement of the theorem. It is not difficult to see
that given L∈Z+ there exist Schwartz functionsΘ andΨ (unrelated to the previous
one) such that Ψ̂ is supported in the annulus 1

2 ≤ |ξ | ≤ 2 andΘ is supported in the
ball |x| ≤ 1 and satisfies

∫

Rn xγΘ(x)dx= 0 for all |γ | ≤ L, such that the identity

∑
j∈Z

Ψ̂(2− jξ )Θ̂(2− jξ ) = 1 (2.3.13)

holds for all ξ ∈ Rn \{0}; see Exercise 2.3.1.
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Given a distribution f ∈ .
Fα ,q
p , using identity (2.3.13), we write

f = ∑
j∈Z

Ψ2− j ∗Θ2− j ∗ f ,

where the convergence is inS ′(Rn)/P(Rn) in view of Corollary 1.1.7.
For each Q in D j define a constant

sQ = |Q| 12 sup
y∈Q

|(Ψ�(Q) ∗ f )(y)| sup
|γ |≤L+1

∥
∥∂ γΘ

∥
∥
L1

and a function

aQ(x) =
1
sQ

∫

Q
Θ�(Q)(x− y)(Ψ�(Q) ∗ f )(y)dy . (2.3.14)

It is straightforward to verify that aQ is supported in 3Q and that it has vanishing
moments up to and including order L, since θ does so. Moreover, using (2.3.14) we
obtain for all |γ | ≤ L+1

|∂ γaQ| ≤ 1
sQ

∥
∥∂ γΘ

∥
∥
L1�(Q)

−|γ | sup
Q

|Ψ�(Q) ∗ f | ≤ |Q|− 1
2− |γ|

n ,

which makes the function aQ a smooth L-atom.
Using this notation, we write

f = ∑
j∈Z

∑
Q∈D j

∫

Q
Θ2− j(x− y)(Ψ2− j ∗ f )(y)dy= ∑

j∈Z

(

∑
Q∈D j

sQaQ
)

,

where the series in j converges inS ′(Rn)/P(Rn).
Let b be as in (2.3.9). Now note that

∑
�(Q)=2− j

(|Q|− α
n − 1

2 sQχQ(x)
)q

= C ∑
�(Q)=2− j

(

2 jα sup
y∈Q

|(Ψ2− j ∗ f )(y)|χQ(x)
)q

≤ C sup
|z|≤√

n2− j

(

2 jα(1+2 j|z|)−b|(Ψ2− j ∗ f )(x− z)|)q(1+2 j|z|)bq

≤ C
(

2 jαM∗∗
b, j( f ,Ψ)(x)

)q
,

where we used the fact that in the first inequality there is only one nonzero term in
the sum because of the appearance of the characteristic function. Summing over all
j ∈ Zn, raising to the power 1/q, and taking Lp norms yields the estimate

∥
∥{sQ}Q

∥
∥ .
fα,qp

≤C
∥
∥
∥

(

∑
j∈Z

∣
∣2 jαM∗∗

b, j( f ;Ψ)
∣
∣q
) 1

q
∥
∥
∥
Lp

≤C
∥
∥ f
∥
∥ .
Fα,q
p

,
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where the last inequality follows from Theorem 2.2.8. This proves (2.3.5). It follows
from (2.3.5) that {sQ}Q∈D lies in

.
f α ,qp and thus by the first assertion of the theorem

we have that the series
∑
μ
( ∑
Q∈Dμ

sQaQ)

converges to some element in
.
Fα ,q
p . Since it converges to f inS ′/P , it follows that

∑μ(∑Q∈Dμ sQaQ) converges to f in
.
Fα ,q
p , and this completes the proof. �

2.3.4 The Nonsmooth Atomic Decomposition of Homogeneous
Triebel–Lizorkin Spaces

We now discuss the main theorem of this section, the nonsmooth atomic decomposi-
tion of the homogeneous Triebel–Lizorkin spaces

.
Fα ,q
p , which in particular includes

that of the Hardy spaces Hp. We begin with a definition.

Definition 2.3.5. Let 0 < p,q < ∞. A sequence of complex numbers r = {rQ}Q∈D
is called an ∞-atom for

.
f α ,qp if there exists a dyadic cube Q0 such that

(a) rQ = 0 if Q� Q0;

(b)
∥
∥gα ,q(r)

∥
∥
L∞ ≤ |Q0|−

1
p ,

where, recalling from (2.3.2),

gα ,q({rQ}Q) =
(

∑
Q∈D

(|Q|− α
n − 1

2 |rQ|χQ)q
) 1

q
.

We observe that every ∞-atom r = {rQ} for
.
f α ,qp satisfies ‖r‖ .fα,qp

≤ 1. Indeed,

‖r‖p.
fα,qp

=

∫

Q0

|gα ,q(r)|p dx≤ |Q0|−1|Q0|= 1 .

The following theorem concerns the atomic decomposition of the spaces
.
f α ,qp .

Theorem 2.3.6. Let α ∈ R, 0 < p,q < ∞, and s = {sQ}Q∈D be in
.
f α ,qp . Then there

exist Cn,p,q> 0, a sequence of scalars λ j, and a sequence of∞-atoms r j = {r j,Q}Q∈D
for

.
f α ,qp such that for each Q∈D the series∑∞

j=1λ jr j,Q is absolutely convergent and
equal to sQ, i.e.,

s= {sQ}Q∈D =
∞

∑
j=1

λ j{r j,Q}Q∈D =
∞

∑
j=1

λ jr j ,

and such that
( ∞

∑
j=1

|λ j|p
) 1

p ≤Cn,p,q‖s‖ .fα,qp
. (2.3.15)
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Proof. We fix α, p,q, and a sequence s= {sQ}Q∈D in
.
f α ,qp . For a dyadic cube R in

D we define the function

gα ,qR (s)(x) =
(

∑
Q∈D
R⊆Q

(|Q| αn − 1
2 |sQ|χQ(x)

)q
) 1

q

and we observe that this function is constant on R. We also note that for dyadic cubes
R1 and R2 with R1 ⊆ R2 we have

gα ,qR2
(s)≤ gα ,qR1

(s) .

Finally, we observe that
lim

�(R)→∞
x∈R

gα ,qR (s)(x) = 0

and
lim

�(R)→0
x∈R

gα ,qR (s)(x) = gα ,q(s)(x) ,

where gα ,q(s) is the function defined in (2.3.2).
For k ∈ Z we set

Ak =
{

R ∈D : gα ,qR (s)(x)> 2k for all x ∈ R
}

.

We note that Ak+1 ⊆Ak for all k in Z and that

{x ∈ Rn : gα ,q(s)(x)> 2k}=
⋃

R∈Ak

R . (2.3.16)

Moreover, we have for all k ∈ Z,

(

∑
Q∈D\Ak

(|Q|− α
n − 1

2 |sQ|χQ(x)
)q
) 1

q ≤ 2k , (2.3.17)

for all x ∈ Rn.
To prove (2.3.17) we assume that gα ,q(s)(x) > 2k; otherwise, the conclusion is

trivial. Then there exists a maximal dyadic cube Rmax in Ak such that x ∈ Rmax.
Letting R0 be the unique dyadic cube that contains Rmax and has twice its side length,
we have that the left-hand side of (2.3.17) is equal to gα ,qR0

(s)(x), which is at most 2k,
since R0 is not contained in Ak.

Since gα ,q(s) ∈ Lp(Rn), by our assumption, and gα ,q(s) > 2k for all x ∈ Q if
Q ∈Ak, the cubes in Ak must have size bounded above by some constant. We set

Bk =
{

J ∈D : J is a maximal dyadic cube in Ak \Ak+1
}

.
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For J inBk we define a sequence t(k,J) = {t(k,J)Q}Q∈D by setting

t(k,J)Q =

{

sQ if Q⊆ J and Q ∈Ak \Ak+1,
0 otherwise.

Notice that
if Q /∈

⋃

k∈Z
Ak , then sQ = 0 .

Moreover, the identity
s= ∑

k∈Z
∑

J∈Bk

t(k,J) (2.3.18)

is valid and it is worth noticing that for each Q ∈D , there is at most one k ∈ Z and
at most one J ∈Bk such that t(k,J)Q is nonzero, i.e., the sum in (2.3.18) evaluated
at Q has at most one nonzero term.

For all x ∈ Rn we have

gα ,q(t(k,J))(x) =
(

∑
Q⊆J

Q∈Ak\Ak+1

(|Q|− α
n − 1

2 |sQ|χQ(x)
)q
) 1

q

≤
(

∑
Q⊆J

Q∈D\Ak+1

(|Q|− α
n − 1

2 |sQ|χQ(x)
)q
) 1

q

≤ 2k+1 ,

(2.3.19)

where we used (2.3.17) in the last estimate. We define atoms r(k,J) = {r(k,J)Q}Q∈D
by setting

r(k,J)Q = 2−k−1|J|− 1
p t(k,J)Q , (2.3.20)

and we also define scalars
λk,J = 2k+1|J| 1p .

To see that each r(k,J) is an ∞-atom for
.
f α ,qp , we observe that r(k,J)Q = 0 if Q� J

and that
gα ,q(r(k,J))(x)≤ |J|− 1

p , for all x ∈ Rn,

in view of (2.3.19) and (2.3.20). Also using (2.3.18) and (2.3.20), we obtain that

s= ∑
k∈Z

∑
J∈Bk

λk,J r(k,J) , (2.3.21)

which says that s can be written as a countably infinite sum of atoms. We now
reindex the countable set U = {(k,J) : k ∈ Z , J ∈Bk} by Z+ and write

s=
∞

∑
j=1

λ jr j , (2.3.22)
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where {λ1,λ2, . . .}= {λk,J : (k,J) ∈U } and {r1,r2, . . .}= {r(k,J) : (k,J) ∈U }.
As observed the sum in (2.3.21) has the property that for eachQ∈D , there is at most
one k ∈ Z and at most one J ∈Bk such that λk,J r(k,J)Q = t(k,J)Q is nonzero. Thus
for each Q ∈ D , at most one term in the sum ∑∞

j=1λ jr j,Q is nonzero; in particular,
this series is absolutely convergent.

Finally, we estimate the sum of the pth power of the coefficients λk,J . We have

∞

∑
j=1

|λ j|p = ∑
k∈Z

∑
J∈Bk

λ p
k,J

= ∑
k∈Z

2(k+1)p ∑
J∈Bk

|J|

≤ 2p ∑
k∈Z

2kp
∣
∣
∣
∣

⋃

Q∈Ak

Q
∣
∣
∣
∣

= 2p ∑
k∈Z

2k(p−1)2k|{x ∈ Rn : gα ,q(s)(x)> 2k}|

≤ 2p ∑
k∈Z

∫ 2k+1

2k
2k(p−1)|{x ∈ Rn : gα ,q(s)(x)> λ

2 }|dλ

≤ 2p ∑
k∈Z

∫ 2k+1

2k
λ p−1|{x ∈ Rn : gα ,q(s)(x)> λ

2 }|dλ

=
22p

p

∥
∥gα ,q(s)

∥
∥p
Lp

=
22p

p
‖s‖p.

fα,qp
.

Taking the pth root yields (2.3.15). The proof of the theorem is now complete. �
We now deduce a corollary concerning a new characterization of the space

.
f α ,qp .

Corollary 2.3.7. Suppose α ∈ R, 0 < p ≤ 1, and p ≤ q < ∞. Then for a given se-
quence s ∈ .

f α ,qp we have the following equivalence:

‖s‖ .fα,qp
≈ inf

{( ∞

∑
j=1

|λ j|p
) 1

p
: lim
N→∞

∥
∥
∥s−

N

∑
j=1

λ jr j
∥
∥
∥ .
fα,qp

= 0, r j are ∞-atoms for
.
f α ,qp

}

.

Remark 2.3.8. Notice that
.
f α ,qp is complete (Exercise 2.3.6(b)), so if r j are ∞-atoms

for
.
f α ,qp , if (∑∞

j=1 |λ j|p)
1
p < ∞ and if

∥
∥
∥
∥
∥
s−

N

∑
j=1

λ jr j

∥
∥
∥
∥
∥ .
fα,qp

→ 0

as N → ∞, then s must be an element of
.
f α ,qp .
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Proof. Given s ∈ .
f α ,qp , let r j be ∞-atoms for

.
f α ,qp and λ j be as in Theorem 2.3.6.

Then ∑∞
j=1 |λ j|p ≤ Cp

n,p,q‖s‖p.fα,qp
< ∞ and sQ = ∑∞

j=1λ jr j,Q, where the series con-

verges absolutely. Then as N → ∞ we have

∥
∥
∥s−

N

∑
j=1

λ jr j
∥
∥
∥

p
.
fα,qp

=
∥
∥
∥

∞

∑
j=1

λ jr j−
N

∑
j=1

λ jr j
∥
∥
∥

p
.
fα,qp

≤
∥
∥
∥

∞

∑
j=N+1

|λ jr j|
∥
∥
∥

p
.
fα,qp

≤
∞

∑
j=N+1

|λ j|p→ 0,

where we used Exercise 2.3.6(a) in the last inequality together with the observa-
tion made after Definition 2.3.5 that every ∞-atom r for

.
f α ,qp satisfies ‖r‖ .fα,qp

≤ 1.
(Here |r j|= {|r j,Q|}Q∈D .) Then λ j and s are as in the statement of the corollary and
(2.3.15) implies the ≥ inequality in the claimed equivalence.

The converse inequality (≤) is easier since for any r j ∞-atoms for
.
f α ,qp we have

‖s‖p.
fα,qp

≤
∥
∥
∥s−

N

∑
j=1

λ jr j
∥
∥
∥

p
.
fα,qp

+
∥
∥
∥

N

∑
j=1

λ jr j
∥
∥
∥

p
.
fα,qp

≤
∥
∥
∥s−

N

∑
j=1

λ jr j
∥
∥
∥

p
.
fα,qp

+
∞

∑
j=1

|λ j|p ;

thus lettingN→∞ and taking the infimum over all (∑∞
j=1 |λ j|p)1/p yields the desired

inequality. �

Theorem 2.3.6 allows us to obtain an atomic decomposition for the space
.
Fα ,q
p as

well. Indeed, we have the following result.

Corollary 2.3.9. Let α ∈ R, 0 < p ≤ 1, L ≥ [max( np − n−α,α)], and let q satisfy
p≤ q< ∞. Then for a given f ∈ .

Fα ,q
p we have the following equivalence:

∥
∥ f
∥
∥ .
Fα,q
p

≈ inf
{( ∞

∑
j=1

|λ j|p
) 1

p
: lim

N→∞

∥
∥ f −

N

∑
j=1

λ jA j
∥
∥ .
Fα,q
p

= 0,

where Aj = ∑
μ∈Z

(

∑
Q∈Dμ

r j,Q aQ
)

converging in
.
Fα ,q
p ,

aQ are smooth L-atoms, and r j = {r j,Q}Q∈D are ∞-atoms for
.
f α ,qp

}

.

Proof. Let λ j, Aj be as above such that

lim
N→∞

∥
∥ f −

N

∑
j=1

λ jA j
∥
∥ .
Fα,q
p

= 0 .

In view of the subadditivity of the expression h �→ ‖ f‖p.
Fα,q
p

(Exercise 2.3.2) we have

that
∥
∥ f
∥
∥p.
Fα,q
p

≤
N

∑
j=1

∥
∥λ jA j

∥
∥p.
Fα,q
p

+
∥
∥ f −

N

∑
j=1

λ jA j
∥
∥p.
Fα,q
p

.
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It follows from this that

∥
∥ f
∥
∥p.
Fα,q
p

≤ limsup
N→∞

N

∑
j=1

|λ j|p
∥
∥Aj

∥
∥p.
Fα,q
p

≤
∞

∑
j=1

|λ j|p
∥
∥Aj

∥
∥p.
Fα,q
p

≤ cn,p
∞

∑
j=1

|λ j|p‖r j‖p.fα,qp
,

where the last inequality is due to Theorem 2.3.4. Using the fact that every ∞-atom
r = {rQ} for

.
f α ,qp satisfies ‖r‖ .fα,qp

≤ 1, we take the infimum over all representations
of f as above to deduce the ≤ part of the claimed equivalence.

Conversely, given f in
.
Fα ,q
p , we use Theorem 2.3.4 to write

f = ∑
μ∈Z

(

∑
Q∈Dμ

sQaQ

)

where s= {sQ}Q∈D lies in
.
f α ,qp , each aQ is a smooth L-atom for the cube Q and the

series converges in
.
Fα ,q
p . Now Theorem 2.3.6 gives that s = {sQ}Q can be written

as a sum of r j, ∞-atoms for
.
f α ,qp , that is,

s=
∞

∑
j=1

λ jr j ,

where
( ∞

∑
j=1

|λ j|p
) 1

p ≤ c‖s‖ .fα,qp
.

Since ‖s‖ .fα,qp
≤Cp,q,n,α

∥
∥ f
∥
∥ .
Fα,q
p

, Theorem 2.3.4 implies that

( ∞

∑
j=1

|λ j|p
) 1

p ≤ c′
∥
∥ f
∥
∥ .
Fα,q
p

. (2.3.23)

For j = 1,2, . . . set
Aj = ∑

μ∈Z

(

∑
Q∈Dμ

r j,QaQ
)

(2.3.24)

and note that Theorem 2.3.4 gives that the series in μ in (2.3.24) converges in
.
Fα ,q
p

and the
.
Fα ,q
p quasi-norm of Aj is bounded by a constant in view of (2.3.4), since

‖r j‖ .fα,qp
≤ 1. Appealing again to (2.3.4) in Theorem 2.3.4 we obtain

∥
∥
∥

N

∑
j=1

λ jA j− f
∥
∥
∥

p
.
Fα,q
p

≤Cp
n,p,q,α

∥
∥
∥

N

∑
j=1

λ jr j− s
∥
∥
∥

p
.
fα,qp

≤Cp
n,p,q,α

∞

∑
j=N+1

|λ j|p → 0

as N → ∞. The ≥ part of the claimed equivalence is a consequence of (2.3.23). �
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2.3.5 Atomic Decomposition of Hardy Spaces

We now pass to one of the main theorems of this chapter, the atomic decomposition
of Hp(Rn) for 0< p≤ 1. We begin by defining atoms for Hp.

Definition 2.3.10. Let 1 < q ≤ ∞. A function A is called an Lq-atom for Hp(Rn) if
there exists a cube Q such that

(a) A is supported in Q;

(b)
∥
∥A
∥
∥
Lq ≤ |Q| 1q− 1

p ;

(c)
∫

xγA(x)dx= 0 for all multi-indices γ with |γ | ≤ [ np −n].

Notice that any Lr-atom for Hp is also an Lq-atom for Hp whenever 0 < p ≤ 1
and 1 < q < r ≤ ∞. It is also simple to verify that an Lq-atom A for Hp is in fact
in Hp. We prove this result in the next theorem for q = 2, and we refer to Exercise
2.3.4 for a general q.

Theorem 2.3.11. Let 0 < p ≤ 1. There is a constant Cn,p < ∞ such that every L2-
atom A for Hp(Rn) satisfies

‖A‖Hp ≤Cn,p .

Proof. We could prove this theorem either by showing that the smooth maximal
functionM(A;Φ) is in Lp or by showing that the square function

(

∑ j∈Z |ΔΨ
j (A)|2

)1/2

is in Lp. Both proofs are similar and we choose to present the second.
Let A(x) be an atom supported in a cubeQ centered at the origin; otherwise apply

the argument to the atom A(x− cQ), where cQ is the center of Q. We control the Lp

quasi-norm of
(

∑ j∈Z |ΔΨ
j (A)|2

)1/2 by estimating it over the cubeQ∗ and over (Q∗)c,
where Q∗ = 2

√
nQ. We have

(∫

Q∗

(

∑
j∈Z

|ΔΨ
j (A)|2

) p
2 dx

) 1
p

≤
(∫

Q∗ ∑
j∈Z

|ΔΨ
j (A)|2 dx

) 1
2

|Q∗|
1

p(2/p)′ .

Using that the square function f �→ (

∑ j∈Z |ΔΨ
j ( f )|2

) 1
2 is L2 bounded, we obtain

(∫

Q∗

(

∑
j∈Z

|ΔΨ
j (A)|2

) p
2 dx

) 1
p

≤ Cn‖A‖L2 |Q∗|
1

p(2/p)′

≤ Cn(2
√
n)

n
p− n

2 |Q| 12− 1
p |Q| 1p− 1

2

= C′
n .

(2.3.25)
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To estimate the contribution of the square function outside Q∗, we use the cancella-
tion of the atoms. Let k = [ np −n]+1. We have

ΔΨ
j (A)(x) =

∫

Q
A(y)Ψ2− j(x− y)dy

= 2 jn
∫

Q
A(y)

[

Ψ(2 jx−2 jy)− ∑
|β |≤k−1

(∂βΨ)(2 jx)
(−2 jy)β

β !

]

dy

= 2 jn
∫

Q
A(y)

[

∑
|β |=k

(∂βΨ)(2 jx−2 jθy)
(−2 jy)β

β !

]

dy ,

where 0 ≤ θ ≤ 1. Taking absolute values, using the fact that ∂βΨ are Schwartz
functions, and that |x−θy| ≥ |x|− |y| ≥ 1

2 |x| whenever y ∈Q and x /∈Q∗, we obtain
the estimate

|ΔΨ
j (A)(x)| ≤ 2 jn

∫

Q
|A(y)| ∑

|β |=k

CN

(1+2 j 1
2 |x|)N

|2 jy|k
β !

dy

≤ CN,p,n2 j(k+n)

(1+2 j|x|)N
(∫

Q
|A(y)|2 dy

) 1
2
(∫

Q
|y|2k dy

) 1
2

≤ C′
N,p,n2

j(k+n)

(1+2 j|x|)N |Q| 12− 1
p |Q| kn+ 1

2

=
CN,p,n2 j(k+n)

(1+2 j|x|)N |Q|1+ k
n− 1

p

for j ∈ Z and x ∈ (Q∗)c. For such x we now have

(

∑
j∈Z

|ΔΨ
j (A)(x)|2

) 1
2
≤CN,p,n|Q|1+

k
n− 1

p

(

∑
j∈Z

22 j(k+n)

(1+2 j|x|)2N
) 1

2
. (2.3.26)

It is a simple fact that the series in (2.3.26) converges. Indeed, considering the cases
2 j ≤ 1/|x| and 2 j > 1/|x| we see that the series on the right in (2.3.26) contributes
at most a fixed multiple of |x|−2k−2n. It remains to estimate the Lp quasi-norm of
the expression on the right in (2.3.26) over (Q∗)c. This is bounded by a constant
multiple of

(∫

(Q∗)c

(|Q|1+ k
n− 1

p
)p

|x|p(k+n)
dx
) 1

p

≤Cn,p|Q|1+
k
n− 1

p

(∫ ∞

c|Q| 1n
r−p(k+n)+n−1 dr

) 1
p

,

for some constant c, and the latter is easily seen to be bounded above by an absolute
constant. Here we used the fact that p(k+n)> n or, equivalently, k > n

p −n, which
is certainly true, since k was chosen to be [ np −n]+1. Combining this estimate with
that in (2.3.25), we conclude the proof of the theorem. �
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We have now proved that Lq-atoms for Hp are indeed elements of Hp. We now
obtain the converse statement, i.e., every element of Hp can be decomposed as a
sum of L2-atoms for Hp. Applying the same idea as in Corollary 2.3.9 to Hp, we
obtain the following result.

Theorem 2.3.12. Let 0 < p ≤ 1. Given a distribution f ∈ Hp(Rn), there exists a
sequence of L2-atoms for Hp, {Aj}∞j=1, and a sequence of scalars {λ j}∞j=1 such that

N

∑
j=1

λ jA j → f in Hp. (2.3.27)

Thus the space of all finite linear combinations of L2-atoms for Hp is dense in Hp.
Moreover, we have

∥
∥ f
∥
∥
Hp ≈ inf

{( ∞

∑
j=1

|λ j|p
) 1

p : lim
N→∞

∥
∥
∥

N

∑
j=1

λ jA j− f
∥
∥
∥
Hp

= 0

where A j are L2-atoms for Hp.
}

.

(2.3.28)

Proof. Fix f ∈ Hp(Rn). Let Aj be L2-atoms for Hp and ∑∞
j=1 |λ j|p < ∞ such that

(2.3.27) holds. It follows from Theorem 2.3.11 and the sublinearity of the expression
g �→ ‖g‖pHp that

∥
∥
∥

N

∑
j=1

λ jA j

∥
∥
∥

p

Hp
≤Cp

n,p

N

∑
j=1

|λ j|p .

Thus if the sequence ∑N
j=1λ jA j converges to f in Hp, then

∥
∥ f
∥
∥p
Hp ≤

∥
∥
∥ f −

N

∑
j=1

λ jA j

∥
∥
∥

p

Hp
+Cp

n,p

N

∑
j=1

|λ j|p ,

and letting N → ∞ proves the direction ≤ in (2.3.28).
We now focus on the converse statement, which is similar to the analogous state-

ment in Corollary 2.3.9. Let L = [ np −n]. Given f in
.
F0,2
p = Hp, via Theorem 2.3.4

we write

f = ∑
μ∈Z

(

∑
Q∈Dμ

sQaQ

)

where s= {sQ}Q∈D lies in
.
f 0,2p , each aQ is a smooth L-atom for the cube Q and the

series converges in Hp. Theorem 2.3.6 gives that s= {sQ}Q can be written as a sum
of r j, ∞-atoms for

.
f 0,2p , that is, s= ∑∞

j=1λ jr j , where

( ∞

∑
j=1

|λ j|p
) 1

p ≤ c‖s‖ .f 0,2p
.



2.3 Atomic Decomposition of Homogeneous Triebel–Lizorkin Spaces 123

Since ‖s‖ .f 0,2p
≤Cn,p

∥
∥ f
∥
∥
Hp , Theorem 2.3.4 implies that

( ∞

∑
j=1

|λ j|p
) 1

p ≤ c′
∥
∥ f
∥
∥
Hp . (2.3.29)

For j = 1,2, . . . set

Aj = ∑
μ∈Z

(

∑
Q∈Dμ

r j,QaQ

)

where the series converges in Hp (see Theorem 2.3.4) and the Hp quasi-norm of Aj
is bounded by a constant in view of (2.3.4), since ‖r j‖ .f 0,2p

≤ 1. Using again (2.3.4)
in Theorem 2.3.4 we obtain

∥
∥
∥

N

∑
j=1

λ jA j− f
∥
∥
∥

p

Hp
≤ Cp

n,p

∥
∥
∥

N

∑
j=1

λ jr j− s
∥
∥
∥

p
.
f 0,2p

≤ Cp
n,p

∥
∥
∥

∞

∑
j=N+1

|λ j| |r j|
∥
∥
∥

p
.
f 0,2p

≤ Cp
n,p

∞

∑
j=N+1

|λ j|p → 0 ,

as N → ∞, where the last inequality follows from Exercise 2.3.6(a).
Next we show that each Aj is a fixed multiple of an L2-atom for Hp. Let us fix an

index j. By the definition of the ∞-atom for
.
f 0,2p , there exists a dyadic cube Qj

0 such
that r j,Q = 0 for all dyadic cubes Q not contained in Qj

0. Then the support of each
aQ is contained in 3Q, hence in 3Qj

0. This implies that the function Aj is supported
in 3Qj

0. The same is true for the function g0,2(r j) defined in (2.3.2). Using this fact,
we have

∥
∥Aj

∥
∥
L2 ≈ ∥

∥Aj
∥
∥ .
F0,2
2

≤ c
∥
∥r j
∥
∥ .
f 0,22

= c
∥
∥g0,2(r j)

∥
∥
L2

≤ c
∥
∥g0,2(r j)

∥
∥
L∞ |3Q

j
0|

1
2

≤ c |3Qj
0|−

1
p+

1
2 .

Since

g0,2(r j) =
(

∑
Q∈D

|Q|−1|r j,Q|2χQ
) 1

2
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the estimate ‖g0,2(r j)‖L2 ≤ |3Qj
0|−

1
p+

1
2 we proved implies that

∑
Q∈D

|r j,Q|2 < ∞.

Let M′ <M be positive integers. Then
∥
∥
∥ ∑
M′<|μ |≤M

∑
Q∈Dμ

r j,QaQ
∥
∥
∥
L1

≤ |3Qj
0|

1
2

∥
∥
∥ ∑
M′<|μ |≤M

∑
Q∈Dμ

r j,QaQ
∥
∥
∥
L2

= |3Qj
0|

1
2

(

∑
M′<|μ |≤M

∑
Q∈Dμ

|r j,Q|2
) 1

2 → 0

as M′,M → ∞. Therefore the sequence ∑|μ |≤M∑Q∈Dμ r j,QaQ is Cauchy in L1 and
hence it converges in L1. But this sequence converges in Hp to Aj by Theorem 2.3.4,
so finally it converges to Aj in L1.

The fact that Aj = ∑μ∈Z∑Q∈Dμ r j,QaQ with convergence in L1 allows us to de-
duce that vanishing moments of aQ pass on to Aj. We conclude that each Aj is a
fixed multiple of an L2-atom for Hp. The ≥ direction in (2.3.28) now follows from
(2.3.29), given that we have now established all the remaining properties. �
Remark 2.3.13. Property (c) in Definition 2.3.10 can be replaced by

∫

xγA(x)dx= 0 for all multi-indices γ with |γ | ≤ L,

for any L ≥ [ np −n], and the atomic decomposition of Hp holds unchanged. In fact,
in the proof of Theorem 2.3.12 we may take L ≥ [ np − n] instead of L = [ np − n]
and then apply Theorem 2.3.4 for this L. Note that Theorem 2.3.4 was valid for all
L≥ [ np −n]. This observation turns out to be quite useful in certain applications.

Exercises

2.3.1. (a) Given N ∈ Z+, prove that there exists a Schwartz functionΘ supported in
the unit ball |x| ≤ 1 such that

∫

Rn xγ Θ(x)dx= 0 for all multi-indices γ with |γ | ≤ N
and such that |Θ̂(ξ )| ≥ 1

2 for all ξ in the annulus 1
2 ≤ |ξ | ≤ 2.

(b) Prove there exists a Schwartz functionΨ whose Fourier transform is supported
in the annulus 1

2 ≤ |ξ | ≤ 2 and is at least c > 0 in the smaller annulus 3
5 ≤ |ξ | ≤ 5

3
and which satisfies for all ξ ∈ Rn \{0}

∑
j∈Z

Ψ̂(2− jξ )Θ̂(2− jξ ) = 1 .

[

Hint: Part (a): Let θ be an even real-valued Schwartz function supported in the ball
|x| ≤ 1 and such that θ̂(0) = 1. Then for some ε ∈ (0, 12 ) we have θ̂(ξ ) ≥ 1

2 for all
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ξ satisfying |ξ | < 2ε . Set Θ = (−Δ)N(θε). Part (b): Define the function Ψ̂(ξ ) =
η̂(ξ )

(

∑ j∈Z η̂(2− jξ )Θ̂(2− jξ )
)−1, where η̂(ξ ) is a Schwartz function supported in

the annulus 1
2 ≤ |ξ | ≤ 2 and equal to 1 on the smaller annulus 3

5 ≤ |ξ | ≤ 5
3 .
]

2.3.2. Let α ∈ R, 0< p≤ 1, p≤ q<+∞.
(a) For all f ,g in

.
Fα ,q
p show that

∥
∥ f +g

∥
∥p.
Fα,q
p

≤ ∥∥ f∥∥p.
Fα,q
p

+
∥
∥g
∥
∥p.
Fα,q
p

.

(b) For all sequences {sQ}Q∈D and {tQ}Q∈D show that
∥
∥{sQ}Q+{tQ}Q

∥
∥p.
fα,qp

≤ ∥∥{sQ}Q
∥
∥p.
fα,qp

+
∥
∥{tQ}Q

∥
∥p.
fα,qp

.

[

Hint: Use |a+ b|p ≤ |a|p+ |b|p and apply Minkowski’s inequality on Lq/p (or on
�q/p).

]

2.3.3. Let Φ be a smooth function supported in the unit ball of Rn. Use the same
idea as in Theorem 2.3.11 to show directly (without appealing to any other theorem)
that the smooth maximal function M( · ;Φ) of an L2-atom for Hp lies in Lp when
p< 1. Recall that M( f ;Φ) = supt>0 |Φt ∗ f |.
2.3.4. Extend Theorem 2.3.11 to the case 1< q≤ ∞. Precisely, prove that there is a
constant Cn,p,q such that every Lq-atom A for Hp satisfies

‖A‖Hp ≤Cn,p,q .

[

Hint: If 1 < q < 2 use the boundedness of the square function on Lq while for
2≤ q≤ ∞ use its boundedness on L2.

]

2.3.5. (a) Suppose that skQ ≥ 0 for all Q ∈D and k = 1,2, . . . . Prove that

∥
∥{

∞

∑
k=1

skQ}Q
∥
∥p.
fα,qp

≤
∞

∑
k=1

∥
∥{skQ}Q

∥
∥p.
fα,qp

.

(b) Prove the completeness of the spaces
.
f α ,qp when α ∈ R, 0< p≤ 1, p≤ q< ∞.

[

Hint: Part (b): You may want to use part (a) together with the fact that if a quasi-
normed space (X , || · ||) has the property ||x+ y||p ≤ ||x||p+ ||y||p for all x,y ∈ X ,
then (X , || · ||) is complete if and only if for every sequence xk ∈ X with the property
∑∞
k=1 ||xk||p < ∞ there is an x∗ such that ||∑N

k=1 xk− x∗|| → 0 as N → ∞.
]

2.3.6. Show that for all μ , j ∈ Z, all N,b > 0 satisfying N > n/b and b < 1, all
scalars sQ (indexed by dyadic cubes Q with centers cQ), and all x ∈ Rn we have
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∑
Q∈Dμ

|sQ|
(1+2min( j,μ)|x− cQ|)N

≤ c(n,N,b)2max(μ− j,0) nb

{

M
(

∑
Q∈Dμ

|sQ|b χQ
)

(x)
} 1

b
,

where M is the Hardy–Littlewood maximal operator and c(n,N,b) is a constant.
[

Hint: Fix x ∈ Rn and define F0 =
{

Q ∈Dμ : |cQ− x|2min( j,μ) ≤ 1
}

and for k ≥ 1
Fk =

{

Q ∈Dμ : 2k−1 < |cQ− x|2min( j,μ) ≤ 2k
}

. Break up the sum on the left as a

sum over the families Fk and use that ∑Q∈Fk
|sQ| ≤

(

∑Q∈Fk
|sQ|b

)1/b and the fact
that

∣
∣
⋃

Q∈Fk
Q
∣
∣≤ cn2−min( j,μ)n+kn.

]

2.3.7. Let A be an L2-atom for Hp(Rn) for some 0 < p < 1. Show that there is a
constant C such that for all multi-indices α with |α| ≤ k = [ np −n] we have

sup
ξ∈Rn

|ξ ||α |−k−1∣∣(∂α Â)(ξ )
∣
∣≤C

∥
∥A
∥
∥
− 2p

2−p (
k+1
n + 1

2 )+1

L2(Rn)
.

[Hint: Subtract the Taylor polynomial of degree k− |α| at 0 of the function x �→
e−2πix·ξ .

]

2.3.8. Let A be an L2-atom for Hp(Rn) for some 0< p< 1. Show that for all multi-
indices α and all 1≤ r ≤ ∞ there is a constant C such that

∥
∥ |∂α Â|2∥∥Lr′ (Rn)

≤C
∥
∥A
∥
∥
− 2p

2−p (
2|α|
n + 1

r )+2

L2(Rn)
.

[

Hint: In the case r = 1 use the L1 → L∞ boundedness of the Fourier transform and
in the case r = ∞ use Plancherel’s theorem. For general r use interpolation.

]

2.3.9. Let f be in Hp(Rn) for some 0 < p ≤ 1. Then the Fourier transform of f ,
originally defined as a tempered distribution, is a continuous function that satisfies

| f̂ (ξ )| ≤Cn,p
∥
∥ f
∥
∥
Hp(Rn)

|ξ | np−n

for some constant Cn,p independent of f .[

Hint: If f is an L2-atom for Hp, combine the estimates of Exercises 2.3.7 and 2.3.8
with α = 0 (and r = 1). In general, apply Theorem 2.3.12.

]

2.3.10. Let A be an L∞-atom for Hp(Rn) for some 0 < p < 1 and let α = n
p − n.

Show that there is a constant Cn,p such that for all g in
.
Λα(Rn) we have

∣
∣
∣
∣

∫

Rn
A(x)g(x)dx

∣
∣
∣
∣
≤Cn,p

∥
∥g
∥
∥ .
Λα (Rn)

.

[

Hint: Suppose that A is supported in a cube Q of side length 2−ν and center cQ.
Write the previous integrand as ∑ j∈ZΔΩ

j (A)ΔΨ
j (g) for a Littlewood–Paley operator
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ΔΨ
j associated with a function Ψ ∈ S whose Fourier transform is nonnegative,

supported in 6
7 < |ξ |< 2, and satisfies ∑ j∈ZΨ̂(2− jξ ) = 1 for all ξ �= 0, while Ω̂(ξ )

is C ∞, supported in 6
14 < |ξ |< 4, and is equal to one on the support of Ψ̂(ξ ). Then

apply the result of Appendix B.4 to obtain the estimate

∣
∣ΔΩ

j (A)(x)
∣
∣≤CN |Q|−

1
p+1 2min( j,ν)n2−| j−ν |D

(

1+2min( j,ν)|x− cQ|
)N ,

where D= [α]+1 when ν ≥ j and D= 0 when ν < j. Use Theorem 1.4.6.
]

2.3.11. Let ε > 0. Show that the function

h(x) =
χ|x|<1/2

x
(

log 1
|x|
)1+ε

lies in the Hardy space H1(R) although
∫ 1/2

−1/2
|h(t)| log |h(t)|dt = ∞.

[

Hint: For j = 1,2, . . . define atoms a j(x) = c j1+ε
(

hχI j −AvgI j(hχI j)
)

supported
in I j = (2− j,2− j+1) and b j(x) = c j1+ε

(

hχL j −AvgI j(hχL j)
)

supported in Lj =

(−2− j+1,−2− j) for a suitable c> 0. Then write h= ∑∞
j=1

1
c j1+ε (a j+b j).

]

2.4 Singular Integrals on Function Spaces

Our final task in this chapter is to investigate the action of singular integrals on
function spaces. The emphasis of our study focuses on Hardy spaces, although with
no additional effort the action of singular integrals on other function spaces can also
be obtained.

2.4.1 Singular Integrals on the Hardy Space H1

Before we discuss the main results in this topic, we review some background on
singular integrals.

Let K(x) be a function defined away from the origin on Rn that satisfies the size
estimate

sup
0<R<∞

1
R

∫

|x|≤R
|K(x)| |x|dx≤ A1 , (2.4.1)
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the smoothness condition,

sup
y∈Rn\{0}

∫

|x|≥2|y|
|K(x− y)−K(x)|dx≤ A2 , (2.4.2)

and the cancellation condition

sup
0<R1<R2<∞

∣
∣
∣
∣

∫

R1<|x|<R2

K(x)dx
∣
∣
∣
∣
≤ A3 , (2.4.3)

for some A1,A2,A3 <∞. Condition (2.4.3) implies that there exists a sequence ε j ↓ 0
as j→ ∞ such that the following limit exists:

lim
j→∞

∫

ε j≤|x|≤1
K(x)dx= L0.

This gives that for a smooth and compactly supported function f on Rn, the limit

lim
j→∞

∫

|x−y|>ε j
K(x− y) f (y)dy= T ( f )(x) (2.4.4)

exists and defines a linear operator T . This operator T is given by convolution with
a tempered distributionW that coincides with the function K on Rn \{0}.

We know that such a T , initially defined on C ∞
0 (Rn), admits an extension that

is Lp bounded for all 1 < p < ∞ and is also of weak type (1,1). All these norms
are bounded above by dimensional constant multiples of the quantity A1+A2+A3
(cf. Theorem 5.4.1 in [156]). Therefore, such a T is well defined on L1(Rn) and in
particular on H1(Rn), which is contained in L1(Rn). The following result concerns
the H1 to L1 boundedness of T .

Theorem 2.4.1. Let K satisfy (2.4.1), (2.4.2), and (2.4.3), and let T be defined as in
(2.4.4). Then there is a constant Cn such that for all f in H1(Rn) we have

∥
∥T ( f )

∥
∥
L1 ≤Cn(A1+A2+A3)

∥
∥ f
∥
∥
H1 . (2.4.5)

Proof. To prove this theorem we have a powerful tool at our disposal, the atomic
decomposition of H1(Rn). It is therefore natural to start by checking the validity of
(2.4.5) whenever f is an L2-atom for H1.

Since T is a convolution operator (i.e., it commutes with translations), it suffices
to take the atom f supported in a cube Q centered at the origin. Let f = a be such
an atom, supported in Q, and let Q∗ = 2

√
nQ. We write

∫

Rn
|T (a)(x)|dx=

∫

Q∗
|T (a)(x)|dx+

∫

(Q∗)c
|T (a)(x)|dx (2.4.6)
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and we estimate each term separately. We have

∫

Q∗
|T (a)(x)|dx ≤ |Q∗| 12

(∫

Q∗
|T (a)(x)|2 dx

) 1
2

≤Cn(A1+A2+A3)|Q∗| 12
(∫

Q
|a(x)|2 dx

) 1
2

≤Cn(A1+A2+A3)|Q∗| 12 |Q| 12− 1
1

=C′
n(A1+A2+A3) ,

where we used the L2 boundedness of T and property (b) of atoms in Definition
2.3.10. Now note that if x /∈ Q∗ and y ∈ Q, then |x| ≥ 2|y| and x− y stays away from
zero; thus K(x− y) is well defined. Moreover, in this case T (a)(x) can be expressed
as a convergent integral of a(y) against K(x− y). We have

∫

(Q∗)c
|T (a)(x)|dx =

∫

(Q∗)c

∣
∣
∣

∫

Q
K(x− y)a(y)dy

∣
∣
∣dx

=
∫

(Q∗)c

∣
∣
∣

∫

Q

(

K(x− y)−K(x)
)

a(y)dy
∣
∣
∣dx

≤
∫

Q

∫

(Q∗)c

∣
∣K(x− y)−K(x)

∣
∣dx |a(y)|dy

≤
∫

Q

∫

|x|≥2|y|

∣
∣K(x− y)−K(x)

∣
∣dx |a(y)|dy

≤ A2

∫

Q
|a(x)|dx

≤ A2|Q| 12
(∫

Q
|a(x)|2 dx

) 1
2

≤ A2|Q| 12 |Q| 12− 1
1 = A2 .

Combining this calculation with the previous one and inserting the final conclusions
in (2.4.6) we deduce that L2-atoms a for H1 satisfy

∥
∥T (a)

∥
∥
L1 ≤ (C′

n+1)(A1+A2+A3) . (2.4.7)

We now pass to general functions in H1. In view of Theorem 2.3.12 we can write an
f ∈ H1 as

f =
∞

∑
j=1

λ ja j ,

where the series converges in H1, the a j are L2-atoms for H1, and

∥
∥ f
∥
∥
H1 ≈

∞

∑
j=1

|λ j|< ∞ . (2.4.8)

Since T maps L1 to L1,∞ (Theorem 5.3.3 in [156]), T ( f ) is already a well-defined
L1,∞ function.
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We claim that

T ( f ) =
∞

∑
j=1

λ jT (a j) a.e. (2.4.9)

noting that the series in (2.4.9) converges in L1 and produces a well-defined inte-
grable function. Once (2.4.9) is established, the required conclusion (2.4.5) follows
easily by taking L1 norms in (2.4.9) and using (2.4.7) and (2.4.8).

To prove (2.4.9), we make use of the fact that T is of weak type (1,1). For a given
δ > 0 we have

∣
∣
{∣
∣T ( f )−

∞

∑
j=1

λ jT (a j)
∣
∣> δ

}∣
∣

≤ ∣∣{∣∣T ( f )−
N

∑
j=1

λ jT (a j)
∣
∣> δ/2

}∣
∣+
∣
∣
{∣
∣

∞

∑
j=N+1

λ jT (a j)
∣
∣> δ/2

}∣
∣

≤ 2
δ
∥
∥T
∥
∥
L1→L1,∞

∥
∥
∥ f −

N

∑
j=1

λ ja j

∥
∥
∥
L1
+

2
δ

∥
∥
∥

∞

∑
j=N+1

λ jT (a j)
∥
∥
∥
L1

≤ 2
δ
∥
∥T
∥
∥
L1→L1,∞

∥
∥
∥ f −

N

∑
j=1

λ ja j

∥
∥
∥
H1

+
2
δ
(C′

n+1)(A1+A2+A3)
∞

∑
j=N+1

|λ j| .

Since ∑N
j=1λ ja j converges to f in H1 and ∑∞

j=1 |λ j| < ∞, both terms in the sum
converge to zero as N → ∞. We conclude that

∣
∣
{

x ∈ Rn :
∣
∣T ( f )(x)−

∞

∑
j=1

λ jT (a j)(x)
∣
∣> δ

}∣
∣= 0

for all δ > 0, which implies (2.4.9). �

2.4.2 Singular Integrals on Besov–Lipschitz Spaces

We continue with a corollary concerning Besov–Lipschitz spaces.

Corollary 2.4.2. Let K satisfy (2.4.1), (2.4.2), and (2.4.3), and let T be defined as
in (2.4.4). Let 1 ≤ p ≤ ∞, 0 < q ≤ ∞, and α ∈ R. Then there is a constant Cn,p,q,α
such that for all f inS (Rn) we have

∥
∥T ( f )

∥
∥ .
Bα,qp

≤Cn(A1+A2+A3)
∥
∥ f
∥
∥ .
Bα,qp

. (2.4.10)

Therefore, T admits a bounded extension on all homogeneous Besov–Lipschitz
spaces

.
Bα ,qp with p≥ 1, in particular, on all homogeneous Lipschitz spaces.



2.4 Singular Integrals on Function Spaces 131

Proof. LetΨ be a Schwartz function whose Fourier transform is supported in the
annulus 1− 1

7 ≤ |ξ | ≤ 2 and that satisfies

∑
j∈Z

Ψ̂(2− jξ ) = 1 , ξ �= 0 .

Pick a Schwartz function ζ whose Fourier transform ̂ζ is supported in the annulus
1
4 < |ξ | < 8 and that is equal to one on the support of Ψ̂ . Let W be the tempered
distribution that coincides with K on Rn \{0} so that T ( f ) = f ∗W . Then we have
ζ2− j ∗Ψ2− j =Ψ2− j for all j and hence

∥
∥Δ j(T ( f ))

∥
∥
Lp =

∥
∥ζ2− j ∗Ψ2− j ∗W ∗ f

∥
∥
Lp

≤ ∥∥ζ2− j ∗W
∥
∥
L1
∥
∥Δ j( f )

∥
∥
Lp ,

(2.4.11)

since 1 ≤ p ≤ ∞. It is not hard to check that the function ζ2− j is in H1 with norm
independent of j. Therefore, ζ2− j is in H1. Using Theorem 2.4.1, we conclude that

∥
∥T (ζ2− j)

∥
∥
L1 =

∥
∥ζ2− j ∗W

∥
∥
L1 ≤C

∥
∥ζ2− j

∥
∥
H1 =C′ .

Inserting this in (2.4.11), multiplying by 2 jα , and taking �q quasi-norms, we obtain
the required conclusion. �

2.4.3 Singular Integrals on Hp(Rn)

It is possible to extend Theorem 2.4.1 to Hp(Rn) for p < 1, provided the kernel K
has additional smoothness.

For the purposes of this subsection, we fix a C ∞ function K(x) on Rn \{0}. We
suppose that there is a positive integer N (to be specified later) such that

|∂βK(x)| ≤ A |x|−n−|β | for all |β | ≤ N (2.4.12)

and that

sup
0<R1<R2<∞

∣
∣
∣
∣

∫

R1<|x|<R2

K(x)dx
∣
∣
∣
∣
≤ A , (2.4.13)

for some A< ∞.
We fix a nonnegative smooth function η onRn that vanishes in the unit ball ofRn

and is equal to 1 outside the ball B(0,2) and for 0< ε < 1/2 we define the smoothly
truncated family of kernels

K(ε)(x) = K(x)η(x/ε)
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and the doubly smoothly truncated family of kernels

K(ε)(x) = K(ε)(x)−K(1/ε)(x) .

Condition (2.4.12) with β = 0 and (2.4.13) imply that
∣
∣
∣
∣

∫

|x|≤1
K(x)η(x/ε)dx

∣
∣
∣
∣
≤ (1+ωn−1 log2)A

for all ε < 1/2; hence there exists a sequence ε j < 1/2 with ε j ↓ 0 as j → ∞ such
that the following limit exists:

lim
j→∞

∫

|x|≤1
K(x)η(x/ε j)dx= L0.

We now defineW inS ′(Rn) by setting

〈W,ϕ〉 = lim
j→∞

∫

Rn
K(ε j)(x)ϕ(x)dx (2.4.14)

= L0ϕ(0)+
∫

|x|≤1
K(x)(ϕ(x)−ϕ(0))dx+

∫

|x|≥1
K(x)ϕ(x)dx

for ϕ in S . It is quite easy to verify that the preceding expression is bounded by
a constant multiple of a finite sum of Schwartz seminorms of ϕ . Note that this
distribution2 depends on the number L0 and hence on the bump η .

We define the associated doubly smoothly truncated singular integral by setting

T(ε)(ϕ)(x) =
∫

Rn
K(ε)(y)ϕ(x− y)dy (2.4.15)

for Schwartz functions ϕ on Rn.
We also define an operator T given by convolution withW by setting

T (ϕ) = lim
j→∞

T(ε j)(ϕ) = ϕ ∗W (2.4.16)

for ϕ ∈S (Rn). Observe thatW coincides withK onRn\{0}, since if ϕ is supported
in |x| ≥ t0 > 0, (2.4.14) implies that the action ofW on ϕ ∈S coincides with that
of K(ε j) on ϕ when ε j < t0/2. Condition (2.4.12) with |β |= 1 implies

sup
y �=0

∫

|x|≥2|y|
|K(x− y)−K(x)|dx≤ cA ; (2.4.17)

hence Theorem 5.4.1 in [156] yields the L2 boundedness of T . Note that (2.4.17) also
holds for K(ε) in place of K uniformly in ε; thus again by Theorem 5.4.1 in [156] the
operators T(ε) are uniformly bounded on L2(Rn).

2 Alternatively, we could have defined W as an element of S ′(Rn)/P(Rn) acting on functions
ϕ ∈S0; in this caseW would have been independent of L0 and η .
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We summarize these and other observations about K(ε), T(ε), and T .

(i) The kernels K(ε) satisfy the same estimates as K uniformly in ε with constant
A′ in place of A, where A′ is comparable to A.

(ii) T(ε) are uniformly bounded on L2.
(iii) T(ε j)(g) tends to T (g) in L2 for any g ∈ L2(Rn).

(iv) T is L2 bounded with norm ‖Ŵ‖L∞ ≤CA.
(v) For any f ∈ Hp, T ( f ) is a well-defined element ofS ′.

We have already explained assertions (i) and (ii) and (iv).
We explain (iii). Theorem 5.3.4 in [156] gives that for all g ∈ L2 we have

sup
ε>0

|T(ε)(g)| ≤M(T ( f ))+CnAM(g) ;

hence the maximal operator T (∗∗)(g) = supε>0 |T(ε)(g)| is L2 bounded. Moreover, as
an easy consequence of (2.4.14), for each ϕ ∈ S we have T(ε j)(ϕ)→ T (ϕ) point-
wise everywhere. In view of Theorem 2.1.14 in [156], for every g ∈ L2(Rn) we have
T(ε j)(g)−T (g)→ 0 a.e. as j→ ∞. Since

|T(ε j)(g)−T (g)| ≤ 2T (∗∗)(g) ∈ L2 ,

the Lebesgue dominated convergence theorem yields that T(ε j)(g)−T (g)→ 0 in L2.
To verify the validity of (v) we write W = W0 + K∞, where W0 = ΦW and

K∞ = (1−Φ)K, where Φ is a smooth function equal to one on the ball B(0,1)
and vanishing outside the ball B(0,2). Then for f in Hp(Rn), 0< p≤ 1, we define
a tempered distribution T ( f ) =W ∗ f by setting

〈

T ( f ),φ
〉

=
〈

f ,φ ∗W̃0
〉

+
〈

φ̃ ∗ f , K̃∞
〉

(2.4.18)

for φ in S (Rn). (Here ϕ̃(x) = ϕ(−x) for functions and analogously for distribu-
tions.) The function φ ∗W̃0 is in S , so the action of f on it is well defined. Also
φ̃ ∗ f is in L1 (see Proposition 2.1.9), while K̃∞ is in L∞; hence the second term on
the right in (2.4.18) represents an absolutely convergent integral. Moreover, in view
of Theorem 2.3.20 in [156] and Corollary 2.1.9, both terms on the right in (2.4.18)
are controlled by a finite sum of seminorms ρα ,β (φ) (cf. Definition 2.2.1 in [156]).
This defines T ( f ) as a tempered distribution for every f ∈ Hp.

The following is an extension of Theorem 2.4.1 for p< 1.

Theorem 2.4.3. Let 0 < p < 1 and N = [ np − n] + 1. Let K be a C ∞ function on
Rn \ {0} that satisfies (2.4.13) and (2.4.12) for some A < ∞ for all multi-indices
|β | ≤ N and all x �= 0. Let W be a tempered distribution that coincides with K on
Rn \{0}, as defined in (2.4.14). Then there is a constant Cn,p such that for all f ∈Hp

the distribution T ( f ) defined in (2.4.18) coincides with an Lp function that satisfies
∥
∥T ( f )

∥
∥
Lp ≤Cn,p A

∥
∥ f
∥
∥
Hp .
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Proof. The proof of this theorem is based on the atomic decomposition of Hp.
We first take f = a to be an L2-atom for Hp, and without loss of generality we

may assume that a is supported in a cube Q centered at the origin. We let Q∗ be the
cube with side length 2

√
n�(Q), where �(Q) is the side length of Q. We have

(∫

Q∗
|T (a)(x)|p dx

) 1
p

≤ C|Q∗| 1p− 1
2

(∫

Q∗
|T (a)(x)|2 dx

) 1
2

≤ C′′A|Q| 1p− 1
2

(∫

Q
|a(x)|2 dx

) 1
2

≤ CnA |Q|
1
p− 1

2 |Q| 12− 1
p

= CnA ,

where we used that T is L2 bounded with norm at most a constant multiple of A.
For x /∈Q∗ and y ∈Q, we have |x| ≥ 2|y|, and thus x−y stays away from zero and

K(x− y) is well defined. We have

T (a)(x) =
∫

Q
K(x− y)a(y)dy .

Recall that N = [ np −n]+1. Using the cancellation of atoms in Hp, we deduce

T (a)(x) =
∫

Q
a(y)K(x− y)dy

=

∫

Q
a(y)

[

K(x− y)− ∑
|β |≤N−1

(∂βK)(x)
yβ

β !

]

dy

=

∫

Q
a(y)

[

∑
|β |=N

(∂βK)(x−θyy)
yβ

β !

]

dy ,

for some 0≤ θy ≤ 1. The fact that |x| ≥ 2|y| implies that |x−θyy| ≥ 1
2 |x| and using

(2.4.12) we obtain the estimate

|T (a)(x)| ≤ cn,N
A

|x|N+n

∫

Q
|a(y)| |y|N dy ,

from which it follows that for x /∈ Q∗ we have

|T (a)(x)| ≤ cn,p
A

|x|N+n |Q|
1+ N

n − 1
p

via a calculation using Hölder’s inequality and the fact that ‖a‖Lq ≤ |Q| 1q− 1
p . Inte-

grating over (Q∗)c, we obtain that

(∫

(Q∗)c
|T (a)(x)|pdx

) 1
p

≤ cn,p A |Q|1+
N
n − 1

p

(∫

(Q∗)c
1

|x|p(N+n)
dx
) 1

p

≤ c′n,p A .
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We have now shown that there exists a constant Cn,p such that
∥
∥T (a)

∥
∥
Lp ≤Cn,p A (2.4.19)

whenever a is an L2-atom for Hp.
To replace a by general f ∈ Hp we need Lemma 2.4.4 that follows immediately,

which we apply to the family Schwartz functions ζε j(x) = K(x)
(

η(x/ε j)−η(ε jx)
)

and the associated operators T(ε j). Fix f ∈Hp∩L2, with atomic decomposition f =

∑∞
j=1λ ja j where a j are L2-atoms for Hp and ∑∞

j=1 |λ j|p ≤ 2p‖ f‖pHp . Then Lemma
2.4.4 yields

T ( f ) =
∞

∑
j=1

λ jT (a j) a.e., (2.4.20)

where the series converges in Lp. We apply Lp quasi-norms on both sides of (2.4.20),
we use the sublinearity of h �→ ‖h‖pLp , and (2.4.19) to deduce that

∥
∥T ( f )

∥
∥p
Lp ≤Cp

n,pA
p

∞

∑
j=1

|λ j|p ≤ 2pCp
n,pA

p‖ f‖pHp (2.4.21)

for all f ∈ L2 ∩Hp. Recall that T ( f ) is well defined for all f ∈ Hp, as observed in
item (v) in the introductory comments of this subsection. Then by the density of
L2∩Hp in Hp, the estimate

∥
∥T ( f )

∥
∥p
Lp ≤ 2pCp

n,pA
p‖ f‖pHp

obtained in (2.4.21) for f ∈ L2∩Hp extends to any f ∈ Hp. �

Lemma 2.4.4. Let {ζε}ε>0 be a family of Schwartz functions and for each ε > 0 let
Tε be the operator given by convolution with ζε . Suppose that the Tε ’s are uniformly
(in ε > 0) bounded on L2(Rn) and that there is an L2(Rn)-bounded operator T such
that for each g ∈ L2(Rn), we have

∥
∥Tε(g)−T (g)

∥
∥
L2 → 0 as ε → 0. (2.4.22)

Suppose moreover that for a given 0< p≤ 1 there is a constant C0 such that for all
a that are L2-atoms for Hp we have

sup
ε>0

‖Tε(a)‖Lp ≤C0 . (2.4.23)

Then for every f ∈ L2∩Hp with atomic decomposition f =∑∞
j=1λ ja j, where a j are

L2-atoms for Hp and ∑∞
j=1 |λ j|p ≤ 2p‖ f‖pHp , the sequence ∑N

j=1λ jT (a j) is Cauchy
in Lp and converges in Lp to a well-defined Lp function ∑∞

j=1λ jT (a j) which is equal
almost everywhere to T ( f ), i.e., we have

T ( f ) =
∞

∑
j=1

λ jT (a j) a.e. (2.4.24)



136 2 Hardy Spaces, Besov Spaces, and Triebel–Lizorkin Spaces

Proof. We begin the proof by observing that as a consequence of (2.4.23) we have

‖T (a)‖Lp ≤C0 (2.4.25)

for all a that are L2-atoms for Hp. Indeed, (2.4.22) implies that for a given L2 atom
a for Hp, there is sequence εk ↓ 0 such that

T (a) = lim
k→∞

Tεk(a) = liminf
k→∞

Tεk(a) a.e.

Then Fatou’s lemma on Lp together with (2.4.23) imply (2.4.25).
Given f ∈ Hp ∩L2, we write f = ∑∞

j=1λ ja j in an atomic decomposition, where
a j are L2-atoms for Hp, the series converges to f in Hp, and ∑∞

j=1 |λ j|p ≤ 2p‖ f‖pHp .
We observe that the sequence

{

∑N
j=1λ jT (a j)

}∞
N=1 is Cauchy in Lp since

∥
∥
∥

N

∑
j=N′

λ jT (a j)
∥
∥
∥

p

Lp
≤

N

∑
j=N′

|λ j|pCp
0 ,

which tends to zero as N′,N → ∞. Thus the sequence ∑N
j=1λ jT (a j)(x) converges in

Lp to a well-defined Lp function. We set

∞

∑
j=1

λ jT (a j) = Lp limit of
N

∑
j=1

λ jT (a j) .

To prove (2.4.24), we first prove an analogous result about Tε , namely,

Tε( f ) =
∞

∑
j=1

λ jTε(a j) a.e. (2.4.26)

where ∑∞
j=1λ jTε(a j) denotes the Lp limit of the Cauchy sequence ∑N

j=1λ jTε(a j).
We fix ε ,δ > 0. Then by the linearity of Tε for each L ∈ Z+ we have

∣
∣
∣

{

x ∈ Rn : |Tε( f )(x)−
∞

∑
j=1

λ jTε(a j)(x)|> δ
}∣
∣
∣

≤
∣
∣
∣

{

x ∈ Rn : |Tε
( ∞

∑
j=L+1

λ ja j
)

(x)−
∞

∑
j=L+1

λ jTε(a j)(x)|> δ
}∣
∣
∣

≤
∣
∣
∣

{

x ∈ Rn : |Tε
( ∞

∑
j=L

λ ja j
)

(x)|> δ
2

}∣
∣
∣+
∣
∣
∣

{

x ∈ Rn : |
∞

∑
j=L+1

λ jTε(a j)(x)|> δ
2

}∣
∣
∣

≤ 2p

δ p

∥
∥
∥Tε
( ∞

∑
j=L+1

λ ja j
)
∥
∥
∥

p

Lp
+

2p

δ p

∞

∑
j=L+1

|λ j|p
∥
∥Tε(a j)

∥
∥p
Lp . (2.4.27)
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By assumption (2.4.23) the second term in the sum in (2.4.27) is controlled by
Cp
0 (

2
δ )

p∑∞
j=L+1 |λ j|p which tends to zero as L→ ∞.

To show the same conclusion for the first sum in (2.4.27) we recall the grand
maximal function

MN( f )(x) = sup
ϕ∈FN

sup
t>0

sup
y∈Rn

|y−x|≤t

|(ϕt ∗ f )(y)|

where

FN =
{

ϕ ∈S (Rn) :
∫

Rn
(1+ |x|)N ∑

|α |≤N+1
|∂αϕ(x)|dx≤ 1

}

.

The function ζε lies in S (Rn); thus there is a constant cε ,N such that cε ,Nζε lies
inFN . Then we have

|Tε
( ∞

∑
j=L+1

λ ja j
)| ≤ 1

cε ,N
MN

(

f −
L

∑
j=1

λ ja j
)

.

Taking Lp quasi-norms we obtain

∥
∥
∥Tε
( ∞

∑
j=L+1

λ ja j
)
∥
∥
∥

p

Lp
≤ 1

cpε ,N

∥
∥
∥MN

(

f −
L

∑
j=1

λ ja j
)
∥
∥
∥

p

Lp
≤ Cp

n,p

cpε ,N

∥
∥
∥ f −

L

∑
j=1

λ ja j

∥
∥
∥

p

Lp
,

and since ∑L
j=1λ ja j → f in Hp as L→ ∞, we deduce that the first sum in (2.4.27)

tends to zero as L→ ∞. This proves that for any ε ,δ > 0 we have

∣
∣
∣

{

x ∈ Rn : |Tε( f )(x)−
∞

∑
j=1

λ jTε(a j)(x)|> δ
}∣
∣
∣= 0;

hence (2.4.26) holds.
Next, we claim that ∑∞

j=1λ jTε(a j)→∑∞
j=1λ jT (a j) in measure as ε → 0. Indeed,

given δ > 0, write

∣
∣
∣

{ ∞

∑
j=1

λ jTε(a j)−
∞

∑
j=1

λ jT (a j)|> δ
}∣
∣
∣

≤
∣
∣
∣

{∣
∣
∣

L

∑
j=1

λ j
(

Tε(a j)−T (a j)
)
∣
∣
∣>

δ
2

}∣
∣
∣+
∣
∣
∣

{∣
∣
∣

∞

∑
j=L+1

λ jTε(a j)−
∞

∑
j=L+1

λ jT (a j)
∣
∣
∣>

δ
2

}∣
∣
∣

≤ 22

δ 2

∥
∥
∥

L

∑
j=1

λ j
(

Tε(a j)−T (a j)
)
∥
∥
∥

2

L2
+

2p

δ p

∞

∑
j=L+1

|λ j|p
[∥
∥Tε(a j)

∥
∥p
Lp +

∥
∥T (a j)

∥
∥p
Lp

]

≤ 22

δ 2

∥
∥
∥Tε
( L

∑
j=1

λ ja j
)−T

( L

∑
j=1

λ ja j
)
∥
∥
∥

2

L2
+

2p+1Cp
0

δ p

∞

∑
j=L+1

|λ j|p , (2.4.28)
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where we made use of (2.4.23) and (2.4.25) in the last estimate above. The second
term in (2.4.28) can be made less than any given number τ > 0 if L is chosen to be
large enough. Once we fix L, then there is a ε0 > 0 such that for ε0 < ε the first term
in (2.4.28) is controlled by τ too, since Tε(∑L

j=1λ ja j) converges to T (∑L
j=1λ ja j)

in L2 in view of (2.4.22). Therefore (2.4.28) can be made arbitrarily small for ε
sufficiently small, and the claimed convergence in measure is valid. By Theorem
1.1.11 in [156] there is sequence εi (subsequence of ε > 0) such that

∞

∑
k=1

λkTεi(ak)(x)→
∞

∑
k=1

λkT (ak)(x) a.e. as i→ ∞. (2.4.29)

Since Tεi( f ) tends to T ( f ) in L2, we can find a subsequence {εi�} of the subse-
quence {εi} such that

Tεi� ( f )(x)→ T ( f )(x) a.e. as �→ ∞. (2.4.30)

Using identity (2.4.26) with εi� in place of ε , together with (2.4.29) with i� in place
of i, along with (2.4.30), letting �→ ∞, we deduce (2.4.24). �

We discuss a version of the Theorem 2.4.3 in which the target space is Hp.

Theorem 2.4.5. Under the hypotheses of Theorem 2.4.3, there is a constant Cn,p
such that for all f ∈ Hp,

∥
∥T ( f )

∥
∥
Hp ≤Cn,p A

∥
∥ f
∥
∥
Hp . (2.4.31)

Proof. We fix a smooth function Φ supported in the unit ball B(0,1) in Rn whose
mean value is not equal to zero. For t > 0 we define the smooth functions

K(t) =Φt ∗W

and for f ∈ Hp, we define an operator

T (t)( f ) =Φt ∗T ( f )

noting that the convolution is well defined since T ( f ) lies inS ′ and Φt is in C ∞
0 .

We observe that the family of kernels K(t) satisfies

sup
t>0

∣
∣̂K(t)(ξ )

∣
∣≤ ∥∥Φ̂∥∥L∞

∥
∥Ŵ
∥
∥
L∞ ≤CA

∥
∥Φ̂
∥
∥
L∞ (2.4.32)

and that
sup
t>0

|∂βK(t)(x)| ≤CΦA |x|−n−|β | (2.4.33)

for all |β | ≤ N, where

CΦ = sup
|γ |≤N

∫

Rn
|ξ ||γ ||Φ̂(ξ )|dξ .
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Indeed, assertion (2.4.32) is easily verified. When |x| ≤ 2t assertion (2.4.33) follows
from the identity

K(t)(x) =
(

(Φt ∗W )̂
)∨

(x) =
∫

Rn
e2πix·ξ Ŵ (ξ )Φ̂(tξ )dξ ,

while whenever |x| ≥ 2t, (2.4.33) follows from (2.4.12) and from the integral repre-
sentation

∂βK(t)(x) =
∫

|y|≤t
∂βK(x− y)Φt(y)dy .

We now take f = a to be an L2-atom for Hp, and without loss of generality we
may assume that a is supported in a cube Q centered at the origin. We let Q∗ be
the cube with side length 2

√
n�(Q), where �(Q) is the side length of Q. Recall the

smooth maximal functionM( f ;Φ) from Section 2.1. ThenM(T (a);Φ) is pointwise
controlled by the Hardy–Littlewood maximal function of T (a). Using an argument
similar to that in Theorem 2.4.1, we have

(∫

Q∗
|M(T (a);Φ)(x)|p dx

) 1
p

≤ ∥
∥Φ
∥
∥
L1

(∫

Q∗
|M(T (a))(x)|p dx

) 1
p

≤ C|Q∗| 1p− 1
2

(∫

Q∗
|M(T (a))(x)|2 dx

) 1
2

≤ C′|Q| 1p− 1
2

(∫

Rn
|T (a)(x)|2 dx

) 1
2

≤ C′′A|Q| 1p− 1
2

(∫

Q
|a(x)|2 dx

) 1
2

≤ CnA |Q|
1
p− 1

2 |Q| 12− 1
p

= CnA .

It therefore remains to estimate the contribution of M(T (a);Φ) on the complement
of Q∗.

For x /∈ Q∗ we write

T (t)(a)(x) = (a∗K(t))(x) =
∫

Q
K(t)(x− y)a(y)dy .

Recall that N = [ np −n]+1. Using the cancellation of L2 atoms for Hp we deduce

T (t)(a)(x) =
∫

Q
a(y)

[

K(t)(x− y)− ∑
|β |≤N−1

(∂βK(t))(x)
yβ

β !

]

dy

=
∫

Q
a(y)

[

∑
|β |=N

(∂βK(t))(x−θyy)
yβ

β !

]

dy
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for some 0 ≤ θy ≤ 1. Since x /∈ Q∗ and y ∈ Q we have |x−θyy| ≥ |x|− |y| ≥ 1
2 |x|;

thus using (2.4.33) we obtain the estimate

|T (t)(a)(x)| ≤ cn,N
A

|x|N+n

∫

Q
|a(y)| |y|N dy ,

from which it follows that for x /∈ Q∗ we have

|T (t)(a)(x)| ≤ cn,p
A

|x|N+n |Q|
1+ N

n − 1
p

via a calculation using properties of atoms (see the proof of Theorem 2.3.11). Taking
the supremum over all t > 0 and integrating over (Q∗)c, we obtain that

(∫

(Q∗)c
sup
t>0

|(T (a)∗Φt)(x)|pdx
) 1

p

≤ cn,p A |Q|1+
N
n − 1

p

(∫

(Q∗)c
1

|x|p(N+n)
dx
) 1

p

,

and the latter is easily seen to be finite and controlled by a constant multiple of A.
Combining this estimate with the previously obtained estimate for the integral of
M(T (a);Φ) = supt>0 |T (t)(a)| over Q∗ yields the conclusion of the theorem when
f = a is an atom.

We have now shown that there exists a constant Cn,p such that

∥
∥T (t)(a)

∥
∥
Lp ≤

∥
∥T (a)

∥
∥
Hp ≤Cn,p A (2.4.34)

whenever a is an L2-atom for Hp. We now extend this estimate to arbitrary f in
L2∩Hp. To achieve this, we verify that the assumptions of Lemma 2.4.4 are valid for
the family of Schwartz functions ζε =Φt ∗K(ε) and the family of operators T (t)

ε (g) =
Φt ∗K(ε) ∗ g, which are uniformly bounded on L2 and converge in L2 to T (t)(g) =
Φt ∗g for any g ∈ L2(Rn).

Fix f ∈ L2∩Hp, with atomic decomposition f = ∑∞
j=1λ ja j, where ∑∞

j=1 |λ j|p ≤
2p‖ f‖pHp . Observe that the sequences ∑N

j=1 |λ jT (t)(a j)| and ∑N
j=1λ jT (t)(a j) are

Cauchy in Lp and thus they converge in Lp. We set

∞

∑
j=1

λ jT (t)(a j) = Lp limit of
N

∑
j=1

λ jT (t)(a j) as N → ∞

∞

∑
j=1

|λ jT (t)(a j)| = Lp limit of
N

∑
j=1

|λ jT (t)(a j)| as N → ∞,

and extracting subsequences that converge almost everywhere, we notice that

|
∞

∑
j=1

λ jT (t)(a j)| ≤
∞

∑
j=1

|λ jT (t)(a j)| a.e. (2.4.35)
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To apply Lemma 2.4.4, we consider the family of Schwartz functions ζε j(x) =
Φt ∗K(ε j) and the associated operators T

(t)
(ε j)

=Φt ∗T(ε j), which are L2-bounded uni-

formly in ε j and t > 0. It is easy to see that for g ∈ L2, Φt ∗T(ε j)(g)→ T (t)(g) in L2

as j → ∞, and furthermore (2.4.34) also holds if T (t) is replaced by T (t)
(ε j)

uniformly
in ε j via a similar argument; hence the hypotheses of Lemma 2.4.4 are valid. Using
the conclusion of Lemma 2.4.4 we write

T (t)( f ) =
∞

∑
j=1

λ jT (t)(a j) a.e. (2.4.36)

It follows from this fact and (2.4.35) that

|T (t)( f )| ≤
∞

∑
j=1

|λ jT (t)(a j)| ≤
∞

∑
j=1

|λ j|M(T (a j);Φ) a.e. (2.4.37)

Taking the supremum over t > 0 in (2.4.37) we deduce

M(T ( f );Φ)≤
∞

∑
j=1

|λ j|M(T (a j);Φ) a.e. (2.4.38)

and applying Lp quasi-norms on both sides and using (2.4.34) yields the desired
conclusion (2.4.31) for f ∈ L2 ∩Hp. The extension to general f ∈ Hp follows by
density and the fact that T ( f ) is well defined for all f ∈ Hp, as observed in item (v)
in the introduction of this subsection. �

2.4.4 A Singular Integral Characterization of H1(Rn)

We showed in Section 2.4.1 that singular integrals map H1 to L1. In particular, the
Riesz transforms have this property. In this subsection we obtain a converse to this
statement. We show that if Rj( f ) are integrable functions for some f ∈ L1 and all
j = 1, . . . ,n, then f must be an element of the Hardy space H1. This provides a
characterization of H1(Rn) in terms of the Riesz transforms.

Theorem 2.4.6. For n≥ 2, there exists a constant Cn such that for f in L1(Rn), we
have

Cn
∥
∥ f
∥
∥
H1 ≤

∥
∥ f
∥
∥
L1 +

n

∑
k=1

∥
∥Rk( f )

∥
∥
L1 . (2.4.39)

When n= 1 the corresponding statement is

C1
∥
∥ f
∥
∥
H1 ≤

∥
∥ f
∥
∥
L1 +

∥
∥H( f )

∥
∥
L1 (2.4.40)

for all f ∈ L1(R). Naturally, these statements are interesting when the expressions
on the right in (2.4.39) and (2.4.40) are finite.
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Before we prove this theorem we discuss a couple of corollaries.

Corollary 2.4.7. An integrable function on the line lies in the Hardy space H1(R)
if and only if its Hilbert transform is integrable. For n ≥ 2, an integrable function
on Rn lies in the Hardy space H1(Rn) if and only its Riesz transforms are also in
L1(Rn).

Proof. The corollary follows by combining Theorems 2.4.1 and 2.4.6. �

Corollary 2.4.8. Functions in H1(Rn), n≥ 1, have integral zero.

Proof. Indeed, if f ∈H1(Rn), we must have R1( f )∈ L1(Rn) by Theorem 2.4.1; thus
̂R1( f ) is uniformly continuous. But since

̂R1( f )(ξ ) =−i f̂ (ξ )
ξ1
|ξ | ,

it follows that ̂R1( f ) is continuous at zero if and only if f̂ (0) = 0. But this happens
exactly when f has integral zero. �

We now discuss the proof of Theorem 2.4.6.

Proof. We consider the case n ≥ 2, although the argument below also works in
the case n = 1 with a suitable change of notation. Let Pt be the Poisson kernel.
In the proof we may assume that f is real-valued, since it can be written as f =
f1+ i f2, where fk are real-valued and Rj( fk) are also integrable. Given a real-valued
function f ∈ L1(Rn) such that Rj( f ) are integrable over Rn for every j = 1, . . . ,n,
we associate with it the n+1 functions

u1(x, t) = (Pt ∗R1( f ))(x) ,

. . . = . . .

un(x, t) = (Pt ∗Rn( f ))(x) ,

un+1(x, t) = (Pt ∗ f )(x) ,

which are harmonic on the spaceRn+1
+ (see Example 2.1.13 in [156]). It is convenient

to denote the last variable t by xn+1. One may check using the Fourier transform that
these harmonic functions satisfy the following system:

n+1

∑
j=1

∂u j

∂x j
= 0 ,

∂u j

∂xk
− ∂uk
∂x j

= 0 , k, j ∈ {1, . . . ,n+1}, k �= j.

(2.4.41)

This system of equations may also be expressed as div F = 0 and curl F =�0, where
F = (u1, . . . ,un+1) is a vector field in Rn+1

+ . Note that when n = 1, the equations
in (2.4.41) are the usual Cauchy–Riemann equations, which assert that the function



2.4 Singular Integrals on Function Spaces 143

F =(u1,u2)= u1+ iu2 is holomorphic in the upper half-space. For this reason, when
n ≥ 2, the equations in (2.4.41) are often referred to as the system of generalized
Cauchy–Riemann equations.

The function |F | enjoys a crucial property in the study of this problem.

Lemma 2.4.9. Let u j be real-valued harmonic functions on Rn+1 satisfying the sys-
tem of equations (2.4.41) and let F = (u1, . . . ,un+1). Then the function

|F |q =
(n+1

∑
j=1

|u j|2
)q/2

is subharmonic when q≥ (n−1)/n, i.e., it satisfies Δ(|F|q)≥ 0, on Rn+1
+ .

Lemma 2.4.10. Let 0 < q < p < ∞. Suppose that the function |F(x, t)|q defined on
Rn+1
+ is subharmonic and satisfies

sup
t>0

(∫

Rn
|F(x, t)|p dx

)1/p

≤ A< ∞ . (2.4.42)

Then there is a constant Cn,p,q < ∞ such that the nontangential maximal function
|F |∗(x) = supt>0 sup|y−x|<t |F(y, t)|, x ∈ Rn, (cf. Definition 3.3.1) satisfies

∥
∥|F |∗∥∥Lp(Rn)

≤Cn,p,q A .

Assuming these lemmas, whose proofs are postponed until the end of this section,
we return to the proof of the theorem.

Without loss of generality, we may assume that the given integrable function f is
real-valued, so that Rj( f ) are also real-valued and we are able to apply Lemma 2.4.9.
Since the Poisson kernel is an approximate identity, the function x �→ un+1(x, t) con-
verges to f (x) in L1 as t → 0. To show that f ∈ H1(Rn), it suffices to show that the
Poisson maximal function

M( f ;P)(x) = sup
t>0

|(Pt ∗ f )(x)|= sup
t>0

|un+1(x, t)|

is integrable. But this maximal function is pointwise controlled by

sup
t>0

|F(x, t)| ≤ sup
t>0

[

|(Pt ∗ f )(x)|+
n

∑
j=1

|(Pt ∗Rj( f ))(x)|
]

,

and certainly it satisfies

sup
t>0

∫

Rn
|F(x, t)|dx≤ Af , (2.4.43)

where

Af =
∥
∥ f
∥
∥
L1 +

n

∑
k=1

∥
∥Rk( f )

∥
∥
L1 .
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We now have

M( f ;P)(x)≤ sup
t>0

|un+1(x, t)| ≤ sup
t>0

|F(x, t)| ≤ |F |∗(x) , (2.4.44)

and using Lemma 2.4.9 with q= n−1
n and Lemma 2.4.10 with p= 1 we obtain that

∥
∥|F |∗∥∥L1(Rn)

≤CnAf . (2.4.45)

Combining (2.4.43), (2.4.44), and (2.4.45), we deduce that

∥
∥M( f ;P)(x)

∥
∥
L1(Rn)

≤Cn

(
∥
∥ f
∥
∥
L1 +

n

∑
k=1

∥
∥Rk( f )

∥
∥
L1

)

,

from which (2.4.39) follows. This proof is also valid when n = 1, provided one
replaces the Riesz transforms with the Hilbert transform; hence the proof of (2.4.40)
is subsumed in that of (2.4.39). �

We now give a proof of Lemma 2.4.9

Proof. Denoting the variable t by xn+1, we have

∂
∂x j

|F |q = q|F |q−2
(

F · ∂F
∂x j

)

and also

∂ 2

∂x2j
|F |q = q |F |q−2

[

F · ∂
2F
∂x2j

+
∂F
∂x j

· ∂F
∂x j

]

+q(q−2)|F|q−4
(

F · ∂F
∂x j

)2

for all j = 1,2, . . . ,n+1. Summing over all these j’s, we obtain

Δ(|F |q) = q |F |q−4
[

|F |2
n+1

∑
j=1

∣
∣
∣
∂F
∂x j

∣
∣
∣

2
+(q−2)

n+1

∑
j=1

∣
∣
∣F · ∂F

∂x j

∣
∣
∣

2
]

, (2.4.46)

since the term containing F · Δ(F) = ∑n+1
j=1 u jΔ(u j) vanishes because each u j is

harmonic. The only term that could be negative in (2.4.46) is that containing the
factor q− 2 and naturally, if q ≥ 2, the conclusion is obvious. Let us assume that
n−1
n ≤ q < 2. Since q ≥ n−1

n , we must have that 2−q ≤ n+1
n . Thus (2.4.46) is non-

negative if
n+1

∑
j=1

∣
∣
∣F · ∂F

∂x j

∣
∣
∣

2 ≤ n
n+1

|F |2
n+1

∑
j=1

∣
∣
∣
∂F
∂x j

∣
∣
∣

2
. (2.4.47)

This is certainly valid for points (x, t) such that F(x, t) = 0. To prove (2.4.47) for
points (x, t) with F(x, t) �= 0, it suffices to show that for every vector v ∈ Rn+1 with
Euclidean norm |v|= 1, we have
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n+1

∑
j=1

∣
∣
∣v · ∂F∂x j

∣
∣
∣

2 ≤ n
n+1

n+1

∑
j=1

∣
∣
∣
∂F
∂x j

∣
∣
∣

2
. (2.4.48)

Denoting by A the (n+ 1)× (n+ 1) matrix whose entries are a j,k = ∂uk/∂x j, we
rewrite (2.4.48) as

∣
∣Av
∣
∣2 ≤ n

n+1

∥
∥A
∥
∥2 , (2.4.49)

where
∥
∥A
∥
∥2 =

n+1

∑
j=1

n+1

∑
k=1

|a j,k|2 .

By assumption, the functions u j are real-valued and thus the numbers a j,k are real.
In view of identities (2.4.41), the matrix A is real symmetric and has zero trace (i.e.,
∑n+1

j=1 a j, j = 0). A real symmetric matrix A can be written as A = PDPt , where P
is an orthogonal matrix and D is a real diagonal matrix. Since orthogonal matrices
preserve the Euclidean distance, estimate (2.4.49) follows from the corresponding
one for a diagonal matrix D. If A = PDPt , then the traces of A and D are equal;
hence ∑n+1

j=1 λ j = 0, where λ j are entries on the diagonal of D. Notice that estimate
(2.4.49) with the matrix D in the place of A is equivalent to

n+1

∑
j=1

|λ j|2|v j|2 ≤ n
n+1

( n+1

∑
j=1

|λ j|2
)

, (2.4.50)

where we set v = (v1, . . . ,vn+1) and we are assuming that |v|2 = ∑n+1
j=1 |v j|2 = 1.

Estimate (2.4.50) is certainly a consequence of

sup
1≤ j≤n+1

|λ j|2 ≤ n
n+1

( n+1

∑
j=1

|λ j|2
)

. (2.4.51)

But this is easy to prove. Let |λ j0 |=max1≤ j≤n+1 |λ j|. Then

|λ j0 |2 =
∣
∣− ∑

j �= j0

λ j
∣
∣2 ≤ ( ∑

j �= j0

|λ j|
)2 ≤ n ∑

j �= j0

|λ j|2 . (2.4.52)

Adding n|λ j0 |2 to both sides of (2.4.52), we deduce (2.4.51) and thus (2.4.47). �

We now give the proof of Lemma 2.4.10.

Proof. A consequence of the subharmonicity of |F |q is that

|F(x, t+ ε)|q ≤ (|F(·,ε)|q ∗Pt)(x) (2.4.53)

for all x ∈ Rn and t,ε > 0. To prove (2.4.53), fix ε > 0 and consider the functions

U(x, t) = |F(x, t+ ε)|q , V (x, t) = (|F(·,ε)|q ∗Pt)(x) .
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Given η > 0, we find a half-ball

BR0 = {(x, t) ∈ Rn+1
+ : |x|2+ t2 < R2

0}

such that for (x, t) ∈ Rn+1
+ \BR0 we have

U(x, t)−V (x, t)≤ η . (2.4.54)

Suppose that this is possible. SinceU(x,0) =V (x,0), then (2.4.54) actually holds on
the entire boundary of BR0 . The function V is harmonic andU is subharmonic; thus
U −V is subharmonic. The maximum principle for subharmonic functions implies
that (2.4.54) holds in the interior of BR0 , and since it also holds on the exterior,
it must be valid for all (x, t) with x ∈ Rn and t ≥ 0. Since η was arbitrary, letting
η → 0+ implies (2.4.53).

We now prove that R0 exists such that (2.4.54) is possible for (x, t) ∈ Rn+1
+ \BR0 .

Let B((x, t), t/2) be the (n+1)-dimensional ball of radius t/2 centered at (x, t). The
subharmonicity of |F |q is reflected in the inequality

|F(x, t)|q ≤ 1
|B((x, t), t/2)|

∫

B((x,t), t/2)
|F(y,s)|q dyds ,

which by Hölder’s inequality and the fact p> q gives

|F(x, t)|q ≤
(

1
|B((x, t), t/2)|

∫

B((x,t),t/2)
|F(y,s)|p dyds

) q
p

.

From this we deduce that

|F(x, t+ ε)|q ≤
[
2n+1/vn+1

(t+ ε)n+1

∫ 3
2 (t+ε)

1
2 (t+ε)

∫

|y|≥|x|− 1
2 (t+ε)

|F(y,s)|p dyds
] q

p

. (2.4.55)

If t+ ε ≥ |x|, using (2.4.42), we see that the expression on the right in (2.4.55) is
bounded by c′Aq(t+ε)−(n+1)q/p, and thus it can be made smaller than η/2 by taking
t ≥ R1 =max

(

ε ,(η/2c′Aq)−p/q(n+1)
)

. Since R1 ≥ ε , we must have 2t ≥ t+ε ≥ |x|,
which implies that t ≥ |x|/2, and thus with R′

0 =
√
5R1, if |(x, t)|> R′

0 then t ≥ R1.
Hence, the expression in (2.4.55) can be made smaller than η/2 for |(x, t)|> R′

0.
If t+ ε < |x| we estimate the expression on the right in (2.4.55) by

(
2n+1

vn+1

1
(t+ ε)n+1

∫ 3
2 (t+ε)

1
2 (t+ε)

[∫

|y|≥ 1
2 |x|

|F(y,s)|p dy
]

ds
) q

p

,

and we notice that the preceding expression is bounded by

(
3n+1

vn+1

∫ ∞

1
2 ε

[∫

|y|≥ 1
2 |x|

|F(y,s)|p dy
]

ds
sn+1

) q
p

. (2.4.56)
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Let G|x|(s) be the function inside the square brackets in (2.4.56). Then G|x|(s) →
0 as |x| → ∞ for all s. The hypothesis (2.4.42) implies that G|x| is bounded by a
constant and it is therefore integrable over the interval

[ 1
2ε ,∞

)

with respect to the
measure s−n−1ds. By the Lebesgue dominated convergence theorem we deduce that
the expression in (2.4.56) converges to zero as |x| → ∞ and thus it can be made
smaller that η/2 for |x| ≥ R2, for some constant R2. Then with R′′

0 =
√
2R2 we have

that if |(x, t)| ≥ R′′
0 then (2.4.56) is at most η/2. Since U −V ≤U , we deduce the

validity of (2.4.54) for |(x, t)|> R0 =max(R′
0,R

′′
0).

Let r = p/q > 1. Assumption (2.4.42) implies that the functions x �→ |F(x, t)|q
are in Lr uniformly in t. Since any closed ball of Lr is weak∗ compact, there is a
sequence εk → 0 such that |F(x,εk)|q → h weakly in Lr as k→ ∞ to some function
h ∈ Lr. Since Pt ∈ Lr

′
, this implies that

(|F(·,εk)|q ∗Pt)(x)→ (h∗Pt)(x)

for all x ∈ Rn. Using (2.4.53) we obtain

|F(x, t)|q = limsup
k→∞

|F(x, t+ εk)|p ≤ limsup
k→∞

(|F(x,εk)|q ∗Pt
)

(x) = (h∗Pt)(x) ,

which gives for all x ∈ Rn,

|F |∗(x)≤ [ sup
t>0

sup
|y−x|<t

(|h| ∗Pt)(x)
]1/q ≤C′

nM(h)(x)1/q . (2.4.57)

Let g ∈ Lr
′
(Rn) with Lr

′
norm at most one. The weak convergence yields

∫

Rn
|F(x,εk)|qg(x)dx→

∫

Rn
h(x)g(x)dx

as k→ ∞, and consequently we have

∣
∣
∣
∣

∫

Rn
h(x)g(x)dx

∣
∣
∣
∣
≤ sup

k

∫

Rn
|F(x,εk)|q|g(x)|dx≤

∥
∥g
∥
∥
Lr′ sup

t>0

(∫

Rn
|F(x, t)|p dx

) 1
r

.

Since g is arbitrary with Lr
′
norm at most one, this implies that

∥
∥h
∥
∥
Lr ≤ sup

t>0

(∫

Rn
|F(x, t)|p dx

) 1
r

. (2.4.58)

Putting things together, we have
∥
∥|F |∗∥∥Lp ≤ C′

n
∥
∥M(h)1/q

∥
∥
Lp

= C′
n
∥
∥M(h)

∥
∥1/q
Lr

≤ Cn,p,q
∥
∥h
∥
∥1/q
Lr
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= Cn,p,q sup
t>0

(∫

Rn
|F(x, t)|p dx

)1/qr

≤ Cn,p,q A ,

where we have used (2.4.57) and (2.4.58) in the last two displayed inequalities. �

Exercises

2.4.1. Let f be an integrable function on the line whose Fourier transform vanishes
on (−∞,0). Show that f lies in H1(R).

2.4.2. (a) Let h be a function on R such that h(x) and xh(x) are in L2(R). Show that
h is integrable over R and satisfies

‖h‖2L1 ≤ 8‖h‖L2
∥
∥xh(x)

∥
∥
L2 .

(b) Suppose that g is an integrable function on R with vanishing integral and g(x)
and xg(x) are in L2(R). Show that g lies in H1(R) and that for some constant C we
have

‖g‖2H1 ≤C‖g‖L2
∥
∥xg(x)

∥
∥
L2 .

[

Hint: Part (a): Split the integral of |h(x)| over the regions |x| ≤ R and |x| > R and
pick a suitable R. Part (b): Show that both H(g) and H(yg(y)) lie in L2. But since g
has vanishing integral, we have xH(g)(x) = H(yg(y))(x).

]

2.4.3. (a) Let H be the Hilbert transform on the real line. Prove the identity

H( f g−H( f )H(g)) = fH(g)+gH( f )

for all f ,g real-valued Schwartz functions. (b) Show that the bilinear operators

( f ,g) �→ f H(g)+H( f )g ,

( f ,g) �→ f g−H( f )H(g) ,

map Lp(R)×Lp′(R)→ H1(R) whenever 1< p< ∞.
[

Hint: Part (a): Consider product Uf (z)Ug(z), where Uf (z) = i
π
∫

R
f (t)
z−t dt is holo-

morphic on the upper half space and has boundary values f + iH( f ). Part (b): Use
part (a) and Theorem 2.4.6.

]

2.4.4. Follow the steps given to prove the following interpolation result. Let 1 <
p1 ≤ ∞ and let T be a subadditive operator that maps H1(Rn)+Lp1(Rn) into mea-
surable functions on Rn. Suppose that there is A0 < ∞ such that for all f ∈ H1(Rn)
we have

sup
λ>0

λ
∣
∣
{

x ∈ Rn : |T ( f )(x)|> λ
}∣
∣≤ A0

∥
∥ f
∥
∥
H1
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and that it also maps Lp1(Rn) to Lp1,∞(Rn) with norm at most A1. Show that for any
1< p< p1, T maps Lp(Rn) to itself with norm at most

CA

1
p− 1

p1
1− 1

p1
0 A

1− 1
p

1− 1
p1

1 ,

where C =C(n, p, p1).
(a) Fix 1 < q < p < p1 < ∞ and f and let Qj be the family of all maximal
dyadic cubes such that λ q < |Qj|−1 ∫

Qj
| f |q dx . Write Eλ =

⋃
Qj and note that

Eλ �
{

M(| f |q) 1
q > λ

}

and that | f | ≤ λ a.e. on (Eλ )c. Write f as the sum of the
good function

gλ = f χ(Eλ )c +∑
j
(Avg

Qj

f )χQj

and the bad function

bλ =∑
j
b j
λ , where b j

λ =
(

f −Avg
Qj

f
)

χQj .

(b) Show that gλ lies in Lp1(Rn)∩L∞(Rn), ‖gλ‖L∞ ≤ 2
n
q λ , and that

‖gλ‖p1Lp1 ≤
∫

| f |≤λ
| f (x)|p1 dx+2

np1
q λ p1 |Eλ |< ∞ .

(c) Show that for c = 2
n
q+1, each c−1λ−1|Qj|−1b j

λ is an Lq-atom for H1. Conclude
that bλ lies in H1(Rn) and satisfies

∥
∥bλ

∥
∥
H1 ≤ cλ∑

j
|Qj| ≤ cλ |Eλ |< ∞ .

(d) Start with

∥
∥T ( f )

∥
∥p
Lp ≤ pγ p

∫ ∞

0
λ p−1∣∣

{

T (gλ )|> 1
2γλ

}∣
∣dλ

+ pγ p
∫ ∞

0
λ p−1∣∣

{

T (bλ )|> 1
2γλ

}∣
∣dλ

and use the results in parts (b) and (c) to obtain that the preceding expression is

at most C(n, p,q, p1)max(A1γ p−p1 ,γ p−1A0). Select γ = A
p1

p1−1
1 A

− 1
p1−1

0 to obtain the
required conclusion.
(e) In the case p1 = ∞ we have |T (gλ )| ≤ A12

n
q λ and pick γ > 2A12

n
q to make the

integral involving gλ vanishing.

2.4.5. Let Pt be the Poisson kernel and Kj be the kernel of the Riesz transform Rj.
Let ϕ̂ ∈S be equal to 1 in a neighborhood of the origin. Then δ0 = ϕ +(δ0−ϕ)
and for a bounded distribution f (cf. Section 2.1.1) and t > 0 write

(Pt ∗Kj)∗ f = (Pt ∗Kj)∗ (ϕ ∗ f )+(Pt ∗Kj)∗ (δ0−ϕ)∗ f .
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Since Pt lies in L1 and ϕ ∗ f in L∞, (Kj ∗Pt) ∗ (ϕ ∗ f ) = Rj(Pt ∗ϕ ∗ f ) is a BMO

function. The Fourier transform of (Pt ∗Kj) ∗ (δ0−ϕ) is −i ξ j|ξ |e
−2πt|ξ |(1− ϕ̂(ξ )),

which is a Schwartz function. Thus (Pt ∗Kj) ∗ (δ0−ϕ) is also a Schwartz function
and (Pt ∗Kj)∗ (δ0−ϕ)∗ f is a smooth function. Hence (Pt ∗Kj)∗ f = Pt ∗Rj( f ) is
a well-defined function for all t > 0 and j = 1, . . . ,n. Let n−1

n < p< 1.
(a) Show that there are constants Cn,C1 such that for any f ∈ Hp(Rn) we have

sup
δ>0

[∥
∥Pδ ∗ f

∥
∥
Lp +

n

∑
k=1

∥
∥Pδ ∗Rk( f )

∥
∥
Lp

]

≤Cn
∥
∥ f
∥
∥
Hp

when n≥ 2 and

sup
δ>0

[∥
∥Pδ ∗ f

∥
∥
Lp +

∥
∥Pδ ∗H( f )

∥
∥
Lp

]

≤C1
∥
∥ f
∥
∥
Hp

when n= 1.
(b) Prove that there are constants C1,Cn such that for any bounded tempered distri-
bution f on Rn we have

cn
∥
∥ f
∥
∥
Hp ≤ sup

δ>0

[∥
∥Pδ ∗ f

∥
∥
Lp +

n

∑
k=1

∥
∥Pδ ∗Rk( f )

∥
∥
Lp

]

when n≥ 2 and

c1
∥
∥ f
∥
∥
Hp ≤ sup

δ>0

[∥
∥Pδ ∗ f

∥
∥
Lp +

∥
∥Pδ ∗H( f )

∥
∥
Lp

]

when n= 1.
[

Hint: Part (a): This is a consequence of Theorem 2.4.5. Part (b): Define Fδ =
(Pδ ∗ u1, . . . ,Pδ ∗ un,Pδ ∗ un+1), where u j(x, t) = (Pt ∗Rj( f ))(x), j = 1, . . . ,n, and
un+1(x, t) = (Pt ∗ f )(x). Each Pδ ∗ u j is a harmonic function on Rn+1

+ and continu-
ous up to the boundary. The subharmonicity of |Fδ (x, t)|p has as a consequence that
|Fδ (x, t+ ε)|p ≤ (|Fδ (·,ε)|p ∗Pt)(x) in view of (2.4.53). Letting ε → 0 implies that
|Fδ (x, t)|p ≤ (|Fδ (·,0)|p ∗Pt)(x), by the continuity of Fδ up to the boundary. Since
Fδ (x,0) = (Pδ ∗R1( f ), . . . ,Pδ ∗Rn( f ),Pδ ∗ f ), the hypothesis that Pδ ∗ f ,Pδ ∗Rj( f )
are in Lp uniformly in δ > 0 yields supt,δ>0

∫

Rn |Fδ (x, t)|p dx < ∞. Fatou’s lemma
implies (2.4.42) for F(x, t) = (u1, . . . ,un+1) and then Lemma 2.4.10 yields the
claim.

]

HISTORICAL NOTES

The theory of Hardy spaces is vast and complicated. In classical complex analysis, the Hardy
spaces Hp were spaces of analytic functions and were introduced to characterize boundary values
of analytic functions on the unit disk.

Hardy [180] proved that the mean value of the pth power of the modulus of an analytic function
on the unit disc is an increasing function of the radius and its logarithm is a convex function of the
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logarithm of the radius. The first systematic study of the class Hp(D) of all analytic functions F on
the unit disk D with the property that sup0<r<1

∫ 1
0 |F(re2πiθ )|p dθ < ∞, 0 < p < ∞, can be traced

to F. Riesz’s article [303]. In this article Riesz proved the factorization theorem, the existence of
boundary values, and other basic properties of such functions and adopted the symbolHp, honoring
Hardy for the fact that the aforementioned mean values are increasing as a function of the radius r.
When 1< p< ∞, the space Hp(D) coincides with the space of analytic functions whose real parts
are Poisson integrals of functions in Lp(T1). But for 0 < p ≤ 1 this characterization fails and for
several years a satisfactory characterization was missing. For a systematic treatment of these spaces
we refer to the books of Duren [127] and Koosis [226].

With the illuminating work of Stein and Weiss [327] on systems of conjugate harmonic func-
tions the road opened to higher-dimensional extensions of Hardy spaces. Burkholder, Gundy, and
Silverstein [52] proved the fundamental theorem that an analytic function F lies in Hp(R2

+) [i.e.,
supy>0

∫

R |F(x+ iy)|p dx < ∞] if and only if the nontangential maximal function of its real part
lies in Lp(R). This result was proved using Brownian motion, but later Koosis [225] obtained an-
other proof using complex analysis. This theorem spurred the development of the modern theory of
Hardy spaces by providing the first characterization without the notion of conjugacy and indicating
that Hardy spaces are intrinsically defined. The pioneering article of Fefferman and Stein [139]
furnished three new characterizations of Hardy spaces: using a maximal function associated with
a general approximate identity, using the grand maximal function, and using the area function of
Luzin. From this point on, the role of the Poisson kernel faded into the background, when it turned
out that it was not essential in the study of Hardy spaces. A previous characterization of Hardy
spaces using the g-function, a radial analogue of the Luzin area function, was obtained by Calderón
[54]. Two alternative characterizations of Hardy spaces were obtained by Uchiyama in terms of the
generalized Littlewood–Paley g-function [356] and in terms of Fourier multipliers [357]. A char-
acterization of H1(R) in terms of the variation of the function mf (y) =

∫

R f (x) ln |x− y|−1 dx was
obtained by Stefanov [321]. An extension of this result in higher dimensions was provided byWang
[364]. Necessary and sufficient conditions for systems of singular integral operators to characterize
H1(Rn)were also obtained by Uchiyama [355]. The characterization ofHp using Littlewood–Paley
theory was observed by Peetre [292]. The case p = 1 was later independently obtained by Rubio
de Francia, Ruiz, and Torrea [308].

The one-dimensional atomic decomposition of Hardy spaces is due to Coifman [86] and its
higher-dimensional extension to Latter [239]. A simplification of some of the technical details in
Latter’s proof was subsequently obtained by Latter and Uchiyama [240]. Using the atomic de-
composition Coifman and Weiss [97] extended the definition of Hardy spaces to more general
structures. The idea of obtaining the atomic decomposition from the reproducing formula (2.3.13)
goes back to Calderón [56]. Another simple proof of the L2-atomic decomposition for Hp (starting
from the nontangential Poisson maximal function) was obtained by Wilson [370]. With only a little
work, one can show that Lq-atoms for Hp can be written as sums of L∞-atoms for Hp. We refer
to the book of Garcı́a-Cuerva and Rubio de Francia [150] for a proof of this fact. Although finite
sums of atoms are dense in H1, an example due to Y. Meyer (contained in [265]) shows that the
H1 norm of a function may not be comparable to inf∑N

j=1 |λ j|, where the infimum is taken over all
representations of the function as finite linear combinations ∑N

j=1 λ ja j with the a j being L∞-atoms
for H1. Based on this idea, Bownik [48] constructed an example of a linear functional on a dense
subspace of H1 that is uniformly bounded on L∞-atoms for H1 but does not extend to a bounded
linear functional on the whole H1. However, if a Banach-valued linear operator is bounded uni-
formly on all Lq-atoms for Hp with 1< q< ∞ and 0< p≤ 1, then it is bounded on the entire Hp

as shown by Meda, Sjögren, and Vallarino [261]. This fact is also valid for quasi-Banach-valued
linear operators, and when q = 2 it was obtained independently by Yang and Zhou [374]. A re-
lated general result says that a sublinear operator maps the Triebel–Lizorkin space

.
Fs
p,q(Rn) to a

quasi-Banach space if and only if it is uniformly bounded on certain infinitely differentiable atoms
of the space; see Liu and Yang [250]. Atomic decompositions of general function spaces were ob-
tained in the fundamental work of Frazier and Jawerth [143], [144]. The exposition in Section 2.3
is based on the article of Frazier and Jawerth [145]. The work of these authors provides a solid
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manifestation that atomic decompositions are intrinsically related to Littlewood–Paley theory and
not wedded to a particular space. Littlewood–Paley theory therefore provides a comprehensive and
unifying perspective on function spaces.

Main references onHp spaces and their properties are the books of Baernstein and Sawyer [14],
Folland and Stein [142] in the context of homogeneous groups, Lu [252] (on which the proofs of
Lemma 2.1.5 and Theorem 2.1.4 are based), Strömberg and Torchinsky [333] (on weighted Hardy
spaces), and Uchiyama [358]. The articles of Calderón and Torchinsky [58], [59] develop and
extend the theory of Hardy spaces to the nonisotropic setting. Hardy spaces can also be defined in
terms of nonstandard convolutions, such as the “twisted convolution” on R2n. Characterizations of
the space H1 in this context have been obtained by Mauceri, Picardello, and Ricci [259].

The localized Hardy spaces hp, 0 < p ≤ 1, were introduced by Goldberg [155] as spaces of
distributions for which the maximal operator sup0<t<1 |Φt ∗ f | lies in Lp(Rn) (hereΦ is a Schwartz
function with nonvanishing integral). These spaces can be characterized in ways analogous to those
of the homogeneous Hardy spaces Hp; in particular, they admit an atomic decomposition. It was
shown by Bui [50] that the space hp coincides with the Triebel–Lizorkin space F0,2

p (Rn); see also
Meyer [263]. For the local theory of Hardy spaces one may consult the articles of Dafni [108] and
Chang, Krantz, and Stein [73].

Interpolation of operators between Hardy spaces was originally based on complex function
theory; see the articles of Calderón and Zygmund [57] and Weiss [365]. The real-interpolation ap-
proach discussed in Exercise 2.4.4 can be traced to the article of Igari [201]. Interpolation between
Hardy spaces was further studied and extended by Riviere and Sagher [305]; Fefferman, Riviere,
and Sagher [137]; and He [187].

The action of singular integrals on periodic spaces was studied by Calderón and Zygmund [61].
The preservation of Lipschitz spaces under singular integral operators is due to Taibleson [334].
The case 0 < α < 1 was earlier considered by Privalov [301] for the conjugate function on the
circle. Fefferman and Stein [139] were the first to show that singular integrals map Hardy spaces to
themselves. The boundedness of fractional integrals on Hp was obtained by Krantz [228]. The case
p = 1 was earlier considered by Stein and Weiss [327]. An exposition on the subject of function
spaces and the action of singular integrals on them was written by Frazier, Jawerth, and Weiss
[146]. For a careful study of the action of singular integrals on function spaces, we refer to the
book of Torres [352]. The study of anisotropic function spaces and the action of singular integrals
on them has been studied by Bownik [47]. Weighted anisotropic Hardy spaces have been studied
by Bownik, Li, Yang, and Zhou [49].

Besov spaces are named after Besov, who obtained a trace theorem and embeddings for them
[34], [35]. The spaces Bα,qp , as defined in Section 2.2, were introduced by Peetre [290], although the
case p= q= 2 was earlier considered by Hörmander [194]. The connection of Besov spaces with
modern Littlewood–Paley theory was brought to the surface by Peetre [290]. The extension of the
definition of Besov spaces to the case p< 1 is also due to Peetre [291], but there was a forerunner
by Flett [140]. Peetre’s monograph [294] contains an excellent exposition on the topic of Besov
spaces. The spaces Fα,q

p with 1< p,q< ∞ were introduced by Triebel [353] and independently by
Lizorkin [251]. The extension of the spaces Fα,q

p to the case 0< p<∞ and 0< q≤∞ first appeared
in Peetre [293], who also obtained a maximal characterization for all of these spaces. Lemma 2.2.3
originated in Peetre [293]; the version given in the text is based on a refinement of Triebel [354].
The article of Lions, Lizorkin, and Nikol’skij [249] presents an account of the treatment of the
spaces Fα,q

p introduced by Triebel and Lizorkin as well as the equivalent characterizations obtained
by Lions, using interpolation between Banach spaces, and by Nikol’skij, using best approximation.



Chapter 3
BMO and Carleson Measures

If the deviation of a function from its averages over all cubes is bounded, then the
function is called of bounded mean oscillation (BMO). Bounded functions are of
bounded mean oscillation, but there exist unbounded BMO functions. Such func-
tions are slowly growing, and they typically have at most logarithmic blowup. The
space BMO shares similar properties with the space L∞, and often serves as a sub-
stitute for it. For instance, classical singular integrals do not map L∞ to L∞ but L∞

to BMO. And in many instances interpolation between Lp and BMO works just as
well between Lp and L∞. But the role of the space BMO is deeper and more far-
reaching than that. This space crucially arises in many situations in analysis, such
as in the characterization of the L2 boundedness of nonconvolution singular integral
operators with standard kernels.

Carleson measures are among the most important tools in harmonic analysis.
These measures capture essential orthogonality properties and exploit properties of
extensions of functions on the upper half-space. There exists a natural and deep
connection between Carleson measures and BMO functions; indeed, certain types
of measures defined in terms of functions are Carleson if and only if the under-
lying functions are in BMO. Carleson measures are especially crucial in the study
of L2 problems, where the Fourier transform cannot be used in conjunction with
Plancherel’s theorem. The power of the Carleson measure techniques becomes ap-
parent in certain important topics studied in Chapter 4.

3.1 Functions of Bounded Mean Oscillation

What exactly is bounded mean oscillation and what kind of functions have this prop-
erty? The mean of a (locally integrable) function over a set is another word for its
average over that set. The oscillation of a function over a set is the absolute value of
the difference of the function from its mean over this set. Mean oscillation is there-
fore the average of this oscillation over a set. A function is said to be of bounded
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mean oscillation if its mean oscillation over all cubes is bounded. Precisely, given a
locally integrable function f on Rn and a measurable set Q in Rn, denote by

Avg
Q

f =
1
|Q|

∫

Q
f (x)dx

the mean (or average) of f over Q. Then the oscillation of f over Q is the function
| f −AvgQ f |, and the mean oscillation of f over Q is

1
|Q|

∫

Q

∣
∣ f (x)−Avg

Q
f
∣
∣dx.

3.1.1 Definition and Basic Properties of BMO

Definition 3.1.1. For f a complex-valued locally integrable function on Rn, set

∥
∥ f
∥
∥
BMO = sup

Q

1
|Q|

∫

Q

∣
∣ f (x)−Avg

Q
f
∣
∣dx,

where the supremum is taken over all cubes Q in Rn. The function f is of bounded
mean oscillation if ‖ f‖BMO < ∞ and BMO(Rn) is the set of all locally integrable
functions f on Rn with ‖ f‖BMO < ∞.

Several remarks are in order. First it is a simple fact that BMO(Rn) is a linear
space, that is, if f ,g∈BMO(Rn) and λ ∈C, then f +g and λ f are also in BMO(Rn)
and

∥
∥ f +g

∥
∥
BMO ≤ ∥

∥ f
∥
∥
BMO+

∥
∥g
∥
∥
BMO ,

∥
∥λ f

∥
∥
BMO = |λ |∥∥ f∥∥BMO .

But ‖ ‖BMO is not a norm. The problem is that if ‖ f‖BMO = 0, this does not imply
that f = 0 but that f is a constant. See Proposition 3.1.2. Moreover, every constant
function c satisfies ‖c‖BMO = 0. Consequently, functions f and f + c have the same
BMO norms whenever c is a constant. In the sequel, we keep in mind that elements
of BMO whose difference is a constant are identified. Although ‖ ‖BMO is only
a seminorm, we occasionally refer to it as a norm when there is no possibility of
confusion.

We begin with a list of basic properties of BMO.

Proposition 3.1.2. The following properties of the space BMO(Rn) are valid:

(1) If ‖ f‖BMO = 0, then f is a.e. equal to a constant.

(2) L∞(Rn) is contained in BMO(Rn) and ‖ f‖BMO ≤ 2‖ f‖L∞ .
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(3) Suppose that there exists an A> 0 such that for all cubes Q in Rn there exists a
constant cQ such that

sup
Q

1
|Q|

∫

Q
| f (x)− cQ|dx≤ A . (3.1.1)

Then f ∈ BMO(Rn) and ‖ f‖BMO ≤ 2A.

(4) For all f locally integrable we have

1
2

∥
∥ f
∥
∥
BMO ≤ sup

Q

1
|Q| infcQ

∫

Q
| f (x)− cQ|dx≤

∥
∥ f
∥
∥
BMO.

(5) If f ∈ BMO(Rn), h∈Rn, and τh( f ) is given by τh( f )(x) = f (x−h), then τh( f )
is also in BMO(Rn) and

∥
∥τh( f )

∥
∥
BMO =

∥
∥ f
∥
∥
BMO.

(6) If f ∈ BMO(Rn) and λ > 0, then the function δλ ( f ) defined by δλ ( f )(x) =
f (λx) is also in BMO(Rn) and

∥
∥δλ ( f )

∥
∥
BMO =

∥
∥ f
∥
∥
BMO.

(7) If f ∈ BMO, then so is | f |. Similarly, if f ,g are real-valued BMO functions, then
so are max( f ,g) and min( f ,g). In other words, BMO is a lattice. Moreover,

∥
∥| f |∥∥BMO ≤ 2

∥
∥ f
∥
∥
BMO ,

∥
∥max( f ,g)

∥
∥
BMO ≤ 3

2

(∥
∥ f
∥
∥
BMO+

∥
∥g
∥
∥
BMO

)

,

∥
∥min( f ,g)

∥
∥
BMO ≤ 3

2

(∥
∥ f
∥
∥
BMO+

∥
∥g
∥
∥
BMO

)

.

(8) For locally integrable functions f define

∥
∥ f
∥
∥
BMOballs

= sup
B

1
|B|

∫

B

∣
∣ f (x)−Avg

B
f
∣
∣dx, (3.1.2)

where the supremum is taken over all balls B in Rn. Then there are positive
constants cn,Cn such that

cn
∥
∥ f
∥
∥
BMO ≤ ∥∥ f∥∥BMOballs

≤Cn
∥
∥ f
∥
∥
BMO.

Proof. To prove (1) note that f has to be a.e. equal to its average cN over every cube
[−N,N]n. Since [−N,N]n is contained in [−N−1,N+1]n, it follows that cN = cN+1
for all N. This implies the required conclusion. To prove (2) observe that

Avg
Q

∣
∣ f −Avg

Q
f
∣
∣≤ 2Avg

Q
| f | ≤ 2

∥
∥ f
∥
∥
L∞ .
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For part (3) note that

∣
∣ f −Avg

Q
f
∣
∣≤ | f − cQ|+

∣
∣Avg

Q
f − cQ

∣
∣≤ | f − cQ|+ 1

|Q|
∫

Q
| f (t)− cQ|dt .

Averaging overQ and using (3.1.1), we obtain that ‖ f‖BMO ≤ 2A. The lower inequal-
ity in (4) follows from (3) while the upper one is trivial. Property (5) is immediate.
For (6) note that AvgQ δλ ( f ) = AvgλQ f and thus

1
|Q|

∫

Q

∣
∣ f (λx)−Avg

Q
δλ ( f )

∣
∣dx=

1
|λQ|

∫

λQ

∣
∣ f (x)−Avg

λQ
f
∣
∣dx.

The first inequality in (7) is a consequence of the fact that
∣
∣| f |−Avg

Q
| f |∣∣≤ ∣∣ f −Avg

Q
f
∣
∣+Avg

Q

∣
∣ f −Avg

Q
f
∣
∣ .

The second and the third inequalities in (7) follow from the first inequality in (7)
and the facts that

max( f ,g) =
f +g+ | f −g|

2
, min( f ,g) =

f +g−| f −g|
2

.

We now turn to (8). Given any cube Q in Rn, we let B be the smallest ball that
contains it. Then |B|/|Q|= 2−nvn

√
nn, where vn is the volume of the unit ball, and

1
|Q|

∫

Q

∣
∣ f (x)−Avg

B
f
∣
∣dx≤ |B|

|Q|
1
|B|

∫

B

∣
∣ f (x)−Avg

B
f
∣
∣dx≤ vn

√
nn

2n
∥
∥ f
∥
∥
BMOballs

.

It follows from (3) that

‖ f‖BMO ≤ 21−nvn
√
nn ‖ f‖BMOballs .

To obtain the reverse conclusion, given any ball B find the smallest cube Q that
contains it and argue similarly using a version of (3) for the space BMOballs. �

Example 3.1.3. We indicate why L∞(Rn) is a proper subspace of BMO(Rn). We
claim that the unbounded function log |x| is in BMO(Rn). To prove this, for every
x0 ∈ Rn and R> 0, we find a constantCx0,R such that the average of | log |x|−Cx0,R|
over the ball B(0,R) = {x ∈ Rn : |x− x0| ≤ R} is uniformly bounded. The constant
Cx0,R = log |x0| if |x0|> 2R and Cx0,R = logR if |x0| ≤ 2R has this property. Indeed,
if |x0|> 2R, then

1
vnRn

∫

|x−x0|≤R

∣
∣ log |x|−Cx0,R

∣
∣dx =

1
vnRn

∫

|z−x0|≤R

∣
∣
∣ log

|z|
|x0|

∣
∣
∣dz

≤ max
(

log
3
2
,
∣
∣
∣ log

1
2

∣
∣
∣

)

= log2 ,



3.1 Functions of Bounded Mean Oscillation 157

since 1
2 |x0| ≤ |z| ≤ 3

2 |x0| when |z− x0| ≤ R and |x0|> 2R. Also, if |x0| ≤ 2R, then

1
vnRn

∫

|x−x0|≤R

∣
∣ log |x|−Cx0,R

∣
∣dx =

1
vnRn

∫

|z−x0|≤R

∣
∣
∣ log

|z|
R

∣
∣
∣dz

≤ 1
vnRn

∫

|z|≤3R

∣
∣
∣ log

|z|
R

∣
∣
∣dz

=
1
vn

∫

|z|≤3

∣
∣ log |z|∣∣dz .

Thus log |x| is in BMO.

The function log |x| turns out to be a typical element of BMO, but we make this
statement a bit more precise later. It is interesting to observe that an abrupt cutoff of
a BMO function may not give a function in the same space.

Example 3.1.4. The function h(x) = χx>0 log 1
x is not in BMO(R). Indeed, the prob-

lem is at the origin. Consider the intervals (−ε ,ε), where 0< ε < 1
2 . We have that

Avg
(−ε ,ε)

h=
1
2ε

∫ +ε

−ε
h(x)dx=

1
2ε

∫ ε

0
log

1
x
dx=

1+ log 1
ε

2
.

But then

1
2ε

∫ +ε

−ε

∣
∣h(x)− Avg

(−ε ,ε)
h
∣
∣dx≥ 1

2ε

∫ 0

−ε

∣
∣ Avg
(−ε ,ε)

h
∣
∣dx=

1+ log 1
ε

4
,

and the latter is clearly unbounded as ε → 0.

Let us now look at some basic properties of BMO functions. Observe that if a
cube Q1 is contained in a cube Q2, then

∣
∣Avg

Q1

f −Avg
Q2

f
∣
∣ ≤ 1

|Q1|
∫

Q1

∣
∣ f −Avg

Q2

f
∣
∣dx

≤ 1
|Q1|

∫

Q2

∣
∣ f −Avg

Q2

f
∣
∣dx

≤ |Q2|
|Q1|

∥
∥ f
∥
∥
BMO.

(3.1.3)

The same estimate holds if the sets Q1 and Q2 are balls.
A version of this inequality is the first statement in the following proposition.

For simplicity, we denote by ‖ f‖BMO the expression given by ‖ f‖BMOballs in (3.1.2),
since these quantities are comparable. For a ball B and a > 0, aB denotes the ball
that is concentric with B and whose radius is a times the radius of B.
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Proposition 3.1.5. (i) Let f be in BMO(Rn). Given a ball B and a positive integer
m, we have

∣
∣Avg

B
f −Avg

2mB
f
∣
∣≤ 2nm

∥
∥ f
∥
∥
BMO. (3.1.4)

(ii) For any δ > 0 there is a constant Cn,δ such that for any ball B(x0,R) we have

Rδ
∫

Rn

∣
∣ f (x)−AvgB(x0,R) f

∣
∣

(R+ |x− x0|)n+δ
dx≤Cn,δ

∥
∥ f
∥
∥
BMO. (3.1.5)

An analogous estimate holds for cubes with center x0 and side length R.
(iii) There exists a constant Cn such that for all f ∈ BMO(Rn) we have

sup
y∈Rn

sup
t>0

∫

Rn
| f (x)− (Pt ∗ f )(y)|Pt(x− y)dx≤Cn

∥
∥ f
∥
∥
BMO. (3.1.6)

Here
Pt(x) = Γ

(n+1
2

)

π− n+1
2 t(t2+ |x|2)− n+1

2

denotes the Poisson kernel.
(iv) Conversely, there is a constant C′

n such that for all f ∈ L1loc(R
n) for which

∫

Rn

| f (x)|
(1+ |x|)n+1 dx< ∞

we have f ∗Pt is well defined and

C′
n
∥
∥ f
∥
∥
BMO ≤ sup

y∈Rn
sup
t>0

∫

Rn
| f (x)− (Pt ∗ f )(y)|Pt(x− y)dx . (3.1.7)

Proof. (i) We have

∣
∣Avg

B
f −Avg

2B
f
∣
∣ =

1
|B|
∣
∣
∣
∣

∫

B

(

f (t)−Avg
2B

f
)

dt
∣
∣
∣
∣

≤ 2n

|2B|
∫

2B

∣
∣ f (t)−Avg

2B
f
∣
∣dt

≤ 2n
∥
∥ f
∥
∥
BMO.

Using this inequality, we derive (3.1.4) by adding and subtracting the terms

Avg
2B

f , Avg
22B

f , . . . , Avg
2m−1B

f .

(ii) In the proof below we take B(x0,R) to be the ball B = B(0,1) with radius 1
centered at the origin. Once this case is known, given a ball B(x0,R), we replace the
function f by the function f (Rx+ x0). When B= B(0,1) we have
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∫

Rn

∣
∣ f (x)−Avg

B
f
∣
∣

(1+ |x|)n+δ dx

≤
∫

B

∣
∣ f (x)−Avg

B
f
∣
∣

(1+ |x|)n+δ dx+
∞

∑
k=0

∫

2k+1B\2kB

∣
∣ f (x)− Avg

2k+1B
f
∣
∣+
∣
∣ Avg
2k+1B

f −Avg
B

f
∣
∣

(1+ |x|)n+δ dx

≤
∫

B

∣
∣ f (x)−Avg

B
f
∣
∣dx

+
∞

∑
k=0

2−k(n+δ )
∫

2k+1B

(∣
∣ f (x)− Avg

2k+1B
f
∣
∣+
∣
∣ Avg
2k+1B

f −Avg
B

f
∣
∣

)

dx

≤ vn
∥
∥ f
∥
∥
BMO+

∞

∑
k=0

2−k(n+δ )(1+2n(k+1)
)

(2k+1)nvn
∥
∥ f
∥
∥
BMO

=C′
n,δ
∥
∥ f
∥
∥
BMO.

(iii) The proof of (3.1.6) is a reprise of the argument given in (ii). Set Bt = B(y, t).
We first prove a version of (3.1.6) in which the expression (Pt ∗ f )(y) is replaced by
AvgBt f . For fixed y, t we have

∫

Rn

t
∣
∣ f (x)−Avg

Bt
f
∣
∣

(t2+ |x− y|2) n+1
2

dx

≤
∫

Bt

t
∣
∣ f (x)−Avg

Bt
f
∣
∣

(t2+ |x− y|2) n+1
2

dx

+
∞

∑
k=0

∫

2k+1Bt\2kBt

t
(∣
∣ f (x)− Avg

2k+1Bt

f
∣
∣+
∣
∣ Avg
2k+1Bt

f −Avg
Bt

f
∣
∣

)

(t2+ |x− y|2) n+1
2

dx

≤
∫

Bt

∣
∣ f (x)−Avg

Bt
f
∣
∣

tn
dx

+
∞

∑
k=0

2−k(n+1)

tn

∫

2k+1Bt

(∣
∣ f (x)− Avg

2k+1Bt

f
∣
∣+
∣
∣ Avg
2k+1Bt

f −Avg
Bt

f
∣
∣

)

dx

≤ vn
∥
∥ f
∥
∥
BMO+

∞

∑
k=0

2−k(n+1)(1+2n(k+1)
)

(2k+1)nvn
∥
∥ f
∥
∥
BMO

=C′
n
∥
∥ f
∥
∥
BMO.

Thus we proved

Γ ( n+1
2 )

π n+1
2

∫

Rn

t
∣
∣ f (x)−AvgBt f

∣
∣

(t2+ |x− y|2) n+1
2

dx≤C′′
n
∥
∥ f
∥
∥
BMO . (3.1.8)
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Moving the absolute value outside, this inequality implies
∫

Rn

∣
∣(Pt ∗ f )(y)−Avg

Bt
f
∣
∣Pt(x− y)dx =

∣
∣(Pt ∗ f )(y)−Avg

Bt
f
∣
∣

≤
∫

Rn
Pt(x− y)

∣
∣ f (x)−Avg

Bt
f
∣
∣dx

≤ C′′
n
∥
∥ f
∥
∥
BMO .

Combining this last inequality with (3.1.8) yields (3.1.6) with constant Cn = 2C′′
n .

(iv) Conversely, let A be the expression on the right in (3.1.7). For |x−y| ≤ t we have
Pt(x− y)≥ cnt(2t2)−

n+1
2 = c′nt−n, which gives

A≥
∫

Rn
| f (x)− (Pt ∗ f )(y)|Pt(x− y)dx≥ c′n

tn

∫

|x−y|≤t
| f (x)− (Pt ∗ f )(y)|dx.

Proposition 3.1.2 (3) now implies that
∥
∥ f
∥
∥
BMO ≤ 2A/(vnc′n) .

This concludes the proof of the proposition. �

3.1.2 The John–Nirenberg Theorem

Having set down some basic facts about BMO, we now turn to a deeper property of
BMO functions: their exponential integrability. We begin with a preliminary remark.
As we saw in Example 3.1.3, the function g(x) = log(|x|−1) is in BMO(Rn). This
function is exponentially integrable over any compact subset K of Rn in the sense
that ∫

K
ec|g(x)| dx< ∞

for any c< n. It turns out that this is a general property of BMO functions, and this
is the content of the next theorem.

Theorem 3.1.6. For all f ∈ BMO(Rn), for all cubes Q, and all α > 0 we have
∣
∣
∣

{

x ∈ Q :
∣
∣ f (x)−Avg

Q
f
∣
∣> α

}∣
∣
∣≤ e |Q|e−Aα/‖ f‖BMO (3.1.9)

with A= (2ne)−1.

Proof. Since inequality (3.1.9) is not altered when we multiply both f and α by the
same constant, it suffices to assume that

∥
∥ f
∥
∥
BMO = 1. Let us now fix a closed cube

Q and a constant b> 1 to be chosen later.
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We apply the Calderón–Zygmund decomposition to the function f −AvgQ f
inside the cube Q. We introduce the following selection criterion for a cube R:

1
|R|

∫

R

∣
∣ f (x)−Avg

Q
f
∣
∣dx> b. (3.1.10)

Since
1
|Q|

∫

Q

∣
∣ f (x)−Avg

Q
f
∣
∣dx≤ ∥∥ f∥∥BMO = 1< b ,

the cube Q does not satisfy the selection criterion (3.1.10). Set Q(0) = Q and sub-
divide Q(0) into 2n equal closed subcubes of side length equal to half of the side
length of Q. Select such a subcube R if it satisfies the selection criterion (3.1.10).
Now subdivide all nonselected cubes into 2n equal subcubes of half their side length
by bisecting the sides, and select among these subcubes those that satisfy (3.1.10).
Continue this process indefinitely. We obtain a countable collection of cubes {Q(1)

j } j
satisfying the following properties:

(A-1) The interior of every Q(1)
j is contained in Q(0).

(B-1) b< |Q(1)
j |−1

∫

Q(1)
j

∣
∣ f (x)−Avg

Q(0)
f
∣
∣dx≤ 2nb.

(C-1)
∣
∣Avg
Q(1)

j

f −Avg
Q(0)

f
∣
∣≤ 2nb.

(D-1) ∑
j
|Q(1)

j | ≤ 1
b∑j

∫

Q(1)
j

∣
∣ f (x)−Avg

Q(0)
f
∣
∣dx≤ 1

b
|Q(0)|.

(E-1)
∣
∣ f −Avg

Q(0)
f
∣
∣≤ b a.e. on the set Q(0) \⋃ j Q

(1)
j .

We call the cubes Q(1)
j of first generation. Note that the second inequality in (D-1)

requires (B-1) and the fact that Q(0) does not satisfy (3.1.10).
We now fix a selected first-generation cube Q(1)

j and we introduce the following
selection criterion for a cube R:

1
|R|

∫

R

∣
∣ f (x)−Avg

Q(1)
j

f
∣
∣dx> b. (3.1.11)

Observe that Q(1)
j does not satisfy the selection criterion (3.1.11). We apply a similar

Calderón–Zygmund decomposition to the function

f −Avg
Q(1)

j

f
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inside the cube Q(1)
j . Subdivide Q(1)

j into 2n equal closed subcubes of side length

equal to half of the side length of Q(1)
j by bisecting the sides, and select such a

subcube R if it satisfies the selection criterion (3.1.11). Continue this process indef-
initely. Also repeat this process for any other cube Q(1)

j of the first generation. We

obtain a collection of cubes {Q(2)
l }l of second generation each contained in some

Q(1)
j such that versions of (A-1)–(E-1) are satisfied, with the superscript (2) replac-

ing (1) and the superscript (1) replacing (0). We use the superscript (k) to denote
the generation of the selected cubes.

For a fixed selected cube Q(2)
l of second generation, introduce the selection

criterion
1
|R|

∫

R

∣
∣ f (x)−Avg

Q(2)
l

f
∣
∣dx> b

and repeat the previous process to obtain a collection of cubes of third generation
inside Q(2)

l . Repeat this procedure for any other cube Q(2)
j of the second generation.

Denote by {Q(3)
s }s the thus obtained collection of all cubes of the third generation.

We iterate this procedure indefinitely to obtain a doubly indexed family of cubes
Q(k)

j satisfying the following properties:

(A-k) The interior of every Q(k)
j is contained in a unique Q(k−1)

j′ .

(B-k) b< |Q(k)
j |−1

∫

Q(k)
j

∣
∣ f (x)− Avg

Q(k−1)
j′

f
∣
∣dx≤ 2nb.

(C-k)
∣
∣Avg
Q(k)

j

f − Avg
Q(k−1)

j′

f
∣
∣≤ 2nb.

(D-k) ∑
j

∣
∣Q(k)

j

∣
∣≤ 1

b∑j′
∣
∣Q(k−1)

j′
∣
∣.

(E-k)
∣
∣ f − Avg

Q(k−1)
j′

f
∣
∣≤ b a.e. on the set Q(k−1)

j′ \⋃ j Q
(k)
j .

We prove (A-k)–(E-k). Note that (A-k) and the lower inequality in (B-k) are sat-
isfied by construction. The upper inequality in (B-k) is a consequence of the fact
that the unique cube Q(k)

j0
with double the side length of Q(k)

j that contains it was not
selected in the process. Now (C-k) follows from the upper inequality in (B-k). (E-k)
is a consequence of the Lebesgue differentiation theorem, since for every point in
Q(k−1)

j′ \⋃ j Q
(k)
j there is a sequence of cubes shrinking to it and the averages of

∣
∣ f − Avg

Q(k−1)
j′

f
∣
∣



3.1 Functions of Bounded Mean Oscillation 163

over all these cubes is at most b. It remains to prove (D-k). We have

∑
j
|Q(k)

j | < 1
b∑j

∫

Q(k)
j

∣
∣ f (x)− Avg

Q(k−1)
j′

f
∣
∣dx

=
1
b∑j′ ∑

j corresp. to j′

∫

Q(k)
j

∣
∣ f (x)− Avg

Q(k−1)
j′

f
∣
∣dx

≤ 1
b∑j′

∫

Q(k−1)
j′

∣
∣ f (x)− Avg

Q(k−1)
j′

f
∣
∣dx

≤ 1
b∑j′

∣
∣Q(k−1)

j′
∣
∣
∥
∥ f
∥
∥
BMO

=
1
b∑j′

∣
∣Q(k−1)

j′
∣
∣ .

Having established (A-k)–(E-k) we turn to some consequences. Applying (D-k)
successively k−1 times, we obtain

∑
j

∣
∣Q(k)

j

∣
∣≤ b−k∣∣Q(0)∣∣ . (3.1.12)

For any fixed j we have that
∣
∣Avg

Q(1)
j

f −AvgQ(0) f
∣
∣ ≤ 2nb and

∣
∣ f −Avg

Q(1)
j

f
∣
∣ ≤ b

a.e. on Q(1)
j \⋃l Q

(2)
l . This gives

∣
∣ f −Avg

Q(0)
f
∣
∣≤ 2nb+b a.e. on Q(1)

j \
⋃

l

Q(2)
l ,

which, combined with (E-1), yields

∣
∣ f −Avg

Q(0)
f
∣
∣≤ 2n2b a.e. on Q(0) \

⋃

l

Q(2)
l . (3.1.13)

For every fixed l we also have that
∣
∣ f −Avg

Q(2)
l

f
∣
∣≤ b a.e. on Q(2)

l \⋃s Q
(3)
s , which

combined with
∣
∣Avg

Q(2)
l

f −Avg
Q(1)
l′

f
∣
∣ ≤ 2nb and

∣
∣Avg

Q(1)
l′

f −AvgQ(0) f
∣
∣ ≤ 2nb

yields
∣
∣ f −Avg

Q(0)
f
∣
∣≤ 2n3b a.e. on Q(2)

l \
⋃

s
Q(3)
s .

In view of (3.1.13), the same estimate is valid on Q(0) \⋃s Q
(3)
s . Continuing this

reasoning, we obtain by induction that for all k ≥ 1 we have

∣
∣ f −Avg

Q(0)
f
∣
∣≤ 2nkb a.e. on Q(0) \

⋃

s
Q(k)
s . (3.1.14)
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This proves the almost everywhere inclusion
{

x ∈ Q :
∣
∣ f (x)−Avg

Q
f
∣
∣> 2nkb

}

⊆
⋃

j

Q(k)
j

for all k= 1,2,3, . . . . (This also holds when k= 0.) We now use (3.1.12) and (3.1.14)
to prove (3.1.9). We fix an α > 0. If

2nkb< α ≤ 2n(k+1)b

for some k ≥ 0, then
∣
∣
∣

{

x ∈ Q :
∣
∣ f −Avg

Q
f
∣
∣> α

}∣
∣
∣ ≤

∣
∣
∣

{

x ∈ Q :
∣
∣ f −Avg

Q
f
∣
∣> 2nkb

}∣
∣
∣

≤ ∑
j

∣
∣Q(k)

j

∣
∣≤ 1

bk
∣
∣Q(0)∣∣

= |Q|e−k logb

≤ |Q|be−α logb/(2nb),

since −k ≤ 1− α
2nb . Choosing b= e> 1 yields (3.1.9). �

3.1.3 Consequences of Theorem 3.1.6

Having proved the important distribution inequality (3.1.9), we are now in a position
to deduce from it a few corollaries.

Corollary 3.1.7. Every BMO function is exponentially integrable over any cube.
Precisely, for any γ < 1/(2ne), for all f ∈ BMO(Rn), and all cubes Q we have

1
|Q|

∫

Q
eγ | f (x)−AvgQ f |/‖ f‖BMOdx≤ 1+

2ne2 γ
1−2neγ

.

Proof. Using identity
∫

X
e| f | −1dμ =

∫ ∞

0
eαμ({x ∈ X : | f (x)|> α})dα ,

proved in Proposition 1.1.4 in [156] for a σ -finite measure space (X ,μ), we write

1
|Q|

∫

Q
eh dx= 1+

1
|Q|

∫

Q
(eh−1)dx= 1+

1
|Q|

∫ ∞

0
eα |{x ∈ Q : |h(x)|> α}|dα
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for a measurable function h on Rn. Then we take h = γ | f −AvgQ f |/‖ f‖BMO and
we use inequality (3.1.9) with γ < A= (2ne)−1 to obtain

1
|Q|

∫

Q
eγ | f (x)−AvgQ f |/‖ f‖BMOdx≤

∫ ∞

0
eα ee−A( αγ ‖ f‖BMO)/‖ f‖BMOdα =Cn,γ ,

where Cn,γ is a unit less than the constant in the statement of the inequality. �

As a consequence of Corollary 3.1.7 we deduce that for any compact set K in Rn,
∫

K
ec| f (x)| dx< ∞ ,

whenever f ∈ BMO and c < (2ne‖ f‖BMO)
−1. Another important corollary of

Theorem 3.1.6 is the following.

Corollary 3.1.8. For all 0 < p < ∞, there exists a finite constant Bp,n such that for
all f ∈ BMO we have

sup
Q

(
1
|Q|

∫

Q

∣
∣ f (x)−Avg

Q
f
∣
∣p dx

)1
p

≤ Bp,n
∥
∥ f
∥
∥
BMO(Rn)

. (3.1.15)

Proof. This result can be obtained from the one in the preceding corollary or di-
rectly in the following way:

1
|Q|

∫

Q

∣
∣ f (x)−Avg

Q
f
∣
∣p dx =

p
|Q|

∫ ∞

0
α p−1|{x ∈ Q : | f (x)−Avg

Q
f |> α}|dα

≤ p
|Q| e |Q|

∫ ∞

0
α p−1e−Aα/‖ f‖BMOdα

= pΓ (p)
e
Ap

∥
∥ f
∥
∥p
BMO ,

where A = (2ne)−1. Setting Bp,n = (pΓ (p)eA−p)
1
p = (pΓ (p))

1
p e

1
p+1 2n, we con-

clude the proof of (3.1.15). �

Since the inequality in Corollary 3.1.8 can be reversed when p > 1 via Hölder’s
inequality, we obtain the following important Lp characterization of BMO norms.

Corollary 3.1.9. For all 1< p< ∞ and f in L1loc(R
n) we have

sup
Q

(
1
|Q|

∫

Q

∣
∣ f (x)−Avg

Q
f
∣
∣p dx

)1
p

≈ ∥∥ f∥∥BMO. (3.1.16)

Proof. One direction follows from Corollary 3.1.8. Conversely, the supremum in
(3.1.16) is bigger than or equal to the corresponding supremum with p= 1, which is
equal to the BMO norm of f , by definition. �
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Exercises

3.1.1. Prove that BMO is a complete space, that is, every BMO-Cauchy sequence
converges in BMO.
[

Hint: Use Proposition 3.1.5 (ii) to show first that such a sequence is Cauchy in L1

of every compact set.
]

3.1.2. Find an example showing that the product of two BMO functions may not be
in BMO.

3.1.3. Prove that
∥
∥ | f |α ∥∥BMO ≤ 2

∥
∥ f
∥
∥α
BMO

whenever 0< α ≤ 1.

3.1.4. Let f be a real-valued BMO function on Rn. Prove that the functions

fKL(x) =

⎧

⎪⎨

⎪⎩

K if f (x)< K,
f (x) if K ≤ f (x)≤ L,
L if f (x)> L,

satisfy ‖ fKL‖BMO ≤ 9
4‖ f‖BMO.

3.1.5. Let a > 1, let B be a ball (or a cube) in Rn, and let aB be a concentric ball
whose radius is a times the radius of B. Show that there is a dimensional constant
Cn such that for all f in BMO we have

∣
∣Avg

aB
f −Avg

B
f
∣
∣≤Cn log(a+1)

∥
∥ f
∥
∥
BMO .

3.1.6. Let a > 1 and let f be a BMO function on Rn. Show that there exist dimen-
sional constants Cn, C′

n such that
(a) for all balls B1 and B2 in Rn with radius R whose centers are at distance aR we
have

∣
∣Avg

B1
f −Avg

B2
f
∣
∣≤C′

n log(a+1)
∥
∥ f
∥
∥
BMO .

(b) Conclude that
∣
∣ Avg
(a+1)B1

f −Avg
B2

f
∣
∣≤Cn log(a+1)

∥
∥ f
∥
∥
BMO.

[

Hint: Part (a): Replace AvgB1 f by Avg2aB1 f and AvgB2 f by AvgaB2 f and use the
fact that aB2 is contained in 2aB1 and use Exercise 3.1.5.

]

3.1.7. Let f be locally integrable on Rn. Suppose that there exist positive constants
m and b such that for all cubes Q in Rn and for all 0< p< ∞ we have

α
∣
∣
∣

{

x ∈ Q :
∣
∣ f (x)−Avg

Q
f
∣
∣> α

}∣
∣
∣

1
p ≤ b pm |Q| 1p .



3.2 Duality between H1 and BMO 167

Show that f satisfies the estimate
∣
∣
∣

{

x ∈ Q :
∣
∣ f (x)−Avg

Q
f
∣
∣> α

}∣
∣
∣≤ |Q|e−cα1/m

with c= (2b)−1/m log2.
[

Hint: Try p= (α/2b)1/m.
]

3.1.8. Prove that
∣
∣ log |x|∣∣p is not in BMO(R) when 1< p< ∞.

[

Hint: Show that if
∣
∣ log |x|∣∣p were in BMO, then estimate (3.1.9) would be violated

for large α .
]

3.1.9. Given 1< p< ∞ and f locally integrable on Rn prove that

sup
Q

1
|Q|
(

inf
cQ

∫

Q
| f (x)− cQ|p dx

) 1
p

≈ ∥∥ f∥∥BMO.

[

Hint: Use Proposition 3.1.2 (4) and Corollary 3.1.9.
]

3.1.10. Let f ∈ BMO(R) have mean value equal to zero on a fixed closed interval
I. Find a BMO function g on R such that

(1) g= f on I;

(2) g= 0 on R\ 5
3 I;

(3) ‖g‖BMO ≤ 12‖ f‖BMO.
[

Hint: Let I0 be the closed middle third of I. Write the interior of I as
⋃

k∈Z Ik, where
for |k|> 0, Ik are closed subintervals of I such that the right endpoint of Ik coincides
with the left endpoint of Ik+1 and dist (Ik,∂ I) = |Ik| = 1

32
−|k|. For |k| ≥ 1, let Jk be

the reflection of Ik with respect to the closest endpoint of I and set g=AvgIk f on Jk
for |k|> 1, g= f on I, and zero otherwise. To prove property (3), given an arbitrary
interval Q on the real line, consider the cases where |Q| ≥ 1

3 |I| and |Q|< 1
3 |I|.

]

3.2 Duality between H1 and BMO

The next result we discuss is a remarkable duality relationship between the Hardy
space H1 and BMO. Precisely, we show that BMO is the dual space of H1. This
means that every continuous linear functional on the Hardy spaceH1 can be realized
as integration against a fixed BMO function, where integration in this context is
an abstract operation, not necessarily given by an absolutely convergent integral.
Restricting our attention, however, to a dense subspace of H1 such as the space of
all finite sums of atoms, the use of the word integration is well justified. Indeed, first
we note that an important consequence of (3.1.15) is that any BMO function b lies
in Lp(Q) for any Q in Rn and any p satisfying 1 < p < ∞; in particular it is square
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integrable over any cube. Thus given a BMO function b on Rn and an L2 function
g with integral zero on Rn, the integral

∫

Rn g(x)b(x)dx converges absolutely by the
Cauchy–Schwarz inequality.

Definition 3.2.1. Denote by H1
0 (R

n) the space of all finite linear combinations of L2

atoms for H1(Rn) and fix b∈ BMO(Rn). Given g∈H1
0 we define a linear functional

Lb(g) =
∫

Rn
g(x)b(x)dx (3.2.1)

as an absolutely convergent integral. Observe that the integral in (3.2.1) and thus the
definition of Lb on H1

0 remain the same if b is replaced by b+ c, where c is an addi-
tive constant. Additionally, we observe that (3.2.1) is also an absolutely convergent
integral when g is a general element of H1(Rn) and the BMO function b is bounded.

To extend the definition of Lb on the entire H1 for all functions b in BMO we
need to know that

∥
∥Lb

∥
∥
H1→C ≤Cn ‖b‖BMO , whenever b is bounded, (3.2.2)

a fact that will be proved momentarily. Assuming (3.2.2), take b ∈ BMO and let
bM(x) = bχ|b|≤M for M = 1,2,3, . . . . Since ‖bM‖BMO ≤ 9

4‖b‖BMO (Exercise 3.1.4),
the sequence of linear functionals {LbM}M lies in a multiple of the unit ball of (H1)∗
and by the Banach–Alaoglou theorem there is a subsequenceMj →∞ as j→∞ such
that LbMj

converges weakly to a bounded linear functional L̃b onH1. This means that

for all f in H1(Rn) we have
LbMj

( f )→ L̃b( f )

as j→ ∞.
If aQ is a fixed L2 atom for H1, the difference |LbMj

(aQ)−Lb(aQ)| is bounded
by ‖aQ‖L2 (‖bMj −AvgQ bMj − b+AvgQ b‖L2(Q)) which is in turn bounded by
‖aQ‖L2(‖bMj −b‖L2(Q) + |Q|1/2|AvgQ(bMj −b)|), and this expression tends to zero
as j → ∞ by the Lebesgue dominated convergence theorem. The same conclusion
holds for any finite linear combination of aQ’s. Thus for all g ∈ H1

0 we have

LbMj
(g)→ Lb(g) ,

and consequently, Lb(g) = L̃b(g) for all g ∈H1
0 . Since H

1
0 is dense in H1 and Lb and

L̃b coincide on H1
0 , it follows that L̃b is the unique bounded extension of Lb on H1.

We have therefore defined Lb on the entire H1 as a weak limit of bounded linear
functionals.

Having set the definition of Lb, we proceed by showing the validity of (3.2.2).
Let b be a bounded BMO function. Given f in H1, find a sequence ak of L2 atoms
for H1 supported in cubes Qk such that

f =
∞

∑
k=1

λkak (3.2.3)
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and
∞

∑
k=1

|λk| ≤ 2
∥
∥ f
∥
∥
H1 .

Since the series in (3.2.3) converges in H1, it must converge in L1, and then we have

|Lb( f )| =
∣
∣
∣
∣

∫

Rn
f (x)b(x)dx

∣
∣
∣
∣

=

∣
∣
∣
∣

∞

∑
k=1

λk
∫

Qk

ak(x)
(

b(x)−Avg
Qk

b
)

dx
∣
∣
∣
∣

≤
∞

∑
k=1

|λk|
∥
∥ak
∥
∥
L2 |Qk|

1
2

(
1

|Qk|
∫

Qk

∣
∣b(x)−Avg

Qk

b
∣
∣2 dx

) 1
2

≤ 2
∥
∥ f
∥
∥
H1 B2,n

∥
∥b
∥
∥
BMO ,

where in the last step we used Corollary 3.1.8 and the fact that L2 atoms for H1

satisfy ‖ak‖L2 ≤ |Qk|− 1
2 . This proves (3.2.2) for bounded functions b in BMO.

We have proved that every BMO function b gives rise to a bounded linear func-
tional L̃b on H1(Rn) (from now on denoted by Lb) that satisfies

∥
∥Lb

∥
∥
H1→C ≤Cn ‖b‖BMO.

The fact that every bounded linear functional on H1 arises in this way is the gist of
the equivalence of the next theorem.

Theorem 3.2.2. There exist finite constants Cn and C′
n such that the following state-

ments are valid:
(a) Given b ∈ BMO(Rn), the linear functional Lb lies in (H1(Rn))∗ and has norm
at most Cn‖b‖BMO.Moreover, the mapping b �→ Lb from BMO to (H1)∗ is injective.
(b) For every bounded linear functional L on H1 there exists a BMO function b such
that for all f ∈ H1

0 we have L( f ) = Lb( f ) and also
∥
∥b
∥
∥
BMO ≤C′

n
∥
∥Lb

∥
∥
H1→C .

Proof. We have already proved that for all b ∈ BMO(Rn), Lb lies in (H1(Rn))∗ and
has norm at mostCn‖b‖BMO. The embedding b �→ Lb is injective as a consequence of
Exercise 3.2.2. It remains to prove (b). Fix a bounded linear functional L on H1(Rn)
and also fix a cube Q. Consider the space L2(Q) of all square integrable functions
supported in Q with norm

∥
∥g
∥
∥
L2(Q) =

(∫

Q
|g(x)|2 dx

)1
2
.

We denote by L20(Q) the closed subspace of L2(Q) consisting of all functions in
L2(Q) with mean value zero. We show that every element in L20(Q) is in H1(Rn)
and we have the inequality
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∥
∥g
∥
∥
H1 ≤ cn|Q| 12

∥
∥g
∥
∥
L2 . (3.2.4)

To prove (3.2.4) we use the square function characterization of H1. We fix a
Schwartz function Ψ on Rn whose Fourier transform is supported in the annulus
1
2 ≤ |ξ | ≤ 2 and that satisfies (1.3.6) for all ξ �= 0 and we let Δ j(g) =Ψ2− j ∗ g. To
estimate the L1 norm of

(

∑ j |Δ j(g)|2
)1/2 over Rn, consider the part of the integral

over 3
√
nQ and the integral over (3

√
nQ)c. First we use Hölder’s inequality and an

L2 estimate to prove that

∫

3
√
nQ

(

∑
j
|Δ j(g)(x)|2

) 1
2
dx≤ cn|Q| 12

∥
∥g
∥
∥
L2 .

Now for x /∈ 3
√
nQ we use the mean value property of g to obtain

|Δ j(g)(x)| ≤
cn
∥
∥g
∥
∥
L22

n j+ j|Q| 1n+ 1
2

(1+2 j|x− cQ|)n+2 , (3.2.5)

where cQ is the center of Q. Estimate (3.2.5) is obtained in a way similar to that we
obtained the corresponding estimate for one atom; see Theorem 2.3.11 for details.
Now (3.2.5) implies that

∫

(3
√
nQ)c

(

∑
j
|Δ j(g)(x)|2

) 1
2
dx≤ cn|Q| 12

∥
∥g
∥
∥
L2 ,

which proves (3.2.4).
Since L20(Q) is a subspace of H

1, it follows from (3.2.4) that the linear functional
L : H1 → C is also a bounded linear functional on L20(Q) with norm

∥
∥L
∥
∥
L20(Q)→C ≤ cn|Q|1/2

∥
∥L
∥
∥
H1→C . (3.2.6)

By the Riesz representation theorem for the Hilbert space L20(Q), there is an element
FQ in (L20(Q))

∗ = L2(Q)/{constants} such that

L(g) =
∫

Q
FQ(x)g(x)dx, (3.2.7)

for all g ∈ L20(Q), and this FQ satisfies
∥
∥FQ∥∥

L2(Q) ≤
∥
∥L
∥
∥
L20(Q)→C . (3.2.8)

Thus for any cube Q in Rn, there is square integrable function FQ supported in Q
such that (3.2.7) is satisfied. We observe that if a cube Q is contained in another
cube Q′, then FQ differs from FQ′

by a constant on Q. Indeed, for all g ∈ L20(Q) we
have

∫

Q
FQ′

(x)g(x)dx= L(g) =
∫

Q
FQ(x)g(x)dx
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and thus ∫

Q
(FQ′

(x)−FQ(x))g(x)dx= 0 .

Consequently,

g→
∫

Q
(FQ′

(x)−FQ(x))g(x)dx

is the zero functional on L20(Q); hence FQ′ −FQ must be the zero function in the
space (L20(Q))

∗, i.e., FQ′ −FQ is a constant on Q.
Let

Qm = [−m/2,m/2]n

for m= 1,2, . . . . Then |Q1|= 1. We define a locally integrable function b(x) on Rn

by setting

b(x) = FQm(x)− 1
|Q1|

∫

Q1

FQm(t)dt (3.2.9)

whenever x∈Qm. We check that this definition is unambiguous. Let 1≤ �<m. Then
for x ∈ Q�, b(x) is also defined as in (3.2.9) with � in the place of m. The difference
of these two functions is

FQm −FQ� −Avg
Q1

(FQm −FQ�) = 0 ,

since the function FQm −FQ� is constant in the cube Q� (which is contained in Qm),
as indicated earlier.

Next we claim that for any cube Q there is a constant CQ such that

FQ = b−CQ on Q. (3.2.10)

Indeed, given a cube Q pick the smallest m such that Q is contained in Qm and
observe that

FQ = FQ−FQm
︸ ︷︷ ︸

constant on Q

+FQm −Avg
Q1

FQm

︸ ︷︷ ︸

b(x)

+ Avg
Q1

FQm

︸ ︷︷ ︸

constant on Q

and let −CQ be the sum of the two preceding constant expressions on Q.
We have now found a locally integrable function b such that for all cubes Q and

all g ∈ L20(Q) we have
∫

Q
b(x)g(x)dx=

∫

Q
(FQ(x)+CQ)g(x)dx=

∫

Q
FQ(x)g(x)dx= L(g) , (3.2.11)

as follows from (3.2.7) and (3.2.10). We conclude the proof by showing that b lies
in BMO(Rn). By (3.2.10), (3.2.8), and (3.2.6) we have
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sup
Q

1
|Q|

∫

Q
|b(x)−CQ|dx = sup

Q

1
|Q|

∫

Q
|FQ(x)|dx

≤ sup
Q

|Q|−1|Q| 12 ∥∥FQ∥∥
L2(Q)

≤ sup
Q

|Q|− 1
2
∥
∥L
∥
∥
L20(Q)→C

≤ cn
∥
∥L
∥
∥
H1→C < ∞ .

Using Proposition 3.1.2 (3), we deduce that b ∈ BMO and ‖b‖BMO ≤ 2cn‖L‖H1→C.
Finally, (3.2.11) implies that

L(g) =
∫

Rn
b(x)g(x)dx= Lb(g)

for all g ∈H1
0 (R

n), proving that the linear functional L coincides with Lb on a dense
subspace of H1. Consequently, L= Lb, and this concludes the proof of part (b). �

Exercises

3.2.1. Given b in BMO, let Lb be as in Definition 3.2.1. Prove that for b in BMO
we have

∥
∥b
∥
∥
BMO ≈ sup

‖ f‖H1≤1

∣
∣Lb( f )

∣
∣ ,

and for a given f in H1 we have
∥
∥ f
∥
∥
H1 ≈ sup

‖b‖BMO≤1

∣
∣Lb( f )

∣
∣ .

[

Hint: Use ‖T‖X∗ = sup x∈X
‖x‖X≤1

|T (x)| for all T in the dual of a Banach space X .
]

3.2.2. Suppose that a locally integrable function u is supported in a cube Q in Rn

and satisfies ∫

Q
u(x)g(x)dx= 0

for all square integrable functions g on Q with mean value zero. Show that u is
almost everywhere equal to a constant.

3.3 Nontangential Maximal Functions and Carleson Measures

Many properties of functions defined on Rn are related to corresponding properties
of associated functions defined on Rn+1

+ in a natural way. A typical example of
this situation is the relation between an Lp(Rn) function f and its Poisson integral
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f ∗Pt or more generally f ∗Φt , where {Φt}t>0 is an approximate identity. Here Φ
is a Schwartz function on Rn with integral 1. A maximal operator associated to the
approximate identity { f ∗Φt}t>0 is

f → sup
t>0

| f ∗Φt | ,

which we know is pointwise controlled by a multiple of the Hardy–Littlewood max-
imal function M( f ). Another example of a maximal operator associated to the pre-
vious approximate identity is the nontangential maximal function

f →M∗( f ;Φ)(x) = sup
t>0

sup
|y−x|<t

|( f ∗Φt)(y)|.

To study nontangential behavior we consider general functions F defined on Rn+1
+

that are not necessarily given as an average of functions defined on Rn. Throughout
this section we use capital letters to denote functions defined on Rn+1

+ . When we
write F(x, t) we mean that x ∈ Rn and t > 0.

3.3.1 Definition and Basic Properties of Carleson Measures

Definition 3.3.1. Let F be a measurable function on Rn+1
+ . For x in Rn let Γ (x) be

the cone with vertex x defined by

Γ (x) = {(y, t) ∈ Rn×R+ : |y− x|< t}.

A picture of this cone is shown in Figure 3.1. The nontangential maximal function
of F is the function

F∗(x) = sup
(y,t)∈Γ (x)

|F(y, t)|

defined on Rn. This function is obtained by taking the supremum of the values of F
inside the cone Γ (x).

We observe that if F∗(x) = 0 for almost all x ∈ Rn, then F is identically equal
to zero on Rn+1

+ . To establish this claim, suppose that F∗(x0)> 0. Then there exists
(y0, t0)∈Γ (x0) = {(y, t) : |y−x0|< t} such that |F(y0, t0)|> 1

2F
∗(x0). Then for all z

with |z−y0|< t0−|y0−x0|= δ0 we have |y0− z0|< t0, hence F∗(z)≥ |F(y0, t0)|>
1
2F

∗(x0)> 0. Thus F∗ > 1
2F

∗(x0) on the ball B(y0,δ0), which is a contradiction.

Definition 3.3.2. Given a ball B= B(x0,r) in Rn we define the cylindrical tent over
B to be the “cylindrical set”

T (B) = {(x, t) ∈ Rn+1
+ : x ∈ B, 0< t ≤ r} .
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Fig. 3.1 The cone Γ (x) trun-
cated at height t.

x

|y - x| < t

For a cube Q in Rn we define the tent over Q to be the cube

T (Q) = Q× (0, �(Q)] .

A tent over a ball and over a cube are shown in Figure 3.2. A positive measure μ on
Rn+1
+ is called a Carleson measure if

∥
∥μ
∥
∥
C
= sup

Q

1
|Q|μ(T (Q))< ∞, (3.3.1)

where the supremum in (3.3.1) is taken over all cubes Q in Rn. The Carleson func-
tion of the measure μ is defined as

C (μ)(x) = sup
Q�x

1
|Q|μ(T (Q)), (3.3.2)

where the supremum in (3.3.2) is taken over all cubes in Rn containing the point x.
Observe that ‖C (μ)‖L∞ = ‖μ‖C .

We also define
∥
∥μ
∥
∥cylinder
C

= sup
B

1
|B|μ(T (B)) , (3.3.3)

where the supremum is taken over all balls B in Rn. One can easily verify that there
exist dimensional constants cn and Cn such that

cn
∥
∥μ
∥
∥
C
≤ ∥∥μ∥∥cylinder

C
≤Cn

∥
∥μ
∥
∥
C

for all measures μ onRn+1
+ , that is, a measure satisfies the Carleson condition (3.3.1)

with respect to cubes if and only if it satisfies the analogous condition (3.3.3) with
respect to balls. Likewise, the Carleson function C (μ) defined with respect to tents
over cubes is comparable to

C cylinder(μ)(x) = sup
B�x

1
|B|μ(T (B)),

defined with respect to cylindrical tents over balls B in Rn.
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Examples 3.3.3. The Lebesgue measure onRn+1
+ is not a Carleson measure. Indeed,

it is not difficult to see that condition (3.3.1) cannot hold for large balls.
Let L be a line inR2. For Ameasurable subsets ofR2

+ define μ(A) to be the linear
Lebesgue measure of the set L∩A. Then μ is a Carleson measure on R2

+. Indeed,
the linear measure of the part of a line inside the box [x0−r,x0+r]×(0,r] is at most
equal to the diagonal of the box, that is,

√
5r.

B(x0,r) Q

r

r

Fig. 3.2 The tents over the ball B(x0,r) and over a cube Q in R2.

Likewise, let P be an affine plane in Rn+1 and define a measure ν by setting ν(A)
to be the n-dimensional Lebesgue measure of the set A∩P for any A ⊆ Rn+1

+ . A
similar idea shows that ν is a Carleson measure on Rn+1

+ .

We now turn to the study of some interesting boundedness properties of functions
on Rn+1

+ with respect to Carleson measures.
A useful tool in this study is the Whitney decomposition of an open set in Rn.

This is a decomposition of a general open set Ω in Rn as a union of disjoint cubes
whose lengths are proportional to their distance from the boundary of the open set.
For a given cube Q in Rn, we denote by �(Q) its length.

Proposition 3.3.4. (Whitney decomposition) Let Ω be an open nonempty proper
subset of Rn. Then there exists a family of closed cubes {Qj} j such that

(a)
⋃

j Q j =Ω and the Qj’s have disjoint interiors;

(b)
√
n�(Qj)≤ dist (Qj,Ω c)≤ 4

√
n�(Qj);

(c) if the boundaries of two cubes Qj and Qk touch, then

1
4
≤ �(Qj)

�(Qk)
≤ 4;

(d) for a given Qj there exist at most 12n Qk’s that touch it.

The proof of Proposition 3.3.4 is given in Appendix J in [156].

Theorem 3.3.5. There exists a dimensional constant Cn such that for all α > 0,
all measures μ ≥ 0 on Rn+1

+ , and all μ-measurable functions F on Rn+1
+ , the set

Ωα = {F∗ > α} is open (thus Lebesgue measurable) and we have

μ
({(x, t) ∈ Rn+1

+ : |F(x, t)|> α})≤Cn

∫

{F∗>α}
C (μ)(x)dx. (3.3.4)
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In particular, if μ is a Carleson measure, then

μ
({|F |> α})≤Cn‖μ‖C |{F∗ > α}|. (3.3.5)

Proof. We prove this theorem by working with the equivalent definition of Carleson
measures and Carleson functions using balls and cylinders over balls. As observed
earlier, these quantities are comparable to the corresponding quantities using cubes.

We first prove that for any μ-measurable function F the set Ωα = {F∗ > α} is
open, and consequently, F∗ is Lebesgue measurable. Indeed, if x0 ∈Ωα , then there
is a (y0, t0) ∈ Γ (x0) = {(y, t) ∈ Rn ×R+ : |y− x0| < t} such that |F(y0, t0)| > α .
If d0 is the distance from (y0, t0) to the sphere formed by the intersection of the
hyperplane t0+Rn with the boundary of the cone Γ (x0), then |x0− y0| = t0− d0.
It follows that the open ball B(x0,d0) is contained in Ωα , since for z ∈ B(x0,d0) we
have |z− y0|< t0; hence F∗(z)≥ |F(y0, t0)|> α .

Let {Qk} be the Whitney decomposition of the set Ωα . For each x ∈ Ωα , set
δα(x) = dist (x,Ω c

α). Then for z ∈ Qk we have

δα(z)≤
√
n�(Qk)+dist (Qk,Ω c

α)≤ 5
√
n�(Qk) (3.3.6)

in view of Proposition 3.3.4(b). For each Qk, let Bk be the smallest ball that con-
tainsQk. Then the radius of Bk is

√
n�(Qk)/2. Combine this observation with (3.3.6)

to obtain that
z ∈ Qk =⇒ B(z,δα(z))⊆ 12Bk.

This implies that
⋃

z∈Ωα

T
(

B(z,δα(z))
)⊆

⋃

k

T (12Bk). (3.3.7)

Next we claim that
{|F |> α} ⊆

⋃

z∈Ωα

T
(

B(z,δα(z))
)

. (3.3.8)

Indeed, let (x, t) ∈ Rn+1
+ such that |F(x, t)| > α . Then by the definition of F∗ we

have that F∗(y) > α for all y ∈ Rn satisfying |x− y| < t. Thus B(x, t) ⊆ Ωα and so
δα(x)≥ t. This gives that (x, t) ∈ T

(

B(x,δα(x))
)

, which proves (3.3.8).
Combining (3.3.7) and (3.3.8) we obtain

{|F |> α} ⊆
⋃

k

T (12Bk).

Applying the measure μ and using the definition of the Carleson function, we obtain

μ
({|F |> α}) ≤ ∑

k
μ
(

T (12Bk)
)

≤ ∑
k
|12Bk| inf

x∈12Bk
C cylinder(μ)(x)

≤ ∑
k
|12Bk| inf

x∈Qk
C cylinder(μ)(x)
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≤ 12n∑
k

|Bk|
|Qk|

∫

Qk

C cylinder(μ)(x)dx

≤ (6
√
n)nvn

∫

Ωα
C cylinder(μ)(x)dx

≤ Cn

∫

Ωα
C (μ)(x)dx ,

since C cylinder(μ) is pointwise comparable to C (μ). This proves (3.3.4). �

Corollary 3.3.6. For any Carleson measure μ and every μ-measurable function F
on Rn+1

+ we have
∫

Rn+1
+

|F(x, t)|p dμ(x, t)≤Cn
∥
∥μ
∥
∥
C

∫

Rn
(F∗(x))p dx (3.3.9)

for all 0< p< ∞.

Proof. Start with (3.3.5), multiply by pα p−1 and integrate in α from zero to infinity.
We obtain

∫ ∞

0
pα p−1μ

({|F |> α})dα ≤Cn
∥
∥μ
∥
∥
C

∫ ∞

0
pα p−1|{F∗ > α}|dα ,

which is a restatement of (3.3.9). �

A particular example of this situation arises when F(x, t) = f ∗Φt(x) for some
nice integrable function Φ . Here and in the sequel, Φt(x) = t−nΦ(t−1x). For in-
stance one may take Φt to be the Poisson kernel Pt .

Theorem 3.3.7. Let Φ be a function on Rn that satisfies for some 0<C,δ < ∞,

|Φ(x)| ≤ C
(1+ |x|)n+δ . (3.3.10)

Let μ be a Carleson measure on Rn+1
+ . Then for every 1< p<∞ there is a constant

Cp,n(μ) such that for all f ∈ Lp(Rn) we have
∫

Rn+1
+

|(Φt ∗ f )(x)|p dμ(x, t)≤Cp,n(μ)
∫

Rn
| f (x)|p dx , (3.3.11)

where Cp,n(μ)≤C(p,n)‖μ‖C .
Conversely, suppose that Φ is a nonnegative function that satisfies (3.3.10) and

∫

|x|≤1Φ(x)dx> 0. If μ is a measure on Rn+1
+ such that for some 1< p< ∞ there is

a constant Cp,n(μ) such that (3.3.11) holds for all f ∈ Lp(Rn), then μ is a Carleson
measure with norm at most a multiple of Cp,n(μ).
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Proof. If μ is a Carleson measure, we may obtain (3.3.11) as a consequence of
Corollary 3.3.6. Indeed, for F(x, t) = (Φt ∗ f )(x), we have

F∗(x) = sup
t>0

sup
y∈Rn

|y−x|<t

|(Φt ∗ f )(y)| .

Using (3.3.10) and Corollary 2.1.12 in [156], this is easily seen to be pointwise con-
trolled by the Hardy–Littlewood maximal operator, which is Lp bounded. See also
Exercise 3.3.4.

Conversely, if (3.3.11) holds, then we fix a ball B= B(x0,r) in Rn with center x0
and radius r > 0. Then for (x, t) in T (B) we have

(Φt ∗χ2B)(x) =
∫

x−2B

Φt(y)dy≥
∫

B(0,t)

Φt(y)dy=
∫

B(0,1)

Φ(y)dy= cn > 0 ,

since B(0, t)⊆ x−2B(x0,r) whenever t ≤ r. Therefore, we have

μ(T (B)) ≤ 1
cpn

∫

Rn+1
+

|(Φt ∗χ2B)(x)|p dμ(x, t)

≤ Cp,n(μ)
cpn

∫

Rn
|χ2B(x)|p dx

=
2nCp,n(μ)

cpn
|B| .

This proves that μ is a Carleson measure with ‖μ‖C ≤ 2nc−p
n Cp,n(μ). �

3.3.2 BMO Functions and Carleson Measures

We now turn to an interesting connection between BMO functions and Carleson
measures. We have the following.

Theorem 3.3.8. Let b be a BMO function on Rn and letΨ be an integrable function
with mean value zero on Rn that satisfies

|Ψ(x)| ≤ A(1+ |x|)−n−δ (3.3.12)

for some 0 < A,δ < ∞. Consider the dilations Ψt = t−nΨ(t−1x) and define the
Littlewood–Paley operators Δ j( f ) = f ∗Ψ2− j .
(a) Suppose that

sup
ξ∈Rn

∑
j∈Z

|Ψ̂(2− jξ )|2 ≤ B2 < ∞ (3.3.13)



3.3 Nontangential Maximal Functions and Carleson Measures 179

and let δ2− j(t) be Dirac mass at the point t = 2− j. Then there is a constant Cn,δ such
that

dμ(x, t) = ∑
j∈Z

|(Ψ2− j ∗b)(x)|2 dxδ2− j(t)

is a Carleson measure on Rn+1
+ with norm at most Cn,δ (A+B)2‖b‖2BMO.

(b) Suppose that

sup
ξ∈Rn

∫ ∞

0
|Ψ̂(tξ )|2 dt

t
≤ B2 < ∞ . (3.3.14)

Then the continuous version dν(x, t) of dμ(x, t) defined by

dν(x, t) = |(Ψt ∗b)(x)|2 dx dtt
is a Carleson measure on Rn+1

+ with norm at most Cn,δ (A+B)2‖b‖2BMO for some
constant Cn,δ .
(c) Let δ ,A> 0. Suppose that {Kt}t>0 are functions on Rn×Rn that satisfy

|Kt(x,y)| ≤ Atδ

(t+ |x− y|)n+δ (3.3.15)

for all t > 0 and all x,y ∈ Rn. Let Rt be the linear operator

Rt( f )(x) =
∫

Rn
Kt(x,y) f (y)dy ,

which is well defined for all f ∈⋃1≤p≤∞Lp(Rn). Suppose that Rt(1) = 0 for all t > 0
and that there is a constant B> 0 such that

∫ ∞

0

∫

Rn

∣
∣Rt( f )(x)

∣
∣2 dxdt

t
≤ B2∥∥ f

∥
∥2
L2(Rn)

(3.3.16)

for all f ∈ L2(Rn). Then for all b in BMO the measure

∣
∣Rt(b)(x)

∣
∣2 dxdt

t

is Carleson with norm at most a constant multiple of (A+B)2‖b‖2BMO.

We note that if, in addition to (3.3.12), the functionΨ has mean value zero and
satisfies |∇Ψ(x)| ≤ A(1+ |x|)−n−δ , then (3.3.13) and (3.3.14) hold and therefore
conclusions (a) and (b) of Theorem 3.3.8 follow.

Proof. We prove (a). The measure μ is defined so that for every μ-integrable func-
tion F on Rn+1

+ we have
∫

Rn+1
+

F(x, t)dμ(x, t) = ∑
j∈Z

∫

Rn
|(Ψ2− j ∗b)(x)|2F(x,2− j)dx. (3.3.17)
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For a cubeQ inRn we letQ∗ be the cube with the same center and orientation whose
side length is 3

√
n�(Q), where �(Q) is the side length of Q. Fix a cube Q in Rn, take

F to be the characteristic function of the tent of Q, and split b as

b=
(

b−Avg
Q

b
)

χQ∗ +
(

b−Avg
Q

b
)

χ(Q∗)c +Avg
Q

b.

SinceΨ has mean value zero,Ψ2− j ∗AvgQ b= 0. Then (3.3.17) gives

μ(T (Q)) = ∑
2− j≤�(Q)

∫

Q
|Δ j(b)(x)|2 dx≤ 2Σ1+2Σ2,

where

Σ1 = ∑
j∈Z

∫

Rn

∣
∣Δ j
(

(b−Avg
Q

b)χQ∗
)

(x)
∣
∣2 dx,

Σ2 = ∑
2− j≤�(Q)

∫

Q

∣
∣Δ j
(

(b−Avg
Q

b)χ(Q∗)c
)

(x)
∣
∣2 dx.

Using Plancherel’s theorem and (3.3.13), we obtain

Σ1 ≤ sup
ξ
∑
j∈Z

|Ψ̂(2− jξ )|2
∫

Rn

∣
∣
(

(b−Avg
Q

b)χQ∗
)

(̂ξ )
∣
∣2 dξ

≤ B2
∫

Q∗

∣
∣b(x)−Avg

Q
b
∣
∣2 dx

≤ 2B2
∫

Q∗

∣
∣b(x)−Avg

Q∗
b
∣
∣2 dx+2B2|Q∗| ∣∣Avg

Q∗
b−Avg

Q
b
∣
∣2

≤ B2
∫

Q∗

∣
∣b(x)−Avg

Q∗
b
∣
∣2 dx+ cn 2B2∥∥b

∥
∥2
BMO |Q|

≤ CnB2‖b‖2BMO |Q| ,

in view of Proposition 3.1.5 (i) and Corollary 3.1.8. To estimate Σ2, we use the size
estimate of the functionΨ . We obtain

∣
∣
(

Ψ2− j ∗ (b−Avg
Q

b
)

χ(Q∗)c
)

(x)
∣
∣≤

∫

(Q∗)c

A2− jδ ∣∣b(y)−AvgQ b
∣
∣

(2− j+ |x− y|)n+δ dy . (3.3.18)

But note that if cQ is the center of Q, then

2− j+ |x− y| ≥ |y− x|
≥ |y− cQ|− |cQ− x|

≥ 1
2
|cQ− y|+ 3

√
n

4
�(Q)−|cQ− x|
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≥ 1
2
|cQ− y|+ 3

√
n

4
�(Q)−

√
n
2

l(Q)

=
1
2

(

|cQ− y|+
√
n
2

�(Q)
)

when y ∈ (Q∗)c and x ∈ Q. Inserting this estimate in (3.3.18), integrating over Q,
and summing over j with 2− j ≤ �(Q), we obtain

Σ2 ≤ Cn ∑
j: 2− j≤�(Q)

2−2 jδ
∫

Q

(

A
∫

Rn

∣
∣b(y)−AvgQ b

∣
∣

(�(Q)+ |cQ− y|)n+δ dy
)2

dx

≤ CnA2|Q|
(∫

Rn

�(Q)δ
∣
∣b(y)−AvgQ b

∣
∣

(�(Q)+ |y− cQ|)n+δ
dy
)2

≤ C′
n,δA

2|Q|‖b‖2BMO

in view of (3.1.5). This proves that

Σ1+Σ2 ≤Cn,δ (A
2+B2)|Q|‖b‖2BMO ,

which implies that μ(T (Q))≤Cn,δ (A+B)2‖b‖2BMO|Q|.
The proof of part (b) of the theorem is obtained in a similar fashion. Finally, part

(c) is a generalization of part (b) and is proved likewise. We sketch its proof. Write

b=
(

b−Avg
Q

b
)

χQ∗ +
(

b−Avg
Q

b
)

χ(Q∗)c +Avg
Q

b

and note that Rt(AvgQ b) = 0. We handle the term containing Rt
(

(b−AvgQ b)χQ∗
)

using an L2 estimate over Q∗ and condition (3.3.16), while for the term containing
Rt
(

(b−AvgQ b)χ(Q∗)c
)

we use an L1 estimate and condition (3.3.15). In both cases
we obtain the required conclusion in a way analogous to that in part (a). �

Exercises

3.3.1. Let {a j}∞j=−∞ be an increasing sequence of positive real numbers and let
{b j}∞j=−∞ be another sequence of positive real numbers such that ∑ j∈Z b j < ∞. De-
fine a measure μ on Rn+1

+ by setting

μ(E) = ∑
j∈Z

b j|E ∩{(x,a j) : x ∈ Rn}|,

where E is a subset ofRn+1
+ and | | denotes n-dimensional Lebesgue measure on the

affine planes t = a j of Rn×R+ = {(x, t) : x ∈Rn, t > 0}. Show that μ is a Carleson
measure with norm

‖μ‖cylinderC = ‖μ‖C = ∑
j∈Z

b j .
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3.3.2. Let x0 ∈ Rn and μ = δ(x0,1) be the Dirac mass at the point (x0,1). Show that
μ is Carleson measure and compute ‖μ‖cylinderC and ‖μ‖C . Which of these norms is
larger?

3.3.3. Define conical and hemispherical tents over balls in Rn as well as pyrami-
dal tents over cubes in Rn and define the expressions ‖μ‖coneC , ‖μ‖hemisphere

C , and
‖μ‖pyramid

C . Show that

‖μ‖coneC ≈ ‖μ‖hemisphere
C ≈ ‖μ‖pyramid

C ≈ ‖μ‖C ,

where all the implicit constants in the previous estimates depend only on the
dimension.

3.3.4. Suppose that Φ has a radial, bounded, symmetrically decreasing integrable
majorant. Set F(x, t) = ( f ∗Φt)(x), where f is a locally integrable function on Rn.
Prove that

F∗(x)≤CnM( f )(x) ,

where M is the Hardy–Littlewood maximal operator and Cn is a constant that de-
pends only on the dimension.
[

Hint: If ϕ(|x|) is the claimed majorant of Φ(x), then the function ψ(|x|) = ϕ(0)
for |x| ≤ 1 and ψ(|x|) = ϕ(|x| − 1) for |x| ≥ 1 is a majorant for the function
Ψ(x) = sup|u|≤1 |Φ(x−u)|.]

3.3.5. Let F be a function on Rn+1
+ , let F∗ be the nontangential maximal function

derived from F , and let μ ≥ 0 be a measure on Rn+1
+ . Prove that

∥
∥F
∥
∥
Lr(Rn+1

+ ,μ) ≤C1/r
n

(∫

Rn
C (μ)(x)F∗(x)r dx

)1/r

,

where Cn is the constant of Theorem 3.3.5 and 0< r < ∞.

3.3.6. (a) Given A a closed subset of Rn and 0< γ < 1, define

A∗
γ =

{

x ∈ Rn : inf
r>0

|A∩B(x,r)|
|B(x,r)| ≥ γ

}

.

Show that A∗ is a closed subset of A and that it satisfies

|(A∗
γ)

c| ≤ 3n

1− γ
|Ac| .

[

Hint: Consider the Hardy–Littlewood maximal function of χAc .
]
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(b) For a function F on Rn+1
+ and 0< a< ∞, set

F∗
a (x) = sup

t>0
sup

|y−x|<at
|F(y, t)| .

Let 0< a< b< ∞ be given. Prove that for all λ > 0 we have

|{F∗
a > λ}| ≤ |{F∗

b > λ}| ≤ 3na−n(a+b)n|{F∗
a > λ}|.

3.3.7. Let μ be a Carleson measure on Rn+1
+ . Show that for any z0 ∈ Rn and t > 0

we have

∫∫

Rn×(0,t)

t

(|z− z0|2+ t2+ s2)
n+1
2

dμ(z,s)≤ ‖μ‖cylinderC

π n+1
2

Γ ( n+1
2 )

.

[

Hint: Begin by writing

t

(|z− z0|2+ t2+ s2)
n+1
2

= (n+1)t
∫ ∞

Q

dr
rn+2 ,

where Q =
√

|z− z0|2+ t2+ s2. Apply Fubini’s theorem to estimate the required
expression by

t(n+1)
∫ ∞

t

∫

T
(

B(z0,
√

r2−t2 )
)

dμ(z,s)
dr
rn+2 ≤ t(n+1)vn‖μ‖cylinderC

∫ ∞

t
(r2− t2)

n
2

dr
rn+2 ,

where vn is the volume of the unit ball in Rn. Reduce the last integral to a beta
function.

]

3.3.8. ([361]) Let μ be a Carleson measure on Rn+1
+ . Show that for all p > 2 there

exists a dimensionless constant Cp such that
∫

Rn+1
+

|(Pt ∗ f )(x)|p dμ(x, t)≤Cp‖μ‖cylinderC

∫

Rn
| f (x)|p dx .

[

Hint: It suffices to prove that the operator f �→Pt ∗ f maps L2(Rn) to L2,∞(Rn+1
+ ,dμ)

with a dimensionless constant C, since then the conclusion follows by interpolation
with the corresponding L∞ estimate, which holds with constant 1. By duality and
Exercise 1.4.7 in [156] this is equivalent to showing that

∫

Rn

[∫∫

E

Pt(x− y)dμ(y, t)
∫∫

E

Ps(x− z)dμ(z,s)
]

dx≤Cμ(E)
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for any set E in Rn+1
+ with μ(E)< ∞. Apply Fubini’s theorem, use the identity

∫

Rn
Pt(x− y)Ps(x− z)dx= Pt+s(y− z) ,

and consider the cases t ≤ s and s≤ t.
]

3.4 The Sharp Maximal Function

In Section 3.1 we defined BMO as the space of all locally integrable functions on
Rn whose mean oscillation is at most a finite constant. In this section we introduce
a quantitative way to measure the mean oscillation of a function near any point.

3.4.1 Definition and Basic Properties of the Sharp Maximal
Function

The local behavior of the mean oscillation of a function is captured to a certain
extent by the sharp maximal function. This is a device that enables us to relate
integrability properties of a function to those of its mean oscillations.

Definition 3.4.1. Given a locally integrable function f on Rn, we define its sharp
maximal function M#( f ) as

M#( f )(x) = sup
Q�x

1
|Q|

∫

Q

∣
∣ f (t)−Avg

Q
f
∣
∣dt,

where the supremum is taken over all cubes Q in Rn that contain the given point x.

The sharp maximal function is an analogue of the Hardy–Littlewood maximal
function, but it has some advantages over it, especially in dealing with the endpoint
space L∞. The very definition of M#( f ) brings up a connection with BMO that is
crucial in interpolation. Precisely, we have

BMO(Rn) = { f ∈ L1loc(R
n) : M#( f ) ∈ L∞(Rn)},

and in this case
∥
∥ f
∥
∥
BMO =

∥
∥M#( f )

∥
∥
L∞ .

We summarize some properties of the sharp maximal function.

Proposition 3.4.2. Let f ,g be a locally integrable functions on Rn. Then

(1) M#( f ) ≤ 2Mc( f ), where Mc is the Hardy–Littlewood maximal operator with
respect to cubes in Rn.
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(2) For all cubes Q in Rn we have

1
2
M#( f )(x)≤ sup

Q�x
inf
a∈C

1
|Q|

∫

Q
| f (y)−a|dy≤M#( f )(x).

(3) M#(| f |)≤ 2M#( f ).

(4) We have M#( f +g)≤M#( f )+M#(g).

Proof. The proof of (1) is trivial. To prove (2) we fix ε > 0 and for any cube Q we
pick a constant aQ such that

1
|Q|

∫

Q
| f (y)−aQ|dy≤ inf

a∈Q
1
|Q|

∫

Q
| f (y)−a|dy+ ε .

Then

1
|Q|

∫

Q

∣
∣ f (y)−Avg

Q
f
∣
∣dy ≤ 1

|Q|
∫

Q
| f (y)−aQ|dy+ 1

|Q|
∫

Q

∣
∣Avg

Q
f −aQ

∣
∣dy

≤ 1
|Q|

∫

Q
| f (y)−aQ|dy+ 1

|Q|
∫

Q
| f (y)−aQ|dy

≤ 2 inf
a∈Q

1
|Q|

∫

Q
| f (y)−a|dy+2ε .

Taking the supremum over all cubes Q in Rn, we obtain the first inequality in (2),
since ε > 0 was arbitrary. The other inequality in (2) is simple. The proofs of (3)
and (4) are immediate. �

We saw that M#( f )≤ 2Mc( f ), which implies that
∥
∥M#( f )

∥
∥
Lp ≤Cnp(p−1)−1∥∥ f

∥
∥
Lp (3.4.1)

for 1 < p < ∞. Thus the sharp function of an Lp function is also in Lp whenever
1 < p < ∞. The fact that the converse inequality is also valid is one of the main
results in this section. We obtain this estimate via a distributional inequality for the
sharp function called a good lambda inequality.

3.4.2 A Good Lambda Estimate for the Sharp Function

A useful tool in obtaining the converse inequality to (3.4.1) is the dyadic maximal
function.

Definition 3.4.3. A dyadic cube is a set of the form ∏m
j=1[mj2−k,(m1 + 1)2−k),

where m1, . . . ,mn,k ∈ Z. Given a locally integrable function f on Rn, we define
its dyadic maximal function Md( f ) by
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Md( f )(x) = sup
Q�x

Q dyadic cube

1
|Q|

∫

Q
| f (t)|dt .

The supremum is taken over all dyadic cubes Q in Rn that contain a given point x.

Obviously, one has the pointwise estimate

Md( f )≤Mc( f ) (3.4.2)

for all locally integrable functions. This yields the boundedness of Md on Lp for
1 < p ≤ ∞ and the weak type (1,1) property of Md . More precise estimates on the
norm of Md can be derived. In fact, Md is of weak type (1,1) with norm at most 1;
see Exercise 2.1.12 in [156]. By interpolation (precisely Exercise 1.3.3(a) in [156]),
it follows that Md maps Lp(Rn) to itself with norm at most

∥
∥Md

∥
∥
Lp(Rn)→Lp(Rn)

≤ p
p−1

when 1< p< ∞.
One may wonder whether an estimate converse to (3.4.2) holds. But a quick ob-

servation shows that for a nonzero locally integrable function f that vanishes on
certain open sets, Md( f ) could have zeros, but Mc( f ) never vanishes. For instance
if a function f on the line vanishes on R−, then Md( f ) also vanishes on R−, since
no dyadic interval that contains a point in the support of f can also contain a neg-
ative number. Therefore, there is no hope for Md( f ) and Mc( f ) to be pointwise
comparable. However, we show below that the functions Md( f ) and M( f ) are com-
parable in norm.

The next result provides an example of a good lambda distributional inequality.

Theorem 3.4.4. For all γ > 0, all λ > 0, and all locally integrable functions f on
Rn, we have the estimate
∣
∣
{

x ∈ Rn : Md( f )(x)> 2λ , M#( f )(x)≤ γλ
}∣
∣≤ 2n γ

∣
∣
{

x ∈ Rn : Md( f )(x)> λ
}∣
∣.

Moreover, for any q with 1 ≤ q ≤ ∞ and w ∈ Aq, there are constants C and ε0
depending on n, q, and [w]Aq such that for all γ ,λ > 0 we have

w
({

x ∈ Rn : Md( f )(x)> 2λ ,M#( f )(x)≤ γλ
})

≤C γε0 w
({

x ∈ Rn : Md( f )(x)> λ
})

.
(3.4.3)

Proof. We may suppose that the setΩλ = {x ∈Rn : Md( f )(x)> λ} has finite mea-
sure; otherwise, there is nothing to prove. Then for each x ∈ Ωλ there is a maximal
dyadic cube Qx that contains x such that

1
|Qx|

∫

Qx
| f (y)|dy> λ ; (3.4.4)
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otherwise, Ωλ would have infinite measure. Let Qj be the collection of all such
maximal dyadic cubes containing all x inΩλ , i.e., {Qj} j = {Qx : x∈Ωλ}. Maximal
dyadic cubes are disjoint; hence any two different Qj are disjoint. Moreover, we
note that if x,y ∈ Qj, then Qj = Qx = Qy. It follows that Ωλ =

⋃

j Q j. To prove the
required estimate, it suffices to show that for all Qj we have

∣
∣
{

x ∈ Qj : Md( f )(x)> 2λ , M#( f )(x)≤ γλ
}∣
∣≤ 2nγ

∣
∣Qj
∣
∣ , (3.4.5)

for once (3.4.5) is established, the conclusion follows by summing on j.
We fix j and x ∈ Qj such that Md( f )(x)> 2λ . Then the supremum

Md( f )(x) = sup
R�x

1
|R|

∫

R
| f (y)|dy (3.4.6)

is taken over all dyadic cubes R that either contain Qj or are contained in Qj (since
Qj ∩R �= /0). If R � Qj, the maximality of Qj implies that (3.4.4) does not hold for
R; thus the average of | f | over R is at most λ . Thus, if Md( f )(x) > 2λ , then the
average in (3.4.6) is bigger than 2λ for some dyadic cube R contained (not properly)
in Qj. Therefore, if x ∈ Qj and Md( f )(x) > 2λ , then we can replace f by f χQj in
(3.4.6) and we must have Md( f χQj)(x)> 2λ . We let Q′

j be the unique dyadic cube
of twice the side length of Qj that contains Qj. Therefore, for x ∈ Qj we have

Md

((

f −Avg
Q′

j

f
)

χQj

)

(x)≥Md
(

f χQj)(x)−
∣
∣Avg

Q′
j

f
∣
∣> 2λ −λ = λ ,

since |AvgQ′
j
f | ≤AvgQ′

j
| f | ≤ λ because of the maximality of Qj. We conclude that

∣
∣
{

x ∈ Qj :Md( f )(x)> 2λ
}∣
∣≤

∣
∣
∣

{

x ∈ Qj :Md
((

f −Avg
Q′

j

f
)

χQj

)

(x)> λ
}∣
∣
∣ , (3.4.7)

and using the fact that Md is of weak type (1,1) with constant 1, we control the last
expression in (3.4.7) by

1
λ

∫

Qj

∣
∣ f (y)−Avg

Q′
j

f
∣
∣dy ≤ 2n|Qj|

λ
1

|Q′
j|
∫

Q′
j

∣
∣ f (y)−Avg

Q′
j

f
∣
∣dy

≤ 2n|Qj|
λ

M#( f )(ξ j)

(3.4.8)

for all ξ j ∈ Qj. In proving (3.4.5) we may assume that for some ξ j ∈ Qj we have
M#( f )(ξ j)≤ γλ ; otherwise, there is nothing to prove. For this ξ j, using (3.4.7) and
(3.4.8) we obtain (3.4.5).

Given w ∈ A∞, it follows from (3.4.5) and Theorem 7.3.3(d) in [156] when q=∞
or Proposition 7.2.8 in [156] when q<∞ that there exist constantsC2, ε0 depending
on n and [w]Aq such that
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w
({

x ∈ Qj : Md( f )(x)> 2λ , M#( f )(x)≤ γλ
})

w(Qj)
≤C2 (2nγ)ε0 .

Summing over j we obtain (3.4.3) withC =C2 2nγ . �

Good lambda inequalities can be used to obtain Lp bounds for quantities they
contain. For example, we use Theorem 3.4.4 to obtain the equivalence of the Lp

norms ofMd( f ) and M#( f ). Since M#( f ) is pointwise controlled by 2Mc( f ) and
∥
∥Mc( f )

∥
∥
Lp ≤C(p,n)

∥
∥ f
∥
∥
Lp ≤C(p,n)

∥
∥Md( f )

∥
∥
Lp ,

we have the estimate
∥
∥M#( f )

∥
∥
Lp(Rn)

≤ 2C(p,n)
∥
∥Md( f )

∥
∥
Lp(Rn)

for all f in Lp(Rn). The next theorem says that the converse estimate is valid.

Theorem 3.4.5. Let 0 < p0 ≤ p < ∞. Then there is a constant Cn(p) such that for
all functions f in L1loc(R

n) with Md( f ) ∈ Lp0(Rn) we have
∥
∥Md( f )

∥
∥
Lp(Rn)

≤Cn(p)
∥
∥M#( f )

∥
∥
Lp(Rn)

. (3.4.9)

If w ∈ Aq for some q satisfying 1 ≤ q ≤ ∞, there is a constant Cn(p,q, [w]Aq), such
that if Md( f ) ∈ Lp0(Rn,w), then

∥
∥Md( f )

∥
∥
Lp(Rn,w) ≤Cn(p,q, [w]Aq)

∥
∥M#( f )

∥
∥
Lp(Rn,w) . (3.4.10)

Proof. Fix p≥ p0 with p< ∞. For a positive real number N we set

IN =
∫ N

0
pλ p−1∣∣

{

x ∈ Rn : Md( f )(x)> λ
}∣
∣dλ .

We note that IN is finite, since p≥ p0 and it is bounded by

pNp−p0

p0

∫ N

0
p0λ p0−1∣∣

{

x ∈ Rn : Md( f )(x)> λ
}∣
∣dλ ≤ pNp−p0

p0

∥
∥Md( f )

∥
∥p0
Lp0 < ∞ .

We now write

IN = 2p
∫ N

2

0
pλ p−1∣∣

{

x ∈ Rn : Md( f )(x)> 2λ
}∣
∣dλ

and we use Theorem 3.4.4 to obtain the following sequence of inequalities:

IN ≤ 2p
∫ N

2

0
pλ p−1∣∣

{

x ∈ Rn : Md( f )(x)> 2λ , M#( f )(x)≤ γλ
}∣
∣dλ

+2p
∫ N

2

0
pλ p−1∣∣

{

x ∈ Rn : M#( f )(x)> γλ
}∣
∣dλ
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≤ 2p2nγ
∫ N

2

0
pλ p−1∣∣

{

x ∈ Rn : Md( f )(x)> λ
}∣
∣dλ

+2p
∫ N

2

0
pλ p−1∣∣

{

x ∈ Rn : M#( f )(x)> γλ
}∣
∣dλ

≤ 2p2nγ IN +
2p

γ p
∫ Nγ

2

0
pλ p−1∣∣

{

x ∈ Rn : M#( f )(x)> λ
}∣
∣dλ .

At this point we pick a γ such that 2p2nγ = 1/2. Since IN is finite, we can subtract
from both sides of the inequality the quantity 1

2 IN to obtain

IN ≤ 2p+12p(n+p+1)
∫ Nγ

2

0
pλ p−1∣∣

{

x ∈ Rn : M#( f )(x)> λ
}∣
∣dλ ,

from which we obtain (3.4.9) withCn(p) = 2n+p+2+ 1
p letting N → ∞.

To prove (3.4.10), for a fixed w ∈ A∞, we introduce

IN(w) =
∫ N

0
pλ p−1w

({

x ∈ Rn : Md( f )(x)> λ
})

dλ .

Since Md( f ) ∈ Lp0(w), as before we deduce IN(w)< ∞. Using (3.4.3) we obtain

IN(w)≤ 2pC γε0IN(w)+
2p

γ p
∫ Nγ

2

0
pλ p−1w

({

x ∈ Rn : M#( f )(x)> λ
})

dλ .

Selecting γ such that 2pC γε0 = 1/2, subtracting the finite expression 1
2 IN(w) from

both sides of the preceding inequality and letting N → ∞ we deduce (3.4.10). �
Corollary 3.4.6. Let 0< p0 <∞. Then for any p with p0 ≤ p<∞ and for all locally
integrable functions f on Rn with Md( f ) ∈ Lp0(Rn) we have

∥
∥ f
∥
∥
Lp(Rn)

≤Cn(p)
∥
∥M#( f )

∥
∥
Lp(Rn)

, (3.4.11)

where Cn(p) is the constant in Theorem 3.4.5.

Proof. Since for every point in Rn there is a sequence of dyadic cubes shrinking to
it, the Lebesgue differentiation theorem yields that for almost every point x in Rn

the averages of the locally integrable function f over the dyadic cubes containing x
converge to f (x). Consequently,

| f | ≤Md( f ) a.e.

Using this fact, the proof of (3.4.11) is immediate, since
∥
∥ f
∥
∥
Lp(Rn)

≤ ∥∥Md( f )
∥
∥
Lp(Rn)

,

and by Theorem 3.4.5 the latter is controlled by Cn(p)‖M#( f )‖Lp(Rn). �
Estimate (3.4.11) provides the sought converse to (3.4.1).
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3.4.3 Interpolation Using BMO

We continue this section by proving an interpolation result in which the space L∞ is
replaced by BMO. The sharp function plays a key role in the following theorem.

Theorem 3.4.7. Let 1 ≤ p0 < ∞. Let T be a linear operator that maps Lp0(Rn) to
Lp0(Rn) with bound A0, and L∞(Rn) to BMO(Rn) with bound A1. Then for all p
with p0 < p< ∞ there is a constant Cn,p such that for all f ∈ Lp we have

∥
∥T ( f )

∥
∥
Lp(Rn)

≤Cn,p,p0 A
p0
p
0 A

1− p0
p

1

∥
∥ f
∥
∥
Lp(Rn)

. (3.4.12)

Remark 3.4.8. In certain applications, the operator T may not be a priori defined
on all of Lp0 +L∞ but only on some subspace of it. In this case one may state that
the hypotheses and the conclusion of the preceding theorem hold for a subspace of
these spaces.

Proof. We consider the operator

S( f ) =M#(T ( f ))

defined for f ∈ Lp0 +L∞. It is easy to see that S is a sublinear operator. We prove
that Smaps L∞ to itself and Lp0 to itself if p0 > 1 or L1 to L1,∞ if p0 = 1. For f ∈ Lp0

we have
∥
∥S( f )

∥
∥
Lp0 =

∥
∥M#(T ( f ))

∥
∥
Lp0 ≤ 2

∥
∥Mc(T ( f ))

∥
∥
Lp0

≤ Cn,p0

∥
∥T ( f )

∥
∥
Lp0 ≤Cn,p0A0

∥
∥ f
∥
∥
Lp0 ,

where the three Lp0 norms on the top line should be replaced by L1,∞ if p0 = 1. For
f ∈ L∞ one has

∥
∥S( f )

∥
∥
L∞ =

∥
∥M#(T ( f ))

∥
∥
L∞ =

∥
∥T ( f )

∥
∥
BMO ≤ A1

∥
∥ f
∥
∥
L∞ .

Interpolating between these estimates using Theorem 1.3.2 in [156], we deduce

∥
∥M#(T ( f ))

∥
∥
Lp =

∥
∥S( f )

∥
∥
Lp ≤Cp,p0 A

p0
p
0 A

1− p0
p

1

∥
∥ f
∥
∥
Lp

for all f ∈ Lp, where p0 < p< ∞.
Consider now a function h∈ Lp∩Lp0 . In the case p0 > 1,Md(T (h))∈ Lp0 ; hence

Corollary 3.4.6 is applicable and gives

∥
∥T (h)

∥
∥
Lp ≤Cn(p)Cp,p0 A

p0
p
0 A

1− p0
p

1

∥
∥h
∥
∥
Lp .

Density yields the same estimate for all f ∈ Lp(Rn). If p0 = 1, one applies the same
idea but needs the endpoint estimate of Exercise 3.4.6, since Md(T (h)) ∈ L1,∞. �
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3.4.4 Estimates for Singular Integrals Involving the Sharp
Function

We use the sharp function to obtain pointwise estimates for singular integrals. These
enable us to recover previously obtained estimates for singular integrals, but also to
deduce a new endpoint boundedness result from L∞ to BMO.

We recall some facts about singular integral operators. Suppose that K is a func-
tion defined on Rn \{0} that satisfies

|K(x)| ≤ A1|x|−n , (3.4.13)

|K(x− y)−K(x)| ≤ A2|y|δ |x|−n−δ when |x| ≥ 2|y|> 0, (3.4.14)

sup
r<R<∞

∣
∣
∣

∫

r≤|x|≤R
K(x)dx

∣
∣
∣ ≤ A3 . (3.4.15)

LetW be a tempered distribution that coincides with K on Rn \{0} and let T be the
linear operator given by convolution withW .

Under these assumptions we have that T is L2 bounded with norm at most a
constant multiple of A1+A2+A3 (Theorem 5.4.1 in [156]), and hence it is also Lp

bounded with a similar norm on Lp for 1< p< ∞ (Theorem 5.3.3 in [156]).

Theorem 3.4.9. Let T be given by convolution with a distribution W that coincides
with a function K on Rn \ {0} satisfying (3.4.14). Assume that T has an extension
that is L2 bounded with a norm B. Then there is a constant Cn such that for any s> 1
the estimate

M#(T ( f ))(x)≤Cn(A2+B)max(s,(s−1)−1)M(| f |s) 1
s (x) (3.4.16)

is valid for all f in
⋃

s≤p<∞L
p and all x ∈ Rn.

Proof. In view of Proposition 3.4.2 (2), given any cube Q, it suffices to find a con-
stant aQ such that

1
|Q|

∫

Q
|T ( f )(y)−aQ|dy≤Cn max(s,(s−1)−1)(A2+B)M(| f |s) 1

s (x) (3.4.17)

for almost all x ∈ Q. To prove this estimate we employ a well-known theme. We
write f = f 0Q+ f∞Q , where f 0Q = f χ6√nQ and f∞Q = f χ(6√nQ)c . Here 6

√
nQ denotes

the cube that is concentric with Q, has sides parallel to those of Q, and has side
length 6

√
n�(Q), where �(Q) is the side length of Q.

We now fix an f in
⋃

s≤p<∞L
p and we select aQ = T ( f∞Q )(x). Then aQ is finite

(and thus well defined) for all x ∈ Q. Indeed, for all x ∈ Q, (3.4.13) yields

|T ( f∞Q )(x)|=
∣
∣
∣
∣

∫

(Q∗)c
f (y)K(x− y)dy

∣
∣
∣
∣
≤ ∥∥ f∥∥Lp

(∫

|x−y|≥cn�(Q)

Ap′
1 dy

|x− y|np′
) 1

p′
< ∞ ,
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where cn is a positive constant. It follows that

1
|Q|

∫

Q
|T ( f )(y)−aQ|dy

≤ 1
|Q|

∫

Q
|T ( f 0Q)(y)|dy+

1
|Q|

∫

Q
|T ( f∞Q )(y)−T ( f∞Q )(x)|dy . (3.4.18)

In view of Theorem 5.3.3 in [156], T maps Ls to Ls with norm at most a dimen-
sional constant multiple of max(s,(s− 1)−1)(B+A2). The first term in (3.4.18) is
controlled by

(
1
|Q|

∫

Q
|T ( f 0Q)(y)|s dy

) 1
s

≤ Cnmax(s,(s−1)−1)(B+A2)

(
1
|Q|

∫

Rn
| f 0Q(y)|s dy

) 1
s

≤ C′
nmax(s,(s−1)−1)(B+A2)M(| f |s) 1

s (x) .

To estimate the second term in (3.4.18), we first note that
∫

Q
|T ( f∞Q )(y)−T ( f∞Q )(x)|dy≤

∫

Q

∣
∣
∣
∣

∫

(6
√
nQ)c

(

K(y− z)−K(x− z)
)

f (z)dz
∣
∣
∣
∣
dy .

We make a few geometric observations. Since both x and y are in Q, we have
|x− y| ≤ √

n�(Q). Also (see Figure 3.3), since z /∈ 6
√
nQ and x ∈ Q, we must have

|x− z| ≥ dist
(

Q,(6
√
nQ)c

)≥ (3
√
n− 1

2 )�(Q)≥ 2
√
n�(Q)≥ 2|x− y| .

Therefore, we have |x− z| ≥ 2|x− y|, and this allows us to conclude that

∣
∣K(y− z)−K(x− z)

∣
∣=

∣
∣K((x− z)− (x− y))−K(x− z)

∣
∣≤ A2

|x− y|δ
|x− z|n+δ

using condition (3.4.14). Using these observations, we bound the second term in
(3.4.18) by

1
|Q|

∫

Q

∫

(6
√
nQ)c

A2|x− y|δ
|x− z|n+δ | f (z)|dzdy ≤ Cn

A2

|Q|
∫

(6
√
nQ)c

�(Q)n+δ

|x− z|n+δ | f (z)|dz

≤ CnA2

∫

Rn

�(Q)δ

(�(Q)+ |x− z|)n+δ | f (z)|dz

≤ CnA2M( f )(x)

≤ CnA2 (M(| f |s)(x)) 1
s ,

where we used the fact that |x− z| is at least �(Q) and Theorem 2.1.10 in [156]. This
proves (3.4.17) and hence (3.4.16). �
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The inequality (3.4.16) in Theorem 3.4.9 is noteworthy, since it provides a point-
wise estimate for T ( f ) in terms of a maximal function. This clearly strengthens the
Lp boundedness of T . As a consequence of this estimate, we deduce the following
result.

Corollary 3.4.10. Let T be given by convolution with a distributionW that coincides
with a function K on Rn \{0} that satisfies (3.4.14). Assume that T has an extension
that is L2 bounded with norm B. Then there is a constant Cn such that the estimate

Fig. 3.3 The cubes Q and
6
√
nQ. The distance d is

equal to (3
√
n− 1

2 )�(Q).
z

x

yQ

6 n

d

Q

∥
∥T ( f )

∥
∥
BMO ≤Cn(A2+B)

∥
∥ f
∥
∥
L∞ (3.4.19)

is valid for all f ∈ L∞
⋂(⋃

1≤p<∞L
p
)

.

Proof. We take s= 2 in Theorem 3.4.9 and we observe that

∥
∥T ( f )

∥
∥
BMO =

∥
∥M#(T ( f ))

∥
∥
L∞ ≤Cn(A2+B)

∥
∥M(| f |2) 1

2
∥
∥
L∞ ,

and the last expression is easily controlled byCn(A2+B)‖ f‖L∞ . �

Remark 3.4.11. At this point we have not defined the action of T ( f ) when f lies
merely in L∞; and for this reason we restricted the functions f in Corollary 3.4.10
to be also in Lp for some p ∈ [1,∞). There is, however, a way to define T on L∞

abstractly via duality. Theorem 2.4.1 gives that T and its transpose Tt map H1 to L1.
Then for f ∈ L∞(Rn) we define a linear functional T ( f ) on H1(Rn) by setting

〈

T ( f ),ϕ
〉

=
〈

f ,Tt(ϕ)
〉

=
∫

Rn
f (x)Tt(ϕ)(x)dx, ϕ ∈ H1(Rn) ,

noting that the expression on the right is a convergent integral, since f ∈ L∞ and
Tt(ϕ) lies in L1(Rn). The preceding integral is bounded by ‖ f‖L∞Cn(A2+B)‖ϕ‖H1 ,
since Tt maps H1 to L1 and consequently, the linear functional T ( f ) is continuous.
It can therefore be identified with a BMO function (Theorem 3.2.2) that satisfies

∥
∥T ( f )

∥
∥
BMO ≤C′

n(A2+B)‖ f‖L∞ .



194 3 BMO and Carleson Measures

In this way, one defines T ( f ) for f ∈ L∞ as a BMO function, but T ( f ) is not explic-
itly defined. An explicit definition is given in the next chapter in a slightly more gen-
eral setting. Using this definition, inequality (3.4.19) extends to hold for all f ∈ L∞.

Exercises

3.4.1. Let 1 < q < p < ∞. Prove that there is a constant Cn,p,q such that for all
functions f on Rn withMd( f ) ∈ Lq(Rn) we have

∥
∥ f
∥
∥
Lp ≤Cn,p,q

∥
∥ f
∥
∥1−θ
Lq
∥
∥ f
∥
∥θ
BMO ,

where 1
p =

1−θ
q .

3.4.2. Let μ be a positive Borel measure on Rn.
(a) Show that the maximal operator

Md
μ( f )(x) = sup

Q�x
Q dyadic cube

1
μ(Q)

∫

Q
| f (t)|dμ(t)

maps L1(Rn,dμ) to L1,∞(Rn,dμ) with constant 1.
(b) For a μ-locally integrable function f , define the sharp maximal function with
respect to μ ,

M#
μ( f )(x) = sup

Q�x
1

μ(Q)

∫

Q

∣
∣
∣ f (t)−Avg

Q,μ
f
∣
∣
∣dμ(t),

where AvgQ,μ f denotes the average of f overQwith respect to μ . Assume that μ is a
doubling measure with doubling constantC(μ) [this means that μ(3Q)≤C(μ)μ(Q)
for all cubes Q]. Prove that for all γ > 0, all λ > 0, and all μ-locally integrable
functions f on Rn we have the estimate

μ
({

x : Md
μ( f )(x)> 2λ , M#

μ( f )(x)≤ γλ
})≤C(μ)γ μ

({

x : Md
μ( f )(x)> λ

})

.

[

Hint: Part (a): For any x in the set {x ∈ Rn : Md
μ( f )(x) > λ}, choose a maximal

dyadic cube Q=Q(x) such that
∫

Q | f (t)|dμ(t)> λμ(Q). Part (b): Mimic the proof
of Theorem 3.4.4.

]

3.4.3. Let 0< p0 <∞ and letMd
μ andM#

μ be as in Exercise 3.4.2. Prove that for any
p with p0 ≤ p < ∞ there is a constant Cn(p,μ) such that for all locally integrable
functions f withMd

μ( f ) ∈ Lp0(Rn,dμ) we have
∥
∥Md

μ( f )
∥
∥
Lp(Rn,dμ) ≤Cn(p,μ)

∥
∥M#

μ( f )
∥
∥
Lp(Rn,dμ) .
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3.4.4. We say that a function f on Rn is in BMOd(Rn) (or dyadic BMO) if

∥
∥ f
∥
∥
BMOd

= sup
Qdyadic cube

1
|Q|

∫

Q

∣
∣ f (x)−Avg

Q
f
∣
∣dx< ∞ .

(a) Show that BMO is a proper subset of BMOd .
(b) Two dyadic cubes of the same length are called adjacent if they are different and
their closures have nonempty intersection. Suppose that A is a finite constant and
that a function f in BMOd(Rn) satisfies

∣
∣Avg

Q1

f −Avg
Q2

f
∣
∣≤ A

for all adjacent dyadic cubes of the same length. Show that f is in BMO(Rn).
[

Hint: Part (b): Consider first the case n= 1. Given an interval I, find adjacent dyadic
intervals of the same length I1 and I2 such that I � I1

⋃
I2 and |I1| ≤ |I|< 2|I1|.

]

3.4.5. Suppose that K is a function on Rn \{0} that satisfies (3.4.13), (3.4.14), and
(3.4.15). Let η be a smooth function that vanishes in a neighborhood of the origin
and is equal to 1 in a neighborhood of infinity. For ε > 0 let K(ε)

η (x) = K(x)η(x/ε)
and let T (ε)

η be the operator given by convolution with K(ε)
η . Prove that for any 1 <

s< ∞ there is a constantCn,s such that for all p with s< p< ∞ and f in Lp we have
∥
∥
∥sup
ε>0

M#(T (ε)
η ( f ))

∥
∥
∥
Lp(Rn)

≤Cn,s(A1+A2+A3)
∥
∥ f
∥
∥
Lp(Rn)

.

[

Hint: Observe that the kernels K(ε)
η satisfy (3.4.13), (3.4.14), and (3.4.15) uniformly

in ε > 0 and use Theorem 3.4.9 and Theorem 5.4.1 in [156].
]

3.4.6. Let 0 < p0 < ∞ and suppose that for some locally integrable function f we
have that Md( f ) lies in Lp0,∞(Rn). Show that for any p in (p0,∞) there exists a
constant Cn(p) such that

∥
∥ f
∥
∥
Lp(Rn)

≤ ∥∥Md( f )
∥
∥
Lp(Rn)

≤Cn(p)
∥
∥M#( f )

∥
∥
Lp(Rn)

,

where Cn(p) depends only on n and p.
[

Hint: With the same notation as in the proof of Theorem 3.4.5, use the hypothesis
‖Md( f )‖Lp0,∞ <∞ to prove that IN <∞ whenever p> p0. Then the arguments in the
proofs of Theorem 3.4.5 and Corollary 3.4.6 remain unchanged.

]

3.4.7. (a) Let bN , N = 1,2, . . . be BMO functions on Rn such that

sup
N≥1

‖bN‖BMO =C < ∞ .

Suppose that bN → b a.e. Show that b lies in BMO(Rn) and that ‖b‖BMO ≤ 2C.
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(b) Prove that the functions

ΣN(x) =
N

∑
k=1

e2πikx

k

have uniformly bounded imaginary parts inN and x. Also show that ΣN(x) converges
asN→∞ to a function b(x) for all x∈R\Z. Use Corollary 3.4.10 and Remark 3.4.11
to prove that the real parts of ΣN are in BMO uniformly in N and consequently,

sup
N≥1

∥
∥ΣN

∥
∥
BMO(R) < ∞ .

Deduce that b lies in BMO(R).
[

Hint: Part (a): For each cube Q prove that 1
|Q|
∫

Q |b(x)− liminfNAvgQ bN |dx ≤C.
Part (b) Use summation by parts and the fact that the Hilbert transform of sin(2πkx)
is −cos(2πkx).

]

3.5 Commutators of Singular Integrals with BMO Functions

The mean value zero property of H1(Rn) is often manifested by the pairing with
BMO. It is therefore natural to expect that BMO can be utilized to express the can-
cellation of H1. We give an example to indicate this assertion. If H is the Hilbert
transform, then the bilinear operator

( f ,g) �→ f H(g)+H( f )g

maps L2(Rn)×L2(Rn) to H1(Rn); see Exercise 2.4.3. Pairing with a BMO function
b and using that Ht =−H, we obtain that

〈

f H(g)+H( f )g , b
〉

=
〈

f , H(g)b−H(gb)
〉

,

and hence the operator g �→H(g)b−H(gb) should be L2 bounded. This expression
H(g)b−H(gb) is called the commutator of H with the BMO function b. More
generally, we give the following definition.

Definition 3.5.1. The commutator of a singular integral operator T with a function
b is defined as

[b,T ]( f ) = bT ( f )−T (b f ) .

If the function b is locally integrable and has at most polynomial growth at infinity,
then the operation [b,T ] is well defined when acting on Schwartz functions f .

In view of the preceding remarks, the Lp boundedness of the commutator [b,T ]
for b in BMO exactly captures the cancellation property of the bilinear expression

( f ,g) �→ T ( f )g− f T t(g) .
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As in the case with the Hilbert transform, it is natural to expect that the commutator
[b,T ] of a general singular integral T is Lp bounded for all 1 < p < ∞. This fact
is proved in this section. Since BMO functions are unbounded in general, one may
surmise that the presence of the negative sign in the definition of the commutator
plays a crucial cancellation role.

We introduce some material needed in the study of the boundedness of the com-
mutator.

3.5.1 An Orlicz-Type Maximal Function

We can express the Lp norm (1≤ p< ∞) of a function f on a measure space X by

∥
∥ f
∥
∥
Lp(X) =

(∫

X
| f |p dμ

)1
p

= inf
{

λ > 0 :
∫

X

∣
∣
∣
| f |
λ

∣
∣
∣

p
dμ ≤ 1

}

.

Motivated by the second expression, we may replace the function t p by a general
increasing convex function Φ(t). We give the following definition.

Definition 3.5.2. A Young’s function is a continuous increasing convex function Φ
on [0,∞) that satisfies Φ(0) = 0 and limt→∞Φ(t) = ∞. The Orlicz norm of a mea-
surable function f on a measure space (X ,μ) with respect to a Young’s function Φ
is defined as

∥
∥ f
∥
∥
Φ(L)(X ,μ) = inf

{

λ > 0 :
∫

X
Φ(| f |/λ )dμ ≤ 1

}

.

TheOrlicz spaceΦ(L)(X ,μ) is then defined as the space of all measurable functions
f on X such that ‖ f‖Φ(L)(X ,μ) < ∞.

We are mostly concerned with the case in which the measure space X is a cube
in Rn with normalized Lebesgue measure |Q|−1dx. For a measurable function f on
a cube Q in Rn, the Orlicz norm of f is therefore

∥
∥ f
∥
∥
Φ(L)(Q, dx|Q| )

= inf
{

λ > 0 :
1
|Q|

∫

Q
Φ(| f |/λ )dx≤ 1

}

,

which is simply denoted by ‖ f‖Φ(L)(Q), since the measure is understood to be nor-
malized Lebesgue whenever the ambient space is a cube.

Since for C > 1 convexity gives Φ(t/C)≤Φ(t)/C for all t ≥ 0, it follows that
∥
∥ f
∥
∥
CΦ(Q) ≤C

∥
∥ f
∥
∥
Φ(Q) , (3.5.1)

which implies that the norms with respect to Φ and CΦ are comparable.
A case of particular interest arises when Φ(t) = t log(e+ t). This function is

pointwise comparable to t(1+ log+ t) for t ≥ 0. We make use in the sequel of a
certain maximal operator defined in terms of the corresponding Orlicz norm.
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Definition 3.5.3. We define the Orlicz maximal operator

ML log(e+L)( f )(x) = sup
Q�x

∥
∥ f
∥
∥
L log(e+L)(Q),

where the supremum is taken over all cubes Q with sides parallel to the axes that
contain the given point x.

The boundedness properties of this maximal operator are a consequence of the
following lemma.

Lemma 3.5.4. There is a positive constant c(n) such that for any cube Q in Rn and
any nonnegative locally integrable function w, we have

∥
∥w
∥
∥
L log(e+L)(Q) ≤

c(n)
|Q|

∫

Q
Mc(w)dx , (3.5.2)

where Mc is the Hardy–Littlewood maximal operator with respect to cubes. Hence,
for some other dimensional constant c′(n) and all nonnegative w in L1loc(R

n) the
inequality

ML log(e+L)(w)(x)≤ c′(n)M2(w)(x) (3.5.3)

is valid, where M2 =M ◦M and M is the Hardy–Littlewood maximal operator.

Proof. Fix a cube Q in Rn with sides parallel to the axes. We introduce a maximal
operator associated with Q as follows:

MQ
c ( f )(x) = sup

R�x
R⊆Q

1
|R|

∫

R
| f (y)|dy ,

where the supremum is taken over cubes R in Rn with sides parallel to the axes. The
key estimate follows from the following local version of the reverse weak-type (1,1)
estimate of the Hardy–Littlewood maximal function (see Exercise 2.1.4(c) in [156]).
For each nonnegative function f on Rn and α ≥ AvgQ f , we have

1
α

∫

Q∩{ f>α}
f dx≤ 2n |{x ∈ Q : MQ

c ( f )(x)> α}| . (3.5.4)

Indeed, to prove (3.5.4), we apply Proposition 2.1.20 in [156] to the function f and
the number α > 0. Then there exists a collection of disjoint (possibly empty) open
cubes Qj such that for almost all x ∈ (⋃ j Q j

)c we have f (x)≤ α and

α <
1

|Qj|
∫

Qj

f (t)dt ≤ 2nα . (3.5.5)

According to Corollary 2.1.21 in [156] we have Q \ (⋃ j Q j) ⊆ { f ≤ α}. This im-
plies that Q∩{ f > α} ⊆ ⋃

j Q j, which is contained in {x ∈ Q : MQ
c ( f )(x) > α}.

Multiplying both sides of (3.5.5) by |Qj|/α and summing over j we obtain (3.5.4).



3.5 Commutators of Singular Integrals with BMO Functions 199

Using the definition of ML log(e+L), (3.5.2) follows from the fact that for some
constant c> 1 independent of w we have

1
|Q|

∫

Q

w
λQ

log
(

e+
w
λQ

)

dμ ≤ 1, (3.5.6)

where
λQ =

c
|Q|

∫

Q
Mc(w)dx= c Avg

Q
Mc(w).

We let f = w/λQ; by the Lebesgue differentiation theorem we have that 0 ≤
AvgQ f ≤ 1/c. It is true that

∫

X
φ( f )dν =

∫ ∞

0
φ ′(t)ν({x ∈ X : f (x)> t})dt ,

where ν ≥ 0, (X ,ν) is a σ -finite measure space, φ is an increasing continuously
differentiable function with φ(0) = 0, and f ∈ Lp(X); see Proposition 1.1.4 in [156].
We take X = Q, dν = |Q|−1 f χQ dx, and φ(t) = log(e+ t)−1 to deduce

1
|Q|

∫

Q
f log(e+ f )dx =

1
|Q|

∫

Q
f dx+

1
|Q|

∫ ∞

0

1
e+ t

(∫

Q∩{ f>t}
f dx

)

dt

= I0+ I1+ I2 ,

where

I0 =
1
|Q|

∫

Q
f dx ,

I1 =
1
|Q|

∫ AvgQ f

0

1
e+ t

(∫

Q∩{ f>t}
f dx

)

dt ,

I2 =
1
|Q|

∫ ∞

AvgQ f

1
e+ t

(∫

Q∩{ f>t}
f dx

)

dt .

We now clearly have that I0 = AvgQ f ≤ 1/c, while I1 ≤ (AvgQ f )2 ≤ 1/c2 . For I2
we use estimate (3.5.4). Indeed, one has

I2 =
1
|Q|

∫ ∞

AvgQ f

1
e+ t

(∫

Q∩{ f>t}
f dx

)

dt

≤ 2n

|Q|
∫ ∞

AvgQ f

t
e+ t

|{x ∈ Q :MQ
c ( f )(x)> t}|dt

≤ 2n

|Q|
∫ ∞

0
|{x ∈ Q :MQ

c ( f )(x)> λ}|dλ

=
2n

|Q|
∫

Q
MQ

c ( f )dx

=
2n

|Q|
∫

Q
Mc(w)dx

1
λQ

=
2n

c
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using the definition of λQ. Combining all the estimates obtained, we deduce that

I0+ I1 + I2 ≤ 1
c
+

1
c2

+
2n

c
≤ 1 ,

provided c is large enough. �

3.5.2 A Pointwise Estimate for the Commutator

We introduce certain modifications of the sharp maximal operator M# defined in
Section 3.4. We have the centered version

M#( f )(x) = sup
Q cube in Rn

center of Q is x

1
|Q|

∫

Q
| f (y)−Avg

Q
f |dy ,

which is pointwise equivalent to M#( f )(x) by a simple argument based on the fact
that the smallest cube that contains a fixed cube and is centered at point in its interior
has comparable size with the fixed cube.

Then we introduce the “smaller” sharp maximal function

M##( f )(x) = sup
Q cube in Rn

center of Q is x

inf
c

1
|Q|

∫

Q
| f (y)− c|dy , (3.5.7)

which is pointwise equivalent to M#( f )(x) [and thus to M#( f )(x)] by an argument
similar with that given in Proposition 3.4.2 (2). For δ > 0 we also introduce the
maximal operators

Mδ ( f ) =M(| f |δ )1/δ
M#
δ ( f ) =M#(| f |δ )1/δ

M#
δ ( f ) =M#(| f |δ )1/δ

M##
δ ( f ) =M##(| f |δ )1/δ ,

where M is the Hardy–Littlewood maximal operator. Of these four maximal func-
tions, the last three are pointwise comparable to each other.

The next lemma states a pointwise estimate for commutators of singular inte-
gral operators with BMO functions in terms of the maximal functions and maximal
functions of singular integrals.

Lemma 3.5.5. Let T be a linear operator given by convolution with a tempered dis-
tribution on Rn that coincides with a function K(x) on Rn \{0} satisfying (3.4.13),
(3.4.14), and (3.4.15). Let b be in BMO(Rn), and let 0 < δ < ε . Then there exists
a positive constant C = Cδ ,ε ,n such that for every smooth function f with compact
support we have
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M#
δ ([b,T ]( f ))≤C‖b‖BMO

{

Mε(T ( f ))+M2( f )
}

. (3.5.8)

Proof. We will prove (3.5.8) for the equivalent operator M##
δ ([b,T ]( f )). Fix a cube

Q inRn with sides parallel to the axes centered at the point x. Since for 0< δ < 1 we
have

∣
∣|α|δ −|β |δ ∣∣≤ ∣∣α−β

∣
∣δ for α,β ∈ R, it is enough to show for some complex

constant c= cQ that there exists C =Cδ > 0 such that

(
1
|Q|

∫

Q

∣
∣[b,T ]( f )(y)− c

∣
∣δdy

)1
δ ≤C‖b‖BMO

{

Mε(T ( f ))(x)+M2( f )(x)
}

. (3.5.9)

Denote by Q∗ the cube 5
√
nQ that has side length 5

√
n times the side length of Q

and the same center x as Q. Let f = f1 + f2, where f1 = f χQ∗ . For an arbitrary
constant a we write

[b,T ]( f ) = (b−a)T ( f )−T ((b−a) f1)−T ((b−a) f2).

Selecting
c= Avg

Q
T ((b−a) f2) and a= Avg

Q∗
b ,

we can estimate the left-hand side of (3.5.9) by a multiple of L1+L2+L3, where

L1 =

(

1
|Q|

∫

Q

∣
∣(b(y)−Avg

Q∗
b)T ( f )(y)

∣
∣δ dy

)1
δ

,

L2 =

(

1
|Q|

∫

Q

∣
∣T
(

(b−Avg
Q∗

b) f1
)

(y)
∣
∣δ dy

)1
δ

,

L3 =

(

1
|Q|

∫

Q

∣
∣T
(

(b−Avg
Q∗

b) f2
)−Avg

Q
T
(

(b−Avg
Q∗

b) f2
)∣
∣δ dy

)1
δ

.

To estimate L1, we use Hölder’s inequality with exponents r and r′ for some
1< r < ε/δ :

L1 ≤
(

1
|Q|

∫

Q

∣
∣b(y)−Avg

Q∗
b
∣
∣δ r

′
dy

) 1
δ r′ ( 1

|Q|
∫

Q
|T ( f )(y)|δ r dy

) 1
δ r

≤ C‖b‖BMOMδ r(T ( f ))(x)

≤ C‖b‖BMOMε(T ( f ))(x) ,

recalling that x is the center of Q. Since T : L1(Rn) → L1,∞(Rn) and 0 < δ < 1,
Kolmogorov’s inequality (Exercise 2.1.5 in [156]) yields
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L2 ≤ C
|Q|

∫

Rn

∣
∣(b(y)−Avg

Q∗
b) f1(y)

∣
∣dy

=
C′

|Q∗|
∫

Q∗

∣
∣(b(y)−Avg

Q∗
b) f (y)

∣
∣dy

≤ 2C′∥∥b−Avg
Q∗

b
∥
∥
(eL−1)(Q∗)

∥
∥ f
∥
∥
L log(1+L)(Q∗),

using Exercise 3.5.2(c).
For some 0 < γ < (2ne)−1, let Cn,γ > 2 be a constant larger than that appearing

on the right-hand side of the inequality in Corollary 3.1.7. We set c0 =Cn,γ −1> 1.
We use (3.5.1) and we claim that

∥
∥b−Avg

Q∗
b
∥
∥
(eL−1)(Q∗) ≤ c0

∥
∥b−Avg

Q∗
b
∥
∥
c−1
0 (eL−1)(Q∗) ≤

c0
γ
∥
∥b
∥
∥
BMO. (3.5.10)

Indeed, the last inequality is equivalent to

1
|Q∗|

∫

Q∗
c−1
0

[

eγ |b(y)−AvgQ∗ b|/‖b‖BMO −1
]

dy≤ 1,

which is a restatement of Corollary 3.1.7. We therefore conclude that

L2 ≤C‖b‖BMO ML log(1+L)( f )(x).

Finally, we turn our attention to the term L3. Note that if z,y ∈ Q and w /∈ Q∗,
then |z−w| ≥ 2|z− y|. Using Fubini’s theorem and property (3.4.14) successively,
we control L3 pointwise by

1
|Q|

∫

Q

∣
∣T
(

(b−Avg
Q∗

b) f2
)

(y)−Avg
Q

T
(

(b−Avg
Q∗

b) f2
)∣
∣dy

≤ 1
|Q|2

∫

Q

∫

Q

∫

Rn\Q∗
|K(y−w)−K(z−w)|∣∣(b(w)−Avg

Q∗
b) f (w)

∣
∣dwdzdy

≤ 1
|Q|2

∫

Q

∫

Q

∞

∑
j=0

∫

2 j+1Q∗\2 jQ∗
A2|y− z|δ
|z−w|n+δ

∣
∣b(w)−Avg

Q∗
b
∣
∣ | f (w)|dwdzdy

≤CA2

∞

∑
j=0

�(Q)δ

(2 j�(Q))n+δ

∫

2 j+1Q∗

∣
∣b(w)−Avg

Q∗
b
∣
∣ | f (w)|dw

≤CA2

( ∞

∑
j=0

2− jδ

(2 j�(Q))n

∫

2 j+1Q∗

∣
∣b(w)− Avg

2 j+1Q∗
b
∣
∣ | f (w)|dw

+
∞

∑
j=0

2− jδ ∣∣ Avg
2 j+1Q∗

b−Avg
Q∗

b
∣
∣

1
(2 j�(Q))n

∫

2 j+1Q∗
| f (w)|dw

)
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≤C′A2

∞

∑
j=0

2− jδ∥∥b− Avg
2 j+1Q∗

b
∥
∥
(eL−1)(2 j+1Q∗)

∥
∥ f
∥
∥
L log(1+L)(2 j+1Q∗)

+C′A2 ‖b‖BMO

∞

∑
j=1

j
2 jδ M( f )(x)

≤C′′A2 ‖b‖BMO ML log(1+L)( f )(x)+C′′A2 ‖b‖BMO M( f )(x)

≤C′′′A2 ‖b‖BMO M2( f )(x),

where we have used inequality (3.5.10), Lemma 3.5.4, and the simple estimate
∣
∣
∣ Avg
2 j+1Q∗

b−Avg
Q∗

b
∣
∣
∣≤Cn j‖b‖BMO

of Exercise 3.1.5. �

3.5.3 Lp Boundedness of the Commutator

We note that if f has compact support and b is in BMO, then b f lies in Lq(Rn)
for all q < ∞ and therefore T (b f ) is well defined whenever T is a singular integral
operator. Likewise, [b,T ] is a well-defined operator on C ∞

0 for all b in BMO.
Having obtained the crucial Lemma 3.5.5, we now pass to an important result

concerning its Lp boundedness.

Theorem 3.5.6. Let T be as in Lemma 3.5.5. Then for any 1< p< ∞ there exists a
constant C=Cp,n such that for all smooth functions with compact support f and all
BMO functions b, the following estimate is valid:

∥
∥[b,T ]( f )

∥
∥
Lp(Rn)

≤C
∥
∥b
∥
∥
BMO

∥
∥ f
∥
∥
Lp(Rn)

. (3.5.11)

Consequently, the linear operator

f �→ [b,T ]( f )

admits a bounded extension from Lp(Rn) to Lp(Rn) for all 1< p< ∞ with norm at
most a multiple of ‖b‖BMO.

Proof. Using the inequality of Theorem 3.4.4, we obtain for functions g, with |g|δ
locally integrable,

∣
∣{Md(|g|δ )

1
δ > 2

1
δ λ}∩{M#

δ (g)≤ γλ}∣∣≤ 2n γδ
∣
∣{Md(|g|δ )

1
δ > λ}∣∣ (3.5.12)



204 3 BMO and Carleson Measures

for all λ ,γ ,δ > 0. Then a repetition of the proof of Theorem 3.4.5 yields the second
inequality:

∥
∥M(|g|δ ) 1

δ
∥
∥
Lp ≤Cn

∥
∥Md(|g|δ )

1
δ
∥
∥
Lp ≤Cn(p)

∥
∥M#

δ (g)
∥
∥
Lp (3.5.13)

for all p ∈ (p0,∞), provided Md(|g|δ )
1
δ ∈ Lp0(Rn) for some p0 > 0.

For the following argument, it is convenient to replace b by the bounded function

bk(x) =

⎧

⎪⎨

⎪⎩

k if b(x)> k,
b(x) if −k ≤ b(x)≤ k,
−k if b(x)<−k,

which satisfies ‖bk‖BMO ≤ 9
4‖b‖BMO for any k > 0; see Exercise 3.1.4.

For given 1 < p < ∞, select p0 such that 1 < p0 < p. Given a smooth function
with compact support f , we note that the function bk f lies in Lp0 ; thus T (bk f )
also lies in Lp0 . Likewise, bkT ( f ) also lies in Lp0 . Since Mδ is bounded on Lp0 for
0< δ < 1, we conclude that

∥
∥Mδ ([bk,T ]( f ))

∥
∥
Lp0 ≤Cδ

(∥
∥Mδ (bkT ( f ))

∥
∥
Lp0 +

∥
∥Mδ (T (bk f ))

∥
∥
Lp0

)

< ∞ .

This allows us to obtain (3.5.13) with g= [bk,T ]( f ). We now turn to Lemma 3.5.5,
in which we pick 0< δ < ε < 1. Taking Lp norms on both sides of (3.5.8) and using
(3.5.13) with g = [bk,T ]( f ) and the boundedness of Mε , T , and M2 on Lp(Rn), we
deduce the a priori estimate (3.5.11) for smooth functions with compact support f
and the truncated BMO functions bk.

The Lebesgue dominated convergence theorem gives that bk → b in L2 of every
compact set and, in particular, in L2(supp f ). It follows that bk f → b f in L2 and
therefore T (bk f ) → T (b f ) in L2 by the boundedness of T on L2. We deduce that
for some subsequence of integers k j, T (bk j f )→ T (b f ) a.e. For this subsequence we
have [bk j ,T ]( f )→ [b,T ]( f ) a.e. Letting j→∞ and using Fatou’s lemma, we deduce
that (3.5.11) holds for all BMO functions b and smooth functions f with compact
support.

Since smooth functions with compact support are dense in Lp, it follows that the
commutator admits a bounded extension on Lp that satisfies (3.5.11). �

We refer to Exercise 3.5.4 for an analogue of Theorem 3.5.6 when p= 1.

Exercises

3.5.1. Use Jensen’s inequality to show that the Hardy–Littlewood maximal operator
M is pointwise controlled by a constant multiple ofML log(1+L).
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3.5.2. (a) (Young’s inequality for Orlicz spaces) Let ϕ be a continuous, real-
valued, strictly increasing function defined on [0,∞) which satisfies ϕ(0) = 0 and
limt→∞ϕ(t) = ∞. Let ψ = ϕ−1 and for x ∈ [0,∞) define

Φ(x) =
∫ x

0
ϕ(t)dt , Ψ(x) =

∫ x

0
ψ(t)dt .

Show that for s, t ∈ [0,∞) we have st ≤Φ(s)+Ψ(t) .
(b) Choose a suitable function ϕ in part (a) to deduce for s, t in [0,∞) the inequality

st ≤ (t+1) log(t+1)− t+ es− s−1≤ t log(t+1)+ es−1 .

(c) (Hölder’s inequality for Orlicz spaces) Deduce the inequality
∣
∣
〈

f ,g
〉∣
∣≤ 2

∥
∥ f
∥
∥
Φ(L)

∥
∥g
∥
∥
Ψ(L) .

[

Hint: Give a geometric proof distinguishing the cases t > ϕ(s) and t ≤ ϕ(s). Use
that for u≥ 0 we have

∫ u
0 ϕ(t)dt+

∫ ϕ(u)
0 ψ(s)ds= uϕ(u).

]

3.5.3. Let T be as in Lemma 3.5.5. Show that there is a constant Cn < ∞ such that
for all f ∈ Lp(Rn) and g ∈ Lp′(Rn) we have

∥
∥T ( f )g− f T t(g)

∥
∥
H1(Rn)

≤C
∥
∥ f
∥
∥
Lp(Rn)

∥
∥g
∥
∥
Lp′ (Rn)

.

In other words, show that the bilinear operator ( f ,g) �→ T ( f )g− f T t(g) maps
Lp(Rn)×Lp′(Rn) to H1(Rn).

3.5.4. ([295]) Let Φ(t) = t log(1+ t). Then there exists a positive constant C, de-
pending on the BMO constant of b, such that for any smooth function f with com-
pact support the following is valid:

sup
α>0

1
Φ( 1α )

∣
∣
{∣
∣[b,T ]( f )

∣
∣> α

}∣
∣≤C sup

α>0

1
Φ( 1α )

∣
∣
{

M2( f )> α
}∣
∣ .

3.5.5. Let R1, R2 be the Riesz transforms in R2. Show that there is a constantC<∞
such that for all square integrable functions g1, g2 on R2 the following is valid:

∥
∥R1(g1)R2(g2)−R1(g2)R2(g1)

∥
∥
H1 ≤Cp‖g1‖L2‖g2‖L2 .

[

Hint: Consider the pairing
〈

g1,R2([b,R1](g2))−R1([b,R2](g2))
〉

with b ∈ BMO.
]

3.5.6. ([89]) Use Exercise 3.5.5 to prove that the Jacobian

Jf = det
(
∂1 f1 ∂2 f1
∂1 f2 ∂2 f2

)

,

of a map f = ( f1, f2) : R2 → R2, lies in H1(R2) whenever f1, f2 ∈
.
L21(R

2).
[

Hint: Set g j = Δ 1/2( f j).
]
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3.5.7. Let Φ(t) = t(1+ log+ t)α , where 0≤ α < ∞. Let T be a linear (or sublinear)
operator that maps Lp0(Rn) to Lp0,∞(Rn) with norm B for some 1< p0 ≤∞ and also
satisfies the following weak type Orlicz estimate: for all functions f in Φ(L),

|{x ∈ Rn : |T ( f )(x)|> λ}| ≤ A
∫

Rn
Φ
( | f (x)|

λ

)

dx ,

for some A<∞ and all λ > 0. Prove that T is bounded from Lp(Rn) to itself, when-
ever 1< p< p0.[

Hint: Set f λ = f χ| f |>λ and fλ = f − f λ . When p0 < ∞, estimate |{|T ( f )|> 2λ}|
by |{|T ( f λ )|> λ}|+ |{|T ( fλ )|> λ}| ≤ A

∫

| f |>λ Φ
( | f (x)|

λ
)

dx+Bp0
∫

| f |≤λ
| f (x)|p0
λ p0 dx.

Multiply by p, integrate with respect to the measure λ p−1dλ from 0 to infinity, ap-
ply Fubini’s theorem, and use that

∫ 1
0 Φ(1/λ )λ p−1 dλ < ∞ to deduce that T maps

Lp to Lp,∞. When p0 =∞, use that |{|T ( f )|> 2Bλ}| ≤ |{|T ( f λ )|> Bλ}| and argue
as in the case p0 < ∞. Boundedness from Lp to Lp follows by interpolation.

]

HISTORICAL NOTES

The space of functions of bounded mean oscillation first appeared in the work of John and
Nirenberg [205] in the context of nonlinear partial differential equations that arise in the study of
minimal surfaces. Theorem 3.1.6 was obtained by John and Nirenberg [205]. The relationship of
BMO functions and Carleson measures is due to Fefferman and Stein [139]. For a variety of issues
relating BMO to complex function theory one may consult the book of Garnett [151]. The duality
of H1 and BMO (Theorem 3.2.2) was announced by Fefferman in [133], but its first proof appeared
in the article of Fefferman and Stein [139]. This article actually contains two proofs of this result.
The proof of Theorem 3.2.2 is based on the atomic decomposition of H1, which was obtained
subsequently. An alternative proof of the duality between H1 and BMO was given by Carleson
[71]. Dyadic BMO (Exercise 3.4.4) in relation to BMO is studied in Garnett and Jones [153]. The
same authors studied the distance in BMO to L∞ in [152].

Carleson measures first appeared in the work of Carleson [67] and [68]. Corollary 3.3.6 was
first proved by Carleson, but the proof given here is due to Stein. The characterization of Carleson
measures in Theorem 3.3.8 was obtained by Carleson [67]. A theory of balayage for studying BMO
was developed by Varopoulos [360]. The space BMO can also be characterized in terms Carleson
measures via Theorem 3.3.8. The converse of Theorem 3.3.8 (see Fefferman and Stein [139]) states
that if the functionΨ satisfies a nondegeneracy condition and | f ∗Ψt |2 dxdt

t is a Carleson measure,
then f must be a BMO function. We refer to Stein [326] (page 159) for a proof of this fact, which
uses a duality idea related to tent spaces. The latter were introduced by Coifman, Meyer, and Stein
[95] to systematically study the connection between square functions and Carleson measures.

The sharp maximal function was introduced by Fefferman and Stein [139], who first used it to
prove Theorem 3.4.5 and derive interpolation for analytic families of operators when one endpoint
space is BMO. Theorem 3.4.7 provides the main idea why L∞ can be replaced by BMO in this con-
text. The fact that L2-bounded singular integrals also map L∞ to BMO was independently obtained
by Peetre [289], Spanne [320], and Stein [324]. Peetre [289] also observed that translation-invariant
singular integrals (such as the ones in Corollary 3.4.10) actually map BMO to itself. Another inter-
esting property of BMO is that it is preserved under the action of the Hardy–Littlewood maximal
operator. This was proved by Bennett, DeVore, and Sharpley [21]; see also the almost simultaneous
proof of Chiarenza and Frasca [74]. The decomposition of open sets given in Proposition 3.3.4 is
due to Whitney [369].
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An alternative characterization of BMO can be obtained in terms of commutators of singular
integrals. Precisely, we have that the commutator [b,T ]( f ) is Lp bounded for 1 < p < ∞ if and
only if the function b is in BMO. The sufficiency of this result (Theorem 3.5.6) is due to Coifman,
Rochberg, and Weiss [96], who used it to extend the classical theory of Hp spaces to higher di-
mensions. The necessity was obtained by Janson [203], who also obtained a simpler proof of the
sufficiency. The exposition in Section 3.5 is based on the article of Pérez [295]. This approach is
not the shortest available, but the information derived in Lemma 3.5.5 is often useful; for instance,
it is used in the substitute of the weak type (1,1) estimate of Exercise 3.5.4. The inequality (3.5.3)
in Lemma 3.5.4 can be reversed as shown by Pérez and Wheeden [297]. Weighted Lp estimates for
the commutator in terms of the double iteration of the Hardy–Littlewood maximal operator can be
deduced as a consequence of Lemma 3.5.5; see the article of Pérez [296].

Orlicz spaces were introduced by Birbaum and Orlicz [39] and further elaborated by Orlicz
[287], [288]. For a modern treatment one may consult the book of Rao and Ren [302]. Bounded
mean oscillation with Orlicz norms was considered by Strömberg [332].

The space of functions of vanishing mean oscillation (VMO) was introduced by Sarason [309]
as the set of integrable functions f on T1 satisfying limδ→0 supI: |I|≤δ |I|−1 ∫

I | f −AvgI f |dx = 0.
This space is the closure in the BMO norm of the subspace of BMO(T1) consisting of all uniformly
continuous functions on T1. One may defineVMO(Rn) as the space of functions on Rn that satisfy
limδ→0 supQ: |Q|≤δ |Q|−1 ∫

Q | f −AvgQ f |dx= 0, limN→∞ supQ:�(Q)≥N |Q|−1 ∫
Q | f −AvgQ f |dx= 0,

and limR→∞ supQ:Q∩B(0,R)= /0 |Q|−1 ∫
Q | f −AvgQ f |dx = 0; here I denotes intervals in T1 and Q

cubes in Rn. Then VMO(Rn) is the closure of the the space of continuous functions that vanish at
infinity in the BMO(Rn) norm. One of the important features of VMO(Rn) is that it is the predual
ofH1(Rn), as was shown by Coifman andWeiss [97]. As a companion to Corollary 3.4.10, singular
integral operators can be shown to map the space of continuous functions that vanish at infinity into
VMO. We refer to the article of Dafni [109] for a short and elegant exposition of these results as
well as for a local version of the VMO-H1 duality.



Chapter 4
Singular Integrals of Nonconvolution Type

We study singular integrals whose kernels do not necessarily commute with
translations. Such operators appear in many places in harmonic analysis and par-
tial differential equations. For instance, a large class of pseudodifferential operators
falls under the scope of this theory.

This broader point of view does not necessarily bring additional complications in
the development of the subject except at the study of L2 boundedness, where Fourier
transform techniques are lacking. The L2 boundedness of convolution operators is
easily understood via a careful examination of the Fourier transform of the kernel,
but for nonconvolution operators different tools are required in this study. The main
result of this chapter is the derivation of a set of necessary and sufficient conditions
for nonconvolution singular integrals to be L2 bounded. This result is referred to as
the T (1) theorem and owes its name to a condition expressed in terms of the action
of the operator T on the function 1.

An extension of the T (1) theorem, called the T (b) theorem, is obtained in Section
4.6 and is used to deduce the L2 boundedness of the Cauchy integral along Lipschitz
curves. A variant of the T (b) theorem is also used in the boundedness of the square
root of a divergence form elliptic operator discussed in the last section of the chapter.

4.1 General Background and the Role of BMO

We begin by recalling the notion of the adjoint and transpose operator. One may
choose to work with either a real or a complex inner product on pairs of functions.
For f ,g complex-valued functions with integrable product, we denote the real inner
product by

〈

f ,g
〉

=
∫

Rn
f (x)g(x)dx .

L. Grafakos, Modern Fourier Analysis, Graduate Texts in Mathematics 250,
DOI 10.1007/978-1-4939-1230-8 4, © Springer Science+Business Media New York 2014
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This notation is suitable when we think of f as a distribution acting on a test
function g. We also have the complex inner product

〈

f |g〉=
∫

Rn
f (x)g(x)dx ,

which is an appropriate notation when we think of f and g as elements of a Hilbert
space over the complex numbers. Now suppose that T is a linear operator bounded
on Lp. Then the adjoint operator T ∗ of T is uniquely defined via the identity

〈

T ( f ) |g〉= 〈 f |T ∗(g)
〉

for all f in Lp and g in Lp′ . The transpose operator Tt of T is uniquely defined via
the identity

〈

T ( f ),g
〉

=
〈

f ,Tt(g)
〉

=
〈

Tt(g), f
〉

for all functions f in Lp and g in Lp′ . The name transpose comes from matrix theory,
where if At denotes the transpose of a complex n× n matrix A, then we have the
identity

〈

Ax,y
〉

=
n

∑
j=1

(Ax) j y j = Ax · y= x ·Aty=
n

∑
j=1

x j (Aty) j =
〈

x,Aty
〉

for all column vectors x = (x1, . . . ,xn), y = (y1, . . . ,yn) in Cn. We may easily check
the following intimate relationship between the transpose and the adjoint of a linear
operator T :

T ∗( f ) = Tt( f ) ,

indicating that they have almost interchangeable use. Because of this, in many cases,
it is convenient to avoid complex conjugates and work with the transpose operator
for simplicity. Observe that if a linear operator T has kernel K(x,y), that is,

T ( f )(x) =
∫

K(x,y) f (y)dy ,

then the kernel of Tt is Kt(x,y) = K(y,x) and that of T ∗ is K∗(x,y) = K(y,x).
An operator is called self-adjoint if T = T ∗ and self-transpose if T = Tt . For

example, the operator iH, where H is the Hilbert transform, is self-adjoint but not
self-transpose, and the operator with kernel i(x+y)−1 is self-transpose but not self-
adjoint.

4.1.1 Standard Kernels

The singular integrals we study in this chapter have kernels that satisfy size and
regularity properties similar to those of the classical convolution-type Calderón–
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Zygmund operators. We introduce the relevant background. We consider functions
K(x,y) defined on Rn×Rn \ {(x,x) : x ∈ Rn} that satisfy for some A > 0 the size
condition

|K(x,y)| ≤ A
|x− y|n (4.1.1)

and for some δ > 0 the regularity conditions

|K(x,y)−K(x′,y)| ≤ A |x− x′|δ
(|x− y|+ |x′ − y|)n+δ , (4.1.2)

whenever |x− x′| ≤ 1
2 max

(|x− y|, |x′ − y|) and

|K(x,y)−K(x,y′)| ≤ A |y− y′|δ
(|x− y|+ |x− y′|)n+δ , (4.1.3)

whenever |y− y′| ≤ 1
2 max

(|x− y|, |x− y′|).
Remark 4.1.1. Observe that if

|x− x′| ≤ 1
2
max

(|x− y|, |x′ − y|) ,

then
max

(|x− y|, |x′ − y|)≤ 2 min
(|x− y|, |x′ − y|) ,

which implies that the numbers |x− y| and |x′ − y| are comparable. Likewise if the
roles of x and y are interchanged. These facts are useful in specific calculations.

Another important observation is that if (4.1.1) holds and we have

|∇xK(x,y)|+ |∇yK(x,y)| ≤ A
|x− y|n+1

for all x �= y, then K is in SK(1,4n+1A).

Definition 4.1.2. Functions onRn×Rn\{(x,x) : x∈Rn} that satisfy (4.1.1), (4.1.2),
and (4.1.3) are called standard kernels with constants δ ,A. The class of all stan-
dard kernels with constants δ ,A is denoted by SK(δ ,A). Given a kernel K(x,y) in
SK(δ ,A), we observe that the functions K(y,x) and K(y,x) are also in SK(δ ,A).
These kernels have special names. The function

Kt(x,y) = K(y,x)

is called the transpose kernel of K, while the function

K∗(x,y) = K(y,x)

is called the adjoint kernel of K.
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Example 4.1.3. The function K(x,y) = |x− y|−n defined away from the diagonal of
Rn×Rn is in SK(1,n4n+1). Indeed, for

|x− x′| ≤ 1
2
max

(|x− y|, |x′ − y|)

the mean value theorem gives

∣
∣ |x− y|−n−|x′ − y|−n∣∣≤ n|x− x′|

|θ − y|n+1

for some θ that lies on the line segment joining x and x′. But then we have |θ −y| ≥
1
2 max

(|x− y|, |x′ − y|), which gives (4.1.2) with A= n4n+1.

Remark 4.1.4. Notice that if K(x,y) satisfies

|∇xK(x,y)| ≤ A′|x− y|−n−1

for all x �= y in Rn, then K(x,y) also satisfies (4.1.2) with δ = 1 and A = cA′, for
some constant c. Likewise, if

|∇yK(x,y)| ≤ A′|x− y|−n−1

for all x �= y in Rn, then K(x,y) satisfies (4.1.3) with with δ = 1 and A= cA′.

We are interested in standard kernels K in SK(δ ,A) for which there are tempered
distributionsW onRn×Rn that coincide with K onRn×Rn \{(x,x) : x∈Rn}. This
means that the convergent integral representation

〈

W,F
〉

=
∫

Rn

∫

Rn
K(x,y)F(x,y)dxdy (4.1.4)

is valid whenever the Schwartz function F on Rn×Rn is supported away from the
diagonal {(x,x) : x ∈ Rn}. Note that the integral in (4.1.4) is well defined and abso-
lutely convergent whenever F is a Schwartz function whose support does not inter-
sect the set {(x,x) : x ∈Rn}. Also observe that there may be several distributionsW
coinciding with a fixed function K(x,y). In fact, ifW is such a distribution, then so
isW +δx=y, where δx=y denotes Lebesgue measure on the diagonal of R2n. (This is
some kind of a Dirac distribution.)

We now consider continuous linear operators

T :S (Rn)→S ′(Rn)

from the space of Schwartz functions S (Rn) to the space of all tempered distribu-
tions S ′(Rn). By the Schwartz kernel theorem ([196, p. 129]), for such an operator
T there is a distributionW inS ′(R2n) that satisfies

〈

T ( f ),ϕ
〉

=
〈

W,ϕ⊗ f
〉

(4.1.5)
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when f ,ϕ ∈ S (Rn), where (ϕ ⊗ f )(x,y) = ϕ(x) f (y) for all x,y ∈ Rn, and there
exist constants C,N,M such that for all f ,g ∈S (Rn) we have

|〈T ( f ),g〉|= |〈W,g⊗ f
〉| ≤C

[

∑
|α |,|β |≤N

ρα ,β (g)
][

∑
|α |,|β |≤M

ρα ,β ( f )
]

. (4.1.6)

Here ρα ,β (ϕ) = supx∈Rn |∂αx (xβϕ)(x)| are the seminorms for the topology in S .
A distributionW that satisfies (4.1.5) and (4.1.6) is called a Schwartz kernel or the
distributional kernel of T .

Here we study continuous linear operators T :S (Rn)→S ′(Rn)whose distribu-
tional kernels coincide with standard kernels K(x,y) on Rn×Rn \{(x,x) : x ∈Rn}.
This means that (4.1.5) admits the absolutely convergent integral representation

〈

T ( f ),ϕ
〉

=
∫

Rn

∫

Rn
K(x,y) f (y)ϕ(x)dxdy (4.1.7)

whenever f and ϕ are Schwartz functions whose supports do not intersect.
We make some remarks concerning duality in this context. Given a continuous

linear operator T : S (Rn)→S ′(Rn) with distributional kernelW , we can define
another distributionWt as follows:

〈

Wt ,F
〉

=
〈

W,Ft〉,

where Ft(x,y) = F(y,x). This implies that for all f ,ϕ ∈S (Rn) we have
〈

W,ϕ⊗ f
〉

=
〈

Wt , f ⊗ϕ
〉

.

It is a simple fact that the transpose operator Tt of T , which satisfies
〈

T (ϕ), f
〉

=
〈

Tt( f ),ϕ
〉

(4.1.8)

for all f ,ϕ in S (Rn), is the unique continuous linear operator from S (Rn) to
S ′(Rn) whose Schwartz kernel is the distributionWt , that is, we have

〈

Tt( f ),ϕ
〉

=
〈

T (ϕ), f
〉

=
〈

W, f ⊗ϕ
〉

=
〈

Wt ,ϕ⊗ f
〉

. (4.1.9)

We now observe that a large class of standard kernels admits extensions to tem-
pered distributionsW on R2n.

Example 4.1.5. Suppose that K(x,y) satisfies (4.1.1) and (4.1.2) and is antisymmet-
ric, in the sense that

K(x,y) =−K(y,x)

for all x �= y in Rn. Then K also satisfies (4.1.3), and moreover, there is a distribution
W on R2n that extends K on Rn×Rn.
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Indeed, define

〈

W,F
〉

= lim
ε→0

∫∫

|x−y|>ε
K(x,y)F(x,y)dydx (4.1.10)

for all F in the Schwartz class of R2n. In view of antisymmetry, we may write
∫∫

|x−y|>ε
K(x,y)F(x,y)dydx=

1
2

∫∫

|x−y|>ε
K(x,y)

(

F(x,y)−F(y,x)
)

dydx .

In view of (4.1.1), the observation that

|F(x,y)−F(y,x)| ≤ 2 |x− y|
(1+ |x|2+ |y|2)n+1 sup

(x,y)∈R2n

∣
∣
∣∇x,y

(

(1+ |x|2+ |y|2)n+1F(x,y)
)∣
∣
∣ ,

and the fact that the preceding supremum is controlled by a finite sum of Schwartz
seminorms of F , the limit in (4.1.10) exists and gives a tempered distribution onR2n.
We can therefore define an operator T :S (Rn)→S ′(Rn) with kernelW via

〈

T ( f ),ϕ
〉

= lim
ε→0

∫∫

|x−y|>ε
K(x,y) f (y)ϕ(x)dydx

=
1
2

∫

Rn

∫

Rn
K(x,y)[ f (y)ϕ(x)− f (x)ϕ(y)]dydx , (4.1.11)

for all f ,ϕ ∈S (Rn).

Example 4.1.6. Let A be a real-valued Lipschitz function on R. This means that it
satisfies the estimate |A(x)−A(y)| ≤ L|x− y| for some L < ∞ and all x,y ∈ R. For
x,y ∈ R, x �= y, we let

KA(x,y) =
1

x− y+ i(A(x)−A(y))
. (4.1.12)

A simple calculation gives that when |y− y′| ≤ 1
2 max

(|x− y|, |x− y′|) then

|KA(x,y)−KA(x,y′)| ≤ |y− y′|+ |A(y)−A(y′)|
|x− y||x− y′| ≤ (1+L)|y− y′|

1
8 (|x− y|+ |x− y′|)

where the last inequality uses the observation in Remark 4.1.1. Since KA is antisym-
metric, it follows that it is a standard kernel in SK(1,8(1+L)).

Example 4.1.7. Let the function A be as in the previous example. For each integer
m≥ 1 and x,y ∈ R we set

Km(x,y) =
(
A(x)−A(y)

x− y

)m 1
x− y

. (4.1.13)
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Clearly, Km is an antisymmetric function. To see that each Km is a standard kernel,
notice that when |y− y′| ≤ 1

2 max
(|x− y|, |x− y′|) we have

∣
∣
∣
∣

A(x)−A(y)
x− y

− A(x)−A(y′)
x− y′

∣
∣
∣
∣
=

∣
∣
∣
∣

(x− y)(A(y′)−A(y))+(y− y′)(A(x)−A(y))
(x− y)(x− y′)

∣
∣
∣
∣

≤ 2L
|y− y′|
|x− y′| .

Combining this fact with |am− bm| ≤ |a− b|(|a|m−1+ |a|m−2|b|+ · · ·+ |b|m−1) we
obtain
∣
∣Km(x,y)−Km(x,y′)

∣
∣

≤
∣
∣
∣
∣

(
A(x)−A(y)

x− y

)m

−
(
A(x)−A(y′)

x− y′

)m∣∣
∣
∣

1
|x− y| +

∣
∣
∣
∣

A(x)−A(y′)
x− y′

∣
∣
∣
∣

m∣∣
∣
∣

1
x− y

− 1
x− y′

∣
∣
∣
∣

≤ 2L|y− y′|
|x− y′| mLm−1 1

|x− y| +Lm
|y− y′|

|x− y| |x− y′|
=

(2m+1)Lm|y− y′|
|x− y| |x− y′|

≤ 8(2m+1)Lm|y− y′|
|x− y|+ |x− y′| .

It follows that Km lies in SK(δ ,C) with δ = 1 and C = 8(2m+1)Lm. The linear
operator with kernel (πi)−1Km is called the mth Calderón commutator.

4.1.2 Operators Associated with Standard Kernels

Having introduced standard kernels, we are in a position to define linear operators
associated with them.

Definition 4.1.8. Let 0< δ ,A<∞, and K in SK(δ ,A). A continuous linear operator
T from S (Rn) toS ′(Rn) is said to be associated with K if it satisfies

T ( f )(x) =
∫

Rn
K(x,y) f (y)dy (4.1.14)

for all f ∈ C ∞
0 and x not in the support of f . If T is associated with K, then the

Schwartz kernelW of T coincides with K on Rn×Rn \{(x,x) : x ∈ Rn}.
If T is associated with K and satisfies

∥
∥T (ϕ)

∥
∥
L2 ≤ B‖ϕ‖L2 (4.1.15)

for all ϕ ∈S (Rn), then T is called a Calderón–Zygmund operator associated with
the standard kernel K. Such operators T admit a bounded extension on L2(Rn), i.e.,
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given any f in L2(Rn) one can define T ( f ) as the unique L2 limit of the Cauchy
sequence {T (ϕk)}k, where ϕk ∈S (Rn) and ϕk converges to f in L2. In this case we
keep the same notation for the L2 extension of T .

In the sequel we denote by CZO(δ ,A,B) the class of all Calderón–Zygmund
operators associated with standard kernels in SK(δ ,A) that admit L2–bounded ex-
tensions with norm at most B.

We make the point that there may be several Calderón–Zygmund operators as-
sociated with a given standard kernel K. For instance, we may check that the zero
operator and the identity operator have the same kernel K(x,y) = 0. We investigate
connections between any two such operators in Proposition 4.1.11. Next we discuss
the important fact that once an operator T admits an extension that is L2 bounded,
then (4.1.14 ) holds for all f that are bounded and compactly supported whenever
the point x does not lie in its support.

Proposition 4.1.9. Let T be an element of CZO(δ ,A,B) associated with a standard
kernel K. Then for every f and ϕ bounded and compactly supported functions that
satisfy

dist (suppϕ,supp f )> 0, (4.1.16)

then we have the (absolutely convergent) integral representation
∫

Rn
T ( f )(x)ϕ(x)dx=

∫

Rn

∫

Rn
K(x,y) f (y)ϕ(x)dydx . (4.1.17)

Moreover, given any bounded function with compact support f , there is a set of
measure zero E( f ) such that x0 /∈ E( f )∩supp f we have the (absolutely convergent)
integral representation

T ( f )(x0) =
∫

Rn
K(x0,y) f (y)dy . (4.1.18)

Proof. We first prove (4.1.17). Given f and ϕ bounded functions with compact sup-
port select f j,ϕ j ∈ C ∞

0 such that ϕ j are uniformly bounded and supported in a small
neighborhood of the support of ϕ , ϕ j → ϕ in L2 and almost everywhere, f j → f in
L2 and almost everywhere, and

dist (suppϕ j,supp f j)≥ 1
2
dist (suppϕ,supp f ) = c> 0

for all j ∈ Z+. In view of (4.1.7), identity (4.1.17) is valid for the functions f j and ϕ j
in place of f and ϕ , i.e.,

∫

Rn

∫

Rn
K(x,y) f j(y)ϕ j(x)dydx=

∫

Rn
T ( f j)(x)ϕ j(x)dx . (4.1.19)
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By the boundedness of T , it follows that T ( f j) converges to T ( f ) in L2 and thus as
j→ ∞ we have

∫

Rn
T ( f j)(x)ϕ j(x)dx→

∫

Rn
T ( f )(x)ϕ(x)dx. (4.1.20)

Now write f j(y)ϕ j(x)− f (y)ϕ(x) = ( f j(y)− f (y))ϕ j(x)+ f (y)(ϕ j(x)−ϕ(x)) and
observe that

∣
∣
∣
∣

∫

Rn

∫

Rn
K(x,y) f (y)(ϕ j(x)−ϕ(x))dydx

∣
∣
∣
∣
≤ Ac−n‖ f‖L1‖ϕ j−ϕ‖L1 → 0 ,

since ‖ϕ j−ϕ‖L1 ≤C‖ϕ j−ϕ‖L2 → 0 as j→ ∞, and
∣
∣
∣
∣

∫

Rn

∫

Rn
K(x,y)( f j(y)− f (y))ϕ j(x)dydx

∣
∣
∣
∣
≤ Ac−n‖ f j− f‖L1‖ϕ‖L1 → 0 ,

as j→ ∞. Combining these facts with (4.1.19) and (4.1.20) we obtain
∫

Rn

∫

Rn
K(x,y) f j(y)ϕ j(x)dydx→

∫

Rn

∫

Rn
K(x,y) f (y)ϕ(x)dydx

as j → ∞ and proves the validity of (4.1.17). Note that the double integral on the
right is absolutely convergent and bounded by A(2c)−n‖ f‖L1‖ϕ‖L1 .

To prove (4.1.18) we fix a compactly supported and bounded function f and we
pick f j as before. Then T ( f j) converges to T ( f ) in L2 and thus a subsequence T ( f jl )
converges pointwise on Rn \E( f ), for some measurable set E( f ) with |E( f )| = 0.
Given x0 /∈ E( f )∩ supp f we have

T ( f jl )(x0) =
∫

Rn
K(x0,y) f jl (y)dy

and letting l → ∞ we obtain (4.1.18) since T ( f jl )(x0)→ T ( f )(x0) and
∣
∣
∣
∣

∫

Rn
K(x0,y) f jl (y)dy−

∫

Rn
K(x0,y) f (y)dy

∣
∣
∣
∣
≤ Ac−n‖ f jl − f‖L1 → 0 .

as l → ∞. Thus (4.1.18) holds. �

We now define truncated kernels and operators.

Definition 4.1.10. Given a kernel K in SK(δ ,A) and ε > 0, we define the truncated
kernel

K(ε)(x,y) = K(x,y)χ|x−y|>ε .

Given a continuous linear operator T from S (Rn) to S ′(Rn) and ε > 0, we define
the truncated operator T (ε) by

T (ε)( f )(x) =
∫

Rn
K(ε)(x,y) f (y)dy
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and the maximal singular operator associated with T as follows:

T (∗)( f )(x) = sup
ε>0

∣
∣T (ε)( f )(x)

∣
∣ .

Note that both T (ε)( f ) and T (∗)( f ) are well defined for f in
⋃

1≤p<∞L
p(Rn), by an

application of Hölder’s inequality.

We investigate a certain connection between the boundedness of T and the
boundedness of the family {T (ε)}ε>0 uniformly in ε > 0.

Proposition 4.1.11. Let K be a kernel in SK(δ ,A) and let T in CZO(δ ,A,B) be
associated with K. For ε > 0, let T (ε) be the truncated operators obtained from T .
Assume that there exists a constant B′ < ∞ such that

sup
ε>0

∥
∥T (ε)∥∥

L2→L2 ≤ B′. (4.1.21)

Then there exists a linear operator T0 defined on L2(Rn) such that

(1) The distributional kernel of T0 coincides with K on

Rn×Rn \{(x,x) : x ∈ Rn}.

(2) For some subsequence ε j ↓ 0, we have
∫

Rn
T (ε j)( f )(x)g(x)dx→

∫

Rn
T0( f )(x)g(x)dx (4.1.22)

as j→ ∞ for all f ,g in L2(Rn) .
(3) T0 is bounded on L2(Rn) with norm

∥
∥T0
∥
∥
L2→L2 ≤ B′.

(4) There exists a measurable function b on Rn with ‖b‖L∞ ≤ B+B′ such that

T ( f )−T0( f ) = b f ,

for all f ∈ L2(Rn).

Proof. Since L2(Rn) is separable, by the Banach-Alaoglu theorem the unit ball of
its dual is weak∗ compact and metrizable for the weak* topology. Let { fk}∞k=1 be a
dense countable subset of L2(Rn). By (4.1.21), the functions T (ε)( fk) lie in multiple
of the unit ball of (L2)∗, which is weak∗ compact, and hence for each fk we find a
sequence {εkj }∞j=1 such that for each g ∈ L2(Rn) we have

lim
j→∞

∫

Rn
T (εkj )( fk)(x)g(x)dx=

∫

Rn
T fk
0 (x)g(x)dx , (4.1.23)
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for some function T fk
0 in L2(Rn). Moreover, each {εkj }∞j=1 can be chosen to be a

subsequence of {εk−1
j }∞j=1, k ≥ 2. Then the diagonal sequence {ε j

j }∞j=1 = {ε j}∞j=1
satisfies

lim
j→∞

∫

Rn
T (ε j)( fk)(x)g(x)dx=

∫

Rn
T fk
0 (x)g(x)dx (4.1.24)

for each k and g ∈ L2. Since { fk}∞k=1 is dense in L2(Rn), a standard ε/3 argument
gives that the sequence of complex numbers

∫

Rn
T (ε j)( fk)(x)g(x)dx

is Cauchy and thus it converges. Now L2 is complete1 in the weak∗ topology; there-
fore for each f ∈ L2(Rn) there is a function T0( f ) such that (4.1.22) holds for all f ,g
in L2(Rn) as j → ∞. It is easy to see that T0 is a linear operator with the property
T0( fk) = T fk

0 for each k = 1,2, . . . . This proves (2).
The L2 boundedness of T0 is a consequence of (4.1.22), (4.1.21), and duality, since

∥
∥T0( f )

∥
∥
L2 ≤ sup

‖g‖L2≤1
limsup
j→∞

∣
∣
∣
∣

∫

Rn
T (ε j)( f )(x)g(x)dx

∣
∣
∣
∣
≤ B′∥∥ f

∥
∥
L2 .

This proves (3). Finally, (1) is a consequence of the integral representation
∫

Rn
T (ε j)( f )(x)g(x)dx=

∫

Rn

∫

Rn
K(ε j)(x,y) f (y)dyg(x)dx,

whenever f , g are Schwartz functions with disjoint supports, by letting j→ ∞.
We finally prove (4). We first observe that if g is a bounded function with compact

support and Q is an open cube in Rn, we have

(T (ε j)−T )(gχQ)(x) = χQ(x)(T (ε j)−T )(g)(x) , (4.1.25)

for almost all x /∈ ∂Q whenever ε j is small enough (depending on x). Indeed, since
gχQ is bounded and has compact support, by the integral representation formula
(4.1.18) in Proposition 4.1.9 there is a null set E(gχQ) such that for x /∈ Q∩E(gχQ)
and for ε j < dist (x,suppgχQ), the left-hand side in (4.1.25) is zero, since in this
case x is not in the support of gχQ. Moreover, since gχQc is also bounded and com-
pactly supported, there is a null set E(gχQc) such that for x ∈ Q∩ E(gχQc) and
ε j < dist (x,suppgχQc) we have that x does not lie in the support of gχQc , and thus
(T (ε j) − T )(gχQc)(x) = 0; hence (4.1.25) holds in this case as well. This proves
(4.1.25) for almost x not in the boundary ∂Q. Taking weak limits in (4.1.25) as
ε j → 0, we obtain that

(T0−T )(gχQ) = χQ (T0−T )(g) a.e. (4.1.26)

1 the unit ball of L2 in the weak∗ topology is compact and metrizable, hence complete.
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for all open cubesQ inRn. This means that for any g bounded function with compact
support and cube Q in Rn there is a set of measure zero EQ,g such that (4.1.26) holds
on Rn \EQ,g. Consider the countable family F of all cubes in Rn with corners in
Qn and set Eg = ∪Q∈FEQ,g. Then |Eg|= 0 and by linearity we obtain

(T0−T )(gh) = h(T0−T )(g) on Rn \Eg

whenever h is a finite linear combination of characteristic functions of cubes in F ,
which is a dense subspace of L2. Via a simple density argument, using the fact that
T0−T is L2 bounded, we obtain that for all f in L2 and g bounded with compact
support there is a null set Ef ,g such that

(T0−T )(g f ) = f (T0−T )(g) on Rn \Ef ,g. (4.1.27)

Now if B(0, j) is the open ball with center 0 and radius j, when j ≤ j′ we have

(T0−T )(χB(0, j)) = (T0−T )(χB(0, j)χB(0, j′)) = χB(0, j) (T0−T )(χB(0, j′)) a.e.

Therefore, the functions (T0−T )(χB(0, j)) satisfy the “consistency” property

(T0−T )(χB(0, j)) = (T0−T )(χB(0, j′)) a.e. on B(0, j)

when j ≤ j′. It follows that there exists a well-defined measurable function b such
that

bχB(0, j) = (T0−T )(χB(0, j)) a.e.

Applying (4.1.27) with f ∈ L2 and g= χB(0, j), we obtain

(T0−T )( f χB(0, j)) = f (T0−T )(χB(0, j)) = f b a.e. on B(0, j). (4.1.28)

Since the norm of T −T0 on L2 is at most B+B′, we obtain from (4.1.28) that

B+B′ ≥ sup
j≥1

sup
0 �= f∈L2

supp f�B(0, j)

‖(T0−T )( f χB(0, j))‖L2
‖ f‖L2

= sup
0 �= f∈L2

supp f compact

‖ f b‖L2
‖ f‖L2

= ‖b‖L∞ .

The fact that b ∈ L∞ together with (4.1.28) easily yields

(T0−T )( f ) = b f a.e.

for all f ∈ L2. This identifies T0−T and concludes the proof of (4). �

Remark 4.1.12. We show in the next section (cf. Corollary 4.2.5) that if a Calderón–
Zygmund operator maps L2 to L2, then so do all of its truncations T (ε) uniformly in
ε > 0. By Proposition 4.1.11, there exists a linear operator T0 that has the form

T0( f )(x) = lim
j→∞

∫

|x−y|>ε j
K(x,y) f (y)dy ,
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where the limit is taken in the weak topology of L2, so that T is equal to T0 plus a
bounded function times the identity operator.

We give a special name to operators of this form.

Definition 4.1.13. Suppose that for a given T inCZO(δ ,A,B) there is a sequence ε j
of positive numbers that tends to zero as j→ ∞ such that for all f ∈ L2(Rn),

T (ε j)( f )→ T ( f )

weakly in L2. Then T is called a Calderón–Zygmund singular integral operator.
Thus Calderón–Zygmund singular integral operators are special kinds of Calderón–
Zygmund operators. The subclass of CZO(δ ,A,B) consisting of all Calderón–
Zygmund singular integral operators is denoted by CZSIO(δ ,A,B).

In view of Proposition 4.1.11 and Remark 4.1.12, a Calderón–Zygmund operator
is equal to a Calderón–Zygmund singular integral operator plus a bounded function
times the identity operator. For this reason, the study of Calderón–Zygmund opera-
tors is equivalent to the study of Calderón–Zygmund singular integral operators, and
in almost all situations it suffices to restrict attention to the latter.

4.1.3 Calderón–Zygmund Operators Acting
on Bounded Functions

We are now interested in defining the action of a Calderón–Zygmund operator T on
bounded and smooth functions. To achieve this we first need to define the space of
special test functions D0.

Definition 4.1.14. We denote by D(Rn) = C ∞
0 (Rn) the space of all smooth func-

tions with compact support on Rn. We define D0(Rn) to be the space of all smooth
functions with compact support and integral zero. We equip D0(Rn) with the same
topology as the space D(Rn). This means that a linear functional u ∈ D0(Rn) is
continuous if for any compact set K in Rn there is a constant CK and an integer M
such that

∣
∣〈u,ϕ〉∣∣≤CK ∑

|α |≤M
‖∂αϕ‖L∞

for all ϕ smooth functions supported in K. The dual space of D0(Rn) under this
topology is denoted by D ′

0(R
n). This is a space of distributions larger than D ′(Rn).

Example 4.1.15. BMO functions are examples of elements of D ′
0(R

n). Indeed,
given b ∈ BMO(Rn), for any compact set K there is a constant CK = ‖b‖L1(K) such
that ∣

∣
∣
∣

∫

Rn
b(x)ϕ(x)dx

∣
∣
∣
∣
≤CK

∥
∥ϕ
∥
∥
L∞

for any ϕ ∈ D0(Rn). Moreover, observe that the preceding integral remains un-
changed if the BMO function b is replaced by b+ c, where c is a constant.
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Definition 4.1.16. Let T be a continuous linear operator from S (Rn) to S ′(Rn)
that satisfies (4.1.5) for some distribution W that coincides with a standard kernel
K(x,y) satisfying (4.1.1), (4.1.2), and (4.1.3). Given f bounded and smooth, we de-
fine an element T ( f ) of D ′

0(R
n) as follows: For a given ϕ in D0(Rn), select η in

C ∞
0 with 0 ≤ η ≤ 1 and equal to 1 in a neighborhood of the support of ϕ . Since T

maps S to S ′, the expression T ( fη) is a tempered distribution, and its action on
ϕ is well defined. We define the action of T ( f ) on ϕ via the identity

〈

T ( f ),ϕ
〉

=
〈

T ( fη),ϕ
〉

+
∫

Rn

[∫

Rn
K(x,y)ϕ(x)dx

]

f (y)(1−η(y))dy , (4.1.29)

provided we make sense of the double integral as an absolutely convergent integral.
To do this, we pick x0 in the support of ϕ and we split the y-integral in (4.1.29)
into the sum of integrals over the regions I0 = {y ∈ Rn : |x− x0| > 1

2 |x0− y|} and
I∞ = {y ∈ Rn : |x− x0| ≤ 1

2 |x0− y|}. By the choice of η we must necessarily have
dist (supp (1−η),supp ϕ)> 0, and hence the part of the double integral in (4.1.29)
when y is restricted to I0 is absolutely convergent in view of (4.1.1). For y ∈ I∞ we
use the mean value property of ϕ to write the expression inside the square brackets
in (4.1.29) as ∫

Rn

(

K(x,y)−K(x0,y)
)

ϕ(x)dx .

With the aid of (4.1.2) we deduce the absolute convergence of the double integral in
(4.1.29) as follows:
∫∫

|y−x0|≥2|x−x0|
|K(x,y)−K(x0,y)| |ϕ(x)|(1−η(y)) | f (y)|dxdy

≤
∫

Rn
A|x− x0|δ

∫

|y−x0|≥2|x−x0|
|x0− y|−n−δ | f (y)|dy |ϕ(x)|dx

≤ A
ωn−1

δ 2δ
‖ϕ‖L1 ‖ f‖L∞ < ∞ .

This completes the definition of T ( f ) as an element of D ′
0 when f ∈ C ∞ ∩L∞,

and certainly (4.1.29) is independent of x0, but leaves two points open. First, we
need to show that this definition is independent of η and secondly that whenever f
is a Schwartz function, the distribution T ( f ) defined in (4.1.29) coincides with the
original element of S ′(Rn) given in Definition 4.1.8.

Remark 4.1.17. We show that the definition of T ( f ) is independent of the choice
of the function η . Indeed, if ζ is another function satisfying 0 ≤ ζ ≤ 1 that is also
equal to 1 in a neighborhood of the support of ϕ , then f (η−ζ ) and ϕ have disjoint
supports, and by (4.1.7) we have the absolutely convergent integral realization

〈

T ( f (η−ζ )),ϕ
〉

=
∫

Rn

∫

Rn
K(x,y) f (y)(η−ζ )(y)dyϕ(x)dx .

It follows that the expression in (4.1.29) coincides with the corresponding expression
obtained when η is replaced by ζ .
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Next, if f is a Schwartz function, then both η f and (1−η) f are Schwartz func-
tions; by the linearity of T one has

〈

T ( f ),ϕ
〉

=
〈

T (η f ),ϕ
〉

+
〈

T ((1−η) f ),ϕ
〉

,
and by (4.1.7) the second expression can be written as the double absolutely con-
vergent integral in (4.1.29), since ϕ and (1−η) f have disjoint supports. Thus the
distribution T ( f ) defined in (4.1.29) coincides with the original element ofS ′(Rn)
given in Definition 4.1.8.

Remark 4.1.18. When T has a bounded extension that maps L2 to itself, we may
define T ( f ) for all f ∈ L∞(Rn), not necessarily smooth. Simply observe that under
this assumption, the expression T ( fη) is a well-defined L2 function and thus

〈

T ( fη),ϕ
〉

=
∫

Rn
T ( fη)(x)ϕ(x)dx

is given by an absolutely convergent integral for all ϕ ∈D0.
Finally, observe that although 〈T ( f ),ϕ〉 is defined for f in L∞ and ϕ in D0, this

definition is valid for all square integrable functions ϕ with compact support and
integral zero; indeed, the smoothness of ϕ was never an issue in the definition of
〈T ( f ),ϕ〉.

In summary, if T is a Calderón–Zygmund operator and f lies in L∞(Rn), then
T ( f ) has a well-defined action 〈T ( f ),ϕ〉 on square integrable functions ϕ with
compact support and integral zero. This action satisfies

∣
∣
〈

T ( f ),ϕ
〉∣
∣≤ ∥∥T ( fη)∥∥L2

∥
∥ϕ‖L2 +Cn,δ A

∥
∥ϕ
∥
∥
L1
∥
∥ f
∥
∥
L∞ < ∞ . (4.1.30)

In the next section we show that in this case, T ( f ) is in fact an element of BMO.

Exercises

4.1.1. Suppose that K is a function defined away from the diagonal on Rn×Rn that
satisfies for some δ > 0 the condition

|K(x,y)−K(x′,y)| ≤ A′ |x− x′|δ
|x− y|n+δ

whenever |x−x′| ≤ 1
2 |x−y|. Prove that K satisfies (4.1.2) with constant A= 2n+δA′.

Obtain an analogous statement for condition (4.1.3).

4.1.2. (a) Show that the tempered distributionW on R2 defined for F ∈S (R2) by

〈W,F〉=−
∫

R

∫

R

(
∂ 2

∂ t2
F(y+ t,y)

)

log |t|dtdy

coincides with the function |x− y|−2 on R2 \{(x,x) : x ∈ R}.



224 4 Singular Integrals of Nonconvolution Type

(b) Show that the tempered distributionWβ defined for ϕ ∈S (R) by

〈

Wβ ,ϕ
〉

=− 1
β !

∫

R
ϕ(β+1)(x) log |x|(sgnx)β+1 dx

when β ∈ Z+∪{0} coincides with the function |x|−1−β on R\{0}.
(c) Show that the tempered distributionWβ defined for ϕ ∈S (R) by

〈

Wβ ,ϕ
〉

=
1

β (β −1) · · ·(β − [β ])

∫

R
ϕ([β ]+1)(x)|x|−β+[β ](sgnx)[β ]+1 dx

when β ∈ R+ \Z+ coincides with the function |x|−1−β on R\{0}.
4.1.3. Let ϕ(x) be a smooth radial function that is equal to 1 when |x| ≥ 1 and
vanishes when |x| ≤ 1

2 . Let 0 < δ ≤ 1. Show that there is a constant c > 0 that
depends only on n, ϕ , and δ such that if K lies in SK(δ ,A), then all the smooth
truncations K(ε)

ϕ (x,y) = K(x,y)ϕ( x−y
ε ) lie in SK(δ ,cA) uniformly in ε > 0.

4.1.4. Suppose that A is a Lipschitz map from Rn to Rm. This means that there
exists a constant L such that |A(x)−A(y)| ≤ L|x− y| for all x,y ∈ Rn. Suppose that
F is a C 1 odd function defined on Rm. Show that the kernel

K(x,y) =
1

|x− y|n F
(
A(x)−A(y)

|x− y|
)

is in SK(1,C) for some C > 0.

4.1.5. Let T be an operator as in Definition 4.1.16, and assume that T admits a
unique bounded extension from L2(Rn) to itself.
(a) Prove that for every smooth compactly supported function ϕ with integral zero,
we have that T (ϕ) and Tt(ϕ) are integrable.
(b) Show that the condition T (1) = 0 is equivalent to the statement that for all
ϕ smooth with compact support and integral zero we have

∫

Rn T t(ϕ)(x)dx = 0.
Formulate an analogous statement for Tt .

4.1.6. Let V be a compact subset of Rn. Suppose that K(x,y) is continuous,
bounded, and strictly positive function onV×V that satisfies

∫

V K(x,y)dy= 1 for all
x∈V . Define a linear operator by setting T ( f )(x) =

∫

V K(x,y) f (y)dy for f ∈ L1(V ).
(a) Show that T preserves the set of integrable functions that are bounded below by
a fixed constant.
(b) Suppose that h is a continuous function on V that satisfies T (h)(x) = h(x) for all
x ∈V . Prove that h is a constant function.
(c) Suppose that T (T ( f )) = f for some continuous strictly positive function f onV .
Show that T ( f ) = f .
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[

Hint: Part (b) Consider the minimum h(x0) of h on V . Part (c): Let L(x,y) be the
kernel of T ◦T . Show that

∫

V
L(x,y)

f (y)
f (x)

T ( f )(y)
f (y)

dy=
T ( f )(x)
f (x)

and conclude by part (a) that T ( f )(y)
f (y) is a constant.

]

4.2 Consequences of L2 Boundedness

Calderón–Zygmund singular integral operators admit L2-bounded extensions. As in
the case of convolution operators, L2 boundedness has several consequences. In this
section we are concerned with consequences of the L2 boundedness of Calderón–
Zygmund singular integral operators. Throughout the entire discussion, we assume
that K(x,y) is a kernel defined away from the diagonal in R2n that satisfies the stan-
dard size and regularity conditions (4.1.1), (4.1.2), and (4.1.3). These conditions may
be relaxed; see the exercises at the end of this section.

4.2.1 Weak Type (1,1) and Lp Boundedness
of Singular Integrals

We recall the Calderón–Zygmund decomposition of a function.
Proposition 4.2.1. Let f ∈ L1(Rn) and α > 0. Then there exist functions g and b on
Rn such that

(1) f = g+b.

(2) ‖g‖L1 ≤ ‖ f‖L1 and ‖g‖L∞ ≤ 2nα .

(3) b= ∑ j b j, where each b j is supported in a dyadic cube Qj. The cubes Qk and
Qj are disjoint when j �= k.

(4)
∫

Qj

b j(x)dx= 0.

(5) ‖b j‖L1 ≤ 2n+1α|Qj|.
(6) ∑ j |Qj| ≤ α−1‖ f‖L1 .

A proof of Proposition 4.2.1 can be given by considering the level set of the
uncentered maximal function with respect to cubes at height α; see Exercise 4.2.6.
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Another proof is given in Proposition 5.3.1 in [156]. We note that the construction of
the functions g and b yields that, if f is a finite linear combination of characteristic
functions of dyadic cubes, then the collection of cubes {Qj} j in Proposition 4.2.1 is
finite. We now prove that operators in CZO(δ ,A,B) have bounded extensions from
L1 to L1,∞.

Theorem 4.2.2. Assume that K(x,y) is in SK(δ ,A) and let T be an element of
CZO(δ ,A,B) associated with the kernel K. Then T has a bounded extension that
maps L1(Rn) to L1,∞(Rn) with norm

‖T‖L1→L1,∞ ≤Cn(A+B),

and also maps Lp(Rn) to itself for 1< p< ∞ with norm

‖T‖Lp→Lp ≤Cnmax(p,(p−1)−1)(A+B),

where Cn is a dimensional constant.

Proof. Fix α > 0 and let f be in L1(Rn). Since T may not be defined on general
integrable functions, we work with the classF0 of finite linear combination of char-
acteristic functions of dyadic cubes. The classF0 is dense in L1 and also contained
in L2, on which the operator is already defined. Once we obtain a weak type (1,1)
estimate for F0, by density this extends to the entire L1.

We apply the Calderón–Zygmund decomposition to f inF0 at height γα , where
γ is a positive constant to be chosen later. Write f = g+ b, where b = ∑ j b j and
conditions (1)–(6) of Proposition 4.2.1 are satisfied with the constant α replaced
by γα . Since f lies in F0 the sum b = ∑ j b j extends over a finite set of indices.
Moreover, since f is bounded, each bad function b j is bounded and by construction
is also compactly supported. Thus T (b j) is an L2 function, and for almost all x not
in the support of b j we have the integral representation

T (b j)(x) =
∫

Qj

b j(y)K(x,y)dy

in view of Proposition 4.1.9.
We denote by �(Q) the side length of a cube Q. Let Q∗

j be the unique cube with
sides parallel to the axes having the same center as Qj and having side length

�(Q∗
j) = 2

√
n�(Qj) .

We have

|{x ∈ Rn : |T ( f )(x)|> α}|
≤
∣
∣
∣

{

x ∈ Rn : |T (g)(x)|> α
2

}∣
∣
∣+
∣
∣
∣

{

x ∈ Rn : |T (b)(x)|> α
2

}∣
∣
∣

≤ 22

α2

∥
∥T (g)

∥
∥2
L2 +

∣
∣
∣

⋃

j

Q∗
j

∣
∣
∣+
∣
∣
∣

{

x /∈
⋃

j

Q∗
j : |T (b)(x)|>

α
2

}∣
∣
∣
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≤ 22

α2B
2‖g‖2L2 +∑

j
|Q∗

j |+
2
α

∫

(
⋃

j Q∗
j )
c
|T (b)(x)|dx

≤ 22

α2 2
nB2(γα)‖ f‖L1 +(2

√
n)n

‖ f‖L1
γα

+
2
α ∑j

∫

(Q∗
j )
c
|T (b j)(x)|dx

≤
(
(2n+1Bγ)2

2nγ
+

(2
√
n)n

γ

)‖ f‖L1
α

+
2
α ∑j

∫

(Q∗
j )
c
|T (b j)(x)|dx .

It suffices to show that the last sum is bounded by some constant multiple of ‖ f‖L1 .
Let y j be the center of the cube Qj. For x ∈ (Q∗

j)
c, we have |x− y j| ≥ 1

2�(Q
∗
j) =√

n�(Qj). But if y ∈ Qj we have |y− y j| ≤ √
n�(Qj)/2; thus |y− y j| ≤ 1

2 |x− y j|,
since the diameter of a cube is equal to

√
n times its side length. We now estimate

the last displayed sum as follows:

∑
j

∫

(Q∗
j )
c
|T (b j)(x)|dx = ∑

j

∫

(Q∗
j )
c

∣
∣
∣
∣

∫

Qj

b j(y)K(x,y)dy
∣
∣
∣
∣
dx

= ∑
j

∫

(Q∗
j )
c

∣
∣
∣
∣

∫

Qj

b j(y)
(

K(x,y)−K(x,y j)
)

dy
∣
∣
∣
∣
dx

≤ ∑
j

∫

Qj

|b j(y)|
∫

(Q∗
j )
c
|K(x,y)−K(x,y j)|dxdy

≤ ∑
j

∫

Qj

|b j(y)|
∫

|x−y j |≥2|y−y j|
|K(x,y)−K(x,y j)|dxdy

≤ A2∑
j

∫

Qj

|b j(y)|dy

= A2∑
j
‖b j‖L1

≤ A22n+1‖ f‖L1 .

Combining these facts and choosing γ = B−1, we deduce the claimed inequality
for f in F0. By density, we obtain that T has a bounded extension from L1 to L1,∞

with bound at mostCn(A+B). The Lp result for 1< p< 2 follows by interpolation,
while the fact that the constant blows up like (p− 1)−1 as p → 1 can be deduced
from the result of Exercise 1.3.2 in [156]. The result for 2< p<∞ follows by duality;
one uses here that the dual operator Tt has a kernel Kt(x,y) = K(y,x) that satisfies
the same estimates as K, and by the result just proved, it is also bounded on Lp

for 1 < p < 2 with norm at most Cn(A+B). Thus T must be bounded on Lp for
2< p< ∞ with norm at most a constant multiple of A+B. �

Consequently, for operators T inCZO(δ ,A,B) and Lp functions f , 1≤ p<∞, the
expressions T ( f ) make sense as Lp (or L1,∞ when p = 1) functions. The following
result addresses the question whether these functions can be expressed as integrals.
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Proposition 4.2.3. Let T be an operator in CZO(δ ,A,B) associated with a kernel
K. Then for g ∈ Lp(Rn), 1 ≤ p < ∞, the following absolutely convergent integral
representation is valid:

T (g)(x) =
∫

Rn
K(x,y)g(y)dy (4.2.1)

for almost all x ∈ Rn \ supp g, provided that supp g� Rn.

Proof. Set gk(x) = g(x)χ|g(x)|≤kχ|x|≤k. These are Lp functions with compact support
contained in the support of g. Also, the gk converge to g in Lp as k→ ∞. In view of
Proposition 4.1.9, for every k we have

T (gk)(x) =
∫

Rn
K(x,y)gk(y)dy

for almost all x ∈Rn \ supp g. Since T maps Lp to Lp (or to weak L1 when p= 1), it
follows that T (gk) converges to T (g) in weak Lp and hence in measure. By Propo-
sition 1.1.9 in [156], a subsequence of T (gk) converges to T (g) almost everywhere.
On the other hand, for x ∈ Rn \ supp g we have

∫

Rn
K(x,y)gk(y)dy→

∫

Rn
K(x,y)g(y)dy

when k→ ∞, since the absolute value of the difference is bounded by B‖gk−g‖Lp ,
which tends to zero. The constant B is the Lp′ norm of the function |x− y|−n−δ on
the support of g; one has |x−y| ≥ c> 0 for all y in the support of g and thus B<∞.
Therefore T (gk)(x) converges a.e. to both sides of the identity (4.2.1) for x not in the
support of g. This concludes the proof of this identity. �

4.2.2 Boundedness of Maximal Singular Integrals

We pose the question whether there is a result concerning the maximal singular
integral operator T (∗) analogous to Theorem 4.2.2. We note that given f in Lp(Rn)
for some 1≤ p<∞, the expression T (∗)( f )(x) is well defined for all x ∈Rn. This is
a simple consequence of estimate (4.1.1) and Hölder’s inequality.

Theorem 4.2.4. Let K be in SK(δ ,A) and T in CZO(δ ,A,B) be associated with K.
Let r ∈ (0,1). Then there is a constant C(n,r) such that Cotlar’s inequality

|T (∗)( f )(x)| ≤C(n,r)
[

M(|T ( f )|r)(x) 1
r +(A+B)M( f )(x)

]

(4.2.2)
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is valid for all functions in
⋃

1≤p<∞L
p(Rn). Also, there exist dimensional constants

Cn,C′
n such that
∥
∥T (∗)( f )

∥
∥
L1,∞(Rn)

≤ C′
n(A+B)

∥
∥ f
∥
∥
L1(Rn)

, (4.2.3)
∥
∥T (∗)( f )

∥
∥
Lp(Rn)

≤ Cn(A+B)max(p,(p−1)−1)
∥
∥ f
∥
∥
Lp(Rn)

, (4.2.4)

for all 1≤ p< ∞ and all f in Lp(Rn).

Proof. We fix r so that 0< r < 1 and f ∈ Lp(Rn) for some p satisfying 1≤ p< ∞.
To prove (4.2.2), we also fix ε > 0 and we set f ε ,x0 = f χB(x,ε) and f ε ,x∞ = f χB(x,ε)c .
Since x /∈ supp f ε ,x∞ whenever |x− y| ≥ ε , using Proposition 4.2.3 we can write

T ( f ε ,x∞ )(x) =
∫

Rn
K(x,y) f ε ,x∞ (y)dy=

∫

|x−y|≥ε
K(x,y) f (y)dy= T (ε)( f )(x) .

In view of (4.1.2), for z∈ B(x, ε2 ) we have |z−x| ≤ 1
2 |x−y| whenever |x−y| ≥ ε and

thus

|T ( f ε ,x∞ )(x)−T ( f ε ,x∞ )(z)| =
∣
∣
∣
∣

∫

|x−y|≥ε
(

K(z,y)−K(x,y)
)

f (y)dy
∣
∣
∣
∣

≤ |z− x|δ
∫

|x−y|≥ε
A | f (y)|

(|x− y|+ |y− z|)n+δ dy

≤
(ε
2

)δ ∫

|x−y|≥ε
A | f (y)|

(|x− y|+ ε/2)n+δ
dy

≤ Cn,δ AM( f )(x) ,

where the last estimate is a consequence of Theorem 2.1.10 in [156]. We conclude
that for all z ∈ B(x, ε2 ), we have

|T (ε)( f )(x)| = |T ( f ε ,x∞ )(x)|
≤ |T ( f ε ,x∞ )(x)−T ( f ε ,x∞ )(z)|+ |T ( f ε ,x∞ )(z)|
≤ Cn,δ AM( f )(x)+ |T ( f ε ,x0 )(z)|+ |T ( f )(z)| .

(4.2.5)

For 0< r < 1 it follows from (4.2.5) that for z ∈ B(x, ε2 ) we have

|T (ε)( f )(x)|r ≤Cr
n,δ A

rM( f )(x)r+ |T ( f ε ,x0 )(z)|r+ |T ( f )(z)|r . (4.2.6)

Integrating over z ∈ B(x, ε2 ), dividing by |B(x, ε2 )|, and raising to the power 1
r , we

obtain

|T (ε)( f )(x)| ≤ 3
1
r

[

Cn,δ AM( f )(x)+
(

1
|B(x, ε2 )|

∫

B(x, ε2 )
|T ( f ε ,x0 )(z)|rdz

)1
r

+M(|T ( f )|r)(x) 1
r

]

.
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The middle term on the right-hand side of the preceding equation can be estimated,
via Exercise 2.1.5 in [156] (Kolmogorov’s inequality), by

(
1

|B(x, ε2 )|
‖T‖rL1→L1,∞

1− r
|B(x, ε2 )|1−r∥∥ f ε ,x0

∥
∥r
L1

)1
r

≤Cn,r (A+B)M( f )(x) .

This proves (4.2.2).
We now use estimate (4.2.2) to show that T is Lp bounded and of weak type

(1,1). To obtain the weak type (1,1) estimate for T (∗) we need to use that the Hardy–
Littlewood maximal operator maps Lp,∞ to Lp,∞ for all 1< p<∞; see Exercise 2.1.13
in [156]. We also use the trivial fact that for all 0< p,q< ∞ we have

∥
∥| f |q∥∥Lp,∞ =

∥
∥ f
∥
∥q
Lpq,∞ .

Take any r < 1 in (4.2.2). Then we have

∥
∥M(|T ( f )|r) 1

r
∥
∥
L1,∞ =

∥
∥M(|T ( f )|r)∥∥

1
r

L
1
r ,∞

≤ Cn,r
∥
∥|T ( f )|r∥∥

1
r

L
1
r ,∞

= Cn,r
∥
∥T ( f )

∥
∥
L1,∞

≤ C̃n,r(A+B)
∥
∥ f
∥
∥
L1 ,

where we used the weak type (1,1) bound for T in the last estimate.
To obtain the Lp boundedness of T (∗) for 1< p< ∞, we use the same argument

as before. We fix r = 1
2 . Recall that the maximal function is bounded on L2p with

norm at most 3
n
2p 2p

2p−1 ≤ 2 ·3 n
2 (Theorem 2.1.6 in [156]). We have

∥
∥M(|T ( f )| 12 )2∥∥Lp =

∥
∥M(|T ( f )| 12 )∥∥2L2p

≤ (

3
n
2p 2p

2p−1

)2∥∥|T ( f )| 12 ∥∥2L2p
≤ 4 ·3n∥∥T ( f )∥∥Lp
≤ Cnmax( 1

p−1 , p)(A+B)
∥
∥ f
∥
∥
Lp ,

where we used the Lp boundedness of T in the last estimate. �

We end this section with a corollary which confirms a fact mentioned in Remark
4.1.12.

Corollary 4.2.5. Let K be in SK(δ ,A) and T in CZO(δ ,A,B) be associated with K.
Then there exists a dimensional constant Cn such that

sup
ε>0

∥
∥T (ε)∥∥

L2→L2 ≤Cn

(

A+
∥
∥T
∥
∥
L2→L2

)

.
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4.2.3 H1 → L1 and L∞ → BMO Boundedness of Singular
Integrals

We discuss a couple of endpoint results concerning operators inCZO(δ ,A,B).

Theorem 4.2.6. Let T be an operator inCZO(δ ,A,B). Then T has an extension that
maps H1(Rn) to L1(Rn). Precisely, there is a constant Cn,δ such that

‖T‖H1→L1 ≤Cn,δ
(

A+‖T‖L2→L2
)

.

Proof. The proof is analogous to that of Theorem 2.4.1. Let B = ‖T‖L2→L2 . We
start by examining the action of T on L2 atoms for H1. Let f = a be such an atom,
supported in a cube Q. Let cQ be the center of Q and let Q∗ = 2

√
nQ. We write

∫

Rn
|T (a)(x)|dx=

∫

Q∗
|T (a)(x)|dx+

∫

(Q∗)c
|T (a)(x)|dx (4.2.7)

and we estimate each term separately. We have

∫

Q∗
|T (a)(x)|dx ≤ |Q∗| 12

(∫

Q∗
|T (a)(x)|2 dx

) 1
2

≤ B|Q∗| 12
(∫

Q
|a(x)|2 dx

) 1
2

≤ B|Q∗| 12 |Q|− 1
2

= CnB ,

where we used property (b) of atoms in Definition 2.3.10. Now observe that if x /∈Q∗
and y ∈ Q, then

|y− cQ| ≤ 1
2
|x− cQ| ;

hence x− y stays away from zero and T (a)(x) can be expressed as a convergent
integral by Proposition 4.2.3. We have

∫

(Q∗)c
|T (a)(x)|dx =

∫

(Q∗)c

∣
∣
∣

∫

Q
K(x,y)a(y)dy

∣
∣
∣dx

=
∫

(Q∗)c

∣
∣
∣

∫

Q

(

K(x,y)−K(x,cQ)
)

a(y)dy
∣
∣
∣dx

≤
∫

Q

∫

(Q∗)c

∣
∣K(x,y)−K(x,cQ)

∣
∣dx |a(y)|dy

≤
∫

Q

∫

(Q∗)c
A|y− cQ|δ
|x− cQ|n+δ

dx |a(y)|dy

≤ C′
n,δ A

∫

Q
|a(y)|dy
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≤ C′
n,δ A|Q|

1
2 ‖a‖L2

≤ C′
n,δA|Q|

1
2 |Q|− 1

2

= C′
n,δA .

Combining this calculation with the previous one and inserting the final conclusions
in (4.2.7), we deduce that L2 atoms for H1 satisfy

∥
∥T (a)

∥
∥
L1 ≤Cn,δ (A+B) . (4.2.8)

To pass to general functions in H1, we use Theorem 2.3.12 to write an f ∈ H1 as

f =
∞

∑
j=1

λ ja j ,

where the series converges in H1, the a j are L2 atoms for H1, and

∥
∥ f
∥
∥
H1 ≈

∞

∑
j=1

|λ j| . (4.2.9)

Since T maps L1 to weak L1 by Theorem 4.2.2, T ( f ) is already a well-defined L1,∞

function. We plan to prove that

T ( f ) =
∞

∑
j=1

λ jT (a j) a.e. (4.2.10)

Note that the series in (4.2.10) converges in L1 and defines an integrable function
almost everywhere. Once (4.2.10) is established, the required conclusion (2.4.5) fol-
lows easily by taking L1 norms in (4.2.10) and using (4.2.8) and (4.2.9).

To prove (4.2.10), we use that T is of weak type (1,1). For a given μ > 0 we have

∣
∣
{∣
∣T ( f )−

∞

∑
j=1

λ jT (a j)
∣
∣> μ

}∣
∣

≤ ∣∣{∣∣T ( f )−
N

∑
j=1

λ jT (a j)
∣
∣> μ/2

}∣
∣+
∣
∣
{∣
∣

∞

∑
j=N+1

λ jT (a j)
∣
∣> μ/2

}∣
∣

≤ 2
μ
∥
∥T
∥
∥
L1→L1,∞

∥
∥
∥ f −

N

∑
j=1

λ ja j

∥
∥
∥
L1
+

2
μ

∥
∥
∥

∞

∑
j=N+1

λ jT (a j)
∥
∥
∥
L1

≤ 2
μ
∥
∥T
∥
∥
L1→L1,∞

∥
∥
∥ f −

N

∑
j=1

λ ja j

∥
∥
∥
H1

+
2
μ
Cn,δ (A+B)

∞

∑
j=N+1

|λ j| .

Since ∑N
j=1λ ja j converges to f in H1 and ∑∞

j=1 |λ j| < ∞, both terms in the sum
converge to zero as N → ∞. We conclude that
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∣
∣
{∣
∣T ( f )−

∞

∑
j=1

λ jT (a j)
∣
∣> μ

}∣
∣= 0

for all μ > 0, which implies (4.2.10). �

Theorem 4.2.7. Let T be in CZO(δ ,A,B). Then for any bounded function f , the
distribution T ( f ) can be identified with a BMO function that satisfies

∥
∥T ( f )

∥
∥
BMO ≤C′

n,δ (A+B)
∥
∥ f
∥
∥
L∞ , (4.2.11)

where Cn,δ is a constant.

Proof. Let L20,c be the space of all square integrable functions with compact support
and integral zero on Rn. This space is contained in H1(Rn) (cf. Exercise 2.1.7) and
contains the set of finite sums of L2 atoms for H1, which is dense in H1; thus L20,c
is dense in H1. Recall that for f ∈ L∞, T ( f ) has a well-defined action 〈T ( f ),ϕ〉 on
functions ϕ in L20,c and (4.1.30) holds.

Suppose we have proved the identity

〈

T ( f ),ϕ
〉

=
∫

Rn
T t(ϕ)(x) f (x)dx , (4.2.12)

for all bounded functions f and all ϕ in L20,c. Since such a ϕ is in H1, Theorem
4.2.6 yields that Tt(ϕ) is in L1, and consequently, the integral in (4.2.12) converges
absolutely. Assuming (4.2.12) and using Theorem 4.2.6 we obtain that

∣
∣
〈

T ( f ),ϕ
〉∣
∣≤ ∥∥Tt(ϕ)

∥
∥
L1
∥
∥ f
∥
∥
L∞ ≤Cn,δ (A+B)

∥
∥ϕ
∥
∥
H1

∥
∥ f
∥
∥
L∞ .

We conclude that L(ϕ) = 〈T ( f ),ϕ〉 is a bounded linear functional on L20,c with
norm at most Cn,δ (A+B)‖ f‖L∞ . Obviously, L has a bounded extension on H1 with
the same norm. By Theorem 3.2.2 there exists a BMO function b f that satisfies
‖b f ‖BMO ≤C′

n‖L‖H1→C such that the linear functional L has the form Lbf , using the
notation of Theorem 3.2.2. In other words, the distribution T ( f ) can be identified
with a BMO function that satisfies (4.2.11) with Cn,δ =C′

nCn,δ , i.e.,
∥
∥T ( f )

∥
∥
BMO ≤C′

nCn,δ (A+B)
∥
∥ f
∥
∥
L∞ .

We return to the proof of identity (4.2.12). Pick a smooth function with compact
support η that satisfies 0≤ η ≤ 1 and is equal to 1 in a neighborhood of the support
of ϕ . We write the right-hand side of (4.2.12) as
∫

Rn
T t(ϕ)η f dx+

∫

Rn
T t(ϕ)(1−η) f dx=

〈

T (η f ),ϕ
〉

+
∫

Rn
T t(ϕ)(1−η) f dx .

In view of Definition 4.1.16, to prove (4.2.12) it will suffice to show that
∫

Rn
T t(ϕ)(1−η) f dx=

∫

Rn

∫

Rn

(

K(x,y)−K(x0,y)
)

ϕ(x)dx(1−η(y)) f (y)dy ,
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where x0 lies in the support of ϕ . In the outer integral above we have y /∈ supp ϕ and
the inner integral above is absolutely convergent and equal to

∫

Rn

(

K(x,y)−K(x0,y)
)

ϕ(x)dx=
∫

Rn
Kt(y,x)ϕ(x)dx= Tt(ϕ)(y) ,

by Proposition 4.1.9, since y /∈ supp ϕ . Thus (4.2.12) is valid. �

Exercises

4.2.1. Let T : S (Rn)→S ′(Rn) be a continuous linear operator whose Schwartz
kernel coincides with a function K(x,y) on Rn ×Rn minus its diagonal. Suppose
that the function K(x,y) satisfies

sup
R>0

∫

R≤|x−y|≤2R
|K(x,y)|dy= A< ∞ .

(a) Show that the previous condition is equivalent to

sup
R>0

1
R

∫

|x−y|≤R
|x− y| |K(x,y)|dy= A′ < ∞

by proving that A′ ≤ A≤ 2A′.
(b) For ε > 0, let T (ε) be the truncated linear operators with kernels K(ε)(x,y) =
K(x,y)χ|x−y|>ε . Show that the integral defining T (ε)( f ) converges absolutely for
Schwartz functions f .
[

Hint: Part (b): Consider the annuli ε2 j ≤ |x| ≤ ε2 j+1 for j ≥ 0.
]

4.2.2. Let T be as in Exercise 4.2.1. Prove that the limit T (ε)( f )(x) exists for all f
in the Schwartz class for almost all x ∈ Rn as ε → 0 if and only if the limit

lim
ε→0

∫

ε<|x−y|<1
K(x,y)dy

exists for almost all x ∈ Rn.

4.2.3. Let K(x,y) be a function defined away from the diagonal in R2n that satisfies

sup
R>0

∫

R≤|x−y|≤2R
|K(x,y)|dx≤ A< ∞

and also Hörmander’s condition

sup
y,y′∈Rn

y �=y′

∫

|x−y|≥2|y−y′|
|K(x,y)−K(x,y′)|dx≤ A′′ < ∞ . (4.2.13)



4.2 Consequences of L2 Boundedness 235

Show that the truncations K(ε)(x,y) also satisfy Hörmander’s condition uniformly
in ε > 0 with a constant A+A′′. The same conclusion is valid for the truncations
K(ε)(x,y)−K(M)(x,y) for 0< ε <M < ∞.

4.2.4. Let T be as in Exercise 4.2.1 and assume that T maps Lr(Rn) to itself for
some 1< r < ∞ with norm B.
(a) Assume that K(x,y) satisfies condition (4.2.13). Show that T has an extension
that maps L1(Rn) to L1,∞(Rn) with norm

‖T‖L1→L1,∞ ≤Cn(A+A′′+B) .

Conclude that T has a bounded extension from Lp(Rn) to itself for 1 < p < r with
norm

‖T‖Lp→Lp ≤Cn(p−1)−
1
p (A+A′′+B),

where Cn is a dimensional constant.
(b) Assuming that Kt(x,y) = K(y,x) also satisfies (4.2.13), prove that T has a
bounded extension from Lp(Rn) to itself for r < p< ∞ with norm

‖T‖Lp→Lp ≤Cn (p−1)1−
1
p (A+A′′+B),

where Cn is independent of p.[

Hint: Use Exercise 1.3.2 in [156].
]

4.2.5. Let K and T be as in Theorem 4.2.4. Show that estimate (4.2.2) also holds
when r = 1.
[

Hint: Estimate (4.2.6) holds when r= 1. For fixed ε > 0, take 0< b< |T (ε)( f )(x)|
and define Bε1(x) = B(x, ε2 ) ∩ {|T ( f )| > b

3}, Bε2(x) = B(x, ε2 ) ∩ {|T ( f ε ,x0 )| > b
3},

and Bε3(x) = B(x, ε2 ) if Cn,δAM( f )(x) > b
3 and empty otherwise. Then |B(x, ε2 )| ≤|Bε1(x)|+ |Bε2(x)|+ |Bε3(x)|. Use the weak type (1,1) property of T to show that

b ≤ C(n)
(

M(|T ( f )|)(x)+ (A+B)M( f )(x)
)

, and take the supremum over all b <

|T (ε)( f )(x)|.]

4.2.6. (Calderón–Zygmund decomposition with bounded overlap) Let f ∈ L1(Rn)
and α > 0. Prove that there exist functions g and b on Rn such that

(1) f = g+b.

(2) ‖g‖L1 ≤ ‖ f‖L1 , ‖g‖L∞ ≤ (10
√
n)nα .

(3) b = ∑ j b j, where each b j is supported in a dyadic cube Qj. Furthermore, the
interiors of Qk and Qj are disjoint when j �= k.

(4)
∫

Qj

b j(x)dx= 0.

(5) ‖b j‖L1 ≤ 2(10
√
n)nα|Qj|.

(6) ∑ j |Qj| ≤ α−1‖ f‖L1 .
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(7) ∑ j χ∗
Qj

≤ 12n, where Q∗
j has the same center as Qj and �(Q∗

j) = (1+ ε)�(Qj),
for any ε with 0< ε < 1/4.

[

Hint: Let Mc be the uncentered Hardy–Littlewood maximal operator with respect
to cubes on Rn. Let Qj be the Whitney cubes of Ω = {Mc( f ) > α} (see Appendix
J in [156]). Define b j =

(

f − 1
|Qj |

∫

Qj
f dx

)

χQj and b = ∑ j b j. Use that 10
√
nQj

intersects Ω c and that on Ω c, g= f ≤Mc( f )≤ α a.e.
]

4.3 The T (1) Theorem

We now turn to one of the main results of this chapter, the so-called T (1) theorem.
This theorem gives necessary and sufficient conditions for linear operators T with
standard kernels to be bounded on L2(Rn). In this section we obtain several such
equivalent conditions. The name of theorem T (1) is due to the fact that one of the
equivalent ways to characterize boundedness is expressed in terms of properties of
the distribution T (1), which was introduced in Definition 4.1.16.

4.3.1 Preliminaries and Statement of the Theorem

We begin with some preliminary facts and definitions.

Definition 4.3.1. A normalized bump is a smooth function ϕ supported in the ball
B(0,10) that satisfies

|(∂αx ϕ)(x)| ≤ 1

for all multi-indices |α| ≤ 2 [ n2 ]+2, where [x] denotes here the integer part of x.

Observe that every smooth function supported inside the ball B(0,10) is a con-
stant multiple of a normalized bump. Also note that if a normalized bump is sup-
ported in a compact subset of B(0,10), then small translations of it are also normal-
ized bumps.

Given a function f onRn, R> 0, and x0 ∈Rn, we use the notation fR to denote the
function fR(x) = R−n f (R−1x) and τx0 f to denote the function τx0 f (x) = f (x− x0).
Thus

τx0 fR(y) = fR(y− x0) = R−n f
(

R−1(y− x0)
)

.

Set N = [ n2 ]+1. Using that all derivatives up to order 2N of normalized bumps are
bounded by 1, we easily deduce that for all x0 ∈ Rn, all R > 0, and all normalized
bumps ϕ we have the estimate
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Rn
∫

Rn

∣
∣̂τx0ϕR(ξ )

∣
∣dξ

=
∫

Rn

∣
∣ϕ̂(ξ )

∣
∣dξ

=
∫

Rn

∣
∣
∣
∣

∫

Rn
ϕ(y)e−2πiy·ξ dy

∣
∣
∣
∣
dξ

=
∫

Rn

∣
∣
∣
∣

∫

Rn
(I−Δ)N(ϕ)(y)e−2πiy·ξ dy

∣
∣
∣
∣

dξ
(1+4π2|ξ |2)N

≤ Cn ,

(4.3.1)

since |(∂αx ϕ)(x)| ≤ 1 for all multi-indices α with |α| ≤ [ n2 ]+1, and Cn is indepen-
dent of the bump ϕ . Here I−Δ denotes the operator

(I−Δ)(ϕ) = ϕ+
n

∑
j=1

∂ 2ϕ
∂x2j

.

Definition 4.3.2. We say that a continuous linear operator

T : S (Rn)→S ′(Rn)

satisfies the weak boundedness property (WBP) if there is a constantC such that for
all f and g normalized bumps and for all x0 ∈ Rn and R> 0 we have

|〈T (τx0 fR),τx0gR
〉| ≤CR−n. (4.3.2)

The smallest constant C in (4.3.2) is denoted by ‖T‖WB.

Note that ‖τx0 fR‖L2 = ‖ fR‖L2 = ‖ f‖L2R−n/2 and thus if T has a bounded ex-
tension from L2(Rn) to itself, then T satisfies the weak boundedness property with
bound

∥
∥T
∥
∥
WB ≤ 10nvn

∥
∥T
∥
∥
L2→L2 ,

where vn is the volume of the unit ball in Rn.
We now state one of the main theorems in this chapter.

Theorem 4.3.3. Let T be a continuous linear operator from S (Rn) to S ′(Rn)
whose Schwartz kernel coincides with a function K on Rn×Rn \ {(x,x) : x ∈ Rn}
that satisfies (4.1.1), (4.1.2), and (4.1.3) for some 0< A<∞ and 0< δ ≤ 1. Let K(ε)

and T (ε) be the usual truncated kernel and operator for ε > 0. Assume that there
exists a sequence ε j ↓ 0 such that for all ϕ,ψ ∈S (Rn) we have

〈

T (ε j)(ϕ),ψ
〉→ 〈

T (ϕ),ψ
〉

. (4.3.3)
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Consider the assertions:

(i) The following statement is valid:

B1 = sup
B

sup
ε>0

[∥
∥T (ε)(χB)

∥
∥
L2

|B| 12
+

∥
∥(T (ε))t(χB)

∥
∥
L2

|B| 12

]

< ∞ ,

where the first supremum is taken over all balls B in Rn.

(ii) We have that

B2 = sup
ε ,N,x0

[
1
Nn

∫

B(x0,N)

∣
∣
∣
∣

∫

|x−y|<N

K(ε)(x,y)dy
∣
∣
∣
∣

2

dx

+
1
Nn

∫

B(x0,N)

∣
∣
∣
∣

∫

|x−y|<N

K(ε)(y,x)dy
∣
∣
∣
∣

2

dx
]1
2

< ∞ ,

where the supremum is taken over all 0< ε ,N <∞ with ε < N, and all x0 ∈Rn.

(iii) The following statement is valid:

B3 = sup
ϕ

sup
x0∈Rn

sup
R>0

R
n
2

[∥
∥T (τx0ϕR)

∥
∥
L2 +

∥
∥Tt(τx0ϕR)

∥
∥
L2

]

< ∞ ,

where the first supremum is taken over all normalized bumps ϕ .

(iv) The operator T satisfies the weak boundedness property and the distributions
T (1) and Tt(1) coincide with BMO functions, that is,

B4 =
∥
∥T (1)

∥
∥
BMO+

∥
∥Tt(1)

∥
∥
BMO+

∥
∥T
∥
∥
WB < ∞ .

(v) For every ξ ∈ Rn the distributions T (e2πi(·)·ξ ) and Tt(e2πi(·)·ξ ) coincide with
BMO functions such that

B5 = sup
ξ∈Rn

∥
∥T (e2πi(·)·ξ )

∥
∥
BMO+ sup

ξ∈Rn

∥
∥Tt(e2πi(·)·ξ )

∥
∥
BMO < ∞ .

(vi) The following statement is valid:

B6 = sup
ϕ

sup
x0∈Rn

sup
R>0

Rn
[∥
∥T (τx0ϕR)

∥
∥
BMO+

∥
∥Tt(τx0ϕR)

∥
∥
BMO

]

< ∞ ,

where the first supremum is taken over all normalized bumps ϕ .

Then assertions (i)–(vi) are all equivalent to each other and to the L2 boundedness
of T , and we have the following equivalence of the previous quantities:

cn,δ (A+Bj)≤
∥
∥T
∥
∥
L2→L2 ≤Cn,δ (A+Bj),



4.3 The T (1) Theorem 239

for all j ∈ {1,2,3,4,5,6}, for some constants cn,δ ,Cn,δ that depend only on the
dimension n and on the parameter δ > 0.

Remark 4.3.4. Condition (4.3.3) says that the operator T is the weak limit of a
sequence of its truncations. We already know from Proposition 4.1.11 that if T is
bounded on L2, then it must be equal to an operator that satisfies (4.3.3) plus a
bounded function times the identity operator. Therefore, it is not a serious restriction
to assume condition (4.3.3). In Remark 4.3.6 we discuss versions of Theorem 4.3.3
in which this assumption is not imposed.

One should always keep in mind the following pathological situation: consider
the distributionW0 ∈S (Rn×Rn) defined for F inS (R2n) by

〈W0,F〉=
∫

Rn
F(t, t)h(t)dt ,

where h(t) = |t|2. In this case, T (ε) = 0 for all ε > 0; hence T (ε) are uniformly
bounded on L2, but 〈T ( f ),ϕ〉 = ∫

Rn ϕ(t) f (t)h(t)dt; thus T ( f ) can be identified
with f h for all f ∈S , which is certainly an unbounded operator on L2(Rn). Notice
that (4.3.3) fails in this case.

Before we begin the lengthy proof of this theorem, we state a lemma that we
need.

Lemma 4.3.5. Under assumptions (4.1.1), (4.1.2), and (4.1.3), there is a constant Cn
such that for all normalized bumps ϕ we have

sup
x0∈Rn

∫

|x−x0|≥20R

∣
∣
∣
∣

∫

Rn
K(x,y)τx0ϕR(y)dy

∣
∣
∣
∣

2

dx≤ CnA2

Rn . (4.3.4)

Proof. Note that the interior integral in (4.3.4) is absolutely convergent, since τx0ϕR
is supported in the ball B(x0,10R) and x lies in the complement of the double of this
ball. To prove (4.3.4), simply observe that since |K(x,y)| ≤ A|x− y|−n, we have that

|T (τx0ϕR)(x)| ≤ CnA
|x− x0|n

whenever |x− x0| ≥ 20R. The estimate follows easily. �

4.3.2 The Proof of Theorem 4.3.3

This subsection is dedicated to the proof of Theorem 4.3.3.

Proof. The proof is based on a series of steps. We begin by showing that condition
(iii) implies condition (iv).
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(iii) =⇒ (iv)

Fix a C ∞
0 function φ with 0 ≤ φ ≤ 1, supported in the ball B(0,4), and equal to

1 on the ball B(0,2). We consider the functions φ(·/R) that tend to 1 as R→ ∞ and
we show that T (1) is the weak limit of the functions T (φ(·/R)). This means that for
all g ∈D0 (smooth functions with compact support and integral zero) one has

〈

T (φ(·/R)),g〉→ 〈

T (1),g
〉

(4.3.5)

as R→∞. To prove (4.3.5) we fix a C ∞
0 function η that is equal to one on the support

of g. Then we write
〈

T (φ(·/R)),g〉 = 〈

T (ηφ(·/R)),g〉+〈T ((1−η)φ(·/R)),g〉

=
〈

T (ηφ(·/R)),g〉

+
∫

Rn

∫

Rn

(

K(x,y)−K(x0,y)
)

g(x)(1−η(y))φ(y/R)dydx ,

where x0 is a point in the support of g. There exists an R0 > 0 such that for R≥ R0,
φ(·/R) is equal to 1 on the support of η , and moreover the expressions

∫

Rn

∫

Rn

(

K(x,y)−K(x0,y)
)

g(x)(1−η(y))φ(y/R)dydx

converge to
∫

Rn

∫

Rn

(

K(x,y)−K(x0,y)
)

g(x)(1−η(y))dydx

as R→∞ by the Lebesgue dominated convergence theorem. Using Definition 4.1.16,
we obtain the validity of (4.3.5).

Next we observe that the functions φ(·/R) are in L2. We show that
∥
∥T (φ(·/R))∥∥BMO ≤Cn,δ (A+B3) (4.3.6)

uniformly in R > 0. Once (4.3.6) is established, then the sequence {T (φ(·/ j))}∞j=1
lies in a multiple of the unit ball of BMO = (H1)∗, and by the Banach–Alaoglou
theorem, there is a subsequence of the positive integers Rj such that T (φ(·/Rj))
converges weakly to an element b in BMO. This means that

〈

T (φ(·/Rj)),g
〉→ 〈

b,g
〉

(4.3.7)

as j→∞ for all g ∈D0. Using (4.3.5), we conclude that T (1) can be identified with
the BMO function b, and as a consequence of (4.3.6) it satisfies

∥
∥T (1)

∥
∥
BMO ≤Cn,δ (A+B3) .

In a similar fashion, we identify Tt(1) with a BMO function with norm satisfying
∥
∥Tt(1)

∥
∥
BMO ≤Cn,δ (A+B3) .
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We return to the proof of (4.3.6). We fix a ball B = B(x0,r) with radius r > 0
centered at x0 ∈ Rn. If we had a constant cB such that

1
|B|

∫

B
|T (φ(·/R))(x)− cB|dx≤ cn,δ (A+B3) (4.3.8)

for all R > 0, then property (3) in Proposition 3.1.2 (adapted to balls) would yield
(4.3.6). Obviously, (4.3.8) is a consequence of the two estimates

1
|B|

∫

B
|T [φ( ·−x0

r )φ( ·
R )
]

(x)|dx≤ cn B3 , (4.3.9)

1
|B|

∫

B

∣
∣T
[

(1−φ( ·−x0
r ))φ( ·

R )
]

(x)−T
[

(1−φ( ·−x0
r ))φ( ·

R )
]

(x0)
∣
∣dx≤ cn

δ
A . (4.3.10)

We bound the double integral in (4.3.10) by

1
|B|

∫

B

∫

|y−x0|≥2r
|K(x,y)−K(x0,y)|φ(y/R)dydx , (4.3.11)

since 1−φ((y− x0)/r) = 0 when |y− x0| ≤ 2r. Since |x− x0| ≤ r ≤ 1
2 |y− x0|, con-

dition (4.1.2) gives that (4.3.11) holds with cn = ωn−1 = |Sn−1|.
It remains to prove (4.3.9). It is easy to verify that there is a constantC0=C0(n,φ)

such that for 0< ε ≤ 1 and for all a ∈ Rn the functions

C−1
0 φ(ε(x+a))φ(x), C−1

0 φ(x)φ(−a+ εx) (4.3.12)

are normalized bumps. The important observation is that with a= x0/r we have

φ( xR )φ(
x−x0
r ) = rnτx0

[(

φ
( r
R (·+a)

)

φ(·)
)

r

]

(x) (4.3.13)

= Rn
(

φ(·)φ(−a+ R
r (·)

))

R
(x), (4.3.14)

and thus in either case r≤ R or R≤ r, one may express the product φ( xR )φ(
x−x0
r ) as

a multiple of a translation of an L1 dilation of a normalized bump.
Let us suppose that r ≤ R. In view of (4.3.13) we write

T
[

φ( ·−x0
r )φ( ·

R )
]

(x) =C0 rnT
[

τx0ϕr
]

(x)

for some normalized bump ϕ . Using this fact and the Cauchy–Schwarz inequality,
we estimate the expression on the left in (4.3.9) by

C0 rn/2

|B| 12
rn/2

(∫

B
|T [τx0ϕr

]

(x)|2 dx
) 1

2
≤ C0 rn/2

|B| 12
B3 = cn B3 ,

where the first inequality follows by applying hypothesis (iii).
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We now consider the case R≤ r. In view of (4.3.14) we write

T
[

φ( ·−x0
r )φ( ·

R )
]

(x) =C0RnT
(

ϕR
)

(x)

for some other normalized bump ϕ . Using this fact and the Cauchy–Schwarz in-
equality, we estimate the expression on the left in (4.3.9) by

C0Rn/2

|B| 12
Rn/2

(∫

B
|T (ζR)(x)|2 dx

) 1
2
≤ C0Rn/2

|B| 12
B3 ≤ cn B3

applying hypothesis (iii) and recalling that R≤ r. This proves (4.3.9).
To finish the proof of (iv), we need to prove that T satisfies the weak boundedness

property. But this is elementary, since for all normalized bumps ϕ and ψ and all
x ∈ Rn and R> 0 we have

∣
∣
〈

T (τxψR),τxϕR
〉∣
∣ ≤ ∥

∥T (τxψR)
∥
∥
L2
∥
∥τxϕR

∥
∥
L2

≤ B3R− n
2
∥
∥τxϕR

∥
∥
L2

≤CnB3R−n.

This gives ‖T‖WB ≤CnB3, which implies the estimate B4 ≤Cn,δ (A+B3) and con-
cludes the proof of the fact that condition (iii) implies (iv).

(iv) =⇒ (L2 boundedness of T )

We now assume condition (iv) and we present the most important step of the
proof, establishing the fact that T has an extension that maps L2(Rn) to itself. The
assumption that the distributions T (1) and Tt(1) coincide with BMO functions leads
to the construction of Carleson measures that provide the key tool in the bounded-
ness of T .

We pick a smooth radial functionΦ with compact support that is supported in the
ball B(0, 12 ) and that satisfies

∫

RnΦ(x)dx= 1. For t > 0 we defineΦt(x) = t−nΦ( xt ).
Since Φ is a radial function, the operator

Pt( f ) = f ∗Φt (4.3.15)

is self-transpose. The operator Pt is a continuous analogue of S j = ∑k≤ jΔk, where
the Δ j’s are the Littlewood–Paley operators.

We now fix a Schwartz function f whose Fourier transform is supported away
from a neighborhood of the origin. We discuss an integral representation for T ( f ).
We begin with the facts, which can be found in Exercises 4.3.1 and 4.3.2, that

T ( f ) = lim
s→0

P2
s TP

2
s ( f ) ,

0 = lim
s→∞

P2
s TP

2
s ( f ) ,
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where the first limit is in the topology of S ′(Rn) and the second one is in the
topology of S ′(Rn)/P(Rn). Thus, with the use of the fundamental theorem of
calculus and the product rule, we are able to write

T ( f ) = lim
s→0

P2
s TP

2
s ( f )− lim

s→∞
P2
s TP

2
s ( f )

= − lim
ε→0

∫ 1
ε

ε
s
d
ds

(

P2
s TP

2
s
)

( f )
ds
s

= − lim
ε→0

∫ 1
ε

ε

[

s
(

d
ds

P2
s

)

TP2
s ( f )+P2

s

(

Ts
d
ds

P2
s

)

( f )
]
ds
s
, (4.3.16)

where the limit is in the sense of S ′(Rn)/P(Rn). For a Schwartz function g we
have

(

s
d
ds

P2
s (g)

)
̂
(ξ ) = ĝ(ξ )s

d
ds
Φ̂(sξ )2

= ĝ(ξ )Φ̂(sξ )
(

2sξ ·∇Φ̂(sξ )
)

= ĝ(ξ )
n

∑
k=1

Ψ̂k(sξ )Θ̂k(sξ )

=
n

∑
k=1

(

Q̃k,sQk,s(g)
)
̂(ξ ) =

n

∑
k=1

(

Qk,sQ̃k,s(g)
)
̂(ξ ) ,

where for 1≤ k ≤ n, Ψ̂k(ξ ) = 2ξkΦ̂(ξ ), Θ̂k(ξ ) = ∂kΦ̂(ξ ), and Qk,s, Q̃k,s are opera-
tors defined by

Qk,s(g) = g∗ (Ψk)s , Q̃k,s(g) = g∗ (Θk)s ;

here (Θk)s(x) = s−nΘk(s−1x) and (Ψk)s are defined similarly. Observe thatΨk and
Θk are smooth odd bumps supported in B(0, 12 ) and have integral zero. SinceΨk and
Θk are odd, they are anti-self-transpose, meaning that (Qk,s)

t =−Qk,s and (Q̃k,s)
t =

−Q̃k,s. We now write the expression in (4.3.16) as

− lim
ε→0

n

∑
k=1

[∫ 1
ε

ε
Q̃k,sQk,sTPsPs( f )

ds
s
+
∫ 1

ε

ε
PsPsTQk,sQ̃k,s( f )

ds
s

]

, (4.3.17)

where the limit is in the sense of S ′(Rn)/P(Rn). We set

Tk,s = Qk,sTPs ,

and we observe that the operator PsTQk,s is equal to −((Tt)k,s)
t .

Recall the notation τxh(z) = h(z− x). For a given ϕ ∈S (Rn) we have

Qk,sTPs(ϕ)(x) =
〈

TPs(ϕ) , τxΨk,s

〉

=
〈

T
(

Φs ∗ϕ
)

, τxΨk,s

〉
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=
〈

T
(∫

Rn
ϕ(y)(τyΦs)dy

)

, τxΨk,s

〉

=
∫

Rn

〈

T
(

τyΦs
)

, τxΨk,s
〉

ϕ(y)dy . (4.3.18)

The last equality is justified by the convergence of the Riemann sums RN of the inte-
gral I =

∫

Rn ϕ(y)(τyΦs)(·)dy to itself in the topology ofS (this is contained in the
proof of Theorem 2.3.20 in [156]); by the continuity of T , T (RN) converges to T (I)
in S ′ and thus 〈T (RN),τxΨk,s〉 converges to 〈T (I),τxΨk,s〉. But 〈T (RN),τxΨk,s〉 is
also a Riemann sum for the rapidly convergent integral in (4.3.18); hence it con-
verges to it as well.

We deduce that the operator Tk,s = Qk,sTPs has kernel

Kk,s(x,y) =
〈

T (τyΦs),τx(Ψk)s
〉

=
〈

Tt(τx(Ψk)s),τyΦs
〉

. (4.3.19)

Hence, the operator PsTQk,s =−((Tt)k,s)
t has kernel

−〈Tt(τxΦs),τy(Ψk)s
〉

=−〈T (τy(Ψk)s),τxΦs
〉

.

For 1≤ k ≤ n we need the following facts regarding the kernels of these operators:
∣
∣
〈

T (τy(Ψk)s),τxΦs
〉∣
∣ ≤ Cn,δ

(‖T‖WB+A
)

ps(x− y) , (4.3.20)
∣
∣
〈

Tt(τx(Ψk)s),τyΦs
〉∣
∣ ≤ Cn,δ

(‖T‖WB+A
)

ps(x− y) , (4.3.21)

where
pt(u) =

1
tn

1
(1+ | ut |)n+δ

is the L1 dilation of the function p(u) = (1+ |u|)−n−δ .
To prove (4.3.21), we consider the following two cases: If |x− y| ≤ 5s, then the

weak boundedness property gives

∣
∣
〈

T (τyΦs),τx(Ψk)s
〉∣
∣=
∣
∣
〈

T (τx((τ
y−x
s Φ)s)),τx(Ψk)s

〉∣
∣≤ Cn‖T‖WB

sn
,

since bothΨk and τ
y−x
s Φ are multiples of normalized bumps. Notice here that both

of these functions are supported in B(0,10), since 1
s |x−y| ≤ 5. This estimate proves

(4.3.21) when |x− y| ≤ 5s.
We now turn to the case |x− y| ≥ 5s. Then the functions τyΦs and τx(Ψk)s have

disjoint supports and so we have the integral representation

〈

Tt(τx(Ψk)s),τyΦs
〉

=

∫

Rn

∫

Rn
Φs(v− y)K(u,v)(Ψk)s(u− x)dudv .

Using thatΨk has mean value zero, we can write the previous expression as
∫

Rn

∫

Rn
Φs(v− y)

(

K(u,v)−K(x,v)
)

(Ψk)s(u− x)dudv .
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We observe that |u− x| ≤ s and |v− y| ≤ s in the preceding double integral. Since
|x− y| ≥ 5s, this makes |u− v| ≥ |x− y| − 2s ≥ 3s, which implies that |u− x| ≤
1
2 |u− v|. Using (4.1.2), we obtain

|K(u,v)−K(x,v)| ≤ A|x−u|δ
(|u− v|+ |x− v|)n+δ ≤Cn,δA

sδ

|x− y|n+δ ,

where we used the fact that |u− v| ≈ |x− y|. Inserting this estimate in the double
integral, we obtain (4.3.21). Estimate (4.3.20) is proved similarly.

At this point we drop the dependence of Qk,s and Q̃k,s on the index k, since we
can concentrate on one term of the sum in (4.3.17). We have managed to express
T ( f ) as a finite sum of operators of the form

∫ ∞

0
Q̃sTsPs( f )

ds
s

(4.3.22)

and of the form ∫ ∞

0
PsTsQ̃s( f )

ds
s
, (4.3.23)

where the preceding integrals converge inS ′(Rn)/P(Rn) and the Ts’s have kernels
Ks(x,y), which are pointwise dominated by a constant multiple of (A+B4)ps(x−y).

It suffices to obtain L2 bounds for an operator of the form (4.3.22) with constant
at most a multiple of A+B4. Then by duality the same estimate also holds for the
operators of the form (4.3.23). Wemake one more observation. Using (4.3.19) (recall
that we have dropped the indices k), we obtain

Ts(1)(x) =
∫

Rn
Ks(x,y)dy=

〈

Tt(τxΨs),1
〉

= (Ψs ∗T (1))(x) , (4.3.24)

where all integrals converge absolutely.
We can therefore concentrate on the L2 boundedness of the operator in (4.3.22).

We pair this operator with a Schwartz function g in S0(Rn) and we use the conver-
gence of the integral inS ′/P(Rn) and the property (Q̃s)

t =−Q̃s to obtain

〈∫ ∞

0
Q̃sTsPs( f )

ds
s
,g
〉

=

∫ ∞

0

〈

Q̃sTsPs( f ),g
〉 ds
s

=−
∫ ∞

0

〈

TsPs( f ), Q̃s(g)
〉 ds
s
.

The intuition here is as follows: Ts is an averaging operator at scale s and Ps( f ) is
essentially constant on that scale. Therefore, the expression TsPs( f ) must look like
Ts(1)Ps( f ). To be precise, we introduce this term and try to estimate the error that
occurs. We have

TsPs( f ) = Ts(1)Ps( f )+
[

TsPs( f )−Ts(1)Ps( f )
]

. (4.3.25)
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We estimate the terms that arise from this splitting. Recalling (4.3.24), we write
∣
∣
∣
∣

∫ ∞

0

〈

(Ψs ∗T (1))Ps( f ), Q̃s(g)
〉 ds

s

∣
∣
∣
∣

(4.3.26)

≤
(∫ ∞

0

∥
∥Ps( f )(Ψs ∗T (1))

∥
∥2
L2
ds
s

)1
2
(∫ ∞

0

∥
∥Q̃s(g)

∥
∥2
L2

ds
s

)1
2

=

∥
∥
∥
∥

(∫ ∞

0

∣
∣Ps( f )(Ψs ∗T (1))

∣
∣2 ds

s

)1
2
∥
∥
∥
∥
L2

∥
∥
∥
∥

(∫ ∞

0

∣
∣Q̃s(g)

∣
∣2 ds

s

)1
2
∥
∥
∥
∥
L2
. (4.3.27)

Since T (1) is a BMO function, |(Ψs∗T (1))(x)|2dxdss is a Carleson measure onRn+1
+ .

Using Theorem 3.3.8 and the continuous version of the Littlewood–Paley theorem
(Exercise 6.1.4 in [156]), we obtain that (4.3.27) is controlled by

Cn
∥
∥T (1)

∥
∥
BMO

∥
∥ f
∥
∥
L2
∥
∥g
∥
∥
L2 ≤CnB4

∥
∥ f
∥
∥
L2
∥
∥g
∥
∥
L2 .

This gives the sought estimate for the first term in (4.3.25). For the second term in
(4.3.25) we have
∣
∣
∣
∣

∫ ∞

0

∫

Rn
Q̃s(g)(x)

[

TsPs( f )−Ts(1)Ps( f )
]

(x)dx
ds
s

∣
∣
∣
∣

≤
(∫ ∞

0

∫

Rn
|Q̃s(g)(x)|2 dxdss

)1
2
(∫ ∞

0

∫

Rn
|(TsPs( f )−Ts(1)Ps( f ))(x)|2 dxdss

)1
2

≤Cn
∥
∥g
∥
∥
L2

(∫ ∞

0

∫

Rn

∣
∣
∣
∣

∫

Rn
Ks(x,y)[Ps( f )(y)−Ps( f )(x)]dy

∣
∣
∣
∣

2

dx
ds
s

)1
2

≤Cn(A+B4)
∥
∥g
∥
∥
L2

(∫ ∞

0

∫

Rn

∫

Rn
ps(x− y)

∣
∣Ps( f )(y)−Ps( f )(x)

∣
∣2 dydx

ds
s

)1
2
,

where in the last estimate we used the fact that the measure ps(x− y)dy is a mul-
tiple of a probability measure. It suffices to estimate the last displayed square root.
Changing variables u = x− y and applying Plancherel’s theorem, we express this
square root as

(∫ ∞

0

∫

Rn

∫

Rn
ps(u)

∣
∣Ps( f )(y)−Ps( f )(y+u)

∣
∣2 dudy

ds
s

)1
2

=

(∫ ∞

0

∫

Rn

∫

Rn
ps(u)

∣
∣Φ̂(sξ )− Φ̂(sξ )e2πiu·ξ

∣
∣2
∣
∣ f̂ (ξ )

∣
∣2 dudξ

ds
s

)1
2

≤
(∫ ∞

0

∫

Rn

∫

Rn
ps(u)

∣
∣Φ̂(sξ )

∣
∣24π

δ
2 |u| δ2 |ξ | δ2 ∣∣ f̂ (ξ )∣∣2 dudξ ds

s

)1
2

= 2π
δ
4

(∫

Rn

∫ ∞

0

(∫

Rn
ps(u)

∣
∣ u
s

∣
∣
δ
2 du

)
∣
∣Φ̂(sξ )

∣
∣2|sξ | δ2 ds

s

∣
∣ f̂ (ξ )

∣
∣2 dξ

)1
2
,
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and we claim that this last expression is bounded by Cn,δ‖ f‖L2 . Indeed, we first

bound the quantity
∫

Rn ps(u)
∣
∣ u
s

∣
∣δ/2 du by a constant, and then we use the estimate

∫ ∞

0

∣
∣Φ̂(sξ )

∣
∣2|sξ | δ2 ds

s
=
∫ ∞

0

∣
∣Φ̂(se1)

∣
∣2s

δ
2
ds
s

≤C′
n,δ < ∞

and Plancherel’s theorem to obtain the claim. [Here e1 = (1,0, . . . ,0).] Taking g
to be an arbitrary function in S0(Rn) with L2 norm at most 1 and using duality
and the fact that S0(Rn) is dense in L2(Rn), we deduce the estimate ‖T ( f )‖L2 ≤
Cn,δ (A+ B4)‖ f‖L2 for all Schwartz functions f whose Fourier transform does
not contain a neighborhood of the origin. Such functions are dense in L2(Rn)
(cf. Exercise 6.2.9 in [156]) and thus T admits an extension on L2 that satisfies
‖T‖L2→L2 ≤Cn,δ (A+B4).

(L2 boundedness of T ) =⇒ (v)

If T has an extension that maps L2 to itself, then by Theorem 4.2.7 we have

B5 ≤Cn,δ
(

A+‖T‖L2→L2
)

< ∞.

Thus the boundedness of T on L2 implies condition (v).

(v) =⇒ (vi)

At a formal level the proof of this fact is clear, since we can write a normalized
bump as the inverse Fourier transform of its Fourier transform and interchange the
integrations with the action of T to obtain

T (τx0ϕR) =

∫

Rn
̂τx0ϕR(ξ )T (e2πiξ ·( ·))dξ . (4.3.28)

The conclusion follows by taking BMO norms. To make identity (4.3.28) precise we
provide the following argument.

Let us fix a normalized bump ϕ and a smooth and compactly supported func-
tion g with mean value zero. We pick a smooth function η with compact support
that is equal to 1 on the unit ball and vanishes outside the double of that ball. De-
fine ηk(ξ ) = η(ξ/k) and note that ηk tends pointwise to 1 as k → ∞. Observe that
ηkτx0ϕR converges to τx0ϕR in S (Rn) as k → ∞, and by the continuity of T we
obtain

lim
k→∞

〈

T (ηkτx0ϕR),g
〉

=
〈

T (τx0ϕR),g
〉

.

We have

T
(

ηke2πiξ ·( ·)
)

= T
(∫

Rn
̂τx0ϕR(ξ )ηk( ·)e2πiξ ·( ·)dξ

)

(4.3.29)

=
∫

Rn
̂τx0ϕR(ξ )T

(

ηk( ·)e2πiξ ·( ·)
)

dξ ,
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where the second equality is justified by the continuity and linearity of T along with
the fact that the Riemann sums of the integral in (4.3.29) converge to that integral
in S (a proof of this fact is essentially contained in the proof of Theorem 2.3.21 in
[156]). Consequently,

〈

T (τx0ϕR),g
〉

= lim
k→∞

∫

Rn
̂τx0ϕR(ξ )

〈

T
(

ηke2πiξ ·( ·)
)

,g
〉

dξ . (4.3.30)

LetW be the distributional kernel of T . By (4.1.5) we have
〈

T (ηke2πiξ ·( ·)),g
〉

=
〈

W,g⊗ηke2πiξ ·( ·)
〉

. (4.3.31)

Using (4.1.6), we obtain that the expression in (4.3.31) is controlled by a finite sum
of L∞ norms of derivatives of the function

g(x)ηk(y)e2πiξ ·y

on some compact set (that depends on g). Then for some M > 0 and some constant
C(g) depending on g, we have that this sum of L∞ norms of derivatives is controlled
by

C(g)(1+ |ξ |)M

uniformly in k≥ 1. Since ̂τx0ϕR is integrable, the Lebesgue dominated convergence
theorem allows us to pass the limit inside the integrals in (4.3.30) to obtain

〈

T (τx0ϕR),g
〉

=
∫

Rn
̂τx0ϕR(ξ )

〈

T
(

e2πiξ ·( ·)
)

,g
〉

dξ .

We now use assumption (v). The distributions T
(

e2πiξ ·( ·)
)

coincide with BMO func-
tions whose norm is at most B5. It follows that

∣
∣
〈

T (τx0ϕR),g
〉∣
∣ ≤ ∥

∥̂τx0ϕR
∥
∥
L1 sup

ξ∈Rn

∥
∥T
(

e2πiξ ·( ·)
)∥
∥
BMO

∥
∥g
∥
∥
H1

≤ CnB5R−n∥∥g
∥
∥
H1 ,

(4.3.32)

where the constant Cn is independent of the normalized bump ϕ in view of (4.3.1).
It follows from (4.3.32) that

g �→ 〈

T (τx0ϕR),g
〉

is a bounded linear functional on BMO with norm at most a multiple of B5R−n.
It follows from Theorem 3.2.2 that T (τx0ϕR) coincides with a BMO function that
satisfies

Rn∥∥T (τx0ϕR)
∥
∥
BMO ≤CnB5.

The same argument is valid for Tt , and this shows that

B6 ≤Cn,δ (A+B5)
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and concludes the proof that (v) implies (vi).

(vi) =⇒ (iii)

We fix x0 ∈ Rn and R > 0. Pick z0 in Rn such that |x0 − z0| = 40R. Then if
|y− x0| ≤ 10R and |x− z0| ≤ 20R we have

10R ≤ |z0−x0|− |x−z0|− |y−x0|
≤ |x−y|
≤ |x−z0|+ |z0−x0|+ |x0−y| ≤ 70R .

From this it follows that when |x− z0| ≤ 20R we have
∣
∣
∣
∣

∫

|y−x0|≤10R
K(x,y)τx0ϕR(y)dy

∣
∣
∣
∣
≤
∫

10R≤|x−y|≤70R
|K(x,y)| dy

Rn ≤ Cn,δA
Rn

and thus
∣
∣
∣ Avg
B(z0,20R)

T (τx0ϕR)
∣
∣
∣≤ Cn,δA

Rn , (4.3.33)

where AvgB g denotes the average of g over B. Because of assumption (vi), the BMO
norm of the function T (τx0ϕR) is bounded by a multiple of B6R−n, a fact used in the
following sequence of implications. We have

∥
∥T (τx0ϕR)

∥
∥
L2(B(x0,20R))

≤
∥
∥
∥T (τx0ϕR)− Avg

B(x0,20R)
T (τx0ϕR)

∥
∥
∥
L2(B(x0,20R))

+ v
1
2
n (20R)

n
2

∣
∣
∣ Avg
B(x0,20R)

T (τx0(ϕR)− Avg
B(z0,20R)

T (τx0ϕR)
∣
∣
∣

+ v
1
2
n (20R)

n
2

∣
∣
∣ Avg
B(z0,20R)

T (τx0ϕR)
∣
∣
∣

≤ Cn,δ

(

R
n
2
∥
∥T (τx0ϕR)

∥
∥
BMO+R

n
2
∥
∥T (τx0ϕR)

∥
∥
BMO+R− n

2A
)

≤ Cn,δR
− n

2
(

B6+A
)

,

where we used (4.3.33) and Exercise 3.1.6. Now we have that
∥
∥T (τx0ϕR)

∥
∥
L2(B(x0,20R)c)

≤Cn,δAR
− n

2

in view of Lemma 4.3.5. Since the same computations apply to Tt , it follows that

R
n
2
(‖T (τx0ϕR)‖L2 +‖Tt(τx0ϕR)‖L2

)≤Cn,δ (A+B6) , (4.3.34)
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which proves that B3 ≤Cn,δ (A+B6) and hence (iii). This concludes the proof of the
fact that (vi) implies (iii)

We have now completed the proof of the following equivalence of statements:
(

L2 boundedness of T
) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (v) ⇐⇒ (vi) (4.3.35)

and we have established that
∥
∥T‖L2→L2 ≈ A+B3 ≈ A+B4 ≈ A+B5 ≈ A+B6 .

(i) =⇒ (ii)

We show that the quantity B2 is bounded by a multiple of A+B1; if so then so
would do the quantity A+B2. We set

Iε ,N(x) =
∫

ε<|x−y|<N

K(x,y)dy and Itε ,N(x) =
∫

ε<|x−y|<N

Kt(x,y)dy .

It suffices to show that there is a constant Cn such that for any x1 in Rn we have

sup
ε ,N

[
1
Nn

∫

|x−x1|< N
2

|Iε ,N(x)|2 dx
] 1

2

≤Cn (A+B1) . (4.3.36)

If (4.3.36) holds, then we can cover the ball B(x0,N) by finitely many balls B(x1,N/2)
and thus deduce

sup
x0∈Rn

sup
ε ,N

[
1
Nn

∫

|x−x0|<N
|Iε ,N(x)|2 dx

] 1
2
≤C′

n (A+B1) (4.3.37)

with a larger constant C′
n in place of Cn.

We estimate the expression on the left in (4.3.36) by I+ II, where

I = sup
ε ,N

[
1
Nn

∫

|x−x1|< N
2

|Iε ,N(x)−T (ε)(χB(x1,N))(x)|2 dx
] 1

2

II = sup
ε ,N

[
1
Nn

∫

|x−x1|<N
|T (ε)(χB(x1,N))(x)|2 dx

] 1
2

.

By hypothesis, we have that II is bounded by B1. Also for |x− x1|< N
2 we have

∣
∣
∣
∣
Iε ,N(x)−T (ε)(χB(x1,N))(x)

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

ε<|x−y|<N

K(x,y)dy−
∫

ε<|x−y|
|x0−y|<N

K(x,y)dy
∣
∣
∣
∣
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≤
∫

N
2 ≤|x−y|≤ 3N

2

|K(x,y)|dy

≤ Aωn−1 log3,

where the first inequality is due to the fact that the symmetric difference of the sets
{y ∈ Rn : ε < |x− y| < N} and {y ∈ Rn : ε < |x1 − y| < N} is contained in the
annulus N

2 ≤ |x− y| ≤ 3N
2 and the second inequality is a consequence of (4.1.1).

Thus I is bounded by ωn−1(log3)A2−n/2. Combining the estimates for I and II
yields the proof of (4.3.36) and hence of (4.3.37). Similarly, we can prove that

sup
x0∈Rn

sup
ε ,N

[
1
Nn

∫

|x−x0|<N
|Itε ,N(x)|2 dx

] 1
2

≤C′
n (A+B1) ,

which together with (4.3.37) implies that B2 ≤ 2C′
n (A+B1).

We now consider the following condition analogous to (iii):

(iii)′ B′
3 = sup

ϕ
sup
x0∈Rn

sup
ε>0
R>0

R
n
2

[∥
∥T (ε)(τx0ϕR)

∥
∥
L2 +

∥
∥(T (ε))t(τx0ϕR)

∥
∥
L2

]

< ∞ ,

where the first supremum is taken over all normalized bumps ϕ . We continue the
proof by showing that this condition is a consequence of (ii).

(ii) =⇒ (iii)′

More precisely, we prove that B′
3 ≤Cn,δ (A+B2). To prove (iii)′, fix a normalized

bump ϕ , a point x0 ∈ Rn, and R> 0. Also fix x ∈ Rn with |x− x0| ≤ 20R. Then we
have

T (ε)(τx0ϕR)(x) =
∫

ε<|x−y|≤30R
K(ε)(x,y)τx0ϕR(y)dy=U1(x)+U2(x),

where

U1(x) =
∫

ε<|x−y|≤30R
K(x,y)

(

τx0ϕR(y)− τx0ϕR(x)
)

dy,

U2(x) = τx0ϕR(x)
∫

ε<|x−y|≤30R
K(x,y)dy.

But we have that |τx0ϕR(y)− τx0ϕR(x)| ≤CnR−1−n|x− y|; thus we obtain

|U1(x)| ≤CnAR−n

on B(x0,20R) hence
∥
∥U1

∥
∥
L2(B(x0,20R))

≤CnAR− n
2 . Condition (ii) gives that

∥
∥U2

∥
∥
L2(B(x0,20R))

≤ R−n∥∥Iε ,30R
∥
∥
L2(B(x0,30R))

≤ B2(30R)
n
2R−n .
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Combining these two, we obtain
∥
∥T (ε)(τx0ϕR)

∥
∥
L2(B(x0,20R))

≤Cn(A+B2)R− n
2 (4.3.38)

and likewise for (T (ε))t . It follows from Lemma 4.3.5 that
∥
∥T (ε)(τx0ϕR)

∥
∥
L2(B(x0,20R)c)

≤Cn,δAR
− n

2 ,

which combined with (4.3.38) gives condition (iii)′ with constant B′
3 ≤Cn,δ (A+B2).

This concludes the proof that condition (ii) implies (iii)′.

(iii)′ =⇒ [T (ε) : L2 → L2 uniformly in ε > 0]

For ε > 0 we introduce the smooth truncations T (ε)
ζ of T by setting

T (ε)
ζ ( f )(x) =

∫

Rn
K(x,y)ζ ( x−y

ε ) f (y)dy ,

where ζ (x) is a smooth function that is equal to 1 for |x| ≥ 1 and vanishes for |x| ≤ 1
2 .

We observe that
∣
∣T (ε)

ζ ( f )−T (ε)( f )
∣
∣≤CnAM( f ) ; (4.3.39)

thus the uniform boundedness of T (ε) on L2 is equivalent to the uniform bound-
edness of T (ε)

ζ . In view of Exercise 4.1.3, the kernels of the operators T (ε)
ζ lie in

SK(δ ,cA) uniformly in ε > 0 (for some constant c), since δ ≤ 1. Moreover, because
of (4.3.39), we see that the operators T (ε)

ζ satisfy (iii)′ with constant CnA+B′
3. The

point to be noted here is that condition (iii) for T (with constant B3) is identical to
condition (iii)′ for the operators T (ε)

ζ uniformly in ε > 0 (with constant CnA+B′
3).

A careful examination of the proof of the implications

(iii) =⇒ (iv) =⇒ (L2 boundedness of T )

reveals that all the estimates obtained depend only on the constants B3, B4, and A,
but not on the specific operator T . Therefore, these estimates are valid for the opera-
tors T (ε)

ζ that satisfy condition (iii)′. This gives the uniform boundedness of the T (ε)
ζ

on L2(Rn) with bounds at most a constant multiple of A+B′
3. The same conclusion

also holds for the operators T (ε).

[T (ε) : L2 → L2 uniformly in ε > 0] =⇒ (i)

This implication holds trivially.

We have now established the equivalence of the following statements

(i) ⇐⇒ (ii) ⇐⇒ (iii)′ ⇐⇒ [T (ε) : L2 → L2 uniformly in ε > 0] (4.3.40)
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so that
A+B1 ≈ A+B2 ≈ A+B′

3 ≈ sup
ε>0

∥
∥T (ε)∥∥

L2→L2 .

Finally, it remains to link the sets of equivalent conditions (4.3.35) and (4.3.40).
We do this by proving the equivalence of (iii) and (iii)′

(iii) ⇐⇒ (iii)′

We first observe that (iii)′ implies (iii). Indeed, using duality and (4.3.3), we
obtain

∥
∥T (τx0ϕR)

∥
∥
L2 = sup

h∈S
‖h‖L2≤1

∣
∣
∣
∣

∫

Rn
T (τx0ϕR)(x)h(x)dx

∣
∣
∣
∣

≤ sup
h∈S

‖h‖L2≤1

limsup
j→∞

∣
∣
∣
∣

∫

Rn
T (ε j)(τx0ϕR)(x)h(x)dx

∣
∣
∣
∣

≤ B′
3R

− n
2 ,

which gives B3 ≤ B′
3.

We have shown that (iii) implies the L2 boundedness of T . But in view of Corol-
lary 4.2.5, the boundedness of T on L2 implies the boundedness of T (ε) on L2 uni-
formly in ε > 0, which implies (iii)′. Moreover B′

3 is bounded by a constant multiple
of A+B3.

This completes the proof of the equivalence of the six statements (i)–(vi) in such
a way that

∥
∥T
∥
∥
L2→L2 ≈ (A+Bj)

for all j ∈ {1,2,3,4,5,6}. The proof of the theorem is now complete. �

Remark 4.3.6. Suppose that condition (4.3.3) is removed from the hypothesis of
Theorem 4.3.3. Then the given proof of Theorem 4.3.3 actually shows that (i) and
(ii) are equivalent to each other and to the statement that the T (ε)’s have bounded
extensions on L2(Rn) that satisfy

sup
ε>0

∥
∥T (ε)∥∥

L2→L2 < ∞ .

Additionally, without hypothesis (4.3.3), the proof of Theorem 4.3.3 also shows
that conditions (iii), (iv), (v), and (vi) are equivalent to each other and to the state-
ment that T has an extension that maps L2(Rn) to L2(Rn).
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4.3.3 An Application

We end this section with one application of the T (1) theorem. We begin with the
following observation.

Corollary 4.3.7. Let K be a standard kernel that is antisymmetric, i.e., it satisfies
K(x,y) = −K(y,x) for all x �= y. Then a linear continuous operator T associated
with K is L2 bounded if and only if T (1) is in BMO.

Proof. In view of Exercise 4.3.3, T automatically satisfies the weak boundedness
property. Moreover, Tt =−T . Therefore, the three conditions of Theorem 4.3.3 (iv)
reduce to the single condition T (1) ∈ BMO. �

Example 4.3.8. Let us recall the kernels Km of Example 4.1.7. These arise in the
expansion of the kernel in Example 4.1.6 in geometric series

1
x− y+ i(A(x)−A(y))

=
1

x− y

∞

∑
m=0

(

i
A(x)−A(y)

x− y

)m

(4.3.41)

when L = supx �=y
|A(x)−A(y)|

|x−y| < 1. The operator with kernel (iπ)−1Km(x,y) is called
the mth Calderón commutator and is denoted by Cm. This operator satisfies

〈

Cm(ϕ),ψ
〉

= lim
ε→0

〈

C
(ε)
m (ϕ),ψ

〉

=
1
2

∫

R

∫

R
Km(x,y)[ϕ(y)ψ(x)−ϕ(x)ψ(y)]dxdy

for all ϕ,ψ ∈S (R), in view of of (4.1.11), where

C
(ε)
m (ϕ)(x) =

1
πi

∫

|x−y|>ε

(
A(x)−A(y)

x− y

)m 1
x− y

ϕ(y)dy . (4.3.42)

Thus condition (4.3.3) is satisfied.
We use the T (1) theorem to show that the operators Cm are L2 bounded.
We show that there exists a constant R> 0 such that for all m≥ 0 we have

∥
∥Cm

∥
∥
L2→L2 ≤ RmLm . (4.3.43)

We prove (4.3.43) by induction. We note that (4.3.43) is trivially true when m = 0,
since C0 =−iH, where H is the Hilbert transform.

Assume that (4.3.43) holds for a certain m. We show its validity for m+ 1. Re-
call that Km is a kernel in SK(1,8(2m+ 1)Lm) by the discussion in Example 4.1.7.
We need the following estimate proved in Theorem 4.2.7:

∥
∥Cm

∥
∥
L∞→BMO ≤C2

[

8(2m+1)Lm+
∥
∥Cm

∥
∥
L2→L2

]

, (4.3.44)

which holds for some absolute constant C2.
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We start with the following consequence of Theorem 4.3.3:

∥
∥Cm+1

∥
∥
L2→L2 ≤C1

[∥
∥Cm+1(1)

∥
∥
BMO+

∥
∥(Cm+1)

t(1)
∥
∥
BMO+

∥
∥Cm+1

∥
∥
WB

]

, (4.3.45)

valid for some absolute constant C1. The key observation is that

Cm+1(1) = Cm(A′) , (4.3.46)

for which we refer to Exercise 4.3.4. Here A′ denotes the derivative of A, which
exists almost everywhere, since Lipschitz functions are differentiable almost every-
where. Note that the kernel of Cm is antisymmetric; consequently, (Cm)

t = −Cm
and Exercise 4.3.3 gives that ‖Cm‖WB ≤ C3 8(2m+ 1)Lm for some other absolute
constant C3. Using all these facts we deduce from (4.3.45) that

∥
∥Cm+1

∥
∥
L2→L2 ≤C1

[

2
∥
∥Cm(A′)

∥
∥
BMO+C3 8(2m+3)Lm+1] .

Using (4.3.44) and the fact that ‖A′‖L∞ ≤ L we obtain that

∥
∥Cm+1

∥
∥
L2→L2 ≤C1

[

2C2L
{

8(2m+1)Lm+
∥
∥Cm

∥
∥
L2→L2

}

+C3 8(2m+3)Lm+1
]

.

Combining this estimate with the induction hypothesis (4.3.43), we obtain
∥
∥Cm+1(1)

∥
∥
BMO ≤ Rm+1Lm+1,

provided that R is chosen so that

16C1C2(2m+1) ≤ 1
3
Rm+1 ,

2C1C2 ≤ 1
3
R ,

8C1C3(2m+3) ≤ 1
3
Rm+1

for allm≥ 0. Such an R exists independent ofm. This completes the proof of (4.3.43)
by induction.

Exercises

4.3.1. Let T be a continuous linear operator fromS (Rn) toS ′(Rn) and let f be in
S (Rn). Let Pt be as in (4.3.15).
(a) Show that Pt( f ) converges to f inS (Rn) as t → 0.
(b) Conclude that TPt( f )→ T ( f ) inS ′(Rn) as t → 0.
(c) Conclude that PtTPt( f )→ T ( f ) inS ′(Rn) as t → 0.
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(d) Observe that (a)–(c) are also valid if Pt is replaced by P2
t .[

Hint: Part (a): Use that gk → g inS if and only if ĝk → ĝ inS .
]

4.3.2. Let T and Pt be as in Exercise 4.3.1 and let f be a Schwartz function whose
Fourier transform vanishes in a neighborhood of the origin.
(a) Show that Pt( f ) converges to 0 inS (Rn) as t → ∞.
(b) Conclude that TPt( f )→ 0 inS ′(Rn) as t → ∞.
(c) Conclude that PtTPt( f )→ 0 inS ′(Rn)/P(Rn) as t → ∞.
(d) Observe that (a)–(c) are also valid if Pt is replaced by P2

t .[

Hint: Part (a): Use the hint in Exercise 4.3.1 and the observation that |Φ̂(tξ ) f̂ (ξ )| ≤
C (1+ tc0)−1| f̂ (ξ )| if f̂ is supported outside the ball B(0,c0). Part (c): Pair with a
function g in S0(Rn) and use part (a) and the fact that all Schwartz seminorms
of Pt(g) are bounded uniformly in t > 0. To prove the latter you may need that
all Schwartz seminorms of Pt(g) are bounded uniformly in t > 0 if and only if all
Schwartz seminorms of Pt(g)̂ are bounded uniformly in t > 0.

]

4.3.3. (a) Prove that every linear operator T from S (Rn) to S ′(Rn) associated
with an antisymmetric kernel in SK(δ ,A) satisfies the weak boundedness property.
Precisely, for some dimensional constant Cn, we have

‖T‖WB ≤CnA .

(b) Conclude that for some constant c< ∞, the Calderón commutators satisfy
∥
∥Cm

∥
∥
WB ≤ c(2m+1)Lm .

[

Hint: For given f ,g normalized bumps, write
〈

T (τx0 fR),τx0gR
〉

as

1
2

∫

Rn

∫

Rn
K(x,y)

(

τx0 fR(y)τx0gR(x)− τx0 fR(x)τx0gR(y)
)

dydx

and use the mean value theorem.
]

4.3.4. (a) Let η be a smooth function on Rn which is equal to 1 on B(0,1) and
vanishes outside B(0,2). Let T be as in Definition 4.1.16. For f ∈ L∞(Rn) show that
T ( fηk)→ T ( f ) in D ′

0 as k→ ∞, where ηk(x) = η(x/k) for any k ≥ 1 and x ∈ Rn.
(b) Prove identity (4.3.46), i.e., show that Cm+1(1) = Cm(A′) for all m ∈ Z+∪{0}.
[

Hint: Part (b). Start with

0=
∫

R

d
dy

{
ηk(y)
m+1

(
A(x)−A(y)

x− y

)m+1}

dy

and use the antisymmetry of the kernels of Cm+1,Cm to split the integral and the
assertion in part (a).

]
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4.3.5. Suppose that a standard kernelK(x,y) has the form k(x−y) for some function
k onRn\{0}. Suppose that k extends to a tempered distribution onRn whose Fourier
transform is a bounded function defined onRn. Let T be a continuous linear operator
from S (Rn) to S ′(Rn) given by T (ψ)(x) = lim j→∞

∫

|x−y|≥ε j ψ(y)k(x− y)dy for
some ε j ↓ 0 as j→ ∞ for all ψ ∈S (Rn).
(a) Identify the functions T (e2πiξ ·()) and Tt(e2πiξ ·()) and restrict to ξ = 0 to obtain
T (1) and Tt(1).
(b) Use Theorem 4.3.3 to obtain the L2 boundedness of T .
(c) What are H(1) and Ht(1) equal to when H is the Hilbert transform?

4.3.6. (A. Calderón) Let A be a Lipschitz function on R. Use expansion (4.3.41)
and estimate (4.3.43) to show that the operator

CA( f )(x) =
1
πi

lim
ε→0

∫

|x−y|>ε
f (y)dy

x− y+ i(A(x)−A(y))

is bounded on L2(R) when ‖A′‖L∞ < R−1, where R satisfies (4.3.44).

4.3.7. Prove that condition (i) of Theorem 4.3.3 is equivalent to the statement that

sup
Q

sup
ε>0

(∥
∥T (ε)(χQ)

∥
∥
L2

|Q| 12
+

∥
∥(T (ε))t(χQ)

∥
∥
L2

|Q| 12

)

= B′
1 < ∞ ,

where the first supremum is taken over all cubes Q in Rn.
[

Hint: You may repeat the argument that (i) =⇒ (ii) replacing the ball B(x0,N)
by a cube centered at x0 with side length N/2. The other direction was proved in
Theorem 4.3.3.

]

4.4 Paraproducts

In this section we study a useful class of operators called paraproducts. Their name
suggests that these operators are related with products but in fact, their properties go
beyond the desirable properties of products, hence the choice of the Greek preposi-
tion para. For instance, differentiating a paraproduct yields another paraproduct in
which the derivative falls in only one of two functions, while differentiating a clas-
sical product of two functions yields two terms, each consisting of the derivative of
one function times the other.

Paraproducts provide interesting examples of nonconvolution operators with
standard kernels whose L2 boundedness was discussed in Section 4.3. They have
found use in many situations, including a proof of the main implication in Theorem
4.3.3. This proof is discussed in the present section.
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4.4.1 Introduction to Paraproducts

Throughout this section we fix a radial Schwartz functionΨ whose Fourier trans-
form is supported in the annulus 1

2 ≤ |ξ | ≤ 2 and that satisfies

∑
j∈Z

Ψ̂(2− jξ ) = 1, when ξ ∈ Rn \{0}. (4.4.1)

Associated with thisΨ we define the Littlewood–Paley operator Δ j( f ) = f ∗Ψ2− j ,
whereΨt(x) = t−nΨ(t−1x). Using (4.4.1), we easily obtain

∑
j∈Z

Δ j = I, (4.4.2)

where (4.4.2) is interpreted as an identity on Schwartz functions with mean value
zero. See Exercise 4.4.1. Note that by construction, the functionΨ is radial and thus
even. This makes the operator Δ j equal to its transpose.

We now observe that in view of the properties ofΨ , the function

ξ �→ ∑
j≤0

Ψ̂(2− jξ ) (4.4.3)

is supported in |ξ | ≤ 2, and is equal to 1 when 0 < |ξ | ≤ 1
2 . But Ψ̂(0) = 0, which

implies that the function in (4.4.3) also vanishes at the origin. We can easily fix
this discontinuity by introducing the Schwartz function whose Fourier transform is
equal to

Φ̂(ξ ) =

{

∑ j≤0Ψ̂(2− jξ ) when ξ �= 0,
1 when ξ = 0.

Definition 4.4.1. We define the partial sum operator S j as

S j = ∑
k≤ j

Δk. (4.4.4)

In view of the preceding discussion, S j is given by convolution with Φ2− j , that is,

S j( f )(x) = ( f ∗Φ2− j)(x), (4.4.5)

and the expression in (4.4.5) is well defined for all f in
⋃

1≤p≤∞Lp(Rn). Since Φ is
a radial function by construction, the operator S j is self-transpose.

Similarly, Δ j(g) is also well defined for all g in
⋃

1≤p≤∞Lp(Rn). Moreover, since
Δ j is given by convolution with a function with mean value zero, it also follows that
Δ j(b) is well defined when b ∈ BMO(Rn). See Exercise 4.4.2 for details.

Definition 4.4.2. Given a function g on Rn, we define the paraproduct operator Pg
as follows:

Pg( f ) = ∑
j∈Z

Δ j(g)S j−3( f ) = ∑
j∈Z

∑
k≤ j−3

Δ j(g)Δk( f ), (4.4.6)
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for a suitable function f on Rn. It is not clear for which functions g and in what
sense the series in (4.4.6) converges even when f is a Schwartz function. One may
verify that the series in (4.4.6) converges absolutely almost everywhere when g is a
Schwartz function with mean value zero; in this case, by Exercise 4.4.1 the series
∑ j |Δ j(g)| converges (everywhere) and S j( f ) is uniformly bounded by the Hardy–
Littlewood maximal functionM( f ), which is finite almost everywhere.

One of the main goals of this section is to show that the series in (4.4.6) converges
in L2 when f is in L2(Rn) and g is a BMO function.

The paraproduct Pg( f ) contains essentially “half” the product of f g. Indeed, in
view of the identity in (4.4.2), the product f g can be written as

f g=∑
j
∑
k
Δ j( f )Δk(g) .

Restricting the summation of the indices to k < j defines an operator that corre-
sponds to “half” the product of f g. It is only for minor technical reasons that we
take k ≤ j−3 in (4.4.6).

The main feature of the paraproduct operator Pg is that it is essentially a sum

of orthogonal L2 functions. Indeed, the Fourier transform of the function ̂Δ j(g) is
supported in the annulus

{ξ ∈ Rn : 2 j−1 ≤ |ξ | ≤ 2 j+1} ,

while the Fourier transform of the function ̂S j−3( f ) is supported in the ball
⋃

k≤ j−3

{ξ ∈ Rn : 2k−1 ≤ |ξ | ≤ 2k+1}∪{0} .

This implies that the Fourier transform of the function Δ j(g)S j−3( f ) is supported
in the algebraic sum

{ξ ∈ Rn : 2 j−1 ≤ |ξ | ≤ 2 j+1}+{ξ ∈ Rn : |ξ | ≤ 2 j−2} .

But this sum is contained in the set

{ξ ∈ Rn : 2 j−2 ≤ |ξ | ≤ 2 j+2} , (4.4.7)

and the family of sets in (4.4.7) is “almost disjoint” as j varies. This means that
every point in Rn belongs to at most four annuli of the form (4.4.7). Therefore, the
paraproduct Pg( f ) can be written as a sum of functions h j such that the families
{h j : j ∈ 4Z+ r} are mutually orthogonal in L2, for all r ∈ {0,1,2,3}. This or-
thogonal decomposition of the paraproduct has as an immediate consequence its L2

boundedness when g is an element of BMO.
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4.4.2 L2 Boundedness of Paraproducts

The following theorem is the main result of this subsection.

Theorem 4.4.3. For fixed b ∈ BMO(Rn) and f ∈ L2(Rn) the series

∑
| j|≤M

Δ j(b)S j−3( f )

converges in L2 as M → ∞ to a function denoted by Pb( f ). The operator Pb thus
defined is bounded on L2(Rn), and there is a dimensional constant Cn such that for
all b ∈ BMO(Rn) we have

∥
∥Pb
∥
∥
L2→L2 ≤Cn

∥
∥b
∥
∥
BMO.

Proof. The proof of this result follows by putting together some of the powerful
ideas developed in Chapter 3. First we define a measure on Rn+1

+ by setting

dμ(x, t) = ∑
j∈Z

|Δ j(b)(x)|2 dxδ2−( j−3) (t) .

By Theorem 3.3.8 we have that μ is a Carleson measure on Rn+1
+ whose norm is

controlled by a constant multiple of ‖b‖2BMO. Now fix f ∈ L2(Rn) and recall that
Φ(x) = ∑r≤0Ψ2−r(x). We define a function F(x, t) on Rn+1

+ by setting

F(x, t) = (Φt ∗ f )(x) .

Observe that F(x,2−k) = Sk( f )(x) for all k ∈ Z. We estimate the L2 norm of a finite
sum of terms of the form Δ j(b)S j−3( f ). For M,N∈Z+ withM≥N we have

∫

Rn

∣
∣
∣
∣ ∑
N≤| j|≤M

Δ j(b)(x)S j−3( f )(x)
∣
∣
∣
∣

2

dx

=

∫

Rn

∣
∣
∣
∣ ∑
N≤| j|≤M

(

Δ j(b)S j−3( f )
)

(̂ξ )
∣
∣
∣
∣

2

dξ .
(4.4.8)

It is a simple fact that every ξ ∈Rn belongs to at most four annuli of the form (4.4.7).
It follows that at most four terms in the last sum in (4.4.8) are nonzero. Thus

∫

Rn

∣
∣
∣
∣ ∑
N≤| j|≤M

(

Δ j(b)S j−3( f )
)

(̂ξ )
∣
∣
∣
∣

2

dξ (4.4.9)

≤ 4 ∑
N≤| j|≤M

∫

Rn

∣
∣
(

Δ j(b)S j−3( f )
)

(̂ξ )
∣
∣2 dξ

≤ 4∑
j∈Z

∫

Rn

∣
∣Δ j(b)(x)S j−3( f )(x)

∣
∣2 dx
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= 4
∫

Rn

∣
∣F(x, t)

∣
∣2 dμ(x, t)

= 4
∫

Rn

∣
∣(Φt ∗ f )(x)

∣
∣2 dμ(x, t)

≤ Cn
∥
∥b
∥
∥2
BMO

∫

Rn
| f (x)|2 dx, (4.4.10)

where we used Theorem 3.3.7 in the last inequality.
Since the expression in (4.4.10) is finite, given ε > 0, we can find an N0 > 0 such

that
M ≥ N ≥ N0 =⇒ ∑

N≤| j|≤M

∫

Rn

∣
∣
(

Δ j(b)S j−3( f )
)

(̂ξ )
∣
∣2 dξ < ε .

Recalling that

∫

Rn

∣
∣
∣
∣ ∑
N≤| j|≤M

Δ j(b)(x)S j−3( f )(x)
∣
∣
∣
∣

2

dx≤ 4 ∑
N≤| j|≤M

∫

Rn

∣
∣
(

Δ j(b)S j−3( f )
)

(̂ξ )
∣
∣2 dξ ,

we conclude that the sequence
{

∑
| j|≤M

Δ j(b)S j−3( f )
}

M

is Cauchy in L2(Rn), and therefore it converges in L2 to a function Pb( f ). The bound-
edness of Pb on L2 follows by setting N = 0 and letting M → ∞ in (4.4.9). �

4.4.3 Fundamental Properties of Paraproducts

Having established the L2 boundedness of paraproducts, we turn to their properties.
We begin by studying their kernels. The paraproducts Pb are examples of integral
operators of the form discussed in Section 4.1. Since Pb is L2 bounded, it has a dis-
tributional kernelWb. We show that for each b in BMO the distributionWb coincides
with a standard kernel Lb defined on Rn×Rn \{(x,x) : x ∈ Rn}.

First we study the kernel of the operator f �→ Δ j(b)S j−3( f ) for any j ∈ Z. We
have that

Δ j(b)(x)S j−3( f )(x) =
∫

Rn
L j(x,y) f (y)dy,

where Lj is the integrable function

Lj(x,y) = (b∗Ψ2− j)(x)2( j−3)nΦ(2 j−3(x− y)).
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Next we can easily verify the following size and regularity estimates for Lj:

|Lj(x,y)| ≤ Cn‖b‖BMO
2n j

(1+2 j|x− y|)n+1 , (4.4.11)

|∂αx ∂βy L j(x,y)| ≤ Cn,α ,β ,N‖b‖BMO
2 j(n+|α |+|β |)

(1+2 j|x− y|)n+1+N , (4.4.12)

for all multi-indices α and β and all N ≥ |α|+ |β |.
It follows from (4.4.11) that when x �= y the series

∑
j∈Z

Lj(x,y) (4.4.13)

converges absolutely and is controlled in absolute value by

Cn‖b‖BMO ∑
j∈Z

2n j

(1+2 j|x− y|)n+1 ≤ C′
n‖b‖BMO

|x− y|n .

Similarly, by taking N ≥ |α|+ |β |, we show that the series

∑
j∈Z

∂αx ∂βy L j(x,y) (4.4.14)

converges absolutely when x �= y and the absolute value of (4.4.14) is bounded by

Cn,α ,β ,N‖b‖BMO ∑
j∈Z

2 j(n+|α |+|β )

(1+2 j|x− y|)n+1+N ≤
C′
n,α ,β‖b‖BMO

|x− y|n+|α |+|β |

for all multi-indices α and β . It follows that the function

Lb(x,y) = ∑
j∈Z

Lj(x,y)

defined Rn×Rn \{(x,x) : x ∈ Rn} is C ∞ and satisfies the estimates

|∂αx ∂βy Lb(x,y)| ≤
C′
n,α ,β‖b‖BMO

|x− y|n+|α |+|β | (4.4.15)

away from the diagonal x= y for all multi-indices α,β . (This fact is a consequence
of the following: if Fm satisfy ∑m ‖∂ γFm‖L∞(Ω) < ∞ for some open set Ω and all
multi-indices γ , then F = ∑mFm is a C ∞ function and ∂ γF = ∑m ∂ γFm.)

To show that the distributional kernel Wb of Pb coincides with the function Lb
on Rn×Rn \{(x,x) : x ∈ Rn}, we note that if f and φ are Schwartz functions with
disjoint compact supports we have

∫

Rn

∫

Rn
Lb(x,y) f (y)φ(x)dydx=

〈

Pb( f ),φ
〉

=
〈

Wb,φ ⊗ f
〉

. (4.4.16)
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EveryC ∞
0 (R2n) functionΦ(x,y)whose support does not contain the diagonal can be

written as a rapidly convergent sum of functions of the form φ j⊗ f j and thus (4.4.16)
holds with Φ in place of φ ⊗ f . Thus Lb andWb coincide outside the diagonal.

We note that the transpose of the operator Pb is formally given by the identity

Pt
b( f ) = ∑

j∈Z
S j−3( fΔ j(b)).

As remarked in the previous section, the kernel of the operator Pt
b is a distribution

Wt
b that coincides with the function

Ltb(x,y) = Lb(y,x)

away from the diagonal of R2n. It is trivial to observe that Ltb satisfies the same size
and regularity estimates (4.4.15) as Lb. Moreover, it follows from Theorem 4.4.3
that the operator Pt

b is bounded on L
2(Rn) with norm at most a multiple of the BMO

norm of b.
We now turn to two important properties of paraproducts. In view of Definition

4.1.16, we have a meaning for Pb(1) and Pt
b(1), where Pb is the paraproduct oper-

ator. The first property we prove is that Pb(1) = b. Observe that this statement is
trivially valid at a formal level, since S j(1) = 1 for all j and ∑ jΔ j(b) = b. The sec-
ond property is that Pt

b(1) = 0. This is also trivially checked at a formal level, since
S j−3(Δ j(b)) = 0 for all j, as a Fourier transform calculation shows. We make both
of these statements precise in the following proposition.

Proposition 4.4.4. Given b ∈ BMO(Rn), let Pb be the paraproduct operator defined
as in (4.4.6). Then the distributions Pb(1) and Pt

b(1) coincide with elements of BMO.
Precisely, we have

Pb(1) = b and Pt
b(1) = 0. (4.4.17)

Proof. Let ϕ be an element of D0(Rn). Suppose that ϕ is supported in the ball
B(0,R). Fix a smooth function with compact support η equal to 1 on the ball
B(0,3R) and vanishing outside the double of this ball. Set ηN(x) = η(x/N). As
we observed in Remark 4.1.17, the definition of Pb(1) is independent of the choice
of sequence ηN , so we have the following identity for all N ≥ 1:

〈

Pb(1),ϕ
〉

=
∫

Rn
∑
j∈Z

Δ j(b)(x)S j−3(ηN)(x)ϕ(x)dx

+
∫

Rn

[∫

Rn
Lb(x,y)ϕ(x)dx

]

(1−ηN(y))dy.
(4.4.18)

Since ϕ has mean value zero, we can subtract the constant Lb(y0,y) from Lb(x,y) in
the integral inside the square brackets in (4.4.18), for some y0 in the support of ϕ .
Then we estimate the absolute value of the double integral in (4.4.18) by

∫

|y−y0|≥3R

∫

|x−y0|≤R
A

|y0− x|
|y0− y|n+1 |1−ηN(y)| |ϕ(x)|dxdy ,

which tends to zero as N → ∞ by the Lebesgue dominated convergence theorem.
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It suffices to prove that the first integral in (4.4.18) tends to
∫

Rn b(x)ϕ(x)dx as
N →∞. Let us make some preliminary observations. Since the Fourier transform of
the product Δ j(b)S j−3(ηN) is supported in the annulus

{ξ ∈ Rn : 2 j−2 ≤ |ξ | ≤ 2 j+2}, (4.4.19)

we may introduce a smooth and compactly supported function Ẑ(ξ ) such that for
all j ∈ Z the function Ẑ(2− jξ ) is equal to 1 on the annulus (4.4.19) and vanishes
outside the annulus {ξ ∈Rn : 2 j−3 ≤ |ξ | ≤ 2 j+3}. Let us denote by Qj the operator
given by multiplication on the Fourier transform by the function Ẑ(2− jξ ).

Note that S j(1) is well defined and equal to 1 for all j. This is because Φ has
integral equal to 1. Also, since Φ̂ is radial, the duality identity

∫

Rn
f (x)S j(g)(x)dx=

∫

Rn
g(x)S j( f )(x)dx (4.4.20)

holds for all f ∈ L1 and g ∈ L∞. For ϕ in D0(Rn) we have
∫

Rn
∑
j∈Z

Δ j(b)S j−3(ηN)ϕ dx

= ∑
j∈Z

∫

Rn
Δ j(b)S j−3(ηN)ϕ dx (series converges in L2 and ϕ ∈ L2)

= ∑
j∈Z

∫

Rn
Δ j(b)S j−3(ηN)Qj(ϕ)dx

[
̂Qj(ϕ) = ϕ̂ on the

support of
(

(Δ j(b)S j−3(ηN)
)
̂
]

= ∑
j∈Z

∫

Rn
ηN S j−3

(

Δ j(b)Qj(ϕ)
)

dx (duality)

=
∫

Rn
ηN ∑

j∈Z
S j−3

(

Δ j(b)Qj(ϕ)
)

dx (series converges in L1 and ηN ∈ L∞).

We now explain why the last series of the foregoing expression converges in L1.
Since ϕ is in D0(Rn), Exercise 4.4.1 gives that the series ∑ j∈ZQj(ϕ) converges in
L1. Since S j preserves L1 and Exercise 4.4.2 gives

sup
j

∥
∥Δ j(b)

∥
∥
L∞ ≤Cn‖b‖BMO ,

it follows that the series ∑ j∈Z S j−3
(

Δ j(b)Qj(ϕ)
)

also converges in L1.
We now use the Lebesgue dominated convergence theorem to obtain that the

expression
∫

Rn
ηN ∑

j∈Z
S j−3

(

Δ j(b)Qj(ϕ)
)

dx
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converges as N → ∞ to
∫

Rn
∑
j∈Z

S j−3
(

Δ j(b)Qj(ϕ)
)

dx

= ∑
j∈Z

∫

Rn
S j−3

(

Δ j(b)Qj(ϕ)
)

dx (series converges in L1)

= ∑
j∈Z

∫

Rn
S j−3(1)Δ j(b)Qj(ϕ)dx (in view of (4.4.20))

= ∑
j∈Z

∫

Rn
Δ j(b)Qj(ϕ)dx (since S j−3(1) = 1)

= ∑
j∈Z

∫

Rn
Δ j(b)ϕ dx

[

̂Qj(ϕ) = ϕ̂ on support ̂Δ j(b)
]

= ∑
j∈Z

〈

b,Δ j(ϕ)
〉

(duality)

=
〈

b,∑
j∈Z

Δ j(ϕ)
〉

(series converges in H1, b ∈ BMO)

=
〈

b,ϕ
〉

(Exercise 4.4.1(a)).

Regarding the fact that the series ∑ jΔ j(ϕ) converges in H1, we refer to Exercise
4.4.1. We now obtain that the first integral in (4.4.18) tends to

〈

b,ϕ
〉

as N → ∞. We
have therefore proved that

〈

Pb(1),ϕ
〉

=
〈

b,ϕ
〉

for all ϕ in D0(Rn). In other words, we have now identified Pb(1) as an element of
D ′

0 with the BMO function b.
For the transpose operator Pt

b we observe that we have the identity

〈

Pt
b(1),ϕ

〉

=
∫

Rn
∑
j∈Z

Stj−3
(

Δ j(b)ηN
)

(x)ϕ(x)dx

+
∫

Rn

∫

Rn
Ltb(x,y)(1−ηN(y))ϕ(x)dydx .

(4.4.21)

As before, we can use the Lebesgue dominated convergence theorem to show that
the double integral in (4.4.21) tends to zero. As for the first integral in (4.4.21), we
have the identity

∫

Rn
Pt
b(ηN)ϕ dx=

∫

Rn
ηN Pb(ϕ)dx .

Since ϕ is a multiple of an L2-atom for H1, Theorem 4.2.6 gives that Pb(ϕ) is an L1
function. The Lebesgue dominated convergence theorem now implies that

∫

Rn
ηN Pb(ϕ)dx→

∫

Rn
Pb(ϕ) dx=

∫

Rn
∑
j∈Z

Δ j(b)S j−3(ϕ)dx



266 4 Singular Integrals of Nonconvolution Type

as N →∞. The required conclusion would follow if we could prove that the function
Pb(ϕ) has integral zero. Since Δ j(b) and S j−3(ϕ) have disjoint Fourier transforms,
it follows that

∫

Rn
Δ j(b)S j−3(ϕ)dx= 0

for all j in Z. But the series

∑
j∈Z

Δ j(b)S j−3(ϕ) (4.4.22)

defining Pb(ϕ) converges in L2 and not necessarily in L1, and for this reason we need
to justify the interchange of the following integrals:

∫

Rn
∑
j∈Z

Δ j(b)S j−3(ϕ)dx= ∑
j∈Z

∫

Rn
Δ j(b)S j−3(ϕ)dx . (4.4.23)

To complete the proof, it suffices to show that when ϕ is in D0(Rn), the series in
(4.4.22) converges in L1. To prove this, consider a ball B(0,R) which contains the
support of ϕ . The series in (4.4.22) converges in L2(3B(0,R)) and hence converges
in L1(3B(0,R)). It remains to prove that it converges in L1((3B(0,R))c). For a fixed
x ∈ (3B(0,R))c, y0 ∈ B(0,R), and a finite subset F of Z, we have

∑
j∈F

∫

Rn
L j(x,y)ϕ(y)dy= ∑

j∈F

∫

B(0,R)

(

Lj(x,y)−Lj(x,y0)
)

ϕ(y)dy . (4.4.24)

Using estimates (4.4.12), we obtain that the expression in (4.4.24) is controlled by a
constant multiple of

∫

B(0,R)
∑
j∈F

|y− y0|2n j2 j

(1+2 j|x− y0|)n+2 |ϕ(y)|dy≤ c
1

|x− y0|n+1

∫

Rn
|y− y0| |ϕ(y)|dy.

Integrating this estimate with respect to x ∈ (3B(0,R))c, we obtain that

∑
j∈F

∥
∥Δ j(b)S j−3(ϕ)

∥
∥
L1((3B(0,R))c) ≤Cn

∥
∥ϕ
∥
∥
L1 < ∞

for all finite subsets F of Z. This proves that the series in (4.4.22) converges in L1.
We have now proved that 〈Pt

b(1),ϕ〉= 0 for all ϕ ∈D0(Rn). This shows that the
distribution Pt

b(1) is a constant function, which is of course identified with zero if
considered as an element of BMO. �

Remark 4.4.5. The boundedness of Pb on L2 is a consequence of Theorem 4.3.3,
since hypothesis (iv) is satisfied. Indeed, Pb(1) = b, Pt

b(1) = 0 are both BMO
functions; see Exercise 4.4.4 for a sketch of a proof of the estimate ‖Pb‖WB ≤
Cn‖b‖BMO. This provides another proof of the fact that ‖Pb‖L2→L2 ≤ Cn‖b‖BMO,
without using Theorem 4.3.3. We use this result in the next section to obtain a dif-
ferent proof of the main direction in Theorem 4.3.3.
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Exercises

4.4.1. LetΨ be a radial Schwartz function that satisfies (4.4.1) and define Δ j( f ) =
f ∗Ψ2− j for j ∈ Z. Fix a function f inS (Rn) with mean value zero.
(a) Show that limN→∞∑| j|≤N Δ j( f ) = f pointwise everywhere.
(b) Prove that the convergence in part (a) also holds L1.
(c) Show that the convergence in part (a) is also valid in H1.
(d) Show that ∑ j∈Z ‖Δ j( f )‖L∞ < ∞.
[

Hint: To obtain convergence in L1 for j ≥ 0 use the estimate

‖Δ j( f )‖L1 ≤ 2− j
∫

Rn

∫

Rn
2 jn|Ψ(2 jy)| |2 jy| |(∇ f )(x−θy)|dydx

for some θ in [0,1] and consider the cases |x| ≥ 2|y| and |x| ≤ 2|y|. When j ≤ 0 use
the simple identity f ∗Ψ2− j = ( f2 j ∗Ψ)2− j and reverse the roles of f andΨ . To show
convergence in H1, use the square function characterization of H1 in terms of the
Δ j’s and the fact that ΔkΔ j is zero when | j− k| ≥ 2.

]

4.4.2. Without appealing to the H1-BMO duality theorem, prove that there is a
dimensional constant Cn such that for all b ∈ BMO(Rn) we have

sup
j∈Z

∥
∥Δ j(b)

∥
∥
L∞ ≤Cn‖b‖BMO.

4.4.3. (a) Show that for all 1 < p,q,r < ∞ with 1
p +

1
q = 1

r there is a constant Cpqr
such that for all Schwartz functions f ,g on Rn we have

∥
∥Pg( f )

∥
∥
Lr ≤Cpqr

∥
∥ f
∥
∥
Lp
∥
∥g
∥
∥
Lq .

(b) Obtain the same conclusion for the bilinear operator

P̃g( f ) =∑
j
∑
k≤ j

Δ j(g)Δk( f ) .

[

Hint: Part (a): Estimate the Lr norm using duality. Part (b): Use part (a).
]

4.4.4. Let f ,g be normalized bumps on Rn (see Definition 4.3.1) and let R> 0.
(a) LetΨ a Schwartz function with integral zero. If Δ j( fR) = fR ∗Ψ2− j , prove that

∥
∥Δ j( fR)

∥
∥
L∞ ≤C(n,Ψ)min

(

2− jR−(n+1),2n j
)

for all R> 0 and j ∈ Z. Then interpolate between L1 and L∞ to obtain

∥
∥Δ j( fR)

∥
∥
L2 ≤C(n,Ψ)min

(

2−
j
2R− n+1

2 ,2
n j
2

)

.
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(b) Observe that the same result is valid for the operators Qj given by convolution
with the function 2 jnZ(2 jξ ); here Ẑ(ξ ) is a smooth function whose Fourier trans-
form is equal to 1 on the annulus {ξ ∈ Rn : 2−2 ≤ |ξ | ≤ 22} and vanishes outside
{ξ ∈ Rn : 2−3 ≤ |ξ | ≤ 23}. Conclude that for some constant Cn we have

∑
j∈Z

∥
∥Qj(gR)

∥
∥
L2 ≤CnR− n

2 .

(c) Let Pb be defined as in (4.4.6). Show that there is a constant C′
n such that for all

normalized bumps f and g and all R> 0 we have
∣
∣
〈

Pb(τx0 fR),τx0gR
〉∣
∣≤C′

nR
−n‖b‖BMO .

[

Hint: Part (a): Use the cancellation of the functions f andΨ . Part (c): Write

〈

Pb(τx0 fR),τx0gR
〉

= ∑
j∈Z

∫

Rn
Δ j(τ−x0b)Qj(gR)S j−3( fR)dx .

Apply the Cauchy–Schwarz inequality, and use the boundedness of S j−3 on L2,
Exercise 4.4.2, and part (b).

]

4.4.5. (Continuous paraproducts) Let Φ andΨ be radial Schwartz functions on Rn

with
∫

RnΦ(x)dx= 1 and
∫

RnΨ(x)dx= 0. For t > 0 define operators Pt( f ) =Φt ∗ f
and Qt( f ) =Ψt ∗ f for f ∈ L2(Rn). Let b ∈ BMO(Rn) and f ∈ L2(Rn). Show that
the limit

lim
ε→0
N→∞

∫ N

ε
Qt
(

Qt(b)Pt( f )
) dt
t

converges in L2(Rn) and defines an operator Πb( f ) that satisfies
∥
∥Πb

∥
∥
L2→L2 ≤Cn‖b‖BMO

for some dimensional constant Cn.[

Hint: Suitably adapt the proof of Theorem 4.4.3.
]

4.5 An Almost Orthogonality Lemma and Applications

In this section we discuss an important lemma concerning orthogonality of operators
and some of its applications.

It is often the case that a linear operator T is given as an infinite sum of other lin-
ear operators Tj such that the Tj’s are uniformly bounded on L2. This sole condition
is not enough to imply that the sum of the Tj’s is also L2 bounded, although this is
often the case. Let us consider, for instance, the linear operators {Tj} j∈Z given by
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convolution with the smooth functions e2πi jt on the circle T1. Each Tj can be written
as

Tj( f ) = ( f̂ ⊗δ j)
∨,

where f̂ is the sequence of Fourier coefficients of f ; here δ j is the infinite sequence
with zeros in every entry except the jth entry, in which it has 1, and ⊗ denotes
term-by-term multiplication of infinite sequences. It follows that each operator Tj
is bounded on L2(T1) with norm 1. Moreover, the sum of the Tj’s is the identity
operator, which is also L2 bounded with norm 1.

It is apparent from the preceding discussion that the crucial property of the Tj’s
that makes their sum bounded is their orthogonality. In the preceding example we
have TjTk = 0 unless j = k. It turns out that this orthogonality condition is a bit too
strong, and it can be weakened significantly.

4.5.1 The Cotlar–Knapp–Stein Almost Orthogonality Lemma

The next result provides a sufficient orthogonality criterion for boundedness of sums
of linear operators on a Hilbert space.

Lemma 4.5.1. Let {Tj} j∈Z be a family of operators mapping a Hilbert space H to
itself. Assume that there is a a function γ : Z→ R+ such that

∥
∥T ∗

j Tk
∥
∥
H→H +

∥
∥TjT ∗

k

∥
∥
H→H ≤ γ( j− k) (4.5.1)

for all j,k in Z. Suppose that

A= ∑
j∈Z

√

γ( j)< ∞ .

Then the following three conclusions are valid:

(i) For all finite subsets Λ of Z we have
∥
∥
∥∑

j∈Λ
Tj

∥
∥
∥
H→H

≤ A.

(ii) For all x ∈ H we have

∑
j∈Z

∥
∥Tj(x)

∥
∥2
H ≤ A2∥∥x

∥
∥2
H .

(iii) For all x ∈ H the sequence ∑| j|≤N Tj(x) converges to some T (x) as N → ∞ in
the norm topology of H. The linear operator T defined in this way is bounded
from H to H with norm

∥
∥T
∥
∥
H→H ≤ A.
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Proof. As usual we denote by S∗ the adjoint of a linear operator S. It is a simple fact
that any bounded linear operator S : H → H satisfies

∥
∥S
∥
∥2
H→H =

∥
∥SS∗

∥
∥
H→H . (4.5.2)

See Exercise 4.5.1. By taking j = k in (4.5.1) and using (4.5.2), we obtain
∥
∥Tj
∥
∥
H→H ≤

√

γ(0) (4.5.3)

for all j ∈ Z. It also follows from (4.5.2) that if an operator S is self-adjoint, then
∥
∥S
∥
∥2
H→H =

∥
∥S2
∥
∥
H→H , and more generally,

∥
∥S
∥
∥m
H→H =

∥
∥Sm

∥
∥
H→H (4.5.4)

for m that are powers of 2. Now observe that the linear operator
(

∑
j∈Λ

Tj

)(

∑
j∈Λ

T ∗
j

)

is self-adjoint. Applying (4.5.2) and (4.5.4) to this operator, we obtain

∥
∥
∥∑

j∈Λ
Tj

∥
∥
∥

2

H→H
=
∥
∥
∥

[(

∑
j∈Λ

Tj

)(

∑
j∈Λ

T ∗
j

)]m∥∥
∥

1
m

H→H
, (4.5.5)

where m is a power of 2. We now expand the mth power of the expression in (4.5.5).
So we write the right side of the identity in (4.5.5) as

∥
∥
∥ ∑

j1,··· , j2m∈Λ
Tj1T

∗
j2 · · ·Tj2m−1T

∗
j2m

∥
∥
∥

1
m

H→H
, (4.5.6)

which is controlled by

(

∑
j1,··· , j2m∈Λ

∥
∥Tj1T

∗
j2 · · ·Tj2m−1T

∗
j2m

∥
∥
H→H

) 1
m

. (4.5.7)

We estimate the expression inside the sum in (4.5.7) in two different ways. First we
group j1 with j2, j3 with j4, . . . , j2m−1 with j2m and we apply (4.5.3) and (4.5.1) to
control this expression by

γ( j1− j2)γ( j3− j4) · · ·γ( j2m−1− j2m).

Grouping j2 with j3, j4 with j5, . . . , j2m−2 with j2m−1 and leaving j1 and j2m alone,
we also control the expression inside the sum in (4.5.7) by

√

γ(0)γ( j2− j3)γ( j4− j5) · · ·γ( j2m−2− j2m−1)
√

γ(0) .
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Taking the geometric mean of these two estimates, we obtain the following bound
for (4.5.7):

(

∑
j1,..., j2m∈Λ

√

γ(0)
√

γ( j1− j2)
√

γ( j2− j3) · · ·
√

γ( j2m−1− j2m)
) 1

m

.

Summing first over j1, then over j2, etc, and finally over j2m−1, we obtain the esti-
mate

γ(0)
1
2m A

2m−1
m

(

∑
j2m∈Λ

1
) 1

m

for (4.5.7). Using (4.5.5), we conclude that

∥
∥∑

j∈Λ
Tj
∥
∥2
H→H ≤ γ(0)

1
2m A

2m−1
m |Λ | 1m ,

and letting m→ ∞, we obtain conclusion (i) of the proposition.
To prove (ii) we use the Rademacher functions r j of Appendix C.1 in [156]. These

functions are defined for nonnegative integers j, but we can reindex them so that the
subscript j runs through the integers. The fundamental property of these functions
is their orthogonality, that is,

∫ 1

0
r j(ω)rk(ω)dω = 0

when j �= k. Using the fact that the norm
∥
∥ ·∥∥H comes from an inner product, for

every finite subset Λ of Z and x in H we obtain

∫ 1

0

∥
∥
∥∑

j∈Λ
r j(ω)Tj(x)

∥
∥
∥

2

H
dω

= ∑
j∈Λ

∥
∥Tj(x)

∥
∥2
H +

∫ 1

0
∑
j,k∈Λ
j �=k

r j(ω)rk(ω)
〈

Tj(x),Tk(x)
〉

H dω

= ∑
j∈Λ

∥
∥Tj(x)

∥
∥2
H .

(4.5.8)

For any fixedω ∈ [0,1]we now use conclusion (i) of the proposition for the operators
r j(ω)Tj, which also satisfy assumption (4.5.1), since r j(ω) =±1. We obtain that

∥
∥
∥∑

j∈Λ
r j(ω)Tj(x)

∥
∥
∥

2

H
≤ A2∥∥x

∥
∥2
H ,

which, combined with (4.5.8), gives conclusion (ii).
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We now prove (iii). First we show that given x ∈ H the sequence

{ N

∑
j=−N

Tj(x)
}

N

is Cauchy in H. Suppose that this is not the case. This means that there is some
ε > 0 and a subsequence of integers 1≤ N1 < N2 < N3 < · · · such that

∥
∥T̃k(x)

∥
∥
H ≥ ε , (4.5.9)

where we set
T̃k(x) = ∑

Nk≤| j|<Nk+1

Tj(x).

For any fixed ω ∈ [0,1], apply conclusion (i) to the operators S j = rk(ω)Tj whenever
Nk ≤ | j| < Nk+1, since these operators clearly satisfy hypothesis (4.5.1). Taking
N1 ≤ | j| ≤ NK+1, we obtain

∥
∥
∥

K

∑
k=1

rk(ω) ∑
Nk≤| j|<Nk+1

Tj(x)
∥
∥
∥
H
=
∥
∥
∥

K

∑
k=1

rk(ω)T̃k(x)
∥
∥
∥
H
≤ A

∥
∥x
∥
∥
H .

Squaring and integrating this inequality with respect to ω in [0,1], and using (4.5.8)
with T̃k in the place of Tk and {1,2, . . . ,K} in the place of Λ , we obtain

K

∑
k=1

∥
∥T̃k(x)

∥
∥2
H ≤ A2∥∥x

∥
∥2
H .

But this clearly contradicts (4.5.9) as K → ∞.
We conclude that every sequence

{ N

∑
j=−N

Tj(x)
}

N

is Cauchy in H and thus it converges to Tx for some linear operator T . In view of
conclusion (i), it follows that T is a bounded operator on H with norm at most A. �

Remark 4.5.2. At first sight, it appears strange that the norm of the operator T is
independent of the norm of every piece Tj and depends only on the quantity A in
(4.5.1). But as observed in the proof, if we take j = k in (4.5.1), we obtain

∥
∥Tj
∥
∥2
H→H =

∥
∥TjT ∗

j
∥
∥
H→H ≤ γ(0)≤ A2 ;

thus the norm of each individual Tj is also controlled by the constant A.
We also note that there wasn’t anything special about the role of the index set

Z in Lemma 4.5.1. Indeed, the set Z can be replaced by any countable group, such
as Zk for some k. For instance, see Theorem 4.5.7, in which the index set is Z2n.
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See also Exercises 4.5.7 and 4.5.8, in which versions of Lemma 4.5.1 are given with
no group structure on the set of indices.

4.5.2 An Application

We now discuss an application of the almost orthogonality lemma just proved con-
cerning sums of nonconvolution operators on L2(Rn). We begin with the following
version of Theorem 4.3.3, in which it is assumed that T (1) = Tt(1) = 0.

Proposition 4.5.3. Suppose that Kj(x,y) are functions on Rn×Rn indexed by j ∈ Z
that satisfy

|Kj(x,y)| ≤ A2n j

(1+2 j|x− y|)n+δ , (4.5.10)

|Kj(x,y)−Kj(x,y′)| ≤ A2γ j2n j|y− y′|γ , (4.5.11)
|Kj(x,y)−Kj(x′,y)| ≤ A2γ j2n j|x− x′|γ , (4.5.12)

for some 0< A,γ ,δ < ∞ and all x,y,x′,y′ ∈ Rn. Suppose also that
∫

Rn
Kj(z,y)dz= 0=

∫

Rn
Kj(x,z)dz , (4.5.13)

for all x,y ∈ Rn and all j ∈ Z. For j ∈ Z define integral operators

Tj( f )(x) =
∫

Rn
Kj(x,y) f (y)dy

for f ∈ L2(Rn). Then the series
∑
j∈Z

Tj( f )

converges in L2 to some T ( f ) for all f ∈ L2(Rn), and the linear operator T defined
in this way is L2 bounded.

Proof. It is a consequence of (4.5.10) that the kernels Kj are in L1(dy) uniformly
in x ∈ Rn and j ∈ Z and hence the operators Tj map L2(Rn) to L2(Rn) uniformly
in j. Our goal is to show that the sum of the Tj’s is also bounded on L2(Rn). We
achieve this using the orthogonality considerations of Lemma 4.5.1. To be able to
use Lemma 4.5.1, we need to prove (4.5.1). Indeed, we show that for all k, j ∈ Z we
have

∥
∥TjT ∗

k

∥
∥
L2→L2 ≤CA2 2−

1
4

δ
n+δ min(γ ,δ )| j−k| , (4.5.14)

∥
∥T ∗

j Tk
∥
∥
L2→L2 ≤CA2 2−

1
4

δ
n+δ min(γ ,δ )| j−k| , (4.5.15)
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for some 0 < C = Cn,γ ,δ < ∞. We prove only (4.5.15), since the proof of (4.5.14)
is similar. In fact, since the kernels of Tj and T ∗

j satisfy similar size, regularity,
and cancellation estimates, (4.5.15) is directly obtained from (4.5.14) when Tj are
replaced by T ∗

j .
It suffices to prove (4.5.15) under the extra assumption that k ≤ j. Once (4.5.15)

is established under this assumption, taking j ≤ k yields

∥
∥T ∗

j Tk
∥
∥
L2→L2 =

∥
∥(T ∗

k Tj)
∗∥∥

L2→L2 =
∥
∥T ∗

k Tj
∥
∥
L2→L2 ≤CA22−

1
2 min(γ ,δ )| j−k|,

thus proving (4.5.15) also under the assumption j ≤ k.
We therefore take k ≤ j in the proof of (4.5.15). Note that the kernel of T ∗

j Tk is

Ljk(x,y) =
∫

Rn
Kj(z,x)Kk(z,y)dz.

We prove that

sup
x∈Rn

∫

Rn
|Lk j(x,y)|dy ≤ CA2 2−

1
4

δ
n+δ min(γ ,δ )|k− j| , (4.5.16)

sup
y∈Rn

∫

Rn
|Lk j(x,y)|dx ≤ CA2 2−

1
4

δ
n+δ min(γ ,δ )|k− j| . (4.5.17)

Once (4.5.16) and (4.5.17) are established, (4.5.15) follows directly from the classical
Schur lemma in Appendix A.1.

We need to use the following estimate, valid for k ≤ j:

∫

Rn

2n jmin(1,(2k|u|)γ)
(1+2 j|u|)n+δ du≤Cn,δ2

− 1
2 min(γ ,δ )( j−k). (4.5.18)

Indeed, to prove (4.5.18), we observe that by changing variables we may assume
that j = 0 and k ≤ 0. Taking r = k− j ≤ 0, we establish (4.5.18) as follows:

∫

Rn

min(1,(2r|u|)γ)
(1+ |u|)n+δ du ≤

∫

Rn

min
(

1,(2r|u|) 1
2 min(γ ,δ ))

(1+ |u|)n+δ du

≤
∫

|u|≤2−r

(2r|u|) 1
2 min(γ ,δ )

(1+ |u|)n+δ du+
∫

|u|≥2−r

1
(1+ |u|)n+δ du

≤ 2
1
2 min(γ ,δ )r

∫

Rn

1

(1+ |u|)n+ δ
2
du+

∫

|u|≥2−r

1
|u|n+δ du

≤ C′
n,δ
[

2
1
2 min(γ ,δ )r+2δ r

]

≤ Cn,δ 2
− 1

2 min(γ ,δ )|r| ,
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We now obtain estimates for Ljk in the case k ≤ j. Using (4.5.13), we write

|Ljk(x,y)| =
∣
∣
∣
∣

∫

Rn
Kk(z,y)Kj(z,x)dz

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

Rn

[

Kk(z,y)−Kk(x,y)
]

Kj(z,x)dz
∣
∣
∣
∣

≤ A2
∫

Rn
2nkmin(1,(2k|x− z|)γ) 2n j

(1+2 j|z− x|)n+δ dz

≤ CA2 2kn 2−
1
2 min(γ ,δ )( j−k)

using estimate (4.5.18). Combining this estimate with

|Ljk(x,y)| ≤
∫

Rn
|Kj(z,x)| |Kk(z,y)|dz≤ CA22kn

(1+2k|x− y|)n+δ ,

which follows from (4.5.10) and the result in Appendix B.1 (since k ≤ j), yields

|Ljk(x,y)| ≤Cn,γ ,δ A
2 2−

1
2
δ/2
n+δ min(γ ,δ )( j−k) 2kn

(1+2k|x− y|)n+ δ
2
,

which easily implies (4.5.16) and (4.5.17). This concludes the proof of the
proposition. �

4.5.3 Almost Orthogonality and the T (1) Theorem

We now give an important application of the proposition just proved. We re-prove
the difficult direction of the T (1) theorem proved in Section 4.3. We have the
following:

Theorem 4.5.4. Let K be in SK(δ ,A) and let T be a continuous linear operator
from S (Rn) toS ′(Rn) associated with K. Assume that

∥
∥T (1)

∥
∥
BMO+

∥
∥Tt(1)

∥
∥
BMO+

∥
∥T
∥
∥
WB = B4 < ∞ .

Then T extends to bounded linear operator on L2(Rn) with norm at most a constant
multiple of A+B4.

Proof. Consider the paraproduct operators PT (1) and PTt (1) introduced in the previ-
ous section. Then, as we showed in Proposition 4.4.4, we have

PT (1)(1) = T (1), (PT (1))t(1) = 0,
PTt (1)(1) = Tt(1), (PTt (1))

t(1) = 0.
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Let us define an operator

L= T −PT (1)− (PTt (1))
t .

Using Proposition 4.4.4, we obtain that

L(1) = Lt(1) = 0.

In view of (4.4.15), we have that L is an operator whose kernel satisfies the esti-
mates (4.1.1), (4.1.2), and (4.1.3) with constants controlled by a dimensional constant
multiple of

A+
∥
∥T (1)

∥
∥
BMO+

∥
∥Tt(1)

∥
∥
BMO .

Both of these numbers are controlled by A+B4. We also have

∥
∥L
∥
∥
WB ≤ Cn

(∥
∥T
∥
∥
WB+

∥
∥PT (1)

∥
∥
L2→L2 +

∥
∥(PTt (1))

t∥∥
L2→L2

)

≤ Cn

(∥
∥T
∥
∥
WB+

∥
∥T (1)

∥
∥
BMO+

∥
∥Tt(1)

∥
∥
BMO

)

≤ Cn(A+B4) ,

which is a very useful fact.
Next we introduce operators Δ j and S j; one should be cautious as these are not

the operators Δ j and S j introduced in Section 4.4 but rather discrete analogues of
those introduced in the proof of Theorem 4.3.3. We pick a smooth radial real-valued
function Φ with compact support contained in the unit ball B(0, 12 ) that satisfies
∫

RnΦ(x)dx= 1 and we define

Ψ(x) =Φ(x)−2−nΦ( x2 ). (4.5.19)

Notice thatΨ has mean value zero. We define

Φ2− j(x) = 2n jΦ(2 jx) and Ψ2− j(x) = 2n jΨ(2 jx)

and we observe that both Φ and Ψ are supported in B(0,1) and are multiples of
normalized bumps. We then define Δ j to be the operator given by convolution with
the functionΨ2− j and S j the operator given by convolution with the function Φ2− j .
In view of identity (4.5.19) we have that Δ j = S j−S j−1. Notice that

S jLS j = S j−1LS j−1+Δ jLS j+S j−1LΔ j ,

which implies that for all integers N <M we have

SMLSM −SN−1LSN−1 =
M

∑
j=N

(

S jLS j−S j−1LS j−1
)

=
M

∑
j=N

Δ jLS j+
M

∑
j=N

S j−1LΔ j.

(4.5.20)
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Until the end of the proof we fix a Schwartz function f whose Fourier trans-
form vanishes in a neighborhood of the origin. Such functions are dense in L2; see
Exercise 6.2.9 in [156]. We would like to use Proposition 4.5.3 to conclude that

sup
M∈Z

sup
N<M

∥
∥SMLSM( f )−SN−1LSN−1( f )

∥
∥
L2 ≤Cn(A2+B4)

∥
∥ f
∥
∥
L2 (4.5.21)

and that SMLSM( f )−SN−1LSN−1( f )→ L̃( f ) in L2 as M → ∞ and N →−∞. Once
these statements are proved, we deduce that L̃( f ) = L( f ). To see this, it suffices to
prove that SMLSM( f )− SN−1LSN−1( f ) converges to L( f ) weakly in L2. Indeed, let
g be another Schwartz function. Then

〈

SMLSM( f )−SN−1LSN−1( f ),g
〉−〈L( f ),g〉

=
〈

SMLSM( f )−L( f ),g
〉−〈SN−1LSN−1( f ),g

〉

. (4.5.22)

We first prove that the first term in (4.5.22) tends to zero as M → ∞. Indeed,
〈

SMLSM( f )−L( f ),g
〉

=
〈

LSM( f ),SMg
〉−〈L( f ),g〉

=
〈

L(SM( f )− f ),SM(g)
〉

+
〈

L( f ),SM(g)−g
〉

,

and both terms converge to zero, since SM( f )− f → 0 and SM(g)− g tend to zero
in S , L is continuous from S to S ′, and all Schwartz seminorms of SM(g) are
bounded uniformly in M; see also Exercise 4.3.1.

The second term in (4.5.22) is
〈

SN−1LSN−1( f ),g
〉

=
〈

LSN−1( f ),SN−1(g)
〉

. Since
f̂ is supported away from the origin, SN( f ) → 0 in S as N → −∞; see Exercise
4.3.2(a). By the continuity of L, LSN−1( f ) → 0 in S ′, and since all Schwartz
seminorms of SN−1(g) are bounded uniformly in N, we conclude that the term
〈

LSN−1( f ),SN−1(g)
〉

tends to zero as N →−∞. We thus deduce that L̃( f ) = L( f ).
It remains to prove (4.5.21). We now define

Lj = Δ jLS j and L′j = S j−1LΔ j

for j ∈ Z. In view of the convergence of the Riemann sums to the integral defining
f ∗Φ2− j in the topology of S (this is contained in the proof of Theorem 2.3.20 in
[156]), we have

(

L( f ∗Φ2− j)∗Ψ2− j
)

(x) =
∫

Rn

〈

L(τyΦ2− j),τxΨ2− j
〉

f (y)dy,

where τyg(u) = g(u− y). Thus the kernel Kj of Lj is

Kj(x,y) =
〈

L(τyΦ2− j),τxΨ2− j
〉

and the kernel K′
j of L

′
j is

K′
j(x,y) =

〈

L(τyΨ2− j),τxΦ2−( j−1)

〉

.
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We plan to prove that

|Kj(x,y)|+2− j|∇Kj(x,y)| ≤Cn(A+B4)2n j(1+2 j|x− y|)−n−δ , (4.5.23)

noting that an analogous estimate holds for K′
j(x,y). Once (4.5.23) is established,

Exercise 4.5.2 and the conditions

Lj(1) = Δ jLS j(1) = Δ jL(1) = 0 , L′j(1) = S j−1LΔ j(1) = 0 ,

yield the hypotheses of Proposition 4.5.3. Recalling (4.5.20), the conclusion of this
proposition yields (4.5.21).

To prove (4.5.23) we quickly repeat the corresponding argument from the proof
of Theorem 4.3.3. We consider the following two cases: If |x− y| ≤ 5 ·2− j, then the
weak boundedness property gives

∣
∣〈L(τyΦ2− j),τxΨ2− j〉

∣
∣ =

∣
∣〈L(τx(τ2 j(y−x)(Φ)2− j)),τxΨ2− j〉

∣
∣

≤ Cn‖L‖WB2 jn,

sinceΨ and τ2 j(y−x)Φ , whose support is contained in B(0, 12 )+B(0,5)⊆ B(0,10),
are multiples of normalized bumps. This proves the first of the two estimates in
(4.5.23) when |x− y| ≤ 5 ·2− j.

We now turn to the case |x− y| ≥ 5 ·2− j. Then the functions τyΦ2− j and τxΨ2− j

have disjoint supports, and so we have the integral representation

Kj(x,y) =
∫

Rn

∫

Rn
Φ2− j(v− y)K(u,v)Ψ2− j(u− x)dudv .

Using thatΨ has mean value zero, we can write the previous expression as
∫

Rn

∫

Rn
Φ2− j(v− y)

(

K(u,v)−K(x,v)
)

Ψ2− j(u− x)dudv .

We observe that |u− x| ≤ 2− j and |v− y| ≤ 2− j in the preceding integral. Since
|x− y| ≥ 5 · 2− j, this makes |u− v| ≥ |x− y|− 2 · 2− j ≥ 2 · 2− j, which implies that
|u− x| ≤ 1

2 |u− v|. Using the regularity condition (4.1.2), we deduce

|K(u,v)−K(x,v)| ≤ A
|x−u|δ
|u− v|n+δ ≤Cn,δA

2− jδ

|x− y|n+δ .

Inserting this estimate in the preceding double integral, we obtain the first estimate
in (4.5.23). The second estimate in (4.5.23) is proved similarly. �
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4.5.4 Pseudodifferential Operators

We now turn to another elegant application of Lemma 4.5.1 regarding pseudodiffer-
ential operators. We first introduce pseudodifferential operators.

Definition 4.5.5. Let m ∈R and 0≤ ρ ,δ ≤ 1. A C ∞ function σ(x,ξ ) on Rn×Rn is
called a symbol of class Smρ ,δ if for all multi-indices α and β there is a constant Bα ,β
such that

|∂αx ∂βξ σ(x,ξ )| ≤ Bα ,β (1+ |ξ |)m−ρ |β |+δ |α | . (4.5.24)

For σ ∈ Smρ ,δ , the linear operator

Tσ ( f )(x) =
∫

Rn
σ(x,ξ ) f̂ (ξ )e2πix·ξ dξ

initially defined for f inS (Rn) is called a pseudodifferential operator with symbol
σ(x,ξ ).

Example 4.5.6. Let b be a bounded function on Rn. Consider the symbol

σb(x,ξ ) = ∑
j∈Z

(b∗Ψ2− j)(x)Ψ̂(2− jξ ) , (4.5.25)

where Ψ̂ is a smooth function supported in the annulus 1/ ≤ |ξ | ≤ 2. It is not hard
to see that the symbol σb satisfies

|∂αx ∂βξ σb(x,ξ )| ≤Cα ,β‖b‖L∞ |ξ |−|β |+|α | (4.5.26)

for all multi-indices α and β . Indeed, every differentiation in x produces a factor
of 2 j, while every differentiation in ξ produces a factor of 2− j. But since Ψ̂ is
supported in 1

2 · 2 j ≤ |ξ | ≤ 2 · 2 j, it follows that |ξ | ≈ 2 j, which yields (4.5.26). It
follows that σb is not in any of the classes Smρ ,δ introduced in Definition 4.5.5, since
σb is not necessarily smooth at the origin. However, if we restrict the indices of
summation in (4.5.25) to j ≥ 0, then |ξ | ≈ 1+ |ξ | and we obtain a symbol of class
S01,1. Note that not all symbols in S01,1 give rise to bounded operators on L2. See
Exercise 4.5.6.

An example of a symbol in Sm1,0 is (1+ |ξ |2) 1
2 (m+it) when m, t ∈ R.

We do not plan to embark on a systematic study of pseudodifferential operators
here, but we would like to study the L2 boundedness of symbols of class S00,0.

Theorem 4.5.7. Suppose that a symbol σ belongs to the class S00,0. Then the pseu-
dodifferential operator Tσ with symbol σ , initially defined onS (Rn), has a bounded
extension on L2(Rn).
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Proof. In view of Plancherel’s theorem, it suffices to obtain the L2 boundedness of
the linear operator

T̃σ ( f )(x) =
∫

Rn
σ(x,ξ ) f (ξ )e2πix·ξ dξ , (4.5.27)

defined for f inS (Rn). We fix a nonnegative smooth function ϕ(ξ ) supported in a
small multiple of the unit cube Q0 = [0,1]n (say in [− 1

9 ,
10
9 ]

n) that satisfies

∑
j∈Zn

ϕ(x− j) = 1 , x ∈ Rn . (4.5.28)

For j,k ∈ Zn we define symbols

σ j,k(x,ξ ) = ϕ(x− j)σ(x,ξ )ϕ(ξ − k)

and corresponding operators Tj,k given by (4.5.27) in which σ(x,ξ ) is replaced by
σ j,k(x,ξ ). Using (4.5.28), for any f ∈S (Rn), we obtain that

T̃σ ( f ) = ∑
j,k∈Zn

Tj,k( f ) ,

where the double sum is easily shown to converge pointwise. Our goal is to show
that for all N ∈ Z+ we have

∥
∥T ∗

j,kTj′,k′
∥
∥
L2→L2 ≤CN(1+ | j− j′|+ |k− k′|)−2N , (4.5.29)

∥
∥Tj,kT ∗

j′,k′
∥
∥
L2→L2 ≤CN(1+ | j− j′|+ |k− k′|)−2N , (4.5.30)

where CN depends on N and n but is independent of j, j′,k,k′.
We note that

T ∗
j,kTj′,k′( f )(x) =

∫

Rn
Kj,k, j′,k′(x,y) f (y)dy ,

where
Kj,k, j′,k′(x,y) =

∫

Rn
σ j,k(z,x)σ j′,k′(z,y)e

2πi(y−x)·z dz . (4.5.31)

We integrate by parts in (4.5.31) using the identity

e2πiz·(y−x) =
(I−Δz)

N(e2πiz·(y−x))

(1+4π2|x− y|2)N ,

and we express Kj,k, j′,k′(x,y) as

ϕ(x− k)ϕ(y− k′)
(1+4π2|x− y|2)N

∫

Rn
(I−Δz)

N
(

ϕ(z− j)σ(z,x)σ(z,y)ϕ(z− j′)
)

e2πi(y−x)·z dz
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The support property of ϕ forces | j− j′| ≤ cn for some dimensional constant cn;
indeed, cn = 2

√
n suffices. Moreover, all derivatives of σ and ϕ are controlled by

constants, and ϕ is supported in a cube of finite measure. We also have 1+ |x−y| ≈
1+ |k− k′|. It follows that

|Kj,k, j′,k′(x,y)| ≤
⎧

⎨

⎩

CNϕ(x− k)ϕ(y− k′)
(1+ |k− k′|)2N when | j− j′| ≤ cn,

0 otherwise.

We can rewrite the preceding estimates in a more compact (and symmetric) form as

|Kj,k, j′,k′(x,y)| ≤
Cn,Nϕ(x− k)ϕ(y− k′)

(1+ | j− j′|+ |k− k′|)2N ,

from which we easily obtain that

sup
x∈Rn

∫

Rn
|Kj,k, j′,k′(x,y)|dy≤

Cn,N

(1+ | j− j′|+ |k− k′|)2N , (4.5.32)

sup
y∈Rn

∫

Rn
|Kj,k, j′,k′(x,y)|dx≤

Cn,N

(1+ | j− j′|+ |k− k′|)2N . (4.5.33)

Using the classical Schur lemma in Appendix A.1, we obtain that

∥
∥T ∗

j,kTj′,k′
∥
∥
L2→L2 ≤

Cn,N

(1+ | j− j′|+ |k− k′|)2N ,

which proves (4.5.29). Since ρ = δ = 0, the roles of the variables x and ξ are sym-
metric, and (4.5.30) can be proved in exactly the same way as (4.5.29). The almost
orthogonality Lemma 4.5.1 now applies, since

∑
j,k∈Zn

√

1
(1+ | j|+ |k|)2N ≤ ∑

j∈Zn
∑
k∈Zn

1

(1+ | j|) N
2

1

(1+ |k|) N
2
< ∞

for N ≥ 2n+2, and the boundedness of T̃σ on L2 follows. �

Remark 4.5.8. The reader may want to check that the argument in Theorem 4.5.7 is
also valid for symbols of the class S0ρ ,ρ whenever 0< ρ < 1.

Exercises

4.5.1. Prove that any bounded linear operator S from a Hilbert space H to itself
satisfies ‖S‖2H→H = ‖SS∗‖H→H .
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4.5.2. Show that if a family of kernels Kj satisfy (4.5.10) and

|∇xKj(x,y)|+ |∇yKj(x,y)| ≤ A2(n+1) j

(1+2 j|x− y|)n+δ

for all x,y ∈ Rn, then conditions (4.5.11) and (4.5.12) hold with γ = 1.

4.5.3. Prove the boundedness of the Hilbert transform using Lemma 4.5.1 and with-
out using the Fourier transform.
[

Hint: Pick a smooth function η supported in [1/2,2] such that ∑ j∈Zη(2− jx) = 1
for x �= 0 and set Kj(x) = x−1η(2− j|x|) andHj( f ) = f ∗Kj. Note thatH∗

j =−Hj. Es-
timate ‖HkHj‖L2→L2 by ‖Kk ∗Kj‖L1 ≤ ‖Kk ∗Kj‖L∞ |supp (Kk ∗Kj)|. When j< k, use
the mean value property of Kj and that ‖K′

k‖L∞ ≤C2−2k to obtain that ‖Kk ∗Kj‖L∞ ≤
C2−2k+ j. Conclude that ‖HkHj‖L2→L2 ≤C2−| j−k|.

]

4.5.4. For a symbol σ(x,ξ ) in S01,0, let k(x,z) denote the inverse Fourier transform
(evaluated at z) of the function σ(x, ·) with x fixed. Show that for all x ∈ Rn, the
distribution k(x, ·) coincides with a smooth function away from the origin in Rn

that satisfies the estimates

|∂αx ∂βz k(x,z)| ≤Cα ,β |z|−n−|β | ,

and conclude that the kernels K(x,y) = k(x,x− y) are well defined and smooth
functions away from the diagonal in R2n that belong to SK(1,A) for some A > 0.
Conclude that pseudodifferential operators with symbols in S01,0 are associated with
standard kernels.
[

Hint: Consider the distribution (∂ γσ(x, ·))∨ = (−2πiz)γk(x, ·). Since ∂ γξ σ(x,ξ )
is integrable in ξ when |γ | ≥ n+ 1, it follows that k(x, ·) coincides with a smooth
function onRn \{0}. Next, set σ j(x,ξ ) = σ(x,ξ )Ψ̂(2− jξ ), whereΨ is as in Section
4.4 and k j the inverse Fourier transform of σ j in z. For |γ |=M use that

(−2πiz)γ∂αx ∂
β
ξ k j(x,z) =

∫

Rn
∂ γξ
(

(2πiξ )β ∂αx σ j(x,ξ )
)

e2πiξ ·z dξ

to obtain |∂αx ∂βz k j(x,z)| ≤ BM,α ,β2 jn2 j|α |(2 jn|z|)−M and sum over j ∈ Z.
]

4.5.5. Prove that pseudodifferential operators with symbols in S01,0 that have com-
pact support in x are elements of CZO(1,A,B) for some A,B> 0.
[

Hint:Write

Tσ ( f )(x) =
∫

Rn

(∫

Rn
σ̂(a,ξ ) f̂ (ξ )e2πix·ξ dξ

)

e2πix·a da ,

where σ̂(a,ξ ) denotes the Fourier transform of σ(x,ξ ) in the variable x. Use inte-
gration by parts to obtain supξ |σ̂(a,ξ )| ≤CN(1+ |a|)−N and pass the L2 norm in-
side the integral in a to obtain the required conclusion using the translation-invariant
case.

]
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4.5.6. Let η̂(ξ ) be a smooth bump on R that is supported in 2−
1
2 ≤ |ξ | ≤ 2

1
2 and is

equal to 1 on 2−
1
4 ≤ |ξ | ≤ 2

1
4 . Let

σ(x,ξ ) =
∞

∑
k=1

e−2πi2kxη̂(2−kξ ) .

Show that σ is an element of S01,1 on the line but the corresponding pseudodifferen-
tial operator Tσ is not L2 bounded.
[

Hint: To see the latter statement, consider the sequence of functions fN(x) =

∑N
k=5

1
k e

2πi2kxh(x), where h(x) is a Schwartz function whose Fourier transform
is supported in the set |ξ | ≤ 1

4 . Show that ‖ fN‖L2 ≤ C‖h‖L2 but ‖Tσ ( fN)‖L2 ≥
c(logN)‖h‖L2 for some positive constants c,C.

]

4.5.7. Prove conclusions (i) and (ii) of Lemma 4.5.1 if hypothesis (4.5.1) is replaced
by

∥
∥T ∗

j Tk
∥
∥
H→H +

∥
∥TjT ∗

k

∥
∥
H→H ≤ Γ ( j,k) ,

where Γ is a nonnegative function on Z×Z such that

sup
j
∑
k∈Z

√

Γ ( j,k) = A< ∞ .

4.5.8. Let {Tt}t∈R+ be a family of operators mapping a Hilbert space H to itself.
Assume that there is c > 0 and a continuous function γ : R+ ×R+ → R+ ∪ {0}
satisfying

Aγ = sup
t>0

∫ ∞

0

√

γ(t,s)
ds
s

< ∞

and γ(t, t)≤ c for all t > 0, such that
∥
∥T ∗

t Ts
∥
∥
H→H +

∥
∥TtT ∗

s
∥
∥
H→H ≤ γ(t,s)

for all t,s in R+. [An example of a function with Aγ < ∞ is γ(t,s) =min
( s
t ,

t
s

)ε for
some ε > 0.] Then prove that for all 0< ε < N we have

∥
∥
∥

∫ N

ε
Tt

dt
t

∥
∥
∥
H→H

≤ Aγ .

4.6 The Cauchy Integral of Calderón and the T (b) Theorem

The Cauchy integral is almost as old as complex analysis itself. In the classical
theory of complex analysis, if Γ is a curve in C and f is a function on the curve, the
Cauchy integral of f is given by

1
2πi

∫

Γ

f (ζ )
ζ − z

dζ .
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One situation in which this operator appears is the following: If Γ is a closed simple
curve (i.e., a Jordan curve), Ω+ is the interior-connected component of C \Γ , Ω−
is the exterior-connected component of C\Γ , and f is a smooth complex function
on Γ , is it possible to find analytic functions F+ on Ω+ and F− on Ω−, respectively,
that have continuous extensions on Γ such that their difference is equal to the given
f on Γ ? It turns out that a solution of this problem is given by the functions

F+(w) =
1
2πi

∫

Γ

f (ζ )
ζ −w

dζ , w ∈Ω+ ,

and

F−(w) =
1
2πi

∫

Γ

f (ζ )
ζ −w

dζ , w ∈Ω− .

We are would like to study the case in which the Jordan curve Γ passes through
infinity, in particular, when it is the graph of a Lipschitz function on R. In this case
we compute the boundary limits of F+ and F− and we see that they give rise to a
very interesting operator on the curve Γ . To fix notation we let

A : R→ R

be a Lipschitz function. This means that there is a constant L > 0 such that for all
x,y ∈ R we have |A(x)−A(y)| ≤ L|x− y|. We define a curve

γ : R→ C

by setting
γ(x) = x+ iA(x)

and we denote by
Γ = {γ(x) : x ∈ R} (4.6.1)

the graph of γ . Given a smooth function f on Γ we set

F(w) =
1
2πi

∫

Γ

f (ζ )
ζ −w

dζ , w ∈ C\Γ . (4.6.2)

We now show that for z ∈ Γ , both F(z+ iδ ) and F(z− iδ ) have limits as δ ↓ 0,
and these limits give rise to an operator on the curve Γ that we would like to study.

4.6.1 Introduction of the Cauchy Integral Operator along
a Lipschitz Curve

Let f (ζ ) be a C 1 function on the curve Γ that decays faster thanC |ζ |−1 as |ζ | →∞.
For z ∈ Γ we define the Cauchy integral of f at z as
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CΓ ( f )(z) = lim
ε→0+

1
πi

∫

ζ∈Γ
|Reζ−Rez|>ε

f (ζ )
ζ − z

dζ , (4.6.3)

assuming that the limit exists. The decay assumption of f makes the integral in
(4.6.3) converge when |Reζ −Rez| ≥ 1. In the next proposition we show that the
limit in (4.6.3) exists as ε → 0 for almost all z ∈ Γ .

Proposition 4.6.1. LetΓ be as in (4.6.1). Let f (ζ ) be aC 1 function onΓ that decays
faster than C |ζ |−1 as |ζ | →∞. Then the limit in (4.6.3) exists as ε → 0 for all z ∈ Γ
such that A is differentiable at Rez. Moreover, given f , we define a function F as in
(4.6.2) related to f . Then for all such z ∈Γ such that A is differentiable at Rez (thus
for almost all z ∈ Γ ) we have that

lim
δ↓0

F(z+ iδ ) =
1
2
CΓ ( f )(z)+

1
2
f (z) , (4.6.4)

lim
δ↓0

F(z− iδ ) =
1
2
CΓ ( f )(z)− 1

2
f (z) . (4.6.5)

Proof. We show first that the limit in (4.6.3) exists as ε→ 0. For z∈Γ and 0< ε < 1
we write

1
πi

∫

ζ∈Γ
|Reζ−Rez|>ε

f (ζ )dζ
ζ − z

=
1
πi

∫

ζ∈Γ
|Reζ−Rez|>1

f (ζ )dζ
ζ − z

+
1
πi

∫

ζ∈Γ
ε≤|Reζ−Rez|≤1

( f (ζ )− f (z))dζ
ζ − z

+
f (z)
πi

∫

ζ∈Γ
ε≤|Reζ−Rez|≤1

dζ
ζ − z

.

(4.6.6)

By the smoothness of f , the middle term of the sum in (4.6.6) has a limit as ε → 0.
We therefore study the third (last) term of this sum.

We denote by U+ the (open) angle centered at the origin whose bisector is the
positive imaginary axis and whose width is 2arctanL−1. We let U− be the (open)
angle centered at the origin whose bisector is the negative imaginary axis and whose
width is also arctanL−1. ObviouslyU+ andU− are symmetric about the origin. We
let V+ be the connected component of C\ (U+∪U−) that contains the positive real
axis andV− be the connected component ofC\(U+∪U−) that contains the negative
real axis. The angles V+ and V− are open sets and notice that V+ ∪V− contains the
range of the map t �→ γ(t+ τ)− γ(τ) = t+ i(A(t+ τ)−A(τ)) for any real τ .

We consider two branches of the complex logarithm: logupper(z) defined on
C \ {iy : y ≤ 0} and loglower(z) defined on C \ {iy : y ≥ 0}. These functions
are defined to satisfy logupper(1) = loglower(1) = 0 and they coincide on V+, i.e.,
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logupper = loglower on V+. Note however that logupper = 2πi+ loglower on V−. For
instance loglower(−1) = −πi while logupper(−1) = πi. Also, loglower(−i) = −πi

2
and logupper(i) =

πi
2 .

Let τ = Rez and t = Reζ ; then z = γ(τ) = τ + iA(τ) and ζ = γ(t). The func-
tion A is Lipschitz and thus differentiable almost everywhere; consequently, the
function γ(τ) = τ + iA(τ) is differentiable for almost all τ ∈ R. Moreover, γ ′(τ) =
1+ iA′(τ) �= 0 and γ ′(τ) lies in V+ whenever γ is differentiable at τ .

Fix a point τ = Rez at which γ is differentiable. Using the change of variables
t = τ+ s, we rewrite the last term in the sum in (4.6.6) as

f (z)
πi

∫

ε≤|s|≤1

γ ′(s+ τ)
γ(s+ τ)− γ(τ)

ds . (4.6.7)

We evaluate (4.6.7) as follows:

f (z)
πi

[

logupper
(

γ(1+ τ)− γ(τ)
)− logupper

(

γ(ε+ τ)− γ(τ)
)

− logupper
(

γ(−1+ τ)− γ(τ)
)

+ logupper
(

γ(−ε+ τ)− γ(τ)
)]

=
f (z)
πi

[

logupper
(

γ(1+ τ)− γ(τ)
)− logupper

(γ(ε+ τ)− γ(τ)
ε

)

− logupper
(

γ(−1+ τ)− γ(τ)
)

+ logupper
(γ(−ε+ τ)− γ(τ)

ε

)]

.

This expression converges as ε → 0+ to

f (z)
πi

[

logupper
(

γ(1+ τ)− γ(τ)
)− logupper

(

γ(−1+ τ)− γ(τ)
)

+ logupper(γ
′(τ))− logupper(−γ ′(τ))

]

=
f (z)
πi

[

logupper
(

γ(1+ τ)− γ(τ)
)− logupper

(

γ(−1+ τ)− γ(τ)
)−πi

]

,

since
logupper(γ

′(τ))− logupper(−γ ′(τ)) =−πi . (4.6.8)

Note that (4.6.7) also converges to

f (z)
πi

[

loglower
(

γ(1+ τ)− γ(τ)
)− loglower

(

γ(−1+ τ)− γ(τ)
)

+πi
]

,

as ε → 0+, since one may equivalently evaluate the integral with loglower instead of
logupper and use that

loglower(γ
′(τ))− loglower(−γ ′(τ)) = πi . (4.6.9)
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Thus the limit in (4.6.6), and hence in (4.6.3), exists as ε → 0 for almost all z on
the curveΓ . Hence CΓ ( f ) is a well-defined operator whenever f (ζ ) is a C 1 function
that decays faster than C |ζ |−1 at infinity.

We proceed with the proof of (4.6.4). For fixed δ > 0 and ε > 0 we write

F(z+ iδ ) =
1
2πi

∫

ζ∈Γ
|Reζ−Rez|>ε

f (ζ )
ζ − z− iδ

dζ

+
1
2πi

∫

ζ∈Γ
|Reζ−Rez|≤ε

f (ζ )− f (z)
ζ − z− iδ

dζ

+
f (z)
2πi

∫

ζ∈Γ
|Reζ−Rez|≤ε

1
ζ − z− iδ

dζ .

(4.6.10)

The curve s �→ γ(s+τ)−γ(τ)− iδ lies strictly below the curve s �→ γ(s+τ)−γ(τ);
thus it avoidsU+ and hence the last term in (4.6.10) can be evaluated via the use of
loglower as follows:

f (z)
2πi

[

loglower(γ(τ+ ε)− γ(τ)− iδ )− loglower(γ(τ− ε)− γ(τ)− iδ )
]

.

By the continuity of loglower in this region, this converges to

f (z)
2πi

[

loglower(γ(τ+ ε)− γ(τ))− loglower(γ(τ− ε)− γ(τ))
]

as δ → 0+. Thus we obtain from (4.6.10) that

lim
δ→0+

F(z+ iδ ) =
1
2πi

∫

ζ∈Γ
|Reζ−Rez|>ε

f (ζ )
ζ − z

dζ

+
1
2πi

∫

ζ∈Γ
|Reζ−Rez|≤ε

f (ζ )− f (z)
ζ − z

dζ

+
f (z)
2πi

[

loglower
(γ(τ+ ε)− γ(τ)

ε

)

− loglower
(γ(τ− ε)− γ(τ)

ε

)]

.

(4.6.11)

Letting ε → 0+ in (4.6.11) we obtain

lim
δ→0+

F(z+ iδ ) =
1
2
CΓ ( f )(z)+

f (z)
2πi

[

loglower(γ
′(τ))− loglower(−γ ′(τ))

]

=
1
2
CΓ ( f )(z)+

f (z)
2

,

where we made use of (4.6.9). This proves (4.6.4).
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In the proof of (4.6.5), the curve s �→ γ(s+ τ)− γ(τ)+ iδ lies strictly above the
curve s �→ γ(s+ τ)− γ(τ); thus it avoids U− and hence one needs to use logupper
to evaluate the integral. The proof proceeds along the same way with the only dif-
ference being that loglower is replaced by logupper and (4.6.9) is replaced by (4.6.8);
this explains the presence of the minus sign in (4.6.5). �

Remark 4.6.2. Let F+ be the restriction of F [as defined in (4.6.2)] on the region
above the graph Γ and let F− be the restriction of F on the region below the graph
Γ . Then for all z ∈ Γ the functions t �→ F+(z+ it) and t �→ F−(z− it) are continuous
on (0,∞) and for almost all z ∈ Γ they have limits as t → 0+ which satisfy

lim
t→0+

F+(z+ it)− lim
t→0+

F−(z− it) = f (z) ,

where f is the given C 1 function on the curve.

4.6.2 Resolution of the Cauchy Integral and Reduction
of Its L2 Boundedness to a Quadratic Estimate

Having introduced the Cauchy integral CΓ as an operator defined on smooth func-
tions on the graph Γ of a Lipschitz function A, we turn to some of its properties. We
are mostly interested in obtaining an a priori L2 estimate for CΓ . Before we achieve
this goal, we make some observations. First we can write CΓ as

CΓ (H)(x+ iA(x)) = lim
ε→0

1
πi

∫

|x−y|>ε

H(y+ iA(y))(1+ iA′(y))
y+ iA(y)− x− iA(x)

dy , (4.6.12)

where the integral is over the real line and H is a function on the curve Γ . (Recall
that Lipschitz functions are differentiable almost everywhere.) To any functionH on
Γ we can associate a function h on the line R by setting

h(y) = H(y+ iA(y)) .

We have that
∫

Γ
|H(y)|2 dy=

∫

R
|h(y)|2(1+ |A′(y)|2) 1

2 dy≈
∫

R
|h(y)|2 dy

for some constants that depend on the Lipschitz constant L of A. Therefore, the
boundedness of the operator in (4.6.12) is equivalent to that of the operator

CΓ (h)(x) = lim
ε→0

1
πi

∫

|x−y|>ε

h(y)(1+ iA′(y))
y− x+ i(A(y)−A(x))

dy (4.6.13)
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acting on Schwartz functions h on the line. It is this operator that we concentrate on
in the remainder of this section. We recall that (see Example 4.1.6) the function

1
y− x+ i(A(y)−A(x))

defined on R×R\{(x,x) : x ∈R} is a standard kernel in SK(1,cL) for some c> 0.
We note that this is not the case with the kernel

1+ iA′(y)
y− x+ i(A(y)−A(x))

, (4.6.14)

for conditions (4.1.2) and (4.1.3) fail for this kernel, since the function 1+ iA′ does
not possess any smoothness. [Condition (4.1.1) trivially holds for the function in
(4.6.14).] We note, however, that the Lp boundedness of the operator in (4.6.13) is
equivalent to that of

C̃Γ (h)(x) = lim
ε→0

1
πi

∫

|x−y|>ε

h(y)
y− x+ i(A(y)−A(x))

dy , (4.6.15)

since the function 1+ iA′ is bounded above and below and can be absorbed in h.
Therefore, the L2 boundedness of CΓ is equivalent to that of C̃Γ , which has a kernel
that satisfies standard estimates. This equivalence, however, is not as useful in the
approach we take in the sequel. We choose to work with the operator CΓ , in which
the appearance of the term 1+ iA′(y) plays a crucial cancellation role.

In the proof of Theorem 4.3.3 we used a resolution of an operator T with standard
kernel of the form ∫ ∞

0
PsTsQs

ds
s
,

where Ps and Qs are nice averaging operators that approximate the identity and the
zero operator, respectively. Our goal is to achieve a similar resolution for the operator
CΓ defined in (4.6.13). To achieve this, for every s > 0, we introduce the auxiliary
operator

CΓ (h)(x;s) =
1
πi

∫

R

h(y)(1+ iA′(y))
y− x+ i(A(y)−A(x))+ is

dy (4.6.16)

defined for Schwartz functions h on the line. We make two preliminary observations
regarding this operator: For almost all x ∈ R we have

lim
s→∞

CΓ (h)(x;s) = 0 , (4.6.17)

lim
s→0

CΓ (h)(x;s) = CΓ (h)(x)+h(x) . (4.6.18)
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Identity (4.6.17) is trivial. To obtain (4.6.18), for a fixed ε > 0 we write

CΓ (h)(x;s) =
1
πi

∫

|x−y|>ε

h(y)(1+ iA′(y))
y− x+ i(A(y)−A(x))+ is

dy

+
1
πi

∫

|x−y|≤ε

(h(y)−h(x))(1+ iA′(y))
y− x+ i(A(y)−A(x))+ is

dy

+h(x)
1
πi

logupper
ε+ i(A(x+ ε)−A(x))+ is
−ε+ i(A(x− ε)−A(x))+ is

,

(4.6.19)

where logupper denotes the analytic branch of the complex logarithm defined in the
proof of Proposition 4.6.1. We used this branch of the logarithm, since for s > 0,
the graph of the function y �→ y+ i(A(y+ x)−A(x))+ is lies outside a small angle
centered at the origin that contains the negative imaginary axis (for instance the
angleU− as defined in Proposition 4.6.1).

We now take successive limits first as s → 0 and then as ε → 0 in (4.6.19).
We obtain that

lim
s→0

CΓ (h)(x;s) = lim
ε→0

1
πi

∫

|x−y|>ε

h(y)(1+ iA′(y))
y− x+ i(A(y)−A(x))

dy

+h(x) lim
ε→0

1
πi

logupper
ε+ i(A(x+ ε)−A(x))
−ε+ i(A(x− ε)−A(x))

.

Since this expression inside the logarithm tends to−1 as ε → 0, this logarithm tends
to πi, and this concludes the proof of (4.6.18).

We now consider the second derivative in s of the auxiliary operator CΓ (h)(x;s).

∫ ∞

0
s2

d2

ds2
CΓ (h)(x;s)

ds
s

=

∫ ∞

0
s
d2

ds2
CΓ (h)(x;s)ds

= lim
s→∞

s
d
ds

CΓ (h)(x;s)− lim
s→0

s
d
ds

CΓ (h)(x;s)−
∫ ∞

0

d
ds

CΓ (h)(x;s)ds

= 0−0+ lim
s→0

CΓ (h)(x;s)− lim
s→∞

CΓ (h)(x;s)

= CΓ (h)(x)+h(x) ,

where we used integration by parts, the fact that for almost all x ∈ R we have

lim
s→∞

s
d
ds

CΓ (h)(x;s) = lim
s→0

s
d
ds

CΓ (h)(x;s) = 0 , (4.6.20)

and identities (4.6.17) and (4.6.18) whenever h is a Schwartz function. One may
consult Exercise 4.6.2 for a proof of the identities in (4.6.20). So we have succeeded
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in writing the operator CΓ (h)+h as an average of smoother operators. Precisely, we
have shown that for h ∈S (R) we have

CΓ (h)(x)+h(x) =
∫ ∞

0
s2

d2

ds2
CΓ (h)(x;s)

ds
s
, (4.6.21)

and it remains to understand what the operator

d2

ds2
CΓ (h)(x;s) = CΓ (h)′′(x;s)

really is. Differentiating (4.6.16) twice, we obtain

CΓ (h)(x)+h(x) =
∫ ∞

0
s2CΓ (h)′′(x;s)

ds
s

= 4
∫ ∞

0
s2CΓ (h)′′(x;2s)

ds
s

= − 8
πi

∫ ∞

0

∫

R

s2h(y)(1+ iA′(y))
(y− x+ i(A(y)−A(x))+2is)3

dy
ds
s

= − 8
πi

∫ ∞

0

∫

Γ

s2H(ζ )
(ζ − z+2is)3

dζ
ds
s
,

where in the last step we set z = x+ iA(x), H(z) = h(x), and we switched to com-
plex integration over the curve Γ . We now use the following identity from complex
analysis. For ζ ,z ∈ Γ we have

1
(ζ − z+2is)3

=− 1
4πi

∫

Γ

1
(ζ −w+ is)2

1
(w− z+ is)2

dw , (4.6.22)

for which we refer to Exercise 4.6.3. Inserting this identity in the preceding expres-
sion for CΓ (h)(x)+h(x), we obtain

CΓ (h)(x)+h(x) =− 2
π2

∫ ∞

0

[∫

Γ

s
(w− z+ is)2

(∫

Γ

s H(ζ )
(ζ −w+ is)2

dζ
)

dw
]
ds
s
,

recalling that z= x+ iA(x). Introducing the linear operator

Θs(h)(x) =
∫

R
θs(x,y)h(y)dy , (4.6.23)

where
θs(x,y) =

s
(y− x+ i(A(y)−A(x))+ is)2

, (4.6.24)

we may therefore write

CΓ (h)(x)+h(x) =− 2
π2

∫ ∞

0
Θs
(

(1+ iA′)Θs
(

(1+ iA′)h
))

(x)
ds
s
. (4.6.25)
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We also introduce the multiplication operator

Mb(h) = bh,

which enables us to write (4.6.25) in a more compact form as

CΓ (h) =−h− 2
π2

∫ ∞

0
ΘsM1+iA′ΘsM1+iA′(h)

ds
s
. (4.6.26)

This gives us the desired resolution of the operator CΓ . It suffices to obtain an L2

estimate for the integral expression in (4.6.26). Using duality, we write

〈∫ ∞

0
ΘsM1+iA′ΘsM1+iA′(h)

ds
s
,g
〉

=
∫ ∞

0

〈

M1+iA′ΘsM1+iA′(h),Θ t
s(g)

〉 ds
s
,

which is easily bounded by

√

1+L2
∫ ∞

0

∥
∥ΘsM1+iA′(h)

∥
∥
L2
∥
∥Θ t

s(g)
∥
∥
L2
ds
s

≤
√

1+L2
(∫ ∞

0

∥
∥ΘsM1+iA′(h)

∥
∥2
L2
ds
s

)1
2
(∫ ∞

0

∥
∥Θs(g)

∥
∥2
L2
ds
s

)1
2
.

We have now reduced matters to the following estimate:

(∫ ∞

0

∥
∥Θs(h)

∥
∥2
L2
ds
s

)1
2
≤C

∥
∥h
∥
∥
L2 . (4.6.27)

We derive (4.6.27) as a consequence of Theorem 4.6.6 discussed in Section 4.6.4.

4.6.3 A Quadratic T (1) Type Theorem

We review what we have achieved so far and we introduce definitions that place
matters into a new framework.

For the purposes of the subsequent exposition we can switch to Rn, since there
are no differences from the one-dimensional argument. Suppose that for all s > 0,
there is a family of functions θs defined on Rn×Rn such that

|θs(x,y)| ≤ 1
sn

A
(

1+ |x−y|
s

)n+δ (4.6.28)

and

|θs(x,y)−θs(x,y′)| ≤ A
sn

|y− y′|γ
sγ

(4.6.29)
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for all x,y,y′ ∈ Rn and some 0< γ ,δ ,A< ∞. LetΘs be the operator with kernel θs,
that is,

Θs(h)(x) =
∫

Rn
θs(x,y)h(y)dy , (4.6.30)

which is well defined for all h in
⋃

1≤p≤∞Lp(Rn) in view of (4.6.28).
At this point we observe that both (4.6.28) and (4.6.29) hold for the θs defined

in (4.6.24) with γ = δ = 1 and A a constant multiple of L. We leave the details of
this calculation to the reader but we note that (4.6.29) can be obtained quickly using
the mean value theorem. Our goal is to figure out under what additional conditions
on Θs the quadratic estimate (4.6.27) holds. If we can find such a condition that is
easily verifiable for the Θs associated with the Cauchy integral, this will conclude
the proof of its L2 boundedness.

We first consider a simple condition that implies the quadratic estimate (4.6.27).

Theorem 4.6.3. For s > 0, let θs be a family of kernels satisfying (4.6.28) and
(4.6.29) and let Θs be the linear operator whose kernel is θs. Suppose that for all
s> 0 we have

Θs(1) = 0 . (4.6.31)

Then there is a constant Cn,δ such that for all f ∈ L2 we have

(∫ ∞

0

∥
∥Θs( f )

∥
∥2
L2
ds
s

)1
2
≤Cn,δA

∥
∥ f
∥
∥
L2 . (4.6.32)

We note that condition (4.6.31) is not satisfied for the operators Θs associated
with the Cauchy integral as defined in (4.6.23). However, Theorem 4.6.3 gives us
an idea of what we are looking for, something like the action of Θs on a specific
function. We also observe that condition (4.6.31) is “basically” saying thatΘ(1)= 0,
where

Θ =
∫ ∞

0
Θs

ds
s
.

Proof. We introduce Littlewood–Paley operators Qs given by convolution with a
smooth functionΨs =

1
snΨ( ·s ) whose Fourier transform is supported in the annulus

s/2≤ |ξ | ≤ 2s that satisfies

∫ ∞

0
Q2
s
ds
s

= lim
ε→0
N→∞

∫ N

ε
Q2
s
ds
s

= I , (4.6.33)

where the limit is taken in the sense of distributions and the identity holds in
S ′(Rn)/P . This identity and properties ofΘt imply the operator identity

Θt =Θt

∫ ∞

0
Q2
s
ds
s

=
∫ ∞

0
ΘtQ2

s
ds
s
.
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The key fact is the following estimate:

∥
∥ΘtQs

∥
∥
L2→L2 ≤ ACn,Ψ min

( s
t
,
t
s

)ε
, (4.6.34)

which holds for some ε = ε(γ ,δ ,n) > 0. [Recall that A, γ , and δ are as in (4.6.28)
and (4.6.29).] Assuming momentarily estimate (4.6.34), we can quickly prove The-
orem 4.6.3 using duality. Indeed, let us take a function G(x, t) such that

∫ ∞

0

∫

Rn
|G(x, t)|2 dx dt

t
≤ 1 . (4.6.35)

Then we have
∫ ∞

0

∫

Rn
G(x, t)Θt( f )(x)dx

dt
t

=
∫ ∞

0

∫

Rn
G(x, t)

∫ ∞

0
ΘtQ2

s ( f )(x)
ds
s
dx

dt
t

=
∫ ∞

0

∫ ∞

0

∫

Rn
G(x, t)ΘtQ2

s ( f )(x)dx
dt
t
ds
s

≤
(∫ ∞

0

∫ ∞

0

∫

Rn
|G(x, t)|2dxmin

( s
t
,
t
s

)ε dt
t
ds
s

)1
2

×
(∫ ∞

0

∫ ∞

0

∫

Rn
|ΘtQs(Qs( f ))(x)|2 dxmin

( s
t
,
t
s

)−ε dt
t
ds
s

)1
2
.

But we have the estimate

sup
t>0

∫ ∞

0
min

( s
t
,
t
s

)ε ds
s

≤Cε ,

which, combined with (4.6.35), yields that the first term in the product of the two
preceding square functions is controlled by

√
Cε . Using this fact and (4.6.34), we

write
∫ ∞

0

∫

Rn
G(x, t)Θt( f )(x)dx

dt
t

≤
√

Cε

(∫ ∞

0

∫ ∞

0

∫

Rn
|ΘtQs(Qs( f ))(x)|2 dxmin

( s
t
,
t
s

)−ε dt
t
ds
s

)1
2

≤ A
√

Cε

(∫ ∞

0

∫ ∞

0

∫

Rn
|Qs( f )(x)|2 dxmin

( s
t
,
t
s

)2ε
min

( s
t
,
t
s

)−ε dt
t
ds
s

)1
2

≤ A
√

Cε

(∫ ∞

0

∫ ∞

0

∫

Rn
|Qs( f )(x)|2 dxmin

( s
t
,
t
s

)ε dt
t
ds
s

)1
2
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≤Cε A
(∫ ∞

0

∫

Rn
|Qs( f )(x)|2 dx dss

)1
2

≤ Cn,εA
∥
∥ f
∥
∥
L2 ,

where in the last step we used the continuous version of Theorem 6.1.2 in [156]
(cf. Exercise 6.1.4 in [156]). Taking the supremum over all functions G(x, t) that
satisfy (4.6.35) yields estimate (4.6.32).

It remains to prove (4.6.34). What is crucial here is that both Θt and Qs satisfy
the cancellation conditionsΘt(1) = 0 and Qs(1) = 0. The proof of estimate (4.6.34)
is similar to that of estimates (4.5.14) and (4.5.15) in Proposition 4.5.3. Using ideas
from the proof of Proposition 4.5.3, we quickly dispose of the proof of (4.6.34).

The kernel ofΘtQs is seen easily to be

Lt,s(x,y) =
∫

Rn
θt(x,z)Ψs(z− y)dz .

Notice that the function (y,z) �→Ψs(z− y) satisfies (4.6.28) with δ = 1 and A=CΨ
and satisfies

|Ψs(z− y)−Ψs(z′ − y)| ≤ CΨ
sn

|z− z′|
s

for all z,z′,y ∈ Rn for some CΨ < ∞. We prove that

sup
x∈Rn

∫

Rn
|Lt,s(x,y)|dy ≤ CΨ Amin

( t
s
,
s
t

) 1
4

min(δ ,1)
n+min(δ ,1)min(γ ,δ ,1)

, (4.6.36)

sup
y∈Rn

∫

Rn
|Lt,s(x,y)|dx ≤ CΨ Amin

( t
s
,
s
t

) 1
4

min(δ ,1)
n+min(δ ,1)min(γ ,δ ,1)

. (4.6.37)

Once (4.6.36) and (4.6.37) are established, (4.6.34) follows directly from the lemma
in Appendix A.1 with ε = 1

4
min(δ ,1)

n+min(δ ,1)min(γ ,δ ,1).
We begin by observing that when s≤ t we have the estimate

∫

Rn

s−nmin(2,(t−1|u|)γ)
(1+ s−1|u|)n+1 du≤Cn

( s
t

) 1
2min(γ ,1)

. (4.6.38)

Also when t ≤ s we have the analogous estimate

∫

Rn

t−nmin(2,s−1|u|)
(1+ t−1|u|)n+δ du≤Cn

( t
s

) 1
2min(δ ,1)

. (4.6.39)

Both (4.6.38) and (4.6.39) are trivial reformulations or consequences of (4.5.18).



296 4 Singular Integrals of Nonconvolution Type

We now take s≤ t and we use that Qs(1) = 0 for all s> 0 to obtain

|Lt,s(x,y)| =
∣
∣
∣
∣

∫

Rn
θt(x,z)Ψs(z− y)dz

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

Rn

[

θt(x,z)−θt(x,y)
]

Ψs(z− y)dz
∣
∣
∣
∣

≤ CA
∫

Rn

min(2,(t−1|z− y|)γ)
tn

s−n

(1+ s−1|z− y|)n+1 dz

≤ C′
n A

1
tn

( s
t

) 1
2min(γ ,1)

≤ C′
n Amin

(1
t
,
1
s

)n
min

( t
s
,
s
t

) 1
2min(γ ,δ ,1)

using estimate (4.6.38). Similarly, using (4.6.39) and the hypothesis that Θt(1) = 0
for all t > 0, we obtain for t ≤ s,

|Lt,s(x,y)| =
∣
∣
∣
∣

∫

Rn
θt(x,z)Ψs(z− y)dz

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

Rn
θt(x,z)

[

Ψs(z− y)−Ψs(x− y)
]

dz
∣
∣
∣
∣

≤ xCA
∫

Rn

t−n

(1+ t−1|x− z|)n+δ
min(2,s−1|x− z|)

sn
dz

≤ C′
n A

1
sn

( t
s

) 1
2min(δ ,1)

≤ C′
n Amin

(1
t
,
1
s

)n
min

( t
s
,
s
t

) 1
2min(γ ,δ ,1)

.

Combining the estimates for |Lt,s(x,y)| in the preceding cases t ≤ s and s ≤ t with
the estimate

|Lt,s(x,y)| ≤
∫

Rn
|θt(x,z)| |Ψs(z− y)|dz≤ CAmin( 1t ,

1
s )

n

(

1+min( 1t ,
1
s )|x− y|)n+min(δ ,1) ,

which is a consequence of the result in Appendix B.1, gives

|Lt,s(x,y)| ≤
Cmin( ts ,

s
t )

1
2min(γ ,δ ,1)(1−β )Amin( 1t ,

1
s )

n

((

1+min( 1t ,
1
s )|x− y|)n+min(δ ,1)

)β

for any 0< β < 1. Choosing β = (n+ 1
2 min(δ ,1))(n+min(δ ,1))−1 and integrating

over x or y yields (4.6.36) and (4.6.37), respectively, and thus concludes the proof of
estimate (4.6.34). �
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We end this subsection with a small generalization of the previous theorem that
follows by an examination of its proof. The simple details are left to the reader.

Corollary 4.6.4. For s > 0 let Θs be linear operators that are uniformly bounded
on L2(Rn) by a constant B. Suppose that each Θs has a kernel θs which satisfies
(4.6.28) and (4.6.29). Let Ψ be a Schwartz function whose Fourier transform is
supported in the annulus 1/2≤ |x| ≤ 2 such that the Littlewood–Paley operator Qs
given by convolution with Ψs(x) = s−nΨ(s−1x) satisfies (4.6.33). Suppose that for
some Cn,Ψ ,A,ε < ∞,

∥
∥ΘtQs

∥
∥
L2→L2 ≤ ACn,Ψ min

( s
t
,
t
s

)ε
(4.6.40)

is satisfied for all t,s> 0. Then there is a constant Cn,Ψ ,ε such that for all f ∈ L2(Rn)
we have

(∫ ∞

0

∥
∥Θs( f )

∥
∥2
L2
ds
s

)1
2
≤Cn,Ψ ,ε(A+B)

∥
∥ f
∥
∥
L2 .

4.6.4 A T (b) Theorem and the L2 Boundedness of the Cauchy
Integral

The operators Θs defined in (4.6.23) and (4.6.24) that appear in the resolution of
the Cauchy integral operator CΓ do not satisfy the conditionΘs(1) = 0 of Theorem
4.6.3. It turns out that a certain variant of this theorem is needed for the purposes of
the application we have in mind, the L2 boundedness of the Cauchy integral operator.
This variant is a quadratic type T (b) theorem discussed in this subsection. Before
we state the main theorem, we need a definition.

Definition 4.6.5. A bounded complex-valued function b onRn is said to be accretive
if there is a constant c0 > 0 such that Reb(x)≥ c0 for almost all x ∈ Rn.

The following theorem is the main result of this section.

Theorem 4.6.6. Let θs be a complex-valued function on Rn × Rn that satisfies
(4.6.28) and (4.6.29), and let Θs be the linear operator in (4.6.30) whose kernel
is θs. If there is an accretive function b such that

Θs(b) = 0 (4.6.41)

for all s> 0, then there is a constant Cn(b) such that the estimate

(∫ ∞

0

∥
∥Θs( f )

∥
∥2
L2
ds
s

)1
2
≤Cn(b)

∥
∥ f
∥
∥
L2 (4.6.42)

holds for all f ∈ L2.
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Corollary 4.6.7. The Cauchy integral operator CΓ maps L2(R) to itself.

The corollary is a consequence of Theorem 4.6.6. Indeed, the crucial and impor-
tant cancellation property

Θs(1+ iA′) = 0 (4.6.43)

is valid for the accretive function 1+ iA′, when Θs and θs are as in (4.6.23) and
(4.6.24). To prove (4.6.43) we simply note that

Θs(1+ iA′)(x) =
∫

R

s(1+ iA′(y))dy
(y− x+ i(A(y)−A(x))+ is)2

=

[ −s
y− x+ i(A(y)−A(x))+ is

]y=+∞

y=−∞
= 0−0= 0 .

This condition plays exactly the role of (4.6.31), which may fail in general. The
necessary “internal cancellation” of the family of operators Θs is exactly captured
by the single condition (4.6.43).

It remains to prove Theorem 4.6.6.

Proof. We fix an approximation of the identity operator, such as

Ps( f )(x) =
∫

Rn
Φs(x− y) f (y)dy ,

whereΦs(x) = s−nΦ(s−1x), andΦ is a nonnegative Schwartz function with integral
1. Then Ps is a nice positive averaging operator that satisfies Ps(1) = 1 for all s> 0.
The key idea is to decompose the operatorΘs as

Θs =
(

Θs−MΘs(1)Ps
)

+MΘs(1)Ps , (4.6.44)

where MΘs(1) is the operator given by multiplication by Θs(1). We begin with the
first term in (4.6.44), which is essentially an error term. We simply observe that

(

Θs−MΘs(1)Ps
)

(1) =Θs(1)−Θs(1)Ps(1) =Θs(1)−Θs(1) = 0 .

Therefore, Theorem 4.6.3 is applicable once we check that the kernel of the operator
Θs−MΘs(1)Ps satisfies (4.6.28) and (4.6.29). But these are verified easily, since the
kernels of both Θs and Ps satisfy these estimates and Θs(1) is a bounded function
uniformly in s. The latter statement is a consequence of condition (4.6.28).

We now need to obtain the required quadratic estimate for the term MΘs(1)Ps.
With the use of Theorem 3.3.7, this follows once we prove that the measure

∣
∣Θs(1)(x)

∣
∣2 dxds

s
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is Carleson. It is here that we use condition (4.6.41). SinceΘs(b) = 0 we have

Ps(b)Θs(1) =
(

Ps(b)Θs(1)−ΘsPs(b)
)

+
(

ΘsPs(b)−Θs(b)
)

. (4.6.45)

Suppose we could show that the measures

∣
∣Θs(b)(x)−ΘsPs(b)(x)

∣
∣2 dxds

s
, (4.6.46)

∣
∣ΘsPs(b)(x)−Ps(b)(x)Θs(1)(x)

∣
∣2 dxds

s
, (4.6.47)

are Carleson. Then it would follow from (4.6.45) that the measure

∣
∣Ps(b)(x)Θs(1)(x)

∣
∣2 dxds

s

is also Carleson. Using the accretivity condition on b and the positivity of Ps we
obtain

∣
∣Ps(b)

∣
∣≥ RePs(b) = Ps(Reb)≥ Ps(c0) = c0,

from which it follows that |Θs(1)(x)|2 ≤ c−2
0 |Ps(b)(x)Θs(1)(x)|2. Thus the measure

|Θs(1)(x)|2dxds/s must be Carleson.
Therefore, the proof will be complete if we can show that both measures (4.6.46)

and (4.6.47) are Carleson. Theorem 3.3.8 plays a key role here.
We begin with the measure in (4.6.46). First we observe that the kernel

Ls(x,y) =
∫

Rn
θs(x,z)Φs(z− y)dz

of ΘsPs satisfies (4.6.28) and (4.6.29). The verification of (4.6.28) is a straightfor-
ward consequence of the estimate in Appendix B.1, while (4.6.29) follows easily
from the mean value theorem. It follows that the kernel of

Rs =Θs−ΘsPs

satisfies the same estimates. Moreover, it is easy to see that Rs(1) = 0 and thus
the quadratic estimate (4.6.32) holds for Rs in view of Theorem 4.6.3. Therefore,
the hypotheses of Theorem 3.3.8(c) are satisfied, and this gives that the measure in
(4.6.46) is Carleson.

We now continue with the measure in (4.6.47). Here we set

Ts( f )(x) =ΘsPs( f )(x)−Ps( f )(x)Θs(1)(x) .

The kernel of Ts is Ls(x,y)−Θs(1)(x)Φs(x− y), which clearly satisfies (4.6.28)
and (4.6.29), since Θs(1)(x) is a bounded function uniformly in s > 0. We also ob-
serve that Ts(1) = 0. Using Theorem 4.6.3, we conclude that the quadratic estimate
(4.6.32) holds for Ts. Therefore, the hypotheses of Theorem 3.3.8(c) are satisfied;
hence the measure in (4.6.46) is Carleson. �
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We conclude by observing that if we attempt to replace Θs with Θ̃s =ΘsM1+iA′

in the resolution identity (4.6.26), then Θ̃s(1) = 0 would hold, but the kernel of Θ̃s
would not satisfy the regularity estimate (4.6.29). The whole purpose of Theorem
4.6.6 was to find a certain balance between regularity and cancellation.

Exercises

4.6.1. Given a function H on a Lipschitz graph Γ , we associate a function h on the
line by setting h(t) = H(t+ iA(t)) . Prove that for all 0< p< ∞ we have

∥
∥h
∥
∥p
Lp(R) ≤

∥
∥H
∥
∥p
Lp(Γ )

≤
√

1+L2
∥
∥h
∥
∥p
Lp(R) ,

where L is the Lipschitz constant of the defining function A of the graph Γ .

4.6.2. Let A : R → R satisfy |A(y)−A(y′)| ≤ L|y− y′| for all y,y′ ∈ R for some
L> 0. Let h be a Schwartz function on R.
(a) Show that for all s> 0 and x,y ∈ R we have

s2+ |x− y|2
|x− y|2+ |A(x)−A(y)+ s|2 ≤ 4L2+2 .

(b) Use the Lebesgue dominated convergence theorem to prove that for all x ∈ R

lim
s→0

∫

|x−y|>√
s

s(1+ iA′(y))h(y)
(y− x+ i(A(y)−A(x))+ is)2

dy= 0 .

(c) Integrate directly to show that for all x ∈ R we have

lim
s→0

∫

|x−y|≤√
s

s(1+ iA′(y))
(y− x+ i(A(y)−A(x))+ is)2

dy= 0 .

(d) Use part (a) to prove that for all x ∈ R we have

lim
s→0

∫

|x−y|≤√
s

s(1+ iA′(y))(h(y)−h(x))
(y− x+ i(A(y)−A(x))+ is)2

dy= 0 .

(e) Show that for all x ∈ R we have

lim
s→∞

∫

R

s(1+ iA′(y))h(y)
(y− x+ i(A(y)−A(x))+ is)2

dy= 0 .

Conclude the validity of the statements in (4.6.20) for all x ∈ R.
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4.6.3. Prove identity (4.6.22).
[

Hint:Write the identity in (4.6.22) as

−2
((ζ + is)− (z− is))3

=
1
2πi

∫

Γ

1
(w−(z−is))2

(w− (ζ + is))2
dw

and interpret it as Cauchy’s integral formula for the derivative of the analytic func-
tion w �→ (w− (z− is))−2 defined on the region above Γ . If Γ were a closed curve
containing ζ + is but not z− is, then the previous assertion would be immediate.
In general, consider a circle of radius R centered at the point ζ + is and the region
UR inside this circle and above Γ . See Figure 4.1. Integrate over the boundary ofUR
and let R→ ∞.

]

.

.
.
.

Fig. 4.1 The regionUR inside the circle and above the curve.

4.6.4. Given an accretive function b, define a pseudo-inner product

〈

f ,g
〉

b =
∫

Rn
f (x)g(x)b(x)dx

on L2. For an interval I, set bI =
∫

I b(x)dx. Let IL denote the left half of a dyadic
interval I and let IR denote its right half. For a complex number z, let z

1
2 = e

1
2 logright z,

where logright is the branch of the logarithm defined on the complex plane minus the
negative real axis normalized so that logright 1 = 0 [and logright(±i) = ±π

2 i]. Show
that the family of functions

hI =
−1

b(I)
1
2

(
b(IR)

1
2

b(IL)
1
2
χIL −

b(IL)
1
2

b(IR)
1
2
χIR

)

,
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where I runs over all dyadic intervals, is an orthonormal family on L2(R) with
respect to the preceding inner product. (This family of functions is called a pseudo-
Haar basis associated with b.)

4.6.5. Let I = (a,b) be a dyadic interval and let 3I be its triple. For a given x ∈ R,
let

dI(x) =min
(|x−a|, |x−b|, |x− a+b

2 |) .
Show that there exists a constant C such that

∣
∣CΓ (hI)(x)

∣
∣≤C |I|− 1

2 log
10|I|
dI(x)

whenever x ∈ 3I \{a,b, a+b
2 } and also

∣
∣CΓ (hI)(x)

∣
∣≤ C |I| 32

dI(x)2

for x /∈ 3I.

4.6.6. ([314]) We say that a bounded function b is para-accretive if for all s > 0
there is a linear operator Rs with kernel satisfying (4.6.28) and (4.6.29) such that
|Rs(b)| ≥ c0 for all s> 0. LetΘs and Ps be as in Theorem 4.6.6.
(a) Prove that

∣
∣Rs(b)(x)−Rs(1)(x)Ps(b)(x)

∣
∣2 dxds

s
is a Carleson measure.
(b) Use the result in part (a) and the fact that sups>0 |Rs(1)| ≤ C to obtain that
χΩ (x,s)dxds/s is a Carleson measure, where

Ω =
{

(x,s) : |Ps(b)(x)| ≤ c0
2
(

sup
s>0

|Rs(1)|)−1
}

.

(c) Conclude that the measure
∣
∣Θs(1)(x)

∣
∣2 dxds/s is Carleson, thus obtaining a gen-

eralization of Theorem 4.6.6 for para-accretive functions.

4.6.7. Using the operator C̃Γ defined in (4.6.15), obtain that CΓ is of weak type
(1,1) and bounded on Lp(R) for all 1< p< ∞.

4.7 Square Roots of Elliptic Operators

In this section we prove an L2 estimate for the square root of a divergence form
second-order elliptic operator on Rn. This estimate is based on an approach in the
spirit of the T (b) theorem discussed in the previous section. However, matters here
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are significantly more complicated for two main reasons: the roughness of the vari-
able coefficients of the aforementioned elliptic operator and the higher-dimensional
nature of the problem.

4.7.1 Preliminaries and Statement of the Main Result

For ξ = (ξ1, . . . ,ξn) ∈ Cn we denote its complex conjugate (ξ1, . . . ,ξn) by ξ .
Moreover, for ξ ,ζ ∈ Cn we use the inner product notation

ξ ·ζ =
n

∑
k=1

ξk ζk .

Throughout this section, A= A(x) is an n×nmatrix of complex-valued L∞ func-
tions, defined on Rn, that satisfies the ellipticity (or accretivity) conditions for some
0< λ ≤Λ < ∞, that

λ |ξ |2 ≤ Re(A(x)ξ ·ξ ) ,
|A(x)ξ ·ζ | ≤ Λ |ξ | |ζ | ,

(4.7.1)

for all x ∈ Rn and ξ ,ζ ∈ Cn. We interpret an element ξ of Cn as a column vector in
Cn when the matrix A acts on it.

Associated with such a matrix A, we define a second-order divergence form op-
erator

L( f ) =−div(A∇ f ) =−
n

∑
j=1

∂ j
(

(A∇ f ) j
)

, (4.7.2)

which we interpret in the weak sense whenever f is a distribution.
The accretivity condition (4.7.1) enables us to define a square root operator L1/2 =√
L so that the operator identity L=

√
L
√
L holds. The square root operator can be

written in several ways, one of which is

√
L( f ) =

16
π

∫ +∞

0
(I+ t2L)−3t3L2( f )

dt
t
. (4.7.3)

We refer the reader to Exercise 4.7.2 for the existence of the square root operator and
the validity of identity (4.7.3).

An important problem in the subject is to determine whether the estimate
∥
∥
√
L( f )

∥
∥
L2 ≤Cn,λ ,Λ

∥
∥∇ f

∥
∥
L2 (4.7.4)

holds for functions f in a dense subspace of the homogeneous Sobolev space.
L21(R

n), where Cn,λ ,Λ is a constant depending only on n, λ , and Λ . Once (4.7.4)
is known for a dense subspace of

.
L21(R

n), then it can be extended to the entire space
by density. The main purpose of this section is to discuss a detailed proof of the
following result.
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Theorem 4.7.1. Let L be as in (4.7.2). Then there is a constant Cn,λ ,Λ such that for
all smooth functions f with compact support, estimate (4.7.4) is valid.

The proof of this theorem requires certain estimates concerning elliptic operators.
These are presented in the next subsection, while the proof of the theorem follows
in the remaining four subsections.

4.7.2 Estimates for Elliptic Operators on Rn

The following lemma provides a quantitative expression for the mean decay of the
resolvent kernel.

Lemma 4.7.2. Let E and F be two closed sets of Rn. Assume that the distance
d = dist (E,F) between them is positive. Then for all complex-valued functions f
supported in E and all vector-valued functions �f supported in E, we have

∫

F
|(I+ t2L)−1( f )(x)|2 dx ≤ Ce−c dt

∫

E
| f (x)|2 dx , (4.7.5)

∫

F
|t∇(I+ t2L)−1( f )(x)|2 dx ≤ Ce−c dt

∫

E
| f (x)|2 dx , (4.7.6)

∫

F
|(I+ t2L)−1( t div�f )(x)|2 dx ≤ Ce−c dt

∫

E
|�f (x)|2 dx , (4.7.7)

where c= c(λ ,Λ), C =C(n,λ ,Λ) are finite constants.

Proof. It suffices to obtain these inequalities whenever d ≥ t > 0. Let us set ut =
(I+ t2L)−1( f ). For all v ∈ L21(R

n) we have
∫

Rn
utvdx+ t2

∫

Rn
A∇ut ·∇vdx=

∫

Rn
f vdx .

Let η be a nonnegative smooth function with compact support that does not meet E
and that satisfies ‖η‖L∞ = 1. Taking v = ut η2 and using that f is supported in E,
we obtain

∫

Rn
|ut |2η2 dx+ t2

∫

Rn
A∇ut ·∇ut η2 dx=−2t2

∫

Rn
A(η∇ut) ·ut∇η dx .

Using (4.7.1) and the inequality 2ab≤ ε |a|2+ ε−1|b|2, we obtain for all ε > 0,
∫

Rn
|ut |2η2 dx+λ t2

∫

Rn
|∇ut |2 η2 dx

≤ Λεt2
∫

Rn
|∇ut |2 η2 dx+Λε−1t2

∫

Rn
|ut |2|∇η |2 dx ,
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and this reduces to
∫

Rn
|ut |2|η |2 dx≤ Λ 2t2

λ

∫

Rn
|ut |2|∇η |2 dx (4.7.8)

by choosing ε = λ
Λ . Replacing η by ekη −1 in (4.7.8), where

k =

√
λ

2Λ t‖∇η‖L∞ ,

yields
∫

Rn
|ut |2|ekη −1|2 dx≤ 1

4

∫

Rn
|ut |2|ekη |2 dx . (4.7.9)

Using that |ekη −1|2 ≥ 1
2 |ekη |2−1, we obtain

∫

Rn
|ut |2|ekη |2 dx≤ 4

∫

Rn
|ut |2 dx≤ 4C

∫

E
| f |2 dx ,

where in the last estimate we use the uniform boundedness of (I+ t2L)−1 on L2(Rn)
(Exercise 4.7.1). If, in addition, we have η = 1 on F , then

|ek|2
∫

F
|ut |2 dx≤

∫

Rn
|ut |2|ekη |2 dx ,

and picking η so that ‖∇η‖L∞ ≈ 1/d, we conclude (4.7.5).
Next, choose ε = λ/2Λ and η as before to obtain

∫

F
|t∇ut |2 dx ≤

∫

Rn
|t∇ut |2η2 dx

≤ 2Λ 2t2

λ

∫

Rn
|ut |2|∇η |2 dx

≤ Ct2d−2e−c dt

∫

E
| f |2 dx ,

which gives (4.7.6). Finally, (4.7.7) is obtained by duality from (4.7.6) applied to
L∗ =−div(A∗∇) when the roles of E and F are interchanged. �

Lemma 4.7.3. Let Mf be the operator given by multiplication by a Lipschitz function
f . Then there is a constant C that depends only on n, λ , and Λ such that

∥
∥
[

(I+ t2L)−1,Mf
]∥
∥
L2→L2 ≤Ct

∥
∥∇ f

∥
∥
L∞ (4.7.10)

and
∥
∥∇
[

(I+ t2L)−1,Mf
]∥
∥
L2→L2 ≤C

∥
∥∇ f

∥
∥
L∞ (4.7.11)

for all t > 0. Here [T,S] = TS−ST is the commutator of the operators T and S.
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Proof. Set �b = A∇ f , �d = At∇ f and note that the operators given by pointwise
multiplication by these vectors are L2 bounded with norms at most a multiple of
C
∥
∥∇ f

∥
∥
L∞ . Write

[

(I+ t2L)−1,Mf
]

= −(I+ t2L)−1[(I+ t2L),Mf
]

(I+ t2L)−1

= −(I+ t2L)−1t2(div�b+ �d ·∇)(1+ t2L)−1 .

The uniform L2 boundedness of (I+ t2L)−1 t∇(I+ t2L)−1 and (I+ t2L)−1t div on
L2 (see Exercise 4.7.1) implies (4.7.10). Finally, using the L2 boundedness of the
operator t2∇(I+ t2L)−1div yields (4.7.11). �

Next we have a technical lemma concerning the mean square deviation of f from
(I+ t2L)−1.

Lemma 4.7.4. There exists a constant C depending only on n, λ , andΛ such that for
all Q cubes in Rn with sides parallel to the axes, for all t ≤ �(Q), and all Lipschitz
functions f on Rn we have

1
|Q|

∫

Q
|(I+ t2L)−1( f )− f |2 dx ≤ Ct2

∥
∥∇ f

∥
∥2
L∞ , (4.7.12)

1
|Q|

∫

Q
|∇((I+ t2L)−1( f )− f )|2 dx ≤ C

∥
∥∇ f

∥
∥2
L∞ . (4.7.13)

Proof. We begin by proving (4.7.12), while we omit the proof of (4.7.13), since it is
similar. By a simple rescaling, we may assume that �(Q) = 1 and that ‖∇ f‖L∞ = 1.
Set Q0 = 2Q (i.e., the cube with the same center as Q with twice its side length) and
write Rn as a union of cubes Qk of side length 2 with disjoint interiors and sides
parallel to the axes. Lemma 4.7.2 implies that

(I+ t2L)−1(1) = 1

in the sense that
lim
R→∞

(I+ t2L)−1(ηR) = 1

in L2loc(R
n), where ηR(x) = η(x/R) and η is a smooth bump function with η ≡ 1

near 0. Hence, we may write

(I+ t2L)−1( f )(x)− f (x) = ∑
k∈Zn

(I+ t2L)−1(( f − f (x))χQk)(x) = ∑
k∈Zn

gk(x) .

The term for k = 0 in the sum is [(I+ t2L)−1,Mf ](χQ0)(x). Hence, its L
2(Q) norm

is controlled by Ct‖χQ0‖L2 by (4.7.10). The terms for k �= 0 are dealt with using the
further decomposition

gk(x) = (I+ t2L)−1(( f − f (xk))χQk)(x)+( f (xk)− f (x))(I+ t2L)−1(χQk)(x) ,
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where xk is the center of Qk. Applying Lemma 4.7.2 for (I + t2L)−1 on the sets
E = Qk and F = Q and using that f is a Lipschitz function, we obtain

∫

Q
|gk|2 dx≤Ct2e−c

|xk |
t
∥
∥χQk

∥
∥2
L2 =Ct2e−c

|xk |
t 2n|Q| .

The desired bound on the L2(Q) norm of (I + t2L)−1( f )− f follows from these
estimates, Minkowski’s inequality, and the fact that t ≤ 1= �(Q). �

4.7.3 Reduction to a Quadratic Estimate

We are given a divergence form elliptic operator as in (4.7.2) with ellipticity con-
stants λ and Λ in (4.7.1). Our goal is to obtain the a priori estimate (4.7.4) for
functions f in some dense subspace of

.
L21(R

n).
To obtain this estimate we need to resolve the operator

√
L as an average of

simpler operators that are uniformly bounded from
.
L21(R

n) to L2(Rn). In the sequel
we use the following resolution of the square root:

√
L( f ) =

16
π

∫ ∞

0
(I+ t2L)−3t3L2( f )

dt
t
,

in which the integral converges in L2(Rn) for f ∈ C ∞
0 (Rn). Take g ∈ C ∞

0 (Rn) with
‖g‖L2 = 1. Using duality and the Cauchy–Schwarz inequality, we can control the
quantity

∣
∣
〈√

L( f ) |g〉∣∣2 by

256
π2

(∫ ∞

0

∥
∥(I+ t2L)−1tL( f )

∥
∥2
2
dt
t

)(∫ ∞

0

∥
∥Vt(g)

∥
∥2
L2

dt
t

)

, (4.7.14)

where we set
Vt = t2L∗(I+ t2L∗)−2 .

Here L∗ is the adjoint operator to L and note that the matrix corresponding to L∗
is the conjugate-transpose matrix A∗ of A (i.e., the transpose of the matrix whose
entries are the complex conjugates of the matrix A). We explain why the estimate

∫ ∞

0

∥
∥Vt(g)

∥
∥2
L2

dt
t
≤C‖g‖2L2 (4.7.15)

is valid. Fix a real-valued functionΨ ∈ C ∞
0 (Rn) with mean value zero normalized

so that ∫ ∞

0
|Ψ̂(sξ )|2 ds

s
= 1

for all ξ ∈ Rn and define Ψs(x) = 1
snΨ( xs ). Throughout the proof, Qs denotes the

operator

Qs(h) = h∗Ψs . (4.7.16)



308 4 Singular Integrals of Nonconvolution Type

Obviously we have
∫ ∞

0

∥
∥Qs(g)

∥
∥2
L2

ds
s

= ‖g‖2L2

for all L2 functions g.
We obtain estimate (4.7.15) as a consequence of Corollary 4.6.4 applied to the

operatorsVt that have uniform (in t) bounded extensions on L2(Rn). To apply Corol-
lary 4.6.4, we need to check that condition (4.6.40) holds forΘt =Vt . Since

VtQs =−(I+ t2L∗)−2t2div(A∗∇Qs) ,

we have
∥
∥VtQs

∥
∥
L2→L2 ≤

∥
∥(I+ t2L∗)−2t2div

∥
∥
L2→L2

∥
∥A∗∇Qs

∥
∥
L2→L2 ≤ c

t
s
, (4.7.17)

with c depending only on n, λ , and Λ . This estimate is proved by observing two
facts: first (I+ t2L∗)−2t div is equal to the composition of L1 and L3 as defined in
Exercise 4.7.1. Since L1 and L3 are uniformly bounded on L2, the L2 → L2 operator
norm of (I+ t2L∗)−2t2div is bounded by a constant multiple of t. Also the kernel of
∇Qs is ∇Ψs which has L1 norm bounded by a constant multiple of 1/s.

Choose Ψ = Δϕ with ϕ ∈ C ∞
0 (Rn) radial so that in particular, Ψ = div(∇ϕ).

This yieldsΨs(x) = s−ndiv(∇ϕ)(x/s) = sdiv(s−n∇ϕ(·/s))(x), hence Qs = sdiv�Rs
with �Rs uniformly bounded on L2. Then we can write

VtQs = −(I+ t2L∗)−2t2sdiv(A∗∇div�Rs)

= −t2s(I+ t2L∗)−2L∗div(�Rs)

= − s
t
(I+ t2L∗)−1(t2L∗)(I+ t2L∗)−1t div(�Rs) .

But (I+ t2L∗)−1t div is uniformly bounded on L2 (operator L3 in Exercise 4.7.1)
and so is �Rs and (I+ t2L∗)−1(t2L∗) =−(I+ t2L∗)−1 (operator L1 in Exercise 4.7.1).
It follows that

∥
∥VtQs

∥
∥
L2→L2 ≤ c

s
t
, (4.7.18)

with c depending only on n, λ , and Λ .
Combining (4.7.17) and (4.7.18) proves (4.6.40) with Θt = Vt . Hence Corollary

4.6.4 is applicable and (4.7.15) follows.
Therefore, the second integral on the right-hand side of (4.7.14) is bounded, and

estimate (4.7.4) is reduced to proving
∫ ∞

0

∥
∥(I+ t2L)−1tL( f )

∥
∥2
2
dt
t
≤C

∫

Rn
|∇ f |2 dx (4.7.19)

for all f ∈ C ∞
0 (Rn).
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4.7.4 Reduction to a Carleson Measure Estimate

Our next goal is to reduce matters to a Carleson measure estimate. We first intro-
duce some notation to be used throughout. For Cn-valued functions �f = ( f1, . . . , fn)
define

Zt (�f ) =−
n

∑
k=1

n

∑
j=1

(I+ t2L)−1t∂ j(a j,k fk) .

In short, we write Zt = −(I + t2L)−1t divA. With this notation, we reformulate
(4.7.19) as

∫ ∞

0

∥
∥Zt(∇ f )

∥
∥2
2
dt
t
≤C

∫

Rn
|∇ f |2 dx . (4.7.20)

Also, define

γt(x) = Zt(1)(x) =
(

−
n

∑
j=1

(I+ t2L)−1t ∂ j(a j,k)(x)
)

1≤k≤n
,

where 1 is the n×n identity matrix and the action of Zt on 1 is columnwise.
The reduction to a Carleson measure estimate and to a T (b) argument requires

the following inequality:
∫

Rn

∫ ∞

0
|γt(x) ·P2

t (∇g)(x)−Zt(∇g)(x)|2 dxdtt
≤C

∫

Rn
|∇g|2 dx, (4.7.21)

where C depends only on n, λ , and Λ . Here, Pt denotes the operator

Pt(h) = h∗ pt , (4.7.22)

where pt(x) = t−np(t−1x) and p denotes a nonnegative smooth function supported
in the unit ball of Rn with integral equal to 1. To prove this, we need to handle
Littlewood–Paley theory in a setting a bit more general than the one encountered in
the previous section.

Lemma 4.7.5. For t > 0, let Ut be integral operators defined on L2(Rn) with mea-
surable kernels Lt(x,y). Suppose that for some m > n and for all y ∈ Rn and t > 0
we have

∫

Rn

(

1+
|x− y|

t

)2m

|Lt(x,y)|2 dx≤ t−n. (4.7.23)

Assume that for any ball B(y, t), Ut has a bounded extension from L∞(Rn) to
L2(B(y, t)) such that for all f in L∞(Rn) and y ∈ Rn we have

1
tn

∫

B(y,t)
|Ut( f )(x)|2 dx≤

∥
∥ f
∥
∥2
L∞ . (4.7.24)
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Finally, assume that Ut(1) = 0 in the sense that

Ut(χB(0,R))→ 0 in L2(B(y, t)) (4.7.25)

as R→ ∞ for all y ∈ Rn and t > 0.
Let Qs and Pt be as in (4.7.16) and (4.7.22), respectively. Then for some α > 0

and C depending on n and m we have

∥
∥UtPtQs

∥
∥
L2→L2 ≤Cmin

( t
s
,
s
t

)α
(4.7.26)

and also
∥
∥UtQs

∥
∥
L2→L2 ≤C

( t
s

)α
, t ≤ s . (4.7.27)

Proof. We begin by observing thatU∗
t Ut has a kernel Kt(x,y) given by

Kt(x,y) =
∫

Rn
Lt(z,x)Lt(z,y)dz .

The simple inequality (1+ a+ b) ≤ (1+ a)(1+ b) for a,b > 0 combined with

the Cauchy–Schwarz inequality and (4.7.23) yields that
(

1+ |x−y|
t

)m |Kt(x,y)| is
bounded by

∫

Rn

(

1+
|x− z|

t

)m

|Lt(z,x)| |Lt(z,y)|
(

1+
|z− y|

t

)m

dy≤ t−n .

We conclude that

|Kt(x,y)| ≤ 1
tn

(

1+
|x− y|

t

)−m

. (4.7.28)

Hence U∗
t Ut is bounded on all Lp, 1 ≤ p ≤ +∞ and, in particular, for p = 2. Since

L2 is a Hilbert space, it follows thatUt is bounded on L2(Rn) uniformly in t > 0.
For s≤ t we use that ‖Ut‖L2→L2 ≤ B< ∞ and basic estimates to deduce that

∥
∥UtPtQs

∥
∥
L2→L2 ≤ B

∥
∥PtQs

∥
∥
L2→L2 ≤CB

( s
t

)α
.

Next, we consider the case t ≤ s. Since Pt has an integrable kernel, and the kernel
of U∗

t Ut satisfies (4.7.28), it follows that Wt =U∗
t UtPt has a kernel that satisfies a

similar estimate. If we prove that Wt(1) = 0, then we can deduce from standard
arguments that when t ≤ s we have

∥
∥WtQs

∥
∥
L2→L2 ≤C

( t
s

)2α
(4.7.29)

for 0< α < m−n. This would imply the required estimate (4.7.26), since

∥
∥UtPtQs

∥
∥2
L2→L2 =

∥
∥Q∗

sPtU
∗
t UtPtQs

∥
∥
L2→L2 ≤C

∥
∥U∗

t UtPtQs
∥
∥
L2→L2 .
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We have thatWt(1) =U∗
t Ut(1). Suppose that a function ϕ in L2(Rn) is compactly

supported. Then ϕ is integrable over Rn and we have
〈

U∗
t Ut(1) |ϕ

〉

= lim
R→∞

〈

U∗
t Ut(χB(0,R)) |ϕ

〉

= lim
R→∞

〈

Ut(χB(0,R)) |Ut(ϕ)
〉

.

We have

〈

Ut(χB(0,R)) |Ut(ϕ)
〉

=
∫

Rn

∫

Rn
Ut(χB(0,R))(x)Ut(x,y)ϕ(y)dydx ,

and this is in absolute value at most a constant multiple of

(

t−n
∫

Rn

∫

Rn

(

1+
|x− y|

t

)−2m

|Ut(χB(0,R))(x)|2|ϕ(y)|dydx
)1

2
∥
∥ϕ
∥
∥
1
2
L1

by (4.7.23) and the Cauchy–Schwarz inequality for the measure |ϕ(y)|dydx. Using
a covering in the x variable by a family of balls B(y+ ckt, t), k ∈ Zn, we deduce
easily that the last displayed expression is at most

Cϕ

(

∑
k∈Zn

∫

Rn
(1+ |k|)−2mcR(y,k)|ϕ(y)|dy

)1
2

,

where Cϕ is a constant that depends on ϕ and

cR(y,k) = t−n
∫

B(y+ckt,t)
|Ut(χB(0,R))(x)|2 dx .

Applying the dominated convergence theorem and invoking (4.7.24) and (4.7.25) as
R → ∞, we conclude that

〈

U∗
t Ut(1) |ϕ

〉

= 0. The latter implies that U∗
t Ut(1) = 0.

The same conclusion follows forWt , since Pt(1) = 1.
To prove (4.7.27) when t ≤ s we repeat the previous argument withWt =U∗

t Ut .
SinceWt(1) = 0 andWt has a nice kernel, it follows that (4.7.29) holds. Thus

∥
∥UtQs

∥
∥2
L2→L2 =

∥
∥Q∗

sU
∗
t UtQs

∥
∥
L2→L2 ≤C

∥
∥U∗

t UtQs
∥
∥
L2→L2 ≤C

( t
s

)2α
.

This concludes the proof of the lemma. �

Lemma 4.7.6. Let Pt be as in Lemma 4.7.5. Then the operator Ut defined by
Ut(�f )(x) = γt(x) ·Pt(�f )(x)−ZtPt(�f )(x) satisfies

∫ ∞

0

∥
∥UtPt (�f )

∥
∥2
L2

dt
t
≤C

∥
∥�f
∥
∥2
L2 ,

where C depends only on n, λ , and Λ . Here the action of Pt on �f is componentwise.
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Proof. By the off-diagonal estimates of Lemma 4.7.2 for Zt and the fact that p has
support in the unit ball, it is simple to show that there is a constant C depending on
n, λ , and Λ such that for all y ∈ Rn,

1
tn

∫

B(y,t)
|γt(x)|2 dx≤C (4.7.30)

and that the kernel ofC−1Ut satisfies the hypotheses in Lemma 4.7.5. The conclusion
follows from Corollary 4.6.4 applied toUtPt . �

We now return to (4.7.21). We begin by writing

γt(x) ·P2
t (∇g)(x)−Zt(∇g)(x) =UtPt(∇g)(x)+Zt(P2

t − I)(∇g)(x) ,

and we prove (4.7.21) for each term that appears on the right. For the first term we
apply Lemma 4.7.6. Since Pt commutes with partial derivatives, we may use that

∥
∥Zt∇

∥
∥
L2→L2 =

∥
∥(I+ t2L)−1t L

∥
∥
L2→L2 ≤Ct−1 ,

and therefore we obtain for the second term
∫

Rn

∫ ∞

0
|Zt(P2

t − I)(∇g)(x)|2 dxdt
t

≤ C2
∫

Rn

∫ ∞

0
|(P2

t − I)(g)(x)|2 dt
t3

dx

≤ C2c(p)
∥
∥∇g

∥
∥2
2

by Plancherel’s theorem, where C depends only on n, λ , and Λ . This concludes the
proof of (4.7.21).

Lemma 4.7.7. The required estimate (4.7.4) follows from the Carleson measure
estimate

sup
Q

1
|Q|

∫

Q

∫ �(Q)

0
|γt(x)|2 dxdtt

< ∞ , (4.7.31)

where the supremum is taken over all cubes in Rn with sides parallel to the axes.

Proof. Indeed, (4.7.31) and Theorem 3.3.7 imply
∫

Rn

∫ ∞

0
|P2

t (∇g)(x) · γt(x)|2
dxdt
t

≤C
∫

Rn
|∇g|2 dx,

and together with (4.7.21) we deduce that (4.7.20) holds. �

Next we introduce an auxiliary averaging operator. We define a dyadic averaging
operator SQt as follows:

SQt (�f )(x) =
(

1
|Q′

x|
∫

Q′
x

�f (y)dy
)

χQ′
x
(x) ,
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where Q′
x is the unique dyadic cube contained in Q that contains x and satisfies

1
2�(Q

′
x) < t ≤ �(Q′

x). Notice that S
Q
t is a projection, i.e., it satisfies SQt S

Q
t = SQt . We

have the following technical lemma concerning SQt .

Lemma 4.7.8. For some C depending only on n, λ , and Λ , we have

∫

Q

∫ �(Q)

0
|γt(x) · (SQt −P2

t )(�f )(x)|2
dxdt
t

≤C
∫

Rn
|�f |2 dx . (4.7.32)

Proof. We actually obtain a stronger version of (4.7.32) in which the t-integration
on the left is taken over (0,+∞). Let Qs be as in (4.7.16). SetΘt = γt ·(SQt −P2

t ). The
proof of (4.7.32) is based on Corollary 4.6.4 provided we show that for some α > 0,

∥
∥ΘtQs

∥
∥
L2→L2 ≤C min

( t
s
,
s
t

)α
.

Suppose first that t ≤ s. Notice thatΘt(1) = 0, and thus (4.7.25) holds. With the
aid of (4.7.30), we observe that Θt satisfies the hypotheses (4.7.23) and (4.7.24) of
Lemma 4.7.5. Conclusion (4.7.27) of this lemma yields that for some α > 0 we have

∥
∥ΘtQs

∥
∥
L2→L2 ≤C

( t
s

)α
.

We now turn to the case s≤ t. Since the kernel of Pt is bounded by ct−nχ|x−y|≤t ,
condition (4.7.30) yields that γtPt is uniformly bounded on L2 and thus

∥
∥γtP2

t Qs
∥
∥
L2→L2 ≤C

∥
∥PtQs

∥
∥
L2→L2 ≤C′ s

t
.

It remains to consider the case s ≤ t for the operator Ut = γt · SQt . We begin by
observing that Ut is L2 bounded uniformly in t > 0; this follows from a standard
U∗
t Ut argument using condition (4.7.23). Secondly, as already observed, SQt is an

orthogonal projection. Therefore, we have
∥
∥(γt ·SQt )Qs

∥
∥
L2→L2 ≤ ∥

∥(γt ·SQt )SQt Qs
∥
∥
L2→L2

≤ ∥
∥SQt Qs

∥
∥
L2→L2

≤ ∥
∥SQt

∥
∥
L2→.L2α

∥
∥Qs

∥
∥.
L2α→L2

≤ Csα t−α .

The last inequality follows from the facts that for any α in (0, 12 ), Qs maps the
homogeneous Sobolev space

.
L2α to L2 with norm at most a multiple of Csα and

that the dyadic averaging operator SQt maps L2(Rn) to
.
L2α(Rn) with norm Ct−α .

The former of these statements is trivially verified by taking the Fourier transform,
while the latter statement requires some explanation.
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Fix an α ∈ (0, 12 ) and take h,g∈ L2(Rn). Also fix j∈Z such that 2− j−1 ≤ t < 2− j.
We then have

〈

SQt (−Δ)
α
2 (h),g

〉

= ∑
Jj,k�Q

〈

(−Δ) α2 (h),χJj,k(x)(Avg
Jj,k

g)
〉

,

where Jj,k =∏n
r=1[2

− jkr,2− j(kr+1)) and k = (k1, . . . ,kn). It follows that

〈

SQt (−Δ)
α
2 (h),g

〉

= ∑
Jj,k�Q

〈

h,
(

Avg
Jj,k

g
)

(−Δ) α2 (χJj,k)(x)
〉

=
〈

h , ∑
Jj,k�Q

2α j(Avg
Jj,k

g
)

(−Δ) α2 (χ[0,1)n)(2 j(·)− k)
〉

.

Set χα = (−Δ) α2 (χ[0,1)n). We estimate the L2 norm of the preceding sum. We have

∫

Rn

∣
∣
∣ ∑
Jj,k�Q

2α j(Avg
Jj,k

g
)

χα(2 jx− k)
∣
∣
∣

2
dx

= 22α j−n j
∫

Rn

∣
∣
∣ ∑
Jj,k�Q

(

Avg
Jj,k

g
)

χα(x− k)
∣
∣
∣

2
dx

= 22α j−n j
∫

Rn

∣
∣
∣ ∑
Jj,k�Q

e−2πik·ξ (Avg
Jj,k

g
)
∣
∣
∣

2 |χ̂α(ξ )|2 dξ

= 22α j−n j
∫

[0,1]n

∣
∣
∣ ∑
Jj,k�Q

e−2πik·ξ (Avg
Jj,k

g
)
∣
∣
∣

2
∑
l∈Zn

|χ̂α(ξ + l)|2 dξ

≤ 22α j−n j
∫

[0,1]n

∣
∣
∣ ∑
Jj,k�Q

e−2πik·ξ (Avg
Jj,k

g
)
∣
∣
∣

2
dξ sup

ξ∈[0,1]n
∑
l∈Zn

|χ̂α(ξ + l)|2

= 22α j−n j ∑
k∈Zn

∣
∣Avg
Jj,k

g
∣
∣2C(n,α)2 ,

where we used Plancherel’s identity on the torus and we set

C(n,α)2 = sup
ξ∈[0,1]n

∑
l∈Zn

|χ̂α(ξ + l)|2 .

Since

χ̂α(ξ ) = |ξ |α
n

∏
r=1

1− e−2πiξr

2πiξr
,

it follows that C(n,α)< ∞ when 0< α < 1
2 . In this case we conclude that

∣
∣
〈

SQt (−Δ)
α
2 (h),g

〉∣
∣ ≤ C(n,α)

∥
∥h
∥
∥
L22

jα
(

2−n j ∑
k∈Zn

∣
∣Avg
Jj,k

g
∣
∣2
) 1

2

≤ C′∥∥h
∥
∥
L2t

−α∥∥g
∥
∥
L2 ,

and this implies that ‖SQt ‖L2→.L2α ≤Ct−α and hence the required conclusion. �
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4.7.5 The T (b) Argument

To obtain (4.7.31), we adapt the T (b) theorem of the previous section for square roots
of divergence form elliptic operators. We fix a cube Q with center cQ, an ε ∈ (0,1),
and a unit vector w in Cn. We define a scalar-valued function

f εQ,w = (1+(ε�(Q))2L)−1(ΦQ ·w) , (4.7.33)

where
ΦQ(x) = x− cQ .

We begin by observing that the following estimates are consequences of Lemma
4.7.4:

∫

5Q
| f εQ,w−ΦQ ·w|2 dx≤C1ε2�(Q)2|Q| (4.7.34)

and
∫

5Q
|∇( f εQ,w−ΦQ ·w)|2 dx≤C2|Q| , (4.7.35)

where C1,C2 depend on n, λ , Λ and not on ε , Q, and w. It is important to observe
that the constants C1,C2 are independent of ε .

The proof of (4.7.31) follows by combining the next two lemmas. The rest of this
section is devoted to their proofs.

Lemma 4.7.9. There exists an ε > 0 depending on n, λ ,Λ , and a finite setF of unit
vectors in Cn whose cardinality depends on ε and n, such that

sup
Q

1
|Q|

∫

Q

∫ �(Q)

0
|γt(x)|2 dxdtt

≤C ∑
w∈F

sup
Q

1
|Q|

∫

Q

∫ �(Q)

0
|γt(x) · (SQt ∇ f εQ,w)(x)|2

dxdt
t

,

where C depends only on ε , n, λ , and Λ . The suprema are taken over all cubes Q in
Rn with sides parallel to the axes.

Lemma 4.7.10. For C depending only on n, λ , Λ , and ε > 0, we have

∫

Q

∫ �(Q)

0

∣
∣γt(x) · (SQt ∇ f εQ,w)(x)

∣
∣2 dxdt

t
≤C|Q|. (4.7.36)

We begin with the proof of Lemma 4.7.10, which is the easiest of the two.

Proof of Lemma 4.7.10. Pick a smooth bump function XQ localized on 4Q and
equal to 1 on 2Qwith ‖XQ‖L∞+�(Q)‖∇XQ‖L∞ ≤ cn. By Lemma 4.7.5 and estimate
(4.7.21), the left-hand side of (4.7.36) is bounded by
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C
∫

Rn

∣
∣∇(XQ f εQ,w)

∣
∣2 dx+2

∫

Q

∫ �(Q)

0

∣
∣γt(x) · (P2

t ∇(XQ f εQ,w))(x)
∣
∣2 dxdt

t

≤C
∫

Rn

∣
∣∇(XQ f εQ,w)

∣
∣2 dx+4

∫

Q

∫ �(Q)

0

∣
∣(Zt∇(XQ f εQ,w))(x)

∣
∣2 dxdt

t
.

It remains to control the last displayed expression byC|Q|.
First, it follows easily from (4.7.34) and (4.7.35) that

∫

Rn
|∇(XQ f εQ,w)|2 dx≤C|Q| ,

where C is independent of Q and w (but it may depend on ε). Next, we write

Zt∇(XQ f εQ,w) =W 1
t +W 2

t +W 3
t ,

where

W 1
t = (I+ t2L)−1t

(

XQL( f εQ,w)
)

,

W 2
t = −(I+ t2L)−1t

(

div(A f εQ,w∇XQ)
)

,

W 3
t = −(I+ t2L)−1t

(

A∇ f εQ,w ·∇XQ
)

,

and we use different arguments to treat each termW j
t .

To handleW 1
t , observe that

L( f εQ,w) =
f εQ,w−ΦQ ·w
ε2�(Q)2

,

and therefore it follows from (4.7.34) that
∫

Rn
|XQL( f εQ,w)|2 ≤C|Q|(ε�(Q))−2 ,

where C is independent of Q and w. Using the (uniform in t) boundedness of the
operator (I+ t2L)−1 on L2(Rn), we obtain

∫

Q

∫ �(Q)

0

∣
∣W 1

t (x)
∣
∣2 dxdt

t
≤
∫ �(Q)

0

C|Q| t2
(ε�(Q))2

dt
t
≤ C|Q|

ε2
,

which establishes the required quadratic estimate forW 1
t .

To obtain a similar quadratic estimate for W 2
t , we apply Lemma 4.7.2 for the

operator (I + t2L)−1t div with sets F = Q and E = supp( f εQ,w∇XQ) ⊆ 4Q \ 2Q.
We obtain that

∫

Q

∫ �(Q)

0
|W 2

t (x)|2
dxdt
t

≤C
∫ �(Q)

0
e−

�(Q)
ct

dt
t

∫

4Q\2Q
|A f εQ,w∇XQ|2 dx .
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The first integral on the right provides at most a constant factor, while we handle the
second integral by writing

f εQ,w = ( f εQ,w−ΦQ ·w)+ΦQ ·w .

Using (4.7.34) and the facts that ‖∇XQ‖L∞ ≤ cn�(Q)−1 and that |ΦQ| ≤ cn�(Q) on
the support of XQ, we obtain that

∫

4Q\2Q
|A f εQ,w∇XQ|2 dx≤C |Q| ,

where C depends only on n, λ , and Λ . This yields the required result forW 2
t .

To obtain a similar estimate for W 3
t , we use the (uniform in t) boundedness of

(I+ t2L)−1 on L2(Rn) (Exercise 4.7.1) to obtain that

∫

Q

∫ �(Q)

0
|W 3

t (x)|2
dxdt
t

≤C
∫ �(Q)

0
t2
dt
t

∫

4Q\2Q
|A∇ f εQ,w ·∇XQ|2 dx .

But the last integral is shown easily to be bounded by C|Q| by writing f εQ,w, as in
the previous case, and using (4.7.35) and the properties of XQ and ΦQ. Note that C
here depends only on n, λ , and Λ . This concludes the proof of Lemma 4.7.10. �

4.7.6 Proof of Lemma 4.7.9

It remains to prove Lemma 4.7.9. The main ingredient in the proof of Lemma 4.7.9
is the following proposition, which we state and prove first.

Proposition 4.7.11. There exists an ε > 0 depending on n, λ , and Λ , and η =
η(ε)> 0 such that for each unit vector w in Cn and each cube Q with sides parallel
to the axes, there exists a collectionS ′

w = {Q′} of nonoverlapping dyadic subcubes
of Q such that

∣
∣
∣

⋃

Q′∈S ′
w

Q′
∣
∣
∣≤ (1−η)|Q| , (4.7.37)

and moreover, if S ′′
w is the collection of all dyadic subcubes of Q not contained in

any Q′ ∈S ′
w, then for any Q

′′ ∈S ′′
w we have

1
|Q′′|

∫

Q′′
Re(∇ f εQ,w(y) ·w)dy≥

3
4

(4.7.38)

and
1

|Q′′|
∫

Q′′
|∇ f εQ,w(y)|2 dy≤ (4ε)−2. (4.7.39)
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Proof. We begin by proving the following crucial estimate:
∣
∣
∣
∣

∫

Q
(1−∇ f εQ,w(x) ·w)dx

∣
∣
∣
∣
≤Cε

1
2 |Q|, (4.7.40)

where C depends on n, λ , and Λ , but not on ε , Q, and w. Indeed, we observe that

∇(ΦQ ·w)(x) ·w= |w|2 = 1 ,

so that
1−∇ f εQ,w(x) ·w= ∇gεQ,w(x) ·w ,

where we set
gεQ,w(x) =ΦQ(x) ·w− f εQ,w(x) .

Next we state another useful lemma, whose proof is postponed until the end of
this subsection.

Lemma 4.7.12. There exists a constant C =Cn such that for all h ∈
.
L21 we have

∣
∣
∣
∣

∫

Q
∇h(x)dx

∣
∣
∣
∣
≤C �(Q)

n−1
2

(∫

Q
|h(x)|2 dx

) 1
4
(∫

Q
|∇h(x)|2 dx

) 1
4
.

Applying Lemma 4.7.12 to the function gεQ,w, we deduce (4.7.40) as a conse-
quence of (4.7.34) and (4.7.35).

We now proceed with the proof of Proposition 4.7.11. First we deduce from
(4.7.40) that

1
|Q|

∫

Q
Re(∇ f εQ,w(x) ·w)dx≥

7
8
,

provided that ε is small enough. We also observe that as a consequence of (4.7.35)
we have

1
|Q|

∫

Q
|∇ f εQ,w(x)|2 dx≤C3 ,

where C3 is independent of ε . Now we perform a stopping-time decomposition to
select a collection S ′

w of dyadic subcubes of Q that are maximal with respect to
either one of the following conditions:

1
|Q′|

∫

Q′
Re(∇ f εQ,w(x) ·w)dx ≤ 3

4
, (4.7.41)

1
|Q′|

∫

Q′
|∇ f εQ,w(x)|2 dx ≥ (4ε)−2 . (4.7.42)

This is achieved by subdividing Q dyadically and by selecting those cubes Q′ for
which either (4.7.41) or (4.7.42) holds, subdividing all the nonselected cubes, and
repeating the procedure. The validity of (4.7.38) and (4.7.39) now follows from the
construction and (4.7.41) and (4.7.42).
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It remains to establish (4.7.37). Let B1 be the union of the cubes inS ′
w for which

(4.7.41) holds. Also, let B2 be the union of those cubes in S ′
w for which (4.7.42)

holds. We then have ∣
∣
∣

⋃

Q′∈S ′
w

Q′
∣
∣
∣≤ |B1|+ |B2| .

The fact that the cubes inS ′
w do not overlap yields

|B2| ≤ (4ε)2
∫

Q
|∇ f εQ,w(x)|2 dx≤ (4ε)2C3|Q|.

Setting bεQ,w(x) = 1−Re(∇ f εQ,w(x) ·w), we also have

|B1| ≤ 4∑
∫

Q′
bεQ,w dx= 4

∫

Q
bεQ,w dx−4

∫

Q\B1
bεQ,w dx , (4.7.43)

where the sum is taken over all cubesQ′ that comprise B1. The first term on the right
in (4.7.43) is bounded above byCε 1

2 |Q| in view of (4.7.40). The second term on the
right in (4.7.43) is controlled in absolute value by

4|Q\B1|+4|Q\B1| 12 (C3|Q|) 1
2 ≤ 4|Q\B1|+4C3ε

1
2 |Q|+ ε−

1
2 |Q\B1| .

Since |Q\B1|= |Q|− |B1|, we obtain

(5+ ε−
1
2 )|B1| ≤ (4+Cε

1
2 + ε−

1
2 )|Q| ,

which yields |B1| ≤ (1− ε 1
2 +o(ε 1

2 ))|Q| if ε is small enough. Hence

|B| ≤ (1−η(ε))|Q|

with η(ε)≈ ε 1
2 for small ε . This concludes the proof of Proposition 4.7.11. �

Next, we need the following simple geometric fact.

Lemma 4.7.13. Let w,u,v be in Cn such that |w|= 1 and let 0< ε ≤ 1 be such that

|u− (u ·w)w| ≤ ε |u ·w| , (4.7.44)

Re(v ·w) ≥ 3
4
, (4.7.45)

|v| ≤ (4ε)−1 . (4.7.46)

Then we have |u| ≤ 4 |u · v|.
Proof. It follows from (4.7.45) that

3
4 |u ·w| ≤ |(u ·w)(v ·w)| . (4.7.47)

Moreover, (4.7.44) and the triangle inequality imply that

|u| ≤ (1+ ε)|u ·w| ≤ 2 |u ·w| . (4.7.48)
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Also, as a consequence of (4.7.44) and (4.7.46), we obtain

|(u− (u ·w)w) · v| ≤ 1
4 |u ·w| . (4.7.49)

Finally, using (4.7.47) and (4.7.49) together with the triangle inequality, we deduce
that

|u · v| ≥ |(u ·w)(v ·w)|− |(u− (u ·w)w) · v| ≥ ( 34 − 1
4 ) |u ·w| ≥ 1

4 |u| ,

where in the last inequality we used (4.7.48). �
We now proceed with the proof of Lemma 4.7.9. We fix an ε > 0 to be chosen

later and we choose a finite number of cones Cw indexed by a finite set F of unit
vectors w in Cn defined by

Cw =
{

u ∈ Cn : |u− (u ·w)w| ≤ ε |u ·w|} , (4.7.50)

so that
Cn =

⋃

w∈F
Cw .

Note that the size of the set F can be chosen to depend only on ε and the
dimension n.

It suffices to show that for each fixed w∈F we have a Carleson measure estimate
for γt,w(x) ≡ χCw(γt(x))γt(x), where χCw denotes the characteristic function of Cw.
To achieve this we define

Aw ≡ sup
Q

1
|Q|

∫

Q

∫ �(Q)

0
|γt,w(x)|2 dxdtt

, (4.7.51)

where the supremum is taken over all cubes Q in Rn with sides parallel to the axes.
By truncating γt,w(x) for t small and t large, we may assume that this quantity is
finite. Once an a priori bound independent of these truncations is obtained, we can
pass to the limit by monotone convergence to deduce the same bound for γt,w(x).

We now fix a cube Q and let S ′′
w be as in Proposition 4.7.11. We pick Q′′ in S ′′

w
and we set

v=
1

|Q′′|
∫

Q′′
∇ f εQ,w(y)dy ∈ Cn.

It is obvious that statements (4.7.38) and (4.7.39) in Proposition 4.7.11 yield condi-
tions (4.7.45) and (4.7.46) of Lemma 4.7.13. Set u = γt,w(x) and note that if x ∈ Q′′

and 1
2�(Q

′′)< t ≤ �(Q′′), then v= SQt (∇ f εQ,w)(x); hence

∣
∣γt,w(x)

∣
∣≤ 4

∣
∣γt,w(x) ·SQt (∇ f εQ,w)(x)

∣
∣≤ 4

∣
∣γt(x) ·SQt (∇ f εQ,w)(x)

∣
∣ (4.7.52)

from Lemma 4.7.13 and the definition of γt,w(x).
We partition the Carleson region Q× (0, �(Q)] as a union of boxes Q′ × (0, �(Q′)]

for Q′ in S ′
w and Whitney rectangles Q′′ × ( 12�(Q

′′), �(Q′′)] for Q′′ in S ′′
w . This

allows us to write
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∫

Q

∫ �(Q)

0
|γt,w(x)|2 dxdtt

= ∑
Q′∈S ′

w

∫

Q′

∫ �(Q′)

0
|γt,w(x)|2 dxdtt

+ ∑
Q′′∈S ′′

w

∫

Q′′

∫ �(Q′′)

1
2 �(Q

′′)
|γt,w(x)|2 dxdtt

.

First observe that

∑
Q′∈S ′

w

∫

Q′

∫ �(Q′)

0
|γt,w(x)|2 dxdtt

≤ ∑
Q′∈S ′

w

Aw|Q′|Aw(1−η)|Q| .

Second, using (4.7.52), we obtain

∑
Q′′∈S ′′

w

∫

Q′′

∫ �(Q′′)

1
2 �(Q

′′)
|γt,w(x)|2 dxdtt

≤ 16 ∑
Q′′∈S ′′

w

∫

Q′′

∫ �(Q′′)

1
2 �(Q

′′)
|γt(x) ·SQt (∇ f εQ,w)(x)|2

dxdt
t

≤ 16
∫

Q

∫ �(Q)

0
|γt(x) ·SQt (∇ f εQ,w)(x)|2

dxdt
t

.

Altogether, we obtain the bound

∫

Q

∫ �(Q)

0
|γt,w(x)|2 dxdtt

≤ Aw(1−η)|Q|+16
∫

Q

∫ �(Q)

0
|γt(x) ·SQt (∇ f εQ,w)(x)|2

dxdt
t

.

We divide by |Q|, we take the supremum over all cubes Q with sides parallel to
the axes, and we use the definition and the finiteness of Aw to obtain the required
estimate

Aw ≤ 16η−1 sup
Q

1
|Q|

∫

Q

∫ �(Q)

0
|γt(x) ·SQt (∇ f εQ,w)(x)|2

dxdt
t

,

thus concluding the proof of the lemma. �
We end by verifying the validity of Lemma 4.7.12 used earlier.

Proof of Lemma 4.7.12. For simplicity we may take Q to be the cube [−1,1]n.
Once this case is established, the case of a general cube follows by translation and
rescaling. Set

M =

(∫

Q
|h(x)|2 dx

)1
2
, M′ =

(∫

Q
|∇h(x)|2 dx

)1
2
.
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IfM ≥M′, there is nothing to prove, so we may assume thatM <M′. Take t ∈ (0,1)
and ϕ ∈C ∞

0 (Q) with ϕ(x) = 1 when dist (x,∂Q)≥ t and 0≤ ϕ ≤ 1, ‖∇ϕ‖L∞ ≤C/t,
C =C(n); here the distance is taken in the L∞ norm of Rn. Then

∫

Q
∇h(x)dx=

∫

Q
(1−ϕ(x))∇h(x)dx−

∫

Q
h(x)∇ϕ(x)dx ,

and the Cauchy–Schwarz inequality yields
∣
∣
∣
∣

∫

Q
∇h(x)dx

∣
∣
∣
∣
≤C(M′ t

1
2 +Mt−

1
2 ) .

Choosing t =M/M′, we conclude the proof of the lemma. �
The proof of Theorem 4.7.1 is now complete. �

Exercises

4.7.1. Let L be as in (4.7.2). Given t > 0 and f ∈ L2(Rn) define (I+ t2L)−1( f ) to
be the unique weak solution u of the inhomogeneous partial differential equation
u+ t2L(u) = f . Show that the operators

L1 = (I+ t2L)−1 ,

L2 = t∇(I+ t2L)−1 ,

L3 = (I+ t2L)−1t div

are bounded on L2(Rn) uniformly in t > 0 with bounds depending only on n, λ , Λ .
[

Hint: Given f ∈ L2(Rn), by the Lax-Milgram theorem, there is a unique ut in
L21(R

n) such that
∫

Rn uv+ t2
∫

Rn A∇u∇vdx =
∫

Rn f vdx for all v ∈ L21(R
n). Then

ut = L1( f ) = (I+t2L)−1( f ). Taking v= ut yields
∫

Rn |ut |2 dx+t2
∫

Rn A∇ut∇ut dx=
∫

Rn ut f dx via the definition of L and integration by parts. Apply the elliptic-
ity condition to bound the left side of this identity from below by

∫

Rn |ut |2 dx+
λ
∫

Rn |t∇ut |2 dx. Also
∫

Rn ut f dx ≤ ε−1 ∫
Rn | f |2 dx+ ε

∫

Rn |ut |2 dx by the Cauchy–
Schwarz inequality. Use that ‖ut‖L2 ≤ ‖ut‖L21 < ∞. To bound L2 estimate ‖t∇ut‖2L2
in terms of ‖ut‖L2 and ‖ f‖L2 . The L2 boundedness of L3 follows from that of L2
(defined with L∗ in place of L) via duality and integration by parts.

]

4.7.2. Let L be as in the proof of Theorem 4.7.1.
(a) Show that for all t > 0 we have

(I+ t2L2)−2 =
∫ ∞

0
e−u(I+t2L)udu
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by checking the identities
∫ ∞

0
(I+ t2L)2e−u(I+t2L)udu=

∫ ∞

0
e−u(I+t2L)(I+ t2L)2udu= I .

(b) Prove that the operator

T =
4
π

∫ ∞

0
L(I+ t2L)−2 dt

satisfies TT = L.
(c) Conclude that the operator

S=
16
π

∫ +∞

0
t3L2(I+ t2L)−3 dt

t

satisfies SS= L, that is, S is the square root of L. Moreover, all the integrals converge
in L2(Rn) when restricted to f ∈ D(L ◦ L) = {h ∈ L2(Rn) : L ◦ L(h) ∈ L2(Rn)},
which is a dense subset of L2(Rn).
[

Hint:You may use for free that (i) L and e−tL commute, (ii) e−tL(g)→ g as t → 0 in
L2(Rn), (iii) d

dt (e
−tL) =−Le−tL =−Le−tL =−e−tLL, and (iv) D(L◦L) is dense in

L2(Rn). Part (a): Write (I+ t2L)e−u(I+t2L) =− d
du (e

−u(I+t2L)) and apply integration
by parts twice. Part (b): Write the integrand as in part (a) and use the identity

∫ ∞

0

∫ ∞

0
e−(ut2+vs2)LL2 dt ds=

π
4
(uv)−

1
2

∫ ∞

0
e−r2LL2 2r dr.

Set ρ = r2 and use e−ρLL= d
dρ (e

−ρL). Part (c): Show that T = S using an integration

by parts starting with the identity L = d
dt (tL). Make use for free of the fact that

d
dt (I+ t2L)−2 =−4tL(I+ t2L)−3.

]

4.7.3. Suppose that μ is a measure on Rn+1
+ . For a cube Q in Rn we define the tent

T (Q) of Q as the set Q× (0, �(Q)). Suppose that there exist two positive constants
α < 1 and β such that for all cubes Q in Rn there exist subcubes Qj of Q with
disjoint interiors such that

1.
∣
∣
∣Q\⋃ j Q j

∣
∣
∣> α |Q|,

2. μ
(

T (Q)\⋃ j T (Qj)
)

≤ β |Q|.
Then μ is a Carleson measure with constant

‖μ‖C ≤ β
α
.
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[

Hint:We have

μ(T (Q)) ≤ μ
(

T (Q)\
⋃

j

T (Qj)
)

+∑
j
μ(T (Qj))

≤ β |Q|+‖μ‖C∑
j
|Qj| ,

and the last expression is at most (β + (1 − α)‖μ‖C )|Q|. Assuming that
‖μ‖C < ∞, we obtain the required conclusion. In general, approximate the measure
by a sequence of truncated measures.

]

HISTORICAL NOTES

Most of the material in Sections 4.1 and 4.2 has been in the literature since the early develop-
ment of the subject. Theorem 4.2.7 was independently obtained by Peetre [289], Spanne [320], and
Stein [324].

The original proof of the T (1) theorem obtained by David and Journé [111] stated that if T (1),
Tt(1) are in BMO and T satisfies the weak boundedness property, then T is L2 bounded. This proof
is based on the boundedness of paraproducts and is given in Theorem 4.5.4. Paraproducts were first
exploited by Bony [41] and Coifman and Meyer [93]. The proof of L2 boundedness using condition
(iv) given in the proof of Theorem 4.3.3 was later obtained by Coifman and Meyer [94]. The
equivalent conditions (ii), (iii), and (vi) first appeared in Stein [326], while condition (iv) is also due
to David and Journé [111]. Condition (i) appears in the article of Nazarov, Volberg, and Treil [283]
in the context of nondoubling measures. The same authors [284] obtained a proof of Theorems
4.2.2 and 4.2.4 for Calderón–Zygmund operators on nonhomogeneous spaces. Multilinear versions
of the T (1) theorem were obtained by Christ and Journé [84], Grafakos and Torres [177], and
Bényi, Demeter, Nahmod, Thiele, Torres, and Villaroya [23]. The article [84] also contains a proof
of the quadratic T (1) type Theorem 4.6.3. Smooth paraproducts viewed as bilinear operators have
been studied by Bényi, Maldonado, Nahmod, and Torres [24] and Dini-continuous versions of them
by Maldonado and Naibo [258].

The orthogonality Lemma 4.5.1 was first proved by Cotlar [105] for self-adjoint and mutually
commuting operators Tj . The case of general noncommuting operators was obtained by Knapp and
Stein [220]. Theorem 4.5.7 is due to Calderón and Vaillancourt [60] and is also valid for symbols
of class S0ρ,ρ when 0 ≤ ρ < 1. For additional topics on pseudodifferential operators we refer to
the books of Coifman and Meyer [93], Journé [207], Stein [326], Taylor [344], Torres [352], and
the references therein. The last reference presents a careful study of the action of linear operators
with standard kernels on general function spaces. The continuous version of the orthogonality
Lemma 4.5.1 given in Exercise 4.5.8 is due to Calderón and Vaillancourt [60]. Conclusion (iii) in
the orthogonality Lemma 4.5.1 follows from a general principle saying that if ∑x j is a series in a
Hilbert space such that ‖∑ j∈F x j‖ ≤M for all finite sets F , then the series ∑x j converges in norm.
This is a consequence of the Orlicz–Pettis theorem, which states that in any Banach space, if ∑xn j
converges weakly for every subsequence of integers n j , then ∑x j converges in norm.

A nice exposition on the Cauchy integral that presents several historical aspects of its study is
the book of Muskhelishvili [281]. Another book on this topic is that of Journé [207]. Proposition
4.6.1 is due to Plemelj [298] when Γ is a closed Jordan curve. The L2 boundedness of the first
commutator C1 in Example 4.3.8 is due to Calderón [54]. The L2 boundedness of the remaining
commutators Cm, m ≥ 2, is due to Coifman and Meyer [92], but with bounds of order m!‖A′‖mL∞ .
These bounds are not as good as those obtained in Example 4.3.8 and do not suffice in obtaining the
boundedness of the Cauchy integral by summing the series of commutators. The L2 boundedness
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of the Cauchy integral when ‖A′‖L∞ is small enough is due to Calderón [55]. The first proof of the
boundedness of the Cauchy integral with arbitrary ‖A′‖L∞ was obtained by Coifman, McIntosh, and
Meyer [90]. This proof is based on an improved operator norm for the commutators ‖Cm‖L2→L2 ≤
C0m4‖A′‖mL∞ . The quantity m4 was improved by Christ and Journé [84] to m1+δ for any δ > 0; it
is announced in Verdera [362] that Mateu and Verdera have improved this result by taking δ = 0.
Another proof of the L2 boundedness of the Cauchy integral was given by David [110] by employing
the following bootstrapping argument: If the Cauchy integral is L2 bounded whenever ‖A′‖L∞ ≤ ε ,
then it is also L2 bounded whenever ‖A′‖L∞ ≤ 10

9 ε . A refinement of this bootstrapping technique
was independently obtained by Murai [274], who was also able to obtain the best possible bound
for the operator norm ‖C̃Γ ‖L2→L2 ≤C(1+‖A′‖L∞ )1/2 in terms of ‖A′‖L∞ . Here C̃Γ is the operator
defined in (4.6.15). Note that the corresponding estimate for CΓ involves the power 3/2 instead of
1/2. See the book of Murai [275] for this result and a variety of topics related to the commutators
and the Cauchy integral. Two elementary proofs of the L2 boundedness of the Cauchy integral
were given by Coifman, Jones, and Semmes [88]. The first of these proofs uses complex variables
and the second a pseudo-Haar basis of L2 adapted to the accretive function 1+ iA′. A geometric
proof was given by Melnikov and Verdera [262]. Other proofs were obtained by Verdera [362]
and Tchamitchian [345]. The proof of boundedness of the Cauchy integral given in Section 4.6 is
taken from Semmes [314]. The book of Christ [81] contains an insightful exposition of many of
the preceding results and discusses connections between the Cauchy integral and analytic capacity.
The book of David and Semmes [113] presents several extensions of the results in this chapter to
singular integrals along higher-dimensional surfaces.

The T (1) theorem is applicable to many problems only after a considerable amount of work;
see, for instance, Christ [81] for the case of the Cauchy integral. A more direct approach to many
problems was given by McIntosh and Meyer [257], who replaced the function 1 by an accretive
function b and showed that any operator T with standard kernel that satisfies T (b) = Tt(b) = 0
and ‖MbTMb‖WB <∞ must be L2 bounded. (Mb here is the operator given by multiplication by b.)
This theorem easily implies the boundedness of the Cauchy integral. David, Journé, and Semmes
[112] generalized this theorem even further as follows: If b1 and b2 are para-accretive functions
such that T maps b1C ∞

0 → (b2C ∞
0 )′ and is associated with a standard kernel, then T is L2 bounded

if and only if T (b1) ∈ BMO, Tt(b2) ∈ BMO, and ‖Mb1TMb2‖WB < ∞. This is called the T (b)
theorem. The article of Semmes [314] contains a different proof of this theorem in the special case
T (b) = 0 and Tt(1) = 0 (Exercise 4.6.6). Our proof of Theorem 4.6.6 is based on ideas from [314].
An alternative proof of the T (b) theorem was given by Fabes, Mitrea, and Mitrea [131] based on a
lemma due to Krein [230]. Another version of the T (b) theorem that is applicable to spaces with
no Euclidean structure was obtained by Christ [80].

Theorem 4.7.1 was posed as a problem by Kato [209] for maximal accretive operators and re-
formulated by McIntosh [254], [255] for square roots of elliptic operators. The reformulation was
motivated by counterexamples found to Kato’s original abstract formulation, first by Lions [248]
for maximal accretive operators and later by McIntosh [253] for regularly accretive ones. The one-
dimensional Kato problem and the boundeness of the Cauchy integral along Lipschitz curves are
equivalent problems as shown by Kenig and Meyer [217]. See also Auscher, McIntosh, and Nah-
mod [11]. Coifman, Deng, and Meyer [87] and independently Fabes, Jerison, and Kenig [129],
[130] solved the square root problem for small perturbations of the identity matrix. This method
used multilinear expansions and can be extended to operators with smooth coefficients. McIntosh
[256] considered coefficients in Sobolev spaces, Escauriaza in VMO (unpublished), and Alexopou-
los [3] real Hölder coefficients using homogenization techniques. Peturbations of real symmetric
matrices with L∞ coefficients were treated in Auscher, Hofmann, Lewis, and Tchamitchian [9].
The solution of the two-dimensional Kato problem was obtained by Hofmann and McIntosh [192]
using a previously derived T (b) type reduction due to Auscher and Tchamitchian [12]. Hofmann,
Lacey, and McIntosh [191] extended this theorem to the case in which the heat kernel of e−tL sat-
isfies Gaussian bounds. Theorem 4.7.1 was obtained by Auscher, Hofmann, Lacey, McIntosh, and
Tchamitchian [8]; the exposition in the text is based on this reference. Combining Theorem 4.7.1
with a theorem of Lions [248], it follows that the domain of

√
L is

.
L21(R

n) and that for functions f
in this space the equivalence of norms ‖√L( f )‖L2 ≈ ‖∇ f‖L2 is valid.



Chapter 5
Boundedness and Convergence of Fourier
Integrals

In this chapter we return to fundamental questions in Fourier analysis related to
convergence of Fourier series and Fourier integrals. Our main goal is to understand
in what sense the inversion property of the Fourier transform

f (x) =
∫

Rn
f̂ (ξ )e2πix·ξ dξ

holds when f is a function on Rn. This question is equivalent to the corresponding
question for the Fourier series

f (x) = ∑
m∈Zn

f̂ (m)e2πix·m

when f is a function on Tn. The main problem is that the function (or sequence) f̂
may not be integrable and the convergence of the preceding integral (or series) needs
to be suitably interpreted. To address this issue, a summability method is employed.
This is achieved via the introduction of a localizing factor Φ(ξ/R), leading to the
study of the convergence of the expressions

∫

Rn
Φ(ξ/R) f̂ (ξ )e2πix·ξ dξ

as R→∞. Here Φ is a function on Rn that decays sufficiently rapidly at infinity and
satisfies Φ(0) = 1. For instance, we may take Φ = χB(0,1), where B(0,1) is the unit
ball in Rn. Analogous summability methods arise in the torus.

An interesting case arises when Φ(ξ ) = (1−|ξ |2)λ+, λ ≥ 0, in which we obtain
the Bochner–Riesz means introduced by Riesz when n= 1 and λ = 0 and Bochner
for n≥ 2 and general λ > 0. The question is whether the Bochner–Riesz means

∑
m2
1+···+m2

n≤R2

(

1− m2
1+ · · ·+m2

n

R2

)λ
f̂ (m1, . . . ,mn)e2πi(m1x1+···+mnxn)

L. Grafakos, Modern Fourier Analysis, Graduate Texts in Mathematics 250,
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converge in Lp. This question is equivalent to whether the function (1− |ξ |2)λ+ is
an Lp multiplier on Rn and is investigated in this chapter. Analogous questions con-
cerning the almost everywhere convergence of these families are also studied.

5.1 The Multiplier Problem for the Ball

In this section we show that the characteristic function of the unit disk in R2 is not
an Lp multiplier when p �= 2. This implies the same conclusion in dimensions n≥ 3,
since sections of higher-dimensional balls are disks and by Theorem 2.5.16 in [156]
we have that if χB(0,r) /∈Mp(R2) for all r> 0, then χB(0,1) /∈Mp(Rn) for any n≥ 3.

5.1.1 Sprouting of Triangles

We begin with a certain geometric construction that at first sight has no apparent
relationship to the multiplier problem for the ball in Rn. Given a triangle ABC with
base b= AB and height h0 we let M be the midpoint of AB. We construct two other
triangles AMF and BME from ABC as follows. We fix a height h1 > h0 and we
extend the sides AC and BC in the direction away from its base until they reach a
certain height h1. We let E be the unique point on the line passing through the points
B and C such that the triangle EMB has height h1. Similarly, F is uniquely chosen
on the line through A and C so that the triangle AMF has height h1.

Fig. 5.1 The sprouting of the
triangle ABC.

h0

h1

A B

C

E F

M

G H

h1

h0

N
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The triangle ABC now gives rise to two triangles AMF and BME called the
sprouts of ABC. The union of the two sprouts AMF and BME is called the sprouted
figure obtained from ABC and is denoted by Spr(ABC). Clearly Spr(ABC) contains
ABC. We call the difference

Spr(ABC)\ABC
the arms of the sprouted figure. The sprouted figure Spr(ABC) has two arms of equal
area, the triangles EGC and FCH as shown in Figure 5.1, and we can precisely
compute the area of each arm. One may easily check (see Exercise 5.1.1) that

Area (each arm of Spr(ABC))=
b
2
(h1−h0)2

2h1−h0
, (5.1.1)

where b= AB.

Fig. 5.2 The second step of
the construction.

h0

h1

h2

We start with an isosceles triangleΛ = ABC in R2 with base AB of length b0 = ε
and height MC = h0 = ε , where M is the midpoint of AB. We define the heights

h1 =
(

1+
1
2

)

ε ,

h2 =
(

1+
1
2
+

1
3

)

ε ,

. . .

h j =
(

1+
1
2
+ · · ·+ 1

j+1

)

ε .
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We apply the previously described sprouting procedure to Λ to obtain two sprouts
Λ1 = AMF and Λ2 = EMB, as in Figure 5.1, each with height h1 and base length
b0/2. We now apply the same procedure to the triangles Λ1 and Λ2. We then obtain
two sprouts Λ11 and Λ12 from Λ1 and two sprouts Λ21 and Λ22 from Λ2, a total of
four sprouts with height h2. See Figure 5.2. We continue this process, obtaining at
the jth step 2 j sprouts Λr1...r j , r1, . . . ,r j ∈ {1,2} each with base length b j = 2− jb0
and height h j. We stop this process when the kth step is completed. The third step is
shown in Fig. 5.3.

Fig. 5.3 The third step of the
construction.

h0

h1

h2

h3

We let E(ε ,k) be the union of the triangles Λr1...rk over all sequences r j of 1’s
and 2’s. We obtain an estimate for the area of E(ε ,k) by adding to the area of Λ the
areas of the arms of all the sprouted figures obtained during the construction. By
(5.1.1) we have that each of the 2 j arms obtained at the jth step has area

b j−1

2
(h j−h j−1)

2

2h j−h j−1
.

Summing over all these areas and adding the area of the original triangle, we obtain
the estimate
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|E(ε ,k)| = 1
2
ε2+

k

∑
j=1

2 j b j−1

2
(h j−h j−1)

2

2h j−h j−1

≤ 1
2
ε2+

k

∑
j=1

2 j 2
−( j−1)b0

2
ε2

( j+1)2ε

≤ 1
2
ε2+

∞

∑
j=2

ε2

j2

=
(1
2
+
π2

6
−1
)

ε2

≤ 3
2
ε2 ,

where we used the fact that 2h j−h j−1 ≥ ε for all j ≥ 1.
Having completed the construction of the set E(ε ,k), we are now in a position

to indicate some of the ideas that appear in the solution of the Kakeya problem.
We first observe that no matter what k is, the measure of the set E(ε ,k) can be
made as small as we wish if we take ε small enough. Our purpose is to make a
needle of infinitesimal width and unit length move continuously from one side of
this angle to the other utilizing each sprouted triangle in succession. To achieve this,
we need to apply a similar construction to any of the 2k triangles that make up the
set E(ε ,k) and repeat the sprouting procedure a large enough number of times. We
refer to [106] for details. An elaborate construction of this sort yields a set within
which the needle can be turned only through a fixed angle. But adjoining a few such
sets together allows us to rotate a needle through a half-turn within a set that still
has arbitrarily small area. This is the idea used to solve the aforementioned needle
problem.

5.1.2 The counterexample

We now return to the multiplier problem for the ball, which has an interesting con-
nection with the Kakeya needle problem.

R

R R R

Fig. 5.4 A rectangle R and its adjacent rectangles R′.
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In the discussion that follows we employ the following notation. Given a rectan-
gle R in R2, we let R′ be two copies of R adjacent to R along its shortest side so that
R∪R′ has the same width as R but three times its length. See Figure 5.4.

We need the following lemma.

Lemma 5.1.1. Let δ > 0 be a given number. Then there exist a measurable subset E
of R2 and a finite collection of rectangles R j in R2 such that

(1) The Rj’s are pairwise disjoint.
(2) We have 1/2≤ |E| ≤ 3/2.
(3) We have |E| ≤ δ ∑ j |Rj|.
(4) For all j we have |R′

j ∩E| ≥ 1
12 |Rj|.

Proof. We start with an isosceles triangle ABC in the plane with height 1 and base
AB, where A= (0,0) and B= (1,0). Given δ > 0, we find a positive integer k such
that k+2> e1/δ . For this k we set E =E(1,k), the set constructed earlier with ε = 1.
We then have 1/2≤ |E| ≤ 3/2; thus (2) is satisfied.

Fig. 5.5 A closer look at Rj .

Rj

C

Aj Bj

Dj

hk

3 log (k+2)

j

Recall that each dyadic interval [ j2−k,( j+1)2−k] in [0,1] is the base of ex-
actly one sprouted triangle AjB jCj, where j ∈ {0,1, . . . ,2k − 1}. Here we set
Aj = ( j2−k,0), Bj = (( j+1)2−k,0), andCj the other vertex of the sprouted triangle.
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We define a rectangle Rj inside the angle ∠AjCjB j as in Figure 5.5. The rectangle
Rj is defined so that one of its vertices is either Aj or Bj and the length of its longest
side is 3 log(k+2).

We nowmake some calculations. First we observe that the longest possible length
that either AjCj or BjCj can achieve is

√
5hk/2. By symmetry we may assume that

the length of AjCj is larger than that of BjCj as in Figure 5.5. We now have that
√
5
2

hk <
3
2

(

1+
1
2
+ · · ·+ 1

k+1

)

<
3
2
(

1+ log(k+1)
)

< 3log(k+2),

since k ≥ 1 and e< 3. Hence R′
j contains the triangle AjB jCj. We also have that

hk = 1+
1
2
+ · · ·+ 1

k+1
> log(k+2).

Using these two facts, we obtain

|R′
j ∩E| ≥ Area(AjB jCj) =

1
2
2−khk > 2−k−1 log(k+2). (5.1.2)

Fig. 5.6 The rectangles Rj .

hk

3 log (k+2)

 (1,0)(0,0)

R0
R1 R2

R3

. .

Denote by |XY | the length of the line segment through the points X and Y . The
law of sines applied to the triangle AjB jDj gives



334 5 Boundedness and Convergence of Fourier Integrals

|AjDj|= 2−k sin(∠AjB jDj)

sin(∠AjDjB j)
= 2−k sin(∠AjB jDj)

cos(∠AjCjB j)
≤ 2−k

cos(∠AjCjB j)
. (5.1.3)

But the law of cosines applied to the triangle AjB jCj, combined with the facts
hk ≤ |AjCj|, |BjCj| ≤

√
5hk/2, and hk > log(k+2)> 2−k−1 for k ≥ 1, yields that

cos(∠AjCjB j) =
|AjCj|2+ |BjCj|2−2|AjB j|

2|AjCj| |BjCj| ≥ h2k +h2k − (2−k)2

2 5
4 h

2
k

≥ 4
5
− 2
5
· 1
4
≥ 1

2
.

Combining this estimate with (5.1.3) we obtain

|AjDj| ≤ 2−k+1 = 2 |AjB j| .

Using this fact and (5.1.2), we deduce

|R′
j ∩E| ≥ 2−k−1 log(k+2) =

1
12

2−k+13 log(k+2)≥ 1
12

|Rj| ,

which proves the required conclusion (4).
Conclusion (1) in Lemma 5.1.1 follows from the fact that the regions inside the

angles ∠AjCjB j and under the triangles AjCjB j are pairwise disjoint. This is shown
in Figure 5.6. This can be proved rigorously by a careful examination of the con-
struction of the sprouted triangles AjCjB j, but the details are omitted.

It remains to prove (3). To achieve this we first estimate the length of the line
segment AjDj from below. The law of sines gives

|AjDj|
sin(∠AjB jDj)

=
2−k

sin(∠AjDjB j)
,

from which we obtain that

|AjDj| ≥ 2−k sin(∠AjB jDj)≥ 2−k sin(∠A0B0D0) = 2−k
√
5
2

> 2−k−1 .

It follows that each Rj has area at least 2−k−13 log(k+2). Therefore,

∣
∣
∣
∣

2k−1
⋃

j=0

Rj

∣
∣
∣
∣
=

2k−1

∑
j=0

|Rj| ≥ 2k2−k−13 log(k+2)≥ |E| log(k+2)≥ |E|
δ

,

since |E| ≤ 3/2 and k was chosen so that k+2> e1/δ . �
Next we have a calculation involving the Fourier transforms of characteristic

functions of rectangles.

Proposition 5.1.2. Let R be a rectangle whose center is the origin in R2 and let v be
a unit vector parallel to its longest side. Consider the half-plane

H = {x ∈ R2 : x · v≥ 0}
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and the multiplier operator

SH ( f ) = ( f̂ χH )∨.

Then we have |SH (χR)| ≥ 1
10χR′ .

Remark 5.1.3. Applying a translation, we see that the same conclusion is valid for
any rectangle in R2 whose longest side is parallel to v.

Proof. Applying a rotation, we reduce the problem to the case R= [−a,a]× [−b,b],
where 0< a≤ b< ∞, and v= e2 = (0,1). Since the Fourier transform acts in each
variable independently, we have the identity

SH (χR)(x1,x2) = χ[−a,a](x1)
(

χ̂[−b,b]χ[0,∞)
)∨
(x2)

= χ[−a,a](x1)
I+ iH

2
(χ[−b,b])(x2).

It follows that for (x1,x2) ∈ R′ we have

|SH (χR)(x1,x2)| ≥ 1
2
χ[−a,a](x1)|H(χ[−b,b])(x2)|

=
1
2π

χ[−a,a](x1)
∣
∣
∣
∣
log
∣
∣
∣
∣

x2+b
x2−b

∣
∣
∣
∣

∣
∣
∣
∣
.

But for (x1,x2) ∈ R′ we have χ[−a,a](x1) = 1 and b < |x2| < 3b. So we have two
cases, b< x2 < 3b and −3b< x2 <−b. When b< x2 < 3b we see that

∣
∣
∣
∣

x2+b
x2−b

∣
∣
∣
∣
=

x2+b
x2−b

> 2 ,

and similarly, when −3b< x2 <−b we have
∣
∣
∣
∣

x2−b
x2+b

∣
∣
∣
∣
=

b− x2
−b− x2

> 2 .

It follows that for (x1,x2) ∈ R′ the lower estimate is valid:

|SH (χR)(x1,x2)| ≥ log2
2π

≥ 1
10

.

�
Next we have a lemma regarding vector-valued inequalities of half-plane

multipliers.

Lemma 5.1.4. Let v1,v2, . . . ,v j, . . . be a sequence of unit vectors in R2. Define the
half-planes

H j = {x ∈ R2 : x · v j ≥ 0} (5.1.4)
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and linear operators
SH j( f ) = ( f̂ χH j)

∨.

Let 1< p< ∞. Assume that the disk multiplier operator

T ( f ) = ( f̂ χB(0,1))∨

maps Lp(R2) to itself with norm Bp < ∞. Then we have the inequality

∥
∥
∥

(

∑
j
|SH j( f j)|2

) 1
2
∥
∥
∥
Lp

≤ Bp

∥
∥
∥

(

∑
j
| f j|2

) 1
2
∥
∥
∥
Lp

(5.1.5)

for all functions f j in Lp.

Proof. We prove the lemma for Schwartz functions f j and we obtain the general case
by a simple limiting argument. We define disks Dj,R = {x ∈R2 : |x−Rv j| ≤ R} and
we let

Tj,R( f ) = ( f̂ χDj,R)
∨

be the associated multiplier operator. We observe that χDj,R → χH j pointwise as
R→ ∞, as shown in Figure 5.7.

Fig. 5.7 A sequence of disks
converging to a half-plane. j

(0,0)

j

For f ∈S (R2) and every x ∈ R2 we have

lim
R→∞

Tj,R( f )(x) = SH j( f )(x)

by passing the limit inside the convergent integral. Fatou’s lemma now yields
∥
∥
∥

(

∑
j
|SH j( f j)|2

) 1
2
∥
∥
∥
Lp

≤ liminf
R→∞

∥
∥
∥

(

∑
j
|Tj,R( f j)|2

) 1
2
∥
∥
∥
Lp
. (5.1.6)

Next we observe that
∫

|ξ−Rv j |≤R
f̂ j(ξ )e2πix·ξ dξ = e2πiRv j ·x

∫

|ξ |≤R
f̂ j(ξ +Rv j)e2πix·ξ dξ ,
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hence the the multiplier operator TR( f ) = ( f̂ χB(0,R))∨ satisfies

Tj,R( f j)(x) = e2πiRv j ·xTR(e−2πiRv j ·(·) f j)(x) . (5.1.7)

Setting g j = e−2πiRv j ·(·) f j and using (5.1.6) and (5.1.7), we deduce

∥
∥
(

∑
j
|SH j( f j)|2

) 1
2
∥
∥
Lp ≤ liminf

R→∞

∥
∥
(

∑
j
|TR(g j)|2

) 1
2
∥
∥
Lp . (5.1.8)

Observe that ‖TR‖Lp→Lp = ‖T‖Lp→Lp = Bp < ∞ for all R > 0, in view of fact that
multipliers m(ξ ) and m(tξ ) have the same Mp norm for any t > 0; see Proposition
2.5.14 in [156]. Applying Theorem 5.5.1 in [156], we obtain that the last term in
(5.1.8) is bounded by

liminf
R→∞

∥
∥TR

∥
∥
Lp→Lp

∥
∥
∥

(

∑
j
|g j|2

) 1
2
∥
∥
∥
Lp

= Bp

∥
∥
∥

(

∑
j
| f j|2

) 1
2
∥
∥
∥
Lp
.

Combining this inequality with (5.1.8), we obtain (5.1.5). �

We have now completed all the preliminary material we need to prove that the
characteristic function of the unit disk in R2 is not an Lp multiplier if p �= 2.

Theorem 5.1.5. Let n ≥ 2. The characteristic function of the unit ball in Rn is not
an Lp multiplier when 1< p �= 2< ∞.

Proof. In view of Theorem 2.5.16 in [156], it suffices to prove the result in dimen-
sion n = 2. By duality, matters reduce to the case p > 2. To reach a contradiction,
suppose that χB(0,1) ∈Mp(R2) for some p> 2, say with norm Bp < ∞.

Suppose that δ > 0 is given. Let E and Rj be as in Lemma 5.1.1. We let f j = χRj .
Let v j be the unit vector parallel to the long side of Rj and let Hj be the half-plane
defined as in (5.1.4). Using Proposition 5.1.2, we obtain

∫

E
∑
j
|SH j( f j)(x)|2 dx = ∑

j

∫

E
|SH j( f j)(x)|2 dx

≥ ∑
j

∫

E

1
102

χR′j(x)dx

=
1

100∑j
|E ∩R′

j|

≥ 1
1200∑j

|Rj| ,

(5.1.9)

where we used condition (4) of Lemma 5.1.1 in the last inequality. Hölder’s inequal-
ity with exponents p/2 and (p/2)′ = p/(p−2) gives
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∫

E
∑
j
|SH j( f j)(x)|2 dx ≤ |E| p−2

p
∥
∥
(

∑
j
|SH j( f j)|2

) 1
2
∥
∥2
Lp

≤ B2
p|E|

p−2
p
∥
∥
(

∑
j
| f j|2

) 1
2
∥
∥2
Lp

= B2
p|E|

p−2
p
(

∑
j
|Rj|

) 2
p

≤ B2
pδ

p−2
p
(

∑
j
|Rj|

) p−2
p
(

∑
j
|Rj|

) 2
p
,

(5.1.10)

where we used Lemma 5.1.4, the disjointness of the Rj’s, and condition (3) of
Lemma 5.1.1 successively. Combining (5.1.9) with (5.1.10), we obtain the inequality

∑
j
|Rj| ≤ 1200Bp δ

p−2
p ∑

j
|Rj| ,

which provides a contradiction when δ is very small. �

Exercises

5.1.1. Prove identity (5.1.1).
[

Hint:With the notation of Figure 5.1, first prove

h1−h0
h1

=
NC
b/2

,
height (NGC)

h0
=

NC
NC+b/2

using similar triangles.
]

5.1.2. Prove that for any 1≤ p≤∞, the disk multiplier operator T ( f ) = ( f̂ χB(0,1))∨
does not map Lp(Rn) to Lp,∞(Rn), unless p= 2.

5.1.3. Is the characteristic function of the cylinder

{(ξ1,ξ2,ξ3) ∈ R3 : ξ 2
1 +ξ 2

2 < 1}

a Fourier multiplier on Lp(R3) for 1< p< ∞ and p �= 2?

5.1.4. Modify the ideas of the proof of Lemma 5.1.4 to show that the characteristic
function of the set

{(ξ1,ξ2) ∈ R2 : ξ2 > ξ 2
1 }

is not inMp(R2) when p �= 2.
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[

Hint: LetH j =
{

(ξ1,ξ2)∈R2 : ξ2 > s j ξ1
}

for some s j > 0. The parabolic regions
{

(ξ1,ξ2) ∈ R2 : ξ2+R
s2j
4 > 1

R

(

ξ1+R sj
2

)2} are contained in H j, are translates of
the region

{

(ξ1,ξ2) ∈ R2 : ξ2 > 1
R ξ

2
1
}

, and tend to H j as R→ ∞.
]

5.1.5. Let a1, . . . ,an > 0. Show that the characteristic function of the ellipsoid

{

(ξ , . . . ,ξn) ∈ Rn :
ξ 2
1

a21
+ · · ·+ ξ 2

n

a2n
< 1
}

is not inMp(Rn) when p �= 2.

5.2 Bochner–Riesz Means and the Carleson–Sjölin Theorem

We now address the problem of norm convergence for the Bochner–Riesz means.
In this section we provide a satisfactory answer in dimension n= 2, although a key
ingredient required in the proof is left for the next section.

Definition 5.2.1. For a function f onRn we define its Bochner–Riesz means of com-
plex order λ with Reλ ≥ 0 to be the family of operators

BλR( f )(x) =
∫

Rn
(1−|ξ/R|2)λ+ f̂ (ξ )e2πix·ξ dξ , R> 0.

We are interested in the convergence of the family BλR( f ) as R→∞. Observe that
when R→∞ and f is a Schwartz function, the sequence BλR( f ) converges pointwise
to f . Does it converge in norm? This would be the case if the function (1−|ξ |2)λ+
is an Lp multiplier, i.e., the linear operator

Bλ ( f )(x) =
∫

Rn
(1−|ξ |2)λ+ f̂ (ξ )e2πix·ξ dξ

maps Lp(Rn) to itself; see Exercise 5.2.1. The question that arises is given λ with
Reλ > 0 find the range of p’s for which (1−|ξ |2)λ+ is an Lp(Rn) Fourier multiplier;
this question is investigated in this section when n= 2.

An analogous question can be studied on the n-torus and this turns out to be
equivalent with Euclidean problem; see Corollary 4.3.11 in [156]. Here we focus
attention on the Euclidean case, and we start our investigation by studying the kernel
of the operator Bλ .

5.2.1 The Bochner–Riesz Kernel and Simple Estimates

In view of the last identity in Appendix B.5 in [156], Bλ is a convolution operator
with kernel

Kλ (x) =
Γ (λ +1)

πλ
Jn
2+λ (2π|x|)
|x| n2+λ . (5.2.1)
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According to the result at the end of Appendix B.6 in [156], we have for |x| ≤ 1,

|Kλ (x)|=
|Γ (λ +1)|

|πλ |
|Jn

2+λ (2π|x|)|
|x| n2+Reλ ≤ C̃0(

n
2 +Reλ )e|

n
2+Imλ |2 ,

where C̃0(t) is a constant that depends smoothly on t when t ≥ 0.
For |x| ≥ 1, following the result at the end of Appendix B.7 in [156], we have

|Kλ (x)|=
|Γ (λ +1)|

|πλ |
|Jn

2+λ (2π|x|)|
|x| n2+Reλ ≤ C̃1(

n
2 +Reλ )

e(1+
π
2 ) | n2+Imλ |2

|x| 12
1

|x| n2+Reλ ,

where C̃1(t) depends smoothly on t when t ≥ 0. In both cases we took the ν in the
Appendices to be equal to n

2 +λ , which satisfies Reν+ 1
2 ≥ 1, since Reλ ≥ 0.

Combining these two observations, we obtain that for Reλ > n−1
2 , Kλ is a smooth

integrable function on Rn. Hence Bλ is a bounded operator on Lp for 1≤ p≤ ∞.

Proposition 5.2.2. For all 1≤ p≤∞ and Reλ > n−1
2 , Bλ is a bounded operator on

Lp(Rn) with norm at most C1 e6 |Imλ |2 , where C1 depends smoothly on n,Reλ ≥ 0.

Proof. The ingredients of the proof have already been discussed. �

We refer to Exercise 5.2.8 for an analogous result for the maximal Bochner–Riesz
operator.

According to the asymptotics for Bessel functions in Appendix B.8 in [156], Kλ
is a smooth function equal to

Γ (λ +1)
πλ+1

cos(2π|x|− π(n+1)
4 − πλ

2 )

|x| n+1
2 +λ

+O(|x|− n+3
2 −λ ) (5.2.2)

for |x| ≥ 1. It is natural to examine whether the operators Bλ are bounded on certain
Lp spaces by testing them on specific functions. This may provide some indication
as to the range of p’s for which these operators may be bounded on Lp.

Proposition 5.2.3. When λ > 0 and p ≤ 2n
n+1+2λ or p ≥ 2n

n−1−2λ , the operators B
λ

are not bounded on Lp(Rn).

Proof. Let h be a Schwartz function whose Fourier transform is equal to 1 on the
ball B(0,2) and vanishes off the ball B(0,3). Then

Bλ (h)(x) =
∫

|ξ |≤1
(1−|ξ |2)λ e2πiξ ·x dξ = Kλ (x) ,

and it suffices to show that Kλ is not in Lp(Rn) for the claimed range of p’s. Notice
that

√
2
2 ≤ cos(2π|x|− π(n+1)

4 − πλ
2 )≤ 1 (5.2.3)



5.2 Bochner–Riesz Means and the Carleson–Sjölin Theorem 341

for all x lying in the annuli

Ak =
{

x ∈ Rn : k+
n+2λ

8
≤ |x| ≤ k+

n+2λ
8

+
1
4

}

, k ∈ Z+ ,

since in this range, the argument of the cosine in (5.2.2) lies in [2πk− π
4 ,2πk+

π
4 ].

Consider the range of p’s that satisfy

2n
n+1+2λ

≥ p>
2n

n+3+2λ
. (5.2.4)

If we can show that Bλ is unbounded in this range, it will also have to be unbounded
in the bigger range 2n

n+1+2λ ≥ p. This follows by interpolation between the values
p= 2n

n+3+2λ −δ and p= 2n
n+1+2λ +δ , δ > 0, for λ fixed.

In view of (5.2.2) and (5.2.3), we have that

∥
∥Kλ

∥
∥p
Lp ≥C′

∞

∑
k=n

∫

Ak
|x|−p n+1

2 −pλdx−C′′ −C′′′
∫

|x|≥1
|x|−p n+3

2 −pλdx , (5.2.5)

where C′′ is the integral of Kλ in the unit ball. It is easy to see that for p in the
range (5.2.4), the integral outside the unit ball converges, while the series diverges
in (5.2.5).

The unboundedness of Bλ on Lp(Rn) in the range of p ≥ 2n
n−1−2λ follows by

duality. �

1
2 2n

n+1

2

10
p

λ

1
2n

n-1

n-1

Fig. 5.8 The operator Bλ is unbounded on Lp(Rn) when (1/p,λ ) lies in the shaded region.
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In Figure 5.8 the shaded region is the set of all pairs ( 1p ,λ ) for which the operators
Bλ are known to be unbounded on Lp(Rn).

5.2.2 The Carleson–Sjölin Theorem

We now pass to the main result in this section. We prove the boundedness of the
operators Bλ , λ > 0, in the range of p’s not excluded by the previous proposition in
dimension n= 2.

Theorem 5.2.4. Suppose that 0<Reλ ≤ 1/2. Then the Bochner–Riesz operator Bλ

maps Lp(R2) to itself when 4
3+2Reλ < p < 4

1−2Reλ . Moreover, for this range of p’s
and for all f ∈ Lp(R2) we have that

BλR( f )→ f

in Lp(R2) as R→ ∞.
Proof. Once the first assertion of the theorem is established, the second assertion
will be a direct consequence of it and of the fact that the means BλR(h) converge to h
in Lp for h in a dense subclass of Lp. Such a dense class is the space of all Schwartz
functions h whose Fourier transforms are compactly supported (Exercise 6.2.9 in
[156]). For a function h in this class, we see easily that BλR(h) → h pointwise as
R→ ∞. But if ĥ is supported in |ξ | ≤ c, then for R ≥ 2c, integration by parts gives
that the functions BλR(h)(x) are pointwise controlled by the function (1+ |x|)−N with
N large; then the Lebesgue dominated convergence theorem gives that the BλR(h)
converge to h in Lp. Finally, a standard ε/3 argument, using that

sup
R>0

∥
∥BλR

∥
∥
Lp→Lp =

∥
∥(1−|ξ |2)λ+

∥
∥
Mp

< ∞ ,

yields BλR( f )→ f in Lp for general Lp functions f .
It suffices to focus our attention on the first part of the theorem. We therefore fix

a complex number λ with positive real part and we keep track of the growth of all
involved constants in Imλ .

We start by picking a smooth function ϕ supported in [− 1
2 ,

1
2 ] and a smooth

function ψ supported in [ 18 ,
5
8 ] that satisfy

ϕ(t)+
∞

∑
k=0

ψ
(1− t
2−k

)

= 1
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for all t ∈ [0,1). We now decompose the multiplier (1−|ξ |2)λ+ as

(1−|ξ |2)λ+ = m00(ξ )+
∞

∑
k=0

2−kλmk(ξ ) , (5.2.6)

where m00(ξ ) = ϕ(|ξ |)(1−|ξ |2)λ and for k ≥ 0, mk is defined by

mk(ξ ) =
(1−|ξ |

2−k

)λ
ψ
(1−|ξ |

2−k

)

(1+ |ξ |)λ .

Note that m00 is a smooth function with compact support; hence the multiplier m00
lies in Mp(R2) for all 1 ≤ p ≤ ∞. Each function mk is also smooth, radial, and
supported in the small annulus

1− 5
8 2

−k ≤ |ξ | ≤ 1− 1
8 2

−k

and therefore also lies in Mp; nevertheless the Mp norms of the mk’s grow as k
increases, and it is crucial to determine how this growth depends on k so that we can
sum the series in (5.2.6).

Next we show that the Fourier multiplier norm of each mk on L4(R2) is at most
C (1+ |k|)1/2(1+ |λ |)3. This implies that

‖mk‖L4(R2)→L4(R2) ≤C (1+ |Reλ |)3(1+ |k|)1/2(1+ |Imλ |)3 .

Summing over k ≥ 0 implies that Bλ maps L4(R2) to itself with norm at most a
multiple of (1+ |Reλ |)3(1+ |Imλ |)3. Given this bound, we obtain that Bλ maps
Lp(R2) to itself when

4
3+2Reλ

< p<
4

1−2Reλ

via Theorem 1.3.7 in [156] (precisely Exercise 1.3.4 in [156]). Indeed, to apply this
theorem, we note that the family {Bλ}Reλ≥0 is admissible, since for any pair E,F
of measurable sets of finite measure we have

∣
∣
∣
∣

∫

Rn
χFBλ (χE)dx

∣
∣
∣
∣
≤ (|E| |F|)1/2,

which is independent of λ , when Reλ ≥ 0. Moreover, the function

z �→
∫

Rn
χ̂F(ξ )(1−|ξ |2)z+ χ̂E(ξ )dξ

is analytic in the region Rez> 0, since

sup
|ξ |<1

|(1−|ξ |2)z+| | log(1−|ξ |2)−1|< ∞
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for any z in a small neighborhood of a point z0 with Rez0 > 0. The interpolation for
the analytic family of operators λ �→ Bλ is based on the estimates

∥
∥Bλ

∥
∥
L4(R2)→L4(R2)

≤C4 (1+ |Imλ |)3 when Reλ = ε ,
∥
∥Bλ

∥
∥
L∞(R2)→L∞(R2)

≤C∞ ec1|Imλ |2 when Reλ = 1
2 + ε ,

where C4,C∞,c1 depend only on ε > 0. The second estimate above is proved in
Proposition 5.2.2 while the set of points (1/p,λ ) obtained by interpolation can be
seen in Figure 5.8.

To estimate the norm of each mk in M4(R2), we need an additional decomposi-
tion of the operator mk that takes into account the radial nature of mk. For each k≥ 0
we define the sectorial arcs (parts of a sector between two arcs)

Γk,� =
{

re2πiθ ∈ R2 : |θ − �2−
k
2 |< 2−

k
2 , 1− 5

8 2
−k ≤ r ≤ 1− 1

8 2
−k}

for all � ∈ {0,1,2, . . . , [2k/2]−1}. We now introduce a smooth function ω supported
in [−1,1] and equal to 1 on [−1/4,1/4] such that for all x ∈ R we have

∑
�∈Z

ω(x− �) = 1 .

Then we define

mk,�(re2πiθ ) = mk(re2πiθ )ω(2k/2θ − �) = mk(r,0)ω(2k/2θ − �)

for integers � in the set {0,1,2, . . . , [2k/2]−1}. If k is an even integer, it follows from
the construction that

mk(ξ ) =
[2k/2]−1

∑
�=0

mk,�(ξ ) (5.2.7)

for all ξ in R2. If k is odd we replace the function θ �→ ω(2k/2θ − ([2k/2]−1)) by a
function ωk(θ) supported in the bigger interval

[

([2k/2]−2)2−k/2,1
]

that satisfies

ωk(θ)+ω(2k/2θ) = 1

on the interval
[

([2k/2]− 1)2−k/2,1
]

. This leads to a new definition of the function
mk,[2k/2]−1 so that (5.2.7) is satisfied.

This provides the circular (angular) decomposition of mk. Observe that for all
positive integers α and β there exist constants Cα ,β such that

|∂αr ∂βθ mk,�(re2πiθ )| ≤Cα ,β (1+ |λ |)α2kα2 k
2β (5.2.8)

and such that each mk,� is a smooth function supported in the sectorial arcs Γk,�.
We fix k≥ 0 and we group the set of all {mk,�}� into five subsets: (a) those whose

supports are contained in Q= {(x,y) ∈R2 : x> 0, |y|< |x|} ; (b) those mk,� whose
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supports are contained in the sector Q′ = {(x,y) ∈ R2 : x < 0, |y|< |x|} ; (c) those
whose supports are contained in Q′′ = {(x,y) ∈ R2 : y> 0, |y| > |x|} ; (d) the mk,�
with supports contained in Q′′′ = {(x,y) ∈ R2 : y < 0, |y| > |x|} ; and finally (e)
those mk,� whose supports intersect the lines |y|= |x|.

There are only at most eight mk,� in case (e), and their sum is easily shown to be
an L4 Fourier multiplier with a constant that grows like (1+ |λ |)3, as shown below.
The remaining cases are symmetric, and we focus attention on case (a).

Let I be the set of all indices � in the set {0,1,2, . . . , [2k/2]−1} corresponding to
case (a), i.e., the sectorial arcs Γk,� are contained in the quarter-plane Q. Let Tk,� be
the operator given on the Fourier transform by multiplication by the function mk,�.
We have

∥
∥
∥∑
�∈I

Tk,�( f )
∥
∥
∥

4

L4
=
∫

R2

∣
∣
∣∑
�∈I

Tk,�( f )
∣
∣
∣

4
dx

=
∫

R2

∣
∣
∣∑
�∈I
∑
�′∈I

Tk,�( f )Tk,�′( f )
∣
∣
∣

2
dx

=
∫

R2

∣
∣
∣∑
�∈I
∑
�′∈I

̂Tk,�( f )∗ ̂Tk,�′( f )
∣
∣
∣

2
dξ ,

(5.2.9)

where we used Plancherel’s identity in the last equality. Each function ̂Tk,�( f ) is sup-

ported in the sectorial arc Γk,�. Therefore, the function ̂Tk,�( f )∗ ̂Tk,�′( f ) is supported
in Γk,�+Γk,�′ and we write the last integral as

∫

R2

∣
∣
∣∑
�∈I
∑
�′∈I

(
̂Tk,�( f )∗ ̂Tk,�′( f )

)

χΓk,�+Γk,�′
∣
∣
∣

2
dξ .

In view of the Cauchy–Schwarz inequality, the last expression is controlled by
∫

R2

(

∑
�∈I
∑
�′∈I

∣
∣̂Tk,�( f )∗ ̂Tk,�′( f )

∣
∣2
)(

∑
�∈I
∑
�′∈I

∣
∣χΓk,�+Γk,�′

∣
∣2
)

dξ . (5.2.10)

At this point we make use of the following lemma, in which the curvature of the
circle is manifested.

Lemma 5.2.5. There exists a constant C0 such that for all k ≥ 0 the following esti-
mate holds:

∑
�∈I
∑
�′∈I

χΓk,�+Γk,�′ ≤C0 .

We postpone the proof of this lemma until the end of this section. Using Lemma
5.2.5, we control the expression in (5.2.10) by

C0

∫

R2∑
�∈I
∑
�′∈I

∣
∣̂Tk,�( f )∗ ̂Tk,�′( f )

∣
∣2 dξ = C0

∥
∥
∥

(

∑
�∈I

|Tk,�( f )|2
) 1

2
∥
∥
∥

4

L4
. (5.2.11)
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We examine each Tk,� a bit more carefully. We have that mk,0 is supported in a
rectangle with sides parallel to the axes and dimensions 2−k (along the ξ1-axis) and
2−

k
2+1 (along the ξ2-axis). Moreover, in that rectangle, ∂ξ1 ≈ ∂r and ∂ξ2 ≈ ∂θ , and

it follows that the smooth function mk,0 satisfies

|∂αξ1∂
β
ξ2
mk,0(ξ1,ξ2)| ≤Cα ,β (1+ |λ |)α2kα2 k

2β (5.2.12)

for all positive integers α and β . To give a precise proof of (5.2.12) we use the
relation r2 = ξ 2

1 +ξ 2
2 and tan(2πθ) = ξ2/ξ1. We have

∂mk,0

∂ξ1
=

∂mk,0

∂ r
∂ r
∂ξ1

+
∂mk,0

∂θ
∂θ
∂ξ1

=
∂mk,0

∂ r
ξ1
r
+
∂mk,0

∂θ
−ξ2

2π(ξ 2
2 +ξ 2

1 )

which is pointwise bounded by

C(1+ |λ |)2k |ξ1|
(ξ 2

2 +ξ 2
1 )

1/2 +C2
k
2

|ξ2|
ξ 2
2 +ξ 2

1
≤C′(1+ |λ |)2k

in view of (5.2.8), since |ξ1|, |ξ2| ≤ r and 1
2 ≤ r ≤ 2. Likewise, we have

∂mk,0

∂ξ2
=

∂mk,0

∂ r
∂ r
∂ξ2

+
∂mk,0

∂θ
∂θ
∂ξ2

=
∂mk,0

∂ r
ξ2
r
+
∂mk,0

∂θ
ξ1

2π(ξ 2
2 +ξ 2

1 )
,

which is controlled by

C(1+ |λ |)2k |ξ2|
(ξ 2

2 +ξ 2
1 )

1/2 +C2
k
2

|ξ1|
ξ 2
2 +ξ 2

1
≤C′(1+ |λ |)2 k

2

since |ξ2|� 2−
k
2 and 1

2 ≤ r ≤ 2. For arbitrary indices α, β , we use a similar proce-
dure to prove (5.2.12).

Estimate (5.2.12) can also be written as

∣
∣∂αξ1∂

β
ξ2

[

mk,0(2−kξ1,2−
k
2 ξ2)

]∣
∣≤Cα ,β (1+ |λ |)α+β ,

which easily implies that for some constant C we have

2
3
2 k|m∨

k,0(2
kx1,2

k
2 x2)| ≤C (1+ |λ |)3(1+ |x1|+ |x2|)−3 .

Let V� be the unit vector representing the point e2πi�2
−k/2

and V⊥
� the unit vector

representing the point ie2πi�2
−k/2

. Applying a rotation, we obtain that the functions
m∨
k,� satisfy

∣
∣m∨

k,�(x1,x2)
∣
∣≤C (1+ |λ |)32− 3k

2 (1+2−k|x ·V�|+2−
k
2 |x ·V⊥

� |)−3 (5.2.13)
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and hence
sup
k≥0

sup
�∈I

∥
∥m∨

k,�

∥
∥
L1 ≤C (1+ |λ |)3 . (5.2.14)

The crucial fact is that the constant C in (5.2.14) is independent of � and k.
At this point, for each fixed k ≥ 0 and � ∈ I we let Jk,� be the ξ2-projection of

the support of mk,�. Based on the earlier definition of mk,�, we easily see that when
� > 0,

Jk,� =
[

(1− 5
8 2

−k)sin(2π 2−
k
2 (�−1)),(1− 1

8 2
−k)sin(2π 2−

k
2 (�+1))

]

.

A similar formula holds for � < 0 in I. The crucial observation is that for any fixed
k ≥ 0 the sets Jk,� are “almost disjoint” for different � ∈ I. Indeed, the sets Jk,� are
contained in the intervals

J̃k,� =
[

(1− 3
8 2

−k)sin(2π 2−
k
2 �)−10 ·2− k

2 ,(1− 3
8 2

−k)sin(2π 2−
k
2 �)+10 ·2− k

2
]

,

which have length 20 ·2− k
2 and are centered at the points (1− 3

8 2
−k)sin(2π 2− k

2 �) .
For σ ∈ Z and τ ∈ {0,1, . . . ,39} we define the strips

Sk,σ ,τ =
{

(ξ1,ξ2) ∈ R2 : ξ2 ∈ [40σ 2−
k
2 + τ 2−

k
2 ,40(σ +1)2−

k
2 + τ 2−

k
2 )
}

.

These strips have length 40 ·2− k
2 and have the property that each J̃k,� is contained in

one of them; say J̃k,� is contained in some Sk,σ�,τ� , which we call Bk,�. Then we have

Tk,�( f ) = Tk,�( fk,�) ,

where we set
fk,� =

(

χBk,� f̂
)∨

= χ∨
Bk,� ∗ f .

As a consequence of the Cauchy–Schwarz inequality (with respect to the measure
|m∨

k,�|dx), we obtain

|Tk,�( fk,�)|2 ≤ ∥
∥m∨

k,�

∥
∥
L1
(|m∨

k,�| ∗ | fk,�|2
)

≤ C (1+ |λ |)3(|m∨
k,�| ∗ | fk,�|2

)

in view of (5.2.14). We now return to (5.2.11), which controls (5.2.10) and hence
(5.2.9). Using this estimate, we bound the term in (5.2.11) by

∥
∥
∥

(

∑
�∈I

|Tk,�( f )|2
) 1

2
∥
∥
∥

4

L4
=
∥
∥
∥∑
�∈I

|Tk,�( fk,�)|2
∥
∥
∥

2

L2

≤ C2 (1+ |λ |)6
∥
∥
∥∑
�∈I

|m∨
k,�| ∗ | fk,�|2

∥
∥
∥

2

L2

= C2 (1+ |λ |)6
(∫

R2∑
�∈I

(|m∨
k,�| ∗ | fk,�|2)gdx

)2
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= C2 (1+ |λ |)6
(

∑
�∈I

∫

R2
(|m̂k,�| ∗g) | fk,�|2 dx

)2

≤ C2 (1+ |λ |)6
(∫

R2
sup
�∈I

(|m̂k,�| ∗g
)

∑
�∈I

| fk,�|2 dx
)2

≤ C2 (1+ |λ |)6
∥
∥
∥sup

�∈I

(|m̂k,�| ∗g
)
∥
∥
∥

2

L2

∥
∥
∥

(

∑
�∈I

| fk,�|2
) 1

2
∥
∥
∥

4

L4
,

where g is an appropriate nonnegative function in L2(R2) of norm 1.
If we knew the validity of the estimates

∥
∥
∥sup

�∈I

(|m̂k,�| ∗g
)
∥
∥
∥
L2

≤C (1+ |λ |)3(1+ k)
∥
∥g
∥
∥
L2 (5.2.15)

and
∥
∥
∥

(

∑
�∈I

| fk,�|2
) 1

2
∥
∥
∥
L4

≤C
∥
∥ f
∥
∥
L4 , (5.2.16)

then we would be able to conclude that
∥
∥mk

∥
∥
M4

≤C (1+ |λ |)3(1+ k)
1
2 (5.2.17)

and hence we could sum the series in (5.2.6).
Estimates (5.2.15) and (5.2.16) are discussed in the next two subsections. �

5.2.3 The Kakeya Maximal Function

We showed in the previous subsection that m∨
k,0 is integrable over R2 and satisfies

the estimate

2
3
2 k|m∨

k,0(2
kx1,2

k
2 x2)| ≤ C (1+ |λ |)3

(1+ |x|)3 .

Since
1

(1+ |x|)3 ≤C
∞

∑
s=0

2−s

22s
χ[−2s,2s]×[−2s,2s](x) ,

it follows that

|m̂k,0(x)| ≤C′(1+ |λ |)3
∞

∑
s=0

2−s 1
|Rs|χRs(x) ,

where Rs = [−2s2k,2s2k]× [−2s2
k
2 ,2s2

k
2 ]. Since a general m̂k,� is obtained from m̂k,0

via a rotation, a similar estimate holds for it. Precisely, we have

|m̂k,�(x)| ≤C′ (1+ |λ |)3
∞

∑
s=0

2−s 1
|Rs,�|χRs,�(x) , (5.2.18)
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where Rs,� is a rectangle with principal axes along the directions V� and V⊥
� and

side lengths 2s2k and 2s2
k
2 , respectively. Using (5.2.18), we obtain the following

pointwise estimate for the maximal function in (5.2.15):

sup
�∈I

(|m̂k,�| ∗g
)

(x) ≤ C′
∞

∑
s=0

2−s sup
�∈I

1
|Rs,�|

∫

Rs,�
g(x− y)dy , (5.2.19)

where Rs,� are rectangles with dimensions 2s2k and 2s2
k
2 .

Motivated by (5.2.19), for fixed N ≥ 10 and a > 0, we introduce the Kakeya
maximal operator without dilations

K a
N (g)(x) = sup

R�x
1
|R|

∫

R
|g(y)|dy , (5.2.20)

acting on functions g ∈ L1loc, where the supremum is taken over all rectangles R in
R2 of dimensions a and aN and arbitrary orientation. What makes this maximal op-
erator interesting is that the rectangles R that appear in the supremum in (5.2.21) are
allowed to have arbitrary orientation. We also define the Kakeya maximal operator
KN by setting

KN(w)(x) = sup
a>0

K a
N (w)(x) , (5.2.21)

for w locally integrable and x ∈ Rn. The maximal function KN(w)(x) is therefore
obtained as the supremum of the averages of a function w over all rectangles in R2

that contain the point x and have arbitrary orientation but fixed eccentricity equal
to N. (The eccentricity of a rectangle is the ratio of its longer side to its shorter
side.)

We see that for some c > 0, KN( f ) is pointwise controlled by cNM( f ), where
M is the Hardy–Littlewood maximal operator M. This implies that KN is of weak
type (1,1) with bound at most a multiple of N. Since KN is bounded on L∞ with
norm 1, it follows that KN maps Lp(R2) to itself with norm at most a multiple of
N1/p. However, we show in the next section that this estimate is very rough and can
be improved significantly. In fact, we obtain an Lp estimate for KN with norm that
grows logarithmically in N (when p≥ 2), and this is very crucial, since N = 2k/2 in
the following application.

Using this new terminology, we write the estimate in (5.2.19) as

sup
�∈I

(|m̂k,�| ∗g
) ≤ C′(1+ |λ |)3

∞

∑
s=0

2−sK 2s+k/2

2k/2 (g) . (5.2.22)

The required estimate (5.2.15) is a consequence of (5.2.22) and of the following
theorem, whose proof is discussed in the next section.

Theorem 5.2.6. There exists a constant C such that for all N ≥ 10 and all f in
L2(R2) the following norm inequality is valid:

sup
a>0

∥
∥K a

N ( f )
∥
∥
L2(R2)

≤C (logN)
∥
∥ f
∥
∥
L2(R2)

.
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Theorem 5.2.6 is a consequence of Theorem 5.3.5, in which the preceding es-
timate is proved for a more general maximal operator MΣN , which in particular
controls KN and hence K a

N for all a > 0. This maximal operator is introduced in
the next section.

5.2.4 Boundedness of a Square Function

We now turn to the proof of estimate (5.2.16). This is a consequence of the following
result, which is a version of the Littlewood–Paley theorem for intervals of equal
length.

Theorem 5.2.7. For j ∈ Z, let I j be intervals of equal length with disjoint interior
whose union is R. We define operators Pj with multipliers χI j . Then for 2≤ p< ∞,
there is a constant Cp such that for all f ∈ Lp(R) we have

∥
∥
∥

(

∑
j
|Pj( f )|2

)1
2
∥
∥
∥
Lp(R)

≤Cp
∥
∥ f
∥
∥
Lp(R) . (5.2.23)

In particular, the same estimate holds if the intervals I j have disjoint interiors and
equal length but do not necessarily cover R.
Proof. Multiplying the function f by a suitable exponential, we may assume that the
intervals I j have the form

(

( j− 1
2 )a,( j+

1
2 )a
)

for some a> 0. Applying a dilation to
f reduces matters to the case a= 1. We conclude that the constantCp is independent
of the common size of the intervals I j and it suffices to obtain estimate (5.2.23) in
the case a= 1.

We assume therefore that I j = ( j− 1
2 , j+

1
2 ) for all j ∈ Z. Next, our goal is to

replace the operators Pj by smoother analogues of them. To achieve this we intro-
duce a smooth function ψ with compact support that is identically equal to 1 on the
interval [− 1

2 ,
1
2 ] and vanishes off the interval [− 3

4 ,
3
4 ]. We introduce operators S j by

setting

̂S j( f )(ξ ) = f̂ (ξ )ψ(ξ − j)

and we note that the identity
Pj = PjS j (5.2.24)

is valid for all j ∈ Z. For t ∈ R we define multipliers mt as

mt(ξ ) = ∑
j∈Z

e−2πi jtψ(ξ − j) ,

and we set kt = m∨
t . With I0 = (−1/2,1/2), we have
∫

I0
|(kt ∗ f )(x)|2 dt =

∫

I0

∣
∣
∣∑
j∈Z

e−2πi jtS j( f )(x)
∣
∣
∣

2
dt

= ∑
j∈Z

|S j( f )(x)|2 ,
(5.2.25)
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where the last equality is just Plancherel’s identity on I0 = [− 1
2 ,

1
2 ]. In view of the

last identity, it suffices to analyze the operator given by convolution with the family
of kernels kt . By the Poisson summation formula (Theorem 3.2.8 in [156]) applied
to the function x �→ ψ(x)e2πixt , we obtain

mt(ξ ) = e−2πiξ t ∑
j∈Z

ψ(ξ − j)e2πi(ξ− j)t

= ∑
j∈Z

(

ψ(·)e2πi(·)t) (̂ j)e2πi jξ e−2πiξ t

= ∑
j∈Z

e2πi( j−t)ξ ψ̂( j− t) .

Taking inverse Fourier transforms, we obtain

kt = ∑
j∈Z

ψ̂( j− t)δ− j+t ,

where δb denotes Dirac mass at the point b. Therefore, kt is a sum of Dirac masses
with rapidly decaying coefficients. Since each Dirac mass has Borel norm at most
1, we conclude that for some constantC we have

∥
∥kt
∥
∥
M

≤ ∑
j∈Z

|ψ̂( j− t)| ≤C∑
j∈Z

(1+ | j− t|)−10 ≤ c0 , (5.2.26)

where c0 is independent of t. This says that the measures kt have uniformly bounded
norms. Take now f ∈ Lp(R) and p≥ 2. Using identity (5.2.24), we obtain

∫

R

(

∑
j∈Z

|Pj( f )(x)|2
)p

2
dx =

∫

R

(

∑
j∈Z

|PjS j( f )(x)|2
)p

2
dx

≤ cp
∫

R

(

∑
j∈Z

|S j( f )(x)|2
)p

2
dx ,

and the last inequality follows from Exercise 5.6.1(a) in [156]. The constant cp
depends only on p. Recalling identity (5.2.25), we write

cp
∫

R

(

∑
j∈Z

|S j( f )(x)|2
)p

2
dx≤ cp

∫

R

(∫

I0
|(kt ∗ f )(x)|2 dt

)p
2
dx

≤ cp
∫

R

(∫

I0
|(kt ∗ f )(x)|pdt

)p
p

dx

= cp
∫

I0

∫

R
|(kt ∗ f )(x)|p dxdt

≤ c0 cp
∫

I0

∫

R
| f (x)|p dxdt

= c0 cp
∥
∥ f‖pLp ,
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where we used Hölder’s inequality on the interval I0 together with the fact that p≥ 2
and (5.2.26). The proof of the theorem is complete with constantCp = (c0cp)1/p. �

We now return to estimate (5.2.16). First recall the strips

Sk,σ ,τ =
{

(ξ1,ξ2) : ξ2 ∈ [40σ2−
k
2 +2−

k
2 τ ,40(σ +1)2−

k
2 +2−

k
2 τ)
}

defined for σ ∈ Z and τ ∈ {0,1, . . . ,39}. These strips have length 40 ·2− k
2 , and each

J̃k,� is contained in one of them, which we called Sk,σ�,τ� = Bk,�.
The family {Bk,�}�∈I does not consist of disjoint sets, but we split it into 40 sub-

families by placing Bk,� in different subfamilies if the indices τ� and τ�′ are different.
We now write the set I as

I = I1∪ I2∪·· ·∪ I40 ,

where for each �,�′ ∈ I j the sets Bk,� and Bk,�′ are disjoint.
We now use Theorem 5.2.7 to obtain the required quadratic estimate (5.2.16).

Things now are relatively simple. We observe that the multiplier operators f �→
(χBk,� f̂ )

∨ on R2 obey the estimates (5.2.23), in which Lp(R) is replaced by Lp(R2),
since they are the identity operators in the ξ1-variable.

We conclude that

∥
∥
∥

(

∑
�∈I j

|Tk,�( f )|2
)1

2
∥
∥
∥
Lp(R2)

≤Cp
∥
∥ f
∥
∥
Lp(R2)

(5.2.27)

holds for all p ≥ 2 and, in particular, for p = 4. This proves (5.2.16) for a single I j,
and the same conclusion follows for I with a constant 40 times as big.

5.2.5 The Proof of Lemma 5.2.5

We finally discuss the proof of Lemma 5.2.5.

Proof. If k = 0,1, . . . ,k0 up to a fixed integer k0, then there exist only finitely many
pairs of sets Γk,� +Γk,�′ depending on k0, and the lemma is trivially true. We may
therefore assume that k is a large integer; in particular we may take δ = 2−k ≤
2400−2. In the sequel, for simplicity we replace 2−k by δ and we denote the set
Γk,� by Γ�. In the proof that follows we are working with a fixed δ ∈ [0,2400−2].
Elements of the set Γ�+Γ�′ have the form

re2πi(�+α)δ
1/2

+ r′e2πi(�
′+α ′)δ 1/2 , (5.2.28)

where α,α ′ range in the interval [−1,1] and r,r′ range in [1− 5
8δ ,1− 1

8δ ]. We set

w(�,�′) = e2πi�δ
1/2

+ e2πi�
′δ 1/2 = 2cos(π|�− �′|δ 1

2 )eπi(�+�′)δ 1/2 , (5.2.29)
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where the last equality is a consequence of a trigonometric identity that can be found
in Appendix E in [156]. Using similar identities (also found in Appendix E in [156])
and performing algebraic manipulations, one may verify that the general element
(5.2.28) of the set Γ�+Γ�′ can be written as

w(�,�′) +
{

r
cos(2παδ 1

2 )+ cos(2πα ′δ 1
2 )−2

2

}

w(�,�′)

+
{

r
sin(2παδ 1

2 )+ sin(2πα ′δ 1
2 )

2

}

iw(�,�′)

+ E(r,r′, �, �′,α,α ′,δ ) ,

where

E(r,r′, �, �′,α,α ′,δ ) = (r−1)
(

e2πi�δ
1/2

+ e2πi�
′δ 1/2

)

+(r′ − r)e2πi(�
′+α ′)δ 1/2

+ r
(

e2πi�δ
1/2 − e2πi�

′δ 1/2
)(cos(2παδ 1

2 )− cos(2πα ′δ 1
2 )

2

)

+ ri
(

e2πi�δ
1/2 − e2πi�

′δ 1/2
)( sin(2παδ 1

2 )− sin(2πα ′δ 1
2 )

2

)

.

The coefficients in the curly brackets are real, and E(r,r′, �, �′,α,α ′,δ ) is an error of
magnitude at most 2δ +8π2|�− �′|δ . These observations and the facts |sinx| ≤ |x|
and |1− cosx| ≤ |x|2/2 (see Appendix E in [156]) imply that the set Γ� +Γ�′ is
contained in the rectangle R(�,�′) centered at the point w(�,�′) with half-width

4π2δ +(2δ +8π2|�− �′|δ )≤ 80(1+ |�− �′|)δ

in the direction along w(�,�′) and half-length

4πδ
1
2 +(2δ +8π2|�− �′|δ )≤ 40δ

1
2

in the direction along iw(�,�′), which is perpendicular to that along w(�,�′), since
2π|�− �′|δ 1

2 < π
2 . Using this inequality we show that the rectangle R(�,�′) is con-

tained in a disk of radius 105δ 1
2 centered at the point w(�,�′) .

We immediately deduce that if |w(�,�′)−w(m,m′)| is bigger than 210δ 1
2 , then

the sets Γ�+Γ�′ and Γm+Γm′ do not intersect. Therefore, if these sets intersect, we
should have

|w(�,�′)−w(m,m′)| ≤ 210δ
1
2 .

In view of Exercise 5.2.2, the left-hand side of the last expression is at least

2 2
π cos(

π
4 )|π(�+ �′)−π(m+m′)|δ 1

2
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(here we use the hypothesis that |2π�δ 1
2 | < π

4 twice). We conclude that if the sets
Γ�+Γ�′ and Γm+Γm′ intersect, then

|(�+ �′)− (m+m′)| ≤ 210
4cos(π4 )

≤ 150 . (5.2.30)

In this case the angle between the vectors w(�,�′) and w(m,m′) is

ϕ�,�′,m,m′ = π|(�+ �′)− (m+m′)|δ 1
2 ,

which is smaller than π/16, provided (5.2.30) holds and δ < 2400−2. This says that
in this case, the rectangles R(�,�′) and R(m,m′) are essentially parallel to each other
(the angle between them is smaller than π/16).

Let us fix a rectangle R(�,�′), and for another rectangle R(m,m′) we denote by
R̃(m,m′) the smallest rectangle containing R(m,m′) with sides parallel to the corre-
sponding sides of R(�,�′). An easy trigonometric argument shows that R̃(m,m′) has
the same center as R(m,m′) and has half-sides at most

40δ
1
2 cos(ϕ�,�′,m,m′)+80(1+ |�− �′|)δ sin(ϕ�,�′,m,m′) ,

80(1+ |�− �′|)δ cos(ϕ�,�′,m,m′)+40δ
1
2 sin(ϕ�,�′,m,m′) ,

in view of Exercise 5.2.3. Then R̃(m,m′) has half-sides at most 60000δ 1
2 and

16000(1+ |�− �′|)δ . If Γ� +Γ�′ and Γm +Γm′ intersect, then so do R̃(m,m′) and
R(�,�′), and both of these rectangles have sides parallel to the vectors w(�,�′) and
iw(�,�′). But in the direction ofw(�,�′), these rectangles have sides with half-lengths
at most 80(1+ |�− �′|)δ and 16000(1+ |m−m′|)δ .

Assume that the sets R(m,m′) and R(�,�′) intersect and (�,�′) �= (m,m′). With-
out loss of generality we may suppose that |w(�,�′)| ≥ |w(m,m′)|. In this case the
distance of the lines parallel to the direction iw(�,�′) and passing through the centers
of the rectangles R̃(m,m′) and R(�,�′) is at least

2
∣
∣cos(π|�− �′|δ 1

2 )− cos(π|m−m′|δ 1
2 )
∣
∣ ,

as we easily see using (5.2.29). Since these rectangles intersect, we must have

2
∣
∣cos(π|�− �′|δ 1

2 )− cos(π|m−m′|δ 1
2 )
∣
∣≤ 16080(2+ |�− �′|+ |m−m′|)δ .

We conclude that if the sets R(m,m′) and R(�,�′) intersect and (�,�′) �= (m,m′), then

∣
∣cos(π|�− �′|δ 1

2 )− cos(π|m−m′|δ 1
2 )
∣
∣≤ 50000(|�− �′|+ |m−m′|)δ .

But the expression on the left is equal to

2
∣
∣sin(π |�−�′|−|m−m′|

2 δ
1
2 )sin(π |�−�′|+|m−m′|

2 δ
1
2 )
∣
∣ ,
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which is at least

2
∣
∣|�− �′|− |m−m′|∣∣(|�− �′|+ |m−m′|)δ

in view of the simple estimate |sin t| ≥ 2
π |t| for |t|< π

2 . We conclude that if the sets
R(m,m′) and R(�,�′) intersect and (�,�′) �= (m,m′), then

∣
∣|�− �′|− |m−m′|∣∣≤ 25000 . (5.2.31)

Combining (5.2.30) with (5.2.31), we see that if Γm+Γm′ and Γ�+Γ�′ intersect, then

max
(∣
∣min(m,m′)−min(�,�′)

∣
∣,
∣
∣max(m,m′)−max(�,�′)

∣
∣

)

≤ 25150
2

.

We conclude that the setΓm+Γm′ intersects the fixed set Γ�+Γ�′ for at most (25151)2

pairs (m,m′). This finishes the proof of the lemma. �

Exercises

5.2.1. For λ ≥ 0 show that if (1−|ξ |2)λ+ lies inMp(Rn), for some p ∈ (1,∞), then
for all f ∈ Lp(Rn) the Bochner–Riesz means of f , BλR( f ) converge to f in Lp(Rn).

5.2.2. Let |θ1|, |θ2|< π
4 be two angles. Show geometrically that

|r1eiθ1 − r2eiθ2 | ≥min(r1,r2)sin |θ1−θ2|

and use the estimate |sin t| ≥ 2|t|
π for |t|< π

2 to obtain a lower bound for the second
expression in terms of |θ1−θ2|.
5.2.3. Let R be a rectangle in R2 having length b> 0 along a direction�v= (ξ1,ξ2)
and length a> 0 along the perpendicular direction�v⊥ = (−ξ2,ξ1). Let �w be another
vector that forms an angle ϕ < π

2 with �v. Show that the smallest rectangle R′ that
contains R and has sides parallel to �w and �w⊥ has side lengths asin(ϕ)+ bcos(ϕ)
along the direction �w and acos(ϕ)+bsin(ϕ) along the direction �w⊥.
5.2.4. Prove that Theorem 5.2.7 does not hold when p< 2.
[

Hint: Try the intervals I j = [ j, j+1] and f̂ = χ[0,N] as N → ∞.
]

5.2.5. Let {Ik}k be a family of intervals in the real line with |Ik|= |Ik′ | and Ik∩Ik′ = /0
for all k �= k′. Define the sets

Sk =
{

(ξ1, . . . ,ξn) ∈ Rn : ξ1 ∈ Ik
}

.

Prove that for all p≥ 2 and all f ∈ Lp(Rn), we have

∥
∥
∥

(

∑
k
|( f̂ χSk)∨|2

)1
2
∥
∥
∥
Lp(Rn)

≤Cp
∥
∥ f
∥
∥
Lp(Rn)

,

where Cp is the constant of Theorem 5.2.7.
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5.2.6. Let {Ik}k, {J�}� be two families of intervals in the real line with |Ik| = |Ik′ |,
Ik ∩ Ik′ = /0 for all k �= k′, and |J�| = |J�′ |, J� ∩ J�′ = /0 for all �,�′. Prove that for all
p≥ 2 there is a constant Cp such that

∥
∥
∥

(

∑
k
∑
�

|( f̂ χIk×J�)
∨|2
)1

2
∥
∥
∥
Lp(R2)

≤Cp
∥
∥ f
∥
∥
Lp(R2)

,

for all f ∈ Lp(R2).
[

Hint: Use the double Rademacher functions (Appendix C.5 in [156]) and apply
Theorem 5.2.7 twice.

]

5.2.7. ([307]) On Rn consider the points x� = �
√
δ , � ∈ Zn. Fix a Schwartz function

h whose Fourier transform is supported in the unit ball in Rn. Given a function f on
Rn, define

f̂�(ξ ) = f̂ (ξ )ĥ(δ− 1
2 (ξ − x�)).

Prove that for some constant C (which depends only on h and n) the estimate

(

∑
�∈Zn

| f�|2
)1

2 ≤CM(| f |2) 1
2

holds for all functions f . Deduce the Lp(Rn) boundedness of the preceding square
function for all p> 2.
[

Hint: For a sequence λ� with ∑� |λ�|2 = 1, set

G( f )(x) = ∑
�∈Zn

λ� f�(x) =
∫

Rn

[

∑
�∈Zn

λ� e
2πi x�·y√

δ

]

f
(

x− y√
δ

)

h(y)dy .

Split Rn as the union of Q0 = [− 1
2 ,

1
2 ]

n and 2 j+1Q0 \2 jQ0 for j ≥ 0 and control the
integral on each such set using the decay of h and the L2(2 j+1Q0) norms of the other
two terms. Finally, exploit the orthogonality of the functions e2πi�·y to estimate the
L2(2 j+1Q0) norm of the expression inside the square brackets by C2n j/2. Sum over
j ≥ 0 to obtain the required conclusion.

]

5.2.8. For λ > 0 define the maximal Bochner–Riesz operator

Bλ∗ ( f )(x) = sup
R>0

∣
∣
∣
∣

∫

Rn
(1−|ξ/R|2)λ+ f̂ (ξ )e2πix·ξ dξ

∣
∣
∣
∣
.

Prove that Bλ∗ maps Lp(Rn) to itself when λ > n−1
2 for 1≤ p≤ ∞.

[

Hint: You may want to use Corollary 2.1.12 in [156].
]
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5.3 Kakeya Maximal Operators

We recall the Hardy–Littlewood maximal operator with respect to cubes on Rn de-
fined as

Mc( f )(x) = sup
Q∈F
Q�x

1
|Q|

∫

Q
| f (y)|dy , (5.3.1)

where F is the set of all closed cubes in Rn (with sides not necessarily parallel to
the axes). The operatorMc is equivalent (bounded above and below by constants) to
the corresponding maximal operator M′

c in which the family F is replaced by the
more restrictive familyF ′ of cubes in Rn with sides parallel to the coordinate axes.

It is interesting to observe that if the family of all cubesF in (5.3.1) is replaced by
the family of all rectangles (or parallelepipeds)R in Rn, then we obtain an operator
M0 that is unbounded on Lp(Rn); see Exercise 2.1.9 in [156]. If we substitute the
family of all parallelepipeds R, however, with the more restrictive family R ′ of all
parallelepipeds with sides parallel to the coordinate axes, then we obtain the so-
called strong maximal function

Ms( f )(x) = sup
R∈R′
R�x

1
|R|

∫

R
| f (y)|dy . (5.3.2)

The operator Ms is bounded on Lp(Rn) for 1 < p < ∞ but it is not of weak type
(1,1). See Exercise 5.3.1.

These examples indicate that averaging over long and skinny rectangles is quite
different than averaging over squares. In general, the direction and the dimensions
of the averaging rectangles play a significant role in the boundedness properties of
the maximal functions. In this section we investigate aspects of this topic.

5.3.1 Maximal Functions Associated with a Set of Directions

Definition 5.3.1. Let Σ be a set of unit vectors in R2, i.e., a subset of the unit
circle S1. Associated with Σ , we define RΣ to be the set of all closed rectangles
in R2 whose longest side is parallel to some vector in Σ . We also define a maximal
operator MΣ associated with Σ as follows:

MΣ ( f )(x) = sup
R∈RΣ
R�x

1
|R|

∫

R
| f (y)|dy ,

where f is a locally integrable function on R2.
We also recall the definition given in (5.2.21) of the Kakeya maximal operator

KN(w)(x) = sup
R�x

1
|R|

∫

R
|w(y)|dy , (5.3.3)
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where the supremum is taken over all rectangles R in R2 of dimensions a and aN
where a> 0 is arbitrary. Here N is a fixed real number that is at least 10.

Example 5.3.2. Let Σ = {v} consist of only one vector v= (a,b). Then

MΣ ( f )(x) = sup
0<r≤1

sup
N>0

1
rN2

∫ N

−N

∫ rN

−rN
| f (x− t(a,b)− s(−b,a))|dsdt .

If Σ = {(1,0),(0,1)} consists of the two unit vectors along the axes, then

MΣ =Ms ,

where Ms is the strong maximal function defined in (5.3.2).

It is obvious that for each Σ ⊆ S1, the maximal function MΣ maps L∞(R2) to
itself with constant 1. ButMΣ may not always be of weak type (1,1), as the example
Ms indicates; see Exercise 5.3.1. The boundedness of MΣ on Lp(R2) in general
depends on the set Σ .

An interesting case arises in the following example as well.

Example 5.3.3. For N ∈ Z+, let

Σ = ΣN =
{(

cos( 2π j
N ),sin( 2π j

N )
)

: j = 0,1,2, . . . ,N−1
}

be the set of N uniformly spread directions on the circle. Then we expect MΣN to
be Lp bounded with constant depending on N. There is a connection between the
operator MΣN previously defined and the Kakeya maximal operator KN defined in
(5.2.21). In fact, Exercise 5.3.3 says that

KN( f )≤ 20MΣN ( f ) (5.3.4)

for all locally integrable functions f on R2.

We now indicate why the norms ofKN andMΣN on L2(R2) grow as N →∞. We
refer to Exercises 5.3.4 and 5.3.7 for the corresponding result for p �= 2.

Proposition 5.3.4. There is a constant c such that for any N ≥ 10 we have
∥
∥KN

∥
∥
L2(R2)→L2(R2)

≥ c logN (5.3.5)

and
∥
∥KN

∥
∥
L2(R2)→L2,∞(R2)

≥ c(logN)
1
2 . (5.3.6)

Therefore, a similar conclusion follows for MΣN .

Proof. We consider the family of functions fN(x) = 1
|x|χ3≤|x|≤N defined on R2 for

N ≥ 10. Then we have
∥
∥ fN

∥
∥
L2(R2)

≤ c1(logN)
1
2 . (5.3.7)
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On the other hand, for every x in the annulus 6< |x|< N, we consider the rectangle
Rx of dimensions |x| − 3 and |x|−3

N , one of whose shorter sides touches the circle
|y|= 3 and the other has midpoint x. Then

KN( fN)(x)≥ 1
|Rx|

∫

Rx
| fN(y)|dy≥ c2N

(|x|−3)2

∫∫

3≤y1≤|x|
|y2|≤ |x|−3

2N

dy1dy2
y1

≥ c3
log |x|
|x| .

It follows that

∥
∥KN( fN)

∥
∥
L2(R2)

≥ c3

( ∫

6≤|x|≤N

( log |x|
|x|

)2
dx
) 1

2
≥ c4 (logN)

3
2 . (5.3.8)

Combining (5.3.7) with (5.3.8) we obtain (5.3.5) with c= c4/c1.
We now turn to estimate (5.3.6). Since for all 6< |x|< N we have

KN( fN)(x)≥ c3
log |x|
|x| > c3

logN
N

,

it follows that
∣
∣
{

KN( fN)> c3
logN
N

}∣
∣≥ π(N2−62)≥ c5N2 and hence

∥
∥KN( fN)

∥
∥
L2,∞∥

∥ fN
∥
∥
L2

≥
sup
λ>0

λ
∣
∣
{

KN( fN)> λ
}∣
∣
1
2

c1(logN)
1
2

≥ c3
logN
N

∣
∣
{

KN( fN)> c3
logN
N

}∣
∣
1
2

c1(logN)
1
2

≥ c3
√
c5

c1
(logN)

1
2 .

This completes the proof. �

5.3.2 The Boundedness ofMΣN on Lp(R2)

It is rather remarkable that both estimates of Proposition 5.3.4 are sharp in terms of
their behavior as N → ∞, as the following result indicates.

Theorem 5.3.5. There exist constants 0 < B,C < ∞ such that for every N ≥ 1000
and all f ∈ L2(R2) we have

∥
∥MΣN ( f )

∥
∥
L2,∞(R2)

≤ B(logN)
1
2
∥
∥ f
∥
∥
L2(R2)

(5.3.9)
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and
∥
∥MΣN ( f )

∥
∥
L2(R2)

≤C (logN)
∥
∥ f
∥
∥
L2(R2)

. (5.3.10)

In view of (5.3.4), similar estimates also hold for KN.

Proof. We deduce (5.3.10) from the weak type estimate (5.3.9), which we rewrite as

∣
∣
{

x ∈ R2 : MΣN ( f )(x)> λ
}∣
∣≤ B2 (logN)

‖ f‖2L2
λ 2 . (5.3.11)

We prove this estimate for some constant B> 0 independent of N. But prior to doing
this we indicate why (5.3.11) implies (5.3.10).

Using Exercise 5.3.2, we have thatMΣN maps Lp(R2) to Lp(R2) (and hence into
Lp,∞) with constant at most a multiple of N1/p for all 1 < p < ∞. Using this with
p= 3/2, we have

∥
∥MΣN

∥
∥

L
3
2 →L

3
2 ,∞

≤ ∥∥MΣN
∥
∥

L
3
2 →L

3
2
≤ AN

2
3 (5.3.12)

for some constant A> 0. Now split f as the sum f = f1+ f2+ f3, where

f1 = f χ| f |≤ 1
4λ

,

f2 = f χ 1
4λ<| f |≤N2λ ,

f3 = f χN2λ<| f | .

It follows that
∣
∣
{

MΣN ( f )> λ
}∣
∣≤ ∣∣{MΣN ( f2)>

λ
3

}∣
∣+
∣
∣
{

MΣN ( f3)>
λ
3

}∣
∣ , (5.3.13)

since the set
{

MΣN ( f1)>
λ
3

}

is empty. To obtain the required result we use the L2,∞

estimate (5.3.11) for f2 and the L
3
2 ,∞ estimate (5.3.12) for f3. We have

∥
∥MΣN ( f )

∥
∥2
L2

= 2
∫ ∞

0
λ
∣
∣
{

MΣN ( f )> λ
}∣
∣dλ

≤
∫ ∞

0
2λ
∣
∣
{

MΣN ( f2)>
λ
3

}∣
∣dλ +

∫ ∞

0
2λ
∣
∣
{

MΣN ( f3)>
λ
3

}∣
∣dλ

≤
∫ ∞

0

2λB2 (logN)
λ 2

∫

1
4λ<| f |≤N2λ

| f |2dxdλ +
∫ ∞

0

2λA 3
2 N

λ 3
2

∫

| f |>N2λ

| f | 32 dxdλ

≤ 2B2(logN)
∫

R2
| f (x)|2

∫ 4| f (x)|
| f (x)|
N2

dλ
λ

dx+2A
3
2 N

∫

R2
| f (x)| 32

∫ | f (x)|
N2

0

dλ
λ 1

2
dx

=
(

4B2(log2N)(logN)+4A
3
2
)∥
∥ f
∥
∥2
L2

≤ C(logN)2
∥
∥ f
∥
∥2
L2

using Fubini’s theorem for integrals. This proves (5.3.10).
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To avoid problems with antipodal points, it is convenient to split ΣN as the union
of sixty four sets, in each of which the angle between any two vectors does not
exceed 2π/64. It suffices therefore to obtain (5.3.11) for each such subset of ΣN .
By rotational invariance, it will suffice to work with only one of these 64 subsets.
We choose to work with Σ 1

N the part of ΣN contained in {eiθ : 0 ≤ θ < π/32}.
To prove (5.3.11), we fix a λ > 0 and we start with a compact subset K of the set
{x∈R2 : MΣ1

N
( f )(x)> λ

}

. Then, for every x∈K, there exists an open rectangle Rx

that contains x and whose longest side is parallel to a vector in Σ 1
N . By compactness

of K, there exists a finite subfamily {Rα}α∈A of the family {Rx}x∈K such that
∫

Rα
| f (y)|dy> λ |Rα |

for all α ∈A and such that the union of the Rα ’s covers K.
We claim that there is a constant C such that for any finite family {Rα}α∈A of

rectangles whose longest side is parallel to a vector in Σ 1
N there is a subset B of A

such that ∫

R2

(

∑
β∈B

χRβ (x)
)2

dx≤ 3 ∑
β∈B

∣
∣Rβ
∣
∣ (5.3.14)

and that ∣
∣
∣

⋃

α∈A
Rα
∣
∣
∣≤C (logN) ∑

β∈B

∣
∣Rβ
∣
∣ . (5.3.15)

Assuming (5.3.14) and (5.3.15), we easily deduce (5.3.11). Indeed,

∑
β∈B

|Rβ | <
1
λ ∑

β∈B

∫

Rβ
| f (y)|dy

=
1
λ

∫

R2

(

∑
β∈B

χRβ (y)
)

| f (y)|dy

≤ 1
λ

(∫

R2

(

∑
β∈B

χRβ (y)
)2

dy
)1

2 ∥
∥ f
∥
∥
L2

≤ 1
λ

[

3 ∑
β∈B

∣
∣Rβ
∣
∣

] 1
2 ∥
∥ f
∥
∥
L2 ,

from which it follows that

∑
β∈B

∣
∣Rβ
∣
∣≤ 3

λ 2

∥
∥ f
∥
∥2
L2 .

Then, using (5.3.15), we obtain

|K| ≤
∣
∣
∣

⋃

α∈A
Rα
∣
∣
∣≤C (logN) ∑

β∈B

∣
∣Rβ
∣
∣≤ 3C

λ 2 (logN)
∥
∥ f
∥
∥2
L2 ,
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and since K was an arbitrary compact subset of {x : MΣ1
N
( f )(x) > λ

}

, the same
estimate is valid for the latter set.

We now turn to the selection of the subfamily {Rβ}β∈B and the proof of (5.3.14)
and (5.3.15).

Let Rβ1 be the rectangle in {Rα}α∈A with the longest side. Suppose we have
chosen Rβ1 ,Rβ2 , . . . ,Rβ j−1 for some j≥ 2. Then among all rectangles Rα that satisfy

j−1

∑
k=1

|Rβk ∩Rα | ≤ 1
2
|Rα | , (5.3.16)

we choose a rectangle Rβ j such that its longer side is as large as possible. Since the
collection {Rα}α∈A is finite, this selection stops after m steps. Define

B = {β1,β2, . . . ,βm} .

Using (5.3.16), we obtain

∫

R2

(

∑
β∈B

χRβ
)2

dx ≤ 2
m

∑
j=1

j

∑
k=1

|Rβk ∩Rβ j |

= 2
m

∑
j=1

[( j−1

∑
k=1

|Rβk ∩Rβ j |
)

+ |Rβ j |
]

≤ 2
m

∑
j=1

[ 1
2
|Rβ j |+ |Rβ j |

]

= 3
m

∑
j=1

|Rβ j | .

(5.3.17)

which implies inequality (5.3.14).
We now turn to the proof of (5.3.15). Let Mc be the usual Hardy–Littlewood

maximal operator with squares in R2; recall n= 2. Since Mc is of weak type (1,1),
(5.3.15) is a consequence of the estimate

⋃

α∈A \B
Rα ⊆ {x ∈ R2 : Mc

(

∑
β∈B

χ(Rβ )∗
)

(x)> c(logN)−1} (5.3.18)

for some absolute constant c, where (Rβ )∗ is the rectangle Rβ expanded 30 times in
both directions. Indeed, if (5.3.18) holds, then

∣
∣
∣

⋃

α∈A
Rα
∣
∣
∣ ≤

∣
∣
∣

⋃

β∈B
Rβ
∣
∣
∣+
∣
∣
∣

⋃

α∈A \B
Rα
∣
∣
∣

≤ ∑
β∈B

∣
∣Rβ
∣
∣+

10
c
(logN) ∑

β∈B
|(Rβ )∗|
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= ∑
β∈B

|Rβ |+
9000
c

(logN) ∑
β∈B

|Rβ |

≤ C (logN) ∑
β∈B

|Rβ | ,

since N ≥ 1000.
It remains to prove (5.3.18). At this point we need the following lemma. In the

sequel we denote by θα the angle between the x axis and the vector pointing in the
longer direction of Rα for any α ∈A . We also denote by lα the shorter side of Rα
and by Lα the longer side of Rα for any α ∈A .

Lemma 5.3.6. Let N ∈ Z+ satisfy N ≥ 1000. Let ω0 = 0 and define ωk = 2π2k/N
for 1 ≤ k < [log2(N/64)] and ω[log2(N/64)] = π/32. Let Rα be a rectangle in the
family {Rα}α∈A . Suppose that β ∈B is such that Lβ ≥ Lα and such that

ωk ≤ |θα −θβ |< ωk+1

for some 0≤ k < [log2(N/64)]. Let

sα = 16max(lα ,ωkLα) .

For an arbitrary x ∈ Rα , let Q be a square centered at x with sides of length sα
parallel to the sides of Rα . Then we have

|Rβ ∩Rα |
|Rα | ≤ 64

|(Rβ )∗ ∩Q|
|Q| . (5.3.19)

Assuming Lemma 5.3.6, we conclude the proof of (5.3.18). Fix α ∈A \B. Then
the rectangle Rα was not selected in the selection procedure. This means that for all
l ∈ {2, . . . ,m+1} we have exactly one of the following: either

l−1

∑
j=1

|Rβ j ∩Rα |> 1
2
|Rα | (5.3.20)

or
l−1

∑
j=1

|Rβ j ∩Rα | ≤ 1
2
|Rα | and Lα ≤ Lβl . (5.3.21)

If (5.3.21) holds for l = 2, we let μ ≤m be the largest integer such that (5.3.21) holds
for all l ≤ μ . Then (5.3.21) fails for l = μ + 1; hence (5.3.20) holds for l = μ + 1;
thus

1
2
|Rα |<

μ

∑
j=1

|Rβ j ∩Rα | ≤ ∑
β∈B
Lβ≥Lα

|Rβ ∩Rα | . (5.3.22)
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If (5.3.21) fails for l = 2, then (5.3.20) holds for l = 2, and this implies that

1
2
|Rα |< |Rβ1 ∩Rα | ≤ ∑

β∈B
Lβ≥Lα

|Rβ ∩Rα | .

In either case we have

1
2
|Rα |< ∑

β∈B
Lβ≥Lα

|Rβ ∩Rα | ,

and from this it follows that there exists a k with 0≤ k <
[ log(N/64)

log2

]

such that

log2
2log(N/64)

|Rα | < ∑
β∈B
Lβ≥Lα

ωk≤|θβ−θα |<ωk+1

|Rβ ∩Rα | . (5.3.23)

By Lemma 5.3.6, for any x ∈ Rα there is a square Q such that (5.3.19) holds for any
Rβ with β ∈B satisfying Lβ ≥ Lα and ωk ≤ |θβ −θα |< ωk+1. It follows that

log2
2log(N/64)

< 64 ∑
β∈B
Lβ≥Lα

ωk≤|θβ−θα |<ωk+1

|(Rβ )∗ ∩Q|
|Q| ,

which implies for some c> 0

c
logN

<
log2

128log(N/64)
<

1
|Q|

∫

Q
∑
β∈B

χ(Rβ )∗ dx .

This proves (5.3.18), since for α ∈A \B, any x ∈ Rα must be an element of the set
{

x ∈ R2 : Mc
(

∑β∈B χ(Rβ )∗
)

(x)> c(logN)−1
}

. �

It remains to prove Lemma 5.3.6.

Proof. We fix Rα and Rβ so that Lβ ≥ Lα and we assume that Rβ intersects Rα ;
otherwise, (5.3.19) is obvious. Let τ be the angle between the directions of the rect-
angles Rα and Rβ , that is,

τ = |θα −θβ | .
By assumption we have τ < ωk+1 ≤ π

32 for all integers k < [ log(N/64)log2 ].
Let R∞β denote the smallest closed infinite strip in the direction of the longer side

of Rβ that contains it. We make the following observation: if

tanτ ≤
1
2 sα − lα
1
2 sα +Lα

, (5.3.24)
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then the strip R∞β intersects the upper side (according to Figure 5.9) of the square Q.
Indeed, the worst possible case is drawn in Figure 5.9, in which equality holds in
(5.3.24). For τ ≤ π/32 we have tanτ < 3τ/2, and since τ < 2ωk, it follows that
tanτ < 3ωk. Our choice of sα implies

sα ≥ 12ωk Lα +4 lα =⇒ 3ωk ≤
1
2 sα − lα
1
2 sα +Lα

;

hence (5.3.24) holds.

Fig. 5.9 For angles τ less
than that displayed, the strip
R∞β meets the upper side of Q.
The length of the intersection
of R∞β with the lower side of
Q is denoted by b. x

R

R

Q

α

.

β

h

b

τ

∞

We have now proved that R∞β meets the upper side of Q. We examine the size
of the intersection R∞β ∩Q. According to the picture in Figure 5.9, this intersection
contains a parallelogram of base b= lβ/cosτ and height sα −h and a right triangle
with base b and height h (with 0≤ h≤ sα ). Then we have

|R∞β ∩Q|
|Q| ≥ 1

s2α

lβ
cosτ

(

sα −h+
1
2
h
)

≥ 1
s2α

lβ
cosτ

(1
2
sα
)

≥ 1
2
lβ
sα

.

Since (Rβ )∗ has length 30Lβ and Rβ meets Rα , we have that R∞β ∩Q � (Rβ )∗ ∩Q
and therefore

|(Rβ )∗ ∩Q|
|Q| ≥ 1

2
lβ
sα

. (5.3.25)
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On the other hand, let Rα ,β be the smallest parallelogram two of whose opposite
sides are parallel to the shorter sides of Rα and whose remaining two sides are
contained in the boundary lines of R∞β . Then

|Rα ∩Rβ | ≤ |Rα ,β | ≤
lβ

cosτ
Lα ≤ 2 lβLα .

Another geometric argument shows that

|Rα ∩Rβ | ≤ lβ
lα

sin(τ)
≤ lα lβ

π
2τ

≤ lα lβ
π
2ωk

≤ 2
lα lβ
ωk

.

Combining these estimates, we deduce

|Rα ∩Rβ |
|Rα | ≤ 2min

( lβ
lα
,

lβ
ωk Lα

)

≤ 32
lβ
sα

. (5.3.26)

Finally, (5.3.25) and (5.3.26) yield (5.3.19). �

We end this subsection with an immediate corollary of the theorem just proved.

Corollary 5.3.7. For every 1< p< ∞ there exists a constant cp such that

∥
∥KN

∥
∥
Lp(R2)→Lp(R2)

≤ cp

{

N
2
p−1(logN)

1
p′ when 1< p< 2,

(logN)
1
p when 2< p< ∞.

(5.3.27)

Proof. We see that
∥
∥KN

∥
∥
L1(R2)→L1,∞(R2)

≤CN , (5.3.28)

which follows replacing a rectangle of dimensions a×aN by a square of side length
aN that contains it. Interpolating between (5.3.9) and (5.3.28), we obtain the first
statement in (5.3.27). The second statement in (5.3.27) follows by interpolation be-
tween (5.3.9) and the trivial L∞ → L∞ estimate. (In both cases we use Theorem 1.3.2
in [156].) �

5.3.3 The Higher-Dimensional Kakeya Maximal Operator

The Kakeya maximal operator without dilations K a
N on L2(R2) was crucial in the

study of the boundedness of the Bochner–Riesz operator Bλ on L4(R2). An analo-
gous maximal operator could be introduced on Rn.

Definition 5.3.8. Given fixed a> 0 and N ≥ 10, we introduce the Kakeya maximal
operator without dilations on Rn as

K a
N ( f )(x) = sup

R

1
|R|

∫

R
| f (y)|dy ,
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where the supremum is taken over all rectangular parallelepipeds (boxes) of arbitrary
orientation in Rn that contain the point x and have dimensions

a×a×·· ·×a
︸ ︷︷ ︸

n−1 times

×aN .

We also define the centered version Ka
N of K a

N as follows:

Ka
N( f )(x) = sup

R

1
|R|

∫

R
| f (y)|dy ,

where the supremum is restricted to those rectangles among the previous ones that
are centered at x. These two maximal operators are comparable, and we have

Ka
N ≤K a

N ≤ 2nKa
N

by a simple geometric argument.

We also define the higher-dimensional analogue of the Kakeya maximal operator
KN introduced in (5.3.3).

Definition 5.3.9. Let N ≥ 10. We denote by R(N) the set of all rectangular paral-
lelepipeds (boxes) in Rn with arbitrary orientation and dimensions

a×a×·· ·×a
︸ ︷︷ ︸

n−1 times

×aN

with arbitrary a> 0. Given a locally integrable function f on Rn, we define

KN( f )(x) = sup
R∈R(N)
R�x

1
|R|

∫

R
| f (y)|dy

and
KN( f )(x) = sup

R∈R(N)
R has center x

1
|R|

∫

R
| f (y)|dy ;

KN andKN are called the centered and uncentered nth-dimensional Kakeya maximal
operators, respectively.

For convenience we call rectangular parallelepipeds, i.e., elements of R(N),
higher-dimensional rectangles, or simply rectangles. We clearly have

sup
a>0

K a
N =KN and sup

a>0
Ka
N = KN ;

hence the boundedness of K a
N can be deduced from that of KN ; however, this de-

duction can essentially be reversed with only logarithmic loss in N (see the refer-
ences at the end of this chapter). In the sequel we restrict attention to the operator
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K a
N , whose study already presents all the essential difficulties and requires a novel

set of ideas in its analysis. We consider a specific value of a, since a simple dilation
argument yields that the norms of K a

N and K b
N on a fixed Lp(Rn) are equal for all

a,b> 0.
Concerning K 1

N , we know that
∥
∥K 1

N
∥
∥
L1(Rn)→L1,∞(Rn)

≤ cn Nn−1 . (5.3.29)

This estimate follows by replacing a rectangle of dimensions

n−1 times
︷ ︸︸ ︷

1×1×·· ·×1×N by
the smallest cube of side length N that contains it. This estimate is sharp; see Exer-
cise 5.3.7.

It would be desirable to know the following estimate forK 1
N :

∥
∥K 1

N
∥
∥
Ln(Rn)→Ln,∞(Rn)

≤ c′n(logN)
n−1
n (5.3.30)

for some dimensional constant c′n. It would then follow that
∥
∥K 1

N
∥
∥
Ln(Rn)→Ln(Rn)

≤ c′′n logN (5.3.31)

for some other dimensional constant c′′n ; see Exercise 5.3.8(b). Moreover, if estimate
(5.3.30) were true, then interpolating between (5.3.29) and (5.3.30) would yield the
bound

∥
∥K 1

N
∥
∥
Lp(Rn)→Lp(Rn)

≤ cn,pN
n
p−1(logN)

1
p′ , 1< p< n . (5.3.32)

It is estimate (5.3.32) that we would like to concentrate on. We have the following
result for a certain range of p’s in the interval (1,n).

Theorem 5.3.10. Let pn = n+1
2 and N ≥ 10. Then there exists a constant Cn such

that
∥
∥K 1

N
∥
∥
Lpn ,1(Rn)→Lpn ,∞(Rn)

≤ CnN
n
pn −1 , (5.3.33)

∥
∥K 1

N
∥
∥
Lpn (Rn)→Lpn ,∞(Rn)

≤ CnN
n
pn −1(logN)

1
p′n , (5.3.34)

∥
∥K 1

N
∥
∥
Lpn (Rn)→Lpn (Rn)

≤ CnN
n
pn −1(logN) . (5.3.35)

Moreover, for every 1< p< pn, there exists a constant Cn,p such that

∥
∥K 1

N
∥
∥
Lp(Rn)→Lp(Rn)

≤Cn,p N
n
p−1(logN)

1
p′ . (5.3.36)

Proof. We begin by observing that (5.3.36) is a consequence of (5.3.29) and (5.3.34)
using Theorem 1.3.2 in [156]. We also observe that (5.3.35) is a consequence of
(5.3.34), while (5.3.34) is a consequence of (5.3.33) (see Exercise 5.3.8). We there-
fore concentrate on estimate (5.3.33).
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We choose to work with the centered version K1
N ofK 1

N , which is comparable to
it. To make the geometric idea of the proof a bit more transparent, we pick δ < 1/10,
we set N = 1/δ , and we work with the equivalent operator Kδ

1/δ , whose norm is the
same as that of K 1

N . Since the operators in question are positive, we work with
nonnegative functions.

The proof is based on a linearization of the operatorK δ
1/δ . Let us call a rectangle

of dimensions δ × δ × ·· · × δ × 1 a δ -tube. We call the line segment parallel to
the longest edges that joins the centers of its two smallest faces, a δ -tube’s axis of
symmetry.

For every x in Rn we select (in some measurable way) a δ -tube τ(x) that contains
x such that

1
2
K δ

1/δ ( f )(x)≤
1

|τ(x)|
∫

τ(x)
f (y)dy .

Suppose we have a grid of cubes in Rn each of side length δ ′ = δ/(2
√
n), and let

Qj be a cube in that grid with center cQj . Then any δ -tube centered at a point z∈Qj
must contain the entire Qj, and it follows that

Kδ
1/δ ( f )(z)≤K δ

1/δ ( f )(cQj)≤
2

|τ(cQj)|
∫

τ(cQ j )
f (y)dy . (5.3.37)

This observation motivates the introduction of a grid of width δ ′ = δ/(2
√
n) in

Rn so that for every cube Qj in the grid there is an associated δ -tube τ j satisfying

τ j ∩Qj �= /0.

Then we define a linear operator

Lδ ( f ) =∑
j

(
1
|τ j|

∫

τ j
f (y)dy

)

χQj ,

which certainly satisfies

Lδ ( f )≤ 2nK 2δ
1/δ ( f )≤ 4nK2δ

1/δ ( f ) ,

and in view of (5.3.37), it also satisfies

Kδ
1/δ ( f )≤ 2Lδ ( f ) .

It suffices to show that Lδ is bounded from Lpn,1 to Lpn,∞ with constantCn(δ−1)
n
pn −1,

which is independent of the choice of δ -tubes τ j.
Our next reduction is to take f to be the characteristic function of a set. The

space Lpn,∞ is normable, i.e., it has an equivalent norm under which it is a Banach
space (Exercise 1.1.12 in [156]). Then the boundedness of Lδ from Lpn,1 to Lpn,∞ is
a consequence of the restricted weak type estimate

sup
λ>0

λ
∣
∣
{

Lδ (χA)> λ
}∣
∣

1
pn ≤C′

n(δ−1)
n
pn −1|A| 1

pn , (5.3.38)
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for some dimensional constant Cn and all sets A of finite measure (Exercise 1.4.7 in
[156]). This estimate can be written as

λ
n+1
2 δ

n−1
2 |Eλ | ≤Cn|A| , (5.3.39)

where
Eλ =

{

x ∈ Rn : Lδ (χA)(x)> λ
}

=
{

Lδ (χA)> λ
}

.

Our final reduction stems from the observation that the operator Lδ is “local.”
This means that if f is supported in a cube Q, say of side length one, then Lδ ( f ) is
supported in a fixed multiple of Q. Indeed, it is simple to verify that if x /∈ 10

√
nQ

and f is supported in Q, then Lδ ( f )(x) = 0, since no δ -tube containing x can reach
Q. For “local” operators, it suffices to prove their boundedness for functions sup-
ported in cubes of side length one; see Exercise 5.4.4. We may therefore work with
a measurable set A contained in a cube in Rn of side length one. This assumption
has as a consequence that Eλ is contained in a fixed multiple of Q, such as 10

√
nQ.

Having completed all the required reductions, we proceed by proving the re-
stricted weak type estimate (5.3.39) for sets A supported in a cube of side length
one. In proving (5.3.39) we may take λ ≤ 1; otherwise, the set Eλ is empty. We
consider the cases c0(n)δ ≤ λ and c0(n)δ > λ , for some large constant c0(n) to be
determined later. If c0(n)δ > λ , then

|Eλ | ≤C1
n (1/δ )n−1 |A|

λ
(5.3.40)

by the weak type (1,1) boundedness of Lδ with constant C1
nδ 1−n. It follows from

(5.3.40) that
C1
n |A| ≥ |Eλ |δ n−1λ > c0(n)−

n−1
2 |Eλ |λ

n+1
2 δ

n−1
2 ,

which proves (5.3.39) in this case.
We now assume c0(n)δ ≤ λ ≤ 1. Since Lδ (χA) is constant on each Qj, we have

that each Qj is either entirely contained in the set Eλ or disjoint from it. Conse-
quently, setting

E =
{

j : Qj ⊆ Eλ
}

,

we have
Eλ =

⋃

j∈E
Qj .

Hence
|E |= #

{

j : j ∈ E
}

= |Eλ |(δ ′)−n,

and for all j ∈ E we have

|τ j ∩A|> λ |τ j|= λ δ n−1 .
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It follows that

|A| sup
x

[

∑
j∈E

χτ j(x)
]

≥
∫

A
∑
j∈E

χτ j dx

= ∑
j∈E

|τ j ∩A|

> λ δ n−1|E |
= λ δ n−1 |Eλ |

(δ ′)n

= (2
√
n)n

λ |Eλ |
δ

.

Therefore, there exists an x0 in A such that

#
{

j ∈ E : x0 ∈ τ j
}

> (2
√
n)n

λ |Eλ |
δ |A| .

Let S(x0, 12 ) be a sphere of radius
1
2 centered at the point x0. We find on this sphere

a finite set of pointsΘ = {θk}k that is maximal with respect to the property that the
balls B(θk,δ ) are at distance at least 10

√
nδ from each other. Define spherical caps

Sk = S(x0, 12 )∩B(θk,δ ) .

Since the Sk’s are disjoint and have surface measure a constant multiple of δ n−1, it
follows that there are about δ 1−n such points θk.

We count the number of δ -tubes that contain x0 and intersect a fixed cap Sk. All
these δ -tubes are contained in a cylinder of length 3 and diameter c1(n)δ whose
axis of symmetry contains x0 and the center of the cap Sk. This cylinder has volume
3vn−1c1(n)n−1δ n−1, and thus it intersects at most c2(n)δ−1 cubes of the family Qj,
since the Qj’s are disjoint and all have volume equal to (δ ′)n. We deduce then that
given such a cap Sk, there exist at most c3(n)δ−1 δ -tubes (from the initial family)
that contain the point x0 and intersect Sk.

Let us call a set of δ -tubes ε-separated if for every τ and τ ′ in the set with τ �= τ ′
we have that the angle between the axis of symmetry of τ and τ ′ is at least ε > 0.
Since we have at least (2

√
n)nλ |Eλ |
δ |A| δ -tubes that contain the given point x0, and each

cap Sk is intersected by at most c3(n)δ−1 δ -tubes that contain x0, it follows that at
least c4(n)

λ |Eλ |
|A| of these δ -tubes have to intersect different caps Sk. But δ -tubes that

intersect different caps Sk and contain x0 are δ -separated. We have therefore shown
that there exist at least c4(n)

λ |Eλ |
|A| δ -separated tubes from the original family that

contain the point x0. Call T the family of these δ -tubes.
We find a maximal subset Θ ′ of the θk’s such that the balls B(θk,δ ), θk ∈Θ ′,

have distance at least 30
√
nδ

λ from each other. This is possible if λ/δ ≥ c0(n) for
some large constant c0(n) [such as c0(n) = 1000

√
n ]. We “thin out” the family T

by removing all the δ -tubes that intersect the caps Sk with θk ∈ Θ \Θ ′. In other
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words, we essentially keep in T one out of every 1/λ n−1 δ -tubes. In this way we
extract at least c5(n)

λ n |Eλ |
|A| δ -tubes from T that are 60

√
nδ

λ -separated and contain
the point x0. We denote these tubes by {τ j : j ∈F}.

We have therefore found a subsetF of E such that

x0 ∈ τ j for all j ∈F , (5.3.41)

τk ,τ j are 60
√
n
δ
λ

- separated when j,k ∈F , j �= k, (5.3.42)

|F | ≥ c5(n)
|Eλ |λ n

|A| . (5.3.43)

Notice that
∣
∣A∩ τ j ∩B(x0, λ3 )

∣
∣≤ ∣∣τ j ∩B(x0, λ3 )

∣
∣≤ 2

3
λδ n−1 ,

and since for any j ∈ E (and thus for j ∈F ) we have |A∩ τ j| > λδ n−1, it must be
the case that

∣
∣A∩ τ j ∩B(x0, λ3 )

c∣∣>
1
3
λδ n−1 . (5.3.44)

Moreover, it is crucial to note that the sets

A∩ τ j ∩B(x0, λ3 )
c , j ∈F , (5.3.45)

are pairwise disjoint. In fact, if x j and xk are points on the axes of symmetry of two
60
√
n δ
λ -separated δ -tubes τ j and τk in F such that |x j − x0| = |xk− x0| = λ

3 , then
the distance from xk to x j must be at least 10

√
nδ . This implies that the distance

between τ j ∩B(x0, λ3 )
c and τk ∩B(x0, λ3 )

c is at least 6
√
nδ > 0. We now conclude

the proof of the theorem as follows:

|A| ≥ ∣∣A∩
⋃

j∈F

(

τ j ∩B(x0, λ3 )
c)∣∣

= ∑
j∈F

∣
∣A∩ τ j ∩B(x0, λ3 )

c∣∣

≥ ∑
j∈F

λδ n−1

3

= |F | λδ
n−1

3

≥ c5(n)
|Eλ |λ n

|A|
λδ n−1

3
,

using that the sets in (5.3.45) are disjoint, (5.3.44), and (5.3.43). We conclude that

|A|2 ≥ 1
3
c5(n)λ n+1δ n−1|Eλ | ≥ c6(n)λ n+1δ n−1|Eλ |2 ,
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since, as observed earlier, the set Eλ is contained in a cube of side length 10. Taking
square roots, we obtain (5.3.39). This proves (5.3.38) and hence (5.3.35). �

Exercises

5.3.1. Let h be the characteristic function of the square [0,1]2 in R2. Prove that for
any 0< λ < 1 we have

∣
∣{x ∈ R2 : Ms(h)(x)> λ}∣∣≥ 1

λ
log

1
λ
.

Use this to show that Ms is not of weak type (1,1).

5.3.2. (a) Given a unit vector v in R2 define the directional maximal function along
�v by

M�v( f )(x) = sup
ε>0

1
2ε

∫ +ε

−ε
| f (x− t�v)|dt

wherever f is locally integrable over R2. Prove that for such f , M�v( f )(x) is well
defined for almost all x contained in any line not parallel to�v.
(b) For 1< p<∞, use the method of rotations to show thatM�v maps Lp(R2) to itself
with norm the same as that of the centered Hardy–Littlewood maximal operator M
on Lp(R).
(c) Let Σ be a finite set of directions. Prove that for all 1< p≤∞, there is a constant
Cp > 0 such that

∥
∥MΣ ( f )

∥
∥
Lp(R2)

≤Cp |Σ |
1
p
∥
∥ f
∥
∥
Lp(R2)

for all f in Lp(R2).
[

Hint: Use the inequality MΣ ( f )p ≤ ∑
�v∈Σ

[M�vM�v⊥( f )]
p.
]

5.3.3. Show that
KN ≤ 20MΣN ,

where ΣN is a set of N uniformly distributed vectors in S1.
[

Hint: Use Exercise 5.2.3.
]

5.3.4. This exercise indicates a connection between the Besicovitch construction
in Section 5.1 and the Kakeya maximal function. Recall the set E of Lemma 5.1.1,
which satisfies 1

2 ≤ |E| ≤ 3
2 .

(a) Show that there is a positive constant c such that for all N ≥ 10 we have
∣
∣
{

x ∈ R2 : KN(χE)(x)> 1
240

}∣
∣≥ c log logN .

(b) Conclude that for all 2< p< ∞ there is a constant cp such that

∥
∥KN

∥
∥
Lp(R2)→Lp(R2)

≥ cp(log logN)
1
p .
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[

Hint:Using the notation of Lemma 5.1.1, if 6 log(k+2)< 2−k+1N < 15 log(k+2),
prove that

∣
∣
{

x ∈ R2 : KN(χE)(x)> 1
240

}∣
∣≥ log(k+2) ,

by showing that the previous set contains all the disjoint rectangles Rj for j =

1,2, . . . ,2k; here k is a large positive integer. To show this, for x in
⋃2k

j=1Rj con-
sider the unique rectangle Rjx that contains x. Then |Rjx |= N (2−k+1)2, and we have

1
|Rjx |

∫

Rjx

|χE(y)|dy≥ |E ∩Rjx |
|Rjx |

≥ 1
240

,

in view of conclusion (4) in Lemma 5.1.1. Part (b): Express the Lp norm ofKN(χE)
in terms of its distribution function.

]

5.3.5. Show that MS1 is unbounded on Lp(R2) for any p< ∞.
[

Hint: You may use Proposition 5.3.4 when p ≤ 2. When p > 2 one may need
Exercise 5.3.4.

]

5.3.6. Consider the n-dimensional Kakeya maximal operator KN . Show that there
exist dimensional constants cn and c′n such that for N sufficiently large we have

∥
∥KN

∥
∥
Ln(Rn)→Ln(Rn)

≥ cn (logN) ,
∥
∥KN

∥
∥
Ln(Rn)→Ln,∞(Rn)

≥ c′n (logN)
n−1
n .

[

Hint: Consider the functions fN(x) = 1
|x|χ3≤|x|≤N and adapt the argument in Propo-

sition 5.3.4 to an n-dimensional setting.
]

5.3.7. For all 1 ≤ p < n show that there exist constants cn,p such that the n-
dimensional Kakeya maximal operator KN satisfies

∥
∥KN

∥
∥
Lp(Rn)→Lp(Rn)

≥ ∥∥KN
∥
∥
Lp(Rn)→Lp,∞(Rn)

≥ cn,p N
n
p−1 .

[

Hint: Consider the functions hN(x) = |x|− n+1
p χ3≤|x|≤N and show thatKN(hN)(x)>

c/|x| for all x in the annulus 6< |x|< N.
]

5.3.8. ([65]) Let T be a sublinear operator defined on L1(Rn)+L∞(Rn) and taking
values in a set of measurable functions. Let 10≤ N < ∞, 1< p< ∞, and a,M > 0.
(a) Suppose that

∥
∥T
∥
∥
L1→L1,∞ ≤ C1Na ,

∥
∥T
∥
∥
Lp,1→Lp,∞ ≤ M,

∥
∥T
∥
∥
L∞→L∞ ≤ 1 .

Show that
∥
∥T
∥
∥
Lp→Lp,∞ ≤C(a, p,C1)M (logN)

1
p′ .
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(b) Suppose that
∥
∥T
∥
∥
L1→L1,∞ ≤ C1Na ,

∥
∥T
∥
∥
Lp→Lp,∞ ≤ M,

∥
∥T
∥
∥
L∞→L∞ ≤ 1 .

Show that
∥
∥T
∥
∥
Lp→Lp ≤C′(a, p,C1)M(logN)

1
p .

[

Hint: Part (a): Split f = f1+ f2+ f3, where f3 = f χ| f |≤ λ
4
, f2 = f χλ

4 <| f |≤Lλ , and

f1 = f χ| f |>Lλ , where Lp−1 = Na. Use the weak type (1,1) estimate for f1 and the
restricted weak type (p, p) estimate for f2 and note that the measure of the set
{|T ( f3)|> λ/3} is zero. One needs the auxiliary result

∥
∥ f χa<| f |≤b

∥
∥
Lp,1 ≤C(p)(1+ log b

a )
1
p′
∥
∥ f
∥
∥
Lp ,

which can be proved as follows. Use the identity of Proposition 1.4.9 in [156]. Note
that d f χa<| f |≤b(s) = d f (a) when s≤ a, d f χa<| f |≤b(s) = d f (s)−d f (b) when a< s≤ b,
and d f χa<| f |≤b(s) = 0 when s> b. It follows that

∥
∥ f χa<| f |≤b

∥
∥
Lp,1 ≤ ad f (a)

1
p +

∫ b

a
d f (t)

1
p dt ≤ 2

∫ a

a
2

d f (t)
1
p dt+

∫ b

a
d f (t)

1
p dt ,

from which the claimed estimate follows by Hölder’s inequality. Part (b): Use the
same splitting and the method employed in the proof of Theorem 5.3.5.

]

5.4 Fourier Transform Restriction and Bochner–Riesz Means

If g is a continuous function on Rn, its restriction to a hypersurface S⊆Rn is a well-
defined function. By a hypersurface we mean a submanifold of Rn of dimension
n−1. So, if f is an integrable function on Rn, its Fourier transform f̂ is continuous
and hence its restriction f̂

∣
∣
S on S is well defined.

Definition 5.4.1. Let 1 ≤ p,q ≤ ∞. We say that a compact hypersurface S in Rn

satisfies a (p,q) restriction theorem if the restriction operator

f → f̂
∣
∣
S ,

which is initially defined on L1(Rn)∩Lp(Rn), has an extension that maps Lp(Rn)
boundedly into Lq(S). The norm of this extension may depend on p,q,n, and S. If S
satisfies a (p,q) restriction theorem, we write that property Rp→q(S) holds. We say
that property Rp→q(S) holds with constantC if for all f ∈ L1(Rn)∩Lp(Rn) we have

∥
∥ f̂
∥
∥
Lq(S) ≤C

∥
∥ f
∥
∥
Lp(Rn)

.
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Example 5.4.2. Property R1→∞(S) holds for any compact hypersurface S.

We denote byR( f ) = f̂
∣
∣
S the restriction of the Fourier transform on a hypersur-

face S. Let dσ be the canonically induced surface measure on S. Then for a function
ϕ defined on S we have

∫

S
f̂ ϕ dσ =

∫

Rn
f̂ (̂ϕ dσ)∨ dξ =

∫

Rn
f ̂ϕ dσ dx ,

which says that the transpose of the linear operator R is the linear operator

Rt(ϕ) = ̂ϕ dσ . (5.4.1)

By duality, we easily see that a (p,q) restriction theorem for a compact hypersurface
S is equivalent to the following (q′, p′) extension theorem for S:

Rt : Lq
′
(S)→ Lp′(Rn) .

Our objective is to determine all pairs of indices (p,q) for which the sphere Sn−1

satisfies a (p,q) restriction theorem. It becomes apparent in this section that this
problem is relevant in the understanding of the norm convergence of the Bochner–
Riesz means.

5.4.1 Necessary Conditions for Rp→q(Sn−1) to Hold

We look at basic examples that impose restrictions on the indices p,q in order
for Rp→q(Sn−1) to hold. We first make an observation. If Rp→q(Sn−1) holds, then
Rp→s(Sn−1) for any s≤ q.

Example 5.4.3. Let dσ be surface measure on the unit sphere Sn−1. Using the iden-
tity in Appendix B.4 in [156], we have

d̂σ(ξ ) =
2π

|ξ | n−2
2
Jn−2

2
(2π|ξ |) .

In view of the asymptotics in Appendix B.8 in [156], the last expression is equal to

2

|ξ | n−1
2

cos(2π|ξ |− π(n−1)
4 )+O(|ξ |− n+1

2 )

as |ξ | → ∞. It follows that Rt(1)(ξ ) = d̂σ(ξ ) does not lie in Lp′(Rn) if n−1
2 p′ ≤ n

and n+1
2 p′ > n. Thus Rp→q(Sn−1) fails when 2n

n+1 ≤ p < 2n
n−1 . Since R1→q(Sn−1)

holds for all q ∈ [1,∞], by interpolation we deduce that Rp→q(Sn−1) fails when p≥
2n
n+1 . We conclude that a necessary condition for Rp→q(Sn−1) to hold is that
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1≤ p<
2n

n+1
. (5.4.2)

In addition to this condition, there is another necessary condition for Rp→q(Sn−1)
to hold. This is a consequence of the following revealing example.

Example 5.4.4. Let ϕ be a Schwartz function on Rn such that ϕ̂ ≥ 0 and ϕ̂(ξ )≥ 1
for all ξ in the closed ball |ξ | ≤ 2. For N ≥ 1 define functions

fN(x1,x2, . . . ,xn−1,xn) = ϕ
(x1
N
,
x2
N
, . . . ,

xn−1

N
,
xn
N2

)

.

To test property Rp→q(Sn−1), instead of working with Sn−1, we may work with the
translated sphere S= Sn−1+(0,0, . . . ,0,1) in Rn (cf. Exercise 5.4.2(a)). We have

f̂N(ξ ) = Nn+1ϕ̂(Nξ1,Nξ2, . . . ,Nξn−1,N2ξn) .

We note that for all ξ = (ξ1, . . . ,ξn) in the spherical cap

S′ = S∩{ξ ∈ Rn : ξ 2
1 + · · ·+ξ 2

n−1 ≤ N−2 and ξn < 1} , (5.4.3)

we have ξn ≤ 1− (1− 1
N2 )

1
2 ≤ 1

N2 and therefore

|(Nξ1,Nξ2, . . . ,Nξn−1,N2ξn)| ≤ 2 .

This implies that for all ξ in S′ we have f̂N(ξ ) ≥ Nn+1. But the spherical cap S′ in
(5.4.3) has surface measure c(N−1)n−1. We obtain

∥
∥ f̂N

∥
∥
Lq(S) ≥

∥
∥ f̂N

∥
∥
Lq(S′) ≥ c

1
q Nn+1N

1−n
q .

On the other hand, ‖ fN‖Lp(Rn) = ‖ϕ‖Lp(Rn)N
n+1
p . Therefore, if Rp→q(Sn−1) holds,

we must have
∥
∥ϕ
∥
∥
Lp(Rn)

N
n+1
p ≥Cc

1
q Nn+1N

1−n
q ,

and letting N → ∞, we obtain the following necessary condition on p and q for
Rp→q(Sn−1) to hold:

1
q
≥ n+1

n−1
1
p′
. (5.4.4)

We have seen that the restriction property Rp→q(Sn−1) fails in the shaded region
of Figure 5.10 but obviously holds on the closed line segment CD. It remains to
investigate the validity of property Rp→q(Sn−1) for ( 1p ,

1
q ) in the unshaded region of

Figure 5.10.
It is a natural question to ask whether the restriction property Rp→q(Sn−1) holds

on the line segment BD minus the point B in Figure 5.10, i.e., the set

{

(p,q) :
1
q
=

n+1
n−1

1
p′

1≤ p<
2n

n+1

}

. (5.4.5)
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1
2

1

2n

2

n+1

2n
n+1

1

10
p

q
1

1

A

B

C

2(n+1)
n+3

E

D

G

Fig. 5.10 The restriction property Rp→q(Sn−1) fails in the shaded region and on the closed line
segment AB but holds on the closed line segmentCD and could hold on the open line segment BD
and inside the unshaded region.

If property Rp→q(Sn−1) holds for all points in this set, then it will also hold in the
closure of the quadrilateral ABDC minus the closed segment AB.

5.4.2 A Restriction Theorem for the Fourier Transform

In this subsection we establish the following restriction theorem for the Fourier
transform.

Theorem 5.4.5. Property Rp→q(Sn−1) holds for the set

{

(p,q) :
1
q
=

n+1
n−1

1
p′
, 1≤ p≤ 2(n+1)

n+3

}

(5.4.6)

and therefore for the closure of the quadrilateral with vertices E, G, D, and C in
Figure 5.10.

Proof. The case p= 1 and q= ∞ is trivial. Therefore, we need to establish only the
case p= 2(n+1)

n+3 and q= 2, since the remaining cases follow by interpolation and by
the fact that the sphere has finite measure.
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Using Plancherel’s identity and Hölder’s inequality, we obtain

∥
∥ f̂
∥
∥2
L2(Sn−1)

=
∫

Sn−1
f̂ (ξ ) f̂ (ξ )dσ(ξ )

=
∫

Rn
f (x)( f ∗dσ∨)(x)dx

≤ ∥∥ f∥∥Lp(Rn)

∥
∥ f ∗dσ∨∥∥

Lp′ (Rn)
.

To establish the required conclusion it is enough to show that

∥
∥ f ∗dσ∨∥∥

Lp′ (Rn)
≤Cn

∥
∥ f
∥
∥
Lp(Rn)

when p=
2(n+1)
n+3

. (5.4.7)

To obtain this estimate we need to split the sphere into pieces. Each hyperplane
ξk = 0 cuts the sphere Sn−1 into two hemispheres, which we denote by H1

k and H2
k .

We introduce a finite smooth partition of unity {ϕ j} j of Rn with the property that
for any j there exist k ∈ {1,2, . . . ,n} and l ∈ {1,2} such that

(supportϕ j)∩Sn−1
� Hl

k ;

that is, the support of each ϕ j intersected with the sphere Sn−1 is properly contained
in some hemisphere Hl

k. Then the family of all ϕ j whose support meets Sn−1 forms
a finite partition of unity of the sphere when restricted to it. We therefore write

dσ = ∑
j∈F

ϕ j dσ ,

where F is a finite set. If we obtain (5.4.7) for each measure ϕ jdσ instead of dσ ,
then (5.4.7) follows by summing on j. We fix such a measure ϕ j dσ , which, without
loss of generality, we assume is supported in {ξ ∈ Sn−1 : ξn > c} � H1

n for some
c ∈ (0,1). In the sequel we write elements x ∈Rn as x= (x′, t), where x′ ∈Rn−1 and
t ∈ R. Then for x ∈ Rn we have

(ϕ j dσ)∨(x) =
∫

Sn−1
ϕ j(ξ )e2πix·ξ dσ(ξ ) =

∫

ξ ′∈Rn−1

|ξ ′|2≤1−c2

e2πix·ξ
ϕ j
(

ξ ′,
√

1−|ξ ′|2 )dξ ′
√

1−|ξ ′|2 ,

where ξ = (ξ ′,ξn); for the last identity we refer to Appendix D.5 in [156]. Writing
x= (x′, t) ∈ Rn−1×R, we have

(ϕ j dσ)∨(x′, t) =
∫

ξ ′∈Rn−1

|ξ ′|2≤1−c2

e2πix
′·ξ ′ e2πit

√
1−|ξ ′|2 ϕ j

(

ξ ′,
√

1−|ξ ′|2 )
√

1−|ξ ′|2 dξ ′

=

(

e2πit
√

1−|ξ ′|2 ϕ j
(

ξ ′,
√

1−|ξ ′|2 )
√

1−|ξ ′|2
)�

(x′) ,

(5.4.8)
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where � indicates the inverse Fourier transform in the ξ ′ variable. For each t ∈ R
we introduce a function on Rn−1 by setting

Kt(x′) = (ϕ j dσ)∨(x′, t) .

We observe that identity (5.4.8) and the fact that 1−|ξ ′|2 ≥ c2 > 0 on the support
of ϕ j imply that

sup
t∈R

sup
ξ ′∈Rn−1

|(Kt)
�(ξ ′)| ≤Cn < ∞ , (5.4.9)

where � indicates the Fourier transform on Rn−1. We also have that

Kt(x′) = (ϕ j dσ)∨(x′, t) =
(

ϕ∨
j ∗dσ∨)(x′, t) .

Since ϕ∨
j is a Schwartz function on Rn and

|dσ∨(x′, t)| ≤C (1+ |(x′, t)|)− n−1
2

(see Appendices B.4, B.6, and B.7 in [156]), it follows that

|Kt(x′)| ≤C(1+ |(x′, t)|)− n−1
2 ≤C(1+ |t|)− n−1

2 (5.4.10)

for all x′ ∈Rn−1 (cf. Exercise 2.2.4 in [156]). Estimate (5.4.9) says that the operator
given by convolution with Kt maps L2(Rn−1) to itself with norm at most a constant,
while (5.4.10) says that the same operator maps L1(Rn−1) to L∞(Rn−1) with norm at
most a constant multiple of (1+ |t|)− n−1

2 . Interpolating between these two estimates
yields

∥
∥Kt �g

∥
∥
Lp′ (Rn−1)

≤Cp,n|t|−(n−1)( 1p− 1
2 )
∥
∥g
∥
∥
Lp(Rn−1)

for all 1≤ p≤ 2, where � denotes convolution on Rn−1 (and ∗ convolution on Rn).
We now return to the proof of the required estimate (5.4.7) in which dσ∨ is

replaced by (ϕ j dσ)∨. Let f (x) = f (x′, t) be a function on Rn. We have

∥
∥ f ∗ (ϕ j dσ)∨

∥
∥
Lp′ (Rn)

=

∥
∥
∥
∥
∥

∥
∥
∥
∥

∫

R
f ( · ,τ)�Kt−τ dτ

∥
∥
∥
∥
Lp′ (Rn−1)

∥
∥
∥
∥
∥
Lp′ (R)

≤
∥
∥
∥
∥
∥

∫

R

∥
∥
∥ f ( · ,τ)�Kt−τ

∥
∥
∥
Lp′ (Rn−1)

dτ

∥
∥
∥
∥
∥
Lp′ (R)

≤ Cp,n

∥
∥
∥
∥
∥

∫

R

∥
∥ f ( · ,τ)∥∥Lp(Rn−1)

|t− τ |(n−1)( 1p− 1
2 )

dτ

∥
∥
∥
∥
∥
Lp′ (R)

= Cp,n

∥
∥
∥Iβ
(∥
∥ f ( · , t)∥∥Lp(Rn−1)

)∥
∥
∥
Lp′ (R,dt)

,
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where
β = 1− (n−1)(

1
p
− 1

2
)

and Iβ is the Riesz potential (or fractional integral) given in Definition 1.2.1. Using
Theorem 1.2.3 with s = β , n = 1, and q = p′, we obtain that the last displayed
equation is bounded by a constant multiple of

∥
∥
∥‖ f ( · , t)

∥
∥
Lp(Rn−1)

∥
∥
∥
Lp(R,dt)

=
∥
∥ f
∥
∥
Lp(Rn)

.

The condition 1
p− 1

q =
s
n on the indices p,q,s,n assumed in Theorem 1.2.3 translates

exactly to
1
p
− 1

p′
=

β
1
= 1− n−1

p
− n−1

2
,

which is equivalent to p = 2(n+1)
n+3 . This concludes the proof of estimate (5.4.7)

in which the measure σ∨ is replaced by (ϕ j dσ)∨. Estimates for the remaining
(ϕ j dσ)∨ follow by a similar argument in which the role of the last coordinate is
played by some other coordinate. The final estimate (5.4.7) follows by summing j
over the finite set F . The proof of the theorem is now complete. �

5.4.3 Applications to Bochner–Riesz Multipliers

We now apply the restriction theorem obtained in the previous subsection to the
Bochner–Riesz problem. In this subsection we prove the following result.

Theorem 5.4.6. For Reλ > n−1
2(n+1) , the Bochner–Riesz operator B

λ is bounded on
Lp(Rn) for p in the optimal range

2n
n+1+2Reλ

< p<
2n

n−1−2Reλ
.

Proof. The proof is based on the following two estimates:
∥
∥Bλ

∥
∥
L1(Rn)→L1(Rn)

≤C1(Reλ ) ec0|Imλ |2 when Reλ > n−1
2 , (5.4.11)

∥
∥Bλ

∥
∥
Lp(Rn)→Lp(Rn)

≤C2(Reλ ) ec0|Imλ |2 when Reλ > n−1
2(n+1) , (5.4.12)

where p = 2(n+1)
n+3 and C1, C2 are constants that depend on n and Reλ , while c0 is

an absolute constant. Once (5.4.11) and (5.4.12) are known, the required conclusion
is a consequence of Theorem 1.3.7 in [156]. Recall that Bλ is given by convolution
with the kernel Kλ defined in (5.2.1). This kernel satisfies

|Kλ (x)| ≤C3(Reλ )ec0|Imλ |2(1+ |x|)− n+1
2 −Reλ (5.4.13)
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in view of the estimates in Appendices B.6 and B.7 in [156]. Then (5.4.11) follows
easily from (5.4.13) and we focus our attention on (5.4.12).

The key ingredient in the proof of (5.4.12) is a decomposition of the kernel.
But first we isolate the smooth part of the multiplier near the origin and we focus
attention on the part of it near the boundary of the unit disk. Precisely, we start with
a Schwartz function 0≤ η ≤ 1 supported in the ball B(0, 34 ) that is equal to 1 on the
smaller ball B(0, 12 ). Then we write

mλ (ξ ) = (1−|ξ |2)λ+ = (1−|ξ |2)λ+η(ξ )+(1−|ξ |2)λ+(1−η(ξ )) .

Since the function (1−|ξ |2)λ+η(ξ ) is smooth and compactly supported, it is an Lp

Fourier multiplier for all 1 < p < ∞, with norm that is easily seen to grow poly-
nomially in |λ | (via Theorem 6.2.7 in [156]). We therefore need to concentrate on
the nonsmooth piece of the multiplier (1−|ξ |2)λ+(1−η(ξ )), which is supported in
B(0, 12 )

c. Let

Kλ (x) =
(

(1−|ξ |2)λ+(1−η(ξ ))
)∨

(x)

be the kernel of the nonsmooth piece of the multiplier.
We pick a smooth radial function ϕ with support inside the ball B(0,2) that is

equal to 1 on the closed unit ball B(0,1). For j = 1,2, . . . we introduce functions

ψ j(x) = ϕ(2− jx)−ϕ(2− j+1x)

supported in the annuli 2 j−1 ≤ |x| ≤ 2 j+1. Then we write

Kλ ∗ f = T λ
0 ( f )+

∞

∑
j=1

T λ
j ( f ) , (5.4.14)

where T λ
0 is given by convolution with ϕKλ and each T λ

j is given by convolution
with ψ jKλ .

We begin by examining the kernel ϕKλ . Introducing a compactly supported func-
tion ζ that is equal to 1 on B(0, 32 ), we write

Kλ =
(

(1−| · |2)λ+(1−η)ζ
)∨

=
(

(1−| · |2)λ+
)∨ ∗ ((1−η)ζ

)∨

= Kλ ∗
(

(1−η)ζ
)∨

.

Using this and (5.4.13) implies that Kλ is a bounded function, and thus ϕKλ is
bounded and compactly supported. Thus the operator T λ

0 is bounded on all the Lp

spaces, 1≤ p≤ ∞, with a bound that grows at most exponentially in |Imλ |2.
Next we study the boundedness of the operators T λ

j ; here the dependence on the
index j plays a role. Fix p < 2 as in the statement of the theorem. Our goal is to
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show that there exist positive constants C,δ (depending only on n and Reλ ) such
that for all functions f in Lp(Rn) we have

∥
∥T λ

j ( f )
∥
∥
Lp(Rn)

≤Cec0|Imλ |22− jδ∥∥ f
∥
∥
Lp(Rn)

. (5.4.15)

Once (5.4.15) is established, the Lp boundedness of the operator f �→Kλ ∗ f follows
by summing the series in (5.4.14).

As a consequence of (5.4.13) we obtain that

|Kλ
j (x)| ≤ C3(Reλ ) ec0|Imλ |2 (1+ |x|)− n+1

2 −Reλ |ψ j(x)|
≤ C′2−( n+1

2 +Reλ ) j ,
(5.4.16)

since ψ j(x) = ψ(2− jx) and ψ is supported in the annulus 1
2 ≤ |x| ≤ 2. From this

point on, we tacitly assume that the constants containing a prime grow at most ex-
ponentially in |Imλ |2. Since Kλ

j is supported in a ball of radius 2 j+1 and satisfies
(5.4.16), we deduce the estimate

∥
∥̂Kλ

j

∥
∥2
L2 =

∥
∥Kλ

j
∥
∥2
L2 ≤C′′2−(n+1+2Reλ ) j2n j =C′′2−(1+2Reλ ) j . (5.4.17)

We need another estimate for ̂Kλ
j . We claim that for all M ≥ n+ 1 there is a

constant CM such that
∫

|ξ |≤ 1
8

|̂Kλ
j (ξ )|2|ξ |−β dξ ≤CM,n,β 2

−2 j(M−n) , β < n. (5.4.18)

Indeed, since ̂Kλ (ξ ) is supported in |ξ | ≥ 1
2 [recall that the function η was chosen

equal to 1 on B(0, 12 )], we have

|̂Kλ
j (ξ )|= |(̂Kλ ∗ ψ̂ j)(ξ )| ≤ 2 jn

∫

1
2≤|ξ−ω|≤1

(1−|ξ −ω|2)Reλ+ |ψ̂(2 jω)|dω .

Suppose that |ξ | ≤ 1
8 . Since |ξ −ω| ≥ 1

2 , we must have |ω| ≥ 3
8 . Then

|ψ̂(2 jω)| ≤CM(2 j|ω|)−M ≤ (8/3)MCM2− jM ,

from which it follows easily that

sup
|ξ |≤ 1

8

|̂Kλ
j (ξ )| ≤C′

M2
− j(M−n) . (5.4.19)

Then (5.4.18) is a consequence of (5.4.19) and of the fact that the function |ξ |−β is
integrable near the origin.

We now return to estimate (5.4.15). A localization argument (Exercise 5.4.4) al-
lows us to reduce estimate (5.4.15) to functions f that are supported in a cube of
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side length 2 j. Let us therefore assume that f is supported in some cube Q of side
length 2 j. Then T λ

j ( f ) is supported in 5Q and we have for 1 ≤ p < 2 by Hölder’s
inequality

∥
∥T λ

j ( f )
∥
∥2
Lp(5Q) ≤ |5Q|2( 1p− 1

2 )
∥
∥T λ

j ( f )
∥
∥2
L2(5Q)

≤ Cn2
( 1p− 1

2 )2n j
∥
∥̂Kλ

j f̂
∥
∥2
L2 .

(5.4.20)

Having returned to L2, we are able to use the Lp → L2 restriction theorem obtained
in the previous subsection. To this end we use polar coordinates and the fact that Kλ

j
is a radial function to write

∥
∥̂Kλ

j f̂
∥
∥2
L2 =

∫ ∞

0
|̂Kλ

j (re1)|2
(∫

Sn−1
| f̂ (rθ)|2 dθ

)

rn−1dr , (5.4.21)

where e1 = (1,0, . . . ,0) ∈ Sn−1. Since the restriction of the function x �→ r−n f (x/r)
on the sphere Sn−1 is f̂ (rθ), we have

∫

Sn−1
| f̂ (rθ)|2 dθ ≤C2

p,n

[∫

Rn
r−np| f (x/r)|p dx

] 2
p

=C2
p,n r

− 2n
p′
∥
∥ f
∥
∥2
Lp , (5.4.22)

where Cp,n is the constant in Theorem 5.4.5 that holds whenever p ≤ 2(n+1)
n+3 . So

assuming p≤ 2(n+1)
n+3 and inserting estimate (5.4.22) in (5.4.21) yields

∥
∥̂Kλ

j f̂
∥
∥2
L2 ≤ C2

p,n
∥
∥ f
∥
∥2
Lp

∫ ∞

0
|̂Kλ

j (re1)|2r
n−1− 2n

p′ dr

≤ C2
p,n

ωn−1

∥
∥ f
∥
∥2
Lp

∫

Rn
|̂Kλ

j (ξ )|2|ξ |
− 2n

p′ dξ ,
(5.4.23)

where ωn−1 = |Sn−1|. Appealing to estimate (5.4.18) for |ξ | ≤ 1
8 with β = 2n

p′ < n
(since p< 2) and to estimate (5.4.17) for |ξ | ≥ 1

8 , we obtain

∥
∥̂Kλ

j f̂
∥
∥2
L2 ≤C′′′ 2−(1+2Reλ ) j∥∥ f

∥
∥2
Lp .

Combining this inequality with the one previously obtained in (5.4.20) yields
(5.4.15) with

δ =
n+1
2

+Reλ − n
p
.

This number is positive exactly when 2n
n+1+2Reλ < p. This was the condition assumed

by the theorem when p< 2. The other condition Reλ > n−1
2(n+1) is naturally imposed

by the restriction p≤ 2(n+1)
n+3 . Finally, the analogous result in the range p> 2 follows

by duality. �
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5.4.4 The Full Restriction Theorem on R2

In this section we prove the validity of the restriction condition Rp→q(S1) in dimen-
sion n= 2, for the full range of exponents suggested by Figure 5.10.

To achieve this goal, we “fatten” the circle by a small amount 2δ . Then we obtain
a restriction theorem for the “fattened circle” and then obtain the required estimate
by taking the limit as δ → 0. Precisely, we use the fact

∫

S1
| f̂ (ω)|q dω = lim

δ→0

1
2δ

∫ 1+δ

1−δ

∫

S1
| f̂ (rθ)|q dθ r dr (5.4.24)

to recover the restriction theorem for the circle from a restriction theorem for annuli
of width 2δ .

Throughout this subsection, δ is a number satisfying 0< δ < 1
1000 , and for sim-

plicity we use the notation

χδ (ξ ) = χ(1−δ ,1+δ )(|ξ |) , ξ ∈ R2 .

We note that in view of identity (5.4.24), the restriction property Rp→q(S1) is a
trivial consequence of the estimate

1
2δ

∫ ∞

0

∫

S1
|χδ (rθ) f̂ (rθ)|q dθ r dr ≤Cq∥∥ f

∥
∥q
Lp , (5.4.25)

or, equivalently, of
∥
∥χδ f̂

∥
∥
Lq(R2)

≤ (2δ )
1
qC
∥
∥ f
∥
∥
Lp(R2)

. (5.4.26)

We have the following result.

Theorem 5.4.7. (a) Given 1 ≤ p < 4
3 , set q =

p′
3 . Then there is a constant Cp such

that for all Lp functions f on R2 and all small positive δ we have

∥
∥χδ f̂

∥
∥
Lq(R2)

≤Cpδ
1
q
∥
∥ f
∥
∥
Lp(R2)

. (5.4.27)

(b) When p= q= 4/3, there is a constant C such that for all L4/3 functions f on R2

and all small δ > 0 we have
∥
∥χδ f̂

∥
∥

L
4
3 (R2)

≤Cδ
3
4 (log 1

δ )
1
4
∥
∥ f
∥
∥

L
4
3 (R2)

. (5.4.28)

Proof. To prove this theorem, we work with the extension operator

Eδ (g) = ̂χδg= ̂χδ ∗ ĝ ,

which is dual (i.e., transpose) to f �→ χδ f̂ , and we need to show that

∥
∥Eδ ( f )

∥
∥
Lp′ (R2)

≤Cδ
1
q (log 1

δ )
β∥∥ f

∥
∥
Lq′ (R2)

, (5.4.29)

where β = 1
4 when p= 4

3 and β = 0 when p< 4
3 .
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We employ a splitting similar to that used in Theorem 5.2.4, with the only differ-
ence being that the present partition of unity is nonsmooth and hence simpler. We
define functions

χδ� (ξ ) = χδ (ξ )χ2π�δ 1/2≤Arg ξ<2π(�+1)δ 1/2

for � ∈ {0,1, . . . , [δ−1/2]}. We suitably adjust the support of the function χδ
[δ−1/2]

so

that the sum of all these functions equals χδ . We now split the indices that appear
in the set {0,1, . . . , [δ−1/2]} into nine different subsets so that the supports of the
functions indexed by them are properly contained in some sector centered at the ori-
gin of amplitude π/4. We therefore write Eδ as a sum of nine pieces, each properly
supported in a sector of amplitude π/4. Let I be the set of indices that correspond
to one of these nine sectors and let

Eδ
I ( f ) =∑

�∈I
̂χδ� f .

It suffices therefore to obtain (5.4.29) for each Eδ
I in lieu of Eδ . Let us fix such an

index set I and without loss of generality we assume that

I = {0,1, . . . , [ 18δ−1/2]} .

Since the theorem is trivial when p= 1, to prove part (a) we fix a number p with
1< p< 4

3 . We set
r = (p′/2)′

and we observe that this r satisfies 1
r =

1
p′ +

1
q′ . We note that 1< r< 2 and we apply

the Hausdorff–Young inequality ‖h‖Lr′ ≤ ‖h∨‖Lr . We have

∥
∥Eδ

I ( f )
∥
∥p

′
Lp′ (R2)

=
∫

R2
|Eδ

I ( f )
2|r′ dx

≤
(∫

R2
|(Eδ

I ( f )
2)∨|r dx

) r′
r

=

(∫

R2

∣
∣
∣∑
�∈I
∑
�′∈I

(χδ� f )∗ (χδ�′ f )
∣
∣
∣

r
dx
) r′

r

.

(5.4.30)

We obtain the estimate

(∫

R2

∣
∣
∣∑
�∈I
∑
�′∈I

(χδ� f )∗ (χδ�′ f )
∣
∣
∣

r
dx
) r′

r

≤Cδ
p′
q
∥
∥ f
∥
∥p

′
Lq′ (R2)

, (5.4.31)

which suffices to prove the theorem.
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Denote by Sδ ,�,�′ the support of χδ� ∗ χδ�′ . Then we write the left-hand side of
(5.4.31) as

(∫

R2

∣
∣
∣∑
�∈I
∑
�′∈I

(

(χδ� f )∗ (χδ�′ f )
)

χSδ ,�,�′
∣
∣
∣

r
dx
) r′

r

, (5.4.32)

which, via Hölder’s inequality, is controlled by

(∫

R2

(

∑
�∈I
∑
�′∈I

∣
∣(χδ� f )∗ (χδ�′ f )

∣
∣r
) r

r
(

∑
�∈I
∑
�′∈I

∣
∣χSδ ,�,�′

∣
∣r

′) r
r′ dx

) r′
r

. (5.4.33)

We now recall Lemma 5.2.5, in which the curvature of the circle was crucial. In
view of that lemma, the second factor of the integrand in (5.4.33) is bounded by a
constant independent of δ . We have therefore obtained the estimate

∥
∥Eδ

I ( f )
∥
∥p

′
Lp′ ≤C

(

∑
�∈I
∑
�′∈I

∫

R2

∣
∣(χδ� f )∗ (χδ�′ f )

∣
∣r dx

) r′
r

. (5.4.34)

We prove at the end of this section the following auxiliary result.

Lemma 5.4.8. With the same notation as in the proof of Theorem 5.4.7, for any
1< r < ∞, there is a constant C (independent of δ and f ) such that

∥
∥(χδ� f )∗ (χδ�′ f )

∥
∥
Lr ≤C

(
δ 3

2

|�− �′|+1

) 1
r′ ∥
∥χδ� f

∥
∥
Lr
∥
∥χδ�′ f

∥
∥
Lr (5.4.35)

for all �,�′ ∈ I = {0,1, . . . , [ 18δ−1/2]} .
Assuming Lemma 5.4.8 and using (5.4.34), we write

∥
∥Eδ

I ( f )
∥
∥p

′
Lp′ ≤Cδ

3
2

[

∑
�∈I

∥
∥χδ� f

∥
∥r
Lr

(

∑
�′∈I

∥
∥χδ�′ f

∥
∥r
Lr

(|�− �′|+1)
r
r′

)] r′
r

≤Cδ
3
2

[

∑
�∈I

∥
∥χδ� f

∥
∥rs
Lr

] r′
rs
[

∑
�∈I

(

∑
�′∈I

∥
∥χδ�′ f

∥
∥r
Lr

(|�− �′|+1)
r
r′

)s′] r′
rs′
,

(5.4.36)

where we used Hölder’s inequality for some 1 < s < ∞. We now recall the discrete
fractional integral operator

{a j} j �→
{

∑
j′

a j′

(| j− j′|+1)1−α
}

j
,

which maps �s(Z) to �s′(Z) (see Exercise 1.2.10) when

1
s
− 1

s′
= α , 0< α < 1 . (5.4.37)
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When 1 < p < 4
3 , we have 1 < r < 2, and choosing α = 2− r = 1− r

r′ , we obtain
from (5.4.36) that

∥
∥Eδ

I ( f )
∥
∥p

′
Lp′ ≤ C′δ

3
2

[

∑
�∈I

∥
∥χδ� f

∥
∥rs
Lr

] r′
rs
[

∑
�∈I

∥
∥χδ� f

∥
∥rs
Lr

] r′
rs

= C′δ
3
2

[

∑
�∈I

∥
∥χδ� f

∥
∥rs
Lr

] 2r′
rs

. (5.4.38)

The unique s that solves equation (5.4.37) is seen easily to be s = q′/r. Moreover,
since q = p′/3, we have 1 < s < 2. We use again Hölder’s inequality to pass from
‖χδ� f‖Lr to ‖χδ� f‖Lq′ . Indeed, recalling that the support of χδ� has measure ≈ δ 3

2 ,
we have

∥
∥χδ� f

∥
∥
Lr ≤C(δ

3
2 )

1
r− 1

q′
∥
∥χδ� f

∥
∥
Lq′ .

Inserting this in (5.4.38) yields

∥
∥Eδ

I ( f )
∥
∥p

′
Lp′ ≤ Cδ

3
2

[

∑
�∈I

(

C(δ
3
2 )

1
r− 1

q′
∥
∥χδ� f

∥
∥
Lq′
)rs
] 2r′

rs

= C′δ
3
2 (δ

3
2 )

2r′( 1r− 1
q′ )
[

∑
�∈I

∥
∥χδ� f

∥
∥q

′
Lq′

] 2r′
q′

≤ Cδ 3∥∥ f
∥
∥p

′
Lq′

= Cδ
p′
q
∥
∥ f
∥
∥p

′
Lq′ ,

which is the required estimate since 1
r =

1
p′ +

1
q′ and p′ = 2r′. In the last inequality

we used the fact that the supports of the functions χδ� are disjoint and that these add
up to a function that is at most 1.

To prove part (b) of the theorem, we need to adjust the previous argument to
obtain the case p = 4

3 . Here we repeat part of the preceding argument taking r =
r′ = s= s′ = 2.

Using (5.4.34) with p = 4
3 (which forces r to be equal to 2) and Lemma 5.4.8

with r = 2 we write

∥
∥EI( f )

∥
∥4
L4(R2)

≤ Cδ
3
2

[

∑
�∈I

∥
∥χδ� f

∥
∥2
L2

(

∑
�′∈I

∥
∥χδ�′ f

∥
∥2
L2

|�− �′|+1

)]

≤ Cδ
3
2

[

∑
�∈I

∥
∥χδ� f

∥
∥4
L2

] 1
2
[

∑
�∈I

(

∑
�′∈I

∥
∥χδ�′ f

∥
∥2
L2

|�− �′|+1

)2 ] 1
2

≤ Cδ
3
2

[

∑
�∈I

∥
∥χδ� f

∥
∥4
L2

] 1
2
[

∑
�∈I

∥
∥χδ� f

∥
∥4
L2

] 1
2
[

∑
�∈I

1
|�|+1

]
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≤ Cδ
3
2

[

∑
�∈I

∥
∥χδ� f

∥
∥4
L2

]

log(δ− 1
2 )

≤ Cδ
3
2 (δ

3
2 )(

1
2− 1

4 )4
[

∑
�∈I

∥
∥χδ� f

∥
∥4
L4

]

log 1
δ

≤ Cδ 3( log 1
δ
)∥
∥ f
∥
∥4
L4 .

�

We now prove Lemma 5.4.8, which we had left open.

Proof. The proof is based on interpolation. For fixed �,�′ ∈ I we define the bilinear
operator

T�,�′(g,h) = (gχδ� )∗ (hχδ�′) .
As we have previously observed, it is a simple geometric fact that the support of χδ�
is contained in a rectangle of side length ≈ δ in the direction e2πiδ

1/2� and of side
length ≈ δ 1

2 in the direction ie2πiδ
1/2�. Any two rectangles with these dimensions

in the aforementioned directions have an intersection that depends on the angle be-
tween them. Indeed, if � �= �′, this intersection is contained in a parallelogram of
sides δ and δ/sin(2πδ 1

2 |�− �′|), and hence the measure of the intersection is seen
easily to be at most a constant multiple of

δ · δ
sin(2πδ 1

2 |�− �′|)
.

As for �,�′ in the index set I we have 2πδ 1
2 |�− �′|< π/4, the sine is comparable to

its argument, and we conclude that the measure of the intersection is at most

Cδ
3
2 (1+ |�− �′|)−1 .

It follows that

∥
∥χδ� ∗χδ�′

∥
∥
L∞ = sup

z∈R2
|(z− supp (χδ� ))∩ supp (χδ�′)| ≤

Cδ 3
2

1+ |�− �′| ,

which implies the estimate
∥
∥T�,�′(g,h)

∥
∥
L∞ ≤ ∥∥χδ� ∗χδ�′

∥
∥
L∞
∥
∥g
∥
∥
L∞
∥
∥h
∥
∥
L∞

≤ Cδ 3
2

1+ |�− �′|
∥
∥g
∥
∥
L∞
∥
∥h
∥
∥
L∞ .

(5.4.39)

Also, the estimate
∥
∥T�,�′(g,h)

∥
∥
L1 ≤

∥
∥gχδ�

∥
∥
L1
∥
∥hχδ�′

∥
∥
L1 ≤ ‖g‖L1‖h‖L1 (5.4.40)
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holds trivially. Interpolating between (5.4.39) and (5.4.40) yields the required esti-
mate (5.4.35); see Corollary 7.2.11. �

Example 5.4.9. The presence of the logarithmic factor in estimate (5.4.28) is neces-
sary. In fact, this estimate is sharp. We prove this by showing that the corresponding
estimate for the “dual” extension operator Eδ is sharp. Let I be the set of indices we
worked with in Theorem 5.4.7 (i.e., I = {0,1, . . . , [ 18δ−1/2]}.) Let

f δ =∑
�∈I

χδ� .

Then
∥
∥ f δ

∥
∥
L4 ≈ δ

1
4 .

However,
Eδ ( f δ ) =∑

�∈I
̂χδ� ,

and we have

∥
∥Eδ ( f δ )

∥
∥
L4 =

(∫

R2

∣
∣∑
�∈I
∑
�′∈I
̂χδ�
̂χδ�′
∣
∣2 dξ

)1
4

=

(∫

R2

∣
∣∑
�∈I
∑
�′∈I

χδ� ∗χδ�′
∣
∣2 dx

)1
4

≥
(

∑
�∈I
∑
�′∈I

∫

R2

∣
∣χδ� ∗χδ�′

∣
∣2 dx

)1
4
.

At this point observe that the function χδ� ∗ χδ�′ is at least a constant multiple of

δ 3
2 (|�− �′|+1)−1 on a set of measure cδ 3

2 (|�− �′|+1). (See Exercise 5.4.5.) Using
this fact and the previous estimates, we deduce easily that

∥
∥Eδ ( f δ )

∥
∥
L4 ≥ c

(

∑
�∈I
∑
�′∈I

δ 3

(|�− �′|+1)2
δ

3
2 (|�− �′|+1)

) 1
4 ≈ δ (log 1

δ )
1
4 ,

since |I| ≈ δ− 1
2 . It follows that

∥
∥Eδ ( f δ )

∥
∥
L4∥

∥ f δ
∥
∥
L4

≥ cδ
3
4 (log 1

δ )
1
4 ,

which justifies the sharpness of estimate (5.4.28).
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Exercises

5.4.1. Let S be a compact hypersurface in Rn and let dσ be surface measure on it.
Suppose that for some 0< b< n we have

|d̂σ(ξ )| ≤C (1+ |ξ |)−b

for all ξ ∈ Rn. Prove that Rp→q(S) does not hold for any 1≤ q≤ ∞ when p≥ n
n−b .

5.4.2. Let S be a compact hypersurface and let 1≤ p,q≤ ∞.
(a) Suppose that Rp→q(S) holds for S. Show that Rp→q(τ+S) holds for the translated
hypersurface τ+S.
(b) For r > 0 let rSn−1 = {rξ : ξ ∈ Sn−1}. Suppose that Rp→q(Sn−1) holds with

constant Cpqn. Show that Rp→q(rSn−1) holds with constant Cpqnr
n−1
q − n

p′ .

5.4.3. Obtain a different proof of estimate (5.4.7) (and hence of Theorem 5.4.5) by
following the sequence of steps outlined here:
(a) Consider the analytic family of functions

(Kz)
∨(ξ ) = 2π1−z

Jn−2
2 +z(2π|ξ |)
|ξ | n−2

2 +z

and observe that in view of the identity in Appendix B.4 in [156], (Kz)
∨(ξ ) reduces

to dσ∨(ξ ) when z= 0, where dσ is surface measure on Sn−1.
(b) Use that the Bessel function J− 1

2+iθ , θ ∈ R, satisfies

|J− 1
2+iθ (x)| ≤ c(1+ |θ |)e|θ |2 |x|− 1

2 ,

for some c> 0 (Appendix B.9 in [156]) to obtain that the family of operators given
by convolution with (Kz)

∨ maps L1(Rn) to L∞(Rn) when z=− n−1
2 + iθ .

(c) Appeal to the result in Appendix B.5 in [156] to obtain that for z ∈ C we have

Kz(x) =
2

Γ (z)
(1−|x|2)z−1 .

Use this identity to deduce that for z= 1+ iθ the family of operators given by con-
volution with (Kz)

∨ map L2(Rn) to itself with constants that grow at most exponen-
tially in |θ |. (Appendix A.7 in [156] contains a useful lower estimate for |Γ (1+ iθ)|.)
(d) Use complex interpolation for analytic families (cf. Exercise 1.3.4 in [156]) to
obtain that for z = 0 the operator given by convolution with dσ∨ maps Lp(Rn) to
Lp′(Rn) when p= 2(n+1)

n+3 .

5.4.4. Suppose that T is a linear operator defined on a subspace of measurable func-
tions onRn with the property that whenever f is supported in a cubeQ of side length
s, then T ( f ) is supported in aQ for some a> 1. Prove the following:
(a) If T is defined on Lp(Rn) for some 0< p< ∞ and

∥
∥T ( f )

∥
∥
Lp ≤ B

∥
∥ f
∥
∥
Lp
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for all f supported in a cube of side length s, then the same estimate holds (with a
larger constant) for all functions in Lp(Rn).
(b) If T satisfies for some 0< p< ∞,

∥
∥T (χA)

∥
∥
Lp,∞ ≤ B|A| 1p

for all measurable sets A contained in a cube of side length s, then the same estimate
holds (with a larger constant) for all measurable sets A in Rn.

5.4.5. Using the notation of Theorem 5.4.7, show that there exist constants c,c′

such that the function χδ� ∗ χδ�′ is at least c′δ
3
2 (|�− �′|+ 1)−1 on a set of measure

cδ 3
2 (|�− �′|+1).

[

Hint: Prove the required conclusion for characteristic functions of rectangles with
the same orientation and comparable dimensions. Then use that the support of each
χδ� contains such a rectangle.

]

5.5 Almost Everywhere Convergence of Bochner–Riesz Means

We recall the Bochner–Riesz means BλR of complex order λ given in Definition
5.2.1. In this section we study the problem of almost everywhere convergence of
BλR( f ) → f as R → ∞. There is an intimate relationship between the almost ev-
erywhere convergence of a family of operators and boundedness properties of the
associated maximal family (cf. Theorem 2.1.14 in [156]).1

For f ∈ Lp(Rn), the maximal Bochner–Riesz operator or order λ is defined by

Bλ∗ ( f ) = sup
R>0

∣
∣BλR( f )

∣
∣ .

5.5.1 A Counterexample for the Maximal Bochner–Riesz Operator

We have the following result.

Theorem 5.5.1. Let n≥ 2, λ > 0, and let 1< p< 2 be such that

λ <
2n−1
2p

− n
2
.

Then Bλ∗ does not map Lp(Rn) to weak Lp(Rn).

1 In certain cases, this theorem can essentially be reversed. Given a 1 ≤ p ≤ 2 and a family of
distributions u j with the mild continuity property that u j ∗ fk → u j ∗ f in measure whenever fk → f
in Lp(Rn) such that the maximal operator M ( f ) = sup j | f ∗ u j| < ∞ whenever f ∈ Lp(Rn), then
M maps Lp(Rn) to Lp,∞(K) for any compact subset K of Rn. See Stein [323], [326].
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Proof. Figure 5.11 shows the region in which Bλ∗ is known to be unbounded; this
region contains the set of points (1/p,λ ) strictly below the line that joins the points
(1,(n−1)/2) and (n/(2n−1),0).

n
2n-1

n

1
2

2n
n 1

2

10
p
1

2n

λ

+

n-1

-1

2
n-1

Fig. 5.11 The operators Bλ∗ are unbounded on Lp(Rn) when (1/p,λ ) lies in the interior of the
shaded region.

We denote points x inRn by x=(x′,xn), where x′ ∈Rn−1, and we fixM≥ 100 and
ε < 1/100. We let ψ(y) = χ|y′|≤1(y′)ζ (yn), where ζ is a smooth bump supported
in the interval [−1,1] that is equal to 1 on [−1/2,1/2] and satisfies 0 ≤ ζ ≤ 1. We
define

ψε ,M(y) = ψ(ε−1y′,ε−1M− 1
2 yn) = χ|y′|≤ε(y′)ζ (ε−1M− 1

2 yn)

and we note that ψε ,M(y) is supported in the set of y’s that satisfy |y′| ≤ ε and
|yn| ≤ εM 1

2 . We also define

fM(y) = e2πiynψε ,M(y)

and
SM = {(x′,xn) : M ≤ |x′| ≤ 2M , M ≤ |xn| ≤ 2M}.

Then
∥
∥ fM

∥
∥
Lp ≈M

1
2p ε

n
p and |SM| ≈Mn . (5.5.1)

Every point x ∈ SM must satisfyM ≤ |x| ≤ 3M. We fix x ∈ SM and we estimate

Bλ∗ ( fM)(x) = sup
R>0

|BλR( fM)(x)|
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from below by picking R= Rx = |x|/xn. Then 1≤ Rx ≤ 3 and we have

Bλ∗ ( fM)(x)≥
Γ (λ +1)

πλ

∣
∣
∣
∣

∫

Rn

Jn
2+λ (2πRx|x− y|)
(Rx|x− y|) n

2+λ
e2πiynψε ,M(y)dy

∣
∣
∣
∣
.

We make some observations. First

|x′ − y′| ≥ 1
2
|x′|,

since |x′| ≥M and |y′| ≤ ε . Second,

|xn− yn| ≥ |xn|− |yn| ≥ 1
2
|xn|,

since |xn| ≥M and |yn| ≤ εM1/2. These facts imply that |x− y| ≥ 1
2 |x|; thus |x− y|

is comparable to |x|, which is of the order of M. Since 2πRx|x− y| is large, we use
the asymptotics for the Bessel function Jn

2+λ in Appendix B.8 in [156] to write

Jn
2+λ (2πRx|x− y|)
(Rx|x− y|) n

2+λ
=

Cλ e2πiRx|x−y|eiϕ

(Rx|x− y|) n+1
2 +λ

+
Cλ e−2πiRx|x−y|e−iϕ

(Rx|x− y|) n+1
2 +λ

+Vn,λ (Rx|x− y|) ,

where ϕ =−π
2 (

n
2 +λ )− π

4 and

|Vn,λ (Rx|x− y|)| ≤ Cn,λ

(Rx|x− y|) n+3
2 +λ

≤
C′
n,λ

M
n+3
2 +λ

, (5.5.2)

since Rx =
|x|
xn

≈ 1 and |x− y| ≥ 1
2M. Using the preceding expression for the Bessel

function, we write

Bλ∗ ( fM)(x) ≥ C′
λ

∣
∣
∣
∣

∫

Rn

e2πiRx|x|eiϕ

(Rx|x− y|) n+1
2 +λ

ψε ,M(y)dy
∣
∣
∣
∣

−C′
λ

∣
∣
∣
∣

∫

Rn

(e2πi(Rx|x−y|+yn)− e2πiRx|x|)eiϕ

(Rx|x− y|) n+1
2 +λ

ψε ,M(y)dy
∣
∣
∣
∣

−C′
λ

∣
∣
∣
∣

∫

Rn

e2πi(−Rx|x−y|+yn)e−iϕ

(Rx|x− y|) n+1
2 +λ

ψε ,M(y)dy
∣
∣
∣
∣

−
∣
∣
∣
∣

∫

Rn
Vn,λ (Rx|x− y|)e2πiynψε ,M(y) dy

∣
∣
∣
∣
.

The positive term is the main term and is bounded from below by

C′
λ (6M)−

n+1
2 −λ

∫

Rn
ψε ,M(y)dy=

c1 εnM
1
2

M
n+1
2 +λ

. (5.5.3)
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The three terms with the minus signs are errors and are bounded in absolute value
by smaller expressions. We notice that

∣
∣Rx|x− y|+ yn−Rx|x|

∣
∣=

|x|
xn

∣
∣|x− y|+ xnyn

|x| − |x|∣∣= |x|
xn

∣
∣Fx(y)−Fx(0)

∣
∣ ,

where Fx(y) = |x− y|+ |x|−1xnyn. Taylor’s expansion yields

Fx(y)−Fx(0) = ∇yFx(0) · y+O
(|y|2 sup

j,k
|∂ j∂kFx(y)|

)

,

and a calculation gives
∇yFx(0) = (−|x|−1x′,0) ,

while
|∂ j∂kFx(y)| ≤C |x− y|−1 .

It follows that

|x|
xn

∣
∣Fx(y)−Fx(0)

∣
∣≤ 3

[ |x′ · y′|
|x| +C′ |y|2

|x− y|
]

≤C′′
[

ε+
(εM1/2)2

M

]

≤ 2C′′ε .

Using this fact and the support properties of ψ , we obtain

C′
λ

∣
∣
∣
∣

∫

Rn

(e2πi(Rx|x−y|+yn)− e2πiRx|x|)eiϕ

(Rx|x− y|) n+1
2 +λ

ψε ,M(y)dy
∣
∣
∣
∣
≤ c2 ε(εnM

1
2 )

M
n+1
2 +λ

. (5.5.4)

Next we examine the phase−Rx|x−y|+yn as a function of yn. Its derivative with
respect to yn is

∂
∂yn

(−Rx|x− y|+ yn
)

= Rx
xn− yn
|x− y| +1≥ 1 ,

since xn ≥M and |yn| ≤ εM1/2, which implies that xn− yn > 0. Also note that

∣
∣
∣
∣

∂
∂yn

(

Rx
xn− yn
|x− y| +1

)−1∣∣
∣
∣
≤ C′′′

M

and that ∣
∣
∣
∣

∂
∂yn

1

|x− y| n+1
2 +λ

∣
∣
∣
∣
≤ C′′′

M
n+3
2 +λ

,

while the derivative of ζ (ε−1M− 1
2 yn) with respect to yn gives only a factor of

ε−1M− 1
2 . We integrate by parts one time with respect to yn in the integral

∫

Rn−1

∫

R

e2πi(−Rx|x−y|+yn)e−iϕ

(Rx|x− y|) n+1
2 +λ

ψε ,M(y)dyn dy′
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to obtain an additional factor of ε−1M− 1
2 . Thus

∣
∣
∣
∣

∫

Rn

e2πi(−Rx|x−y|+yn)e−iϕ

(Rx|x− y|) n+1
2 +λ

ψε ,M(y)dy
∣
∣
∣
∣
≤ c3 εnM

1
2 (ε−1M− 1

2 )

M
n+1
2 +λ

. (5.5.5)

Finally, using (5.5.2) we obtain that

∣
∣
∣
∣

∫

Rn
Vn,λ (Rx|x− y|)e2πiynψε ,M(y) dy

∣
∣
∣
∣
≤ c4 εnM

1
2

M
n+3
2 +λ

. (5.5.6)

We combine (5.5.3), (5.5.4), (5.5.5), and (5.5.6) to deduce for x ∈ SM ,

Bλ∗ ( fM)(x)≥
c1 εn

M
n
2+λ

− c2 εn+1

M
n
2+λ

− c3 εn−1

M
n+1
2 +λ

− c4 εn

M
n+2
2 +λ

.

We pick ε sufficiently small, say ε ≤ c1/(2c2), andM0 sufficiently large (depending
on the constants c1,c2,c3,c4) that

x ∈ SM =⇒ Bλ∗ ( fM)(x)> c0
1

M
n
2+λ

whenever M ≥M0. This fact together with (5.5.1) gives

∥
∥Bλ∗ ( fM)

∥
∥
Lp,∞∥

∥ fM
∥
∥
Lp

≥ c0M− n
2−λ |SM|

1
p

c′M
1
2p

= cM
2n−1
2p − n

2−λ ,

and the required conclusion follows by lettingM → ∞. �

5.5.2 Almost Everywhere Summability of the Bochner–Riesz
Means

We now investigate whether the Bochner–Riesz means BλR converge almost ev-
erywhere for functions in Lp(Rn) for p ≥ 2. The almost convergence holds when
λ > n−1

2 in view of the result of Exercise 5.2.8. So, in the sequel we fix λ such that
0 < λ ≤ n−1

2 and we focus our attention to this case. We begin with the following
result.

Proposition 5.5.2. Let λ > 0 and 0 ≤ α < 1+ 2λ ≤ n. Then there is a constant
C =C(α,λ ,n) such that

∫

Rn
|Bλ∗ ( f )(x)|2|x|−α dx≤C2

∫

Rn
| f (x)|2|x|−α dx (5.5.7)

for all functions f ∈S (Rn). Moreover, Bλ∗ has a unique bounded sublinear exten-
sion Bλ∗ on L2(Rn, |x|−αdx) which also satisfies (5.5.7). Also, for each R > 0, BλR
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has a unique bounded linear extension BλR on L2(Rn, |x|−αdx) and the relationship

Bλ∗ (g) = supR>0 |BλR(g)| holds for all g ∈ L2(Rn, |x|−αdx).
Assuming the result of Proposition 5.5.2, given p such that

2≤ p< pλ =
2n

n−1−2λ
,

choose α satisfying

0≤ n
(

1− 2
p

)

< α < 1+2λ = n
(

1− 2
pλ

)

.

For simplicity, denote BλR by BλR and Bλ∗ by Bλ∗ . Then Bλ∗ is well defined and bounded
on L2 and also on L2(|x|−αdx). Moreover, BλR(h)→ h everywhere as R→ ∞ when
h ∈ S (Rn) by an easy argument based on the Lebesgue dominated convergence
theorem. Using these facts and Theorem 2.1.14 in [156], we deduce that BλR( f )→ f
a.e. as R→ ∞ when f lies in L2 and also in L2(|x|−αdx). Since 0≤ α < n, we have

Lp � L2+L2(|x|−α) ,

in view of Exercise 5.5.1. Thus for a given function f ∈ Lp(Rn), we have that BλR( f )
is well defined and converges almost everywhere to f as R→∞. These observations
are stated below in the following theorem which is the main result of this section.

Theorem 5.5.3. Let λ > 0 and n≥ 2. Then for all f in Lp(Rn) with 2≤ p< 2n
n−1−2λ

we have
lim
R→∞

BλR( f )(x) = f (x)

for almost all x ∈ Rn.

For the rest of this section we focus attention on Proposition 5.5.2, which re-
quires considerable work. We begin by explaining the last assertions of the theorem.
In view of (5.5.7), each BλR is bounded on L2(|x|−α) and it has a unique bounded
linear extension BλR on L2(|x|−α), since S (Rn) is dense in L2(|x|−α); for this see
Exercise 7.4.1 in [156]. We notice that BλR is given onS (Rn) by convolution with the
kernel Γ (λ + 1)π−λ Jn

2+λ (2π|y|)|y|−
n
2−λ which lies in L2(|x|α) when 2λ + 1 > α ,

in view of the asymptotics for Bessel functions in Appendix B.6 and B.7 in [156]. It
follows that for a given g ∈ L2(|x|−α), one may also define BλR(g) as an absolutely
convergent convolution of Γ (λ + 1)π−λ Jn

2+λ (2π|y|)|y|−
n
2−λ with g. Moreover, if

g j is a sequence of functions g j ∈ S (Rn) such that g j → g in L2(|x|−α), then for
any x ∈ Rn we have

∣
∣BλR(g)(x)−BλR(g j)(x)

∣
∣=

∣
∣
∣
∣

∫

Rn

(

g(x−y)−g j(x−y)
)Γ (λ+1)

πλ
RnJn

2+λ (2πR|y|)
|Ry| n2+λ dy

∣
∣
∣
∣

≤ C‖g j−g‖L2(|x|−α )Rn
(∫

Rn

∣
∣
∣
∣

Jn
2+λ (2πR|y|)
|Ry| n2+λ

∣
∣
∣
∣

2

|y|αdy
) 1

2
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which tends to zero as j → ∞, since the integral produces a constant, as observed.
We conclude that the unique extension BλR of BλR on L2(|x|−α) is indeed BλR which
was previously defined as an absolutely convergent convolution on L2(|x|−α).

We continue with a similar discussion for Bλ∗ . Clearly Bλ∗ is a sublinear operator
with nonnegative values, and hence it satisfies

|Bλ∗ ( f )−Bλ∗ (h)| ≤ Bλ∗ ( f −h) (5.5.8)

for all f ,h ∈S (Rn). We define Bλ∗ ( f ) = lim j→∞Bλ∗ ( f j), where f j is a sequence of
Schwartz functions that converges to f in L2(|x|−α). This limit exists in L2(|x|−α),
since the sequence {Bλ∗ ( f j)} j is Cauchy in this space, in view of (5.5.8) and (5.5.7).
By Fatou’s lemma Bλ∗ is bounded from L2(|x|−α) to L2(|x|−α) and is the unique

extension of Bλ∗ : indeed, if Bλ∗ is another sublinear bounded extension of Bλ∗ on
L2(|x|−α) that coincides with Bλ∗ on S , then given f in L2(|x|−α) and f j as before,

Bλ∗ ( f ) is the limit of Bλ∗ ( f j) = Bλ∗ ( f j) in L2(|x|−α) and likewise Bλ∗ ( f ) is the limit

of Bλ∗ ( f j) = Bλ∗ ( f j) in L2(|x|−α). Thus Bλ∗ ( f ) and Bλ∗ ( f ) are the limits of the same
sequence and must coincide. To verify that

Bλ∗ (g) = sup
R>0

BλR(g)

for all g ∈ L2(|x|−α), it will suffice to show that g �→ supR>0B
λ
R(g) is a bounded

extension of Bλ∗ on L2(|x|−α); then by the preceding observation, it must coincide
with Bλ∗ on L2(|x|−α). Indeed, if g j ∈S converge to g in L2(|x|−α), then

∥
∥
∥sup
R>0

|BλR(g)|
∥
∥
∥
L2(|x|−α )

=
∥
∥
∥sup
R>0

| lim
j→∞

BλR(g j)|
∥
∥
∥
L2(|x|−α )

=
∥
∥
∥sup
R>0

| liminf
j→∞

BλR(g j)|
∥
∥
∥
L2(|x|−α )

≤
∥
∥
∥ liminf

j→∞
sup
R>0

|BλR(g j)|
∥
∥
∥
L2(|x|−α )

≤ liminf
j→∞

∥
∥
∥sup
R>0

|BλR(g j)|
∥
∥
∥
L2(|x|−α )

≤ liminf
j→∞

C‖g j‖L2(|x|−α )
= C‖g‖L2(|x|−α ) .

This concludes the proof of the last last assertion of Proposition 5.5.2.
We therefore fix a Schwartz function f on Rn and we focus on proving (5.5.7).

We decompose the multiplier (1−|ξ |2)λ+ as an infinite sum of smooth bumps sup-
ported in small concentric annuli in the interior of the sphere |ξ | = 1 as we did in
the proof of Theorem 5.2.4.
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We pick a smooth function ϕ supported in [− 1
2 ,

1
2 ] and a smooth function ψ

supported in [ 18 ,
5
8 ] and with values in [0,1] that satisfy

ϕ(t)+
∞

∑
k=0

ψ
(1− t
2−k

)

= 1

for all t ∈ [0,1). We decompose the multiplier (1−|ξ |2)λ+ as

(1−|ξ |2)λ+ = m00(ξ )+
∞

∑
k=0

2−kλmk(ξ ) , (5.5.9)

where m00(ξ ) = ϕ(|ξ |)(1−|ξ |2)λ , and for k ≥ 0, mk is defined by

mk(ξ ) =
(1−|ξ |

2−k

)λ
ψ
(1−|ξ |

2−k

)

(1+ |ξ |)λ .

Then we define maximal operators associated with the multipliers m00 and mk,

Smk∗ ( f )(x) = sup
R>0

|( f̂ (ξ )mk(ξ/R)
)∨
(x)| ,

for k ≥ 0, and analogously we define Sm00∗ . Using (5.5.9) we have

Bλ∗ ( f )≤ Sm00∗ ( f )+
∞

∑
k=0

2−kλSmk∗ ( f ) . (5.5.10)

Since Sm00∗ , Sm0∗ , Sm1∗ and any finite number of them are pointwise controlled by
the Hardy–Littlewood maximal operator, which is bounded on L2(|x|b) whenever
−n < b < n (cf. Theorem 7.1.9 and Example 7.1.7 in [156]), we focus attention on
the remaining terms.

We make a small change of notation. Thinking of 2−k as roughly being δ (pre-
cisely δ = 2−k−3), for δ < 1/10 we let mδ (t) be a smooth function supported in the
interval [1−5δ ,1−δ ] and taking values in the interval [0,1] that satisfies

sup
1−5δ≤t≤1−δ

∣
∣
∣
d�

dt�
mδ (t)

∣
∣
∣≤C�δ−� (5.5.11)

for all � ∈ Z+∪{0}. We define a related function

m̃δ (t) = δ t
d
dt
mδ (t) ,

which obviously satisfies estimates (5.5.11) with another constant C̃� in place of C�.
Next we introduce the multiplier operators

Sδt ( f )(x) =
(

f̂ (ξ )mδ (t|ξ |))∨(x) , S̃δt ( f )(x) =
(

f̂ (ξ )m̃δ (t|ξ |))∨(x) ,
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and the L2(|x|−α)-bounded maximal multiplier operator

Sδ∗ ( f ) = sup
t>0

|Sδt ( f )| ,

as well as the continuous square functions

Gδ ( f )(x) =
(∫ ∞

0
|Sδt ( f )(x)|2

dt
t

)1
2
, G̃δ ( f )(x) =

(∫ ∞

0
|S̃δt ( f )(x)|2

dt
t

)1
2
.

The operators Sδt and S̃δt are related as follows

d
dt
Sδt ( f ) =

1
δ t

S̃δt ( f ) ,

an identity easily obtained by passing the differentiation inside the integral.
An application of the fundamental theorem of calculus yields

|Sδt ( f )(x)|2 = 2Re
∫ t

0
Sδu ( f )(x)

d
du

Sδu ( f )(x)du

=
2
δ
Re
∫ t

0
Sδu ( f )(x) S̃

δ
u ( f )(x)

du
u

.

Consequently,

|Sδt ( f )(x)|2 ≤
2
δ

∫ t

0
|Sδu ( f )(x)| |S̃δu ( f )(x)|

du
u

≤ 2
δ
|Gδ ( f )(x)| |G̃δ ( f )(x)|

for all t > 0 and all x ∈ Rn, since f ∈S (Rn). It follows that

∥
∥Sδ∗ ( f )

∥
∥2
L2(|x|−a)

≤ 2
δ
∥
∥Gδ ( f )

∥
∥
L2(|x|−α )

∥
∥G̃δ ( f )

∥
∥
L2(|x|−α ) , (5.5.12)

and the asserted boundedness of Sδ∗ reduces to that of the continuous square func-
tions Gδ and G̃δ on weighted L2 spaces with suitable constants depending on δ .

The boundedness of Gδ on L2(|x|−α) is a consequence of the following lemma.

Lemma 5.5.4. For 0< δ < 1/10 and 0≤ α < n we have

∫

Rn

∫ 2

1
|Sδt ( f )(x)|2

dt
t

dx
|x|α ≤Cn,αAα(δ )

∫

Rn
| f (x)|2 dx

|x|α (5.5.13)

for f inS (Rn), where for ε > 0, Aα(ε) is defined by

Aα(ε) =

⎧

⎪⎨

⎪⎩

ε2−α when 1< α < n,
ε (| logε |+1) when α = 1,
ε when 0≤ α < 1.

(5.5.14)
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Assuming the statement of the lemma, we conclude the proof of Proposition 5.5.2
as follows. We take a Schwartz function ζ such that ̂ζ vanishes in a neighborhood of
the origin with ̂ζ (ξ ) = 1 whenever 1/2≤ |ξ | ≤ 2 and we let ζ2k(x) = 2−knζ (2−kx).
We make the observation that if 1− 5δ ≤ t|ξ | ≤ 1− δ and 2k−1 ≤ t ≤ 2k, then
1/2 ≤ 2k|ξ | ≤ 2, since δ < 1/10. This implies that ̂ζ (2kξ ) = 1 on the support of
the function ξ �→ mδ (t|ξ |). Hence

Sδt ( f ) = Sδt (ζ2k ∗ f )

whenever 2k−1 ≤ t ≤ 2k, and Lemma 5.5.4 (in conjunction with Exercise 5.5.2)
yields

∫

Rn

∫ 2k

2k−1
|Sδt ( f )(x)|2

dt
t

dx
|x|α ≤Cn,αAα(δ )

∫

Rn
|ζ2k ∗ f (x)|2 dx

|x|α .

Summing over k ∈ Z we obtain

∥
∥Gδ ( f )

∥
∥2
L2(|x|−α ) ≤Cn,αAα(δ )

∥
∥
∥

(

∑
k∈Z

|ζ2k ∗ f |2
) 1

2
∥
∥
∥

2

L2(|x|−α )
.

A randomization argument allows us to linearize the problem as follows

∥
∥
∥

(

∑
k∈Z

|ζ2k ∗ f |2
) 1

2
∥
∥
∥

2

L2(|x|−α )
=

∫ 1

0

∥
∥
∥∑
k∈Z

rk(t)(ζ2k ∗ f )
∥
∥
∥

2

L2(|x|−α )
dt , (5.5.15)

where rk denotes a renumbering of the Rademacher functions (Appendix C.1 in
[156]) indexed by the entire set of integers. A proof of (5.5.15) can be given by first
restricting the L2 norm to the ball |x| ≤M and using that ∑k ‖ζ2k ∗ f‖L∞ < ∞, a fact
contained in Exercise 4.4.1(d), and then letting M ↑ ∞.

For each t ∈ [0,1] the operator

Mt( f ) = ∑
k∈Z

rk(t)(ζ2k ∗ f )

is associated with a multiplier mt that satisfies |∂αmt(ξ )| ≤ Cα |ξ |−|α | uniformly
in t. It follows that Mt is a singular integral operator bounded on all the Lp spaces
for 1 < p < ∞, and in view of Theorem 7.4.6 in [156], it is also bounded on L2(w)
whenever w ∈ A2. Since the weight |x|−α is in A2 whenever −n< α < n, it follows
thatMt is bounded on L2(|x|−α) with a bound independent of t > 0. We deduce that

∥
∥Gδ ( f )

∥
∥
L2(|x|−α ) +

∥
∥G̃δ ( f )

∥
∥
L2(|x|−α ) ≤C′

n,α
(

Aα(δ )
) 1
2
∥
∥ f
∥
∥
L2(|x|−α ) .

We now recall estimate (5.5.12) to obtain

∥
∥Sδ∗ ( f )

∥
∥
L2(|x|−α ) ≤C′(n,α)

(

δ−1Aα(δ )
)1/2∥∥ f

∥
∥
L2(|x|−α ) .
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Taking δ = 2−k−3, recalling the value of Aα(δ ) from Lemma 5.5.4, and inserting
this estimate in (5.5.10), we deduce Proposition 5.5.2. We note that the condition
α < 1+2λ is needed to make the series in (5.5.10) converge when 1< α < n.

5.5.3 Estimates for Radial Multipliers

It remains to prove Lemma 5.5.4. We restrict attention to α > 0, since (5.5.13) holds
for α = 0 by Plancherel’s identity and the observation that

∫ 2

1
|mδ (t|ξ |)|2 dt

t
≤ |support (mδ )|= 4δ .

So we fix an α ∈ (0,n) and we reduce estimate (5.5.13) to an estimate for a single
t with the bound Aα(δ )/δ , which is worse than Aα(δ ). The reduction to a single t
is achieved via duality. Estimate (5.5.13) says that the operator f �→ {Sδt ( f )}1≤t≤2
is bounded from L2(Rn, |x|−αdx) to L2(L2( dtt ), |x|−αdx). The dual statement of this
fact is that the operator

{gt}1≤t≤2 �→
∫ 2

1
Sδt (gt)

dt
t

maps L2(L2( dtt ), |x|αdx) to L2(Rn, |x|αdx). Here we use the fact that the operators St
are self-transpose and self-adjoint, since they have real and radial multipliers. Thus
estimate (5.5.13) is equivalent to

∫

Rn

∣
∣
∣
∣

∫ 2

1
Sδt (gt)(x)

dt
t

∣
∣
∣
∣

2

|x|α dx≤Cn,α Aα(δ )
∫

Rn

∫ 2

1

∣
∣gt(x)

∣
∣2 dt

t
|x|α dx , (5.5.16)

which by Plancherel’s theorem is also equivalent to

∫

Rn

∣
∣
∣
∣
D

α
2

(∫ 2

1
mδ (t| · |)ĝt(·) dtt

)

(ξ )
∣
∣
∣
∣

2

dξ ≤Cn,αAα(δ )
∫

Rn

∫ 2

1

∣
∣D

α
2 (ĝt)(ξ )

∣
∣2 dt

t
dξ .

Here

Dβ (h)(x) =
[∫

Rn

|D[β ]+1
y (h)(x)|2
|y|n+2β dy

] 1
2
,

where Dy( f )(x) = f (x+ y)− f (x) is the difference operator introduced in Section
1.4 andDk

y =Dy◦· · ·◦Dy (k times). The operatorDβ obeys the identity (see Exercise
1.4.9)

∥
∥Dβ (ĥ)

∥
∥2
L2 = c0(n,β )

∫

Rn
|h(x)|2 |x|2β dx .

Using the definition of Dα/2 we write

∣
∣
∣
∣
D

α
2

(∫ 2

1
mδ (t| · |)ĝt(·) dtt

)

(ξ )
∣
∣
∣
∣

2

=
∫

Rn

∣
∣
∣
∣

∫ 2

1
D
[ α2 ]+1
η

(

mδ (t| · |)ĝt(·)
)

(ξ )
dt
t

∣
∣
∣
∣

2 dη
|η |n+α .
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If the inner integrand on the right is nonzero, expressingDk+1
y as in (1.4.2) and using

the support properties of mδ , we obtain that 1− 5δ ≤ t|ξ + sη | ≤ 1− δ for some
s ∈ {0,1, . . . , [α/2] + 1}; thus for each such s, t belongs to an interval of length
4δ |ξ + sη |−1 ≤ 4δ t(1−5δ )−1. Since t ≤ 2 and δ ≤ 1/10, it follows that t lies in a
set of measure at most 16([α/2]+2)δ . The Cauchy–Schwarz inequality then yields

∣
∣
∣
∣
D

α
2

(∫ 2

1
mδ (t| · |)ĝt(·) dtt

)

(ξ )
∣
∣
∣
∣

2

≤ cα δ
∫

Rn

∫ 2

1

∣
∣
∣
∣
D
[ α2 ]+1
η

(

mδ (t| · |)ĝt(·)
)

(ξ )
∣
∣
∣
∣

2 dt
t

dη
|η |n+α .

In view of the preceding reduction, we deduce that (5.5.16) is a consequence of

∫

Rn

∫

Rn

∫ 2

1

∣
∣
∣
∣
D
[ α2 ]+1
η

(

mδ (t| · |)ĝt(·)
)

(ξ )
∣
∣
∣
∣

2 dt
t

dη
|η |n+α dξ

≤Cn,α
Aα(δ )
cα δ

∫

Rn

∫ 2

1

∣
∣D

α
2 (ĝt)(ξ )

∣
∣2 dt

t
dξ

which can also be written as

∫

Rn

∫ 2

1

∣
∣
∣
∣
D

α
2
(

mδ (t| · |)ĝt(·)
)

(ξ )
∣
∣
∣
∣

2 dt
t
dξ ≤ Cn,α

cα

Aα(δ )
δ

∫

Rn

∫ 2

1

∣
∣D

α
2 (ĝt)(ξ )

∣
∣2 dt

t
dξ .

This estimate is a consequence of

∫

Rn

∣
∣
∣
∣
D

α
2
(

mδ (t| · |)ĝt(·)
)

(ξ )
∣
∣
∣
∣

2

dξ ≤ Cn,α
cα

Aα(δ )
δ

∫

Rn

∣
∣D

α
2 (ĝt)(ξ )

∣
∣2 dξ (5.5.17)

for all t ∈ [1,2]. A simple dilation argument reduces (5.5.17) to the single estimate

∫

Rn

∣
∣
∣
∣
D

α
2
(

mδ (| · |)ĝ(·))(ξ )
∣
∣
∣
∣

2

dξ ≤ Cn,α
cα

Aα(δ )
δ

∫

Rn

∣
∣D

α
2 (ĝ)(ξ )

∣
∣2 dξ , (5.5.18)

which is equivalent to
∫

Rn

∣
∣Sδ1 (g)(x)

∣
∣2 |x|α dx≤ Cn,α

cα

Aα(δ )
δ

∫

Rn

∣
∣g(x)

∣
∣2 |x|α dx

and also equivalent to
∫

Rn

∣
∣Sδ1 ( f )(x)

∣
∣2 dx

|x|α ≤ Cn,α
cα

Aα(δ )
δ

∫

Rn

∣
∣ f (x)

∣
∣2 dx
|x|α (5.5.19)

by duality. We have now reduced estimate (5.5.13) to (5.5.19).



404 5 Boundedness and Convergence of Fourier Integrals

We denote by Kδ (x) the kernel of the operator Sδ1 , i.e., the inverse Fourier trans-
form of the multiplier mδ (|ξ |). Certainly Kδ is a radial kernel on Rn, and it is con-
venient to decompose it radially as

Kδ = Kδ
0 +

∞

∑
j=1

Kδ
j ,

where Kδ
0 (x) =Kδ (x)φ(δx) and Kδ

j (x) =Kδ (x)
(

φ(2− jδx)−φ(21− jδx)
)

, for some
radial smooth function φ supported in the ball B(0,2) and equal to one on B(0,1).

To prove estimate (5.5.19) we make use of the subsequent lemmas.

Lemma 5.5.5. For all M ≥ 2n there is a constant CM = CM(n,φ) such that for all
j = 0,1,2, . . . we have

sup
ξ∈Rn

|̂Kδ
j (ξ )| ≤CM 2− jM (5.5.20)

and also
|̂Kδ

j (ξ )| ≤CM 2−( j+k)M (5.5.21)

whenever | |ξ |−1| ≥ 2kδ and k ≥ 4. Also

|̂Kδ
j (ξ )| ≤CM 2− jM δM(1+ |ξ |)−M (5.5.22)

whenever |ξ | ≤ 1/8 or |ξ | ≥ 15/8.

Lemma 5.5.6. Let 0 < α < n. Then there is a constant C(n,α) such that for all
Schwartz functions f and all ε > 0 we have

∫

| |ξ |−1|≤ε
| f̂ (ξ )|2 dξ ≤C(n,α)εα−1Aα(ε)

∫

Rn
| f (x)|2 |x|αdx (5.5.23)

and also for M ≥ 2n there is a constant CM(n,α) such that
∫

Rn
| f̂ (ξ )|2 1

(1+ |ξ |)M dξ ≤CM(n,α)
∫

Rn
| f (x)|2 |x|αdx . (5.5.24)

Assuming Lemmas 5.5.5 and 5.5.6 we prove estimate (5.5.19) as follows. Using
Plancherel’s theorem we write

∫

Rn
|(Kδ

j ∗ f )(x)|2 dx=
∫

Rn
|̂Kδ

j (ξ )|2| f̂ (ξ )|2 dξ ≤ I+ II+ III ,

where

I =
∫

|ξ |≤ 1
8 ,|ξ |≥ 15

8

|̂Kδ
j (ξ )|2| f̂ (ξ )|2 dξ ,
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II =
[log2

7
16 δ

−1]+1

∑
k=4

∫

2kδ≤||ξ |−1|≤2k+1δ
|̂Kδ

j (ξ )|2| f̂ (ξ )|2 dξ ,

III =
∫

| |ξ |−1|≤16δ
|̂Kδ

j (ξ )|2| f̂ (ξ )|2 dξ .

Using (5.5.22) and (5.5.24) we obtain that

I ≤C′
M(n,α)2− jMδM

∫

Rn
| f (x)|2 |x|αdx .

In view of (5.5.21) and (5.5.23) we have

II ≤
[log2 δ−1]+1

∑
k=4

C(n,α)(2k+1δ )α−1Aα(2k+1δ )2− jM2−kM
∫

Rn
| f (x)|2 |x|αdx

≤ C′
M(n,α)2− jMδα−1Aα(δ )

∫

Rn
| f (x)|2 |x|αdx .

Finally, (5.5.20) and (5.5.23) yield

III ≤C′
M(n,α)2− jMδα−1Aα(δ )

∫

Rn
| f (x)|2 |x|αdx .

Summing the estimates for I, II, and III we deduce
∫

Rn
|(Kδ

j ∗ f )(x)|2 dx≤CM(n,α)2− jMδα−1Aα(δ )
∫

Rn
| f (x)|2 |x|αdx .

By duality, this estimate can be written as
∫

Rn
|(Kδ

j ∗ f )(x)|2 dx
|x|α ≤CM(n,α)2− jMδα−1Aα(δ )

∫

Rn
| f (x)|2 dx . (5.5.25)

Given a Schwartz function f , we write f0 = f χQ0 , where Q0 is a cube centered at
the origin of side length C2 j/δ for some C to be chosen. Then for x ∈ Q0 we have
|x| ≤C

√
n2 j/δ ; hence

∫

Rn
|(Kδ

j ∗ f0)(x)|2 dx
|x|α ≤ C′

M(n,α)δα−1Aα(δ )
2 jM

(

C
√
n
2 j

δ

)α ∫

Q0

| f0(x)|2 dx
|x|α

= C′′
M(n,α)2 j(α−M) Aα(δ )

δ

∫

Q0

| f0(x)|2 dx
|x|α . (5.5.26)

Now write Rn \Q0 as a mesh of cubes Qi, indexed by i ∈ Z \ {0}, of side lengths
2 j+2/δ and centers cQi . Since Kδ

j is supported in a ball of radius 2 j+1/δ , if fi is
supported in Qi, then fi ∗Kδ

j is supported in the cube 2
√
nQi. If the constant C is

large enough, sayC ≥ 1000n, then for x ∈ Qi and x′ ∈ 2
√
nQi we have

|x| ≈ |cQi | ≈ |x′| ,
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which says that the moduli of x and x′ are comparable in the following inequality:

∫

2
√
nQi

|(Kδ
j ∗ fi)(x′)|2 dx′

|x′|α ≤C′
M 2− jM

∫

Qi

| fi(x)|2 dx
|x|α . (5.5.27)

Thus (5.5.27) is a consequence of
∫

2
√
nQi

|(Kδ
j ∗ fi)(x′)|2 dx′ ≤CM 2− jM

∫

Qi

| fi(x)|2 dx , (5.5.28)

which is certainly satisfied, as seen by applying Plancherel’s theorem and using
(5.5.20). Since for δ < 1/10 we have Aα(δ )/δ ≥ 1, it follows that

∫

Rn
|(Kδ

j ∗ fi)(x)|2 dx
|x|α ≤CM 2− jM Aα(δ )

δ

∫

Rn
| fi(x)|2 dx

|x|α (5.5.29)

whenever fi is supported in Qi. We now pick M = 2n and we recall that α < n. We
have now proved that

∫

Rn
|(Kδ

j ∗ fi)(x)|2 dx
|x|α ≤C′′(n,α)2− jn Aα(δ )

δ

∫

Qi

| fi(x)|2 dx
|x|α

for functions fi supported in Qi.
Given a general function f in the Schwartz class, write

f =∑
i∈Z

fi , where fi = f χQi .

Then
∥
∥Kδ

j ∗ f
∥
∥2
L2(|x|−α ) ≤ 2

∥
∥Kδ

j ∗ f0
∥
∥2
L2(|x|−α ) +2

∥
∥∑
i �=0

Kδ
j ∗ fi

∥
∥2
L2(|x|−α )

≤ 2
∥
∥Kδ

j ∗ f0
∥
∥2
L2(|x|−α ) +2Cn∑

i �=0

∥
∥Kδ

j ∗ fi
∥
∥2
L2(|x|−α )

≤ C′′′(n,α)2− jn Aα(δ )
δ

[∥
∥ f0
∥
∥2
L2(|x|−α ) +∑

i �=0

∥
∥ fi
∥
∥2
L2(|x|−α )

]

= C′′′(n,α)2− jn Aα(δ )
δ

∥
∥ f
∥
∥2
L2(|x|−α ) ,

where we used the bounded overlap property of the family {Kj ∗ fi}i �=0 in the second
inequality of the preceding alignment (cf. Exercise 5.4.4). Taking square roots and
summing over j = 0,1,2, . . . , we deduce (5.5.19).

We now address the proof of Lemma 5.5.5, which was left open.

Proof. For the purposes of this proof we set ψ(x) = φ(x)− φ(2x). Then the in-
verse Fourier transform of the function x �→ ψ(2− jδx) is ξ �→ 2 jnδ−nψ̂(2 jξ/δ ).
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Convolving the latter with the function ξ �→ mδ (|ξ |), we obtain ̂Kδ
j (ξ ). We may

therefore write for j ≥ 1,

̂Kδ
j (ξ ) =

∫

Rn
mδ (|ξ −2− jδη |)ψ̂(η)dη , (5.5.30)

while for j = 0 an analogous formula holds with φ in place of ψ . Since |mδ | ≤ 1,
(5.5.20) follows easily when j = 0. For j ≥ 1 we expand the function

ξ �→ mδ (|ξ −2− jδη |)

in a Taylor series and we make use of the fact that ψ̂ has vanishing moments of all
orders to obtain

|̂Kδ
j (ξ )| ≤

∫

Rn
∑

|γ |=M

1
γ!
∥
∥∂ γmδ (| · |)∥∥L∞ |2− jδη |M|ψ̂(η)|dη

≤ C(M)δ−MδM2− jM
∫

Rn
|η |M|ψ̂(η)|dη .

This proves (5.5.20).
We turn now to the proof of (5.5.21). Suppose that | |ξ | − 1| ≥ 2kδ and k ≥ 4.

Then for |ξ | ≤ 1, recalling that mδ is supported in [1−5δ ,1−δ ], we write

|2− jδη | ≥ |ξ −2− jδη |− |ξ | ≥ (1−5δ )− (1−2kδ )≥ 2k−1δ ,

since k ≥ 4. For |ξ | ≥ 1 we have

|2− jδη | ≥ |ξ |− |ξ −2− jδη | ≥ (1+2kδ )− (1−δ )≥ 2kδ .

In either case we conclude that |η | ≥ 2k+ j−1, and using (5.5.30) we deduce

|̂Kδ
j (ξ )| ≤

∫

|η |≥2k+ j−1
|ψ̂(η)|dη ≤CM2−( j+k)M .

The proof of (5.5.22) is similar. Since

|ξ −2− jδη | ≥ 1−5δ ≥ 1/2,

if |ξ | ≤ 1/8, it follows that |2− jδη | ≥ 1/4. Likewise, if |ξ | ≥ 15/8, then

|2− jδη | ≥ |ξ |−1≥ |ξ |/4.

These estimates imply

|2− jδη | ≥ 1
8
(1+ |ξ |) =⇒ |η | ≥ 2 j 1

8δ
(1+ |ξ |)
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in the support of the integral in (5.5.30). It follows that

|̂Kδ
j (ξ )| ≤

∫

|η |≥2 j−3(1+|ξ |)/δ
|ψ̂(η)|dη ≤CM2− jMδM(1+ |ξ |)−M

whenever |ξ | ≤ 1/8 or |ξ | ≥ 15/8. �

We finish with the proof of Lemma 5.5.6, which had been left open.

Proof. We reduce estimate (5.5.23) by duality to
∫

Rn
|ĝ(ξ )|2 dξ

|ξ |α ≤C(n,α)εα−1Aα(ε)
∫

| |x|−1|≤ε
|g(x)|2 dx

for functions g supported in the annulus | |x| − 1| ≤ ε . Using that (|ξ |−α)∧(x) =
cn,α |x|α−n (cf. Theorem 2.4.6 in [156]), we write

∫

Rn
|ĝ(ξ )|2 dξ

|ξ |α =
∫

Rn
ĝ(ξ ) ĝ(ξ )

1
|ξ |α dξ

=
∫

Rn

(

ĝ ĝ
)∨

(x)
cn,α
|x|n−α dx

=

∫

Rn
(g∗ g̃)(x) dx

|x|n−α

=

∫

| |y|−1|≤ε

∫

| |x|−1|≤ε
g(x) g̃(y)

cn,α
|x− y|n−α dxdy

≤ B(n,α)
∥
∥g
∥
∥2
L2 ,

where g̃(x) = g(−x) and

B(n,α) = sup
| |x|−1|≤ε

∫

| |y|−1|≤ε
cn,α

|y− x|n−α dy .

The last inequality is proved by interpolating between the L1 → L1 and L∞ → L∞

estimates with bound B(n,α) for the linear operator

L(g)(x) =
∫

Rn
g(y)

cn,α
|x− y|n−α dy .

It remains to establish that

B(n,α)≤C(n,α)εα−1Aα(ε) .

Applying a rotation and a change of variables, matters reduce to proving that

sup
| |x|−1|≤ε

∫

| |y−|x|e1|−1|≤ε
cn,α
|y|n−α dy≤C(n,α)εα−1Aα(ε) ,



5.5 Almost Everywhere Convergence of Bochner–Riesz Means 409

where e1 = (1,0, . . . ,0). This, in turn, is a consequence of
∫

| |y−e1|−1|≤2ε

cn,α
|y|n−α dy≤C(n,α)εα−1Aα(ε) , (5.5.31)

since | |y− e1|x| | − 1| ≤ ε and | |x| − 1| ≤ ε imply | |y− e1| − 1| ≤ 2ε . In prov-
ing (5.5.31), it suffices to assume that ε < 1/100; otherwise, the left-hand side of
(5.5.31) is bounded from above by a constant, and the right-hand side of (5.5.31) is
bounded from below by another constant. The region of integration in (5.5.31) is a
ring centered at e1 and width 4ε . We estimate the integral in (5.5.31) by the sum of
the integrals of the function cn,α |y|α−n over the sets

S0 = {y ∈ Rn : |y| ≤ ε , | |y− e1|−1| ≤ 2ε} ,
S� = {y ∈ Rn : �ε ≤ |y| ≤ (�+1)ε , | |y− e1|−1| ≤ 2ε} ,
S∞ = {y ∈ Rn : |y| ≥ 1, | |y− e1|−1| ≤ 2ε} ,

where �= 1, . . . , [ 1ε ]+1. The volume of each S� is comparable to

ε
[

((�+1)ε)n−1− (�ε)n−1]≈ εn�n−2 .

Consequently,
∫

S0

dy
|y|n−α ≤ ωn−1

∫ ε

0

rn−1

rn−α
dr =

ωn−1

α
εα ,

whereas
[ 1ε ]+1

∑
�=1

∫

S�

dy
|y|n−α ≤C′

n,α

2/ε

∑
�=1

εn�n−2

(�ε)n−α
≤C′

n,α εα
2/ε

∑
�=1

1
�2−α

.

Finally, the volume of S∞ is about ε; hence
∫

S∞

dy
|y|n−α ≤ |S∞| ≤C′′

n,α ε .

Combining these estimates, we obtain

∫

| |y−e1|−1|≤2ε

cn,α
|y|n−α dy≤Cn,α

[

εα + εα
2/ε

∑
�=1

1
�2−α

+ ε
]

,

and it is an easy matter to check that the expression inside the square brackets is at
most a constant multiple of εα−1Aα(ε).

We now turn attention to (5.5.24). Switching the roles of f and f̂ , we rewrite
(5.5.24) as

∫

Rn

| f (x)|2
(1+ |x|)M dx ≤ C′

M(n,α)
∫

Rn
| ̂(−Δ) α4 ( f )(ξ )|2 dξ

= C′
M(n,α)

∫

Rn
|(−Δ) α4 ( f )(x)|2 dx ,
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recalling the Laplacian introduced in (1.2.1). This estimate can also be restated in
terms of the Riesz potential operator Iα/2 = (−Δ)−α/4 as follows:

∫

Rn

|Iα/2(g)(x)|2
(1+ |x|)M dx≤C′

M(n,α)
∫

Rn
|g(x)|2 dx . (5.5.32)

To show this, we use Hölder’s inequality with exponents q/2 and n/α , where q> 2
satisfies

1
2
− 1

q
=

α
2n

.

Then we have

∫

Rn

|Iα/2(g)(x)|2
(1+ |x|)M dx ≤

(∫

Rn

dx
(1+ |x|)Mn/α

) n
α ∥
∥Iα/2(g)

∥
∥2
Lq(Rn)

≤ C′
M(n,α)

∥
∥g
∥
∥2
L2(Rn)

in view of Theorem 1.2.3 and sinceM > n and α < n. This finishes the proof of the
lemma. �

Exercises

5.5.1. Let 0< r < p< ∞ and n(1− r
p )< β < n. Show that Lp(Rn) is contained in

Lr(Rn)+Lr(Rn, |x|−β ).
[

Hint:Write f = f1+ f2, where f1 = f χ| f |>1 and f2 = f χ| f |≤1.
]

5.5.2. (a) With the notation of Lemma 5.5.4, use dilations to show that the estimate
∫

Rn

∫ 2

1
|Sδt ( f )(x)|2

dt
t

dx
|x|α ≤C0

∫

Rn
| f (x)|2 dx

|x|α

implies
∫

Rn

∫ 2a

a
|Sδt ( f )(x)|2

dt
t

dx
|x|α ≤C0

∫

Rn
| f (x)|2 dx

|x|α
for any a> 0 and f in the Schwartz class.
(b) Use dilations to show that (5.5.18) implies (5.5.17).

5.5.3. Let h be a Schwartz function on Rn. Prove that

1
ε

∫

| |x|−1|≤ε
h(x)dx→ 2

∫

Sn−1
h(θ)dθ

as ε → 0. Use Lemma 5.5.6 to show that for 1< α < n we have
∫

Sn−1
| f̂ (θ)|2 dθ ≤C(n,α)

∫

Rn
| f (x)|2|x|α dx .
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5.5.4. Let w ∈ A2. Assume that the ball multiplier operator B0( f ) = ( f̂ χB(0,1))∨
satisfies ∫

Rn
|B0( f )(x)|2w(x)dx≤Cn,α

∫

Rn
| f (x)|2w(x)dx

for all f ∈ L2(w). Prove the same estimate for B( f ) = supk∈Z |B0
2k( f )|.[

Hint: Pick a smooth function Φ̂ equal to 1 on B(0,1) and zero outside B(0,2) and
define Ψ̂(ξ ) = Φ̂(ξ )− Φ̂(2ξ ). Then χB(0,1)

(

Φ̂(ξ )− Φ̂(2ξ )
)

= χB(0,1) − Φ̂(2ξ );
hence

B( f ) ≤ sup
k
|Φ2−k ∗ f |+

(

∑
k∈Z

|B0
2k( f )−Φ2−(k−1) ∗ f |2

) 1
2

≤ CΦM( f )+
(

∑
k∈Z

|B0
2k( f ∗Ψ2−k)|2

) 1
2

and show that each term is bounded on L2(w).
]

5.5.5. Show that the Bochner–Riesz operator Bλ does not map Lp(Rn) to Lp,∞(Rn)
when λ = n−1

2 − n
p and 2< p< ∞. Derive the same conclusion for Bλ∗ .

[

Hint: Suppose the contrary. Then by duality it would follow that Bλ maps Lp,1(Rn)

to Lp(Rn) when 1 < p < 2 and λ = n
p − n+1

2 . To contradict this statement test the
operator on a Schwartz function whose Fourier transform is equal to 1 on the unit
ball and argue as in Proposition 5.2.3.

]

HISTORICAL NOTES

The geometric construction in Section 5.1 is based on ideas of Besicovitch, who used a similar
construction to answer the following question posed in 1917 by the Japanese mathematician S.
Kakeya: What is the smallest possible area of the trace of ink left on a piece of paper by an ink-
covered needle of unit length when the positions of its two ends are reversed? This problem puzzled
mathematicians for several decades until Besicovitch [33] showed that for any ε > 0 there is a
way to move the needle so that the total area of the blot of ink left on the paper is smaller than
ε . Fefferman [134] borrowed ideas from the construction of Besicovitch to provide the negative
answer to the multiplier problem to the ball for p �= 2 (Theorem 5.1.5). Prior to Fefferman’s work,
the fact that the characteristic function of the unit ball is not a multiplier on Lp(Rn) for | 1p − 1

2 | ≥ 1
2n

was pointed out by Herz [189], who also showed that this limitation is not necessary when this
operator is restricted to radial Lp functions. The crucial Lemma 5.1.4 in Fefferman’s proof is due
to Y. Meyer.

The study of Bochner–Riesz means originated in the article of Bochner [40], who obtained
their Lp boundedness for λ > n−1

2 . Stein [322] improved this result to λ > n−1
2 | 1p − 1

2 | using inter-
polation for analytic families of operators. Theorem 5.2.4 was first proved by Carleson and Sjölin
[72]. A second proof of this theorem was given by Fefferman [136]. A third proof was given by
Hörmander [195]. The proof of Theorem 5.2.4 given in the text is due to Córdoba [102]. This proof
elaborated the use of the Kakeya maximal function in the study of spherical summation multipli-
ers, which was implicitly pioneered in Fefferman [136]. The boundedness of the Kakeya maximal
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function KN on L2(R2) with norm C(logN)2 was first obtained by Córdoba [101]. The sharp esti-
mateC logN was later obtained by Strömberg [331]. The proof of Theorem 5.3.5 is taken from this
article of Strömberg. Another proof of the boundedness of the Kakeya maximal function without
dilations on L2(R2) was obtained by Müller [273]. Barrionuevo [18] showed that for any subset Σ
of S1 with N elements the maximal operator MΣ maps L2(R2) to itself with norm CN2(logN)−1/2

for some absolute constant C. Note that this bound is O(Nε ) for any ε > 0. Katz [212] improved
this bound toC logN for some absolute constantC; see also Katz [213]. The latter is a sharp bound,
as indicated in Proposition 5.3.4. Katz [211] also showed that the maximal operatorMK associated
with a set of unit vectors pointing along a Cantor set K of directions is unbounded on L2(R2).
If Σ is an infinite set of vectors in S1 pointing in lacunary directions, then MΣ was studied by
Strömberg [330], Córdoba and Fefferman [104], and Nagel, Stein, and Wainger [282]. The last au-
thors obtained its Lp boundedness for all 1 < p < ∞. Theorem 5.2.7 was first proved by Carleson
[70]. For a short account on extensions of this theorem, the reader may consult the historical notes
at the end of Chapter 5.

The idea of restriction theorems for the Fourier transform originated in the work of E. M. Stein
around 1967. Stein’s original restriction result was published in the article of Fefferman [132],
which was the first to point out connections between restriction theorems and boundedness of the
Bochner–Riesz means. The full restriction theorem for the circle (Theorem 5.4.7 for p< 4

3 ) is due
to Fefferman and Stein and was published in the aforementioned article of Fefferman [132]. See
also the related article of Zygmund [378]. The present proof of Theorem 5.4.7 is based in that of
Córdoba [103]. This proof was further elaborated by Tomas [350], who pointed out the logarithmic
blowup when p = 4

3 for the corresponding restriction problem for annuli. The result in Example
5.4.4 is also due to Fefferman and Stein and was initially proved using arguments from spherical
harmonics. The simple proof presented here was observed by A.W. Knapp. The restriction property
in Theorem 5.4.5 for p < 2(n+1)

n+3 is due to Tomas [349], while the case p = 2(n+1)
n+3 is due to Stein

[325]. Theorem 5.4.6 was first proved by Fefferman [132] for the smaller range of λ > n−1
4 using

the restriction property Rp→2(Sn−1) for p< 4n
3n+1 . The fact that the Rp→2(Sn−1) restriction property

(for p < 2) implies the boundedness of the Bochner–Riesz operator Bλ on Lp(Rn) is contained in
the work of Fefferman [132]. A simpler proof of this fact, obtained later by E. M. Stein, appeared in
the subsequent article of Fefferman [136]. This proof is given in Theorem 5.4.6, incorporating the
Tomas–Stein restriction property Rp→2(Sn−1) for p≤ 2(n+1)

n+3 . It should be noted that the case n= 3
of this theorem was first obtained in unpublished work of Sjölin. For a short exposition and history
of this material consult the book of Davis and Chang [114]. Much of the material in Sections 5.2,
5.3, and 5.4 is based on the notes of Vargas [359].

There is an extensive literature on restriction theorems for submanifolds of Rn. It is noteworthy
to mention (in chronological order) the results of Strichartz [329], Prestini [300], Greenleaf [178],
Christ [76], Drury [122], Barceló [16], [17], Drury and Marshall [124], [125], Beckner, Carbery,
Semmes, and Soria [19], Drury and Guo [123], De Carli and Iosevich [115], [116], Sjölin and Soria
[318], Oberlin [286], Wolff [373], and Tao [341].

The boundedness of the Bochner–Riesz operators on the range excluded by Proposition 5.2.3
implies that the restriction property Rp→q(Sn−1) is valid when 1

q = n+1
n−1

1
p′ and 1 ≤ p < 2n

n+1 , as
shown by Tao [340]; in this article a hierarchy of conjectures in harmonic analysis and interrela-
tions among them is discussed. In particular, the aforementioned restriction property would imply
estimate (5.3.32) for the Kakeya maximal operator KN on Rn, which would in turn imply that
Besicovitch sets have Minkowski dimension n. (A Besicovitch set is defined as a subset of Rn that
contains a unit line segment in every direction.) Katz, Laba, and Tao [214] have obtained good
estimates on the Minkowski dimension of such sets in R3.

A general sieve argument obtained by Córdoba [101] reduces the boundedness of the Kakeya
maximal operator KN to the one without dilations K a

N . For applications to the Bochner–Riesz
multiplier problem, only the latter is needed. Carbery, Hernández, and Soria [65] have proved
estimate (5.3.30) for radial functions in all dimensions. Igari [202] proved estimate (5.3.31) for
products of one-variable functions of each coordinate. The norm estimates in Corollary 5.3.7 can
be reversed, as shown by Keich [216] for p > 2. The corresponding estimate for 1 < p < 2 in the
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same corollary can be improved to N
2
p−1. Córdoba [102] proved the partial case p≤ 2 of Theorem

5.3.10 on Rn. This range was extended by Drury [121] to p ≤ n+1
n−1 using estimates for the x-ray

transform. Theorem 5.3.10 (i.e., the further extension to p≤ n+1
2 ) is due to Christ, Duoandikoetxea,

and Rubio de Francia [83], and its original proof also used estimates for the x-ray transform; the
proof of Theorem 5.3.10 given in the text is derived from that in Bourgain [42]. This article brought
a breakthrough in many of the previous topics. In particular, Bourgain [42] showed that the Kakeya
maximal operator KN maps Lp(Rn) to itself with bound CεN

n
p−1+ε for all ε > 0 and some pn >

n+1
2 . He also showed that the range of p’s in Theorem 5.4.5 is not sharp, since there exist indices

p= p(n)> 2(n+1)
n+3 for which property Rp→q(Sn−1) holds, and that Theorem 5.4.6 is not sharp, since

there exist indices λn < n−1
2(n+1) for which the Bochner–Riesz operators are bounded on Lp(Rn) in

the optimal range of p’s when λ ≥ λn. Improvements on these indices were subsequently obtained
by Bourgain [43], [44]. Some of Bourgain’s results in R3 were re-proved by Schlag [311] using
different geometric methods. Wolff [371] showed that the Kakeya maximal operator KN maps
Lp(Rn) to itself with boundCεN

n
p−1+ε for any ε > 0 whenever p≤ n+2

2 . In higher dimensions, this
range of p’s was later extended by Bourgain [45] to p≤ (1+ε) n2 for some dimension-free positive
constant ε . When n= 3, further improvements on the restriction and the Kakeya conjectures were
obtained by Tao, Vargas, and Vega [343]. For further historical advances in the subject the reader
is referred to the survey articles of Wolff [372] and Katz and Tao [215].

Regarding the almost everywhere convergence of the Bochner–Riesz means, Carbery [64] has
shown that the maximal operator Bλ∗ ( f ) = supR>0 |BλR( f )| is bounded on Lp(R2) when λ > 0 and
2≤ p< 4

1−2λ , obtaining the convergence B
λ
R( f )→ f almost everywhere for f ∈ Lp(R2). For n≥ 3,

2≤ p< 2n
n−1−2λ , and λ ≥ n−1

2(n+1) the same result was obtained by Christ [77]. Theorem 5.5.3 is due
to Carbery, Rubio de Francia, and Vega [66]. Theorem 5.5.1 is contained in Tao [339]. Tao [342]
also obtained boundedness for the maximal Bochner–Riesz operators Bλ∗ on Lp(R2) whenever
1< p< 2 for an open range of pairs ( 1p ,λ ) that lie below the line λ = 1

p − 1
2 .

On the critical line λ = n
p − n+1

2 , boundedness into weak Lp for the Bochner–Riesz operators

is possible in the range 1≤ p≤ 2n
n+1 . Christ [79], [78] first obtained such results for 1≤ p< 2(n+1)

n+3

in all dimensions. The point p= 2(n+1)
n+3 was later included by Tao [338]. In two dimensions, weak

boundedness for the full range of indices was shown by Seeger [313]; in all dimensions the same
conclusion was obtained by Colzani, Travaglini, and Vignati [99] for radial functions. Tao [339]
has obtained a general argument that yields weak endpoint bounds for Bλ whenever strong-type
bounds are known above the critical line.



Chapter 6
Time–Frequency Analysis
and the Carleson–Hunt Theorem

In this chapter we discuss in detail the proof of the almost everywhere convergence
of the partial Fourier integrals of Lp functions on the line. The proof of this the-
orem is based on techniques involving both spatial and frequency decompositions.
These techniques are referred to as time–frequency analysis. The underlying goal is
to decompose a given function at any scale as a sum of pieces perfectly localized
in frequency and well localized in space. The action of an operator on each piece
is carefully studied and the interaction between different parts of this action is ana-
lyzed. Ideas from combinatorics are employed to organize the different pieces of the
decomposition.

6.1 Almost Everywhere Convergence of Fourier Integrals

In this section we study the proof of one of the most celebrated theorems in Fourier
analysis, Carleson’s theorem on the almost everywhere convergence of Fourier se-
ries of square integrable functions on the circle. The same result is also valid for
functions f on the line if the partial sums of the Fourier series are replaced by the
(partial) Fourier integrals

∫

|ξ |≤N
f̂ (ξ )e2πixξ dξ .

The equivalence of these assertions can be obtained via transference; about this see
Theorems 4.3.14 and 4.3.15 in [156].

For square-integrable functions f on the line, define the Carleson operator

C ( f )(x) = sup
N>0

∣
∣
(

f̂ χ[−N,N]
)∨

(x)
∣
∣= sup

N>0

∣
∣
∣
∣

∫

|ξ |≤N
f̂ (ξ )e2πixξ dξ

∣
∣
∣
∣
. (6.1.1)

We note that for f in L2(R) the functions ( f̂ χ[a,b])∨ are well defined and continuous
when −∞< a< b< ∞, and thus so is C ( f ). We have the following result about C .

L. Grafakos, Modern Fourier Analysis, Graduate Texts in Mathematics 250,
DOI 10.1007/978-1-4939-1230-8 6, © Springer Science+Business Media New York 2014
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Theorem 6.1.1. There is a constantC> 0 such that for all square-integrable functions
f on the line the following estimate is valid:

∥
∥C ( f )

∥
∥
L2,∞ ≤C

∥
∥ f
∥
∥
L2 . (6.1.2)

It follows that for all f in L2(R) we have

lim
N→∞

∫

|ξ |≤N
f̂ (ξ )e2πixξ dξ = f (x) (6.1.3)

for almost all x ∈ R.

Suppose we know the validity of (6.1.2). Since by the Lebesgue dominated con-
vergence theorem, (6.1.3) holds for Schwartz functions, applying Theorem 2.1.14 in
[156] and using (6.1.2) we obtain that (6.1.3) holds for all square-integrable functions
f on the line. It suffices therefore to prove (6.1.2).

Observe that it suffices to prove (6.1.2) for Schwartz functions f on the line.
Indeed, suppose we know (6.1.2) for Schwartz functions h and we would like to
prove it for all square-integrable functions f . Given f in L2(R) we pick a sequence
of Schwartz functions h j such that h j → f in L2 as j → ∞. It follows from the
Cauchy–Schwarz inequality that the sequence of continuous functions

(

ĥ j χ[−N,N]
)∨

converges to the continuous function
(

f̂ χ[−N,N]
)∨ pointwise everywhere as j → ∞

for all N > 0. Then we have
∥
∥C ( f )

∥
∥
L2,∞ =

∥
∥ sup
N>0

|( f̂ χ[−N,N]
)∨|∥∥L2,∞

=
∥
∥ sup
N>0

| lim
j→∞

(

ĥ j χ[−N,N]
)∨|∥∥L2,∞

≤ ∥
∥ sup
N>0

liminf
j→∞

|(ĥ j χ[−N,N]
)∨|∥∥L2,∞

≤ ∥
∥ liminf

j→∞
sup
N>0

|(ĥ j χ[−N,N]
)∨|∥∥L2,∞

≤ liminf
j→∞

∥
∥ sup
N>0

|(ĥ j χ[−N,N]
)∨|∥∥L2,∞

≤ liminf
j→∞

C
∥
∥h j
∥
∥
L2

= C
∥
∥ f
∥
∥
L2 ,

where we used Fatou’s lemma in the third inequality. This proves (6.1.2) for all
functions f ∈ L2(R).

We may therefore focus on the proof of (6.1.2) where f ∈S (R). We devote the
rest of this section to this task. Because of the simple identity

∫

|ξ |≤N
f̂ (ξ )e2πixξ dξ =

∫ N

−∞
f̂ (ξ )e2πixξ dξ −

∫ −N

−∞
f̂ (ξ )e2πixξ dξ ,
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it suffices to obtain L2 → L2,∞ bounds for the one-sided maximal operators

C1( f )(x) = sup
N>0

∣
∣
∣
∣

∫ N

−∞
f̂ (ξ )e2πixξ dξ

∣
∣
∣
∣
,

C2( f )(x) = sup
N>0

∣
∣
∣
∣

∫ −N

−∞
f̂ (ξ )e2πixξ dξ

∣
∣
∣
∣
,

acting on a Schwartz function f (with bounds independent of f ). Note that

C2( f )(x)≤ | f (x)|+C1( f̃ )(−x),

where f̃ (x) = f (−x) is the usual reflection operator. Therefore, it suffices to obtain
bounds only for C1.

For a> 0 and y∈Rwe define the translation operator τy, the modulation operator
Ma, and the dilation operator Da as follows:

τy( f )(x) = f (x− y) ,

Da( f )(x) = a−
1
2 f (a−1x) ,

My( f )(x) = f (x)e2πiyx .

These operators are isometries on L2(R).
We break down the proof of Theorem 6.1.1 into several steps.

6.1.1 Preliminaries

We denote rectangles of area 1 in the (x,ξ ) plane by s, t, u, etc. All rectangles
considered in the sequel have sides parallel to the axes. We think of x as the time
coordinate and of ξ as the frequency coordinate. For this reason we refer to the (x,ξ )
coordinate plane as the time–frequency plane. The projection of a rectangle s on the
time axis is denoted by Is, while its projection on the frequency axis is denoted by
ωs. Thus a rectangle s is just s = Is×ωs. Rectangles with sides parallel to the axes
and area equal to one are called tiles.

The center of an interval I is denoted by c(I). Also for a > 0, aI denotes an
interval with the same center as I whose length is a|I|. Given a tile s, we denote by
s(1) its bottom half and by s(2) its upper half defined by

s(1) = Is×
(

ωs∩ (−∞,c(ωs))
)

, s(2) = Is×
(

ωs∩ [c(ωs),+∞)
)

.

These sets are called semitiles. The projections of these sets on the frequency axes
are denoted by ωs(1) and ωs(2), respectively. See Figure 6.1.

A dyadic interval is an interval of the form [m2k,(m+1)2k), where k and m are
integers. We denote by D the set of all rectangles I×ω with I, ω dyadic intervals
and |I| |ω|= 1. Such rectangles are called dyadic tiles. We denote by D the set of all
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dyadic tiles. For every integer m, we denote by Dm the set of all tiles s ∈D such that
|Is|= 2m. We call these dyadic tiles of scale m.

Fig. 6.1 The lower and the
upper parts of a tile s.

s(1)

s(2)

We fix a Schwartz function ϕ such that ϕ̂ takes values in [0,1] and supported in
the interval [−1/10,1/10], and equal to 1 on the interval [−9/100,9/100]. For each
tile s, we introduce a function ϕs as follows:

ϕs(x) = |Is|− 1
2ϕ
(
x− c(Is)

|Is|
)

e2πic(ωs(1))x . (6.1.4)

This function is localized in frequency near c(ωs(1)). Using the previous notation,
we have

ϕs =Mc(ωs(1))τc(Is)D|Is|(ϕ) .

Observe that

ϕ̂s(ξ ) = |ωs|− 1
2 ϕ̂
(ξ − c(ωs(1))

|ωs|
)

e2πi(c(ωs(1))−ξ )c(Is) , (6.1.5)

from which it follows that ϕ̂s is supported in 2
5ωs(1). Also observe that the functions

ϕs have the same L2(R) norm.
Recall the complex inner product notation for f ,g ∈ L2(R):

〈

f |g〉=
∫

R
f (x)g(x)dx . (6.1.6)

Given a real number ξ and m ∈ Z, we introduce an operator

Am
ξ ( f ) = ∑

s∈Dm

χωs(2) (ξ )
〈

f |ϕs
〉

ϕs , (6.1.7)

for functions f ∈S (R). The series in (6.1.7) converges absolutely and in L2 for f in
the Schwartz class (see Exercise 6.1.9) and thus Am

ξ is well defined on S (R). Note
that for a fixedm, the sum in (6.1.7) is taken over the row of dyadic rectangles of size
2m×2−m whose tops contain the horizontal line at height ξ . The Fourier transforms
of the operators Am

ξ are supported in a horizontal strip contained in (−∞,ξ ] of width
2
52

−m. Notice that if the characteristic function were missing in (6.1.7), then for a
suitable function ϕ , the sum would be equal to a multiple of f (x); cf. Exercise 6.1.9.
Thus for eachm∈Z the operator Am

ξ ( f )may be viewed as a “piece” of the multiplier

operator f �→ (

f̂ χ(−∞,ξ ]
)∨. Summing over m yields a better approximation to this

half-line multiplier operator.
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This discussion motivates the introduction of the operator

Aξ ( f ) = ∑
m∈Z

Am
ξ ( f ) = ∑

s∈D
χωs(2) (ξ )

〈

f |ϕs
〉

ϕs (6.1.8)

for f ∈S (R) and ξ ∈R. We show in Lemma 6.1.2 that Aξ is well defined onS (R)
and that it admits a bounded extension on L2(R).

Lemma 6.1.2. For any ξ ∈ R, the operators Am
ξ , initially defined on S (R), admit

bounded extensions on L2(R), with norms uniformly bounded in m and ξ . Moreover,
for any g ∈ L2(R), the series ∑m∈ZAm

ξ (g) converges in L2(R) to a function Aξ (g)

in L2(R). The linear operator Aξ defined in this way is bounded from L2(R) to
itself with norm uniformly bounded in ξ . Moreover, when ξ > 0, for any f ∈ L1(R)
the series in (6.1.8) converges absolutely pointwise and is bounded by a constant
multiple of ξ‖ f‖L1 .
Proof. Fix ξ ∈ R. We first prove the results concerning Am

ξ . We begin by observing

that for m �= m′ and f ,g ∈S (R) we have that
〈

Am
ξ ( f ) |Am′

ξ (g)
〉

= 0. Indeed, given
f and g inS (R) we have
〈

Am
ξ ( f ) |Am′

ξ (g)
〉

= ∑
s∈Dm

∑
s′∈Dm′

〈

f |ϕs
〉〈

g |ϕs′
〉〈

ϕs |ϕs′
〉

χωs(2) (ξ )χωs′(2) (ξ ) , (6.1.9)

and this representation is possible, since the double sum converges absolutely (see
Exercise 6.1.9). Suppose that

〈

ϕs |ϕs′
〉

χωs(2) (ξ )χωs′(2) (ξ ) is nonzero. Then
〈

ϕs |ϕs′
〉

is also nonzero, which implies that ωs(1) and ωs′(1) intersect. Also, the function
χωs(2) (ξ )χωs′(2) (ξ ) is nonzero; hence ωs(2) and ωs′(2) must intersect. Thus the dyadic
intervals ωs and ωs′ are not disjoint, and one must contain the other. If ωs were
properly contained in ωs′ , then it would follow that ωs is contained in ωs′(1) or
in ωs′(2). But then either ωs(1) ∩ωs′(1) or ωs(2) ∩ωs′(2) would have to be empty,
which does not happen, as observed. It follows that if

〈

ϕs |ϕs′
〉

χωs(2) (ξ )χωs′(2) (ξ ) is
nonzero, then ωs =ωs′ , which is impossible ifm �=m′. Thus the expression in (6.1.9)
has to be zero.

We first discuss the boundedness of each operator Am
ξ . For f ∈S (R) have

∥
∥Am

ξ ( f )
∥
∥2
L2 = ∑

s∈Dm

∑
s′∈Dm

〈

f |ϕs
〉〈

f |ϕs′
〉〈

ϕs |ϕs′
〉

χωs(2) (ξ )χωs′(2) (ξ )

= ∑
s∈Dm

∑
s′∈Dmωs′=ωs

〈

f |ϕs
〉〈

f |ϕs′
〉〈

ϕs |ϕs′
〉

χωs(2) (ξ )χωs′(2) (ξ )

≤ ∑
s∈Dm

∑
s′∈Dmωs′=ωs

∣
∣
〈

f |ϕs
〉∣
∣2χωs(2) (ξ )

∣
∣
〈

ϕs |ϕs′
〉∣
∣

≤C1 ∑
s∈Dm

∣
∣
〈

f |ϕs
〉∣
∣2χωs(2) (ξ ) , (6.1.10)
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where we used an earlier observation about s and s′, the Cauchy–Schwarz inequality,
and the fact that

∑
s′∈Dmωs′=ωs

∣
∣
〈

ϕs |ϕs′
〉∣
∣≤C ∑

s′∈Dmωs′=ωs

(

1+
dist (Is, Is′)

2m

)−10

≤C1 ,

which follows from the result in Appendix B.1. To estimate (6.1.10), we use that

∣
∣
〈

f |ϕs
〉∣
∣≤ C2

∫

R
| f (y)| |Is|− 1

2

(

1+
|y− c(Is)|

|Is|
)−10

dy

≤ C3 |Is| 12
∫

R
| f (y)|

(

1+
|y− z|
|Is|

)−10 dy
|Is|

≤ C4 |Is| 12M( f )(z),

for all z ∈ Is, in view of Theorem 2.1.10 in [156]. Since the preceding estimate holds
for all z ∈ Is, it follows that

∣
∣
〈

f |ϕs
〉∣
∣2 ≤ (C4)

2|Is| inf
z∈Is

M( f )(z)2 ≤ (C4)
2
∫

Is
M( f )(x)2 dx. (6.1.11)

Next we observe that the rectangles s ∈ Dm with the property that ξ ∈ ωs(2) are all
disjoint. This implies that the corresponding time intervals Is are also disjoint. Thus,
summing (6.1.11) over all s ∈ Dm with ξ ∈ ωs(2), we obtain that

∑
s∈Dm

∣
∣
〈

f |ϕs
〉∣
∣2χωs(2) (ξ ) ≤ (C4)

2 ∑
s∈Dm

χωs(2) (ξ )
∫

Is
M( f )(x)2 dx

≤ (C4)
2
∫

R
M( f )(x)2 dx,

which establishes the required claim using the boundedness of the Hardy–Littlewood
maximal operator M on L2(R). We conclude that each Am

ξ , initially defined on
S (R), admits an L2-bounded extension and all these extensions have norms uni-
formly bounded in m and ξ . We denote these extensions also by Am

ξ .
We now explain why Aξ = ∑m∈ZAm

ξ is well defined on L2(R) and we examine
its L2 boundedness. For every fixed m ∈ Z, the dyadic tiles that appear in the sum
defining Am

ξ have the form

s= [k2m,(k+1)2m)× [�2−m,(�+1)2−m) ,

where (�+ 1
2 )2

−m ≤ ξ < (�+1)2−m. Let g ∈ L2(R). Thus � = [2mξ ], and since ϕ̂s
is supported in the lower part of the dyadic tile s, if gm is defined via

ĝm = ĝχ[2−m[2mξ ],2−m([2mξ ]+ 1
2 ))

,
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then we have Am
ξ (gm) = Am

ξ (g). We use this observation to obtain

∑
m∈Z

∥
∥Am

ξ (g)
∥
∥2
L2 = ∑

m∈Z

∥
∥Am

ξ (gm)
∥
∥2
L2

≤C5 ∑
m∈Z

∥
∥gm

∥
∥2
L2

=C5 ∑
m∈Z

∥
∥ĝm

∥
∥2
L2

≤C5‖g‖2L2 < ∞ .

(6.1.12)

As already observed, the supports of the Fourier transforms of Am
ξ (g) are pairwise

disjoint when m∈Z. This implies that
〈

Am
ξ (g) |Am′

ξ (g)
〉

= 0 whenever m �=m′. Con-
sequently, given ε > 0 there is an N0 such that forM > N ≥ N0 we have

∥
∥
∥ ∑
N≤|m|≤M

Am
ξ (g)

∥
∥
∥

2

L2
= ∑

N≤|m|≤M

∥
∥Am

ξ (g)
∥
∥2
L2 < ε2 . (6.1.13)

Thus the series ∑m∈ZAm
ξ (g) is Cauchy and it converges to an element of L2(R)

which we denote by Aξ (g). Combining (6.1.12) and (6.1.13) we obtain that Aξ is
bounded from L2(R) to itself with norm at most C5.

We now address the last assertion about the absolute pointwise convergence of
the series in (6.1.8) for all x ∈R when f ∈ L1(R) and ξ > 0. For fixed x ∈R, ξ > 0,
we pick m0 ∈ Z such that 2−m0−1 ≤ ξ < 2−m0 . We notice that for each m ∈ Z there
is only one horizontal row of tiles of size 2m×2−m whose upper parts contain ξ and
thus appearing in the sum in (6.1.8). Moreover, for all the tiles s that appear in the
sum in (6.1.8), the size of ωs cannot be bigger than 2−m0 since the top part of ωs
contains ξ . Thus if Is = [2mk,2m(k+ 1)), we must have m ≥ m0. Combining these
observations with the fact that |〈 f |ϕs〉| ≤ ‖ f‖L1‖ϕs‖L∞ , we estimate the sum of the
absolute value of each term of the series in (6.1.8) by

C‖ f‖L1 ∑
m≥m0

∑
k∈Z

2−
m
2

2−
m
2

(1+2−m|x−2m(k+ 1
2 )|)2

(6.1.14)

for some constantC> 0. Summing first over k ∈ Z and then over m≥m0, we obtain
that the series in (6.1.8) converges absolutely for all x ∈ R and is bounded above by
a constant multiple of ξ‖ f‖L1 . �

6.1.2 Discretization of the Carleson Operator

We let h ∈S (R), ξ ∈ R, and for each m ∈ Z, y,η ∈ R, and λ ∈ [0,1] we introduce
the operators

Bm
ξ ,y,η ,λ (h) = ∑

s∈Dm

χωs(2) (2
−λ (ξ +η))

〈

D2λ τyMη(h) |ϕs
〉

M−ητ−yD2−λ (ϕs) .
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It is not hard to see that for all x ∈ R and λ ∈ [0,1], we have

Bm
ξ ,y,η ,λ (h)(x) = Bm

ξ ,y+2m−λ ,η ,λ (h)(x) = Bm
ξ ,y,η+2−m+λ ,λ (h)(x) ;

in other words, the function (y,η) �→ Bm
ξ ,y,η ,λ (h)(x) is periodic in R2 with period

(2m−λ ,2−m+λ ). See Exercise 6.1.1.
Using Exercise 6.1.2, we obtain that for |m| large (with respect to ξ ) we have
∣
∣
∣
∣ ∑
s∈Dm

χωs(2) (2
−λ (ξ +η))

〈

D2λ τyMη(h) |ϕs
〉

M−ητ−yD2−λ (ϕs)(x)
∣
∣
∣
∣

≤ Chmin(2m,1) ∑
s∈Dm

χωs(2) (2
−λ (ξ +η))2−m/2

∣
∣
∣ϕ
(x+ y− c(Is)2−λ

2m−λ
)∣
∣
∣

≤ Chmin(2m/2,2−m/2)∑
k∈Z

∣
∣
∣ϕ
(x+ y− (k+ 1

2 )2
m−λ

2m−λ
)∣
∣
∣

≤ Chmin(2m/2,2−m/2) ,

since the last sum is seen easily to converge to some quantity that remains bounded
in x, y, η , and λ . It follows that for h ∈S (R) we have

sup
x∈R

sup
y∈R

sup
η∈R

sup
0≤λ≤1

∣
∣Bm

ξ ,y,η ,λ (h)(x)
∣
∣≤Chmin(2m/2,2−m/2) . (6.1.15)

In view of Exercise 6.1.3 and the periodicity of the functions Bm
ξ ,y,η ,λ (h), we con-

clude that the averages

1
2KL

∫ L

0

∫ K

−K

∫ 1

0
Bm
ξ ,y,η ,λ (h) dλ dydη

converge pointwise to some Πm
ξ (h) as K,L→ ∞. Estimate (6.1.15) implies the uni-

form convergence for the series ∑
m∈Z

Bm
ξ ,y,η ,λ (h) and therefore

lim
K→∞
L→∞

1
2KL

∫ L

0

∫ K

−K

∫ 1

0
M−ητ−yD2−λA ξ+η

2λ
D2λτyMη(h)dλ dydη (6.1.16)

= lim
K→∞
L→∞

1
2KL

∫ L

0

∫ K

−K

∫ 1

0
∑
m∈Z

Bm
ξ ,y,η ,λ (h) dλ dydη

= ∑
m∈Z

lim
K→∞
L→∞

1
2KL

∫ L

0

∫ K

−K

∫ 1

0
Bm
ξ ,y,η ,λ (h) dλ dydη

= ∑
m∈Z

Πm
ξ (h) .
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For h ∈S (R) we now define

Πξ (h) = ∑
m∈Z

Πm
ξ (h)

and we make some observations about this operator. First we observe that in view
of Lemma 6.1.2 and Fatou’s lemma, we have that Πξ is bounded on L2 uniformly in
ξ . Next we observe that Πξ commutes with all translations τz for z ∈R. To see this,
we use the fact that τ−zM−η = e−2πiηzM−ητ−z to obtain

∑
s∈Dm

χωs(2)

(

2−λ (ξ +η)
)〈

D2λ τyMητz(h) |ϕs
〉

τ−zM−ητ−yD2−λ (ϕs)

= ∑
s∈Dm

χωs(2)

(

2−λ (ξ +η)
)〈

h |τ−zM−ητ−yD2−λ (ϕs)
〉

τ−zM−ητ−yD2−λ (ϕs)

= ∑
s∈Dm

χωs(2)

(

2−λ (ξ +η)
)〈

h |M−ητ−y−zD2−λ (ϕs)
〉

M−ητ−y−zD2−λ (ϕs) .

Recall that τ−zΠm
ξ τ

z(h) is equal to the limit of the averages of the preceding ex-
pressions over all (y,η ,λ ) ∈ [−K,K]× [0,L]× [0,1]. But in view of the previous
identity, this is equal to the limit of the averages of the expressions

∑
s∈Dm

χωs(2)

(

2−λ (ξ +η)
)〈

D2λ τy
′
Mη(h) |ϕs

〉

M−ητ−y′D2−λ (ϕs) (6.1.17)

over all (y′,η ,λ ) ∈ [−K + z,K + z]× [0,L]× [0,1]. Since (6.1.17) is periodic in
(y′,η), it follows that its average over the set [−K+ z,K+ z]× [0,L]× [0,1] is equal
to its average over the set [−K,K]× [0,L]× [0,1]. Taking limits as K,L → ∞, we
obtain the identity τ−zΠm

ξ τ
z(h) =Πm

ξ (h). Summing over all m ∈ Z, it follows that

τ−zΠξτz(h) =Πξ (h) .

Using averages over the shifted rectangles [−K,K]× [θ ,L+θ ], via a similar ar-
gument, we obtain the identity

M−θΠξ+θM
θ =Πξ (6.1.18)

for all ξ ,θ ∈ R. The details are left to the reader. Next, we claim that the operator
M−ξΠξMξ commutes with dilationsD2a , a∈R. First we observe that for all integers
k we have

Aξ (h) = D2−k
A2−kξD

2k(h) , (6.1.19)

which is simply saying that Aξ is well behaved under change of scale. This identity
is left as an exercise to the reader. Identity (6.1.19) may not hold for noninteger k,
and this is exactly why we have averaged over all dilations 2λ , 0≤ λ ≤ 1, in (6.1.16).

Let us denote by [a] the integer part of a real number a. Using the identities
DbMη =Mη/bDb and Dbτz = τbzDb, we obtain
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D2−a
M−(ξ+η)τ−yD2−λA ξ+η

2λ
D2λ τyMξ+ηD2a (6.1.20)

=M−2a(ξ+η)τ−2−ayD2−(a+λ )
A ξ+η

2λ
D2a+λ τ2

−ayM2a(ξ+η)

=M−2a(ξ+η)τ−y′D2−λ ′D2−[a+λ ]
A 2a(ξ+η)

2λ ′ 2[a+λ ]
D2[a+λ ]D2λ

′
τy

′
M2a(ξ+η)

=M−2aξM−η ′
τ−y′D2−λ ′A 2aξ+2aη

2λ ′
D2λ

′
τy

′
Mη ′

M2aξ

=M−ξM−θ(M−η ′
τ−y′D2−λ ′A ξ+θ+η ′

2λ ′
D2λ

′
τy

′
Mη ′)

MθMξ , (6.1.21)

where we set y′ = 2−ay, η ′ = 2aη , λ ′ = a+λ− [a+λ ], and θ = (2a−1)ξ . The aver-
age of (6.1.20) over all (y,η ,λ ) in [−K,K]× [0,L]× [0,1] converges to the operator
D2−a

M−ξΠξMξD2a as K,L→ ∞. But this limit is equal to the limit of the averages
of the expression in (6.1.21) over all (y′,η ′,λ ′) in [−2−aK,2−aK]× [0,2aL]× [0,1],
which is

M−ξM−θΠξ+θM
θMξ .

Using the identity (6.1.18), we obtain that

D2−a
M−ξΠξM

ξD2a =M−ξΠξM
ξ ,

which says that the operator M−ξΠξMξ commutes with dilations.
Next we observe that if ĥ is supported in [0,∞), then M−ξΠξMξ (h) = 0. This is

a consequence of the fact that the inner products

〈

D2λ τyMηMξ (h) |ϕs
〉

=
〈

Mξ (h) |M−ητ−yD2−λ (ϕs)
〉

vanish, since the Fourier transform of τ−zM−ητ−yD2−λ ϕs is supported in the set
(−∞,2λ c(ωs(1))−η+ 2λ

10 |ωs|), which is disjoint from the interval (ξ ,+∞)whenever
2−λ (ξ +η) ∈ ωs(2). Finally, we observe that Πξ is a positive semidefinite operator,
that is, it satisfies

〈

Πξ (h) |h
〉≥ 0 . (6.1.22)

This follows easily from the fact that the inner product in (6.1.22) is equal to

lim
K→∞
L→∞

1
2KL

∫ L

0

∫ K

−K

∫ 1

0
∑
s∈D

χωs(2)

( ξ+η
2λ
)∣
∣
〈

D2λ τyMη(h) |ϕs
〉∣
∣2 dλ dydη . (6.1.23)

This identity also implies that Πξ is not the zero operator; indeed, notice that

∑
s∈D0

χωs(2)

( ξ+η
2λ
)∣
∣
〈

D2λ τyMη(h) |ϕs
〉∣
∣2 =

〈

h
∣
∣B0

ξ ,y,η ,λ (h)
〉
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is periodic with period (2−λ ,2λ ) in (y,η), and consequently the limit in (6.1.23) is
at least as big as

∫ 2λ

0

∫ 2−λ

0

∫ 1

0
∑
s∈D0

χωs(2)

( ξ+η
2λ
)∣
∣
〈

D2λ τyMη(h) |ϕs
〉∣
∣2 dλ dydη

(cf. Exercise 6.1.3). Since we can always find a Schwartz function h and a dyadic
tile s such that

〈

D2λ τyMη(h) |ϕs
〉

is not zero for (y,η ,λ ) near (0,0,0), it follows
that the expression in (6.1.23) is strictly positive for some function h. The same is
valid for the inner product in (6.1.22); hence the operators M−ξΠξMξ are nonzero
for every ξ .

Let us summarize what we have already proved: The operator M−ξΠξMξ is
nonzero, is bounded on L2(R), commutes with translations and dilations, and van-
ishes when applied to functions whose Fourier transform is supported in the positive
semiaxis [0,∞). Using the result of Exercise 5.1.11(b) in [156], it follows that for
some constant cξ �= 0 we have

M−ξΠξM
ξ (h)(x) = cξ

∫ 0

−∞
ĥ(η)e2πixη dη ,

which identifies Πξ with the convolution operator whose multiplier is the function
cξ χ(−∞,ξ ]. Using the identity (6.1.18), we obtain

cξ+θ = cξ

for all ξ and θ , saying that cξ does not depend on ξ . We have therefore proved that
for all Schwartz functions h the following identity is valid:

Πξ (h) = c
(

ĥχ(−∞,ξ ]
)∨ (6.1.24)

for some fixed nonzero constant c.

6.1.3 Linearization of a Maximal Dyadic Sum

To prove (6.1.2) with C1 in place of C we first make some reductions. We notice that
for a fixed f ∈S (R), the function

(x,ξ ) �→
∫ ξ

−∞
f̂ (y)e2πixy dy

defined on R×R+ is continuous in both variables. This allows us to restrict the
range of N in the supremum in (6.1.1) to N ∈ Q+. Using the Lebesgue monotone
convergence theorem, we may also restrict N to a finite subset Q0 of Q+ and obtain
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bounds independent of the size of this finite subset. Then for each ξ0 ∈ Q0 we have
that {

x ∈ R : max
ξ∈Q0

∣
∣
∣

∫ ξ

−∞
f̂ (y)e2πixy dy

∣
∣
∣=

∣
∣
∣

∫ ξ0

−∞
f̂ (y)e2πixy dy

∣
∣
∣

}

is closed and hence measurable. We may therefore select a measurable real-valued
function Nf : R→ Q0 such that for all x ∈ R we have

sup
ξ∈Q0

∣
∣
∣

∫ ξ

−∞
f̂ (y)e2πixy dy

∣
∣
∣=

∣
∣
∣

∫ Nf (x)

−∞
f̂ (y)e2πixy dy

∣
∣
∣ .

The appearance of this measurable function motivates the introduction of the oper-
ator

f �→
∫ N(x)

−∞
f̂ (y)e2πixy dy (6.1.25)

for a general measurable function N : R→ Q0. If we can prove an L2 → L2,∞ esti-
mate for this operator applied to Schwartz functions with bounds independent of the
measurable function N, then for a given f ∈S (R) we pick N = Nf and obtain the
boundedness of

f �→ sup
ξ∈Q0

∣
∣
∣

∫ ξ

−∞
f̂ (y)e2πixy dy

∣
∣
∣

from L2 → L2,∞; then the boundedness of C1 follows as previously observed, replac-
ing Q0 by Q+ via the Lebesgue monotone convergence theorem, and then replacing
Q+ by R+ by continuity.

For the rest of this section, we fix a measurable function N defined on the real
line with finitely many positive rational values. We define a linear operator DN by
setting for f ∈S (R),

DN( f )(x) = AN(x)( f )(x) = ∑
s∈D

(χωs(2) ◦N)(x)
〈

f |ϕs
〉

ϕs(x) . (6.1.26)

In view of Lemma 6.1.2, the series in (6.1.26) converges absolutely for all x ∈ R.
It suffices to show that there exists C > 0 such that for all f ∈ S (R) and all

measurable functions N : R→Q+ (with finitely many values) we have
∥
∥DN( f )

∥
∥
L2,∞ ≤C

∥
∥ f
∥
∥
L2 . (6.1.27)

Suppose we know the validity of (6.1.27). Then identity (6.1.16) gives

Πξ ( f )(x) = lim
K→∞
L→∞

1
2KL

∫ L

0

∫ K

−K

∫ 1

0
Gξ ,y,η ,λ ( f )(x)dλ dydη ,

for all x ∈ R and ξ > 0, where

Gξ ,y,η ,λ ( f )(x) =M−ητ−yD2−λA ξ+η
2λ

D2λ τyMη( f )(x) .
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Taking ξ = N(x), this gives for any x ∈ R

ΠN(x)( f )(x) = lim
K→∞
L→∞

1
2KL

∫ L

0

∫ K

−K

∫ 1

0
GN(x),y,η ,λ ( f )(x)dλ dydη

and hence

|ΠN(x)( f )(x)| ≤ liminf
K→∞
L→∞

1
2KL

∫ L

0

∫ K

−K

∫ 1

0
|GN(x),y,η ,λ ( f )(x)|dλ dydη .

We now apply the L2,∞ quasi-norm on both sides and we use Fatou’s lemma for weak
L2; see Exercise 1.1.12(d) in [156]. Since modulations, translations, and L2-dilations
are isometries on L2, we reduce the sought estimate for the operator in (6.1.25) to
the corresponding estimate for f �→ AN(x)( f )(x) =DN( f )(x).

To justify certain algebraic manipulations we fix a finite subset P of D and we
define

DN,P( f )(x) = ∑
s∈P

(χωs(2) ◦N)(x)
〈

f |ϕs
〉

ϕs(x) . (6.1.28)

To prove (6.1.27) it suffices to show that there exists a C > 0 such that for all f in
S (R), all finite subsets P of D, and all real-valued measurable functions N on the
line we have

∥
∥DN,P( f )

∥
∥
L2,∞ ≤C

∥
∥ f
∥
∥
L2 . (6.1.29)

The important point is that the constant C in (6.1.29) is independent of f , P, and
the measurable function N. Once (6.1.29) is known, then taking a sequence of sets
PL → D, as L → ∞ and using the absolute convergence of the series, we obtain
(6.1.27).

To prove (6.1.29) we use duality. In view of the result of Exercises 1.4.12(c), it
suffices to prove that for all f ∈S (R) we have
∣
∣
∣
∣

∫

R
DN,P( f )gdx

∣
∣
∣
∣
=
∣
∣
∣∑
s∈P

〈

(χωs(2) ◦N)ϕs,g
〉〈

ϕs | f
〉
∣
∣
∣≤C

∥
∥g
∥
∥
L2,1
∥
∥ f
∥
∥
L2 . (6.1.30)

Using the result of Exercise 1.4.7 in [156], (6.1.30) will follow from the fact that for
all measurable subsets E of the real line with finite measure we have
∣
∣
∣
∣

∫

E
DN,P( f )dx

∣
∣
∣
∣
=
∣
∣
∣∑
s∈P

〈

(χωs(2) ◦N)ϕs,χE
〉〈

ϕs | f
〉
∣
∣
∣≤C|E| 12 ∥∥ f∥∥L2 . (6.1.31)

We obtain estimate (6.1.31) as a consequence of

∑
s∈P

∣
∣
〈

(χωs(2) ◦N)ϕs,χE
〉〈

f |ϕs
〉∣
∣≤C|E| 12 ∥∥ f∥∥L2 (6.1.32)

for all f in S (R), all measurable functions N, all measurable sets E of finite mea-
sure, and all finite subsets P of D. We therefore concentrate on estimate (6.1.32).
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6.1.4 Iterative Selection of Sets of Tiles with Large Mass
and Energy

We introduce a partial order in the set of dyadic tiles that provides a way to organize
them. In this section, dyadic tiles are simply called tiles.

Definition 6.1.3. We define a partial order < in the set of dyadic tiles D by setting

s< s′ ⇐⇒ Is � Is′ and ωs′ � ωs .

If two tiles s,s′ ∈ D intersect, then we must have either s < s′ or s′ < s. Indeed,
both the time and frequency components of the tiles must intersect; then either Is �
Is′ or Is′ � Is. In the first case we must have |ωs| ≥ |ωs′ |, thus ωs′ � ωs, which gives
s< s′, while in the second case a similar argument gives s′ < s. As a consequence of
this observation, if R0 is a finite set of tiles, then all maximal elements of R0 under
< must be disjoint sets.

Definition 6.1.4. A finite set of tiles P is called a tree if there exists a tile t ∈ P such
that all s ∈ P satisfy s < t. We call t the top of P and we denote it by t = top(P).
Observe that the top of a tree is unique.

We denote trees by T, T′, T1, T2, and so on.
We observe that every finite set of tiles P can be written as a union of trees whose

tops are maximal elements. Indeed, consider all maximal elements of P under the
partial order <. Then every nonmaximal element s of P satisfies s < t for some
maximal element t ∈ P, and thus it belongs to a tree with top t.

Tiles can be written as a union of two semitiles Is×ωs(1) and Is×ωs(2). Since
tiles have area 1, semitiles have area 1/2.

Definition 6.1.5. A tree T is called a 1-tree if

ωtop(T)(1) � ωs(1)

for all s ∈ T. A tree T′ is called a 2-tree if for all s ∈ T′ we have

ωtop(T′)(2) � ωs(2) .

We make a few observations about 1-trees and 2-trees. First note that every tree
can be written as the union of a 1-tree and a 2-tree, and the intersection of these
is exactly the top of the tree. Also, if T is a 1-tree, then the intervals ωtop(T)(2) and
ωs(2) are disjoint for all s ∈ T and similarly for 2-trees. See Figure 6.2.

Definition 6.1.6. Let N : R→ R+ be a measurable function, let s ∈ D, and let E be
a set of finite measure. Then we introduce the quantity

M (E;{s}) = 1
|E| supu∈D

s<u

∫

E∩N−1[ωu]

|Iu|−1 dx

(1+ |x−c(Iu)|
|Iu| )10

.
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Fig. 6.2 A tree of seven tiles
including the darkened top.
The top together with the
three tiles on the right forms a
1-tree, while the top together
with the three tiles on the left
forms a 2-tree.

We call M (E;{s}) the mass of E with respect to {s}. Given a subset P of D, we
define the mass of E with respect to P as

M (E;P) = sup
s∈P

M (E;{s}) .

We observe that the mass of E with respect to any set of tiles is at most

1
|E|

∫ +∞

−∞
dx

(1+ |x|)10 ≤ 1
|E| .

Definition 6.1.7. Given a finite subset P ofD and a function g in L2(R), we introduce
the quantity

E (g;P) =
1

‖g‖L2
sup
T

(
1

|Itop(T)| ∑s∈T
∣
∣
〈

g |ϕs
〉∣
∣2
) 1

2
,

where the supremum is taken over all 2-trees T contained in P. We call E (g;P) the
energy of the function g with respect to the set of tiles P.

We now state three important lemmas which we prove in the remaining three
subsections, respectively.
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Lemma 6.1.8. There exists a constant C1 such that for any measurable function N :
R→ R+, for any measurable subset E of the real line with finite measure, and for
any finite set of tiles P there is a subset P′ of P such that

M (E;P\P′)≤ 1
4
M (E;P)

and P′ is a union of trees T j satisfying

∑
j
|Itop(T j)| ≤

C1

M (E;P)
. (6.1.33)

Lemma 6.1.9. There exists a constant C2 such that for any finite set of tiles P and
for all functions g in L2(R) there is a subset P′′ of P such that

E (g;P\P′′)≤ 1
2
E (g;P)

and P′′ is a union of trees T j satisfying

∑
j
|Itop(T j)| ≤

C2

E (g;P)2
. (6.1.34)

Lemma 6.1.10. (The basic estimate) There is a finite constant C3 such that for all
trees T, all functions g in L2(R), for any measurable function N : R→ R+, and for
all measurable sets E we have

∑
s∈T

∣
∣
〈

g |ϕs
〉〈

χE∩N−1[ωs(2)]
|ϕs
〉∣
∣

≤C3 |Itop(T)|E (g;T)M (E;T)
∥
∥g
∥
∥
L2 |E| .

(6.1.35)

In the rest of this subsection, we conclude the proof of Theorem 6.1.1 assuming
Lemmas 6.1.8, 6.1.9, and 6.1.10.

Given a finite set of tiles P, a measurable set E of finite measure, a measurable
function N : R → R+, and a function f in S (R), we find a very large integer n0
such that

E ( f ;P) ≤ 2n0 ,

M (E;P) ≤ 22n0 .

We shall construct by decreasing induction a sequence of pairwise disjoint sets

Pn0 , Pn0−1, Pn0−2, Pn0−3, . . .

such that
n0⋃

j=−∞
P j = P (6.1.36)
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and such that the following properties are satisfied:

(1) E ( f ;P j)≤ 2 j+1 for all j ≤ n0;

(2) M (E;P j)≤ 22 j+2 for all j ≤ n0;

(3) E
(

f ;P\ (Pn0 ∪·· ·∪P j)
)≤ 2 j for all j ≤ n0;

(4) M
(

E;P\ (Pn0 ∪·· ·∪P j)
)≤ 22 j for all j ≤ n0;

(5) P j is a union of trees T jk such that for all j ≤ n0 we have

∑
k
|Itop(T jk)| ≤C0 2−2 j ,

where C0 = C1 +C2 and C1 and C2 are the constants that appear in Lemmas
6.1.8 and 6.1.9, respectively.

Assume momentarily that we have constructed a sequence {P j} j≤n0 with the
described properties. Then to obtain estimate (6.1.32) we use (1), (2), (5), the ob-
servation that the mass of any set of tiles is always bounded by |E|−1, and Lemma
6.1.10 to obtain

∑
s∈P

∣
∣
〈

f |ϕs
〉〈

χE∩N−1[ωs(2)]
|ϕs
〉∣
∣

= ∑
j
∑
s∈P j

∣
∣
〈

f |ϕs
〉〈

χE∩N−1[ωs(2)]
|ϕs
〉∣
∣

≤ ∑
j
∑
k
∑

s∈T jk

∣
∣
〈

f |ϕs
〉〈

χE∩N−1[ωs(2)]
|ϕs
〉∣
∣

≤ C3∑
j
∑
k
|Itop(T jk)|E ( f ;T jk)M (E;T jk)

∥
∥ f
∥
∥
L2 |E|

≤ C3∑
j
∑
k
|Itop(T jk)

|2 j+1 min(|E|−1,22 j+2)
∥
∥ f
∥
∥
L2 |E|

≤ C3∑
j
C02−2 j2 j+1 min(|E|−1,22 j+2)

∥
∥ f
∥
∥
L2 |E|

≤ 8C0C3∑
j
min(2− j|E|− 1

2 ,2 j|E| 12 )∥∥ f∥∥L2 |E|
1
2

≤ C |E| 12 ∥∥ f∥∥L2 .

This proves estimate (6.1.32).
It remains to construct a sequence of disjoint sets P j satisfying properties (1)–(5).

The selection of these sets is based on decreasing induction. We start the induction
at j = n0 by setting Pn0 = /0. Then (1), (2), and (5) are clearly satisfied, while

E ( f ;P\Pn0) = E ( f ;P) ≤ 2n0 ,

M (E;P\Pn0) = M (E;P) ≤ 22n0 ;

hence (3) and (4) are also satisfied for Pn0 .
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Suppose that we have selected pairwise disjoint sets Pn0 , Pn0−1, . . . ,Pn for some
n ≤ n0 such that (1)–(5) are satisfied for all j ∈ {n0,n0− 1, . . . ,n}. We construct a
set of tiles Pn−1 disjoint from all P j with j ≥ n such that (1)–(5) are satisfied for
j = n−1.

We define first an auxiliary set P′
n−1. If M

(

E;P\ (Pn0 ∪ ·· ·∪Pn)
)≤ 22(n−1) set

P′
n−1 = /0. IfM

(

E;P\(Pn0 ∪·· ·∪Pn)
)

> 22(n−1) apply Lemma 6.1.8 to find a subset
P′
n−1 of P\ (Pn0 ∪·· ·∪Pn) such that

M
(

E;P\ (Pn0 ∪·· ·∪Pn∪P′
n−1)

)≤ 1
4
M
(

E;P\ (Pn0 ∪·· ·∪Pn)
)≤ 22n

4
= 22(n−1)

[by the induction hypothesis (4) with j= n] and P′
n−1 is a union of treesT

′
k satisfying

∑
k
|Itop(T′

k)
| ≤C1M

(

f ;P\ (Pn0 ∪·· ·∪Pn)
)−1 ≤C1 2−2(n−1) . (6.1.37)

Likewise, if E
(

f ;P\(Pn0 ∪·· ·∪Pn)
)≤ 2n−1 set P′′

n−1 = /0; otherwise, apply Lemma
6.1.9 to find a subset P′′

n−1 of P\ (Pn0 ∪·· ·∪Pn) such that

E
(

f ;P\ (Pn0 ∪·· ·∪Pn∪P′′
n−1)

)≤ 1
2
E
(

f ;P\ (Pn0 ∪·· ·∪Pn)
)≤ 1

2
2n = 2n−1

[by the induction hypothesis (3) with j = n] and P′′
n−1 is a union of trees T′′

k
satisfying

∑
k
|Itop(T′′

k )
| ≤C2E

(

f ;P\ (Pn0 ∪·· ·∪Pn)
)−2 ≤C2 2−2(n−1). (6.1.38)

Whether the sets P′
n−1 and P′′

n−1 are empty or not, we note that

M
(

E;P\ (Pn0 ∪·· ·∪Pn∪P′
n−1)

) ≤ 22(n−1) , (6.1.39)

E
(

f ;P\ (Pn0 ∪·· ·∪Pn∪P′′
n−1)

) ≤ 2n−1 . (6.1.40)

We set Pn−1 = P′
n−1

⋃
P′′
n−1, and we verify properties (1)–(5) for j= n−1. Since

Pn−1 is contained in P\ (Pn0 ∪·· ·∪Pn), we have

E ( f ;Pn−1)≤ E
(

f ;P\ (Pn0 ∪·· ·∪Pn)
)≤ 2n = 2(n−1)+1 ,

where the last inequality is a consequence of the induction hypothesis (3) for j = n;
thus (1) holds with j = n−1. Likewise,

M (E;Pn−1)≤M
(

E;P\ (Pn0 ∪·· ·∪Pn)
)≤ 22n = 22(n−1)+2

in view of the induction hypothesis (4) for j = n; thus (2) holds with j = n−1.
To prove (3) with j = n− 1 notice that P \ (Pn0 ∪ ·· · ∪Pn ∪Pn−1) is contained

in P \ (Pn0 ∪ ·· · ∪Pn ∪P′′
n−1), and the latter has energy at most 2n−1 by (6.1.40).

To prove (4) with j = n− 1 note that P \ (Pn0 ∪ ·· · ∪ Pn ∪ Pn−1) is contained in
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P\(Pn0 ∪·· ·∪Pn∪P′
n−1) and the latter has mass at most 22(n−1) by (6.1.39). Finally,

adding (6.1.37) and (6.1.38) yields (5) for j = n−1 with C0 =C1+C2.
Pick j ∈Zwith 0< 22 j <mins∈PM (E;{s}). ThenM (

E;P\(Pn0 ∪·· ·∪P j)
)

=
0, and since the only set of tiles with zero mass is the empty set, we conclude that
(6.1.36) holds. It also follows that there exists an n1 such that for all n≤ n1, Pn = /0.
The construction of the P j’s is now complete.

6.1.5 Proof of the Mass Lemma 6.1.8

Proof. Given a finite set of tiles P, we set μ = M (E;P) to be the mass of P. We
define

P′ = {s ∈ P : M (E;{s})> 1
4μ}

and we observe that M (E;P \P′) ≤ 1
4μ . We now show that P′ is a union of trees

whose tops satisfy (6.1.33).
It follows from the definition of mass that for each s ∈ P′, there is a tile u(s) ∈ D

such that u(s)> s and

1
|E|

∫

E∩N−1[ωu(s)]

|Iu(s)|−1 dx

(1+
|x−c(Iu(s))|

|Iu(s)| )10
>

μ
4
. (6.1.41)

Let U = {u(s) : s ∈ P′}. Also, let Umax be the subset of U containing all maximal
elements of U under the partial order of tiles <. Likewise define P′

max as the set of
all maximal elements in P′. Tiles in P′ can be grouped in trees

T j = {s ∈ P′ : s< t j}

with tops t j ∈ P′
max. Observe that if t j < u and t j′ < u for some u ∈ Umax, then ωt j

and ωt j′ intersect, and since t j and t j′ are disjoint sets, it follows that It j and It j′ are
disjoint subsets of Iu. Consequently, we have

∑
j
|It j |= ∑

u∈Umax

∑
j: t j<u

|It j | ≤ ∑
u∈Umax

|Iu| .

Therefore, estimate (6.1.33) will be a consequence of

∑
u∈Umax

|Iu| ≤Cμ−1 (6.1.42)

for some constant C. For u ∈ Umax we rewrite (6.1.41) as

1
|E|

∞

∑
k=0

∫

E∩N−1[ωu]∩
(

2kIu\2k−1Iu
)

|Iu|−1 dx
(

1+ |x−c(Iu)|
|Iu|

)10 >
μ
8

∞

∑
k=0

2−k
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with the interpretation that 2−1Iu = /0. It follows that for all u in Umax there exists an
integer k ≥ 0 such that

|E| μ
8
|Iu|2−k <

∫

E∩N−1[ωu]∩
(

2kIu\2k−1Iu
)

dx

(1+ |x−c(Iu)|
|Iu| )10

≤ |E ∩N−1[ωu]∩2kIu|
( 45 )

10(1+2k−2)10
.

We therefore conclude that

Umax =
∞
⋃

k=0

Uk ,

where

Uk = {u ∈ Umax : |Iu| ≤ 8 ·510 2−9k μ−1 |E|−1|E ∩N−1[ωu]∩2kIu|} .

The required estimate (6.1.42) will be a consequence of the sequence of estimates

∑
u∈Uk

|Iu| ≤C2−8kμ−1 , k ≥ 0 . (6.1.43)

We now fix a k ≥ 0 and we concentrate on (6.1.43). Select an element v0 ∈ Uk such
that |Iv0 | is the largest possible among elements of Uk. Then select an element v1 ∈
Uk \{v0} such that the enlarged rectangle (2kIv1)×ωv1 is disjoint from the enlarged
rectangle (2kIv0)×ωv0 and |Iv1 | is the largest possible. Continue this process by
induction. At the jth step select an element of

Uk \{v0, . . . ,v j−1}

such that the enlarged rectangle (2kIv j)×ωv j is disjoint from all the enlarged rect-
angles of the previously selected tiles and the length |Iv j | is the largest possible. This
process will terminate after a finite number of steps. We denote by Vk the set of all
selected tiles in Uk.

We make a few observations. Recall that all elements of Uk are maximal rectan-
gles in U and therefore disjoint. For any u ∈ Uk there exists a selected v ∈ Vk with
|Iu| ≤ |Iv| such that the enlarged rectangles corresponding to u and v intersect. Let
us associate this u to the selected v. Observe that if u and u′ are associated with the
same selected v, they are disjoint, and since both ωu andωu′ containωv, the intervals
Iu and Iu′ must be disjoint. Thus, tiles u ∈ Uk associated with a fixed v ∈ Vk have
disjoint Iu’s and satisfy

Iu � 2k+2Iv .

Consequently,

∑
u∈Uk

u associated with v

|Iu| ≤ |2k+2Iv|= 2k+2|Iv| .
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Putting these observations together, we obtain

∑
u∈Uk

|Iu| ≤ ∑
v∈Vk

∑
u∈Uk

u associated with v

|Iu|

≤ 2k+2 ∑
v∈Vk

|Iv|

≤ 2k+5510 μ−1 |E|−1 2−9k ∑
v∈Vk

|E ∩N−1[ωv]∩2kIv|

≤ 32 ·510 μ−1 2−8k ,

since the enlarged rectangles 2kIv×ωv of the selected tiles v are disjoint and there-
fore so are the subsets E∩N−1[ωv]∩2kIv of E. This concludes the proof of estimate
(6.1.43) and therefore of Lemma 6.1.8. �

6.1.6 Proof of Energy Lemma 6.1.9

Proof. Let g ∈ L2(R). We work with a finite set of tiles P. For a 2-tree T′, let us
denote by

Δ(g;T′) =
1

‖g‖L2
{

1
|Itop(T′)| ∑s∈T′

∣
∣
〈

g |ϕs
〉∣
∣2
} 1

2

the quantity associated with T′ appearing in the definition of the energy. Consider
the set of all 2-trees T′ contained in P that satisfy

Δ(g;T′)≥ 1
2
E (g;P) (6.1.44)

and among them select a 2-tree T′
1 with c(ωtop(T′

1)
) as small as possible. We let T1

be the set of s ∈ P satisfying s < top(T′
1). Then T1 is the largest tree in P whose

top is top(T′
1). We now repeat this procedure with the set P\T1. Among all 2-trees

contained in P\T1 that satisfy (6.1.44) we pick a 2-tree T′
2 with c(ωtop(T′

2)
) as small

as possible. Then we let T2 be the s ∈ P\T1 satisfying s< top(T′
2). Then T2 is the

largest tree in P\T1 whose top is top(T′
2). We continue this procedure by induction

until there is no 2-tree left in P that satisfies (6.1.44). We have therefore constructed a
finite sequence of pairwise disjoint 2-trees T′

1,T
′
2,T

′
3, . . . ,T

′
q , and a finite sequence

of pairwise disjoint trees T1,T2,T3, . . . ,Tq , such that T′
j � T j, top(T j) = top(T′

j),
and the T′

j satisfy (6.1.44). We now let

P′′ =
⋃

j

T j ,
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and observe that this selection of trees ensures that

E (g;P\P′′)≤ 1
2
E (g;P) .

It remains to prove (6.1.34). Using (6.1.44), we obtain that

1
4
E (g;P)2∑

j
|Itop(T j)| ≤

1
‖g‖2L2

∑
j
∑
s∈T′

j

|〈g |ϕs
〉|2

=
1

‖g‖2L2
∑
j
∑
s∈T′

j

〈

g |ϕs
〉〈

g |ϕs
〉

=
1

‖g‖2L2
〈

g |∑
j
∑
s∈T′

j

〈

g |ϕs
〉

ϕs
〉

≤ 1
‖g‖L2

∥
∥
∥∑

j
∑
s∈T′

j

〈

ϕs |g
〉

ϕs

∥
∥
∥
L2
,

(6.1.45)

and we use this estimate to obtain (6.1.34). We set U=
⋃

jT′
j. We shall prove that

1
∥
∥g
∥
∥
L2

∥
∥
∥∑
s∈U

〈

ϕs |g
〉

ϕs

∥
∥
∥
L2

≤ C
(

E (g;P)2∑
j
|Itop(T j)|

) 1
2
. (6.1.46)

Once this estimate is established, then (6.1.45) combined with (6.1.46) yields (6.1.34).
(All involved quantities are finite, since P is a finite set of tiles.)

We estimate the square of the left-hand side in (6.1.46) by

∑
s,u∈U
ωs=ωu

∣
∣
〈

ϕs |g
〉〈

ϕu |g
〉〈

ϕs |ϕu
〉∣
∣+2 ∑

s,u∈U
ωs�ωu

∣
∣
〈

ϕs |g
〉〈

ϕu |g
〉〈

ϕs |ϕu
〉∣
∣ ,

(6.1.47)

since 〈ϕs |ϕu〉 = 0 unless ωs contains ωu or vice versa. We now estimate the first
term in (6.1.47) by the expression

∑
s,u∈U
ωs=ωu

∣
∣
〈

ϕs |g
〉∣
∣
∣
∣
〈

ϕs |ϕu
〉∣
∣1/2
∣
∣
〈

ϕu |g
〉∣
∣
∣
∣
〈

ϕs |ϕu
〉∣
∣1/2

≤
(

∑
s,u∈U
ωs=ωu

∣
∣
〈

ϕs |g
〉∣
∣2
∣
∣
〈

ϕs |ϕu
〉∣
∣

)1/2(

∑
s,u∈U
ωs=ωu

∣
∣
〈

ϕu |g
〉∣
∣2
∣
∣
〈

ϕs |ϕu
〉∣
∣

)1/2

= ∑
s∈U

∣
∣
〈

g |ϕs
〉∣
∣2 ∑

u∈U
ωu=ωs

∣
∣
〈

ϕs |ϕu
〉∣
∣

≤ ∑
s∈U

∣
∣
〈

g |ϕs
〉∣
∣2 ∑

u∈U
ωu=ωs

C′
∫

Iu

1
|Is|
(

1+
|x− c(Is)|

|Is|
)−100

dx



6.1 Almost Everywhere Convergence of Fourier Integrals 437

≤C′′ ∑
s∈U

∣
∣
〈

g |ϕs
〉∣
∣2

=C′′∑
j
∑
s∈T′

j

∣
∣
〈

g |ϕs
〉∣
∣2

≤C′′∑
j
|Itop(T j)| |Itop(T j)|−1 ∑

s∈T′
j

∣
∣
〈

g |ϕs
〉∣
∣2

≤C′′∑
j
|Itop(T j)|E (g;P)2

∥
∥g
∥
∥2
L2 , (6.1.48)

where in the derivation of the third inequality we used the fact that for fixed s ∈ U,
the intervals Iu with ωu = ωs are pairwise disjoint.

Our next goal is to obtain a similar estimate for the second term in (6.1.47). That
is, we need to prove that

∑
s,u∈U
ωs�ωu

∣
∣
〈

g |ϕs
〉〈

g |ϕu
〉〈

ϕs |ϕu
〉∣
∣≤CE (g;P)2

∥
∥g
∥
∥2
L2∑

j
|Itop(T j)| . (6.1.49)

Then the required estimate (6.1.46) would follow by combining (6.1.48) and (6.1.49).
To prove (6.1.49), we argue as follows:

∑
s,u∈U
ωs�ωu

∣
∣
〈

g |ϕs
〉〈

g |ϕu
〉〈

ϕs |ϕu
〉∣
∣

= ∑
j
∑
s∈T′

j

∣
∣
〈

g |ϕs
〉∣
∣ ∑

u∈U
ωs�ωu

∣
∣
〈

g |ϕu
〉〈

ϕs |ϕu
〉∣
∣

≤ ∑
j
|Itop(T j)|

1
2Δ(g;T′

j)
∥
∥g
∥
∥
L2

{

∑
s∈T′

j

(

∑
u∈U

ωs�ωu

∣
∣
〈

g |ϕu
〉〈

ϕs |ϕu
〉∣
∣

)2} 1
2

≤ E (g;P)
∥
∥g
∥
∥
L2∑

j
|Itop(T j)|

1
2

{

∑
s∈T′

j

(

∑
u∈U

ωs�ωu(1)

∣
∣
〈

g |ϕu
〉〈

ϕs |ϕu
〉∣
∣

)2} 1
2
,

where we used the Cauchy–Schwarz inequality and the fact that if ωs � ωu and
〈ϕs |ϕu〉 �= 0, then ωs � ωu(1). The proof of (6.1.49) will be complete if we can
show that the expression inside the curly brackets is at most a multiple of E (g;P)2
‖g‖2L2 |Itop(T j)|. Since any singleton {u}� P is a 2-tree, we have

E (g;{u}) = 1
‖g‖L2

(∣
∣
〈

g |ϕu
〉∣
∣2

|Iu|
) 1

2
=

1
∥
∥g
∥
∥
L2

∣
∣
〈

g |ϕu
〉∣
∣

|Iu| 12
≤ E (g;P) ;

hence
∣
∣
〈

g |ϕu
〉∣
∣≤ ∥∥g∥∥L2 |Iu|

1
2 E (g;P)
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and it follows that

∑
s∈T′

j

[

∑
u∈U

ωs�ωu(1)

∣
∣
〈

g |ϕu
〉〈

ϕs |ϕu
〉∣
∣

]2

≤ E (g;P)2‖g‖2L2 ∑
s∈T′

j

[

∑
u∈U

ωs�ωu(1)

|Iu| 12
∣
∣
〈

ϕs |ϕu
〉∣
∣

]2

.

Thus (6.1.49) will be proved if we can establish that

∑
s∈T′

j

(

∑
u∈U

ωs�ωu(1)

|Iu| 12
∣
∣
〈

ϕs |ϕu
〉∣
∣

)2

≤C|Itop(T j)| . (6.1.50)

We need the following crucial lemma.

Lemma 6.1.11. Let T j , T′
j be as previously. Let s ∈ T′

j and u ∈ T′
k. Then if ωs �

ωu(1), we have Iu∩ Itop(T j) = /0. Moreover, if u ∈ T′
k and v ∈ T′

l are different tiles and
satisfy ωs � ωu(1) and ωs � ωv(1) for some fixed s ∈ T′

j , then Iu∩ Iv = /0.

Proof. We observe that if s ∈ T′
j, u ∈ T′

k, and ωs � ωu(1), then the 2-trees T′
j and

T′
k have different tops and therefore they cannot be the same tree; thus j �= k.
Next we observe that the center of ωtop(T′

j)
is contained in ωs, which is contained

in ωu(1). Therefore, the center of ωtop(T′
j)
is contained in ωu(1), and therefore it must

be smaller than the center of ωtop(T′
k)
, since T′

k is a 2-tree. This means that the
2-tree T′

j was selected before T′
k, that is, we must have j < k. If Iu had a nonempty

intersection with Itop(T j) = Itop(T′
j)
, then since

|Itop(T′
j)
|= 1

|ωtop(T′
j)
| ≥

1
|ωs| ≥

1
|ωu(1)|

=
2

|ωu| = 2|Iu| ,

Iu would have to be contained in Itop(T′
j)
. Since also ωtop(T′

j)
� ωs � ωu, it follows

that u< top(T′
j); thus uwould belong to the treeT j [which is the largest tree with top

top(T′
j)], since this tree was selected first. But if u belonged to T j, then it could not

belong to T′
k, which is disjoint from T j; hence we get a contradiction. We conclude

that Iu∩ Itop(T j) = /0.
Next assume that u∈T′

k, v∈T′
l , u �= v, and that ωs �ωu(1)∩ωv(1) for some fixed

s ∈ T′
j. Since the left halves of two dyadic intervals ωu and ωv intersect, three things

can happen: (a) ωu � ωv(1), in which case Iv is disjoint from Itop(T′
k)
and thus from

Iu; (b) ωv � ωu(1), in which case Iu is disjoint from Itop(T′
l)
and thus from Iv; and

(c) ωu = ωv, in which case |Iu| = |Iv|, and thus Iu and Iv are either disjoint or they
coincide. Since u �= v, it follows that Iu and Iv cannot coincide; thus Iu∩ Iv = /0. This
finishes the proof of the lemma. �

We now return to (6.1.50). In view of Lemma 6.1.11, different u ∈ U that appear
in the interior sum in (6.1.50) have disjoint intervals Iu, and all of these are contained
in (Itop(T j))

c. Set t j = top(T j). Using Exercise 6.1.4, we obtain
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∑
s∈T′

j

(

∑
u∈U

ωs�ωu(1)

|Iu| 12
∣
∣
〈

ϕs |ϕu
〉∣
∣

)2

≤C ∑
s∈T′

j

(

∑
u∈U

ωs�ωu(1)

|Iu| 12
( |Is|
|Iu|
) 1

2 ∫

Iu

|Is|−1 dx
(

1+ |x−c(Is)|
|Is|

)20

)2

≤C ∑
s∈T′

j

|Is|
(

∑
u∈U

ωs�ωu(1)

∫

Iu

|Is|−1 dx
(

1+ |x−c(Is)|
|Is|

)20

)2

≤C ∑
s∈T′

j

|Is|
(∫

(It j )
c

|Is|−1 dx
(

1+ |x−c(Is)|
|Is|

)20

)2

≤C ∑
s∈T′

j

|Is|
∫

(It j )
c

|Is|−1 dx
(

1+ |x−c(Is)|
|Is|

)20 ,

since
∫

R(1+ |x|)−20 dx≤ 1. For each scale k≥ 0 the sets Is, s∈T′
j, with |Is|= 2−k|It j |

are pairwise disjoint and contained in It j ; therefore, we have

∑
s∈T′

j

|Is|
∫

(It j )
c

|Is|−1 dx
(

1+ |x−c(Is)|
|Is|

)20 ≤
∞

∑
k=0

2k

|It j | ∑
s∈T′

j
|Is|=2−k|It j |

|Is|
∫

(It j )
c

dx
(

1+ |x−c(Is)|
|Is|

)20

≤C
∞

∑
k=0

2k

|It j | ∑
s∈T′

j

|Is|=2−k|It j |

∫

Is

∫

(It j )
c

dx
(

1+ |x−y|
|Is|
)20 dy

≤C
∞

∑
k=0

2k|It j |−1
∫

It j

∫

(It j )
c

1
(

1+ |x−y|
2−k|It j |

)20 dxdy

≤C′
∞

∑
k=0

2k|It j |−1(2−k|It j |)2

=C′′|It j | ,

in view of Exercise 6.1.5. This completes the proof of (6.1.50) and thus of Lemma
6.1.9. �

6.1.7 Proof of the Basic Estimate Lemma 6.1.10

Proof. In the proof of the required estimate we may assume that ‖g‖L2 = 1, for
we can always replace g by g/‖g‖L2 . Throughout this subsection we fix a square-
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integrable function g with L2 norm 1, a tree T, a measurable function N : R→ R+,
and a measurable set E with finite measure.

Let J ′ be the set of all dyadic intervals J such that 3J does not contain any Is
with s ∈ T. It is not hard to see that any point in R belongs to a set in J ′. Let J
be the set of all maximal (under inclusion) elements of J ′. Then J consists of
disjoint sets that cover R; thus it forms a partition of R. This partition of R is shown
in Figure 6.3 when the tree consists of two tiles.

J

dyadic

J'

dyadic dyadic

Fig. 6.3 A tree of two tiles and the partition J of R corresponding to it. The intervals J and J′
are members of the partitionJ .

For each s ∈ T pick an εs ∈ C with |εs|= 1 such that
∣
∣
〈

g |ϕs
〉〈

χE∩N−1[ωs(2)]
|ϕs
〉∣
∣= εs

〈

g |ϕs
〉〈

ϕs |χE∩N−1[ωs(2)]

〉

.

We can now write the left-hand side of (6.1.35) as

∑
s∈T

εs
〈

g |ϕs
〉〈

ϕs |χE∩N−1[ωs(2)]

〉 ≤
∥
∥
∥∑
s∈T

εs
〈

g |ϕs
〉

χE∩N−1[ωs(2)]
ϕs

∥
∥
∥
L1(R)

= ∑
J∈J

∥
∥
∥∑
s∈T

εs
〈

g |ϕs
〉

χE∩N−1[ωs(2)]
ϕs

∥
∥
∥
L1(J)

≤ Σ1+Σ2 ,

where

Σ1 = ∑
J∈J

∥
∥
∥ ∑

s∈T
|Is|≤2|J|

εs
〈

g |ϕs
〉

χE∩N−1[ωs(2)]
ϕs

∥
∥
∥
L1(J)

, (6.1.51)

Σ2 = ∑
J∈J

∥
∥
∥ ∑

s∈T
|Is|>2|J|

εs
〈

g |ϕs
〉

χE∩N−1[ωs(2)]
ϕs

∥
∥
∥
L1(J)

. (6.1.52)

We start with Σ1. Observe that for every s∈T, the singleton {s} is a 2-tree contained
in T and we therefore have the estimate

∣
∣
〈

g |ϕs
〉∣
∣≤ |Is| 12 E (g;T) . (6.1.53)
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Using this, we obtain

Σ1 ≤ ∑
J∈J

∑
s∈T

|Is|≤2|J|

E (g;T)
∫

J∩E∩N−1[ωs(2)]
|Is| 12 |ϕs(x)|dx

≤ C ∑
J∈J

∑
s∈T

|Is|≤2|J|

E (g;T)|Is|
∫

J∩E∩N−1[ωs(2)]

|Is|−1

(

1+ |x−c(Is)|
|Is|

)20 dx

≤ C ∑
J∈J

∑
s∈T

|Is|≤2|J|

E (g;T) |E|M (E;T)|Is|sup
x∈J

1
(

1+ |x−c(Is)|
|Is|

)10

≤ CE (g;T) |E|M (E;T) ∑
J∈J

log2 2|J|
∑

k=−∞
2k ∑

s∈T
|Is|=2k

1
(

1+ dist (J,Is)
2k

)5
1

(

1+ dist (J,Is)
2k

)5 .

But note that all Is with s ∈ T and |Is| = 2k are pairwise disjoint and contained in
Itop(T). Therefore, 2−kdist (J, Is)≥ |Itop(T)|−1dist (J, Itop(T)), and we have the estimate

(

1+
dist (J, Is)

2k

)−5

≤
(

1+
dist (J, Itop(T))

|Itop(T)|
)−5

.

Moreover, the sum

∑
s∈T

|Is|=2k

1
(

1+ dist (J,Is)
2k

)5 (6.1.54)

is controlled by a finite constant, since for every nonnegative integer m there exist
at most two tiles s ∈ T with |Is|= 2k such that Is are not contained in 3J and m2k ≤
dist (J, Is)< (m+1)2k. Therefore, we obtain

Σ1 ≤ CE (g;T) |E|M (E;T) ∑
J∈J

log2 2|J|
∑

k=−∞

2k
(

1+
dist (J,Itop(T))

|Itop(T)|
)5

≤ CE (g;T) |E|M (E;T) ∑
J∈J

|J|
(

1+
dist (J,Itop(T))

|Itop(T)|
)5

≤ CE (g;T) |E|M (E;T) ∑
J∈J

∫

J

1
(

1+
|x−c(Itop(T))|

|Itop(T)|
)5

dx

≤ C |Itop(T)|E (g;T) |E|M (E;T) ,

(6.1.55)

since J forms a partition of R. We need to justify, however, the penultimate in-
equality in (6.1.55). Since J and Itop(T) are dyadic intervals, there are only two pos-
sibilities: (a) J ∩ Itop(T) = /0 and (b) J � Itop(T). [The third possibility Itop(T) � J is
excluded, since 3J does not contain Itop(T).] In case (a) we have |J| ≤ dist (J, Itop(T)),
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since 3J does not contain Itop(T). In case (b) we have |J| ≤ |Itop(T)|. Thus in both
cases we have |J| ≤ dist (J, Itop(T))+ |Itop(T)|. Consequently, for any x ∈ J one has

|x− c(Itop(T))| ≤ |J|+dist (J, Itop(T))+
1
2
|Itop(T)|

≤ 2dist (J, Itop(T))+
3
2
|Itop(T)| .

Therefore, it follows that

∫

J

dx
(

1+
|x−c(Itop(T))|

|Itop(T)|
)5

≥ |J|
( 5
2 +

2dist (J,Itop(T))
|Itop(T)|

)5
≥

( 2
5

)5|J|
(

1+
dist (J,Itop(T))

|Itop(T)|
)5

.

In case (b) we have J � Itop(T), and therefore, any point x in J lies in Itop(T); thus
|x− c(Itop(T))| ≤ 1

2 |Itop(T)|. We conclude that

∫

J

dx
(

1+
|x−c(Itop(T))|

|Itop(T)|
)5

≥ |J|
(3/2)5

=
(2
3

)5 |J|
(

1+
dist (J,Itop(T))

|Itop(T)|
)5

.

These observations justify the second-to-last inequality in (6.1.55) and complete the
proof of the required estimate for Σ1.

We now turn attention to Σ2. We may assume that for all J appearing in the sum
in (6.1.52), the set of s in T with 2|J| < |Is| is nonempty. Thus, if J appears in the
sum in (6.1.52), we have 2|J| < |Itop(T)|, and it is easy to see that J is contained in
3Itop(T). [The intervals J inJ that are not contained in 3Itop(T) have size larger than
1
2 |Itop(T)|.]

We let T2 be the 2-tree of all s in T such that ωtop(T)(2) � ωs(2), and we also let
T1 = T\T2. Then T1 is a 1-tree minus its top. We set

F1J = ∑
s∈T1|Is|>2|J|

εs
〈

g |ϕs
〉

ϕs χE∩N−1[ωs(2)]
,

F2J = ∑
s∈T2|Is|>2|J|

εs
〈

g |ϕs
〉

ϕs χE∩N−1[ωs(2)]
.

Clearly

Σ2 ≤ ∑
J∈J

∥
∥F1J

∥
∥
L1(J) + ∑

J∈J

∥
∥F2J

∥
∥
L1(J) = Σ21+Σ22 ,

and we need to estimate both sums. We start by estimating F1J . If the tiles s and s′
that appear in the definition of F1J have different scales, then the sets ωs(2) and ωs′(2)
are disjoint and thus so are the sets E ∩N−1[ωs(2)] and E ∩N−1[ωs′(2)]. Let us set

GJ = J∩
⋃

s∈T
|Is|>2|J|

E ∩N−1[ωs(2)] .
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Then F1J is supported in the set GJ and we have
∥
∥F1J

∥
∥
L1(J) ≤ ∥

∥F1J
∥
∥
L∞(J)|GJ |

=
∥
∥
∥ ∑
k>log2 2|J|

∑
s∈T1
|Is|=2k

εs
〈

g |ϕs
〉

ϕs χE∩N−1[ωs(2)]

∥
∥
∥
L∞(J)

|GJ |

≤ sup
k>log2 2|J|

∥
∥
∥ ∑

s∈T1
|Is|=2k

εs
〈

g |ϕs
〉

ϕs χE∩N−1[ωs(2)]

∥
∥
∥
L∞(J)

|GJ |

≤ sup
k>log2 2|J|

sup
x∈J

∑
s∈T1
|Is|=2k

E (g;T)2k/2
2−k/2

(

1+ |x−c(Is)|
2k

)10 |GJ |

≤ CE (g;T)|GJ | ,

using (6.1.53) and the fact that all the Is that appear in the sum are disjoint. We now
claim that for all J ∈J we have

|GJ | ≤C |E|M (E;T)|J| . (6.1.56)

Once (6.1.56) is established, summing over all the intervals J that appear in the
definition of F1J and keeping in mind that all of these intervals are pairwise disjoint
and contained in 3Itop(T), we obtain the desired estimate for Σ21.

To prove (6.1.56), we consider the unique dyadic interval J̃ of length 2|J| that
contains J. Then, by the maximality of J , 3J̃ contains the time interval IsJ of a
tile sJ in T. We consider the following two cases: (a) If IsJ is either

(

J̃− |J̃|)∪ J̃
or J̃ ∪ (J̃+ |J̃|), we let uJ = sJ ; in this case |IuJ | = 2|J̃|. (This is the case for the
interval J in Figure 6.3.) Otherwise, we have case (b), in which IsJ is contained in
one of the two dyadic intervals J̃−|J̃|, J̃+ |J̃|. (This is the case for the interval J′ in
Figure 6.3.) Whichever of these two dyadic intervals contains IsJ is also contained
in Itop(T), since it intersects it and has smaller length than it. In case (b) there exists
a tile uJ ∈ D with |IuJ | = |J̃| such that IsJ � IuJ � Itop(T) and ωtop(T) � ωuJ � ωsJ .
In both cases we have a tile uJ satisfying sJ < uJ < top(T) with |ωuJ | being either
1
4 |J|−1 or 1

2 |J|−1.
Then for any s ∈ T with |Is| > 2|J| we have |ωs| ≤ |ωuJ |. But since both ωs and

ωuJ contain ωtop(T), they must intersect, and thus ωs � ωuJ . We conclude that any
s ∈ T with |Is|> 2|J| must satisfy N−1[ωs]� N−1[ωuJ ]. It follows that

GJ � J∩E ∩N−1[ωuJ ] (6.1.57)

and therefore we have

|E|M (E;T) = sup
s∈T

sup
u∈D
s<u

∫

E∩N−1[ωu]

|Iu|−1

(

1+ |x−c(Iu)|
|Iu|

)10 dx
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≥
∫

J∩E∩N−1[ωuJ ]

|IuJ |−1

(

1+
|x−c(IuJ )|

|IuJ |
)10

dx

≥ c |IuJ |−1 |J∩E ∩N−1[ωuJ ]|
≥ c |IuJ |−1 |GJ | ,

using (6.1.57) and the fact that for x∈ J we have |x−c(IuJ )| ≤ 4|J| ≤ 2|IuJ |. It follows
that

|GJ | ≤ 1
c
|E|M (E;T)|IuJ |=

2
c
|E|M (E;T)|J| ,

and this is exactly (6.1.56), which we wanted to prove.
We now turn to the estimate for Σ22 = ∑J∈J

∥
∥F2J

∥
∥
L1(J). All the intervals ωs(2)

with s∈T2 are nested, since T2 is a 2-tree. Therefore, for each x∈ J for which F2J(x)
is nonzero, there exists a largest dyadic interval ωux and a smallest dyadic interval
ωvx (for some ux,vx ∈ T2∩{s : |Is| ≥ 4|J|}) such that for s ∈ T2∩{s : |Is| ≥ 4|J|}
we have N(x) ∈ ωs(2) if and only if ωvx � ωs � ωux . Then we have

F2J(x) = ∑
s∈T2|Is|≥4|J|

εs
〈

g |ϕs
〉

(ϕsχE∩N−1[ωs(2)]
)(x)

= χE(x) ∑
s∈T2|ωvx |≤|ωs|≤|ωux |

εs
〈

g |ϕs
〉

ϕs(x) .

Pick a Schwartz function ψ whose Fourier transform ψ̂(t) is supported in |t| ≤
1
2 +

1
100 and that is equal to 1 on |t| ≤ 1

2 . We can easily check that for all z ∈ R, if
|ωvx | ≤ |ωs| ≤ |ωux |, then

(

ϕs ∗
{

Mc(ωux )D|ωux |−1
(ψ)

|ωux |−
1
2

−M
c(ωvx(2))D

|ωvx(2) |
−1
(ψ)

|ωvx(2)|
− 1
2

})

(z) = ϕs(z) (6.1.58)

by a simple examination of the Fourier transforms. Basically, the Fourier transform
(in z) of the function inside the curly brackets is equal to

ψ̂
(
ξ−c(ωux )

|ωux |
)

− ψ̂
( ξ−c(ωvx(2))

|ωvx(2)|
)

,

which is equal to 1 on the support of ϕ̂s for all s in T2 that satisfy |ωvx | ≤ |ωs| ≤ |ωux |
but vanishes on ωvx(2). Taking z= x in (6.1.58) yields

F2J(x) = ∑
s∈T2|ωvx |≤|ωs|≤|ωux |

εs
〈

g |ϕs
〉

ϕs(x)χE(x)

=

[

∑
s∈T2

εs
〈

g |ϕs
〉

ϕs

]

∗
{

Mc(ωux )D|ωux |−1
(ψ)

|ωux |−
1
2

−M
c(ωvx(2))D

|ωvx(2) |
−1
(ψ)

|ωvx(2)|
− 1
2

}

(x)χE(x) .
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Since all s that appear in the definition of F2J satisfy |ωs| ≤ (4|J|)−1, it follows
that we have the estimate

|F2J(x)| ≤ 2χE(x) sup
δ>|ωux |−1

∫

R

∣
∣ ∑
s∈T2

εs
〈

g |ϕs
〉

ϕs(z)
∣
∣ 1
δ
∣
∣ψ
( x−z

δ
)∣
∣dz

≤ C sup
δ>4|J|

1
2δ

∫ x+δ

x−δ

∣
∣ ∑
s∈T2

εs
〈

g |ϕs
〉

ϕs(z)
∣
∣dz . (6.1.59)

(The last inequality follows from Exercise 2.1.14 in [156].) Observe that the maximal
function in (6.1.59) satisfies the property

sup
x∈J

sup
δ>4|J|

1
2δ

∫ x+δ

x−δ
|h(t)|dt ≤ 2 inf

x∈J
sup
δ>4|J|

1
2δ

∫ x+δ

x−δ
|h(t)|dt .

Using this property, we obtain

Σ22 ≤ ∑
J∈J

∥
∥F2J

∥
∥
L1(J) ≤ ∑

J∈J

∥
∥F2J

∥
∥
L∞(J)|GJ |

≤ C ∑
J∈J

J�3Itop(T)

|E|M (E;T)|J|sup
x∈J

sup
δ>4|J|

1
2δ

∫ x+δ

x−δ

∣
∣ ∑
s∈T2

εs
〈

g |ϕs
〉

ϕs(z)
∣
∣dz

≤ 2C |E|M (E;T) ∑
J∈J

J�3Itop(T)

∫

J
sup
δ>4|J|

1
2δ

∫ x+δ

x−δ

∣
∣ ∑
s∈T2

εs
〈

g |ϕs
〉

ϕs(z)
∣
∣dzdx

≤ C |E|M (E;T)
∥
∥
∥M
(

∑
s∈T2

εs
〈

g |ϕs
〉

ϕs
)
∥
∥
∥
L1(3Itop(T))

,

where M is the Hardy–Littlewood maximal operator. Using the Cauchy–Schwarz
inequality and the boundedness ofM on L2(R), we obtain the following estimate:

Σ22 ≤C |E|M (E;T) |Itop(T)|
1
2

∥
∥
∥ ∑
s∈T2

εs
〈

g |ϕs
〉

ϕs

∥
∥
∥
L2
.

Appealing to the result of Exercise 6.1.6(a), we deduce

∥
∥
∥ ∑
s∈T2

εs
〈

g |ϕs
〉

ϕs

∥
∥
∥
L2

≤C
(

∑
s∈T2

∣
∣εs
〈

g |ϕs
〉∣
∣2
)1

2 ≤C′|Itop(T)|
1
2 E (g;T) .

The first estimate was also shown in (6.1.46); the same argument applies here, and
the presence of the εs’s does not introduce any change. We conclude that

Σ22 ≤C |E|M (E;T)|Itop(T)|E (g;T) ,

which is what we needed to prove. This completes the proof of Lemma 6.1.10. �
The proof of the theorem is now complete.
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Exercises

6.1.1. Show that for every f in the Schwartz class, x,ξ ∈ R, and λ ∈ [0,1], the
function (y,η) �→ Bm

ξ ,y,η ,λ ( f )(x) is periodic in y with period 2
m−λ and periodic in η

with period 2−m+λ .

6.1.2. Fix a function h in the Schwartz class, ξ ,y,η ∈ R, s ∈ Dm, and λ ∈ [0,1].
Suppose that 2−λ (ξ +η) ∈ ωs(2).
(a) Assume that m≤ 0 and that 2−m ≥ 40|ξ |. Show that

∣
∣
〈

D2λ τyMη(h) |ϕs
〉∣
∣≤ 2

m
2
∥
∥ĥ
∥
∥
L1((−∞,− 1

40·2m )∪( 1
40·2m ,∞)) .

(b) Using the trivial fact that
∣
∣
〈

D2λ τyMη(h) |ϕs
〉∣
∣ ≤ C‖h‖L2 , conclude that when-

ever 2|m| ≥ 40|ξ |, we have

χωs(2) (2
−λ (ξ +η))|〈D2λ τyMη(h) |ϕs

〉| ≤Chmin(1,2m) ,

where Ch depends on h but is independent of y, ξ , η , and λ .
6.1.3. (a) Let g be a periodic function on R with period κ which is integrable on
[0,κ ]. Show that

lim
K→∞

1
2K

∫ K

−K
g(t)dt → 1

κ

∫ κ

0
g(t)dt .

(b) Let g be a periodic function on R2 with period (κ1,κ2) which is integrable over
[0,κ1]× [0,κ2]. Show that

lim
K1,K2→∞

1
2K1K2

∫ K1

0

∫ K2

−K2

g(t1, t2)dt2 dt1 =
1

κ1κ2

∫ κ1

0

∫ κ2

0
g(t1, t2)dt2 dt1

6.1.4. Use the result in Appendix B.1 to obtain the size estimate

∣
∣
〈

ϕs |ϕu
〉∣
∣≤CM

min
( |Is|
|Iu| ,

|Iu|
|Is|
) 1

2

(

1+
|c(Is)− c(Iu)|
max(|Is|, |Iu|)

)M

for every M > 5. Conclude that if |Iu| ≤ |Is|, then

∣
∣
〈

ϕs |ϕu
〉∣
∣≤C′

M

( |Is|
|Iu|
) 1

2 ∫

Iu

|Is|−1 dx
(

1+ |x−c(Is)|
|Is|

)M .

[

Hint: Use that
∣
∣
∣
∣

|x− c(Is)|
|Is| − |c(Iu)− c(Is)|

|Is|
∣
∣
∣
∣
≤ 1

2

for all x ∈ Iu.
]
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6.1.5. Prove that there is a constantC> 0 such that for any interval J and any b> 0,
∫

J

∫

Jc

1
(

1+ |x−y|
b|J|

)20 dxdy=Cb2|J|2 .

[

Hint: Translate J to the interval [− 1
2 |J|, 12 |J|] and change variables.

]

6.1.6. Let ϕs be as in (6.1.4). Let T2 be a 2-tree and f ∈ L2(R).
(a) Show that there is a constant C such that for all sequences of complex scalars
{λs}s∈T2 we have

∥
∥
∥ ∑
s∈T2

λsϕs

∥
∥
∥
L2(R)

≤C
(

∑
s∈T2

|λs|2
)1

2
.

(b) Use duality to conclude that

∑
s∈T2

∣
∣
〈

f |ϕs
〉∣
∣2 ≤C2∥∥ f

∥
∥2
L2 .

[

Hint: To prove part (a) define Gm = {s ∈ T2 : |Is| = 2m}. Then for s ∈ Gm and
s′ ∈ Gm′ , the functions ϕs and ϕs′ are orthogonal to each other, and it suffices to
obtain the corresponding estimate when the summation is restricted to a given Gm.
But for s in Gm, the intervals Is are disjoint, and we may use the idea of the proof of
Lemma 6.1.2. Use that ∑u: ωu=ωs

∣
∣
〈

ϕs |ϕu
〉∣
∣≤C for every fixed s.

]

6.1.7. Fix A≥ 1. Let S be a finite collection of dyadic tiles such that for all s1, s2 in
S we have either ωs1 ∩ωs2 = /0 or AIs1 ∩AIs2 = /0. Let NS be the counting function of
S, defined by

NS = sup
x∈R

#{Is : s ∈ S and x ∈ Is}.

(a) Show that for any M > 0 there exists a CM > 0 such that for all f ∈ L2(R) we
have

∑
s∈S

∣
∣
∣
∣

〈

f , |Is|− 1
2

(

1+
dist(·, Is)

|Is|
)−M

2
〉
∣
∣
∣
∣

2

≤CMNS
∥
∥ f
∥
∥2
L2 .

(b) Let ϕs be as in (6.1.4). Show that for any M > 0 there exists a CM > 0 such that
for all finite sequences of scalars {as}s∈S we have

∥
∥
∥∑
s∈S

asϕs

∥
∥
∥

2

L2
≤CM(1+A−MNS)∑

s∈S
|as|2 .

(c) Conclude that for any M > 0 there exists a CM > 0 such that for all f ∈ L2(R)
we have

∑
s∈S

∣
∣
〈

f ,ϕs
〉∣
∣2 ≤CM(1+A−MNS)

∥
∥ f
∥
∥2
L2 .

[

Hint: Use the idea of Lemma 6.1.2 to prove part (a) when NS = 1. Suppose now
that NS > 1. Call an element s ∈ S h-maximal if the region in R2 that is directly
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horizontally above the tile s does not intersect any other tile s′ ∈ S. Let S1 be the set
of all h-maximal tiles in S. Then NS1 = 1; otherwise, some x ∈ R would belong to
both Is and Is′ for s �= s′ ∈ S1, and thus the horizontal regions directly above s and
s′ would have to intersect, contradicting the h-maximality of S1. Now define S2 to
be the set of all h-maximal tiles in S\S1. As before, we have NS2 = 1. Continue in
this way and write S as a union of at most NS families of tiles S j, each of which
has the property NS j = 1. Apply the result to each S j and then sum over j. Part (b):
observe that whenever s1,s2 ∈ S and s1 �= s2 we must have either

〈

ϕs1 ,ϕs2

〉

= 0 or
dist(Is1 , Is2)≥ (A−1)max(|Is1 |, |Is2 |), which implies

(

1+
dist(Is1 , Is2)

max(|Is1 |, |Is2 |)
)−M ≤ A−M

2

(

1+
dist(Is1 , Is2)

max(|Is1 |, |Is2 |)
)−M

2
.

Use this estimate to obtain

∥
∥∑
s∈S

asϕs
∥
∥2
L2 ≤∑

s∈S
|as|2+ CM

A
M
2

∥
∥
∥
∥∑
s∈S

|as|
|Is| 12

(

1+
dist(x, Is)

|Is|
)−M

2
∥
∥
∥
∥

2

L2

by expanding the square on the left. The required estimate follows from the dual
statement to part (a). Part (c) follows from part (b) by duality.

]

6.1.8. Let ϕs be as in (6.1.4) and let Dm be the set of all dyadic tiles s with |Is|= 2m.
Show that there is a constant C (independent of m) such that for square-integrable
sequences of scalars {as}s∈Dm we have

∥
∥
∥ ∑
s∈Dm

asϕs

∥
∥
∥

2

L2
≤C ∑

s∈Dm

|as|2 .

Conclude from this that

∑
s∈Dm

∣
∣
〈

f ,ϕs
〉∣
∣2 ≤C

∥
∥ f
∥
∥2
L2 .

6.1.9. Fix c0 > 0 and a Schwartz function ϕ whose Fourier transform is supported
in the interval [− 3

8 ,
3
8 ] and that satisfies

∑
l∈Z

|ϕ̂(t+ l
2 )|2 = c0

for all real numbers t. Define functions ϕs as follows. Fix an integer m and set

ϕs(x) = 2−
m
2 ϕ(2−mx− k)e2πi2

−mx l
2

whenever s= [k2m,(k+1)2m)× [l2−m,(l+1)2−m) is a tile in Dm.
(a) Prove that for all Schwartz functions f we have

∑
s∈Dm

∣
∣
〈

f |ϕs
〉∣
∣< ∞ .
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(b) Show that for all f ∈S (R) we have

∑
s∈Dm

〈

f |ϕs
〉

ϕs = c0 f .

(c) Prove that for every f ∈S (R) the following identity holds

∥
∥ f
∥
∥2
L2 =

‖ϕ‖2L2
c20

∑
s∈Dm

∣
∣
〈

f |ϕs
〉∣
∣2 .

[

Hint: Part (a): Use Appendix B. Part (b): First prove that

∑
s∈Dm

ϕs(x)ϕ̂s(y) = c0 e2πixy

using the Poisson summation formula.
]

6.1.10. This is a continuous version of Exercise 6.1.9. Fix a Schwartz function ϕ on
Rn and define a continuous wave packet

ϕy,ξ (x) = ϕ(x− y)e2πiξ ·x .

Prove that for all f Schwartz functions on Rn, the following identity is valid:

‖ϕ‖2L2 f (x) =
∫

Rn

∫

Rn
ϕy,ξ (x)

〈

f |ϕy,ξ
〉

dydξ .

[

Hint: Prove first that
∫

Rn

∫

Rn
ϕy,ξ (x)ϕ̂y,ξ (z)dydξ = ‖ϕ‖2L2e2πix·z.

]

6.2 Distributional Estimates for the Carleson Operator

In this section we derive estimates for the distribution function of the Carleson op-
erator acting on characteristic functions of measurable sets. These estimates imply,
in particular, that the Carleson operator is bounded on Lp(R) for 1 < p < ∞. To
achieve this we build on the time–frequency analysis approach developed in the
previous section. Working with characteristic functions of measurable sets of finite
measure is crucial in obtaining an improved energy estimate, which is the key to the
proof. Later in this section we obtain weighted estimates for the Carleson operator
C . These estimates are reminiscent of the corresponding estimates for the maximal
singular integrals we encountered in the previous chapter.



450 6 Time–Frequency Analysis and the Carleson–Hunt Theorem

6.2.1 The Main Theorem and Preliminary Reductions

In the sequel we use the notation introduced in Section 6.1. We begin by extending
the definition of the operator C on Lp for 1 < p < ∞. First we note that the linear
operator

h �→ (

ĥχ[−ξ ,ξ ]
)∨

,

initially defined on Schwartz functions, admits a unique bounded extension on
Lp(R) for 1< p<∞, which we denote by Hξ . This extension Hξ is given on Lp(R)
by convolution with the kernel

(

χ[−ξ ,ξ ]
)∨

(y) =
sin(2πξy)

πy
.

Notice that this kernel lies in Lp′(R); hence Hξ ( f ) is well defined for f ∈ Lp(R) as
an absolutely convergent convolution of an Lp and an Lp′ function and is a continu-
ous function. Then f ∈ Lp(R), the action of the Carleson operator C on f ,

C ( f ) = sup
ξ>0

|Hξ ( f )| ,

is well defined. The following is the main result of this section concerning C .

Theorem 6.2.1. (a) There exist finite constants C,κ > 0 such that for any measur-
able subset F of the reals with finite measure we have

∣
∣{x ∈ R : C (χF)(x)> α

}∣
∣≤C |F |

⎧

⎪⎪⎨

⎪⎪⎩

1
α

(

1+ log
( 1
α
))

when 0< α < 1,

e−κα when α ≥ 1.

(6.2.1)

(b) For any 1 < p < ∞ there is a constant Cp > 0 such that for all f in Lp(R) we
have the estimate

∥
∥C ( f )

∥
∥
Lp(R) ≤Cp

∥
∥ f
∥
∥
Lp(R) . (6.2.2)

Proof. Assuming statement (a), we obtain

∥
∥C (χF)

∥
∥p
Lp = p

∫ ∞

0

∣
∣{C (χF)> α

}∣
∣α p−1 dα ≤ pCp|F |

∫ ∞

0
ϕ(α)α p−1 dα ,

where ϕ(α) = α−1(1+ log(α)−1) for α < 1 and ϕ(α) = e−κα for α ≥ 1. The last
integral is convergent, and consequently one obtains a restricted strong type (p, p)
estimate

∥
∥C (χF)

∥
∥
Lp(R) ≤C′

p|F |
1
p
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for the Carleson operator. Fix p ∈ (1,∞) and select p0, p1 such that 1 < p0 < p <
p1 <∞. Applying Theorem 1.4.19 in [156] we obtain that there is a constantCp <∞
such that C satisfies

∥
∥C (g)

∥
∥
Lp ≤Cp‖g‖Lp (6.2.3)

for all functions g in S0(R), which is dense in Lp(R). (Functions in S0(R) have
the form h1−h2+ ih3− ih4, where each h j is equal to ∑m2

k=m1
2−kχAk , where Ak are

subsets of R of finite measure.) To extend (6.2.3) to all functions f in Lp(R) we pick
a sequence of functions g j in S0(R) such that g j → f in Lp as j → ∞. We observe
that Hξ is given on a dense subset of Lp by multiplication on the Fourier transform
by χ[−ξ ,ξ ] or by convolution with the kernel (χ[−ξ ,ξ ])∨(y) = sin(2πξy)/πy. Since
this kernel lies in Lp′(R), it follows that for all f ∈ Lp(R), Hξ ( f ) is given as an
absolutely convergent convolution with the same kernel. Then for any ξ > 0 and
x ∈ R we have

∣
∣Hξ ( f )(x)−Hξ (g j)(x)

∣
∣ =

∣
∣
∣
∣

∫

R

(

f (x− y)−g j(x− y)
) sin(2πξy)

πy
dy
∣
∣
∣
∣

≤ ∥
∥ f −g j

∥
∥
Lp

(∫ ∞

−∞

∣
∣
∣
∣

sin(2πξy)
πy

∣
∣
∣
∣

p′

dy
) 1

p′

=
∥
∥ f −g j

∥
∥
Lpcξ

1
p

and this tends to zero as j → ∞ for all x ∈ R. This shows that the sequence of
continuous functions Hξ (g j) converges to Hξ ( f ) pointwise everywhere. Using this
observation we write

∥
∥C ( f )

∥
∥
Lp =

∥
∥ sup
ξ>0

|Hξ ( f )|
∥
∥
Lp

=
∥
∥ sup
ξ>0

| lim
j→∞

Hξ (g j)|
∥
∥
Lp

≤ ∥
∥ sup
ξ>0

liminf
j→∞

|Hξ (g j)|
∥
∥
Lp

≤ ∥
∥ liminf

j→∞
sup
ξ>0

|Hξ (g j)|
∥
∥
Lp

≤ liminf
j→∞

∥
∥ sup
ξ>0

|Hξ (g j)|
∥
∥
Lp

≤ liminf
j→∞

Cp
∥
∥g j
∥
∥
Lp

= Cp
∥
∥ f
∥
∥
Lp ,

where we used Fatou’s lemma in the third inequality. Thus (a) implies (b).
It remains to prove the assertion in part (a) of the theorem. This is the goal of the

rest of this section. Several reductions are made until the end of this subsection.
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Since
(

χ̂Fχ[−ξ ,ξ ]
)∨

(x) is continuous in ξ , we restrict the supremum in

sup
ξ>0

∣
∣
(

χ̂Fχ[−ξ ,ξ ]
)∨

(x)
∣
∣

to ξ ∈ Q+. In view of the Exercise 1.1.1(b) in [156] we may restrict the countable
set Q+ to a finite subset Q0 of Q+, obtain estimates independent of Q0, and let
Q0 →Q+. We pick a measurable function NF from R to Q0 such that

sup
ξ∈Q0

∣
∣
(

χ̂Fχ[−ξ ,ξ ]
)∨

(x)
∣
∣=

∣
∣
(

χ̂Fχ[−NF (x),NF (x)]
)∨

(x)
∣
∣ (6.2.4)

for all x ∈ R. This motivates the introduction of the sublinear operator

CN(χF)(x) =
∣
∣
(

χ̂Fχ[−N(x),N(x)]
)∨

(x)
∣
∣

for a general and fixed measurable function N : R→ Q0. Once the assertion in part
(a) is proved for CN in place of C , then for a given measurable set F , we replace
N(x) by NF(x) and we use (6.2.4) and a limiting argument to obtain (6.2.1).

For a Schwartz function h on the real line and x ∈ R we define an operator

GN,y,η ,λ (h)(x) = ∑
u∈D

2−λ (N(x)+η)∈ωu(2)

〈

h |M−ητ−yD2−λ ϕu
〉

M−ητ−yD2−λ ϕu(x)

= ∑
s∈Dy,η ,λ

N(x)∈ωs(2)

〈

h |ϕs
〉

ϕs(x) ,

where Dy,η ,λ is the set of all rectangles of the form

(2−λ ⊗ Iu− y)× (2λ ⊗ωu−η),

where u ranges over D. Here a⊗ I denotes the set {ax : x ∈ I}. For such s, ϕs is
defined in (6.1.4). The rectangles in Dy,η ,λ are formed by dilating the dyadic tiles
in D by the amount 2−λ in the time coordinate axis and by 2λ in the frequency
coordinate axis and then translating them by the amounts y and η , respectively.

Then we define GP
N,y,η ,λ (h) in a similar way except that the sum over s ∈ Dy,η ,λ

is replaced by s ∈ P for any subset P of Dy,η ,λ . Next forM ∈ Z+ we define

VM =
{

s∈Dy,η ,λ : s=(2−λ⊗Iu−y)×(2λ⊗ωu−η),u∈Dm,m ∈ Z and |m| ≤M
}

.

Notice that for all h ∈S (R) we have

GN,y,η ,λ (h) = lim
M→∞

GVM
N,y,η ,λ (h) ,

where the limit is taken in the pointwise sense.
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Since N(x) takes finitely many values, it follows from Lemma 6.1.2 (adapted to
shifts and dilations of dyadic tiles by fixed amounts) that GN,y,η ,λ maps L2 to itself
when restricted toS and alsoGP

N,y,η ,λ maps L2 to itself uniformly in all subsets P of
Dy,η ,λ . Then the operators GN,y,η ,λ and GP

N,y,η ,λ have bounded extensions on L2(R)
uniformly in P; we denote these extensions in the same way.

We now observe that

GP
N,y,η ,λ (g)→ GVM

N,y,η ,λ (g)

in L2 whenever the finite subset P of VM tends to VM . Indeed, this assertion is
valid for Schwartz functions and an ε/3 argument can be used to establish it for all
functions g ∈ L2(R).

Given K,L> 0 we define operators

ΠP
N,K,L(h) =

1
2KL

∫ K

−K

∫ L

0

∫ 1

0
GP
N,y,η ,λ (h)dλdydη

for any subset P of Dy,η ,λ and h ∈ S (R). We claim that for any M ∈ Z+ and any
h ∈S (R) the sequence of functions ΠVM

N,K,L(h) converges in L2 as K,L→ ∞ to an

operator we call ΠVM
N (h). (The convergence is also pointwise since h ∈S ).

Indeed, GVM
N,y,η ,λ (h) is periodic with period q= 2M+λ in η and thus we have

1
L′

∫ L′

0
GVM
N,y,η ,λ (h)(x)dη− 1

L

∫ L

0
GVM
N,y,η ,λ (h)(x)dη

=− δ ′

q(k′q+δ ′)

∫ q

0
GVM
N,y,η ,λ (h)(x)dη+

δ
q(kq+δ )

∫ q

0
GVM
N,y,η ,λ (h)(x)dη

+
1

k′q+δ ′

∫ δ ′

0
GVM
N,y,η ,λ (h)(x)dη− 1

kq+δ

∫ δ

0
GVM
N,y,η ,λ (h)(x)dη ,

where L = kq+ δ and L′ = k′q+ δ ′ with δ ,δ ′ < q and k,k′ ∈ Z+. It follows from
this that the L2 norm in x of the preceding expression is bounded by

(
2
k′
+

2
k

)
∥
∥GVM

N,y,η ,λ (h)
∥
∥
L2 ,

which becomes arbitrarily small as k,k′ →∞. A similar argument with respect to the
variable y, in which we have periodicity with period 2M−λ , shows that the averages
in y are also Cauchy. Combining these observations we deduce that the sequence of
functions ΠVM

N,K,L(h) is Cauchy; hence it converges in L2 as K,L→ ∞ to an operator

which we call ΠVM
N (h).

Therefore both ΠVM
N,K,L and ΠVM

N have L2-bounded extensions that we denote in
the same way. Moreover, an ε/3 argument yields that for all g ∈ L2

ΠVM
N,K,L(g)→ΠVM

N (g) (6.2.5)



454 6 Time–Frequency Analysis and the Carleson–Hunt Theorem

in L2 as K,L→ ∞. Next we define

ΠN,K,L(h) =
1

2KL

∫ L

0

∫ K

−K

∫ 1

0
∑

s∈Dy,η ,λ

〈

h |ϕs
〉

(χωs(2) ◦N)ϕs dλ dydη .

and
ΠN(h) = lim

K→∞
L→∞

ΠN,K,L(h)

for h∈S (R), where the limits are taken in the pointwise sense. The L2 boundedness
of ΠN,K,L (uniformly in K,L) is a consequence of that of GN,y,η ,λ .

It follows from the L2 boundedness of ΠN,K,L and Fatou’s lemma that ΠN is an
L2-bounded operator when restricted to Schwartz functions, and therefore it admits
an L2-bounded extension, which we denote in the same way. Another ε/3 argument
yields that for all g ∈ L2 we have

ΠVM
N (g)→ΠN(g)

in L2 asM → ∞.
Next we show that for all g ∈ L2(R) and almost all x ∈ R we have

CN(g)(x)≤ |g(x)|+ ∣∣ΠN(g)(x)
∣
∣+
∣
∣ΠN(g̃)(−x)

∣
∣ , (6.2.6)

where g̃(t) = g(−t) for all t. Indeed, (6.2.6) trivially holds for Schwartz functions.
Given g ∈ L2(R), pick a sequence of Schwartz functions hn such that hn → g in L2

as n→ ∞. Clearly we have
∣
∣
∣
∣

∫

|y|≤N(x)

(

ĝ(y)− ĥn(y)
)

e2πixydy
∣
∣
∣
∣
≤ (2max{q : q ∈ Q0}

)1/2‖g−hn‖L2(R)

which implies that CN(hn)(x)→CN(g)(x) everywhere as n→∞. Moreover,ΠN(hn)
tends toΠN(g) in L2, so there is a subsequence nk such that hnk → g a.e.,ΠN(hnk)→
ΠN(g) a.e., andΠN(h̃nk)→ΠN(g̃) a.e. as k→∞. This establishes (6.2.6). In view of
(6.2.6), it suffices to prove the claim in part (a) for ΠN with constants independent
of the measurable function N : R→ Q0.

We will prove that there is a constant C′ such that for any pair of measurable
subsets (E,F) of the real line with nonzero finite measure there is a subset E ′ of E
with |E ′| ≥ 1

2 |E| such that
∣
∣
∣
∣

∫

E ′
ΠN(χF)(x) dx

∣
∣
∣
∣
≤ 2C′min(|E|, |F|)

(

1+
∣
∣
∣ log

|E|
|F |
∣
∣
∣

)

. (6.2.7)

We explain why (6.2.7) implies statement (a) of Theorem 6.2.1. Given α > 0 we
define sets

E1
α =

{

ReΠN(χF)> α
}

, E2
α =

{

ReΠN(χF)<−α} ,
E3
α =

{

ImΠN(χF)> α
}

, E4
α =

{

ImΠN(χF)<−α} .
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We apply (6.2.7) to the pair (E j
α ,F) for any j = 1,2,3,4. We find a subset (E j

α)
′ of

E j
α of at least half its measure so that (6.2.7) holds for this pair. Then we have

α
2
|E j

α | ≤ α|(E j
α)

′| ≤
∣
∣
∣
∣

∫

(E j
α )′

ΠN(χF)(x)dx
∣
∣
∣
∣

≤ 2C′min(|E j
α |, |F|)

(

1+
∣
∣
∣ log

|E j
α |

|F |
∣
∣
∣

)

. (6.2.8)

If |E j
α | ≤ |F |, this estimate implies that

|E j
α | ≤ |F |ee− 1

4C′ α , (6.2.9)

while if |E j
α |> |F |, it implies that

α ≤ 4C′ |F |
|E j

α |

(

1+ log
|E j

α |
|F |

)

. (6.2.10)

Case 1: α > 4C′. If |E j
α | > |F |, setting t = |E j

α |/|F | > 1 and using the fact that
sup1<t<∞

1
t (1+ log t)= 1, we obtain that (6.2.10) fails. In this case we must therefore

have that |E j
α | ≤ |F |. Applying (6.2.9) four times, we deduce

|{ΠN(χF)> 4α}| ≤ 4e |F |e− 1
4C′ α . (6.2.11)

Case 2: α ≤ 4C′. If |E j
α |> |F |, we use the elementary fact that if t > 1 satisfies

t(1+ log t)−1 < B
α , then t < 2B

α (1+ log 2B
α ); to prove this fact one may use the in-

equalities t < 2B
α (1+ log

√
t) and log

√
t ≤ log t− log(1+ log

√
t)≤ log 2B

α for t > 1.
Taking t = |E j

α |/|F | and B= 4C′ in (6.2.10) yields

|E j
α |

|F | ≤ 8C′

α

(

1+ log
8C′

α

)

. (6.2.12)

If |E j
α | ≤ |F |, then we use (6.2.9), but we note that for some constant c′ > 1 we have

ee−
1
4C′ α ≤ c′

8C′

α

(

1+ log
8C′

α

)

whenever α ≤ 4C′. Thus, when α ≤ 4C′, we always have

|{ΠN(χF)> 4α}| ≤ c′
32C′

α
|F |
(

1+ log
8C′

α

)

. (6.2.13)

Combining (6.2.11) and (6.2.13), we obtain (6.2.1) with ΠN in place of C . Then
(6.2.6) yields (6.2.1) with CN in place of C and this suffices for the proof of the
statement in part (a) of the theorem by a limiting argument, as observed before.
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We now return to the proof of (6.2.7) which we obtain by making certain reduc-
tions. First we have that ΠVM

N (χF) → ΠN(χF) in L2(R) and thus by the Cauchy–
Schwarz inequality we reduce the proof of (6.2.7) to

∣
∣
∣
∣

∫

E ′
ΠVM

N (χF)(x) dx
∣
∣
∣
∣
≤ 2C′min(|E|, |F|)

(

1+
∣
∣
∣ log

|E|
|F |
∣
∣
∣

)

(6.2.14)

with constants independent ofM. Then we reduce (6.2.14) to
∣
∣
∣
∣

∫

E ′
ΠVM

N,K,L(χF)(x) dx
∣
∣
∣
∣
≤ 2C′min(|E|, |F|)

(

1+
∣
∣
∣ log

|E|
|F |
∣
∣
∣

)

(6.2.15)

by a similar argument using (6.2.5) (with constant C′ independent of M,K,L). But
since

∫

E ′
1

2KL

∫ K

−K

∫ L

0

∫ 1

0
|GVM

N,y,η ,λ (χF)(x)|dλdηdydx< ∞

it suffices to show that
∣
∣
∣
∣

∫

E ′
GVM
N,y,η ,λ (χF)(x) dx

∣
∣
∣
∣
≤ 2C′min(|E|, |F|)

(

1+
∣
∣
∣ log

|E|
|F |
∣
∣
∣

)

(6.2.16)

with constants independent of N,y,η ,λ andM. Finally, VM can be approximated by
a finite set of tiles in Dy,η ,λ and since

GP
N,y,η ,λ (χF)→ GVM

N,y,η ,λ (χF)

in L2(R) as P→ VM , we reduce (6.2.16) to
∣
∣
∣
∣

∫

E ′
GP
N,y,η ,λ (χF)(x) dx

∣
∣
∣
∣
≤ 2C′min(|E|, |F|)

(

1+
∣
∣
∣ log

|E|
|F |
∣
∣
∣

)

(6.2.17)

with constants independent of N,y,η ,λ and P. So we focus on the proof of (6.2.17).
To prove (6.2.17) we introduce the set

ΩE,F =
{

M(χF)> 8 min
(

1, |F||E|
)}

.

It follows that |ΩE,F | ≤ 1
2 |E|, since the Hardy–Littlewood maximal operator is of

weak type (1,1) with norm 2. We conclude that the set

E ′ = E \ΩE,F

satisfies |E ′| ≥ 1
2 |E|. (Notice that in the case |F | ≥ |E| the set ΩE,F is empty.)
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The required inequality (6.2.17) will be a consequence of the following two esti-
mates:

∣
∣
∣
∣

∫

E ′ ∑
s∈P

Is�ΩE,F

〈

χF |ϕs
〉

(χωs(2) ◦N)ϕs dx
∣
∣
∣
∣
≤C′min(|E|, |F|) (6.2.18)

and
∣
∣
∣
∣

∫

E ′ ∑
s∈P

Is�ΩE,F

〈

χF |ϕs
〉

(χωs(2) ◦N)ϕs dx
∣
∣
∣
∣
≤C′min(|E|, |F|)

(

1+
∣
∣
∣ log

|E|
|F |
∣
∣
∣

)

, (6.2.19)

where the constant C′ is independent of the sets E,F , of the measurable function
N, of the finite subset P of Dy,η ,λ , and of y,η ,λ . Estimates (6.2.18) and (6.2.19) are
proved in the next three subsections. �

6.2.2 The Proof of Estimate (6.2.18)

In proving (6.2.18), we may assume that |F | ≤ |E|; otherwise, the set ΩE,F is empty
and there is nothing to prove.

Let P be a finite subset of Dy,η ,λ . We denote byI (P) the grid that consists of all
the time projections Is of tiles s in P. For a fixed interval J in I (P) we define

P(J) = {s ∈ P : Is = J}

and a function

ψJ(x) = |J|− 1
2

(

1+
|x− c(J)|

|J|
)−M

,

whereM is a large integer to be chosen momentarily. We note that for each s ∈ P(J)
we have |ϕs(x)| ≤CMψJ(x).

For each k = 0,1,2, . . . , we introduce families

Fk =
{

J ∈I (P) : 2kJ �ΩE,F , 2k+1J �ΩE,F
}

.

We begin by writing the left-hand side of (6.2.18) as

∑
J∈I (P)
J�ΩE,F

∣
∣
∣
∣ ∑
s∈P(J)

∫

E ′

〈

χF |ϕs
〉

χωs(2) (N(x))ϕs(x)dx
∣
∣
∣
∣

=
∞

∑
k=0

∑
J∈I (P)
J∈Fk

∣
∣
∣
∣

∫

E ′ ∑
s∈P(J)

〈

χF |ϕs
〉

χωs(2) (N(x))ϕs(x)dx
∣
∣
∣
∣
.

(6.2.20)
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Using the result of Exercise 7.2.8(b) in [156] we obtain the existence of a constant
C0 < ∞ such that for each k = 0,1, . . . and J ∈Fk we have

〈

χF ,ψJ
〉≤ |J| 12 inf

J
M(χF)

≤ |J| 12 Ck
0 inf
2k+1J

M(χF)

≤ 8Ck
0|J|

1
2
|F |
|E| ,

(6.2.21)

since 2k+1J meets the complement of ΩE,F .
For J ∈Fk we also have that E ′ ∩2kJ = /0 and hence

∫

E ′
ψJ(y)dy≤

∫

(2kJ)c
ψJ(y)dy≤ |J| 12CM2−kM . (6.2.22)

Next we note that for each J ∈I (P) and x ∈R there is at most one s= sx ∈ P(J)
such that N(x) ∈ ωsx(2). Using this observation along with (6.2.21) and (6.2.22), we
can therefore estimate the expression on the right in (6.2.20) as follows:

∞

∑
k=0

∑
J∈I (P)
J∈Fk

∣
∣
∣
∣

∫

E ′

〈

χF |ϕsx
〉

χωsx(2)
(N(x))ϕsx(x)dx

∣
∣
∣
∣

≤C2
M

∞

∑
k=0

∑
J∈I (P)
J∈Fk

∫

E ′

〈

χF ,ψJ
〉

ψJ(x)dx

≤C2
M 4

|F |
|E|

∞

∑
k=0

Ck
0 ∑
J∈Fk

|J| 12
∫

E ′
ψJ(x)dx

≤ 4C3
M
|F |
|E|

∞

∑
k=0

(C02−M)k ∑
J∈Fk

|J| ,

(6.2.23)

and we pick M > logC0/ log2. It remains to control

∑
J∈Fk

|J|

for each nonnegative integer k. In doing this we let F ∗
k be all elements of Fk that

are maximal under inclusion. Then we observe that if J ∈ F ∗
k and J′ ∈Fk satisfy

J′ � J then

dist (J′,Jc) = 0 ,

otherwise 2J′ would be contained in J and thus

2k+1J′ � 2kJ �ΩE,F .
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Therefore, for any J in F ∗
k and any scale m, there are at most two intervals J′ from

Fk contained in J with |J′| = 2m. Summing over all possible scales, we obtain a
bound of at most four times the length of J. We conclude that

∑
J∈Fk

|J|= ∑
J∈F ∗

k

∑
J′∈Fk
J′�J

|J′| ≤ ∑
J∈F ∗

k

4 |J| ≤ 4 |ΩE,F | ,

since elements of F ∗
k are disjoint and contained in ΩE,F . Inserting this estimate in

(6.2.23), we obtain the required bound

C′
M
|F|
|E| |ΩE,F | ≤C′′

M |F |=C′′
M min(|E|, |F|)

for the expression on the right in (6.2.20). This concludes the proof of (6.2.18).

6.2.3 The Proof of Estimate (6.2.19)

For fixed y,η ,λ we define a partial order in the set of tiles in Dy,η ,λ just as in Defi-
nition 6.1.3. All properties of dyadic tiles obtained in the previous section also hold
for the tiles in Dy,η ,λ . Throughout this section, P is a finite subset of Dy,η ,λ .

To simplify notation, in the sequel we set

PE,F =
{

s ∈ P : Is �ΩE,F
}

.

Setting N−1[A] = {x : N(x) ∈ A} for a set A� R, we note that (6.2.19) is a con-
sequence of

∑
s∈PE,F

∣
∣
〈

χF ,ϕs
〉〈

χE ′∩N−1[ωs(2)]
,ϕs
〉∣
∣≤C min(|E|, |F|)

(

1+
∣
∣
∣ log

|E|
|F |
∣
∣
∣

)

. (6.2.24)

The following lemma is the main ingredient of the proof and is proved in the next
section.

Lemma 6.2.2. There is a constant C such that for all measurable sets E and F of
finite measure we have

E
(

χF ;PE,F
)≤C |F |− 1

2 min
( |F |
|E| ,1

)

. (6.2.25)

Assuming Lemma 6.2.2, we argue as follows to prove (6.2.19). Given the finite
set of tiles PE,F , we write it as the union

PE,F =
n0⋃

j=−∞
P j ,

where the sets P j satisfy properties (1)–(5) of page 431.
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Given the sequence of sets P j, we use properties (1), (2), (5) on page 431, the
observation that the mass is always bounded by |E ′|−1 ≤ 2 |E|−1, and Lemmas 6.2.2
and 6.1.10 to obtain the following bound for the expression on the left in (6.2.19):

∑
s∈PE,F

∣
∣
〈

χF |ϕs
〉∣
∣
∣
∣
〈

χE ′∩N−1[ωs(2)]
,ϕs
〉∣
∣

= ∑
j∈Z

∑
s∈P j

∣
∣
〈

χF |ϕs
〉∣
∣
∣
∣
〈

χE ′∩N−1[ωs(2)]
,ϕs
〉∣
∣

≤ ∑
j∈Z
∑
k
∑

s∈T jk

∣
∣
〈

χF |ϕs
〉∣
∣
∣
∣
〈

χE ′∩N−1[ωs(2)]
,ϕs
〉∣
∣

≤C3∑
j
∑
k
|Itop(T jk)

|E (χF ;T jk)M (E ′,T jk) |E ′| |F| 12

≤ C3 ∑
j∈Z
∑
k
|Itop(T jk)

|min
(

2 j+1,C
|F | 12
|E| ,C |F |− 1

2
)

min(|E ′|−1,22 j+2) |E| |F| 12

≤C4 ∑
j∈Z

2−2 j min
(

2 j, |F| 12 |E|−1, |F|− 1
2
)

min(|E|−1,22 j) |E| |F| 12

≤C5 ∑
j∈Z

min
(

2 j|E| 12 ,min
( |F |
|E| ,

|E|
|F |
) 1

2
)

min
(

(2 j|E| 12 )−2,1
) |E| 12 |F | 12

≤C6 ∑
j∈Z

min
(

2 j,min
( |F |
|E| ,

|E|
|F |
) 1

2
)

min(2−2 j,1) |E| 12 |F | 12

≤C7 min(|E|, |F|)
(

1+
∣
∣
∣ log

|E|
|F|
∣
∣
∣

)

.

The last estimate follows by a simple calculation considering the three cases 1< 2 j,

min
( |F |
|E| ,

|E|
|F|
) 1

2 ≤ 2 j ≤ 1, and 2 j <min
( |F|
|E| ,

|E|
|F|
) 1

2
.

6.2.4 The Proof of Lemma 6.2.2

It remains to prove Lemma 6.2.2.
Fix a 2-tree T contained in PE,F and let t = top(T) denote its top. We show that

1
|It | ∑s∈T

∣
∣
〈

χF |ϕs
〉∣
∣2 ≤C min

( |F|
|E| ,1

)2

(6.2.26)

for some constantC independent of F,E, and T. Then (6.2.25) follows from (6.2.26)
by taking the supremum over all 2-trees T contained in PE,F .

We decompose the function χF as follows:

χF = χF∩3It + χF∩(3It )c .
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We begin by observing that for s in PE,F we have

∣
∣
〈

χF∩(3It )c |ϕs
〉∣
∣ ≤

CM|Is| 12 inf
Is
M(χF)

(

1+
dist((3It)c,c(Is))

|Is|
)M

≤ 8CM|Is| 12 min
( |F|
|E| ,1

)( |Is|
|It |
)M

,

since Is meets the complement of ΩE,F for every s ∈ PE,F . Square this inequality
and sum over all s in T to obtain

∑
s∈T

|〈χF∩(3It )c |ϕs〉|2 ≤C |It |min
( |F |
|E| ,1

)2

,

using Exercise 6.2.1.
We now turn to the corresponding estimate for the function χF∩3It . At this point

it is convenient to distinguish the simple case |F |> |E| from the difficult case |F | ≤
|E|. In the first case the set ΩE,F is empty and Exercise 6.1.6(b) yields

∑
s∈T

∣
∣
〈

χF∩3It |ϕs
〉∣
∣2 ≤C

∥
∥χF∩3It

∥
∥2
L2

≤C |It |

=C |It |min
( |F |
|E| ,1

)2

,

since |F |> |E|.
We may therefore concentrate on the case |F | ≤ |E|. In proving (6.2.25) we may

assume that there exists a point x0 ∈ It such that

M(χF)(x0)≤ 8
|F |
|E| ;

otherwise there is nothing to prove.
We write the set ΩE,F =

{

M(χF)> 8 |F|
|E|
}

as a disjoint union of dyadic intervals

J′� such that the dyadic parent J̃′� of J
′
� is not contained in ΩE,F and therefore

|F ∩ J′�| ≤ |F ∩ J̃′�| ≤ 16
|F|
|E| |J

′
�| .

Now some of these dyadic intervals may have size larger than or equal to |It |. Let J′�
be such an interval. Then we split J′� into

|J′�|
|It | intervals J

′
�,m each of size exactly |It |.

Since there is an x0 ∈ It with

M(χF)(x0)≤ 8
|F |
|E| ,
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if K is the smallest interval that contains x0 and J′�,m, then

1
|K|

∫

K
χF dx≤ 8

|F |
|E| =⇒ |F ∩ J′�,m| ≤ 8

|F |
|E| |It |

|K|
|It | .

We conclude that

|F ∩ J′�,m| ≤ c
|F |
|E| |It |

(

1+
dist(It ,J′�,m)

|It |
)

. (6.2.27)

We now have a new collection of dyadic intervals {Jk}k contained inΩE,F consisting
of all the previous J′� when |J′�| < |It | and the J′�,m’s when |J′�| ≥ |It |. In view of the
construction we have

|F ∩ Jk| ≤

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2c
|F |
|E| |Jk| when |Jk|< |It |,

2c
|F |
|E| |Jk|

(

1+
dist(It ,Jk)

|It |
)

when |Jk|= |It |,
(6.2.28)

for all k. We now define the “bad functions”

bk(x) =
(

e−2πic(ωt )xχF∩3It (x)−
1
|Jk|

∫

Jk
e−2πic(ωt )yχF∩3It (y)dy

)

χJk(x) ,

which are supported in Jk, have mean value zero, and satisfy

∥
∥bk
∥
∥
L1 ≤ 2c

|F |
|E| |Jk|

(

1+
dist(It ,Jk)

|It |
)

.

We also set
g(x) = e−2πic(ωt )xχF∩3It (x)−∑

k
bk(x) ,

the “good function” of this Calderón–Zygmund-type decomposition. We have there-
fore decomposed the function χF∩3It as follows:

χF∩3It (x) = g(x)e2πic(ωt )x+∑
k
bk(x)e2πic(ωt )x . (6.2.29)

We show that ‖g‖L∞ ≤C |F |
|E| . Indeed, for x in Jk, we have

g(x) =
1
|Jk|

∫

Jk
e−2πic(ωt )yχF∩3It (y)dy ,
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which implies

|g(x)| ≤ |F ∩3It ∩ Jk|
|Jk| ≤

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|F ∩ Jk|
|Jk| when |Jk|< |It |,

|F ∩3It |
|It | when |Jk|= |It |,

and both of the preceding are at most a multiple of |F|
|E| ; the latter is because there is

an x0 ∈ It withM(χF)(x0)≤ 8 |F|
|E| . Also, for x ∈ (

⋃

k Jk)
c = (ΩE,F)

c we have

|g(x)|= χF∩3It (x)≤M(χF)(x)≤ 8
|F |
|E| .

We conclude that ‖g‖L∞ ≤C |F|
|E| . Moreover,

∥
∥g
∥
∥
L1 ≤∑

k

∫

Jk

|F ∩3It ∩ Jk|
|Jk| dx+

∥
∥χF∩3It

∥
∥
L1 ≤C |F ∩3It | ≤C

|F |
|E| |It | ,

since the Jk are disjoint. It follows that

∥
∥g
∥
∥
L2 ≤C

( |F|
|E|
) 1

2
( |F |
|E|
) 1

2 |It | 12 =C
|F |
|E| |It |

1
2 .

Using Exercise 6.1.6, we have

∑
s∈T

∣
∣
〈

ge2πic(ωt )(·) |ϕs
〉∣
∣2 ≤C

∥
∥g
∥
∥2
L2 ,

from which we obtain the required conclusion for the first function in the decompo-
sition (6.2.29).

Next we turn to the corresponding estimate for the second function,

∑
k
bke2πic(ωt )(·) ,

in the decomposition (6.2.29), which requires some further analysis. We have the
following two estimates for all s and k:

∣
∣
〈

bke2πic(ωt )(·) |ϕs
〉∣
∣ ≤ CM |F | |E|−1 |Jk|2 |Is|− 3

2

(1+ dist (Jk,Is)
|Is| )M

, (6.2.30)

∣
∣
〈

bke2πic(ωt )(·) |ϕs
〉∣
∣ ≤ CM |F | |E|−1 |Is| 12

(1+ dist (Jk,Is)
|Is| )M

, (6.2.31)

for allM > 0, where CM depends only on M.
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To prove (6.2.30) we use the mean value theorem together with the fact that bk
has vanishing integral to write for some ξy,

∣
∣
〈

bk e2πic(ωt )(·) |ϕs
〉∣
∣

=
∣
∣
∣

∫

Jk
bk(y)e2πic(ωt )yϕs(y)dy

∣
∣
∣

=
∣
∣
∣

∫

Jk
bk(y)

(

e2πic(ωt )yϕs(y)− e2πic(ωt )c(Jk)ϕs(c(Jk))dy
∣
∣
∣

≤ |Jk|
∫

Jk
|bk(y)|

[

2π |c(ωs)−c(ωt )|
|Is|

1
2

∣
∣ϕ
( ξy−c(Is)

|Is|
)∣
∣+ |Is|− 3

2
∣
∣ϕ ′( ξy−c(Is)

|Is|
)∣
∣

]

dy

≤ ∥∥bk
∥
∥
L1 |Jk| sup

ξ∈Jk

CM|Is|− 3
2

(1+ |ξ−c(Is)|
|Is| )M+1

≤CM
|F |
|E| |Jk|

(

1+
dist (Jk, It)

|It |
) |Jk| |Is|− 3

2

(1+ dist (Jk,Is)
|Is| )M+1

≤ CM |F | |E|−1 |Jk|2 |Is|− 3
2

(1+ dist (Jk,Is)
|Is| )M

,

where we used the fact that

1+
dist (Jk, It)

|It | ≤ 1+
dist (Jk, Is)

|Is| .

To prove estimate (6.2.31) we note that

∣
∣
〈

bke2πic(ωt )(·) |ϕs
〉∣
∣≤

CM |Is| 12 inf
Is
M(bk)

(1+ dist (Jk,Is)
|Is| )M

and that

M(bk)≤M(χF)+
|F ∩3It ∩ Jk|

|Jk| M(χJk) ,

and since Is �ΩE,F , we have infIs M(χF)≤ 8 |F |
|E| , while the second term in the sum

was observed earlier to be at most C |F|
|E| .

Finally, we have the estimate

∣
∣
〈

bke2πic(ωt )(·) |ϕs
〉∣
∣≤ CM |F | |E|−1 |Jk| |Is|− 1

2

(1+ dist (Jk,Is)
|Is| )M

, (6.2.32)

which follows by taking the geometric mean of (6.2.30) and (6.2.31).
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Now for a fixed s ∈ PE,F we may have either Jk � Is or Jk ∩ Is = /0 (since Is is not
contained in ΩE,F ). Therefore, for fixed s ∈ PE,F , there are only three possibilities
for Jk:

(a) Jk � 3Is;

(b) Jk ∩3Is = /0;

(c) Jk ∩ Is = /0, Jk ∩3Is �= /0, and Jk � 3Is.

Observe that case (c) is equivalent to the following statement:

(c) Jk ∩ Is = /0, dist (Jk, Is) = 0, and |Jk| ≥ 2|Is|.
Note that in case (c), for each Is there exists exactly one Jk = Jk(s) with the previous
properties; but for a given Jk there may be a sequence of Is’s that lie on the left
of Jk such that |Jk| ≥ 2|Is| and dist (Jk, Is) = 0 and another sequence with similar
properties on the right of Jk. The Is’s that lie on either side of Jk must be nested, and
their lengths must add up to |ILsk |+ |IRsk |, where ILsk is the largest one among them on
the left of Jk and IRsk is the largest one among them on the right of Jk. Using (6.2.31),
we obtain

∑
s∈T

∣
∣
∣ ∑

k: Jk∩Is= /0
dist (Jk,Is)=0
|Jk|≥2|Is|

〈

bke2πic(ωt )(·) |ϕs
〉
∣
∣
∣

2
= ∑

s∈T

∣
∣
∣

〈

bk(s)e
2πic(ωt )(·) |ϕs

〉
∣
∣
∣

2

≤C
( |F |
|E|
)2

∑
s∈T: Jk∩Is= /0
dist (Jk,Is)=0
|Jk|≥2|Is|

|Is|

≤C
( |F |
|E|
)2
∑
k

(|ILsk |+ |IRsk |
)

.

But note that ILsk � 2Jk, and since ILsk ∩ Jk = /0, we must have ILsk � 2Jk \ Jk (and
likewise for IRsk ). We define sets

IL+sk = ILsk +
1
2
|Jk| ,

IR−sk = IRsk −
1
2
|Jk| .

We have IL+sk ∪ IR−sk � Jk, and hence the sets IL+sk are pairwise disjoint for different
k, and the same is true for the IR−sk . Moreover, since 1

2 |Jk| ≤ 1
2 |It | for all k, all the

shifted sets IL+sk , IR−sk are contained in 3It . We conclude that
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∑
k
|ILsk |+∑

k
|IRsk | = ∑

k

(|IL+sk |+ |IR−sk |)

≤ ∣
∣
⋃

k

IL+sk
∣
∣+
∣
∣
⋃

k

IR−sk
∣
∣

≤ 2 |3It | ,

which combined with the previously obtained estimate yields the required result in
case (c).

We now consider case (a). Using (6.2.30), we can write

(

∑
s∈T

∣
∣
∣ ∑
k:Jk�3Is

〈

bke2πic(ωt )(·) |ϕs
〉
∣
∣
∣

2
)1

2
≤CM

|F |
|E|
(

∑
s∈T

∣
∣
∣ ∑
k: Jk�3Is

|Jk|
1
2
|Jk| 32
|Is| 32

∣
∣
∣

2
)1

2
,

and we control the second expression by

CM
|F |
|E|
{

∑
s∈T

(

∑
k: Jk�3Is

|Jk|
)(

∑
k: Jk�3Is

|Jk|3
|Is|3

)}1
2

≤CM
|F |
|E|
{

∑
k: Jk�3It

|Jk|3 ∑
s∈T

Jk�3Is

1
|Is|2

}1
2
,

having used the Cauchy–Schwarz inequality and the fact that the dyadic intervals Jk
are disjoint. We note that the last sum is equal to at most C|Jk|−2, since for every
dyadic interval Jk there exist at most three dyadic intervals of a given length whose
triples contain it. The required estimateC |F | |E|−1 |It | 12 now follows in case (a).

Finally, we deal with case (b), which is the most difficult case. We split the set of
k into two subsets, those for which Jk � 3It and those for which Jk � 3It (recall that
|Jk| ≤ |It |). Whenever Jk � 3It , we have

dist (Jk, Is)≈ dist (Jk, It) .

In this case we use Minkowski’s inequality and estimate (6.2.32) to deduce

(

∑
s∈T

∣
∣
∣ ∑
k: Jk�3It

〈

bke2πic(ωt )(·) |ϕs
〉
∣
∣
∣

2
)1

2

≤ ∑
k: Jk�3It

(

∑
s∈T

∣
∣
〈

bke2πic(ωt )(·) |ϕs
〉∣
∣2
)1

2

≤CM
|F |
|E| ∑

k: Jk�3It

|Jk|
(

∑
s∈T

|Is|2M−1

dist (Jk, Is)2M

)1
2

≤CM
|F |
|E| ∑

k: Jk�3It

|Jk|
dist (Jk, It)M

(

∑
s∈T

|Is|2M−1
)1

2
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≤CM
|F |
|E| |It |

M− 1
2 ∑
k: Jk�3It

|Jk|
dist (Jk, It)M

≤CM
|F |
|E| |It |

M− 1
2

∞

∑
l=1

∑
k:

dist (Jk,It )≈2l |It |

|Jk|
(2l |It |)M ,

where dist (Jk, It)≈ 2l |It | means that

dist (Jk, It) ∈ [2l |It |,2l+1|It |].

But note that all the Jk with dist (Jk, It) ≈ 2l |It | are contained in 2l+2It , and since
they are disjoint, we estimate the last sum byC2l |It |(2l |It |)−M . The required estimate
CM|F | |E|−1|It | 12 follows.

Next we consider the case Jk � 3It , Jk ∩3Is = /0, and |Jk| ≤ |Is|, in which we use
estimate (6.2.30). We have

(

∑
s∈T

∣
∣
∣ ∑
k: Jk�3It
Jk∩3Is= /0
|Jk|≤|Is|

〈bke2πic(ωt )(·) |ϕs〉
∣
∣
∣

2
)1

2

≤CM
|F |
|E|
(

∑
s∈T

∣
∣
∣ ∑
k: Jk�3It
Jk∩3Is= /0
|Jk|≤|Is|

|Jk|2|Is|−
3
2

|Is|M
dist (Jk, Is)M

∣
∣
∣

2
)1

2

≤CM
|F |
|E|
{

∑
s∈T

[

∑
k: Jk�3It
Jk∩3Is= /0
|Jk|≤|Is|

|Jk|3
|Is|2

( |Is|
dist (Jk, Is)

)M
]

×
[

∑
k: Jk�3It
Jk∩3Is= /0
|Jk|≤|Is|

|Jk|
|Is|
(dist (Jk, Is)

|Is|
)−M

]}1
2

≤CM
|F |
|E|
{

∑
s∈T

[

∑
k: Jk�3It
Jk∩3Is= /0
|Jk|≤|Is|

|Jk|3
|Is|2

( |Is|
dist (Jk, Is)

)M
]

×
[

∑
k: Jk�3It
Jk∩3Is= /0
|Jk|≤|Is|

∫

Jk

( |x− c(Is)|
|Is|

)−M dx
|Is|
]}1

2
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≤CM
|F |
|E|
{

∑
s∈T

[

∑
k: Jk�3It
Jk∩3Is= /0
|Jk|≤|Is|

|Jk|3
|Is|2

( |Is|
dist (Jk, Is)

)M
]

×
[∫

(3Is)c

( |x− c(Is)|
|Is|

)−M dx
|Is|
]}1

2

≤CM
|F |
|E|
{

∑
s∈T

∑
k: Jk�3It
Jk∩3Is= /0
|Jk|≤|Is|

|Jk|3|Is|−2
( |Is|
dist (Jk, Is)

)M
}1

2
.

But since the last integral contributes at most a constant factor, we can estimate the
last displayed expression by

CM
|F |
|E|
{

∑
k: Jk�3It
Jk∩3Is= /0
|Jk|≤|Is|

|Jk|3 ∑
m≥log |Jk|

2−2m ∑
s∈T

|Is|=2m

(dist (Jk, Is)
2m

)−M
}1

2

≤CM
|F |
|E|
{

∑
k: Jk�3It
Jk∩3Is= /0
|Jk|≤|Is|

|Jk|3 ∑
m≥log |Jk|

2−2m
}1

2

≤CM
|F |
|E|
{

∑
k: Jk�3It
Jk∩3Is= /0
|Jk|≤|Is|

|Jk|3|Jk|−2
}1

2

≤CM
|F |
|E| |It |

1
2 .

There is also the subcase of case (b) in which |Jk| > |Is|. Here we have the two
special subcases Is ∩ 3Jk = /0 and Is � 3Jk. We begin with the first of these special
subcases, in which we use estimate (6.2.31). We have

(

∑
s∈T

∣
∣
∣ ∑
k: Jk�3It
Jk∩3Is= /0
|Jk|>|Is|
Is∩3Jk= /0

〈bke2πic(ωt )(·) |ϕs〉
∣
∣
∣

2
)1

2

≤CM
|F |
|E|
(

∑
s∈T

∣
∣
∣ ∑
k: Jk�3It
Jk∩3Is= /0
|Jk|>|Is|
Is∩3Jk= /0

|Is| 12 |Is|M
dist (Jk, Is)M

∣
∣
∣

2
)1

2

≤CM
|F |
|E|
{

∑
s∈T

[

∑
k: Jk�3It
Jk∩3Is= /0
|Jk|>|Is|
Is∩3Jk= /0

|Is|2
|Jk|

|Is|M
dist (Jk, Is)M

][

∑
k: Jk�3It
Jk∩3Is= /0
|Jk|>|Is|
Is∩3Jk= /0

|Jk|
|Is|

|Is|M
dist (Jk, Is)M

]}1
2
.
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Since Is∩3Jk = /0, we have that

dist (Jk, Is)≈ |x− c(Is)|

for every x ∈ Jk, and therefore the second term inside square brackets satisfies

∑
k: Jk�3It
Jk∩3Is= /0
|Jk|>|Is|
Is∩3Jk= /0

|Jk|
|Is|

|Is|M
dist (Jk, Is)M

≤∑
k

∫

Jk

( |x− c(Is)|
|Is|

)−M dx
|Is| ≤CM .

Using this estimate, we obtain

CM
|F |
|E|
{

∑
s∈T

[

∑
k: Jk�3It
Jk∩3Is= /0
|Jk|>|Is|
Is∩3Jk= /0

|Is|2
|Jk|

|Is|M
dist (Jk, Is)M

][

∑
k: Jk�3It
Jk∩3Is= /0
|Jk|>|Is|
Is∩3Jk= /0

|Jk|
|Is|

|Is|M
dist (Jk, Is)M

]}1
2

≤CM
|F |
|E|
{

∑
s∈T

[

∑
k: Jk�3It
Jk∩3Is= /0
|Jk|>|Is|
Is∩3Jk= /0

|Is|2
|Jk|

|Is|M
dist (Jk, Is)M

]} 1
2

=CM
|F |
|E|
{

∑
k: Jk�3It

1
|Jk| ∑

s∈T
Jk∩3Is= /0
|Jk|>|Is|
Is∩3Jk= /0

|Is|2 |Is|M
dist (Jk, Is)M

} 1
2

≤CM
|F |
|E|
{

∑
k: Jk�3It

1
|Jk|

log2 |Jk|
∑

m=−∞
22m ∑

s∈T: |Is|=2m
Jk∩3Is= /0
|Jk|>|Is|
Is∩3Jk= /0

|Is|M
dist (Jk, Is)M

} 1
2

≤CM
|F |
|E|
{

∑
k: Jk�3It

1
|Jk|

log2 |Jk|
∑

m=−∞
22m
} 1

2

≤CM
|F |
|E|
{

∑
k: Jk�3It

1
|Jk| |Jk|

2
} 1

2

≤CM
|F |
|E| |It |

1
2 .

Finally, there is the subcase of case (b) in which |Jk| ≥ |Is| and Is � 3Jk. Here
again we use estimate (6.2.31). We have
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{

∑
s∈T

∣
∣
∣ ∑
k: Jk�3It
Jk∩3Is= /0
|Jk|>|Is|
Is�3Jk

〈bke2πic(ωt )(·) |ϕs〉
∣
∣
∣

2
}1

2

≤ CM
|F |
|E|
{

∑
s∈T

|Is|
∣
∣
∣ ∑
k: Jk�3It
Jk∩3Is= /0
|Jk|>|Is|
Is�3Jk

|Is|M
dist (Jk, Is)M

∣
∣
∣

2
}1

2
.

(6.2.33)

Let us make some observations. For a fixed s there exist at most finitely many
Jk’s contained in 3It with size at least |Is|. Let J1L(s) be the interval that lies to the
left of Is and is closest to Is among all Jk that satisfy the conditions in the preceding
sum. Then |J1L(s)|> |Is| and

dist(J1L(s), Is)≥ |Is| .

Let J2L(s) be the interval to the left of J1L(s) that is closest to J1L(s) and that satisfies
the conditions of the sum. Since 3J2L(s) contains Is, it follows that |J2L(s)|> 2|Is| and

dist(J2L(s), Is)≥ 2|Is| .

Continuing in this way, we can find a finite number of intervals JrL(s) that lie to
the left of Is and inside 3It , satisfy |JrL(s)| > 2r−1|Is| and dist(JrL(s), Is) ≥ 2r−1|Is|,
and whose triples contain Is. Likewise we find a finite collection of intervals
J1R(s),J

2
R(s), . . . that lie to the right of Is and satisfy similar conditions. Then, us-

ing the Cauchy–Schwarz inequality, we obtain

∣
∣
∣ ∑
k: Jk�3It
Jk∩3Is= /0
|Jk|>|Is|
Is�3Jk

|Is|M
dist (Jk, Is)M

∣
∣
∣

2

≤ 2
∣
∣
∣
∣

∞

∑
r=1

|Is|M2
dist(JrL(s), Is)

M
2

1

2
(r−1)M

2

∣
∣
∣
∣

2

+2
∣
∣
∣
∣

∞

∑
r=1

|Is|M2
dist(JrR(s), Is)

M
2

1

2
(r−1)M

2

∣
∣
∣
∣

2

≤CM

∞

∑
r=1

|Is|M
dist(JrL(s), Is)M

+CM

∞

∑
r=1

|Is|M
dist(JrR(s), Is)M

≤CM ∑
k: Jk�3It
Jk∩3Is= /0
|Jk|>|Is|
Is�3Jk

|Is|M
dist (Jk, Is)M

.
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We use this estimate to control the expression on the left in (6.2.33) by

CM
|F |
|E|
{

∑
s∈T

|Is| ∑
k: Jk�3It
Jk∩3Is= /0
|Jk|>|Is|
Is�3Jk

|Is|M
dist (Jk, Is)M

}1
2

≤ CM
|F |
|E|
{

∑
k:Jk�3It

|Jk|
∞

∑
m=0

2−m ∑
s: Is�3Jk
Jk∩3Is= /0

|Is|=2−m|Jk|

|Is|M
dist (Jk, Is)M

}1
2

.

Since the last sum is at most a constant, it follows that the term on the left in (6.2.33)
also satisfies the estimate CM

|F|
|E| |It |

1
2 . This concludes the proof of Lemma 6.2.2.

Exercises

6.2.1. Let T be a 2-tree with top It and letM > 1 and L be such that 2L < |It |. Show
that there exists a constant CM > 0 such that

∑
s∈T

|Is|M ≤ CM|It |M ,

∑
s∈T

|Is|≥2L

|Is|−M ≤ CM
|It |

(2L)M+1 ,

∑
s∈T

|Is|≤2L

|Is|M ≤ CM|It |(2L)M−1 .

[

Hint: Group the s that appear in each sum in families Gm such that |Is|= 2−m|It | for
each s ∈ Gm.

]

6.2.2. Show that the operator

g �→ sup
−∞<a<b<∞

∣
∣(ĝχ[a,b])∨

∣
∣

defined on the line is bounded from Lp(R) to itself for all 1< p< ∞.
6.2.3. On Rn fix a unit vector b and consider the maximal operator

Tb(g)(x) = sup
N>0

∣
∣
∣
∣

∫

|b·ξ |≤N

ĝ(ξ )e2πix·ξ dξ
∣
∣
∣
∣
.

Show that Tb maps Lp(Rn) to Lp(Rn) for all 1< p< ∞.
[

Hint: Apply a rotation.
]
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6.2.4. Define the directional Carleson operators by

C θ ( f )(x) = sup
a∈R

∣
∣
∣
∣
lim
ε→0+

∫

ε<|t|<ε−1
e2πiat f (x− tθ)

dt
t

∣
∣
∣
∣
,

for functions f on Rn. Here θ is a vector in Sn−1.
(a) Show that C θ is bounded on Lp(Rn) for all 1< p< ∞.
(b) Let Ω be an odd integrable function on Sn−1. Define an operator

CΩ ( f )(x) = sup
ξ∈Rn

∣
∣
∣
∣
lim
ε→0+

∫

ε<|y|<ε−1
e2πiξ ·y f (x− y)

Ω
( y
|y|
)

|y|n dy
∣
∣
∣
∣
.

Show that CΩ is bounded on Lp(Rn) for 1< p< ∞.
[

Hint: Part (a): Reduce to the case θ = e1 = (1,0, . . . ,0) via a rotation and use
Theorem 6.2.1(b). Part (b): Use the method of rotations and part (a).

]

6.3 The Maximal Carleson Operator and Weighted Estimates

Recall the one-sided Carleson operator C1 defined in the previous section:

C1( f )(x) = sup
N>0

∣
∣
∣
∣

∫ N

−∞
f̂ (ξ )e2πixξ dξ

∣
∣
∣
∣
.

Recall also the modulation operator Ma(g)(x) = g(x)e2πiax. We begin by observing
that the following identity is valid:

(

f̂ χ(−∞,b]
)∨

=Mb I− iH
2

M−b( f ) =
1
2
f − i

2
MbHM−b( f ) , (6.3.1)

where H is the Hilbert transform. It follows from (6.3.1) that

C1( f )≤ 1
2
| f |+ 1

2
sup
ξ∈R

|H(Mξ ( f ))|

and that
sup
ξ∈R

|H(Mξ ( f ))| ≤ | f |+2C1( f ) .

We conclude that the Lp boundedness of the sublinear operator f �→ C1( f ) is equiv-
alent to that of the sublinear operator

f �→ sup
ξ∈R

|H(Mξ ( f ))| .
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Definition 6.3.1. The maximal Carleson operator is defined by

C∗( f )(x) = sup
ε>0

sup
ξ∈R

∣
∣
∣
∣

∫

|x−y|>ε
f (y)e2πiξy

dy
x− y

∣
∣
∣
∣

= sup
ξ∈R

∣
∣H(∗)(Mξ ( f ))(x)

∣
∣ ,

(6.3.2)

where H(∗) is the maximal Hilbert transform. Since H(∗) are well defined on
⋃

1≤p<∞L
p(R), then so are C ( f ) and C∗( f ). Notice that the maximal Carleson op-

erator controls the Carleson operator pointwise.

We begin with the following pointwise estimate, which reduces the boundedness
of C∗ to that of C .

Lemma 6.3.2. There is a positive constant c > 0 such that for all functions f in
⋃

1≤p<∞L
p(R) we have

C∗( f )≤ cM( f )+M(C ( f )) , (6.3.3)

where M is the Hardy–Littlewood maximal function.

Proof. The proof of (6.3.3) is based on the classical inequality

H(∗)(g)≤ cM(g)+M(H(g))

given in Theorem 5.3.4 in [156]. Applying this to the functions Mξ ( f ) and taking
the supremum over ξ ∈ R, we obtain

C∗( f )≤ cM( f )+ sup
ξ∈R

M
(

H(Mξ ( f ))
)

,

from which (6.3.3) easily follows by passing the supremum inside the maximal func-
tion. �

For every p in (1,∞) and for every w ∈ Ap, the operator h �→
(

ĥχ[−N,N]
)∨ has a

unique bounded extension on Lp(w) and thus C ( f ) is well defined on Lp(w). Our
next goal is to obtain the boundedness of the Carleson operator on weighted Lp

spaces.

Theorem 6.3.3. For every p ∈ (1,∞) and w ∈ Ap there is a constant C(p, [w]Ap)
such that for all f ∈ Lp(R) we have

∥
∥C ( f )

∥
∥
Lp(w) ≤C(p, [w]Ap)

∥
∥ f
∥
∥
Lp(w) , (6.3.4)

∥
∥C∗( f )

∥
∥
Lp(w) ≤C(p, [w]Ap)

∥
∥ f
∥
∥
Lp(w) . (6.3.5)
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Proof. Fix a 1 < p < ∞ and pick an r ∈ (1, p) such that w ∈ Ar. It is convenient
to work with a variant of the Hardy–Littlewood maximal operator. For 0 < r < ∞
define

Mr( f ) =M(| f |r) 1
r

for f such that | f |r is locally integrable over the real line. Note that M( f ) ≤Mr( f )
for any r ∈ (1,∞). We show that for all f ∈ Lp(w) we have the estimate

∫

R
C ( f )(x)p w(x)dx≤Cp([w]Ap)

∫

R
Mr( f )(x)pw(x)dx . (6.3.6)

Then the boundedness of C on Lp(w) is a consequence of the boundedness of the
Hardy–Littlewood maximal operator on L

p
r (w).

If we show that for any w ∈ Ap there is a constant Cp([w]Ap) such that
∫

R
M(C ( f ))p wdx≤Cp([w]Ap)

∫

R
Mr( f )p wdx , (6.3.7)

then the trivial fact C ( f )≤M(C ( f )), inserted in (6.3.7), yields (6.3.6).
Estimate (6.3.7) will be a consequence of the following two important observa-

tions:

M#(C ( f ))≤CrMr( f ) a.e. (6.3.8)

and
∥
∥M(C ( f ))

∥
∥
Lp(w) ≤ cp([w]Ap)

∥
∥M#(C ( f ))

∥
∥
Lp(w) , (6.3.9)

where cp([w]Ap) depends on [w]Ap and Cr depends only on r.
We begin with estimate (6.3.8), which was obtained in Theorem 3.4.9 for singular

integral operators. Here this estimate is extended to maximally modulated singular
integrals. To prove (6.3.8) we use the result in Proposition 3.4.2 (2). We fix x ∈ R
and we pick an interval I that contains x. We write f = f0+ f∞, where f0 = f χ3I
and f∞ = f χ(3I)c . We set aI = C ( f∞)(cI), where cI is the center of I. Then we have

1
|I|
∫

I
|C ( f )(y)−aI |dx ≤ 1

|I|
∫

I
sup
ξ∈R

∣
∣H(Mξ ( f ))(y)−H(Mξ ( f∞))(cI)

∣
∣dy

≤ B1+B2 ,

where

B1 =
1
|I|
∫

I
sup
ξ∈R

∣
∣H(Mξ ( f0))(y)

∣
∣dy ,

B2 =
1
|I|
∫

I
sup
ξ∈R

∣
∣H(Mξ ( f∞))(y)−H(Mξ ( f∞))(cI)

∣
∣dy .

But

B1 ≤ 1
|I|
∫

I
C ( f0)(y)dy
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≤ 1
|I|
∥
∥C ( f0)

∥
∥
Lr
∥
∥χI
∥
∥
Lr′

≤ ‖C ‖Lr→Lr

|I|
∥
∥ f0
∥
∥
Lr |I|

1
r′

≤CrMr( f )(x) ,

where we used the boundedness of the Carleson operator C from Lr to Lr.
We turn to the corresponding estimate for B2. We have

B2 ≤ 1
|I|
∫

I

∫

Rn
| f∞(z)|

∣
∣
∣

1
y− z

− 1
cI − z

∣
∣
∣dzdy

=
1
|I|
∫

I

∫

(3I)c
| f (z)|

∣
∣
∣

y− cI
(y− z)(cI − z)

∣
∣
∣dzdy

≤
∫

I

(∫

(3I)c
| f (z)| C

(|cI − z|+ |I|)2 dz
)

dy

≤
∫

I

C
|I|M( f )(x)dy

≤CM( f )(x)

≤CMr( f )(x) .

This completes the proof of estimate (6.3.8). We now focus attention to the proof
of (6.3.9). We derive estimate (6.3.9) as a consequence of Theorem 3.4.5, provided
we have that

∥
∥Md(C ( f ))

∥
∥
Lr(w) ≤

∥
∥M(C ( f ))

∥
∥
Lr(w) < ∞ . (6.3.10)

Unfortunately, the finiteness estimate (6.3.10) for general functions f in Lp(w) can-
not be easily deduced without a priori knowledge of the sought estimate (6.3.4) for
p = r. However, we can show the validity of (6.3.10) for functions f with compact
support and weights w ∈ Ap that are bounded. This argument requires a few tech-
nicalities, which we now present. For a fixed constant B we introduce a truncated
Carleson operator

C B( f ) = sup
|ξ |≤B

|H(Mξ ( f ))| .

Next we work with a weight w in Ap that is bounded. In fact, we work with wk =
min(w,k), which satisfies

[wk]Ap ≤ cp[w]Ap

for all k ≥ 1 (see Exercise 7.1.8 in [156]). Finally, we take f = h to be a smooth
function with support contained in an interval [−R,R]. Then for |ξ | ≤ B we have

|H(Mξ (h))(x)| ≤ 2R
∥
∥(Mξ (h))′

∥
∥
L∞χ|x|≤2R+

‖h‖L1
|x|+R

χ|x|>2R ≤ BChR
|x|+R

,
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where Ch is a constant that depends on h. This implies that the last estimate also
holds for C B(h). Using the result of the calculation in Example 2.1.8 in [156], we
now obtain

M(C B(h))(x)≤ BCh
log
(

1+ |x|
R

)

1+ |x|
R

.

It follows that M(C B(h)) lies in Lr(wk), since r > 1 and wk ≤ k. Therefore,
∥
∥M(C B( f ))

∥
∥
Lr(wk)

< ∞ ,

and thus (6.3.10) holds in this setting. Applying the previous argument to C B(h)
and the weight wk [in lieu of C ( f ) and w], we obtain (6.3.7) and thus (6.3.4) for
M(C B(h)) and the weight wk. This establishes the estimate

∥
∥C B(h)

∥
∥
Lp(wk)

≤ C(p, [w]Ap)
∥
∥h
∥
∥
Lp(wk)

(6.3.11)

for functions h that are smooth and compactly supported, where the constant
C(p, [w]Ap) that is independent of B and k. Letting k → ∞ in (6.3.11) and apply-
ing Fatou’s lemma, we obtain (6.3.4) for smooth functions h with compact support.
From this we deduce the validity of (6.3.4) for general functions f in Lp(w) by
density.

Finally, to obtain (6.3.5) for general f ∈ Lp(w), we raise (6.3.3) to the power p,
use the inequality (a+ b)p ≤ 2p(ap+ bp), and integrate over R with respect to the
measure wdx to obtain

∫

R
C∗( f )pwdx≤ 2pc

∫

R
M( f )pwdx+2p

∫

R
M(C ( f ))pwdx . (6.3.12)

Then we use estimate (6.3.4) and the boundedness of the Hardy–Littlewood maxi-
mal operator on Lp(w) to obtain the required conclusion. �

Exercises

6.3.1. (a) Let θ ∈ Sn−1. Define the maximal directional Carleson operator

C θ
∗ ( f )(x) = sup

a∈R
sup
ε>0

∣
∣
∣
∣

∫

ε<|t|<ε−1
e2πiat f (x− tθ)

dt
t

∣
∣
∣
∣

for functions f onRn. Prove that C θ∗ is bounded on Lp(Rn,w) for any weight w∈ Ap
and 1< p< ∞.
(b) LetΩ be an odd integrable function on Sn−1. Obtain the same conclusion for the
maximal operator

CΩ
∗ ( f )(x) = sup

ξ∈Rn
sup
ε>0

∣
∣
∣
∣

∫

ε<|y|<ε−1
e2πiξ ·y f (x− y)

Ω
( y
|y|
)

|y|n dy
∣
∣
∣
∣
.
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[

Hint: Part (a): Reduce to the case θ = e1 = (1,0, . . . ,0) via a rotation and use
Theorem 6.3.3 with w= 1. Part (b): Use the method of rotations and part (a).

]

6.3.2. For a fixed λ > 0 and a function f ∈ ∪1≤p<∞Lp(R) write
{

x ∈ R : C∗( f )(x)> λ
}

=
⋃

j

I j ,

where I j = (α j,α j+δ j) are open disjoint intervals. Let 1< r < ∞. Show that there
exists a γ0 > 0 such that for every 0< γ < γ0 there exists a constantCγ > 0 such that
limγ→0Cγ = 0 and

∣
∣{x ∈ I j : C∗( f )(x)> 3λ , Mr( f )(x)≤ γ λ}∣∣≤Cγ

∣
∣I j
∣
∣ .

[

Hint: Note that we must have C∗( f )(α j) ≤ λ and C∗( f )(α j + δ j) ≤ λ for all j.
Set I∗j = (α j − 5δ j,α j + 6δ j), f1(x) = f (x) for x ∈ I∗j , f1(x) = 0 for x /∈ I∗j , and
f2(x) = f (x)− f1(x). We may assume that for all j there exists a z j in I j such that
Mr( f )(z j) ≤ γλ . For a given ε > 0 we let H(ε) be the truncated Hilbert transform.
For fixed x ∈ I j estimate |H(ε)( f2)(x)−H(ε)( f2)(α j)| by the threefold sum

∣
∣
∣
∣

∫

|α j−t|>ε
f2(t)e2πiξ t

(
2

α j− t
− 2

x− t

)

dt
∣
∣
∣
∣

+

∣
∣
∣
∣

∫

|x−t|>ε≥|α j−t|
f2(t)e2πiξ t

1
x− t

dt
∣
∣
∣
∣

+

∣
∣
∣
∣

∫

|α j−t|>ε≥|x−t|
f2(t)e2πiξ t

1
α j− t

dt
∣
∣
∣
∣
,

which is easily shown to be controlled by c0M( f )(z j) for some constant c0. Thus
C∗( f2)(x) ≤ C∗( f2)(α j)+ c0M( f )(z j) ≤ λ + c0 γ λ . Select γ0 such that c0 γ0 < 1

2 .
Then λ + c0 γ λ < 3

2 λ for γ < γ0; hence we have C∗( f )(x) ≤ C∗( f1)(x)+ 3
2λ for

x ∈ I j and thus I j ∩{C∗( f ) > 3λ} � {C∗( f1) > λ}. Using the boundedness of C∗
on Lr and the fact that Mr( f )(z j) ≤ γ λ , we obtain that the last set has measure at
most a constant multiple of γr|I j|.

]

6.3.3. ([200]) Show that for every w in A∞ there is a finite constant γ0 > 0 such that
for all 0 < γ < γ0 and all 1 < r < ∞ there is a constant Bγ such that limγ→0Bγ = 0
and

w
({C∗( f )> 3λ}∩{Mr( f )≤ γλ})≤ Bγ w

({C∗( f )> λ})

for all functions f in ∪1≤p<∞Lp(R).
[

Hint: Start with positive constants C0 and δ such that for all intervals I and any
measurable set E we have |E∩I| ≤ ε |I| =⇒ w(E∩I)≤C0 εδw(I) .Use the estimate
of Exercise 6.3.2 with I = I j and sum over j to obtain the required estimate with
Bγ =C0 (Cγ)

δ .
]
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6.3.4. Prove the following vector-valued version of Theorem 6.2.1:

∥
∥
∥

(

∑
j
|C ( f j)|r

) 1
r
∥
∥
∥
Lp(w)

≤Cp,r(w)
∥
∥
∥

(

∑
j
| f j|r

) 1
r
∥
∥
∥
Lp(w)

for all 1< p,r < ∞, all weights w ∈ Ap, and all sequences of functions f j in Lp(w).
[

Hint: You may want to use Corollary 7.5.7 in [156].
]

HISTORICAL NOTES

A version of Theorem 6.1.1 concerning the maximal partial sum operator of Fourier series of
square-integrable functions on the circle was first proved by Carleson [69]. An alternative proof
of Carleson’s theorem was provided by Fefferman [135], pioneering a set of ideas called time–
frequency analysis. Lacey and Thiele [238] provided the first independent proof on the line of the
boundedness of the maximal Fourier integral operator (6.1.1). The proof of Theorem 6.1.1 given in
this text follows closely the one given in Lacey and Thiele [238], which improves in some ways
that of Fefferman’s [135], by which it was inspired. One may also consult the expository article of
Thiele [347].

A version of Theorem 6.2.1 concerning the Lp boundedness, 1 < p < ∞, of the maximal par-
tial sum operator on the circle was obtained by Hunt [199]. Sjölin [317] extended this result to
L(log+ L)(log+ log+ L) and Antonov [4] to L(log+ L)(log+ log+ log+ L). Counterexamples of Kol-
mogorov [222], [223], Körner [227], and Konyagin [224] indicate that the everywhere convergence
of partial Fourier sums (or integrals) may fail for functions in L1 and in spaces near L1. The expo-
nential decay estimate for α ≥ 1 in (6.2.1) and the restricted weak type (p, p) estimate with constant
C p2(p− 1)−1 for the maximal partial sum operator on the circle are contained in Hunt’s article
[199]. The estimate for α < 1 in (6.2.1) appears in the article of Grafakos, Tao, and Terwilleger
[173]; the proof of Theorem 6.2.1 is based on this article. This article also investigates higher-
dimensional analogues of the theory which were initiated in Pramanik and Terwilleger [299]. The
related article of Sawano [310] adapts the method in [173] to maximal operators associated with
pseudodifferential operators with homogeneous symbols.

Theorem 6.3.3 was first obtained by Hunt and Young [200] using a good lambda inequality
for the Carleson operator. A deep multilinear generalization of the Carleson-Hunt theorem was
obtained by Li and Muscalu [245] An improved good lambda inequality for the Carleson operator
is contained in of Grafakos, Martell, and Soria [166]. The particular proof of Theorem 6.3.3 given
in the text is based on the approach of Rubio de Francia, Ruiz, and Torrea [308]. The books of
Jørsboe and Mejlbro [206], Mozzochi [272], and Arias de Reyna [5] contain detailed presentations
of the Carleson–Hunt theorem on the circle.



Chapter 7
Multilinear Harmonic Analysis

Multivariable calculus provides a robust approach into the study of functions of
several variables that goes beyond the narrow perspective of studying a single vari-
able by freezing the other ones. Analogously, multilinear analysis focuses on the
study of operators that depend linearly on several functions by treating all inputs as
variables and not just some as parameters. This study is based on multiple simulta-
neous decompositions and is naturally more complicated than its linear counterpart,
but is also more far-reaching and yields more flexible results.

Examples of linear operators with fixed parameters that can be viewed as mul-
tilinear are plentiful in harmonic analysis: multiplier operators, homogeneous sin-
gular integrals associated with functions on the sphere, Littlewood–Paley operators,
the Calderón commutators, and the Cauchy integral along Lipschitz curves.

Multilinear Fourier analysis provides a framework to study operations that de-
pend linearly on several functions fi whose frequencies f̂i are jointly altered by a
common multiplier or symbol. These are called multilinear multiplier operators,
and a big part of our study focuses on them. A very powerful tool, called multilinear
interpolation, is also developed in this chapter. This tool makes it possible to obtain
intermediate bounds for multilinear operators from a finite set of initial estimates.

7.1 Multilinear Operators

A multilinear operator T ( f1, . . . , fm) is an operator of several variables that is linear
in each entry. In the special case m= 2, T is called bilinear, when m= 3 trilinear,
and for m≥ 4, T is also called m-linear. In this chapter we study multilinear opera-
tors acting on m-tuples of functions defined on Rn. Many such important operators
arise from a linear operator L acting on functions (Rn)m in the following way:

T ( f1, . . . , fm)(x) = L( f1⊗·· ·⊗ fm)(x, . . . ,x), x ∈ Rn,

L. Grafakos, Modern Fourier Analysis, Graduate Texts in Mathematics 250,
DOI 10.1007/978-1-4939-1230-8 7, © Springer Science+Business Media New York 2014
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where f j are functions defined onRn and f1⊗·· ·⊗ fm is their tensor product defined
on (Rn)m by ( f1⊗·· ·⊗ fm)(x1, . . . ,xm) = f1(x1) · · · fm(xm), x j ∈ Rn.

Multilinear operators arise in the linearization of certain nonlinear problems.
Suppose that S is a linear operator acting on functions on Rn. The nonlinear quantity
S( f 2) motivates the introduction of the bilinear operator

T ( f1, f2) = S( f1 f2) .

Bilinear estimates for T ( f1, f2) from X×X →Y (for some function spaces X ,Y ) can
be used to deduce the nonlinear estimate ‖S( f 2)‖Y ≤C‖ f‖2X by taking f = f1 = f2.

7.1.1 Examples and initial results

We list a few examples that arise in the study of the theory of multilinear operators
acting on m-tuples of functions on Rn.

Examples 7.1.1. 1. The m-fold product

I( f1, . . . , fm) = f1 · · · fm
is the identity in the realm of m-linear operators. It indicates that natural in-
equalities between Lebesgue spaces are of the form Lp1(Rn)×·· ·×Lpm(Rn)→
Lp(Rn), where 1/p1+ · · ·+1/pm = 1/p, 0< p j, p≤ ∞.

2. A kernel of m+1 variables K(x,y1, . . . ,ym) gives rise to an m-linear operator of
the form

T ( f1, . . . , fm)(x) =
∫

Rmn
K(x,y1, . . . ,ym) f1(y1) · · · fm(ym)dy1 · · ·dym,

where the integral may converge absolutely, in the principal value sense or even
in the sense of distributions.

3. The special case in which the kernel K(x,y1, . . . ,ym) in the previous case has
the form K0(x−y1, . . . ,x−ym) corresponds to the so-called m-linear convolution
operator

T0( f1, . . . , fm)(x) =
∫

Rmn
K0(x− y1, . . . ,x− ym) f1(y1) · · · fm(ym)dy1 · · ·dym,

in which the integral is taken in the principal value sense. This operator can also
be expressed as an m-linear multiplier as follows:

∫

Rmn
m0(ξ1, . . . ,ξm) f̂1(ξ1) · · · f̂m(ξm)e2πix·(ξ1+···+ξm) dξ1 · · ·dξm,

where m0 is the distributional Fourier transform of K0 on Rmn.
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4. The bilinear operator on Rn given by

B( f ,g)(x) =
∫

|t|≤1
f (x+ t)g(x− t)dt . (7.1.1)

This operator is positive and local in the sense that if f and g are supported in
cubes of length 1 with sides parallel to the axes, then so is B( f ,g).

5. The bilinear fractional integral is another positive operator defined by

Iα( f ,g)(x) =
∫

Rn
f (x+ t)g(x− t)|t|α−n dt ,

where 0< α < n and f ,g are bounded functions whose supports have finite mea-
sure, or they have sufficient decay at infinity, such as functions inS (Rn).

Example 7.1.2. We show that the operator given in (7.1.1) is well defined on
L1(Rn)× L1(Rn) and is bounded from L1(Rn)× L1(Rn) to L1/2(Rn). Indeed, for
f ,g≥ 0 in L1(Rn) we have

∫

Rn

∫

Rn
f (x+ t)g(x− t)dt dx =

∫

Rn

∫

Rn
f (t ′)g(2x− t ′)dt ′ dx

=
∫

Rn
f (t ′)

∫

Rn
g(2x− t ′)dxdt ′

=
1
2n

‖ f‖L1‖g‖L1 . (7.1.2)

This implies that B( f ,g)(x) is well defined for almost all x ∈ Rn whenever f ,g are
nonnegative functions in L1(Rn).

Next, we observe that for nonnegative integrable functions well defined f ,g sup-
ported in cubes of length one with sides parallel to the axes, B( f ,g) is also supported
in a cube of length one with sides parallel to the coordinate axes. For two such fixed
functions f ,g we have

∥
∥B( f ,g)

∥
∥
L1/2 ≤

∥
∥B( f ,g)

∥
∥
L1 ≤

1
2n

‖ f‖L1‖g‖L1 , (7.1.3)

where the first inequality is a consequence of Hölder’s inequality on a cube of mea-
sure 1 and the second inequality was proved in (7.1.2).

For general nonnegative integrable functions f and g, write fk = f χQk and gm =

gχQm , whereQj is the cube [ j1− 1
2 , j1+

1
2 )×·· ·× [ jn− 1

2 , jn+
1
2 ), if j= ( j1, . . . , jn),

i.e., the unit-length cube with sides parallel to the axes and center j ∈ Zn.
Let us fix k ∈ Zn. Then there exist at most 5n points m ∈ Zn such that B( fk,gm) is

nonzero. This is because the integral defining B( fk,gm) is taken over the intersection
of the sets {t : |t|< 1} and 1

2 (Qk−Qm) =∏n
i=1
[ 1
2 (ki−mi−1), 12 (ki−mi+1)

)

, and
this set is nonempty for at most 5n points m = (m1, . . . ,mn). All these m satisfy
|mi− ki| ≤ 2 for each coordinate i ∈ {1, . . . ,m}, and thus k−m ∈ 4Q0.
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Now write

B( f ,g) = ∑
k∈Zn

∑
m∈Zn

B( fk,gm) = ∑
d∈Zn∩4Q0

∑
k∈Zn

B( fk,gk+d).

Since the cardinality of the set (Zn∩4Q0 ) is 5n, we have

‖B( f ,g)‖L1/2 ≤ 5n ∑
d∈Zn∩4Q0

(

∑
k∈Zn

∫

Rn
|B( fk,gk+d)|1/2dx

)2

≤ 5n

2n ∑
d∈Zn∩4Q0

(

∑
k∈Zn

‖ fk‖1/2L1 ‖gk+d‖1/2L1

)2

≤ 5n

2n
5n ‖ f‖L1‖g‖L1 ,

where the penultimate inequality above follows by applying (7.1.3) for the functions
fk and gk+d , while the last inequality is an application of the Cauchy-Schwarz in-
equality and the fact that ‖ f‖L1 = ∑k∈Zn ‖ fk‖L1 .
Definition 7.1.3. Let 0< p1, . . . , pm, p≤∞. We say that an m-linear operator T is of
restricted weak type (p1, . . . , pm, p) if there is a constant C =C(p1, . . . , pm, p) such
that for all measurable subsets A1, . . . ,Am of finite measure we have

sup
λ>0

λ |{x ∈ Rn : |T (χA1 , . . . ,χAm)(x)|> λ}| 1p ≤C|A1|
1
p1 · · · |Am|

1
pm

when p< ∞ and

∥
∥T (χA1 , . . . ,χAm)

∥
∥
L∞ ≤C|A1|

1
p1 · · · |Am|

1
pm

when p= ∞.

Theorem 7.1.4. Let 0< α < n. The bilinear fractional integral

Iα( f ,g)(x) =
∫

Rn
f (x+ t)g(x− t)|t|α−ndt

is of restricted weak types ( nα ,∞,∞), (∞, nα ,∞), (1,∞, n
n−α ), (∞,1, n

n−α ), and
(1,1, n

2n−α ).

Proof. We first consider the point ( nα ,∞,∞). Let A and B be measurable subsets of
Rn of finite measure. Let vn be the volume of the unit ball in Rn. We have

‖Iα(χA,χB)‖L∞ ≤ sup
x∈Rn

∫

−x+A
|t|α−ndt

≤ sup
x∈Rn

∫ ∞

0
(|t|α−n)∗(s)(χ−x+A)

∗(s)ds
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=
∫ ∞

0

( s
vn

) α
n −1

χ[0,|A|)(s)ds

=
nv

1− α
n

n

α
|A| αn , (7.1.4)

where g∗ denotes the decreasing rearrangement of a function g; see Exercise 1.4.1
in [156] for the preceding inequality. Likewise, one obtains the claimed restricted
weak type (∞, nα ,∞) estimate.

Next we show that Iα is of restricted weak type (1,∞, n
n−α ). We observe that

Iα(χA,χB)≤ cα ,nIα(χA), where Iα is the classical fractional integral

Iα( f )(x) = 2−απ− n
2
Γ ( n−α2 )

Γ (α2 )

∫

Rn
f (x− y)|y|α−ndy

and

cα ,n = 2απ
n
2
Γ (α2 )

Γ ( n−α2 )
.

Given any measurable subset F of Rn with 0< |F|< ∞, we have
∫

F
|Iα(χA)(x)|dx= 1

cα ,n

∫

F

∫

Rn
χA(x− y)|y|−n+α dydx

=
1

cα ,n

∫

F

∫

A
|x−u|−n+α dudx

=
1

cα ,n

∫

A

∫

F
|x−u|−n+α dxdu

≤ 1
cα ,n

nv
1− α

n
n

α
|F | αn |A|

=Cα ,n|F | αn |A| ,

where the last inequality was deduced in (7.1.4).
Since n

n−α > 1, the result in Exercise 1.1.12(b) in [156] gives

||Iα(χA)||L n
n−α ,∞ ≤ sup

0<|F|<∞
|F |−1+ n−α

n

∫

F
|Iα(χA)(x)|dx

≤ sup
0<|F|<∞

|F |− α
n Cn,α |A||F | αn

=Cn,α |A| .

It follows that
‖Iα(χA,χB)‖Ln/(n−α),∞ ≤Cn,α |A| .

The fact that Iα is of restricted weak type (∞,1, n
n−α ) is obtained by symmetry.
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Finally, we are left with the restricted weak type (1,1, n
2n−α ) estimate. For j ∈ Z

and f ,g≥ 0 we introduce operators

Bj( f ,g)(x) =
∫

|t|≤2 j
f (x+ t)g(x− t)dt

and we note that for f ,g≥ 0 we have

Iα( f ,g)≤ ∑
j∈Z

2 j(α−n)Bj+1( f ,g).

We observe that by an easy dilation argument, the result in Example 7.1.2 implies
that Bj maps L1×L1 → L1/2 with norm bounded by 2−n2 jn for each j ∈Z. This fact
together with the observation that for all f ,g≥ 0 we have

(∫

E
(Bj( f ,g)(x))1/2 dx

)2

≤ |E|
∫

Rn
B j( f ,g)(x)dx≤ 2−n‖ f‖L1‖g‖L1 |E|,

implies that for any measurable set E with finite measure we have
∫

E
(Bj( f ,g)(x))1/2 dx≤ 2−n/2‖ f‖1/2L1 ‖g‖1/2L1 min(2 jn, |E|)1/2. (7.1.5)

Now define
Eλ = {x ∈ Rn : |Iα( f ,g)(x)|> λ}

for some fixed nonnegative functions f ,g ∈ L∞(Rn)∩L1(Rn). Then

|Eλ | ≤ |{x ∈ Rn : ‖g‖L∞ 1
cn,α

Iα( f )(x)> λ}|< ∞

since, in view of Theorem 1.2.3, Iα maps L1 → Ln/(n−α),∞. Then Chebyshev’s in-
equality and (7.1.5) give

λ 1/2|Eλ | ≤
∫

Eλ

∣
∣Iα( f ,g)(x)

∣
∣
1
2 dx

≤
∫

Eλ

∣
∣
∣∑
j∈Z

2 j(α−n)Bj+1( f ,g)(x)
∣
∣
∣

1
2
dx

≤ ∑
j∈Z

2
1
2 (α−n) j

∫

Eλ
|Bj+1( f ,g)(x)| 12 dx

≤ 2−
n
2 ∑
j∈Z

2
1
2 (α−n) j(‖ f‖L1‖g‖L1

) 1
2 min(2( j+1)n, |Eλ |)

1
2

≤C(n,α)
(‖ f‖L1‖g‖L1

) 1
2 |Eλ |

α
2n .

Using that |Eλ |< ∞, this implies that

λ |Eλ |
2n−α
n ≤C(n,α)2‖ f‖L1‖g‖L1
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which proves the claimed weak type estimate at the point (1,1, n
2n−α ). Here we have

in fact shown that Iα maps L1×L1 → Ln/(2n−α),∞ for all nonnegative bounded and
integrable functions f ,g, not only characteristic functions of sets of finite measure.
By density, Iα has a unique bounded extension from L1×L1 to Ln/(2n−α),∞. �

7.1.2 Kernels and Duality of m-linear Operators

We study multilinear operators defined in terms of some kernel. The precise rela-
tionship of the operator with the kernel is as follows. We assume that for a given
m-linear operator T defined on S (Rn)×·· ·×S (Rn) there is a tempered distribu-
tionW on (Rn)m+1 such that for all φ1, . . . ,φm,φ0 inS (Rn)

〈T (φ1, . . . ,φm),φ0〉= 〈W , φ0⊗φ1⊗·· ·⊗φm〉. (7.1.6)

Here 〈·, ·〉 denotes the action of a tempered distribution on a Schwartz function and
φ0⊗φ1⊗·· ·⊗φm denotes the function inS ((Rn)m+1) given by

(x,y1, . . . ,ym)→ φ0(x)φ1(y1) · · ·φm(ym).

If the tempered distribution W on (Rn)m+1 coincides with a function K on
(Rn)m+1 \ {(x, . . . ,x) : x ∈ Rn}, we will occasionally refer to W by K, assuming
there is no confusion. We may also denote W by W (x,y1, . . . ,ym) to indicate the
variables on which it acts.

We study m-linear operators defined on products of test functions and we seek
conditions to extend them as bounded operators on certain products of Banach
spaces. We use the notation

‖T‖X1×···×Xm→X = sup
‖ f j‖Xj=1
1≤ j≤m

‖T ( f1, . . . , fm)‖X

to denote the norm of an m-linear operator T from a product of Banach spaces of
functions X1×·· ·×Xm into a quasi-Banach space X . We say that T is bounded from
X1×·· ·×Xm into X when the norm above is finite.

An m-linear operator T : S (Rn)× ·· · ×S (Rn) → S ′(Rn) is linear in every
entry, and consequently it has m formal transposes. The jth transpose T ∗ j of T is
defined as the unique operator that satisfies the identity

〈T ∗ j( f1, . . . , fm) , h〉= 〈T ( f1, . . . , f j−1,h, f j+1, . . . , fm) , f j〉,

for all f1, . . . , fm,h inS (Rn).
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It is easy to check that if the kernel of T is a locally integrable function K, then
T ∗ j has a kernel K∗ j that is related to the kernel K of T via the identity

K∗ j(x,y1, . . . ,y j−1,y j,y j+1, . . . ,ym) = K(y j,y1, . . . ,y j−1,x,y j+1, . . . ,ym), (7.1.7)

i.e., the first and jth entries are interchanged. If the kernel of T is a tempered distri-
butionW , then the kernel of T ∗ j is another tempered distributionW ∗ j that is related
toW via the identity

〈W ∗ j , φ0⊗φ1⊗·· ·⊗φm〉= 〈W , φ j⊗φ1⊗·· ·⊗φ j−1⊗φ0⊗φ j+1⊗·· ·⊗φm〉 ,

with the obvious modification when j = 1 or j = m. In the sequel, we will use the
notationW ∗0 =W and T ∗0 = T .

If a multilinear operator T maps a product of Banach spaces X1×·· ·×Xm into
another Banach space X , then the transpose T ∗ j maps the product of Banach spaces
X1× . . .Xj−1×X∗ ×Xj+1×·· ·×Xm into X∗

j . Moreover, the norms of T and T ∗ j are
equal.

It is sometimes customary to work with the adjoints of an m-linear operator T
whose kernels are the complex conjugates of the kernels K∗ j defined previously.
Here we choose to work with the transposes, as defined earlier, to simplify the nota-
tion. This choice entails no differences in the study of these operators.

7.1.3 Multilinear Convolution Operators with Nonnegative Kernels

Given a nonnegative regular Borel measure μ on Rn× ·· ·×Rn, we define the m-
linear convolution operator by setting

T μ( f1, . . . , fm)(x) =
∫

Rn×···×Rn
f1(x− y1) · · · fm(x− ym)dμ(y1, . . . ,ym), (7.1.8)

where x ∈ Rn and f j are nonnegative measurable functions on Rn. If

dμ(y1, . . . ,ym) = K(y1, . . . ,ym)dy1 · · ·dym ,

for some nonnegative measurable function K, then we use the notation

T μ( f1, . . . , fm) = TK( f1, . . . , fm) (7.1.9)

and we call K the kernel of TK . We take a quick look at conditions that yield bound-
edness for operators of the form T μ and TK on products of Lebesgue spaces, when
μ and K are nonnegative.

Proposition 7.1.5. Let μ be a nonnegative regular Borel measure on Rn×·· ·×Rn,
which is not identically equal to zero. Suppose that the m-linear operator T μ maps
Lp1(Rn)× ·· · × Lpm(Rn) to Lr(Rn) for some 0 < p j,r ≤ ∞. Then we must have
1/p1+ · · ·+1/pm ≥ 1/r.
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Proof. Fix 0 < p1, . . . , pm,r ≤ ∞. By translating μ if necessary, we may assume
that there exists a compact set E ⊂ [1,M]n×·· ·× [1,M]n for some M > 1 such that
0< μ(E)< ∞. Let x= (x1, . . . ,xn) in Rn. For j = 1, . . . ,m we define

f j(x) =
n

∏
i=1

|xi|−α jχ(1,∞)n(x1, . . . ,xn) ,

with α j > 1/p j. Then, for x ∈ (M+1,∞)n, we have

T μ( f1, . . . , fm)(x)≥
∫

E
f1(x− y1) · · · fm(x− ym)dμ(y1, . . . ,ym)

≥ μ(E)
n

∏
i=1

(xi−1)−(α1+···+αm).

Assuming that T μ( f1, . . . , fm) ∈ Lr(Rn), we obtain that α1+ · · ·+αm > 1/r for all
α j > 1/p j; hence 1/p1+ · · ·+1/pm ≥ 1/r. �

Next we show that in the diagonal case 1/p1 + · · ·+ 1/pm = 1/r, integrable
functions are the only nonnegative kernels for which the associated operators are
bounded.

Proposition 7.1.6. Let μ be a nonnegative regular Borel measure on (Rn)m, where
m≥ 1. Suppose that the operator T μ maps Lp1(Rn)×·· ·×Lpm(Rn) to Lr,∞(Rn) for
some 0< p1, . . . , pm ≤∞ satisfying 1/p1+ · · ·+1/pm = 1/r. Then μ is a finite mea-
sure; in particular, if dμ(y) =K(y)dy for some nonnegative measurable function K,
then K ∈ L1((Rn)m).

Proof. LetC be the norm of T μ as a bounded operator from Lp1(Rn)×·· ·×Lpm(Rn)
to Lr,∞(Rn). First we consider the case 0< r<∞. For a given R> 0 let BR = B(0,R)
be the ball of radius R centered at zero. Fix R0 > 0 such that μ(BR×·· ·×BR) > 0
for all R≥ R0. Such an R0 exists if μ is nonzero; otherwise, there is nothing to prove.
Then, for every R≥ R0 and x ∈ BR, we have

T μ(χB2R , . . . ,χB2R)(x) = μ
(

B(x,2R)×·· ·×B(x,2R)
)≥ μ(BR×·· ·×BR) = λ > 0.

Therefore, BR �
{

T μ(χB2R , . . . ,χB2R)> λ/2
}

, and

|BR| ≤
∣
∣
{

T μ(χB2R , . . . ,χB2R)> λ/2
}∣
∣≤ 2rCr

λ r |B2R|
r
p1 · · · |B2R|

r
pm =

Cr2r+n

λ r |BR|.

Hence, for every R> 0, we have that λ = μ(BR×·· ·×BR)≤ 21+
n
r C, which proves

the result when r < ∞ by letting R→ ∞. When r = ∞, we have

μ(BR×·· ·×BR)≤
∥
∥T μ(χB2R , . . . ,χB2R)

∥
∥
L∞ ≤C

∥
∥χB2R

∥
∥m
L∞ =C,

and the conclusion follows by letting R→ ∞ as well. �
Next we show that not every integrable function gives rise to a bounded operator

in the endpoint case L1×L1 → L1/2,∞.
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Theorem 7.1.7. There exists a nonnegative integrable function K on R×R such that
the operator TK defined in (7.1.9) via (7.1.8) does not map L1×L1 to L1/2,∞.

Proof. For each k = 1,2,3, . . . let Rk be a closed rectangle with vertices

( k−1

∑
j=1

1
j3
,−

k−1

∑
j=1

1
j3

)

,
( k

∑
j=1

1
j3
,−

k

∑
j=1

1
j3

)

,

( k−1

∑
j=1

1
j3
+

2k√
2
,−

k−1

∑
j=1

1
j3
+

2k√
2

)

,
( k

∑
j=1

1
j3
+

2k√
2
,−

k

∑
j=1

1
j3
+

2k√
2

)

,

where we use the convention that a sum over an empty set of indices is zero. Then
the Rk have dimensions

√
2k−3 and 2k and are contained in {(x,y) : −|x| ≤ y≤ |x|},

and their boundaries touch. See Figure 7.1. Define a function K by setting

K(x) =
∞

∑
k=1

χRk(x)

for x ∈ R2. Then K lies in L1(R2) since

‖K‖L1 =
∣
∣
∣

∞
⋃

k=1

Rk

∣
∣
∣=

∞

∑
k=1

√
2

k3
2k < ∞ .

R1

R2

R3

...P(R1)

P(R2)

P(R3)

�

�a

(0,a)

Fig. 7.1 The rectangles Rk,their projections P(Rk), and the line �a.
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For a≤ 0 and r > 0 set

fa,r(x) =
1
2r
χ(a−r,a+r)(x) .

Then, for all (x−a,x) ∈ R2, we have

TK( fa,r, f0,r)(x) =
1
4r2

∫

(x−a−r,x−a+r)

∫

(x−r,x+r)
K(y,z)dzdy ,

and from this via the Lebesgue differentiation theorem we deduce that

TK( fa,r, f0,r)(x)→ K(x−a,x) (7.1.10)

as r → 0, for almost all (x−a,x) in R2. Thus, (7.1.10) holds for almost every a < 0
and for almost every point on the line �a = {(x−a,x) : x ∈ R}.

Suppose now that there is a constant C such that

‖TK( f ,g)‖L1/2,∞ ≤C‖ f‖L1‖g‖L1
for all f ,g≥ 0 in L1(R). We let

P(Rk) =
[

−2
k

∑
j=1

j−3,−2
k−1

∑
j=1

j−3
]

be the intersection of the y-axis with the smallest strip that contains Rk and is parallel
to the line y = x. Then for any k ≥ 1, there are an ak ∈ P(Rk) and a set Ek � R of
Lebesgue measure zero such that (7.1.10) holds with a= ak for all x ∈ R\Ek.

Now, given x ∈ (0,k) and ak ∈ P(Rk), we have that

k

∑
j=1

j−3 ≤ 2
k−1

∑
j=1

j−3 ≤ x−ak ≤ k+2
k

∑
j=1

j−3 ≤ 2k√
2
+

k−1

∑
j=1

j−3

when k ≥ 5. Thus, for all x ∈ R and k ≥ 5 we have

χ(0,k)(x)≤ χRk(x−ak,x)≤ K(x−ak,x) .

Using Fatou’s lemma and (7.1.10), which holds for all x ∈ R\Ek, we deduce that

‖χ(0,k)‖L1/2,∞(R)≤ liminf
r→0

‖TK( fak,r, f0,r)‖L1/2,∞(R)≤C liminf
r→0

‖ fak,r‖L1(R)‖ f0,r‖L1(R),

and since the preceding expression is equal to C for every integer k ≥ 5, letting
k→ ∞ we obtain a contradiction. �

Although boundedness from L1 × L1 to L1/2 may not hold for certain bilinear
operators, boundedness from L1×L1 to L1/2,∞ is valid for a large class of bilinear
operators (Section 7.4). Next, we show that there exist positive measures that provide
examples of kernels with the same property.
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Proposition 7.1.8. There exists a nonnegative regular finite Borel measure μ onR×
R with the property that T μ maps L1×L1 to L1/2,∞ but not L1×L1 to L1/2.

Proof. If an operator T μ maps L1(R)×L1(R)→ L1/2,∞(R), then necessarily μ must
be a finite measure in view of Proposition 7.1.6.

We define a measure

μ =
∞

∑
j=1

1
j2
δ( j, j),

where δ( j, j) is the Dirac mass at the point ( j, j). Clearly, μ(R×R) = ∑∞
j=1

1
j2 < ∞ .

Then we define a linear operator L by setting

L(h)(x) =
∞

∑
j=1

1
j2
h(x− j)

and a bilinear operator by

T μ( f ,g)(x) = L( f g)(x) =
∞

∑
j=1

1
j2
f (x− j)g(x− j).

Using that { j−2} j∈Z+ ∈ �1/2,∞ and Exercise 7.1.7, we have that Lmaps L1/2 to L1/2,∞,
and hence,

‖T μ( f ,g)‖L1/2,∞ = ‖L( f g)‖L1/2,∞ ≤C‖ f g‖L1/2 ≤C‖ f‖L1‖g‖L1 .

Now, since{ j−2} j∈Z+ /∈ �1/2(Z), by Exercise 7.1.7, we have that L does not map L1/2

to itself and

‖T μ‖L1×L1→L1/2 ≥ sup
f �=0

‖T μ( f , f )‖L1/2
‖ f‖2L1

= sup
h �=0

‖L(h)‖L1/2
‖h‖L1/2

= ∞.

�

The example of Proposition 7.1.8 is purely bilinear, i.e., it does not have a linear
analog. Indeed, it follows from Proposition 7.1.6 (with m = 1) that if a convolution
operator with a positive Borel measure on Rn maps L1(Rn) to L1,∞(Rn), then the
measure is finite, and therefore it maps L1(Rn) to itself.

Exercises

7.1.1. Prove that if Iα maps Lp(Rn)×Lq(Rn) to Lr(Rn), then we must necessarily
have 1/p+1/q= α/n+1/r.



7.1 Multilinear Operators 491

7.1.2. Let Z be a Banach space of functions on Rn with the property ‖| f |‖Z = ‖ f‖Z
for all f ∈ Z. Suppose that an m-linear operator satisfies

‖T (χA1 , . . . ,χAm)‖Z ≤C|A1|
1
p1 · · · |Am|

1
pm

for all characteristic functions of sets Aj of finite measure. Show that T has an ex-
tension that maps Lp1,1×·· ·×Lpm,1 to Z.

7.1.3. On the real line consider the bilinear operator given by

S( f ,g)(x) =
∫ x

−∞
f ′(t)g(t)dt

defined for f ,g smooth functions with compact support C ∞
0 .

(a) Show that for any 0< p,q,r < ∞ there is no constant C such that the estimate
∥
∥S( f ,g)

∥
∥
Lr(R) ≤C

∥
∥ f
∥
∥
Lp(R)

∥
∥g
∥
∥
Lq(R)

holds for all C ∞
0 functions f ,g on the real line.

(b) Show that the estimate on C ∞
0 functions in part (a) also fails for any p, q, r, with

0< p,q,r < ∞, if R is replaced by a compact interval [a,b].
[

Hint: Part (a): Take f (x) = 1 when x ∈ [−1,1] and f (x) = 0 for |x| ≥ 1.1, and let
g(x) = f (x− 1/2). Part (b): Take [a,b] = [−2,2]. Given ε > 0, let fε be the C ∞

0
function supported in [−1,1] with fε(t) = |t|−1/(2p) for ε ≤ |t| ≤ 1/2 and fε(t) =
(ε/2)−1/(2p) for |t| ≤ ε/2, and let gε(t) be a smooth bump function supported in
[−ε/2,2], with 0≤ gε ≤ 1 and having gε(t) = 1 on ε/4≤ t ≤ 1.

]

7.1.4. Let K(y0,y1 . . . ,ym) be a function on R(m+1)n such that for all 0 ≤ i ≤ m we
have

sup
yi∈Rn

∫

Rmn
|K(y0,y1, . . . ,ym)|dy0 · · ·dyi−1dyi+1 · · ·dym = Ai < ∞ .

Then the m-linear operator

T ( f1, . . . , fm)(x) =
∫

Rmn
K(x,y1 . . . ,ym) f1(y1) · · · fm(ym)dy1 · · · dym

maps Lp1(Rn)×·· ·×Lpm(Rn)→ Lp(Rn) with bound

A
1
p′
0 A

1
p1
1 · · ·A

1
pm
m

whenever 1/p1+ · · ·+1/pm = 1/p where 1≤ p1, . . . , pm, p≤ ∞.

7.1.5. Let X1, . . . ,Xm be σ -finite measure spaces equipped with nonnegative mea-
sures μ j, j = 1, . . . ,m. Let (X ,μ) be another σ -finite measure space. Suppose
that K(x,x1, . . . ,xm) is a nonnegative measurable function on the product space
X×X1×·· ·×Xm. Consider the m-linear operator T with kernel K, that is,

T ( f1, . . . , fm)(x) =
∫

X1
· · ·
∫

Xm
K(x,x1, . . . ,xm) f1(x1) · · · fm(xm)dμ1(x1) · · ·dμm(xm),
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defined for suitable measurable functions f j on Xj. Fix indices 1< p1, . . . , pm, p<∞
satisfying 1

p1
+ · · ·+ 1

pm
= 1

p . Suppose that there exist measurable functions u j on
Xj, j= 1, . . . ,m and u on X , with 0< u1, . . . ,um,u<∞ a.e., such that for some B> 0
we have

T (up
′
1

1 ,up
′
2

2 , . . . ,up
′
m

m )≤ Bup
′

μ-a.e.

T ∗1(up,up
′
2

2 , . . . ,up
′
m

m )≤ Bup11 μ-a.e.
. . .

T ∗m(up
′
1

1 ,up
′
2

2 , . . . ,up)≤ Bupmm μ-a.e.

Show that T extends to a bounded operator from Lp1(X1)×·· ·×Lpm(Xm) to Lp(X)
with norm at most B.
[

Hint:When m= 2 fix f1 ∈ Lp1 , f2 ∈ Lp2 and f ∈ Lp′ nonnegative functions. Write
K(x,x1,x2) f (x) f1(x1) f2(x2) = L(x,x1,x2)M(x,x1,x2)N(x,x1,x2) where

L(x,x1,x2) = f (x)
u1(x1)p

′
1/p

′
u2(x2)p

′
2/p

′

u(x)
K(x,x1,x2)1/p

′
,

M(x,x1,x2) = f1(x1)
u(x)p/p1u2(x2)p

′
2/p1

u1(x1)
K(x,x1,x2)1/p1 , and

N(x,x1,x2) = f2(x2)
u1(x1)p

′
1/p2u(x)p/p2

u2(x2)
K(x,x1,x2)1/p2

and apply Hölder’s inequality.
]

7.1.6. Let 1 ≤ p j ≤ ∞, 1/p1 + · · ·+ 1/pm = 1/r ≤ 1 and let μ be a nonnegative
regular Borel measure. Then the following statements are equivalent:
(a) T μ : Lp1(Rn)×·· ·×Lpm(Rn)→ Lr(Rn).
(b) T μ : Lp1(Rn)×·· ·×Lpm(Rn)→ Lr,∞(Rn).
(c) μ is a finite measure.

7.1.7. ([98]) Define a linear operator L acting on functions on the real line by setting

L(h)(x) =
∞

∑
j=1

λ jh(x− j)

for some sequence of positive numbers λ j. Let 0< p< 1.
(a) Show that if {λ j}∞j=1 lies in �p,∞(Z+), then L maps Lp(R) to Lp,∞(R). Here
�p,∞(Z+) denotes the space Lp,∞(Z+) equipped with counting measure.
(b) Show that if L maps Lp(R) to Lp(R), then {λ j}∞j=1 lies in �

p(Z+).

7.1.8. ([171]) Suppose that 1 ≤ p,q < ∞, 1/p+ 1/q = 1/r ≥ 1, and that K is a
nonnegative function on Rn×Rn that satisfies

∫

Rn

∫

Rn

|K(y1,y2)|r
(|y1|n|y2|n)1−r dy1dy2 < ∞ .



7.2 Multilinear Interpolation 493

Moreover, assume that |y1| ≤ |y′1| implies |K(y1,y2)| ≥ |K(y′1,y2)|, and |y2| ≤ |y′2|
implies |K(y1,y2)| ≥ |K(y1,y′2)| for all y1,y′1,y2,y

′
2 ∈ Rn. Show that TK maps

Lp(Rn)×Lq(Rn) to Lr(Rn).
[

Hint: Define ϕ(t,s) = K(y,z) whenever t = |y| and s= |z| and for each j1, j2 inte-
gers set I jl = {2 jl < |yl | ≤ 2 jl+1} and

Kj1, j2(y1,y2) = K(y1,y2)χI j1 (y1)χI j2 (y2).

Use that

TK( f1, f2)(x)≤ ∑
j1∈Z

∑
j2∈Z

ϕ(2 j1 ,2 j2)

∫

I j1

| f1(x− y1)|dy1
∫

I j2

| f2(x− y2)|dy2

and pass the Lr quasi-norm through the double sum.
]

7.1.9. (D. Bilyk) Show that the bilinear Hilbert transform

H ( f ,g)(x) =
1
π
lim
ε→0

∫

|t|≥ε
f (x− t)g(x+ t)

dt
t

does not map L1(R)×Lp(R)→ L
p

p+1 (R) when 1≤ p≤ ∞.
[

Hint: Apply this operator to the functions f (x) = χ|x|≤1, gN(x) = x−
1
p χ[1,N] and

estimate the L
p

p+1 quasi-norm of H on the interval [2, N−1
2 ] for N large.

]

7.2 Multilinear Interpolation

In this section we study topics concerning the real interpolation of multilinear oper-
ators. We focus on two results, m-linear interpolation for a single operator between
estimates at m+1 points and multilinear interpolation between adjoint operators.

7.2.1 Real Interpolation for Multilinear Operators

Given a measure space (X ,μ), we denote by S(X) the space of functions of the form
∑N
i=1 ciχEi , where each measurable subset Ei of X has finite measure. We call such

functions finitely simple. We denote by S+0 (X) the space of all simple functions on
X that have the form f = ∑n2

i=n1
2−iχEi , where Ei are subsets of X of finite measure,

with μ(En1) �= 0 and μ(En2) �= 0, and n1 and n2 are integers such that n1 < n2.
We also denote by S+0 (X)− S+0 (X) the set of functions of the form f − g, where
f ,g ∈ S+0 (X), and we denote by S0(X) = (S+0 (X)− S+0 (X)) + i(S+0 (X)− S+0 (X))
the space of all functions of the form f1 + i f2, where f1, f2 ∈ S+0 (X)− S+0 (X). It
is shown in Proposition 1.4.21 in [156] that S0(X) is dense in the Lorentz space
Lp,s(X ,μ) whenever 0< p,s< ∞.
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Let X1, . . . ,Xm be measure spaces. An operator T defined on S(X1)×·· ·×S(Xm)
and taking values in the set of complex-valued measurable functions on a measure
space (Y,ν) is called multisublinear if for all 1 ≤ j ≤ m, all f j,g j in S(Xj), and all
λ ∈ C the statements

|T ( f1, . . . ,λ f j, . . . , fm)|= |λ | |T ( f1, . . . , f j, . . . , fm)| , (7.2.1)

|T (. . . , f j+g j, . . .)| ≤ |T (. . . , f j, . . .)|+ |T (. . . ,g j, . . .)| (7.2.2)

hold ν-a.e.
We now state a multilinear extension of Lemma 1.4.20 in [156] concerning mul-

tisublinear operators.

Proposition 7.2.1. Let (Xj,μ j), j = 1, . . . ,m, (Y,ν) be σ -finite measure spaces. Let
T be an operator defined on S(X1)× ·· ·× S(Xm) and taking values into the set of
measurable functions on Y that satisfies (7.2.1) and (7.2.2). For j = 1, . . . ,m, let
0 < p j < ∞ and 0 < q ≤ ∞. Suppose that for some constant M > 0 and for all
measurable subsets E j of Xj of finite measure we have

∥
∥T (χE1 , . . . ,χEm)

∥
∥
Lq,∞ ≤M

m

∏
j=1

μ j(Ej)
1
p j .

Then for all δ satisfying 0< δ <min(1,q) and all f j in S0(Xj) we have

‖T ( f1, . . . , fm)‖Lq,∞ ≤C0(m,δ , p1, . . . , pm,q)M
m

∏
j=1

‖ f j‖Lp j ,δ , (7.2.3)

where

C0(m,δ , p1, . . . , pm,q) = 24m+
2m
q
( q
q−δ

) 2
δ (1−2−δ )−

1
δ 2

2
p1

+···+ 2
pm (log2)−

m
δ .

Proof. The proof of (7.2.3) is based on a straightforward multilinear extension of
Lemma 1.4.20 in [156]. Exercise 7.2.4 outlines the steps of the solution. �

We now introduce some notation that will be used in the main interpolation result
of this section. First, 1/q is defined to be zero when q = ∞. Let m be a positive
integer. For 1≤ k ≤ m+1 and 1≤ j ≤ m, we are given pk, j, with 0< pk, j ≤ ∞ and
0< qk ≤ ∞. We introduce the determinants

γ0 = det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1/p1,1 1/p1,2 . . . . . . 1/p1,m 1
1/p2,1 1/p2,2 . . . . . . 1/p2,m 1

...
...

...
...

...
...

1/pm,1 1/pm,2 . . . . . . 1/pm,m 1
1/pm+1,1 1/pm+1,2 . . . . . . 1/pm+1,m 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠
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and for each j = 1,2, . . . ,m

γ j = det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1/p1,1 1/p1,2 . . . −1/q1 . . . 1/p1,m 1
1/p2,1 1/p2,2 . . . −1/q2 . . . 1/p2,m 1

...
...

...
...

...
...

...
1/pm,1 1/pm,2 . . . −1/qm . . . 1/pm,m 1
1/pm+1,1 1/pm+1,2 . . . −1/qm+1 . . . 1/pm+1,m 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (7.2.4)

where the jth column of the determinant defining γ j is obtained by replacing the jth
column of the determinant defining γ0 with the vector (−1/q1, . . . ,−1/qm,−1/qm+1).

We explain the geometric meaning of the determinant γ0. For k = 1,2, . . . ,m+1
let

�Pk =
( 1
pk,1

,
1
pk,2

, . . . ,
1

pk,m

)

be points in Rm. Let H be the open convex hull of the points �P1, . . . ,�Pm+1. Then
H is an open subset of Rm whose m-dimensional volume is |γ0|/m!. Hence H is a
nonempty set if and only if γ0 �= 0. Thus, the condition γ0 �= 0 is equivalent to the
fact that the open convex hull of �P1, . . . ,�Pm+1 is a nontrivial open simplex in Rm.
The boundary of H is denoted by ∂H.

We now state the multilinear version of the Marcinkiewicz interpolation theorem
with initial restricted weak type conditions.

Theorem 7.2.2. Let m be a positive integer, and let X1, . . . ,Xm be σ -finite measure
spaces. Suppose that T is a multisublinear operator defined on S(X1)×·· ·×S(Xm)
that takes values in the set of measurable functions of a σ -finite measure space
(Y,ν). For 1 ≤ k ≤ m+ 1 and 1 ≤ j ≤ m we are given pk, j, with 0 < pk, j ≤ ∞ and
0< qk ≤ ∞. Suppose that the open convex hull of the points

�Pk =
( 1
pk,1

,
1
pk,2

, . . . ,
1

pk,m

)

is an open set in Rm, in other words, γ0 �= 0. Assume that T satisfies

‖T (χE1 , . . . ,χEm)‖Lqk ,∞ ≤ Bk

m

∏
j=1

μ j(Ej)
1

pk, j (7.2.5)

for all 1≤ k ≤ m+1 and for all subsets E j of Xj with μ j(Ej)< ∞. Let

�P=
( 1
p1

, . . . ,
1
pm

)

=
m+1

∑
k=1

ηk�Pk (7.2.6)

for some ηk ∈ (0,1) such that ∑m+1
k=1 ηk = 1 , and define

1
q
=

m+1

∑
k=1

ηk

qk
. (7.2.7)
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For each j ∈ {1,2, . . . ,m} let s j satisfy 0< s j ≤ ∞, and let

1
s
= ∑

1≤ j≤m
γ j �=0

1
s j

, (7.2.8)

with the understanding that if there is no j, with γ j �= 0, then the sum in (7.2.8) is
zero and s= ∞. Let

0< δ <min
(q1
2
,
q2
2
, . . . ,

qm+1

2
,s1,s2, . . . ,sm,1

)

. (7.2.9)

Under these assumptions, there is a finite constant C(m,δ , pk,i,qk, pi,si) such that

‖T ( f1, . . . , fm)‖Lq,s ≤ C(m,δ , pk,i,qk, pi,si)
min(1,dist (�P,∂H))

m
δ

(m+1

∏
k=1

Bηkk
)( m

∏
j=1

‖ f j‖Lp j ,s j
)

(7.2.10)

for all f j ∈ S0(Xj), where for some other constant C∗(m,δ , pk,i,qk) we have

C(m,δ , pk,i,qk, pi,si) = C∗(m,δ , pk,i,qk)max(1,2
m(1−s)

s ) ∏
1≤ j≤m
γ j �=0

∣
∣
∣
γ0
γ j

∣
∣
∣

1
s j ∏
1≤ j≤m
γ j=0

( s j
p j

) 1
s j .

This theorem is proved in Subsection 7.2.2. In what follows, we discuss some
related remarks and corollaries. First, we notice that since γ0 �= 0 and ηk > 0 for all
k, (7.2.6) implies that p j <∞ for all j= 1, . . . ,m. Theorem 7.2.2 can be strengthened
when combined with the result of the following proposition when s j < ∞.

Proposition 7.2.3. Let (Xj,μ j), (Y,ν) be σ -finite measure spaces, and let T be a
multilinear operator defined on S(X1)×·· ·× S(Xm) and taking values in the set of
measurable functions on Y . Let 0 < q,s ≤ ∞ and 0 < p j, t j < ∞ for all 1 ≤ j ≤ m.
Suppose that

‖T ( f1, . . . , fm)‖Lq,s ≤M
m

∏
j=1

‖ f j‖Lp j ,t j (7.2.11)

holds for some fixed positive constant M and all f j in S0(Xj). Then T has a unique
bounded extension from Lp1,t1(X1)× ·· · × Lpm,tm(Xm) to Lq,s(Y,ν) that satisfies
(7.2.11) for all functions f j ∈ Lpj ,t j(Xj). Moreover, the hypothesis that T is multi-
linear can be replaced by the hypothesis that T is multisublinear with the property
T ( f1, . . . , fm)≥ 0 for all functions in its domain.

Proof. We show that (7.2.11) is valid for general functions in Lp1,t1 × ·· ·×Lpm,tm .
For any j = 1,2, . . . ,m and f j ∈ Lpj ,t j , in view of the density of S0(Xj) in Lpj ,t j ,
which is valid since 0 < t j < ∞, there exists a sequence { f (n)j }∞n=1 contained in
S0(Xj) such that

lim
n→∞

‖ f (n)j − f j‖Lp j ,t j = 0
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and such that for all j ∈ {1, . . . ,m} we have

‖ f (n)j ‖Lp j ,t j ≤ 2‖ f j‖Lp j ,t j .

Note that the multilinearity (or multisublinearity and nonnegativity) of T implies
that for all functions g1, f1, . . . , fm in its domain, we have

|T ( f1, f2, . . . , fm)−T (g1, f2, . . . , fm)| ≤ |T ( f1−g1, f2, . . . , fm)|

and an analogous inequality for the second through mth entries.
For all nonnegative integers n, i we use the multisublinearity of T to write

|T ( f (n)1 , . . . , f (n)m )−T ( f (i)1 , . . . , f (i)m )|

≤
m

∑
j=1

|T ( f (i)1 , . . . , f (i)j−1, f
(n)
j , . . . , f (n)m )−T ( f (i)1 , . . . , f (i)j , f (n)j+1, . . . , f

(n)
m )|

≤
m

∑
j=1

|T ( f (i)1 , . . . , f (i)j−1, f
(n)
j − f (i)j , f (n)j+1, . . . , f

(n)
m )| .

This implies that

‖T ( f (n)1 , . . . , f (n)m )−T ( f (i)1 , . . . , f (i)m )‖Lq,s

≤ 2
m
q max(1,2

m(1−s)
s )

m

∑
j=1

‖T ( f (i)1 , . . . , f (i)j−1, f
(n)
j − f (i)j , f (n)j+1, . . . , f

(n)
m )‖Lq,s

≤ 2
m
q max(1,2

m(1−s)
s )M

m

∑
j=1

(

‖ f (n)j − f (i)j ‖Lp j ,t j ∏
1≤k≤m
k �= j

2‖ fk‖Lpk ,tk
)

,

which tends to 0 as n, i→ ∞. Thus, {T ( f (n)1 , . . . , f (n)m )}∞n=1 is a Cauchy sequence in
Lq,s, and it converges to some element in Lq,s, so it makes sense to define

T ( f1, . . . , fm) = lim
n→∞

T ( f (n)1 , . . . , f (n)m ) in Lq,s . (7.2.12)

A similar argument shows that if, for j = 1,2, . . . ,m, {g(n)j }∞n=1 is another sequence
contained in S0(Xj) that converges to f j in Lqj ,t j , then

T ( f1, . . . , fm) = lim
n→∞

T (g(n)1 , . . . ,g(n)m ) in Lq,s .

Therefore, T is a well-defined operator. It follows from (7.2.12) and Exercise
1.4.11(b) in [156] that ‖T (g(n)1 , . . . ,g(n)m )‖Lq,s → ‖T ( f1, . . . , fm)‖Lq,s as n → ∞ and
thus for all functions ( f1, . . . , fm) ∈ Lp1,t1 ×·· ·×Lpm,tm we have
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∥
∥T ( f1, . . . , fm)

∥
∥
Lq,s = lim

n→∞

∥
∥T ( f (n)1 , . . . , f (n)m )

∥
∥
Lq,s

≤M limsup
n→∞

m

∏
j=1

‖ f (n)j ‖Lp j ,t j

=M
m

∏
j=1

‖ f j‖Lp j ,t j ,

where the last equality is also a consequence of Exercise 1.4.11(a) in [156]. To
show that T is multilinear (or nonnegative and multisublinear) we note that each
T ( f1, . . . , fm) is the ν-a.e. limit of a subsequence of T ( f (n)1 , . . . , f (n)m ), and linearity,
positivity, and sublinearity are preserved by limits. This shows that each T has a
bounded extension T from Lp1,t1(X1)×·· ·×Lpm,tm(Xm) to Lq,s(Y,ν) with the same
norm and concludes the proof. �

Corollary 7.2.4. Under the hypotheses of Theorem 7.2.2, assume additionally that
γ j �= 0 for all j = 1, . . . ,m and that, instead of (7.2.8), the inequality holds:

1
q
≤ 1

p1
+ · · ·+ 1

pm
. (7.2.13)

Then, for any 0 < δ < min
( q1

2 ,
q2
2 , . . . ,

qm+1
2 ,1, p1, . . . , pm

)

, there is a positive con-
stant C∗∗(m,δ , pk,i,qk) such that T satisfies

‖T ( f1, . . . , fm)‖Lq ≤ C∗∗(m,δ , pk,i,qk)

min(1,dist (�P,∂H))
m
δ0

(m+1

∏
k=1

Bηkk
)( m

∏
j=1

‖ f j‖Lp j
)

(7.2.14)

for all f j ∈ S0(Xj). Moreover, T has a unique bounded extension that satisfies
(7.2.14) for all f j in Lp j(Xj).

Proof. Using (7.2.6), we see that if pi = ∞ for some i, then γ0 = 0. Thus p j < ∞ for
all j, and we pick s j = p j < ∞ in (7.2.10) and define s by 1

s =
1
p1
+ · · ·+ 1

pm
, so that

(7.2.8) is valid. Then, in view of (7.2.13), we have q≥ s, and thus

‖T ( f1, . . . , fm)‖Lq ≤
( s
q

) 1
s− 1

q ‖T ( f1, . . . , fm)‖Lq,s ≤ ‖T ( f1, . . . , fm)‖Lq,s .

Theorem 7.2.2 implies the assertion, but to derive the claimed form of the constant
in (7.2.14), we observe the following. For 1≤ j ≤ m we have

1
p j

≤
m+1

∑
k=1

1
pk, j

, (7.2.15)
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which implies that

max(1,2
m(1−s)

s ) ∏
1≤ j≤m
γ j �=0

∣
∣
∣
γ0
γ j

∣
∣
∣

1
s j ∏
1≤ j≤m
γ j=0

( s j
p j

) 1
s j ≤

[

1+2
m∑m

j=1∑
m+1
k=1

1
pk, j

]

∏
1≤ j≤m
γ j �=0

∣
∣
∣
γ0
γ j

∣
∣
∣

∑m+1
k=1

1
pk, j.

Then we define the constant C∗∗(m,δ , pk,i,qk) in (7.2.14) to be the product of the
constant on the right-hand side of the preceding inequality times C∗(m,δ , pk,i,qk),
which appears in the statement of Theorem 7.2.2. Passing from S0(Xj) to Lpj(Xj)
follows from Proposition 7.2.3 via the multisublinearity of T since p j < ∞. �
Remark 7.2.5. Suppose that γ j = 0 for all j ∈ {1,2, . . . ,m} in Theorem 7.2.2. Then
we have q1 = q2 = · · · = qm+1 = q. Moreover, there is a positive constant C∗∗∗
(m,δ , pk,i,q) such that T satisfies

‖T ( f1, . . . , fm)‖Lq,∞ ≤ C∗∗∗(m,δ , pk,i,q)
min(1,dist (�P,∂H))

m
δ

(m+1

∏
k=1

Bηkk
)( m

∏
j=1

‖ f j‖Lp j ,∞
)

(7.2.16)

for all f j ∈ S0(Xj), where δ satisfies 0 < δ < min
( q
2 ,1
)

. Consequently, if s j < ∞
for all j ∈ {1,2, . . . ,m}, then the operator T has a unique bounded extension from
Lp1,s1(X1)×·· ·×Lpm,sm(Xm) to Lq,∞(Y,ν).

We first show that if γ j = 0 for all j, then q1 = · · ·= qm+1. We define vectors

�1= (1,1, . . . ,1), �Q= (1/q1, . . . ,1/qm+1),

and for each j ∈ {1,2, . . . ,m} we also define
�Aj = (1/p1, j,1/p2, j, . . . ,1/pm+1, j).

Then (�A1,�A2, . . . ,�Am,�1) is linearly independent since γ0 �= 0. If all γ j = 0, this means
that for each j ∈ {1,2, . . . ,m}, the set

{
�A1,�A2, . . . ,�Aj−1, �Q,�Aj+1, . . . ,�Am,�1

}

is linearly dependent. Therefore, for any j ∈ {1,2, . . . ,m} we can write

�Q= ∑
1≤i≤m
i �= j

a( j)i
�Ai+ c( j)�1,

where a( j)i and c( j) are constants. Equivalently,

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�Q = 0 + a(1)2
�A2 + a(1)3

�A3 + · · ·+ a(1)m−1
�Am−1 + a(1)m �Am +c(1)�1

�Q = a(2)1
�A1 + 0 + a(2)3

�A3 + · · ·+ a(2)m−1
�Am−1 + a(2)m �Am +c(2)�1

...
...

...
...

...
...

...
�Q = a(m)1

�A1 + a(m)2
�A2 + a(m)3

�A3 + · · ·+ a(m)m−1
�Am−1 + 0 +c(m)�1.
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Consider j = 1 and j = 2. Then

�0= �Q− �Q=−a(2)1
�A1+a(1)2

�A2+
m

∑
i=3

(a(1)i −a(2)i )�Ai+(c(1)− c(2))�1,

which combined with the fact that (�A1,�A2, . . . ,�Am,�1) is linearly independent implies
that

a(1)2 = 0.

Likewise, by considering j = 1 and j = 3 we obtain

�0= �Q− �Q=−a(3)1
�A1+a(1)3

�A3+ ∑
1≤i≤m
i �=1,i �=3

(a(1)i −a(3)i )�Ai+(c(1)− c(3))�1,

and consequently

a(1)3 = 0.

Repeating the foregoing process implies that

a(1)4 = · · ·= a(1)m = 0.

Therefore, �Q is a constant multiple of the vector�1, that is, q1 = · · ·= qm+1. Then q
is equal to these numbers as well. Thus, (7.2.16) holds.

The last assertion in Remark 7.2.5 is deduced from the embedding ‖ f j‖Lp j ,∞ ≤
(s j/p j)

1/s j‖ f j‖Lp j ,s j (see [156, Proposition 1.4.10]) and from the fact that S0(Xj) is
dense in Lpj ,s j(Xj). Note that the distinction between s j = ∞ and s j < ∞ is due to
the fact that S0(Xj) may not be dense in Lpj ,∞(Xj).

7.2.2 Proof of Theorem 7.2.2

Proof. If some p j0 =∞, then (7.2.6) implies that pk, j0 =∞ for all k= 1,2, . . . ,m+1;
thus, γ0 = 0, which is not assumed. Hence, we have 0< p j <∞ for all j= 1,2, . . . ,m.

Suppose that 0< ρk < 1 for all 1≤ k ≤ m+1, and ∑m+1
k=1 ρk = 1. Let

�R=
( 1
r1
,
1
r2
, . . . ,

1
rm

)

=
m+1

∑
k=1

ρk�Pk

be a point in H, and define

1
r
=

m+1

∑
k=1

ρk
qk

.
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It is a simple consequence of (7.2.5) that for all Ej ⊆ Xj, 1≤ j≤m of finite measure
we have

m+1

∏
k=1

‖T (χE1 , . . . ,χEm)‖ρkLqk ,∞ ≤
(

m+1

∏
k=1

Bρkk

)
m

∏
j=1

μ j(Ej)
1
r j .

But for any measurable function G, using ∑m+1
k=1 ρk = 1, we have

‖G‖Lr,∞ ≤
m+1

∏
k=1

‖G‖ρkLqk ,∞ ,

and this implies that

‖T (χE1 , . . . ,χEm)‖Lr,∞ ≤
(

m+1

∏
k=1

Bρkk

)
m

∏
j=1

μ j(Ej)
1
r j . (7.2.17)

Thus, T is of restricted weak type (r1, . . . ,rm,r), with constant proportional to
∏m+1

k=1 Bρkk .
In the sequel, we will make use of the set

Sm =
{

(σ�,1,σ�,2, . . . ,σ�,m) : �= 1,2, . . . ,2m
}

of all possible m-tuples of the form (±1,±1, . . . ,±1). Notice that elements of Sm lie
in different 2m-orthants of Rm. Since all p j <∞, and since �P lies in the open convex
hull H, we choose ε > 0 small enough such that 2

√
mε is smaller than the distance

from �P to the boundary of the convex hull H, i.e.,

ε <min
(

1,
dist(�P,∂H)

2
√
m

)

,

where ∂H is the set of all (m−1)-dimensional faces of H.
Consider the system of equations

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
p1,1

θ�,1 + 1
p2,1

θ�,2 + · · ·+ 1
pm+1,1

θ�,m+1 = 1
r�,1

1
p1,2

θ�,1 + 1
p2,2

θ�,2 + · · ·+ 1
pm+1,2

θ�,m+1 = 1
r�,2

...
...

...
...

...
1

p1,m
θ�,1 + 1

p2,m
θ�,2 + · · ·+ 1

pm+1,m
θ�,m+1 = 1

r�,m
θ�,1 + θ�,2 + · · ·+ θ�,m+1 = 1 ,

which has a unique solution (θ�,1,θ�,2, . . . ,θ�,m+1) since γ0 �= 0.
For all � ∈ {1,2, . . . ,2m} and j ∈ {1,2, . . . ,m} define r�, j via

1
r�, j

− 1
p j

= εσ�, j (7.2.18)
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and introduce vectors

�R� =
( 1
r�,1

, . . . ,
1
r�,m

)

=
m+1

∑
k=1

θ�,k�Pk .

The choice of ε implies that the cube of side length 2ε centered at �P belongs to
the open convex hull H. Moreover, since H lies in the orthant [0,∞)m, it follows that
for all j ∈ {1,2, . . . ,m}

2
√
mε < dist(�P,∂H)≤ 1

p j
. (7.2.19)

From these and (7.2.18) we see that each �R� belongs to the open convex hull H and
every r�, j is finite. Consequently, each θ�,k ∈ (0,1).

Define the following matrix:

A=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1/p1,1 1/p2,1 . . . 1/pm+1,1
1/p1,2 1/p2,2 . . . 1/pm+1,2

...
...

...
...

1/p1,m 1/p2,m . . . 1/pm+1,m
1 1 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

For all i,k ∈ {1,2, . . . ,m+ 1} we denote by Di,k the determinant of the matrix ob-
tained by deleting the ith row and kth column of matrix A. Since γ0 �= 0, it follows
that not all these minor determinants are zero. Expanding the determinant (7.2.4)
that defines γ j along its jth column we obtain

γ j =
m+1

∑
k=1

(−1) j+k 1
−qk

Dj,k =−
m+1

∑
k=1

(−1) j+k 1
qk

Dj,k . (7.2.20)

For all � = 1,2, . . . ,2m, in view of (7.2.6) and ∑m+1
k=1 ηk = 1, we have that the

(m+1)-tuple
(θ�,1−η1,θ�,2−η2, . . . ,θ�,m+1−ηm+1)

is a solution of the system

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
p1,1

(θ�,1−η1) + · · ·+ 1
pm+1,1

(θ�,m+1−ηm+1) = 1
r�,1

− 1
p1

1
p1,2

(θ�,1−η1) + · · ·+ 1
pm+1,2

(θ�,m+1−ηm+1) = 1
r�,2

− 1
p2

...
...

...
...

1
p1,m

(θ�,1−η1) + · · ·+ 1
pm+1,m

(θ�,m+1−ηm+1) = 1
r�,m

− 1
pm

(θ�,1−η1) + · · ·+ (θ�,m+1−ηm+1) = 0.



7.2 Multilinear Interpolation 503

This unique solution can be expressed as the ratio

θ�,k−ηk =

det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1/p1,1 1/p2,1 . . . 1/r�,1−1/p1 . . . 1/pm+1,1
1/p1,2 1/p2,2 . . . 1/r�,2−1/p2 . . . 1/pm+1,2

...
...

...
...

...
...

1/p1,m 1/p2,m . . . 1/r�,m−1/pm . . . 1/pm+1,m
1 1 . . . 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

det

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1/p1,1 1/p2,1 . . . 1/pm+1,1
1/p1,2 1/p2,2 . . . 1/pm+1,2

...
...

...
...

1/p1,m 1/p2,m . . . 1/pm+1,m
1 1 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where these determinants are different only in the kth column. Expanding the deter-
minant in the numerator, for all k ∈ {1,2, . . . ,m+ 1} and all � ∈ {1,2, . . . ,2m}, we
deduce that

θ�,k−ηk =
m

∑
j=1

( 1
r�, j

− 1
p j

)

(−1) j+k D j,k

γ0
. (7.2.21)

For any � ∈ {1,2, . . . ,2m} we also define

1
r�

=
m+1

∑
k=1

θ�,k
qk

. (7.2.22)

Using these expressions and (7.2.7) we write

1
q
− 1

r�
=

m+1

∑
k=1

ηk−θ�,k
qk

=−
m+1

∑
k=1

1
qk

m

∑
j=1

( 1
r�, j

− 1
p j

)

(−1) j+k D j,k

γ0

=−
m

∑
j=1

( 1
r�, j

− 1
p j

)m+1

∑
k=1

1
qk

(−1) j+k D j,k

γ0

=
m

∑
j=1

( 1
r�, j

− 1
p j

) γ j
γ0

, (7.2.23)

where the last identity follows from (7.2.20).
We introduce some more notation. For any j ∈ {1,2, . . . ,m} and any k in

{1,2, . . . ,m+1}, set

t j,k = (−1) j+k D j,k

γ0
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and then (7.2.21) can be written as

ηk = θ�,k−
m

∑
j=1

( 1
r�, j

− 1
p j

)

t j,k . (7.2.24)

Since the points �R� lie in the open convex hullH of the points �Pj, estimate (7.2.17)
is valid for each �R�, with θ�,k in the place of ρk. Set

B̃� =
m+1

∏
k=1

B
θ�,k
k .

In view of (7.2.17) we have

‖T (χE1 , . . . ,χEm)‖Lr�,∞ ≤ B̃�

m

∏
j=1

μ j(Ej)
1

r�, j

for all subsets Ej of Xj of finite measure. Let δ be a positive number satisfying
(7.2.9). Observe that (7.2.9) and (7.2.22) imply

δ <min
( r1
2
,
r2
2
, . . . ,

r2m
2

,1
)

. (7.2.25)

Then, it follows from Proposition 7.2.1 that

‖T ( f1, . . . , fm)‖Lr�,∞ ≤C0(m,δ ,r�,i,r�) B̃�

m

∏
j=1

‖ f j‖Lr�, j ,δ (7.2.26)

for all functions f j ∈ S0(Xj), where

C0(m,δ , p1, . . . ,r�i ,r�) = 24m+
2m
r�

(
r�

r�−δ
) 2

δ
(1−2−δ )−

1
δ 2

2
r�,1

+···+ 2
r�,m (log2)−

m
δ .

Notice that (7.2.18) and (7.2.23), together with the fact ε < 1, imply that

1
r�,1

+ · · ·+ 1
r�,m

+
m
r�

≤ 1
p1

+ · · ·+ 1
pm

+
m
q
+
∣
∣
∣
1
r�,1

− 1
p1

∣
∣
∣+ · · ·+

∣
∣
∣
1
r�,m

− 1
pm

∣
∣
∣+m

∣
∣
∣
1
r�

− 1
q

∣
∣
∣

≤ 1
p1

+ · · ·+ 1
pm

+
m
q
+m+m

m

∑
j=1

|γ j|
|γ0|

≤
m

∑
j=1

m+1

∑
k=1

1
pk, j

+m
m+1

∑
k=1

1
qk

+m+m
m

∑
j=1

|γ j|
|γ0| ,
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where the last inequality is a consequence of the observation (7.2.15) and (7.2.7).
Also, it follows from (7.2.25) that r�

r�−δ < 2 for all 1 ≤ � ≤ 2m. Therefore, we can
bound C0(m,δ ,r�,i,r�) by

2
2
δ (1−2−δ )−

1
δ
(

24(log2)−
1
δ
)m2

∑m
j=1∑

m+1
k=1

2
pk, j

+∑m+1
k=1

2m
qk 2

2m+2m∑m
j=1

|γ j |
|γ0| (7.2.27)

for every �. We denote the constant in (7.2.27) by C′
0(m,δ , pk,i,qk). From this and

(7.2.26) we obtain that for all functions f j ∈ S0(Xj),

‖T ( f1, . . . , fm)‖Lr�,∞ ≤C′
0(m,δ , pk,i,qk) B̃�

m

∏
j=1

‖ f j‖Lr�, j ,δ . (7.2.28)

For all j = 1,2, . . . ,m fix functions f j in S0(Xj), and for any t > 0 write f j =
f j,1,t + f j,−1,t by setting

f j,−1,t = f j χ
{| f j |> f ∗j (λ j t

− γ j
γ0 )}

and f j,1,t = f j χ
{| f j |≤ f ∗j (λ j t

− γ j
γ0 )}

(7.2.29)

for some λ j > 0 to be determined later. Here g∗ is the decreasing rearrangement of
g; see Definition 1.4.1 in [156].

Proposition 1.4.5 (6) in [156] and Exercise 1.1.5(c) in [156], together with the
sublinearity of T and the quasilinearity of Lorentz norms, imply

‖T ( f1, . . . , fm)‖Lq,s
= ‖t 1q T ( f1, . . . , fm)∗(t)‖Ls(dt/t)
≤
∥
∥
∥t

1
q
(

∑
i1,...,im∈{1,−1}

|T ( f1,i1,t , . . . , fm,im,t)|
)∗

(t)
∥
∥
∥
Ls(dt/t)

≤
∥
∥
∥t

1
q ∑
i1,...,im∈{1,−1}

(|T ( f1,i1,t , . . . , fm,im,t)|)∗(t/2m)
∥
∥
∥
Ls(dt/t)

≤ 2
m
q max(1,2

m(1−s)
s ) ∑

i1,...,im∈{1,−1}
‖t 1q (|T ( f1,i1,t , . . . , fm,im,t)|)∗(t)‖Ls(dt/t)

= 2
m
q max(1,2

m(1−s)
s )

2m

∑
�=1

‖t 1q (|T ( f1,σ�,1,t , . . . , fm,σ�,m,t)|)∗(t)‖Ls(dt/t)

since each m-tuple (i1, . . . , im), with i j ∈ {1,−1}, corresponds to a unique � in
{1,2, . . . ,2m} such that (i1, . . . , im) = σ� ∈ Sm. It follows from (7.2.23) and (7.2.28)
that for all � ∈ {1,2, . . . ,2m} and t > 0,

t
1
q (|T ( f1,σ�,1,t , . . . , fm,σ�,m,t)|)∗(t)
≤ t

1
q− 1

r� sup
s>0

s
1
r� (|T ( f1,σ�,1,t , . . . , fm,σ�,m,t)|)∗(s)

= t
1
q− 1

r�
∥
∥T ( f1,σ�,1,t , . . . , fm,σ�,m,t)

∥
∥
Lr�,∞
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≤ t
1
q− 1

r�C′
0(m,δ , pk,i,qk) B̃�

m

∏
j=1

‖ f j,σ�, j ,t‖Lr�, j ,δ

=C′
0(m,δ , pk,i,qk) B̃�

m

∏
j=1

t
γ j
γ0
( 1
r�, j

− 1
p j

)‖ f j,σ�, j ,t‖Lr�, j ,δ . (7.2.30)

We now introduce the sets

Λ = {1≤ j ≤ m : γ j �= 0}
Λ ′ = {1≤ j ≤ m : γ j = 0}

and we rewrite (7.2.30) as

t
1
q (|T ( f1,σ�,1,t , . . . , fm,σ�,m,t)|)∗(t) (7.2.31)

≤C′
0(m,δ , pk,i,qk)B̃�

(

∏
j∈Λ

t
γ j
γ0
( 1
r�, j

− 1
p j

)‖ f j,σ�, j ,t‖Lr�, j ,δ
)(

∏
j∈Λ ′

‖ f j,σ�, j ,1‖Lr�, j ,δ
)

,

where we used the observation that for j ∈Λ ′ we have γ j = 0, and hence for all t > 0

f j,σ�, j ,t = f j,σ�, j ,1 .

To estimate the Ls(dt/t) quasi-norm of (7.2.31), we need the following lemmas,
whose proofs are presented in the next section.

Lemma 7.2.6. For all j ∈Λ let s j satisfy 0< s j ≤ ∞, and let 0< λ j < ∞. Then, for
all � in {1,2, . . . ,2m}, the following inequalities are valid: when p j > r�, j, we have

∥
∥
∥
∥
t
γ j
γ0
( 1
r�, j

− 1
p j

)‖ f j,−1,t‖Lr�, j ,δ
∥
∥
∥
∥
Ls j ( dtt )

≤ C1(r�, j, p j,δ )
∣
∣ γ j
γ0

∣
∣
1
s j

λ
1

r�, j
− 1

p j
j ‖ f j‖Lp j ,s j (7.2.32)

and when p j < r�, j, we have

∥
∥
∥
∥
t
γ j
γ0
( 1
r�, j

− 1
p j

)‖ f j,1,t‖Lr�, j ,δ
∥
∥
∥
∥
Ls j ( dtt )

≤ C1(r�, j, p j,δ )
∣
∣ γ j
γ0

∣
∣
1
s j

λ
1

r�, j
− 1

p j
j ‖ f j‖Lp j ,s j , (7.2.33)

where

C1(r�, j, p j,δ ) =

[
max(1, r�, j

p j
)

δ | 1p j −
1
r�, j

|

] 1
δ

=

[
max(1, r�, j

p j
)

δε

] 1
δ

.

We note that C1(r�, j, p j,δ ) in Lemma 7.2.6 satisfies the following estimate:

C1(r�, j, p j,δ )≤
( 2
δε

) 1
δ ; (7.2.34)
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indeed, using (7.2.18) and the fact ε p j <
1

2
√
m [see (7.2.19)] we have

max
(

1,
r�, j
p j

)

=max
(

1,
1

1+ ε p jσ�, j

)

<max
(

1,
1

1− 1
2
√
m

)

≤ 2.

Lemma 7.2.7. For all j ∈Λ ′ and all � ∈ {1,2, . . . ,2m}, when p j > r�, j, we have

‖ f j,−1,1‖Lr�, j ,δ ≤C1(r�, j, p j,δ )λ
1

r�, j
− 1

p j
j ‖ f j‖Lp j ,∞ , (7.2.35)

and when p j < r�, j, we have

‖ f j,1,1‖Lr�, j ,δ ≤C1(r�, j, p j,δ )λ
1

r�, j
− 1

p j
j ‖ f j‖Lp j ,∞ , (7.2.36)

where C1(r�, j, p j,δ ) is as in Lemma 7.2.6.

Now we bound the Ls(dt/t) quasi-norm of (7.2.31). First apply Lemma 7.2.7
when j ∈ Λ ′, then apply Hölder’s inequality with exponents s j, j ∈ Λ , noting that
1
s = ∑ j∈Λ 1

s j
, and finally apply Lemma 7.2.6 to the product over j ∈ Λ . Summing

over � and invoking (7.2.34), we obtain that for all functions f j in S0(Xj) the expres-
sion ‖T ( f1, . . . , fm)‖Lq,s is bounded by

2
m
q max(1,2

m(1−s)
s )

2m

∑
�=1

C′
0(m,δ , pk,i,qk)B̃�

{
(

∏
j∈Λ

( 2
δε

) 1
δ
∣
∣
∣
γ0
γ j

∣
∣
∣

1
s j λ

1
r�, j

− 1
p j

j ‖ f j‖Lp j ,s j
)(

∏
j∈Λ ′

( 2
δε

) 1
δ λ

1
r�, j

− 1
p j

j ‖ f j‖Lp j ,∞
)
}

.

To obtain (7.2.10), for each j ∈ {1,2, . . . ,m} we choose

λ j =
(

B
t j,1
1 B

t j,2
2 · · ·Bt j,m+1

m+1

)−1
.

Then, for each 1≤ k≤m+1, the dependence of the preceding expression on the Bk
is

m+1

∏
k=1

B
θ�,k−∑ j∈Λ

(
1

r�, j
− 1

p j

)

t j,k−∑ j∈Λ ′
(

1
r�, j

− 1
p j

)

t j,k
k =

m+1

∏
k=1

Bηkk

in view of (7.2.24).
From this we conclude that for all f j ∈ S0(Xj) the expression ‖T ( f1, . . . , fm)‖Lq,s

is at most

C′
∗(m,δ , pk,i,qk,s j,s)ε

−m
δ

(m+1

∏
k=1

Bηkk
)(

∏
j∈Λ

‖ f j‖Lp j ,s j
)(

∏
j∈Λ ′

‖ f j‖Lp j ,∞
)

,
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where C′∗(m, pk, j,qk,s j,s) is equal to

2
m
q max(1,2

m(1−s)
s )2mC′

0(m,δ , pk,i,qk)
( 2
δ

)m
δ ∏

j∈Λ

∣
∣
∣
γ0
γ j

∣
∣
∣

1
s j .

If j ∈Λ ′, then it is a simple fact (see [156, Proposition 1.4.10]) that for any s j ∈ (0,∞]
we have

‖ f j‖Lp j ,∞ ≤
( s j
p j

) 1
s j ‖ f j‖Lp j ,s j ,

with the obvious modification when s j = ∞. Thus, for all functions f j ∈ S0(Xj) we
conclude

‖T ( f1, . . . , fm)‖Lq,s ≤ C
′′
∗(m,δ , pk,i,qk,si,s)ε

−m
δ

(m+1

∏
k=1

Bηkk
) m

∏
j=1

‖ f j‖Lp j ,s j , (7.2.37)

where C′′
∗(m,δ , pk,i,qk,si,s) is equal to

2
m
q max(1,2

m(1−s)
s )2mC′

0(m,δ , pk,i,qk)
( 2
δ

)m
δ ∏

j∈Λ

∣
∣
∣
γ0
γ j

∣
∣
∣

1
s j ∏

j∈Λ ′

( s j
p j

) 1
s j .

Since (7.2.37) is valid for all ε <min(1, dist (
�P,∂H)

2
√
m ), letting ε →min(1, dist (

�P,∂H)
2
√
m ),

and noticing that 1
q ≤ ∑m+1

k=1
1
qk
, we then obtain estimate (7.2.10) for all functions f j

in S0(Xj), 1≤ j ≤ m, where

C∗(m,δ , pk,i,qk) = 2m∑m+1
k=1

1
qk 2mC′

0(m,δ , pk,i,qk)
( 2
δ

)m
δ (2

√
m
)m
δ .

This concludes the proof of Theorem 7.2.2. �

7.2.3 Proofs of Lemmas 7.2.6 and 7.2.7

For each j ∈ {1,2, . . . ,m} and f j ∈ S0(Xj), with f j,−1,t and f j,1,t defined as in
(7.2.29), using Definition 1.4.1 and Exercise 1.1.10 in [156], one can easily show
that the following inequalities are valid:

f ∗j,−1,t(v)≤

⎧

⎪⎪⎨

⎪⎪⎩

f ∗j (v) if 0< v< λ j t
− γ j

γ0 ,

0 if v≥ λ j t
− γ j

γ0 ,

(7.2.38)
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and

f ∗j,1,t(v)≤

⎧

⎪⎪⎨

⎪⎪⎩

f ∗j (λ j t
− γ j

γ0 ) if 0< v< λ j t
− γ j

γ0 ,

f ∗j (v) if v≥ λ j t
− γ j

γ0 .

(7.2.39)

First we prove Lemma 7.2.6.

Proof (Proof of Lemma 7.2.6). We first prove (7.2.32). In view of (7.2.38), we have
∥
∥
∥
∥
t
γ j
γ0
( 1
r�, j

− 1
p j

)‖ f j,−1,t‖Lr�, j ,δ
∥
∥
∥
∥
Ls j ( dtt )

=

⎡

⎢
⎢
⎣

∫ ∞

0
t
s j

γ j
γ0
( 1
r�, j

− 1
p j

)

⎧

⎨

⎩

∫ λ jt
− γ j
γ0

0
( f ∗j,−1,t(v))

δ v
δ
r�, j

dv
v

⎫

⎬

⎭

s j
δ
dt
t

⎤

⎥
⎥
⎦

1
s j

.

We change variables u = λ j t
− γ j

γ0 and use (7.2.38) to estimate the preceding expres-
sion by

∣
∣
∣
γ0
γ j

∣
∣
∣

1
s j λ

1
r�, j

− 1
p j

j

⎡

⎢
⎣

⎧

⎨

⎩

∫ ∞

0
u
−s j( 1

r�, j
− 1

p j
)
(∫ u

0
( f ∗j (v))

δ v
δ

r�, j
dv
v

) s j
δ du

u

⎫

⎬

⎭

δ
s j

⎤

⎥
⎦

1
δ

. (7.2.40)

We now use the following inequality of Hardy (valid for 0< β < ∞, 1≤ p< ∞):

(∫ ∞

0

(∫ x

0
| f (t)|dt

)p

x−β
dx
x

) 1
p

≤ p
β

(∫ ∞

0
| f (t)|p t p−β dt

t

) 1
p

with
β = s j(

1
r�, j

− 1
p j

)> 0

and p= s j
δ since p j > r�, j and δ ≤ s j. We obtain that (7.2.40) is at most

(

1
δ | 1

r�, j
− 1

p j
|

) 1
δ ∣
∣
∣
γ0
γ j

∣
∣
∣

1
s j λ

1
r�, j

− 1
p j

j

(∫ ∞

0
(( f ∗j (v))

δ v
δ

r�, j v−1)
s j
δ v

s j
δ −s j( 1

r�, j
− 1

p j
) dv
v

) 1
s j

=

(

1
δ | 1

r�, j
− 1

p j
|

) 1
δ ∣
∣
∣
γ0
γ j

∣
∣
∣

1
s j λ

1
r�, j

− 1
p j

j ‖ f j‖Lp j ,s j .
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We now prove (7.2.33). We begin with
∥
∥
∥
∥
t
γ j
γ0
( 1
r�, j

− 1
p j

)‖ f j,1,t‖Lr�, j ,δ
∥
∥
∥
∥
Ls j ( dtt )

=

⎡

⎢
⎢
⎣

∫ ∞

0
t
s j

γ j
γ0
( 1
r�, j

− 1
p j

)

⎛

⎝

∫ λ jt
− γ j
γ0

0
( f ∗j,1,t(v))

δ v
δ
r�, j

dv
v
+
∫ ∞

λ jt
− γ j
γ0
( f ∗j,1,t(v))

δ v
δ

r�, j
dv
v

⎞

⎠

s j
δ
dt
t

⎤

⎥
⎥
⎦

1
s j

.

In both integrals we first use (7.2.39) and then perform a change of variables u =

λ j t
− γ j

γ0 to estimate the preceding expression by

∣
∣
∣
γ0
γ j

∣
∣
∣

1
s j λ

1
r�, j

− 1
p j

j

×
⎡

⎣

∫ ∞

0
u
−s j( 1

r�, j
− 1

p j
)
{

( f ∗j (u))
δ
∫ u

0
v

δ
r�, j

dv
v
+

∫ ∞

u
( f ∗j (v))

δ v
δ
r�, j

dv
v

} s j
δ du

u

⎤

⎦

δ
s j

1
δ

,

which by Minkowski’s inequality is at most

∣
∣
∣
γ0
γ j

∣
∣
∣

1
s j λ

1
r�, j

− 1
p j

j

⎡

⎢
⎣

⎧

⎨

⎩

∫ ∞

0
u
−s j( 1

r�, j
− 1

p j
)
(

( f ∗j (u))
δ
∫ u

0
v

δ
r�, j

dv
v

) s j
δ du

u

⎫

⎬

⎭

δ
s j

+

⎧

⎨

⎩

∫ ∞

0
u
−s j( 1

r�, j
− 1

p j
)
(∫ ∞

u
( f ∗j (v))

δ v
δ

r�, j
dv
v

) s j
δ du

u

⎫

⎬

⎭

δ
s j

⎤

⎥
⎦

1
δ

. (7.2.41)

The first term of the sum is easily evaluated. For the second term of the sum we use
the following inequality of Hardy (valid for 0< β < ∞, 1≤ p< ∞):

(∫ ∞

0

(∫ ∞

x
| f (t)|dt

)p

xβ
dx
x

) 1
p

≤ p
β

(∫ ∞

0
| f (t)|p t p+β dt

t

) 1
p

,

with β = −( 1
r�, j

− 1
p j
)s j > 0 and p =

s j
δ since p j < r�, j and δ ≤ s j. Then (7.2.41)

can be estimated by

∣
∣
∣
γ0
γ j

∣
∣
∣

1
s j λ

1
r�, j

− 1
p j

j

⎡

⎣
1
δ
r�, j

{∫ ∞

0
u

s j
p j ( f ∗j (u))

s j du
u

} δ
s j

+
1

δ ( 1
p j
− 1

r�, j
)

⎧

⎨

⎩

∫ ∞

0

(

( f ∗j (v))
δ v

δ
r�, j v−1

) s j
δ
v
s j
δ +( 1

p j
− 1

r�, j
)s j dv

v

⎫

⎬

⎭

δ
s j

⎤

⎥
⎦

1
δ
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=
∣
∣
∣
γ0
γ j

∣
∣
∣

1
s j λ

1
r�, j

− 1
p j

j

⎡

⎣
1
δ
r�, j

‖ f‖δLp j ,s j +
1

δ ( 1
p j
− 1

r�, j
)
‖ f‖δLp j ,s j

⎤

⎦

1
δ

=
∣
∣
∣
γ0
γ j

∣
∣
∣

1
s j λ

1
r�, j

− 1
p j

j

[ r�, j
p j

δ | 1p j −
1
r�, j

|

] 1
δ

‖ f‖Lp j ,s j ,

which proves (7.2.33).
We now consider the case s j = ∞. If p j > r�, j, then we change variables u =

λ j t
− γ j

γ0 and use (7.2.38) to obtain that for all t > 0,

t
γ j
γ0
( 1
r�, j

− 1
p j

)‖ f j,−1,t‖Lr�, j ,δ ≤ λ
1

r�, j
− 1

p j
j u

−( 1
r�, j

− 1
p j

)
(∫ u

0
( f ∗j (v))

δ v
δ

r�, j
dv
v

) 1
δ

≤ λ
1

r�, j
− 1

p j
j u

−( 1
r�, j

− 1
p j

)
(∫ u

0
v

δ
r�, j

− δ
p j
dv
v

) 1
δ ‖ f j‖Lp j ,∞

=

(

1
δ | 1

r�, j
− 1

p j
|

) 1
δ

λ
1

r�, j
− 1

p j
j ‖ f j‖Lp j ,∞ ,

which implies (7.2.35).

If p j < r�, j, then again by the same change of variables u = λ j t
− γ j

γ0 and via
(7.2.39) we obtain for all t > 0

t
γ j
γ0
( 1
r�, j

− 1
p j

)‖ f j,1,t‖Lr�, j ,δ

≤ λ
1

r�, j
− 1

p j
j u

−( 1
r�, j

− 1
p j

)
(∫ u

0
( f ∗j (u))

δ v
δ
r�, j

dv
v
+
∫ ∞

u
( f ∗j (v))

δ v
δ
r�, j

dv
v

) 1
δ

≤ λ
1

r�, j
− 1

p j
j u

−( 1
r�, j

− 1
p j

)
(∫ u

0
u
− δ

p j v
δ

r�, j
dv
v
+
∫ ∞

u
v

δ
r�, j

− δ
p j

dv
v

) 1
δ ‖ f j‖Lp j ,∞

≤ λ
1

r�, j
− 1

p j
j

⎛

⎝
1
δ
r�, j

+
1

δ ( 1
p j
− 1

r�, j
)

⎞

⎠

1
δ

‖ f j‖Lp j ,∞

= λ
1

r�, j
− 1

p j
j

( r�, j
p j

δ | 1p j −
1
r�, j

|

) 1
δ

‖ f j‖Lp j ,∞ .

This concludes the proof of Lemma 7.2.6. �

Proof (Lemma 7.2.7). When j ∈Λ ′, we have γ j = 0 and

f j,−1,1 = f j χ{| f j |> f ∗j (λ j)}, f j,1,1 = f j χ{| f j |≤ f ∗j (λ j)}
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and

f ∗j,−1,1(v)≤
⎧

⎨

⎩

f ∗j (v) if 0< v< λ j,

0 if v≥ λ j,
(7.2.42)

and

f ∗j,1,1(v)≤
⎧

⎨

⎩

f ∗j (λ j) if 0< v< λ j,

f ∗j (v) if v≥ λ j.
(7.2.43)

If p j > r�, j, then by (7.2.42) we obtain

‖ f j,−1,1‖Lr�, j ,δ ≤
[∫ λ j

0
v

δ
r�, j f ∗j (v)

δ dv
v

]1/δ

≤
[∫ λ j

0
v

δ
r�, j

− δ
p j

dv
v

]1/δ

‖ f j‖Lp j ,∞

=
λ j

1
r�, j

− 1
p j

| δ
r�, j

− δ
p j
|1/δ ‖ f j‖L

p j ,∞ ,

which proves (7.2.35). Now we suppose p j < r�, j and show (7.2.36). To this end,
applying (7.2.43) yields that

‖ f j,1,1‖Lr�, j ,δ ≤
[
∫ λ j

0
v

δ
r�, j λ

− δ
p j

j λ
δ
p j
j f ∗j (λ j)

δ dv
v
+
∫ ∞

λ j

v
δ

r�, j
− δ

p j v
δ
p j f ∗j (v)

δ dv
v

]1/δ

≤
⎡

⎣
λ j

δ
r�, j

− δ
p j

δ
r�, j

+
λ j

δ
r�, j

− δ
p j

δ
p j
− δ

r�, j

⎤

⎦

1/δ

‖ f j‖Lp j ,∞

=

[ r�, j
p j

δ | 1p j −
1
r�, j

|

] 1
δ

λ j

1
r�, j

− 1
p j ‖ f j‖Lp j ,∞ ,

and hence (7.2.36) holds. This concludes the proof of Lemma 7.2.7. �
Example 7.2.8. We recall the operator Iα of Theorem 7.1.4. Let 0 < α < n. It was
shown that the bilinear fractional integral

Iα( f ,g)(x) =
∫

Rn
f (x+ t)g(x− t)|t|α−ndt,

is of restricted weak types ( nα ,∞,∞), (∞,
n
α ,∞), (1,∞,

n
n−α ), (∞,1,

n
n−α ), (1,1,

n
2n−α ).

Consequently, Iα is bounded from Lp1 ×Lp2 → Lp whenever (1/p1,1/p2,1/p) lies
in the open convex hull of the points (αn ,0,0), (0,

α
n ,0), (1,0,

n−α
n ), (0,1, n−αn ),

(1,1, 2n−αn ). Notice that each point (r,s, t) of the preceding five satisfies the equa-
tion r+ s = t+α/n, and thus any point (1/p1,1/p2,1/p) in the open convex hull
of these points also satisfies the equation 1/p1+1/p2 = 1/p+α/n. Moreover, the
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fact that 0< α < n implies that the determinant γ0 associated with any three initial
points among the five (αn ,0), (0,

α
n ), (1,0), (0,1), (1,1) is nonzero.

Finally, since 1/p≤ 1/p1+1/p2, Corollary 7.2.4 applies and yields that Iα maps
Lp1(Rn)×Lp1(Rn) to Lp(Rn) whenever 1< p1, p2 <∞, 1/p1+1/p2 = 1/p+α/n,
and 0< α < n.

7.2.4 Multilinear Complex Interpolation

Interpolation for analytic families of linear operators can be easily extended to the
case of multilinear operators.

We describe the setup for this theorem. A simple function is called finitely simple
if it is supported in a set of finite measure. Finitely simple functions are dense in
Lp(X ,μ) for 0 < p < ∞ whenever (X ,μ) is a σ -finite measure space. Let (Xk,μk),
k = 1, . . . ,m, and (Y,ν) be σ -finite measure spaces. Suppose that for every z in the
closed strip S= {z ∈C : 0≤ Rez≤ 1} there is an associated multilinear operator Tz
defined on the space of finitely simple functions on X1×·· ·×Xm and taking values
in the space of measurable functions on Y such that

∫

Y
|Tz(χA1 , . . . ,χAm)χB|dν < ∞ (7.2.44)

whenever Ak are subsets of finite measure of Xk and B of Y . The family {Tz}z is said
to be analytic if for all finitely simple functions fk on Xk and g on Y we have that the
mapping

z �→
∫

Y
Tz( f1, . . . , fm)gdν (7.2.45)

is analytic in the open strip S= {z∈C : 0<Rez< 1} and continuous on its closure.
The analytic family {Tz}z is of admissible growth if there is a constant τ0 with 0 ≤
τ0 < π such that for finitely simple functions fk on Xk and g on Y there is a constant
C( f ,g) such that

log
∣
∣
∣
∣

∫

Y
Tz( f1, . . . , fm)gdν

∣
∣
∣
∣
≤C( f1, . . . , fm,g)eτ0|Imz| (7.2.46)

for all z satisfying 0 ≤ Rez ≤ 1. Note that if there is τ0 ∈ (0,π) such that for
all measurable subsets Ak of Xk and B of Y of finite measure there is a constant
c(A1, . . . ,Am,B) such that

log
∣
∣
∣
∣

∫

B
Tz(χA1 , . . . ,χAm)dν

∣
∣
∣
∣
≤ c(A1, . . . ,Am,B)eτ0|Imz| , (7.2.47)

then (7.2.46) holds.
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Theorem 7.2.9. Let Tz be an analytic family of linear operators of admissible growth
defined on the m-fold product of spaces of finitely simple functions of σ -finite mea-
sure spaces (Xi,μi) and taking values in the set of measurable functions of another
σ -finite measure space (Y,ν). Let 1 ≤ p0,k, p1,k,q0,q1 ≤ ∞ for all 1 ≤ k ≤ m and
suppose that M0 and M1 are positive functions on the real line such that for some τ1
with 0≤ τ1 < π we have

sup
−∞<y<+∞

e−τ1|y| logMj(y)< ∞ (7.2.48)

for j = 0,1. Let 0< θ < 1 and for k ∈ {1, . . . ,m} define pk and q by

1
pk

=
1−θ
p0,k

+
θ
p1,k

and
1
q
=

1−θ
q0

+
θ
q1

. (7.2.49)

Suppose that for all finitely simple functions fk on Xk, k = 1,2, . . . ,m, we have
∥
∥Tiy( f1, . . . , fm)

∥
∥
Lq0 ≤M0(y)

∥
∥ f1
∥
∥
Lp0,1 · · ·

∥
∥ fm

∥
∥
Lp0,m , (7.2.50)

∥
∥T1+iy( f1, . . . , fm)

∥
∥
Lq1 ≤M1(y)

∥
∥ f1
∥
∥
Lp1,1 · · ·

∥
∥ fm

∥
∥
Lp1,m . (7.2.51)

Then for all finitely simple functions fk on Xk we have
∥
∥Tθ ( f1, . . . , fm)

∥
∥
Lq ≤M(θ)

∥
∥ f1
∥
∥
Lp1 · · ·

∥
∥ fm

∥
∥
Lpm (7.2.52)

where for 0< t < 1

M(t) = exp
{
sin(πt)

2

∫ ∞

−∞

[
logM0(y)

cosh(πy)−cos(πt)
+

logM1(y)
cosh(πy)+cos(πt)

]

dy
}

.

Moreover, when p1, . . . , pm <∞, the operator Tθ admits a unique bounded extension
from Lp1(X1,μ1)×·· ·×Lpm(Xm,μm) to Lq(Y,ν).

Note that in view of (7.2.48) and of the fact that 0≤ τ1 < π , the integral defining
M(t) converges absolutely.

To prove Theorem 7.2.9, we need the following lemma, whose proof can be found
in [156] (Lemma 1.3.8).

Lemma 7.2.10. Let F be analytic on the open strip S= {z ∈ C : 0< Re z< 1} and
continuous on its closure such that for some fixed A< ∞ and 0≤ τ0 < π we have

log |F(z)| ≤ Aeτ0|Im z| (7.2.53)

for all z ∈ S. Then

|F(t)| ≤ exp
{
sin(πt)

2

∫ ∞

−∞

[
log |F(iy)|

cosh(πy)−cos(πt)
+

log |F(1+ iy)|
cosh(πy)+cos(πt)

]

dy
}

whenever 0< t < 1.
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Assuming Lemma 7.2.10, we prove Theorem 7.2.9.

Proof. Fix 0< θ < 1 and finitely simple functions fk,g such that ‖ fk‖Lpk = ‖g‖Lq′ =
1 for all 1≤ k ≤ m. For 1≤ k ≤ m let

fk =
nk

∑
�=1

ak,�eiαk,�χAk,� and g=
n

∑
j=1

b jeiβ jχBj ,

where for each k, ak,� > 0, αk,� are real, Ak,� are pairwise disjoint subsets of Xk with
finite measure, b j > 0, β j are real, and Bj are pairwise disjoint subsets of Y with
finite measure. Let

Pk(z) =
pk
p0,k

(1− z)+
pk
p1,k

z and Q(z) =
q′

q′0
(1− z)+

q′

q′1
z (7.2.54)

and

fk,z =
nk

∑
�=1

aPk(z)k,� eiαk,�χAk,� , gz =
n

∑
j=1

bQ(z)j eiβ jχBj . (7.2.55)

Define
F(z) =

∫

Y
Tz( f1,z, . . . , fm,z)gz dν . (7.2.56)

Multilinearity gives that F(z) is equal to

n1

∑
�1=1

· · ·
nm

∑
�m=1

n

∑
j=1

aP1(z)1,�1
· · ·aPm(z)m,�m bQ(z)j eiα1,�1 · · ·eiαm,�m eiβ j

∫

Bj

Tz(χA1,�1 , . . . ,χAm,�m )dν ,

and conditions (7.2.44), together with the analyticity of {Tz}z, imply that F(z) is
a well-defined analytic function on the unit strip that extends continuously to its
boundary.

Since {Tz}z is a family of admissible growth, (7.2.47) implies that for some con-
stant c(A1,�1 , . . . ,Am,�m ,Bj) and τ0 ∈ (0,π) we have

log
∣
∣
∣
∣

∫

Bj

Tz(χA1,�1 , . . . ,χm,�m)dν
∣
∣
∣
∣
≤ c(A1,�1 , . . . ,Am,�m ,Bj)eτ0|Imz| .

Set c�1,...,�m, j = c(A1,�1 , . . . ,Am,�m ,Bj). The preceding inequalities, combined with

|aPk(z)k,� | ≤ a
pk
p0,k

+
pk
p1,k

k,� and |bQ(z)j | ≤ b
q′
q′0

+ q′
q′1

j

for all z with 0< Re z< 1, imply (7.2.53), with τ0 as in (7.2.47), and

A= A
(

m,n1, . . . ,nk,n,q′,q′0,q
′
1, pk, p0,k, p1,k,ak,�,b j,Ak,�,Bj

)

,
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which is a function of all the preceding parameters. Thus, F satisfies the hypotheses
of Lemma 7.2.10. Moreover, simple calculations show that (even when p0,k = ∞,
q0 = 1, p1,k = ∞, q1 = 1)

∥
∥ fk,iy

∥
∥
Lp0,k =

∥
∥ fk
∥
∥

pk
p0,k
Lpk = 1=

∥
∥g
∥
∥

q′
q′0
Lq′

=
∥
∥giy

∥
∥

Lq
′
0

(7.2.57)

∥
∥ fk,1+iy

∥
∥
Lp1,k =

∥
∥ fk
∥
∥

pk
p1,k
Lpk = 1=

∥
∥g
∥
∥

q′
q′1
Lq′

=
∥
∥g1+iy

∥
∥

Lq
′
1

(7.2.58)

when y∈R and 1≤ k≤m. Hölder’s inequality, (7.2.57), and the hypothesis (7.2.50)
now give

|F(iy)| ≤ ∥∥Tiy( f1,iy, . . . , fm,iy)
∥
∥
Lq0

∥
∥giy

∥
∥

Lq
′
0

≤M0(y)
∥
∥ f1,iy

∥
∥
Lp0,1 · · ·

∥
∥ fm,iy

∥
∥
Lp0,m

∥
∥giy

∥
∥

Lq
′
0

=M0(y)

for all y real. Similarly, (7.2.58) and (7.2.51) imply

|F(1+ iy)| ≤ ∥∥T1+iy( f1,1+iy, . . . , fm,1+iy)
∥
∥
Lq1

∥
∥giy

∥
∥

Lq
′
1

≤M1(y)
∥
∥ f1,1+iy

∥
∥
Lp1,1 · · ·

∥
∥ fm,1+iy

∥
∥
Lp1,m

∥
∥giy

∥
∥

Lq
′
1

=M1(y)

for all y ∈ R. These inequalities and the conclusion of Lemma 7.2.10 yield

|F(t)| ≤ exp
{
sin(πt)

2

∫ ∞

−∞

[
logM0(y)

cosh(πy)−cos(πt)
+

logM1(y)
cosh(πy)+cos(πt)

]

dy
}

for all 0< t < 1. But notice that

F(θ) =
∫

Y
Tθ ( f1, . . . , fm)gdν . (7.2.59)

Taking absolute values and the supremum over all finitely simple functions g on Y
with Lq

′
norm equal to one, we conclude the proof of (7.2.52) for finitely simple

functions fk with Lpk(Xk) norm one. �

Corollary 7.2.11. Let T be an m-linear operator defined on the m-fold product of
spaces of finitely simple functions of σ -finite measure spaces (Xi,μi) and taking
values in the set of measurable functions of another σ -finite measure space (Y,ν).
Let 1 ≤ p0,k, p1,k,q0,q1 ≤ ∞ for all 1 ≤ k ≤ m, 0 < θ < 1, and for k ∈ {1, . . . ,m}
define pk and q by (7.2.49). Suppose that for all finitely simple functions fk on Xk we
have

∥
∥T ( f1, . . . , fm)

∥
∥
Lq0 ≤M0

∥
∥ f1
∥
∥
Lp0,1 · · ·

∥
∥ fm

∥
∥
Lp0,m , (7.2.60)

∥
∥T ( f1, . . . , fm)

∥
∥
Lq1 ≤M1

∥
∥ f1
∥
∥
Lp1,1 · · ·

∥
∥ fm

∥
∥
Lp1,m . (7.2.61)
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Then for all finitely simple functions fk on Xk we have
∥
∥T ( f1, . . . , fm)

∥
∥
Lq ≤M1−θ

0 Mθ
1
∥
∥ f1
∥
∥
Lp1 · · ·

∥
∥ fm

∥
∥
Lpm . (7.2.62)

Moreover, when p1, . . . , pm <∞, the operator Tθ admits a unique bounded extension
from Lp1(X1,μ1)×·· ·×Lpm(Xm,μm) to Lq(Y,ν).
Proof. Take Tz = T in Theorem 7.2.9, and use Exercise 1.3.8 in [156]. �

7.2.5 Multilinear Interpolation between Adjoint Operators

In this subsection we discuss a result that allows one to interpolate from a single
estimate known for an operator and its adjoints. This theorem is useful in the setting
where there is no duality, such as when an operator maps into Lq for q < 1. For a
number q ∈ (0,∞) set q′ = q/(q−1) when q �= 1 and ∞′ = 1.

Theorem 7.2.12. Let 0< p< ∞, A,B> 0, and let f be a measurable function on a
σ -finite measure space (X ,μ).
(i) Suppose that ‖ f‖Lp,∞ ≤A. Then for every measurable set E of finite measure there
exists a measurable subset E ′ of E with μ(E ′)≥ μ(E)/2 such that f is bounded on
E ′ and

∣
∣
∣
∣

∫

E ′
f dμ

∣
∣
∣
∣
≤ 2

1
p Aμ(E)1−

1
p . (7.2.63)

(ii) Suppose that a measurable function f on X has the property that for any mea-
surable subset E of X, with μ(E) < ∞, there is a measurable subset E ′ of E, with
μ(E ′)≥ μ(E)/2, such that f is integrable on E ′ and

∣
∣
∣
∣

∫

E ′
f dμ

∣
∣
∣
∣
≤ Bμ(E)1−

1
p .

Then we have that

‖ f‖Lp,∞ ≤ B2
2
p+

3
2 . (7.2.64)

Proof. Define E ′ = E \ {| f | > A2
1
p μ(E)−

1
p }. Since the set {| f | > A2

1
p μ(E)−

1
p }

has measure at most μ(E)/2, it follows that μ(E ′) ≥ μ(E)/2. Obviously, (7.2.63)
holds for this choice of E ′. This proves (i).

To prove (ii), write X =
⋃∞

n=1Xn, with μ(Xn) < ∞. Given α > 0, note that the
measurable set

{| f |> α
}

is contained in
{

Re f > α√
2

}∪{Im f > α√
2

}∪{Re f <− α√
2

}∪{Im f <− α√
2

}

. (7.2.65)

Let En be any of the preceding four sets intersected with Xn. By hypothesis, there is
a measurable subset E ′

n of En with measure at least μ(En)/2. Then

α
2
√
2
μ(En)≤

∣
∣
∣
∣

∫

E ′
n

f dμ
∣
∣
∣
∣
≤ Bμ(En)

1− 1
p
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from which it follows that αμ(En)
1/p ≤ B2

√
2 since μ(En) < ∞. Letting n → ∞

we obtain that any of the four sets in (7.2.65) has measure bounded by (B2
√
2/α)p.

Summing, we deduce that μ({| f | > α}) is at most 4(B2
√
2/α)p and thus (7.2.64)

follows. �

Theorem 7.2.13. Let (X ,μ), (X1,μ1), . . . ,(Xm,μm) be σ -finite measure spaces. Sup-
pose that an m-linear operator T is defined on the space of simple functions on
X1×·· ·×Xm and takes values in the space of measurable functions defined on X.
Let 1< p1, . . . , pm, p< ∞ related by 1/p= 1/p1+ · · ·+1/pm. Assume that

sup
A0,A1,...,Am

1

μ(A0)
1
p′ μ1(A1)

1
p1 · · ·μm(Am)

1
pm

∣
∣
∣
∣

∫

A0
T (χA1 , . . . ,χAm)dμ

∣
∣
∣
∣
< ∞ , (7.2.66)

where the supremum is taken over all measurable subsets Ai of Xi with nonzero
finite measure. Suppose that for each j ∈ {0,1, . . . ,m}, T ∗ j is of restricted weak
type (1,1, . . . ,1/m) with constant B j. Then for every point (1/q1, . . . ,1/qm,1/q) on
the line segment that joins (1, . . . ,1,m) to (1/p1, . . . ,1/pm,1/p), there is a constant
Cq1,...,qm such that T is of restricted weak type (q1, . . . ,qm,q) with norm at most

Cq1,...,qm B
1
mq
0 B

1
mq′1
1 · · ·B

1
mq′m
m . (7.2.67)

Proof. First we prove the claim for (1/q1, . . . ,1/qm,1/q) = (1/p1, . . . ,1/pm,1/p).
Let M be the supremum in (7.2.66). For notational uniformity we set μ0 = μ .
Case 1: Suppose μ(A0)

m√B0
= max

{ μi(Ai)
m√Bi

, i = 0,1, . . . ,m
}

. Since T maps L1×·· ·×L1

to weak L1/m when restricted to characteristic functions, by Theorem 7.2.12 (i) there
exists a subset A′

0 of A0 of measure μ(A′
0)≥ 1

2μ(A0) such that
∣
∣
∣
∣

∫

A′0
T (χA1 , . . . ,χAm)dμ

∣
∣
∣
∣
≤CB0 μ1(A1) · · ·μm(Am)μ(A0)

1− 1
1/m

for some constant C. Then
∣
∣
∣
∣

∫

A0
T (χA1 , . . . ,χAm)dμ

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

A′0
T (χA1 , . . . ,χAm)dμ

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

A0\A′0
T (χA1 , . . . ,χAm)dμ

∣
∣
∣
∣

≤CB0 μ(A0)
1−mμ1(A1) · · ·μm(Am)+M

(1
2
μ(A0)

) 1
p′ μ1(A1)

1
p1 · · ·μm(Am)

1
pm

≤CB0 μ(A0)
1−mμ1(A1)

1
p1

( m
√
B1

m
√
B0

) 1
p′1 μ(A0)

1
p′1 · · ·μm(Am)

1
pm

(
m
√
Bm

m
√
B0

) 1
p′m μ(A0)

1
p′m

+M2−
1
p′ μ1(A1)

1
p1 · · ·μm(Am)

1
pm μ(A0)

1
p′

=

[

CB0

( m
√
B1

m
√
B0

) 1
p′1 · · ·

(
m
√
Bm

m
√
B0

) 1
p′m

+M2−
1
p′
]

μ1(A1)
1
p1 · · ·μm(Am)

1
pm μ(A0)

1
p′ ,
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since 1
p′1
+ · · ·+ 1

p′m
+1−m= 1

p′ . It follows that M must be less than or equal to

CB0

( m
√
B1

m
√
B0

) 1
p′1 · · ·

(
m
√
Bm

m
√
B0

) 1
p′m

+M2−
1
p′

and consequently

M ≤ C
1−2−1/p′ B

1
mp
0 B

1
mp′1
1 · · ·B

1
mp′m
m .

Case 2: Suppose that μ j(Aj)
m
√

Bj
=max

{ μi(Ai)
m√Bi

, i= 0,1, . . . ,m
}

for some j ∈ {1, . . . ,m}.
Here we use that T ∗ j maps L1×·· ·×L1 to weak L1/m when restricted to character-
istic functions.

For notational simplicity, in the following argument we take j = 1. Then there
exists a subset A′

1 of A1 of measure μ(A′
1)≥ 1

2μ(A1) such that
∣
∣
∣
∣

∫

A′1
T ∗1(χA0 ,χA2 , . . . ,χAm)dμ1

∣
∣
∣
∣
≤CB1 μ1(A1)

1−mμ(A0)μ2(A2) · · ·μm(Am)

for some constant C. Equivalently, we write this statement as
∣
∣
∣
∣

∫

A0
T (χA′1 ,χA2 , . . . ,χAm)dμ

∣
∣
∣
∣
≤CB1 μ1(A1)

1−mμ(A0)μ2(A2) · · ·μm(Am)

by the definition of the first dual operator T ∗1. Therefore, we obtain
∣
∣
∣
∣

∫

A0
T (χA1 ,χA2 , . . . ,χAm)dμ

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

A0
T (χA′1 ,χA2 , . . . ,χAm)dμ

∣
∣
∣
∣
+

∣
∣
∣
∣

∫

A0
T (χA1\A′1 ,χA2 , . . . ,χAm)dμ

∣
∣
∣
∣

≤CB1 μ1(A1)
1−mμ(A0)

m

∏
j=2

μ j(Aj)+M μ(A0)
1
p′
(1
2
μ1(A1)

) 1
p1

m

∏
j=2

μ j(Aj)
1
p j

≤CB1μ1(A1)
1−mμ(A0)

1
p′ μ1(A1)

1
p

(
m
√
B0

m
√
B1

) 1
p m

∏
j=2

μ j(Aj)
1
p j μ1(A1)

1
p′j
( m
√

Bj
m
√
B1

) 1
p′j

+M μ(A0)
1
p′ 2−

1
p1 μ1(A1)

1
p1

m

∏
j=2

μ j(Aj)
1
p j

=

[

CB1

(
m
√
B0

m
√
B1

) 1
p m

∏
j=2

( m
√

Bj
m
√
B1

) 1
p′j +M2−

1
p1

]

μ(A0)
1
p′

m

∏
j=1

μ j(Aj)
1
p j ,

since 1
p +

1
p′2
+ · · ·+ 1

p′m
+1−m= 1

p1
. By the definition of M, it follows that

M ≤ C
1−2−1/p1

B
1
mp
0 B

1
mp′1
1 · · ·B

1
mp′2
2 .
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The statement of the theorem follows with

Cp1,...,pm =Cmax
( 1
1−2−1/p1

, . . . ,
1

1−2−1/pm
,

1
1−2−1/p′

)

.

Now fix a point (1/q1, . . . ,1/qm,1/q) (for which we may have q≤ 1) on the line
segment that joins (1/p1, . . . ,1/pm,1/p) to (1, . . . ,1,m). We showed that T is of

restricted weak type (p1, . . . , pm, p) with constant Cp1,...,pm B
1/mp
0 B1/mp′1

1 · · ·B1/mp′m
m .

Using Exercise 7.2.1 we obtain that T is also of restricted weak type (q1, . . . ,qm,q)
with constant

(

Cp1,...,pm B
1
mp
0 B

1
mp′1
1 · · ·B

1
mp′m
m

)θ
B1−θ
0 (7.2.68)

for some 0< θ < 1, where 1/q j = 1−θ +θ/p j for all j = 1, . . . ,m. Since we have
1/p = 1/p1+ · · ·+1/pm and 1/q = 1/q1+ · · ·+1/qm, it follows that the constant
in (7.2.68) has the form claimed in (7.2.67). �

Remark 7.2.14. We note that condition (7.2.66) in Theorem 7.2.13 holds if μ and
μ j are equal to Lebesgue measure and T is an m-linear operator acting on func-
tions defined on Rn whose kernel K(x,y1, . . . ,ym) is bounded and supported in
{(x,y1, . . . ,ym) : |x− y1|, . . . , |x− ym| ≤ M} for some M > 0. Indeed, in this case
we control the absolute value of the integral in (7.2.66) via Hölder’s inequality by

|A0|
1
p′ ‖K‖L∞

(∫

Rn

[ m

∏
j=1

∫

|x−y j |≤M
χAj(y j)dy j

]p

dx
) 1

p

and applying Hölder’s inequality again and the fact that convolution with an L1

function preserves Lpj , p j > 1, the preceding expression is bounded by

|A0|
1
p′ ‖K‖L∞(vnM)m|A1|

1
p1 · · · |Am|

1
pm < ∞ .

Nevertheless, the bound in (7.2.67) is independent of ‖K‖L∞ and of the constant M.

Exercises

7.2.1. Suppose that an m-linear operator is of restricted weak type (p1, . . . , pm, p)
with constant B0 and of restricted weak type (q1, . . . ,qm,q) with constant B1 for
some 0 < pi,qi, p,q ≤ ∞. Show that for any θ ∈ [0,1] the operator is of restricted
weak type (r1, . . . ,rm,r) with constant at most B1−θ

0 Bθ1 , where

( 1
r1
, . . . ,

1
rm

,
1
r

)

= (1−θ)
( 1
p1

, . . . ,
1
pm

,
1
p

)

+θ
( 1
q1

, . . . ,
1
qm

,
1
q

)

.
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7.2.2. For α,β ∈ R\{0} with α �= β , consider the family of operators

Bα ,β ( f ,g)(x) =
∫

|t|≤1
f (x−αt)g(x−β t)dt

defined for Schwartz functions f ,g on Rn.
(a) Show that Bα ,β maps Lp×Lq → Lr when 1≤ p,q,r ≤ ∞ and 1/p+1/q= 1/r.
(b) Use Theorem 7.2.13 and the result in Example 7.1.2 to show that Bα ,β is of
restricted weak type (p,q,r) when 1< p,q<∞, 1/2< r< 1, and 1/p+1/q= 1/r.
(c) Apply Corollary 7.2.4 to conclude that Bα ,β maps Lp×Lq → Lr when 1/2< r<
1, 1< p,q< ∞, and 1/p+1/q= 1/r.

7.2.3. Suppose 0< s<∞, 1< p1, p2 <∞ and 2−1/s= 1/p1+1/p2−1/p. Assume
that a bilinear operator T defined on finitely simple functions of R×R has the
property that

sup
A0,A1,A2

|A0|−1/p′ |A1|−1/p1 |A2|−1/p2

∣
∣
∣
∣

∫

A0
T (χA1 ,χA2)(x)dx

∣
∣
∣
∣
< ∞

where the supremum is taken over all subsets subsets A0,A1,A2 of R of finite mea-
sure. Suppose that T , T ∗1, and T ∗2 are of restricted weak type (1,1,s)with constants
B0,B1,B2, respectively. Then there is a constantC(p1, p2, p,s) such that T is of weak

type (p1, p2, p) with norm at most C(p1, p2, p,s)B
s/p
0 Bs/p′1

1 Bs/p′2
2 .

7.2.4. Follow the steps below to prove Proposition 7.2.1.
(a) Fix 0< δ <min(1,q). Then for f ij in S

+
0 (Xj) we have

|T ( f 11 + · · ·+ f N1
1 , . . . , f 1m+ · · ·+ f Nm

m )|δ ≤
N1

∑
j1=1

· · ·
Nm

∑
jm=1

|T ( f j11 , . . . , f jmm )|δ .

(b) Show that for functions f j in S+0 (Xj) and Aj measurable subsets of Xj with finite
measure we have

∥
∥T ( f1χA1 , . . . , fmχAm)

∥
∥
Lq,∞ ≤ ( q

q−δ
) 1
δ (1−2−δ )−

1
δ M

m

∏
j=1

μ(Aj)
1
p j
∥
∥ f jχAj

∥
∥
L∞ .

(c) For each f j ∈ S+0 (Xj) find measurable sets Ak
j, k = −Nj, . . . ,Nj, such that

μ(Akj
j )≤ d f ( f ∗j (2k1+1))≤ 2k j+1 and that ‖ f jχ

A
k j
j
‖ ≤ f ∗j (2

k j).

(d) Prove that for functions f j ∈ S+0 (Xj) we have
∥
∥T ( f1, . . . , fm)

∥
∥
Lq,∞(Y ) ≤C′(p1, . . . , pm,q,δ )M‖ f1‖Lp1 ,δ (X1) · · ·‖ fm‖Lpm ,δ (Xm)

where

C′(p1, . . . , pm,q,δ ) =
( q
q−δ

) 2
δ (1−2−δ )−

1
δ (log2)−

m
δ 2

2
p1

+···+ 2
pm .
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(e) Express each f j in S0(Xj) as f j = f 1j − f 2j + i( f 3j − f 4j ), where f kj lies in S+0 (Xj)

and ‖ f ij‖Lp,δ (X) ≤ ‖ f j‖Lp,δ (X).
(f) Extend the result in part (d) to all f j ∈ S0(Xj).
[

Hint: Parts (b) and (d): Use the normability of Lq/δ ,∞ when q > δ . Parts (c), (e):
Use the idea of Lemma 1.4.20 in [156]. Part (f): Use sublinearity.

]

7.2.5. Suppose that μ is a nonnegative measure on R2n such that

|μ̂(ξ ,−ξ )|+ |μ̂(ξ ,0)|+ |μ̂(0,ξ )| ≤C0|ξ |−γ

for someC0 < ∞ and some γ satisfying 0< γ < n/2. Then the bilinear operator

T μ( f1, f2)(x) =
∫

Rn

∫

Rn
f1(x− y1) f2(x− y2)dμ(y1,y2)

maps Lp1(Rn)×Lp2(Rn) to Lp(Rn) when

1
p
=

1
p1

+
1
p2

− γ
n

and (1/p1,1/p2) lies in the closed hexagon with vertices

(n+2γ
2n

,
1
2

)

,
(n+2γ

2n
,0
)

,
(1
2
,
n+2γ
2n

)

,
(

0,
n+2γ
2n

)

,
(

0,
1
2

)

,
(1
2
,0
)

.

[

Hint: Consider first the point p1 = 2, p2 = 2n/(n+ 2γ), p = 1 and obtain the
remaining points by duality, symmetry, and Corollary 7.2.11.

]

7.2.6. Suppose that m is a bounded function on Rn and let Tm( f ) = ( f̂ m)∨ for
f ∈S (Rn).
(a) Show that if m= m1 ∗m2, then

‖Tm‖Lp→Lp ≤ ‖m1‖
L(

3
2−

1
p )

−1‖m2‖
L(

1
p− 1

2 )
−1 .

(b) Prove that for 1< p< 2 we have

‖Tm‖Lp→Lp ≤C(n, p,γ)‖(I−Δ)γ/2m‖
L(

1
p− 1

2 )
−1

whenever γ > n( 1p − 1
2 ).[

Hint: Part (a): Use Corollary 7.2.11 starting from ‖Tm‖L2→L2 ≤ ‖m1‖L1‖m2‖L∞ and
‖Tm‖L1→L1 ≤‖m1‖L2‖m2‖L2 . Part (b): Writem= Jγ ∗((I−Δ)γ/2m) and use part (a).

]
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7.3 Vector-valued Estimates and Multilinear Convolution
Operators

In this section we study basic properties of multilinear convolution operators or
translation invariant operators. A fundamental result in this section says that regu-
larizations of multilinear symbols are also multilinear symbols, a fact that requires
vector-valued extensions of multilinear operators.

7.3.1 Multilinear Vector-valued Inequalities

A classical result (Theorem 5.5.1 [156]) says that every linear operator that maps
Lp to Lq for some 0 < p,q < ∞ admits an �2-bounded extension. Here we discuss
a version of this theorem in the multilinear setting defined on Lebesgue spaces of
general measure spaces.

Theorem 7.3.1. Let (Xj,μ j), (Y,ν) be σ -finite measure spaces.
(a) Let T be an m-linear operator that maps

Lp1(X1,μ1)×·· ·×Lpm(Xm,μm)→ Lq(Y,ν)

for some 0 < p1, p2, . . . , pm,q < ∞ with norm ‖T‖. Then there is a constant C =
C(m, p1, . . . , pm,q) such that for all sequences { f kj }k∈Z in Lp j(Xj), 1≤ j ≤ m, we
have
∥
∥
∥

(

∑
k1∈Z

· · · ∑
km∈Z

|T ( f k11 , . . . , f kmm )|2)12
∥
∥
∥
Lq

≤C‖T‖
m

∏
j=1

∥
∥
∥

(

∑
k∈Z

| f kj |2
)1
2
∥
∥
∥
Lp j

. (7.3.1)

(b) Suppose that an m-linear operator T maps Lp1(X1,μ1)× ·· ·×Lpm(Xm,μm) to
Lq,∞(Y,ν) for some 0 < p1, p2, . . . , pm,q < ∞ with norm ‖T‖w. Then T has an �2-
valued extension, i.e., for all sequences { f kj }k∈Z it satisfies

∥
∥
∥

(

∑
k1∈Z

· · · ∑
km∈Z

|T ( f k11 , . . . , f kmm )|2)12
∥
∥
∥
Lq,∞

≤C′ ‖T‖w
m

∏
j=1

∥
∥
∥

(

∑
k∈Z

| f kj |2
)1
2
∥
∥
∥
Lp j

(7.3.2)

for some constant C′ =C′(m, p1, . . . , pm,q).

Proof. To prove the inequality in part (a), we recall the Rademacher functions r j
that satisfy the following inequality:

Bm
q

(

∑
k1

· · ·∑
km

|ck1,...,km |2
) 1

2
≤ ∥∥Fm

∥
∥
Lq([0,1]m) ≤Dm

q

(

∑
k1

· · ·∑
km

|ck1,...,km |2
) 1

2
, (7.3.3)
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where 0< q< ∞, 0< Dq,Bq < ∞, ck1,...,kn is a sequence of complex numbers, and

Fm(t1, . . . , tm) = ∑
k1∈Z

· · · ∑
km∈Z

ck1,...,kmrk1(t1) · · ·rkm(tm),

for t j ∈ [0,1]; see Appendix C.5 in [156].
We define p by setting 1/p = 1/p1+ · · ·+ 1/pm, and we consider two cases as

follows.

Case 1: q ≤ p. In this case we fix a positive integer N. Using both estimates in
(7.3.3) and the multilinearity of T we obtain

∥
∥
∥

(

∑
|k1|≤N

· · · ∑
|km|≤N

|T ( f k11 , . . . , f kmm )|2
)1

2
∥
∥
∥

q

Lq

≤ B−qm
q

∫

Y

∫

[0,1]m

∣
∣
∣ ∑
|k1|≤N

· · · ∑
|km|≤N

T ( f k11 , . . . , f kmm )rk1(t1) . . .rkm(tm)
∣
∣
∣

q
dt1 · · ·dtm dν

≤ B−qm
q

∫

[0,1]m

∫

Y

∣
∣
∣T
(

∑
|k1|≤N

rk1(t1) f
k1
1 , . . . , ∑

|km|≤N
rkm(tm) f

km
m

)∣
∣
∣

q
dν dt1 · · ·dtm

≤ B−qm
q ‖T‖q

∫

[0,1]m

m

∏
j=1

∥
∥
∥ ∑
|k j |≤N

rk j(t j) f
k j
j

∥
∥
∥

q

Lp j (Xj)
dt1 · · ·dtm

≤ B−qm
q ‖T‖q

m

∏
j=1

(∫ 1

0

∥
∥
∥ ∑
|k j |≤N

rk j(t j) f
k j
j

∥
∥
∥

p j

Lp j (Xj)
dt j

) q
p j

≤ B−qm
q ‖T‖q

m

∏
j=1

(

D
pj
p j

∥
∥
∥

(

∑
|k j |≤N

| f k jj |2
)1

2
∥
∥
∥

p j

Lp j (Xj)

) q
p j

≤ B−qm
q Dq

p1 · · ·Dq
pm ‖T‖q

m

∏
j=1

∥
∥
∥

(

∑
k j∈Z

| f k jj |2
)1

2
∥
∥
∥

q

Lp j (Xj)

where we used the fact that p j ≥ p≥ q in Hölder’s inequality in the fourth inequality
above. Letting N → ∞ yields the required conclusion in Case 1, with constant C =
B−m
q Dp1 · · ·Dpm .

Case 2: p< q. Using duality we can write

∥
∥
∥

(

∑
k1∈Z

· · · ∑
km∈Z

|T ( f k11 , . . . , f kmm )|2
)1

2
∥
∥
∥
Lq

= sup
‖g‖

L(q/p)
′ ≤1

(∫

Y

(

∑
k1∈Z

· · · ∑
km∈Z

|T ( f k11 , . . . , f kmm )|2
) p

2 |g|dν
)1

p
(7.3.4)
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and we define an m-linear operator Tg by setting

Tg( f1, . . . , fm) = |g| 1p T ( f1, . . . , fm)

for some fixed function g in L(q/p)
′
with norm at most 1. We can easily verify that

Tg is bounded from Lp1 ×·· ·×Lpm into Lp with norm at most ‖T‖. Indeed, for all
‖ f j‖Lp j ≤ 1, we have

∥
∥Tg( f1, . . . , fm)

∥
∥
Lp =

{∫

Y
|g| |T ( f1, . . . , fm)|pdν

}1
p

≤ ‖g‖
L(

q
p )

′
∥
∥|T ( f1, . . . , fm)|p

∥
∥

1
p

L
q
p

≤ ‖T‖

since ‖g‖L(q/p)′ ≤ 1. In view of the result of Case 1 applied to Tg, we have

{∫

Y

(

∑
k1∈Z

· · · ∑
km∈Z

|T ( f k11 , . . . , f kmm )|2
)p

2 |g|dν
}1

p

≤Cpj ,q,m‖T‖
m

∏
j=1

∥
∥
∥

(

∑
k∈Z

| f kj |2
)1

2
∥
∥
∥
Lp j

,

and this estimate, combined with (7.3.4), gives (7.3.1) in Case 2.
Part (b). We recall the following well-known characterization of weak Lq (Exer-

cise 1.1.12 in [156]), which holds for σ -finite measure spaces:

‖ f‖Lq,∞ ≤ sup
0<ν(E)<∞

ν(E)
1
q− 1

r

(∫

E
| f |r dν

)1
r

≤
( q
q− r

)1
r ‖ f‖Lq,∞ , (7.3.5)

where 0 < r < q. For a measurable set E with finite measure we define an operator
TE( f1, . . . , fm) = χE T ( f1, . . . , fm). Using (7.3.5) we obtain

∥
∥
∥

(

∑
k1∈Z

· · · ∑
km∈Z

|T ( f k11 , . . . , f kmm )|2
)1

2
∥
∥
∥
Lq,∞(ν)

≤ sup
0<ν(E)<∞

ν(E)
1
q− 1

r

(∫

E

(

∑
k1∈Z

· · · ∑
km∈Z

|T ( f k11 , . . . , f kmm )|2
)r

2
dν
)1

r

= sup
0<ν(E)<∞

ν(E)
1
q− 1

r

(∫

Y

(

∑
k1∈Z

· · · ∑
km∈Z

|χE T ( f k11 , . . . , f kmm )|2
)r

2
dν
)1

r

≤ sup
0<ν(E)<∞

ν(E)
1
q− 1

r ‖TE‖Lp1×···×Lpm→Lr
m

∏
j=1

(∫

Xj

(

∑
k∈Z

| f kj |2
)p j

2
dμ j

) 1
p j
, (7.3.6)
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where we used the result in part (a). But since for all m-tuples of functions
( f1, . . . , fm) ∈ Lp1 ×·· ·×Lpm we have

ν(E)
1
q− 1

r ‖TE( f1, . . . , fm)‖Lr ≤
( q
q− r

)1
r ‖T ( f1, . . . , fm)‖Lq,∞

≤
( q
q− r

)1
r ‖T‖w

m

∏
j=1

‖ f j‖Lp j ,

it follows that for any measurable set E of finite measure the estimate

ν(E)
1
q− 1

r ‖TE‖Lp1×···×Lpm→Lr ≤
( q
q− r

)1
r ‖T‖w (7.3.7)

is valid. Now returning to (7.3.6) and using (7.3.7) we obtain (7.3.2). �

7.3.2 Multilinear Convolution and Multiplier Operators

For h ∈ Rn, let τh( f )(x) = f (x− h) be the translation by h. Recall that S (Rn)
denotes the space of Schwartz functions on Rn and S ′(Rn) the space of tempered
distributions. We say that a multilinear operator T from S (Rn)×·· ·×S (Rn)→
S ′(Rn) commutes with simultaneous translations, or that it is translation invariant,
if for all f1, . . . , fm ∈S (Rn) and all h ∈ Rn we have

τh(T ( f1, . . . , fm)) = T (τh f1, . . . ,τh fm). (7.3.8)

When m = 1, bounded operators from Lp to Lq that commute with translations are
exactly the convolution operators (Theorem 2.5.2 in [156]), i.e., they have the form

T f (x) = ( f ∗K)(x)

for some tempered distribution K on Rn. These operators play a very important role
in linear analysis and it is quite natural to introduce their multilinear extensions.

Definition 7.3.2. For a given K0 inS ′((Rn)m), let T be a multilinear operator from
S (Rn)×·· ·×S (Rn) toS ′(Rn) that satisfies, for all ψ1, . . . ,ψm inS (Rn),

T (ψ1, . . . ,ψm)(x) =
(

(ψ1⊗·· ·⊗ψm)�K0
)

(x, . . . ,x), (7.3.9)

where � denotes convolution on (Rn)m, and recall that

(ψ1⊗·· ·⊗ψm)(y1, . . . ,ym) = ψ1(y1) . . .ψm(ym)

for all y1, . . . ,ym ∈ Rn. Then we say that T is an m-linear convolution operator.
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Notice that m-linear convolution operators commute with simultaneous transla-
tions. In this chapter we investigate when such operators admit bounded extensions
from Lp1(Rn)×·· ·×Lpm(Rn) into Lp(Rn) for some indices p1, . . . , pm, p.

For ξk ∈Rn we introduce the notation �ξ = (ξ1, . . . ,ξm) for a vector in (Rn)m and
we denote by d�ξ = dξ1 · · ·dξm the combined differential of all variables.

A multilinear convolution or translation-invariant operator can be written in the
form

T ( f1, . . . , fm)(x) =
∫

(Rn)m
K0(x− y1, . . . ,x− ym) f1(y1) · · · fm(ym)d�y, (7.3.10)

where K0 is a function on (Rn)m or a tempered distribution, in which case the inte-
gral in (7.3.10) is interpreted in the sense of distributions. Let σ be the distributional
Fourier transform of K0. If σ is a function, i.e., a locally integrable function such
that there are R,N,C > 0 so that

|σ(�ξ )| ≤C(1+ |�ξ |)N (7.3.11)

for all |�ξ |> R, then the operator in (7.3.10) can also be expressed in the form

Tσ ( f1, . . . , fm)(x) =
∫

(Rn)m
σ(�ξ ) f̂1(ξ1) · · · f̂m(ξm)e2πix·(ξ1+···+ξm)d�ξ . (7.3.12)

Definition 7.3.3. Fix 0< p1, . . . , pm ≤ ∞ and 0< p< ∞ satisfying

1
p1

+ · · ·+ 1
pm

=
1
p
. (7.3.13)

A locally integrable function σ defined on (Rn)m that satisfies (7.3.11) is called a
(p1, . . . , pm, p) multilinear multiplier if the associated operator Tσ given by (7.3.12)
extends to a bounded operator from Lp1(Rn)×·· ·×Lpm(Rn) to Lp(Rn). The func-
tion σ is also called the multilinear symbol of Tσ . We denote by Mp1,...,pm(R

n), or
simply by Mp1,...,pm , the space of all (p1, . . . , pm, p) multilinear multipliers on Rn,
and we define the quasi-norm of σ in Mp1,...,pm(R

n) as the quasi-norm of Tσ from
Lp1 ×·· ·×Lpm into Lp, i.e.,

‖σ‖Mp1 ,...,pm
= ‖Tσ‖Lp1×···×Lpm→Lp .

Thus if a multilinear convolution operator is bounded from Lp1 × ·· · × Lpm to
Lp for some indices related as in Hölder’s inequality, then we call it a multilinear
multiplier operator and we call its symbol a multilinear multiplier. We have the
following list of basic properties of multilinear multipliers.

Proposition 7.3.4. Let 0< p1, . . . , pm ≤∞. Then the following statements are valid:

(i) If λ ∈ C, σ ,σ1 and σ2 are inMp1,...,pm , then so are λσ and σ1+σ2, and

‖λσ‖Mp1 ,...,pm
= |λ |‖σ‖Mp1 ,...,pm

,
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‖σ1+σ2‖Mp1 ,...,pm
≤Cp

(‖σ1‖Mp1,...,pm
+‖σ2‖Mp1,...,pm

)

.

(ii) If σ(�ξ ) ∈Mp1,...,pm and�a ∈ Rn, then σ(�ξ +�a) is inMp1,...,pm and

‖σ‖Mp1 ,...,pm
= ‖σ(·+�a)‖Mp1,...,pm

.

(iii) If σ(�ξ ) ∈Mp1,...,pm and δ > 0, then σ(δ�ξ ) is inMp1,...,pm and

‖σ‖Mp1 ,...,pm
= ‖σ(δ (·))‖Mp1,...,pm

.

(iv) If σ(ξ1, . . . ,ξm) ∈Mp1,...,pm and A is an orthogonal matrix in Rn, then
σ(Aξ1, . . . ,Aξm) is inMp1,...,pm with the same quasi-norm.

(v) Let σ j be a sequence of functions in Mp1,...,pm such that ‖σ j‖Mp1,...,pm
≤C for

all j = 1,2, . . . . If σ j are uniformly bounded and they converge pointwise to σ
a.e. as j→ ∞, then σ is inMp1,...,pm with quasi-norm bounded by C.

Proof. Item (i) is trivial while (ii)-(iv) are proved by a straightforward change of
variables: translation, dilation, and rotation. Item (v) easily follows by applying Fa-
tou’s lemma on Lp (where p is related to p1, . . . , pm via (7.3.13)) since

Tσ ( f1, . . . , fm)(x) = lim
j→∞

Tσ j( f1, . . . , fm)(x)

for all x ∈ Rn and all fk ∈S (Rn). �

7.3.3 Regularizations of Multilinear Symbols and Consequences

Next we show that certain regularizations of the symbols σ of operators Tσ preserve
boundedness. Recall that � denotes convolution on (Rn)m.

Theorem 7.3.5. Let 0< p1, . . . , pm < ∞ and 0< p< ∞, and let σ be a locally inte-
grable function defined on (Rn)m that satisfies (7.3.11) for some N ≥ 0. If N = 0, sup-
pose that ϕ lies in L1(Rn), and if N > 0, suppose that |ϕ(ξ )| ≤C′(1+ |ξ |)−N−n−1

for all ξ ∈ Rn, so that (ϕ ⊗ ·· ·⊗ϕ) �σ is well defined. Assume that the multilin-
ear convolution operator Tσ associated with σ maps Lp1 × ·· · × Lpm → Lp. Then
T(ϕ⊗···⊗ϕ)�σ is also bounded and satisfies

∥
∥T(ϕ⊗···⊗ϕ)�σ

∥
∥
Lp1×···×Lpm→Lp ≤Cm,p1,...,pm,p

∥
∥ϕ
∥
∥m
L1
∥
∥Tσ

∥
∥
Lp1×···×Lpm→Lp

for some constant Cm,p1,...,pm,p.

Proof. Let us denote byMb( f )(x) = e2πib·x f (x) the modulation operator acting on a
function f . For functions f1, . . . , fm ∈S (Rn), an easy calculation based on a change
of variables gives that for all x in Rn we have



7.3 Vector-valued Estimates and Multilinear Convolution Operators 529

T(ϕ⊗···⊗ϕ)�σ ( f1, . . . , fm)(x)

=
∫

Rn
· · ·
∫

Rn
ϕ(y1) · · ·ϕ(ym)Tσ

(

M−y1( f1), . . . ,M−ym( fm)
)

(x)e2πix·(y1+···+ym) d�y ,

from which it follows that

|T(ϕ⊗···⊗ϕ)�σ ( f1, . . . , fm)(x)| ≤ S( f1, . . . , fm)(x) ,

where

S( f1, . . . , fm)(x) (7.3.14)

=

∫

Rn
· · ·
∫

Rn
|ϕ(y1)| · · · |ϕ(ym)|

∣
∣Tσ
(

M−y1( f1), . . . ,M−ym( fm)
)

(x)
∣
∣d�y .

In view of this fact, the conclusion follows when p ≥ 1 by applying Minkowski’s
integral inequality since Lp is a normed space in this case. We may therefore focus
our attention on the case p< 1.

We first assume that ϕ is supported in a compact cube [−K,K]n. For every x∈Rn

we define a function

Fx(y1, . . . ,ym) = Tσ
(

M−y1( f1), . . . ,M−ym( fm)
)

(x) .

Then for any �y = (y1,y2, . . . ,ym) and �z = (z1,y2, . . . ,ym), with z1,y1y2, . . . ,ym in
[−K,K]n, there is a Ξy1,z1 on the line segment joining y1 to z1 such that

∣
∣Fx(�y)−Fx(�z)

∣
∣ ≤

∫

(Rn)m
|σ(�ξ )| ∣∣ f̂1(ξ1+ y1)− f̂1(ξ1+ z1)

∣
∣∏
l �=1

| f̂l(ξl + yl)|d�ξ

≤ |y1− z1|
∫

(Rn)m
|σ(�ξ )| ∣∣∇ f̂1(ξ1+Ξy1,z1)

∣
∣∏
l �=1

| f̂l(ξl + yl)|d�ξ

≤ |y1− z1|
∫

(Rn)m

Cn,M,K |σ(�ξ )|
(2
√
nK+ |ξ1+Ξy1,z1 |)M ∏l �=1

| f̂l(ξl + yl)|d�ξ

≤ |y1− z1|
∫

(Rn)m
|σ(�ξ )| Cn,M,K

(
√
nK+ |ξ1|)M ∏l �=1

| f̂l(ξl + yl)|d�ξ ,

and this expression can be made arbitrarily small uniformly in y1, . . . ,ym,z1 in
[−K,K]n, as long as y1 and z1 are close to each other. Analogous estimates hold
when�y and�z are different only in the jth coordinate for some j in {2, . . . ,m}.

Fix k ∈ Z+. By a compactness argument, there are pairwise disjoint subcubes
V1, . . . ,VLk of [−K,K]n whose union is [−K,K]n such that if c� is the center of V�,
then for all �1, . . . , �m in {1, . . . ,Lk} we have
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sup
x∈Rn

sup
y1∈V�1

sup
yi∈Rn

i≥2

∣
∣Fx(y1,y2, . . . ,ym)−Fx(c�1 ,y2, . . . ,ym)

∣
∣<

1
k

(7.3.15)

sup
x∈Rn

sup
y2∈V�2

sup
yi∈Rn

i≥3

∣
∣Fx(c�1 ,y2, . . . ,ym)−Fx(c�1 ,c�2 ,y3, . . . ,ym)

∣
∣<

1
k

(7.3.16)

...

sup
x∈Rn

sup
ym−1∈V�m−1

sup
ym∈Rn

∣
∣Fx(c�1 , . . . ,c�m−2 ,ym−1,ym)−Fx(c�1 ,c�2 , . . . ,c�m−1 ,ym)

∣
∣<

1
k

sup
x∈Rn

sup
ym∈V�m

∣
∣Fx(c�1 , . . . ,c�m−1 ,ym)−Fx(c�1 ,c�2 , . . . ,c�m)

∣
∣<

1
k
.

We find the V� in the following order. First we find cubes so that (7.3.15) holds, then
each of these cubes is partitioned into subcubes so that (7.3.16) holds, and so on.

Then for every y1 ∈ [−K,K]n there is a unique cube V� such that y1 lies in V�. It
follows from (7.3.14) that

S( f1, . . . , fm)(x)

≤ ‖ϕ‖mL1
k

+
Lk

∑
�1=1

λ�1
∫

Rn
· · ·
∫

Rn
︸ ︷︷ ︸

m−1 times

m

∏
i=2

|ϕ(yi)|
∣
∣Fx(c�1 ,y2, . . . ,ym)

∣
∣dy2 · · ·dym ,

where λ� =
∫

V�
|ϕ(t)|dt. Applying the same argument to the remaining variables

y2, . . . ,ym we deduce that

S( f1, . . . , fm)(x)≤
m‖ϕ‖mL1

k
+

Lk

∑
�1=1

· · ·
Lk

∑
�m=1

λ�1 · · ·λ�m
∣
∣Fx(c�1 , . . . ,c�m)

∣
∣ .

Setting

B=
( Lk

∑
�1=1

· · ·
Lk

∑
�m=1

|λ�1 · · ·λ�m |
) 1

2
=
(‖ϕ‖mL1

) 1
2 ,

we obtain that

S( f1, . . . , fm)(x)

≤ liminf
k→∞

Lk

∑
�1=1

· · ·
Lk

∑
�m=1

λ�1 · · ·λ�m
∣
∣Tσ
(

M−c�1 ( f1), . . . ,M−c�m ( fm)
)

(x)
∣
∣

≤ liminf
k→∞

B
{ Lk

∑
�1=1

· · ·
Lk

∑
�m=1

∣
∣[λ�1 · · ·λ�m ]

1
2 Tσ

(

M−c�1 ( f1), . . . ,M−c�m ( fm)
)

(x)
∣
∣2
}1

2
,

where in the last step we used the Cauchy-Schwarz inequality.
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It follows from Fatou’s lemma that
∥
∥S( f1, . . . , fm)

∥
∥
Lp

≤ ∥∥ϕ∥∥
m
2
L1 liminf

k→∞

∥
∥
∥
∥

{ Lk

∑
�1=1

· · ·
Lk

∑
�m=1

∣
∣Tσ
(

λ
1
2
�1
M−c�1( f1), . . . ,λ

1
2
�m
M−c�m( fm)

)∣
∣2
}1

2
∥
∥
∥
∥
Lp

and applying Theorem 7.3.1 we obtain that the preceding expression is bounded by

∥
∥ϕ
∥
∥

m
2
L1Cm,p1,...,pm,p

∥
∥Tσ

∥
∥
Lp1×···×Lpm→Lp liminf

k→∞

m

∏
j=1

∥
∥
∥
∥

{ Lk

∑
� j=1

∣
∣λ

1
2
� j
M−c� j ( f j)

∣
∣2
}1

2
∥
∥
∥
∥
Lp j

.

This is in turn bounded by

∥
∥ϕ
∥
∥

m
2
L1Cm,p1,...,pm,p

∥
∥Tσ

∥
∥
Lp1×···×Lpm→Lp liminf

k→∞

m

∏
j=1

∥
∥| f j|

(
Lk

∑
� j=1

λ� j
)1
2
∥
∥
Lp j

≤ ∥∥ϕ∥∥mL1Cm,p1,...,pm,p
∥
∥Tσ

∥
∥
Lp1×···×Lpm→Lp

m

∏
j=1

∥
∥ f j
∥
∥
Lp j .

This was the required conclusion. To dispose of the assumption that ϕ is compactly
supported, we set ϕK = ϕχ[−K,K]n and

SK( f1, . . . , fm)(x)

=
∫

Rn
· · ·
∫

Rn
|ϕK(y1)| · · · |ϕK(ym)|

∣
∣Tσ
(

M−y1( f1), . . . ,M−ym( fm)
)

(x)
∣
∣d�y .

The preceding argument shows that

∥
∥SK( f1, . . . , fm)

∥
∥
Lp ≤Cm,p1,...,pm,p

∥
∥ϕK∥∥m

L1
∥
∥Tσ

∥
∥
Lp1×···×Lpm→Lp

m

∏
j=1

∥
∥ f j
∥
∥
Lp j ,

so letting K → ∞ and using the Lebesgue monotone theorem, we obtain the conclu-
sion for a general function ϕ in L1(Rn) that satisfies |ϕ(ξ )| ≤ C′(1+ |ξ |)−N−n−1

when N > 0 [if N = 0 in (7.3.11), then no extra assumption on ϕ is required.] This
assumption is needed so that (ϕ⊗·· ·⊗ϕ)�σ is well defined. �

When m= 1, elements of Mp (1< p< ∞) are necessarily elements of M2, and
thus they are automatically bounded. We obtain a similar result when m≥ 2.

Proposition 7.3.6. Given 0< p1, . . . , pm < ∞, we have that Mp1,...,pm embeds in L∞

and there is a constant C′
p1,...,pm such that for all σ ∈Mp1,...,pm we have

∥
∥σ
∥
∥
L∞ ≤C′

p1,...,pm

∥
∥σ
∥
∥
Mp1,...,pm

. (7.3.17)
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Proof. Suppose first that σ is continuous. For fixed �a ∈ (Rn)m and f1, . . . , fm in
S (Rn) we have that

∫

(Rn)m
f̂1(ξ1) · · · f̂m(ξm)σ(�a+ 1

k
�ξ )e2πix·(ξ1+···+ξm)d�ξ

converges to σ(�a) f1(x) · · · fm(x) as k→∞. Moreover, the functions σ(�a+ 1
k
�ξ ) have

the sameMp1,...,pm quasi-norm for all�a∈ (Rn)m and k ∈Z+. Fatou’s lemma and the
fact that σ is inMp1,...,pm give that

|σ(�a)|‖ f1 · · · fm‖Lp ≤
∥
∥σ
∥
∥
Mp1,...,pm

‖ f1‖Lp1 · · ·‖ fm‖Lpm ,

where p is defined via (7.3.13). We now choose f j(x) = e
−π 1

p j
|x|2

, j = 1, . . . ,m and
use (7.3.13) to obtain that

|σ(�a)| ≤ ∥∥σ∥∥
Mp1,...,pm

for all�a in (Rn)m. This proves (7.3.17) when σ is continuous.
If σ is not continuous, we let ϕ = 1

vn
χB(0,1) and define σε = Φε � σ , where

Φε(�y) = ε−mnΦ(�y/ε) and Φ = ϕ ⊗ ·· ·⊗ϕ . Note that the convolution is well de-
fined since σ is assumed to satisfy (7.3.11) and Φε has compact support. Moreover,
if �ξ lies in the ball of radius M centered at�0, then in the convolution

(Φε �σ)(�y) =
∫

Rn
· · ·
∫

Rn
Φε(ξ1− y1) · · ·Φε(ξm− ym)σ(y1, . . . ,ym)d�y

the vector�y is restricted to the compact set B(0,M+ ε)m on which σ(�y) is bounded
by (1+mε+mM)N . Then we have the convolution of an integrable function with a
bounded one. This produces a continuous function when �ξ lies in the ball of radius
M centered at �0, and since M was arbitrary, Φε �σ is continuous everywhere. It
follows from Theorem 7.3.5 that

∥
∥σε

∥
∥
Mp1,...,pm

≤C′
m,p1,...,pm

∥
∥ϕε

∥
∥m
L1
∥
∥σ
∥
∥
Mp1,...,pm

=C′
m,p1,...,pm

∥
∥σ
∥
∥
Mp1,...,pm

.

The continuous case applied to σε implies that

|σε(�a)| ≤C′
m,p1,...,pm

∥
∥σ
∥
∥
Mp1,...,pm

uniformly in ε > 0. Letting ε → 0 and using the fact that σε → σ a.e. (Corollary
2.1.16 in [156]) we deduce (7.3.17). �

Next we have the following relationship between indices for bounded operators
of the form Tσ .

Proposition 7.3.7. Let σ be a locally integrable function defined on (Rn)m that sat-
isfies (7.3.11). Suppose that the multilinear convolution operator Tσ is nonzero and
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maps the m-fold product Lp1 ×·· ·×Lpm to Lp, where 0 < p1, . . . , pm, p < ∞. Then
the following relationship is valid:

1
p
≤ 1

p1
+ · · ·+ 1

pm
. (7.3.18)

Proof. Assume first that the kernel K0 of Tσ is supported in B(0,M)
m
. Fix f1, . . . , fm

in C ∞
0 (Rn), and suppose that all f j are supported in B(0,M′). Then

Tσ ( f1+ τh f1, . . . , fm+ τh fm) = Tσ ( f1, . . . , fm)+Tσ (τh f1, . . . ,τh fm)

= Tσ ( f1, . . . , fm)+ τh(Tσ ( f1, . . . , fm))

for |h| > 2M+ 2M′, since all the remaining terms vanish by an easy calculation.
Taking Lp quasi-norms, letting h tend to infinity, and using the fact that for g in
Lp(Rn) we have ‖τhg+g‖Lp → 21/p‖g‖Lp (Exercise 2.5.1 in [156]), we obtain

2
1
p ‖Tσ ( f1, . . . , fm)‖Lp ≤ 2

1
p1

+···+ 1
pm ‖Tσ‖‖ f1‖Lp1 · · ·‖ fm‖Lpm .

This implies (7.3.18) since Tσ is a nonzero operator.
If the kernel K0 of Tσ is not necessarily compactly supported, then we pick a

Schwartz function ϕ on Rn with integral 1 whose inverse Fourier transform has
compact support and define σ0 = (ϕ ⊗·· ·⊗ϕ) �σ . Then σ0 has a compactly sup-
ported inverse Fourier transform, and it follows from Theorem 7.3.5 that Tσ0 is also
bounded from Lp1 ×·· ·×Lpm to Lp. But Tσ0 has a compactly supported kernel, and
the preceding case yields the validity of (7.3.18). �

We conclude that the relationship (7.3.18) is the natural one for bounded m-linear
convolution operators from Lp1 ×·· ·×Lpm to Lp.

Proposition 7.3.8. Let 0< p1, . . . , pm, p<∞ be indices that satisfy (7.3.13). Then the
spaces Mp1,...,pm(R

n) are complete, and thus they are Banach spaces when p ≥ 1
and quasi-Banach spaces when p< 1.

Proof. Let {σ j} j∈Z+ be a Cauchy sequence in Mp1,...,pm . Then there is a constant
C0 such that sup j∈Z+ ‖σ j‖Mp1,...,pm

≤ C0. Since Mp1,...,pm embeds in L∞, the se-
quence σ j is Cauchy in L∞, and thus it converges to a σ in the L∞ sense. Clearly,
for f1, . . . , fm in S (Rn) we have that Tσ j( f1, . . . , fm)→ Tσ ( f1, . . . , fm) pointwise as
j→ ∞; then using Fatou’s lemma used below we obtain

∫

Rn
|Tσ ( f1, . . . , fm)|p dx =

∫

Rn
liminf
j→∞

|Tσ j( f1, . . . , fm)|p dx

≤ liminf
j→∞

∫

Rn
|Tσ j( f1, . . . , fm)|p dx

≤ liminf
j→∞

∥
∥σ j

∥
∥p
Mp1,...,pm

∥
∥ f1
∥
∥p
Lp1 · · ·

∥
∥ fm

∥
∥p
Lpm

≤Cp
0

∥
∥ f1
∥
∥p
Lp1 · · ·

∥
∥ fm

∥
∥p
Lpm ,



534 7 Multilinear Harmonic Analysis

which implies that σ ∈Mp1,...,pm . This argument shows that if σ j ∈Mp1,...,pm and
σ j → σ uniformly, then σ is inMp1,...,pm and satisfies

∥
∥σ
∥
∥
Mp1,...,pm

≤ liminf
j→∞

∥
∥σ j

∥
∥
Mp1,...,pm

.

Apply this inequality to σk −σ j in place of σ j and σk −σ in place of σ for some
fixed k. We obtain

∥
∥σk−σ

∥
∥
Mp1,...,pm

≤ liminf
j→∞

∥
∥σk−σ j

∥
∥
Mp1,...,pm

(7.3.19)

for each k. Given ε > 0, by the Cauchy criterion, there is an N such that for j,k> N
we have ‖σk−σ j‖Mp1 ,...,pm

< ε . Using (7.3.19) we conclude that

‖σk−σ‖Mp1,...,pm
≤ ε

when k > N; thus, σk converges to σ in Mp1,...,pm as k → ∞. Hence, Mp1,...,pm is
complete, and thus it is a Banach space when p≥ 1 and a quasi-Banach space when
p< 1. �

7.3.4 Duality of Multilinear Multiplier Operators

We know that m-linear convolution operators (in particular multilinear multiplier
operators) have m transposes. These are also m-linear convolution operators whose
symbols are related to the symbol of the original operator in simple ways.

Let σ be a locally integrable function on Rn that satisfies (7.3.11). For each j in
{1, . . . ,m} we introduce another locally integrable function σ∗ j on Rn that satisfies
(7.3.11) by setting

σ∗ j(ξ1, . . . ,ξm) = σ(ξ1, . . . ,ξ j−1,−(ξ1+ · · ·+ξm),ξ j+1, . . . ,ξm) (7.3.20)

that is, all variables of σ remain the same except for the jth variable, which is
replaced by −(ξ1+ · · ·+ξm). We call σ∗ j the jth transpose symbol of σ .

Then the jth dual of the multilinear convolution operator Tσ is Tσ∗ j , which is
another multilinear convolution operator. To verify this assertion, we fix Schwartz
functions f0, f1, . . . , fm. Then we have

〈

Tσ ( f1, . . . , fm), f0
〉

=
∫

Rn

∫

(Rn)m
σ(�ξ ) f̂1(ξ1) · · · f̂m(ξm)e2πix·(ξ1+···+ξm)d�ξ f0(x)dx

=
∫

(Rn)m
σ(�ξ ) f̂1(ξ1) · · · f̂m(ξm) f̂0(−(ξ1+ · · ·+ξm))d�ξ
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=
∫

(Rn)m
σ∗ j(�ξ ) f̂0(ξ j)∏

k �= j
f̂k(ξk) f̂ j(−(ξ1+ · · ·+ξm))d�ξ

=
∫

Rn

∫

(Rn)m
σ∗ j(�ξ ) f̂0(ξ j)∏

k �= j
f̂k(ξk)e2πix·(ξ1+···+ξm) d�ξ f j(x)dx

=
〈

Tσ∗ j( f1, . . . , f j−1, f0, f j+1, fm), f j
〉

.

This calculation shows that the jth transpose of Tσ is Tσ∗ j . Often in the literature the
terms adjoint and transpose have the same meaning. In this text, the former refers to
the dual operator with respect to the complex inner product 〈· | ·〉 and the latter to that
with respect to the real inner product 〈·, ·〉. In the case of multilinear operators, there
does not seem to exist a nice formula, such as that in (7.3.20), for the jth adjoint
operator.

Exercises

7.3.1. Suppose that σ(ξ1, . . . ,ξm) is the symbol of an m-linear convolution operator
Tσ that maps Lp1(Rn)× ·· ·×Lpm(Rn) to Lp(Rn) with norm B. Show that for any

δ > 0, the m-linear operator Tσδ associated with σδ (�ξ ) = δ n( 1
p1

+···+ 1
pm − 1

p )σ(δ�ξ )
also maps Lp1(Rn)×·· ·×Lpm(Rn) to Lp(Rn) with the same norm.

7.3.2. Show that m-linear operators L satisfy the identity

L( f1, . . . , fm)−L(g1, . . . ,gm) =
m

∑
j=1

L(g1, . . . ,g j−1, f j−g j, f j+1, . . . , fm),

for all functions fk,gk in their domain.

7.3.3. (G. Diestel) (a) Let r j = e2πi j/m ∈ C, j = 0,1, . . . ,m−1, be the mth roots of
unity. Show that for any y ∈ Rn, an m-linear convolution operator T satisfies

mT ( f1, . . . , fm)+mT (τy f1, . . . ,τy fm) =
m

∑
j=1

T ( f1+ r jτy f1, . . . , fm+ r jτy fm)

for all functions f j in its domain.
(b) Use this property to obtain another proof of Proposition 7.3.7 when p≥ 1.
[

Hint: Part (a): Use that ∑m
i=1 r

s
i =∑m

i=1 ri = 0, ∑m
i=1 r

m
i =m. Part (b): Take Lp norms

of both sides, use that T commutes with simultaneous translations and the fact that
for g ∈ Lp(Rn) we have ‖τhg+g‖Lp → 21/p‖g‖Lp .

]
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7.3.4. ([126]) Suppose that K is a kernel in R2n (which may be a distribution), and
let TK be the bilinear convolution operator associated with K:

TK( f ,g)(x) =
∫

Rn

∫

Rn
K(x− y,x− z) f (y)g(z)dydz .

Assume that TK is bounded from Lp(Rn)×Lq(Rn)→ Lr(Rn), with norm ‖T‖, when
1p+ 1/q = 1/r. Let M be an n× n invertible matrix. Define a 2n× 2n invertible
matrix

M̃ =

(
M O
O M

)

,

whereO is the n×n zero matrix. Show that the operator TK◦M̃ is also bounded from
Lp(Rn)×Lq(Rn)→ Lr(Rn) with norm exactly ‖TK‖.
7.3.5. Suppose that a bounded function σ on R2n is written as σ = σ0 ∗ (σ1⊗σ2),
where σ0 is a function on R2n and σ1, σ2 are functions on Rn.
(a) Show that for 2< p< ∞ we have

‖Tσ‖Lp×Lp′→L1 ≤ ‖σ0‖
L(

1
2+

1
p )

−1‖σ1‖
L(

1
2−

1
p )

−1‖σ2‖
L(

1
2−

1
p )

−1 .

(b) Prove that when γ > n( 12 +
1
p ), we have

∥
∥Tσ

∥
∥
Lp×Lp′→L1 ≤C(n,γ , p)

∥
∥(I−Δξ1)

γ/2(I−Δξ2)
γ/2σ

∥
∥

L(
1
2+

1
p )

−1 .

(c) Show that for 2< p<∞, 1< q<∞, 1/p+1/q= 1/r< 1, and γ > n( 12 +
1
p ) we

have
∥
∥Tσ

∥
∥
Lp×Lq→Lr ≤C(n,γ , p,q)

∥
∥(I−Δ)γσ

∥
∥

L(
1
2+

1
p )

−1 .

[

Hint: Part (a): Apply Corollary 7.2.11 using ‖Tσ‖L2×L2→L1 ≤‖σ0‖L1‖σ1‖L∞‖σ2‖L∞
and ‖Tσ‖L∞×L1→L1 ≤‖σ0‖L2‖σ1‖L2‖σ2‖L2 . Part (c): Use duality and interpolation.

]

7.3.6. ([120]) Given a unit vector v in R2, define a half-space of R4 by setting
Hv = {(ξ ,η) ∈ R2×R2 : (ξ +η) · v > 0}. Let v j be a unit vector in R2 for each
j ∈ Z. For ρ > 0 define the sets

Bρ = {(ξ ,η) ∈ R2×R2 : |ξ |2+ |η |2 < 2ρ2}
Bj,ρ = {(ξ ,η) ∈ R2×R2 : |ξ −ρv j|2+ |η−ρv j|2 < 2ρ2}
B∗1
ρ = {(ξ ,η) ∈ R2×R2 : |ξ +η |2+ |η |2 < 2ρ2}

B∗1
j,ρ = {(ξ ,η) ∈ R2×R2 : |ξ −

√
2ρv j+η |2+ |η |2 < 2ρ2}

B∗2
ρ = {(ξ ,η) ∈ R2×R2 : |ξ |2+ |ξ +η |2 < 2ρ2}

B∗2
j,ρ = {(ξ ,η) ∈ R2×R2 : |ξ |2+ |ξ +η−

√
2ρv j|2 < 2ρ2}.
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Assume that one of the three functions χBρ , χB∗1ρ , χB∗2ρ lies in Mp,q(R2) with norm

C(p,q), when ρ = 1. Let r = (1/p+1/q)−1. Prove that
∥
∥
∥
∥
∥

(

∑
j∈Z

∣
∣TχHv j

( f j,g j)
∣
∣2
)1/2

∥
∥
∥
∥
∥
Lr
≤C(p,q)

∥
∥
∥
∥
∥

(

∑
j∈Z

∣
∣ f j
∣
∣2
)1/2

∥
∥
∥
∥
∥
Lp

∥
∥
∥
∥
∥

(

∑
j∈Z

∣
∣g j
∣
∣2
)1/2

∥
∥
∥
∥
∥
Lq

for all Schwartz functions f j and g j.[

Hint: Use that Bj,ρ , B∗1
j,ρ , B

∗2
j,ρ tend to Hv j as ρ → ∞ and apply Theorem 7.3.1.

]

7.3.7. Given a rectangle R in R2, let R′ be the union of the two copies of R adjacent
to R in the direction of its longest side. Let R be a rectangle in R2 and let v be a unit
vector in R2 parallel to the longest side of R. Fix a unit vector v in R2 and define
Hv = {(ξ ,η) ∈ R2×R2 : (ξ +η) · v> 0}. Prove that for all x ∈ R2 we have

∣
∣
∣
∣

∫

R2

∫

R2
χHv(ξ ,η)χ̂R(ξ )χ̂R(η)e

2πix·(ξ+η)dξdη
∣
∣
∣
∣
≥ 1

10
χR′(x) .

[

Hint: Introduce a rotation O of R2 such that O(v) = (1,0). Then O[R] has sides
parallel to the axes, and the conclusion follows. See also Proposition 5.1.2.

]

7.3.8. ([120]) Let 1 < p,q,r < ∞ satisfy 1/p+ 1/q = 1/r and suppose that one of
p,q, or r′ is less than 2. Let B be the unit ball in R4. Show that χB /∈Mp,q(R2).
[

Hint: It suffices to show that χB, χB∗1 , χB∗2 is not in Mp,q(R2) for p,q,r > 2,
where we denote B∗1 = {(ξ ,η) ∈ R2×R2 : |ξ +η |2+ |η |2 < 1} and analogously
B∗2 = {(ξ ,η) ∈ R2×R2 : |ξ |2+ |ξ +η |2 < 1}. Assuming the opposite prove that

∑
j

∫

E

∣
∣THv j

(χRj ,χRj)(x)
∣
∣2dx≤ ‖TχB‖2Lp×Lq→Lr δ

r−2
r ∑

j

∣
∣Rj
∣
∣ ,

where E and Rj are as in Lemma 5.1.1 and v j is a unit vector parallel to the longest
side of Rj. Reach a contradiction by proving that

∑
j

∫

E

∣
∣THv j

(χRj ,χRj)(x)
∣
∣2dx≥ 1

1200∑j
∣
∣Rj
∣
∣ ,

using the result of the preceding exercise and the idea of Theorem 5.1.5.
]

7.3.9. ([120]) Suppose that m(ξ1,η1,ξ2,η2) lies in Mp1,p2(R
n+k), where ξ1,ξ2 ∈

Rn and η1,η2 ∈ Rk and 1 < p = (p−1
1 + p−1

2 )−1 < ∞. Show that for almost every
(ξ1,ξ2) in (Rn)2 the function (η1,η2) �→ m(ξ1,η1,ξ2,η2) lies in Mp1,p2(R

k), with
norm

‖m(ξ1, ·,ξ2, ·)‖Mp1,p2 (R
k) ≤ ‖m‖Mp1 ,p2 (R

n+k).

[

Hint: Use duality.
]
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7.3.10. ([120]) Combine the results of the preceding two exercises to prove that if B
is the characteristic function of the unit ball in R2n with n≥ 2, then χB /∈Mp,q(R2n)
when one of p,q, or (1−1/p−1/q)−1 is less than 2.

7.4 Calderón-Zygmund Operators of Several Functions

LetK(y0,y1, . . . ,ym) be a function defined away from the diagonal y0 = y1 = · · ·= ym
on (Rn)m+1 that satisfies the size estimate

|K(y0,y1, . . . ,ym)| ≤ A
(∑m

k,l=0 |yk− yl |)nm (7.4.1)

for some A > 0 and all (y0,y1, . . . ,ym) ∈ (Rn)m+1 not in the diagonal of (Rn)m+1.
Furthermore, assume that for some ε > 0 we have the smoothness estimates

|K(y0, . . . ,y j, . . . ,ym)−K(y0, . . . ,y′j, . . . ,ym)| ≤
A|y j− y′j|ε

(∑m
k,l=0 |yk− yl |)nm+ε (7.4.2)

for each j ∈ {0,1, . . . ,m} and all (y0,y1, . . . ,ym) not in the diagonal of (Rn)m+1

whenever

|y j− y′j| ≤
1

m+1
(|y0− y j|+ |y1− y j|+ · · ·+ |ym− y j|

)

. (7.4.3)

Interchanging the roles of y j and y′j, assuming that (y0,y1, . . . ,y j−1,y′j,y j+1, . . . ,ym)
is not in the diagonal of (Rn)m+1, we can replace the denominator in (7.4.2) with
(∑m

k,l=0 |yk− y′l |)nm+ε , where y′l = yl if l �= j when we replace (7.4.3) with

|y j− y′j| ≤
1

m+1
(|y0− y′j|+ |y1− y′j|+ · · ·+ |ym− y′j|

)

.

More importantly, we should observe that conditions (7.4.1) and (7.4.2) are invariant
under the operation of interchanging y0 with some yl , and thus they hold for every
transpose K∗l of K.

We notice that in applications, it is easier to check estimates (7.4.1) and (7.4.2)
with the expression (|y0− y1|+ · · ·+ |y0− ym|)mn+ε in the denominator since

|y0− y1|+ · · ·+ |y0− ym| ≥ 1
2m

m

∑
k,l=0

|yk− yl | .

Definition 7.4.1. Let A,ε > 0 and m ∈ Z+. Functions defined on (Rn)m+1\
{(x, . . . ,x) : x ∈ Rn} that satisfy conditions (7.4.1) and (7.4.2) are called m-linear
standard Calderón–Zygmund kernels. The class of all such kernels is denoted by
m-CZK(A,ε).
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Example 7.4.2. Let K0(�u) be a function on (Rn)m \{�0} that satisfies the size condi-
tion |K0(�u)| ≤ A′ |�u|−mn and the regularity condition |∇K0(�u)| ≤ A′ |�u|−mn−1. Then
the function

K(x,y1, . . . ,ym) = K0(x− y1, . . . ,x− ym) (7.4.4)

satisfies (7.4.1) and (7.4.2). We verify the second assertion. For each j in {1, . . . ,m},
fix y′j and take points yk, k = 1, . . . ,m and x not all equal to each other, satisfying
(7.4.3). Then by the mean value theorem, we bound the left-hand side of (7.4.2) by

CA′|y j− y′j|
(|x−θy′j− (1−θ)y j|+∑k∈{1,...,m}\{ j} |x− yk|

)mn+1 (7.4.5)

for some θ ∈ [0,1]. Since

|x−θy′j− (1−θ)y j| ≥ |x− y j|− |y j− y′j|
≥ |x− y j|− 1

m+1
(|x− y j|+ |y1− y j|+ · · ·+ |ym− y j|)

≥ |x− y j|− 1
m+1

m

∑
k=1

|x− yk|− m−1
m+1

|x− y j|

=
1

m+1
|x− y j|− 1

m+1

m

∑
k=1
k �= j

|x− yk| ,

the denominator in (7.4.5) is at least

(
1

m+1

m

∑
k=1

|x− yk|
)mn+1

.

Thus, we deduce (7.4.2) with ε = 1 and A ≤ C′A′. When j = 0, assuming (7.4.3),
the corresponding estimate for the left-hand side of (7.4.2) is

CmA′|x− x′|
(|y1−θx′ − (1−θ)x|+ · · ·+ |ym−θx′ − (1−θ)x|)mn+1

which, combined with |yk − θx′ − (1− θ)x| ≥ |yk − x| − |x− x′|, yields a similar
estimate. Analogous estimates are valid for every transpose K∗l of K defined by
K∗l(y0,y1, . . . ,ym) = K0(yl − y1, . . . ,yl − yl−1,yl − y0,yl − yl+1, . . . ,yl − ym).

Finally, we observe that the same proof gives that if

|K0(u1, . . . ,u j, . . . ,um)−K0(u1, . . . ,u′j, . . . ,um)| ≤
A′ |u j−u′j|ε

|(u1, . . . ,um)|nm+ε ,

whenever |u j−u′j|< 1
m+1 ∑

m
k=1 |u j−uk|, then (7.4.1) and (7.4.2) hold for K defined

by (7.4.4), with A≤C′A′.
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Definition 7.4.3. Let A,ε > 0 and m ∈ Z+ and K be in m-CZK(A,ε). Let T be an
m-linear operator defined on S (Rn)× ·· ·×S (Rn) and taking values in S ′(Rn).
We say that T is associated with K if the following relationship holds

〈

T ( f1, . . . , fm), f0
〉

=
∫

(Rn)m+1
K(x,y1, . . . ,ym) f0(x) f1(y1) · · · fm(ym)d�ydx (7.4.6)

for all functions f0, f1, . . . , fm inS (Rn), with ∩m
j=1supp f j = /0.

The fact that ∩m
j=1supp f j = /0 implies that there is no x∈Rn such that |x−y j|= 0

for all j = 1, . . . ,m whenever y j lies in the support of f j, and thus the kernel K(x,�y)
is bounded when (x,y1, . . . ,ym) ∈ Rn× supp f1×·· ·× supp fm; hence, the integral
in (7.4.6) converges absolutely.

We are interested in bounded extensions of m-linear operators associated with
kernels of classm-CZK(A,ε). For integrable functions g1, . . . ,gm with compact sup-
port in Rn we note that the integral

∫

(Rn)m
K(x,y1, . . . ,ym)g1(y1) · · ·gm(ym)d�y (7.4.7)

converges absolutely whenever x /∈ ∩m
j=1supp g j and in this situation one can define

T (g1, . . . ,gm)(x) as the expression in (7.4.7).

Example 7.4.4. We define an operatorR1 acting on m-tuples of Schwartz functions
on the line as follows:

R1( f1, . . . , fm)(x) = p.v.
∫

Rm

Γ ( n+1
2 )

π
n+1
2

(x− y1)

|(x− y1, . . . ,x− ym)|m+1 f1(y1) · · · fm(ym)dy1 · · ·dym.

We call R1 the m-linear Riesz transform in the first variable. If all f j are smooth
and supported in the interval [−1,1], then for |x| ≥ 2 we have thatR1( f1, . . . , fm)(x)
behaves at infinity like |x|−m. This function is not in L1/m, but it lies in the weak
space L1/m,∞.

This and other examples like it suggest that operators associated with kernels of
class m-CZK(A,ε) lie in weak L1/m when acting on certain functions; this provides
motivation for the main theorem of the next subsection.

Example 7.4.4 provides a special case of a kernel that is antisymmetric in the first
variable. A more general situation is discussed in what follows.

Example 7.4.5. Suppose that K(x,�y) satisfies (7.4.1) and (7.4.2) and is antisymmet-
ric, in the sense that for some j ∈ {1, . . . ,m} we have

K(y0,y1, . . . ,ym) =−K(y j,y1, . . . ,y j−1,y0,y j+1, . . . ,ym)
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for all (y0,y1, . . . ,ym) in (Rn)m+1 away from its diagonal. Then there is a distribution
W on Rn(m+1) that extends K. Indeed, we show that the limit

〈

W,F
〉

= lim
δ→0

∫

· · ·
∫

∑m
j,k=0 |y j−yk|>δ

K(y0,�y)F(y0,�y)d�ydy0

exists for all F in S (Rn(m+1)) and defines a tempered distribution on Rn(m+1). Let
�y j = (y1, . . . ,y j−1,y0,y j+1, . . . ,ym) be the vector in Rnm obtained from (y1, . . . ,ym)
by replacing y j by y0. In view of antisymmetry, we may write

∫

· · ·
∫

∑m
j,k=0 |y j−yk|>δ

K(y0,�y)F(y0,�y)d�ydy0

=
1
2

∫

· · ·
∫

∑m
j,k=0 |y j−yk|>δ

K(y0,�y)
(

F(y0,�y)−F(y j,�y j)
)

d�ydy0 .
(7.4.8)

Let N > (m+1)n. Combining

|F(y0,�y)−F(y j,�y j
)| ≤ 2 |y0− y j|

(1+ |y0|2+ |�y |2)N sup
y0,�y

∣
∣
∣∇y0,�y

[

(1+ |y0|2+ |�y|2)NF(y0,�y)
]∣
∣
∣

with condition (7.4.1), we obtain that the integrand in (7.4.8) is bounded by

C′ |y0− y j|−n+ 2m+1
3m

m

∏
l=0

(1+ |yl |2)−
N

m+1

m

∏
l=1
l �= j

|y0− yl |−n+ 1
3m

(

∑
|α |,|β |≤2N

ρα ,β (F)
)

and thus the integral in (7.4.8) has a limit as δ → 0. Here ρα ,β are the Schwartz
seminorms of F on Rn(m+1). We can therefore define a bounded m-linear operator
T :S (Rn)×·· ·×S (Rn)→S ′(Rn) by setting

〈

T ( f1, . . . , fm),ϕ
〉

= lim
δ→0

∫

· · ·
∫

∑m
j,k=0 |y j−yk|>δ

K(y0,�y) f1(y1) · · · fm(ym)ϕ(y0)d�ydy0.

Then T defined in this way is associated with the antisymmetric (in the jth variable)
function K in the sense of Definition 7.4.3.

7.4.1 Multilinear Calderón–Zygmund Theorem

The first fundamental result of this section is the multilinear extension of the
Calderón–Zygmund theorem.
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Theorem 7.4.6. Let T be an m-linear operator associated with a kernel K in m-
CZK(A,ε), where m ≥ 2. Assume that for some 1 ≤ q1,q2, . . . ,qm ≤ ∞ and some
0< q< ∞ satisfying

1
q1

+
1
q2

+ · · ·+ 1
qm

=
1
q

T extends to a bounded operator from Lq1 × ·· ·× Lqm to Lq,∞. Then T can be ex-
tended to a bounded operator from L1×·· ·×L1 to L1/m,∞ such that for some con-
stant Cn,m,ε we have

‖T‖L1×···×L1→L1/m,∞ ≤Cn,m,ε
(

A+‖T‖Lq1×···×Lqm→Lq,∞
)

. (7.4.9)

Proof. Set B = ‖T‖Lq1×···×Lqm→Lq,∞ . For 1 ≤ j ≤ m fix step functions f j. Assume
that each f j is a step function given by a finite linear combination of characteristic
functions of disjoint dyadic cubes. In proving (7.4.9), by a simple scaling argument,
we may assume that

‖ f1‖L1 = · · ·= ‖ fm‖L1 = 1.

Fix λ > 0 and set Eλ = {x : |T ( f1, . . . , fm)(x)|> λ}. We need to show that for some
constant C =Cm,n we have

|Eλ | ≤C(A+B)1/mλ−1/m. (7.4.10)

Once (7.4.10) is established for f j with L1 norm one, the general case follows im-
mediately by scaling. Let γ be a positive real number to be determined later. For
each j = 1, . . . ,m apply the Calderón–Zygmund decomposition to the function f j at
height (λγ)1/m to obtain “good” and “bad” functions g j and b j, and finite families
of dyadic cubes {Qj,k}k∈Z with disjoint interiors such that

f j = g j+b j and b j =∑
k
b j,k .

Then for each j = 1, . . . ,m we have

support(b j,k)� Qj,k
∫

Qj,k

b j,k(x)dx= 0
∫

Qj,k

|b j,k(x)|dx≤ 2n+1(λγ)1/m|Qj,k|

|∪k Q j,k| ≤ (λγ)−1/m

‖g j‖L1 ≤ ‖ f j‖L1 = 1

‖g j‖L∞ ≤ 2n(λγ)1/m .
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Now let

E1 ={x ∈ Rn : |T (g1,g2, . . . ,gm)(x)|> λ/2m}
E2 ={x ∈ Rn : |T (b1,g2, . . . ,gm)(x)|> λ/2m}
E3 ={x ∈ Rn : |T (g1,b2, . . . ,gm)(x)|> λ/2m}

. . .

E2m ={x ∈ Rn : |T (b1,b2, . . . ,bm)(x)|> λ/2m},

where each Es has the form {x ∈ Rn : |T (h1,h2, . . . ,hm)(x)|> λ/2m}, with h j = b j
for j ∈ S and h j = g j for j ∈ {1, . . . ,m}\S for a subset S of {1, . . . ,m}. Since

|{x ∈ Rn : |T ( f1, . . . , fm)(x)|> λ}| ≤
2m

∑
s=1

|Es|,

it will suffice to prove estimate (7.4.10) for each of the 2m sets Es.
Let us start with set E1 which is the easiest. The Lq1 ×·· ·×Lqm → Lq,∞ bound-

edness of T gives

|E1| ≤ (2mB)q

λ q ‖g1‖qLq1 · · ·‖gm‖qLqm

≤ CBq

λ q

m

∏
j=1

(λγ )
q

mq′j

=
CBq

λ q (λγ )(m−
1
q )

q
m

=CBqλ− 1
m γ q− 1

m .

(7.4.11)

Consider a set Es as above with 2 ≤ s ≤ 2m. Suppose that for some 1 ≤ l ≤ m
we have l bad functions and m− l good functions in the set {h1, . . . ,hm}, where
h j ∈ {g j,b j}, and by permuting the variables, without loss of generality, we assume
that the bad functions appear in the entries 1, . . . , l and the good functions in the
entries l+1, . . . ,m. We will show that for any s ∈ {2,3, . . . ,2m} we have

|Es| ≤Cλ− 1
m
(

γ−
1
m + γ−

1
m (Aγ)

1
l
)

. (7.4.12)

Let �(Q) denote the side length of a cube Q, and let Q∗ have the same center and
orientation as Q and

�(Q∗) = ((m+1)
√
n+1)�(Q).

Fix an x /∈ ∪m
j=1 ∪k (Qj,k)

∗. Also, fix for the moment the cubes Q1,k1 , . . . ,Ql,kl , and
without loss of generality, suppose that Q1,k1 has the smallest size among them. Let
ci,ki be the center of Qi,ki . For fixed y2, . . . ,yl in R

n, the mean value property of b1,k1
gives
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∣
∣
∣
∣
∣

∫

Q1,k1

K(x,y1, . . . ,ym)b1,k1(y1)dy1

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫

Q1,k1

(

K(x,y1,y2, . . . ,ym)−K(x,c1,k1 ,y2, . . . ,ym)
)

b1,k1(y1)dy1

∣
∣
∣
∣
∣

≤
∫

Q1,k1

|b1,k1(y1)|
A |y1− c1,k1 |ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε dy1

≤
∫

Q1,k1

|b1,k1(y1)|
CA�(Q1,k1)

ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε dy1,

where the preceding penultimate inequality is due to the facts that x /∈ Q∗
1,k1

and

|y1−c1,k1 | ≤
√
n
2

�(Q1,k1)≤
1

m+1
|x−y1| ≤ 1

m+1

m

∑
r=1

|x− yr| .

Fix k2, . . . ,kl in Z. We integrate the inequality
∣
∣
∣
∣
∣

∫

Q1,k1

K(x,�y)b1,k1(y1)dy1

∣
∣
∣
∣
∣
≤
∫

Q1,k1

CA |b1,k1(y1)|�(Q1,k1)
ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε dy1

with respect to the measure dyl+1 · · ·dym over (Rn)m−l and we obtain the estimate

∫

Rn(m−l)

∣
∣
∣
∣
∣

∫

Q1,k1

K(x,�y)b1,k1(y1)dy1

∣
∣
∣
∣
∣
dyl+1 · · ·dym (7.4.13)

≤
∫

Q1,k1

∫

(Rn)m−l

CA |b1,k1(y1)|�(Q1,k1)
ε

(|x− y1|+ · · ·+ |x− ym|)mn+ε dyl+1 · · ·dym dy1

=
∫

Q1,k1

|b1,k1(y1)|
AC′ �(Q1,k1)

ε

(∑l
j=1 |x− y j|)mn+ε−(m−l)n

dy1

≤ C′A
∫

Q1,k1

|b1,k1(y1)|
�(Q1,k1)

ε
(

∑l
j=1(�(Qj,k j)+ |x− c j,k j |)

)nl+ε dy1

≤ C′A‖b1,k1‖L1
l

∏
j=1

�(Qj,k j)
ε
l

(�(Qj,k j)+ |x− c j,k j |)n+
ε
l
. (7.4.14)

The preceding penultimate inequality is due to the fact that for x /∈ ∪m
j=1∪k (Qj,k)

∗

and y j ∈ Qj,k we have that |x− y j| ≈ �(Qj,k j)+ |x− c j,k j |, while the last inequality
is due to our assumption that the cube Q1,k1 has the smallest side length.

Multiplying (7.4.13) and (7.4.14) by

m

∏
i=l+1

|gi(yi)|
l

∏
j=2

|b j,k j(y j)|
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and integrating with respect to dy2 · · ·dyl over (Rn)l−1, for any fixed point x /∈
∪m

j=1∪k (Qj,k)
∗ we obtain

∫

Rn(m−1)

m

∏
i=l+1

|gi(yi)|
l

∏
j=2

|b j,k j(y j)|
∣
∣
∣
∣
∣

∫

Q1,k1

K(x,�y)b1,k1(y1)dy1

∣
∣
∣
∣
∣
dy2 · · ·dym

≤C′A
m

∏
i=l+1

‖gi‖L∞
l

∏
j=1

�(Qj,k j)
ε
l

(�(Qj,k j)+|x−c j,k j |)n+
ε
l
‖b1,k1‖L1

∫

Rn(l−1)

l

∏
j=2

|b j,k j(y j)|dy2· · ·dyl

≤C′A
m

∏
i=l+1

‖gi‖L∞
l

∏
j=1

( ‖b j,k j‖L1 �(Qj,k j)
ε
l

(�(Qj,k j)+ |x− c j,k j |)n+
ε
l

)

≤C′′A(λγ)
m−l
m

l

∏
j=1

(
(λγ)

1
m �(Qj,k j)

n+ ε
l

(�(Qj,k j)+ |x− c j,k j |)n+
ε
l

)

.

The preceding estimate, combined with the fact that for x /∈ ∪m
j=1∪k (Qj,k)

∗ we have

∑
k1∈Z

· · · ∑
kl∈Z

T (b1,k1 , . . . ,bl,kl ,gl+1, . . . ,gm)(x)

= T
(

∑
k1∈Z

b1,k1 , . . . , ∑
kl∈Z

bl,kl ,gl+1, . . . ,gm
)

(x) ,

yields that

|T (b1, . . . ,bl ,gl+1, . . . ,gm)(x)| ≤C′′Aλ γ
l

∏
j=1

Mj,ε/l(x) , (7.4.15)

where

Mj,ε/l(x) = ∑
k j∈Z

�(Qj,k j)
n+ ε

l

(�(Qj,k j)+ |x− c j,k j |)n+
ε
l

is the Marcinkiewicz function associated with the union of the cubes {Qj,k j}k j∈Z.
Naturally, (7.4.15) is also valid for any other permutation of the functions b j and gi.
It is a known fact (Exercise 5.6.6 in [156]) that

∫

Rn
Mj,ε/l(x)dx≤C

∣
∣
∣

⋃

k j∈Z
Qj,k j

∣
∣
∣≤C (λγ)−

1
m .

Now, since
∣
∣
∣

m
⋃

j=1

⋃

k

(Qj,k)
∗
∣
∣
∣≤C(λγ)−

1
m ,

inequality (7.4.12) will be a consequence of the estimate

∣
∣
∣

{

x /∈
m
⋃

j=1

⋃

k

(Qj,k)
∗ : |T (h1, . . . ,hm)(x)|> λ/2m

}
∣
∣
∣≤C(λγ)−

1
m (Aγ)

1
l , (7.4.16)
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where h j is either b j or g j and at least one of them is a b j. We prove claim
(7.4.16) using an L1/l estimate outside ∪m

j=1 ∪k (Qj,k)
∗; recall that we are consid-

ering the situation where l is not zero. Using the size estimate previously derived for
|T (h1, . . . ,hm)(x)| outside the exceptional set, we obtain

∣
∣
∣

{

x /∈
m
⋃

j=1

⋃

k

(Qj,k)
∗ : |T (h1, . . . ,hm)(x)|> λ/2m

}∣
∣
∣

≤Cλ−1/l
∫

Rn\∪m
j=1∪k(Qj,k)

∗

(

λ γ AM1,ε/l(x) · · ·Ml,ε/l(x)
) 1

l dx

≤C(Aγ)1/l
(∫

Rn
M1,ε/l(x)dx

) 1
l
· · ·
(∫

Rn
Ml,ε/l(x)dx

) 1
l

≤C′(Aγ)
1
l
(

(λγ)−
1
m · · ·(λγ)− 1

m
︸ ︷︷ ︸

l times

) 1
l

=C′λ− 1
m (Aγ)

1
l γ−

1
m ,

which proves (7.4.16), and thus (7.4.12).
We have now proved (7.4.12) for any γ > 0. Selecting γ = (A+ B)−1 in both

(7.4.11) and (7.4.12) we obtain that all the sets Es satisfy (7.4.10). Summing over all
1≤ s≤ 2m we obtain the conclusion of the theorem.

We have now shown that T satisfies the estimate

∥
∥T ( f1, . . . , fm)

∥
∥
L1/m,∞ ≤Cn,m,ε(A+B)

m

∏
j=1

‖ f j‖L1

for all functions f j given by finite linear combinations of characterstic functions of
dyadic cubes. It follows that T has bounded extension from L1×·· ·×L1 to L1/m,∞,
which satisfies (7.4.9). �

Proposition 7.4.7. Given K in m-CZK(A,ε) and 0< δ < 1/4, define

Kδ (y0,y1, . . . ,ym) = K(y0,y1, . . . ,ym)
[

χ{∑m
j,k=0 |y j−yk|>δ} − χ{∑m

j,k=0 |y j−yk|>1/δ}
]

and let TKδ be m-linear operators associated with Kδ . Suppose that TKδ admit
bounded extensions from Lq1 ×·· ·×Lqm to Lq,∞ for some 1 ≤ q1,q2, . . . ,qm,q ≤ ∞
with q< ∞ satisfying 1

q1
+ · · ·+ 1

qm
= 1

q such that

sup
δ>0

‖TKδ ‖Lq1×···×Lqm→Lq,∞ ≤ B< ∞ . (7.4.17)

Then TKδ extend to bounded operators from Lp1×·· ·×Lpm to Lp for all p1, . . . , pm, p
satisfying 1< p1, . . . , pm < ∞, 0< p< ∞, and

1
p1

+ · · ·+ 1
pm

=
1
p
. (7.4.18)
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Moreover, there is a constant Cn,m,ε ,p1,...,pm independent of δ such that

sup
δ>0

‖TKδ ‖Lp1×···×Lpm→Lp ≤Cn,m,p1,...,pm(A+B)< ∞ .

Proof. We pick a smooth function Φ(t) on the real line with values in [0,1], which
is equal to 1 when t ≥ 2 and which vanishes when t ≤ 1. We define the function

s(y0,y1, . . . ,ym) = s(y0,�y) =
m

∑
j,k=0

|y j− yk|

and we consider the kernels

Lδ (y0,�y) = K(y0,�y)[Φ(s(y0,�y)/δ )−Φ(s(y0,�y)δ )] .

We observe that
∣
∣Lδ (y0,�y)−Kδ (y0,�y)

∣
∣ ≤ |K(y0,�y)|

[

χδ≤s(y0,�y)≤2δ + χ1/δ≤s(y0,�y)≤2/δ
]

≤ As(y0,�y)−mn[χδ≤s(y0,�y)≤2δ + χ1/δ≤s(y0,�y)≤2/δ
]

≤ cn,mA
[

δ−mnχδ≤s(y0,�y)≤2δ +δmnχ1/δ≤s(y0,�y)≤2/δ
]

≤ cn,mA
[

δ−mn
m

∏
j=1

χ|y0−y j |≤2δ +δmn
m

∏
j=1

χ|y0−y j |≤2/δ
]

.

Consequently, the operators TKδ and TLδ associated with Kδ and Lδ satisfy

∣
∣TKδ ( f1, . . . , fm)−TLδ ( f1, . . . , fm)

∣
∣≤C′

n,mA
m

∏
j=1

M( f j)(x) ,

where M is the Hardy–Littlewood maximal operator. Thus, by Hölder’s inequality
and the boundedness ofM on Lpj , the claimed boundedness for TKδ is equivalent to
that for TLδ .

Next we observe that the kernels Lδ are of classm-CZK(A,ε) uniformly in δ > 0.
Indeed, condition (7.4.1) is trivial while (7.4.2) is a consequence of the fact that for
any j ∈ {0,1, . . . ,m} when |y j− y′j| ≤ 1

m+1 ∑
m
k=0 |y j− yk| we have that

∣
∣Φ(s(y0,y1, . . . ,ym)/δ )−Φ(s(y0, . . . ,y j−1,y′j,y j+1, . . . ,ym)/δ )

∣
∣

is bounded by

m‖Φ ′‖L∞ min
(

2,
|y j−y′j |

δ
)

χ 1
2 δ≤s(y0,y1,...,ym)≤ 5

2 δ
.

Certainly an analogous estimate holds with 1/δ in place of δ .
The next observation is that the jth dual of Lδ is (K∗ j)δ since the function s(y0,�y)

remains unchanged if y0 and y j are permuted. Thus, if Lδ satisfies (7.4.1) and (7.4.2),
then so do all its duals and with the same constants. Moreover, by duality, it follows
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that (7.4.17) is valid for all the transposes (TLδ )∗ j of TLδ , j = 1, . . . ,m. Applying
Theorem 7.4.6 we obtain that (TLδ )∗ j are bounded from L1×·· ·×L1 to L1/m,∞ for
all j = 0,1, . . . ,m.

Note that Lδ is supported in the set {(y0,y1, . . . ,ym) : |y0 − y j| ≤ 2/δ} and is
bounded. It follows that condition (7.2.66) holds whenever 1 < p1, . . . , pm, p < ∞
satisfy (7.4.18) (Remark 7.2.14). Thus, Theorem 7.2.13 is applicable and yields that
TLδ is of restricted weak type (p1, . . . , pm, p) for all indices that satisfy (7.4.18)
and 1 < p1, . . . , pm, p < ∞. Interpolating between all such points and the point
(1, . . . ,1,1/m) via Corollary 7.2.4 yields the required conclusion. �

7.4.2 A Necessary and Sufficient Condition for the Boundedness
of Multilinear Calderón–Zygmund Operators

We start with an endpoint estimate for operators with kernels in m-CZK(A,ε).

Proposition 7.4.8. Suppose that an m-linear operator T with kernel in m-CZK(A,ε)
is bounded from Lq1 ×·· ·×Lqm to Lq with norm B for some 1 < q1, . . . ,qm,q < ∞
satisfying

1
q1

+ · · ·+ 1
qm

=
1
q
. (7.4.19)

Then there is a constant C =C(n,m,ε) such that

‖T ( f1, . . . , fm)‖BMO ≤C (A+B)‖ f1‖L∞ · · ·‖ fm‖L∞ (7.4.20)

for all compactly supported and bounded functions f j.

We note that compactly supported and bounded functions lie in Lr for all r with
1< r < ∞, and thus the action of T on them is well defined.

Proof. Let us fix a cube Q. We write each function f j = f 0j + f 1j , where f 0j = f jχQ∗ ,
where Q∗ is a cube with the same orientation and center as Q and side length

�(Q∗) = ((m+1)
√
n+1)�(Q).

Let xQ be the center of Q. Let F be the set of all sequences of length m consisting of
zeros and ones. The cardinality of F is |F |= 2m. For each sequence�k= (k1, . . . ,km)
in F we will find a constant C�k such that

1
|Q|

∫
Q
|T ( f k11 , . . . , f kmm )(x)−C�k|dx≤C (A+B)‖ f1‖L∞ · · ·‖ fm‖L∞ .

Then, using Proposition 3.1.2(3), withCQ = ∑�k∈F C�k, we obtain the required claim.
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If�k = (0, . . . ,0), then we pick C�0 = 0. Then we have

1
|Q|

∫

Q
|T ( f 01 , . . . , f 0m)(x)|dx≤

(
1
|Q|

∫

Q
|T ( f 01 , . . . , f 0m)(x)|q dx

) 1
q

≤
(

1
|Q|

∫

Rn
|T ( f 01 , . . . , f 0m)(x)|q dx

) 1
q

≤ B |Q|− 1
q ‖ f 01 ‖Lq1 · · ·‖ f 0m‖Lqm

≤ B |Q|− 1
q |Q∗| 1

q1
+···+ 1

qm ‖ f1‖L∞ · · ·‖ fm‖L∞
=CB‖ f1‖L∞ · · ·‖ fm‖L∞ .

Suppose that�k = (

l times
︷ ︸︸ ︷

1, . . . ,1,

m−l times
︷ ︸︸ ︷

0, . . . ,0) for some l ∈ Z+, with 1 ≤ l ≤ m. Then we
set C�k = T ( f k11 , . . . , f kmm )(xQ). For x ∈ Q and y1 /∈ Q∗ we have that

|x− xQ| ≤
√
n
2

�(Q)≤ 1
m+1

|x− y1| ≤ 1
m+1

m

∑
j=1

|x− y j|

and thus

1
|Q|

∫

Q
|T ( f k11 , . . . , f kmm )(x)−C�k|dx

≤ 1
|Q|

∫

Q

∫

(Rn)m
|K(x,�y)−K(xQ,�y)| | f k11 (y1)| . . . | f kmm (ym)|d�ydx

≤ 1
|Q|

∫

Q

∫

(Rn)m

A |x− xQ|ε
(|x− y1|+ · · ·+ |x− ym|)mn+ε | f

k1
1 (y1)| . . . | f kmm (ym)|d�ydx

≤
m

∏
i=1

‖ fi‖L∞ 1
|Q|

∫

Q

∫

(Rn)l

C′A�(Q)ε+(m−l)n

(�(Q)+ |x− y1|+ · · ·+ |x− yl |)mn+ε dy1 · · ·dyl dx

≤C′′A‖ f1‖L∞ · · ·‖ fm‖L∞ .

The second inequality is due to (7.4.2) and the third to the fact that y1, . . . ,yl /∈ Q∗.
By permuting the places of ones and zeros, the same estimate holds for any other
�k ∈ F that has at least one nonzero entry. This concludes the proof of (7.4.20). �

Theorem 7.4.9. Fix a C ∞ function η on Rn supported in B(0,2) that satisfies 0 ≤
η(x)≤ 1 and η(x) = 1 when |x| ≤ 1. Let ηk(x) = η(x/k) for k > 0. Let T be an m-
linear operator that maps S (Rn)×·· ·×S (Rn) continuously into S ′(Rn), which
is associated with a kernel K in m-CZK(A,ε). Then T has a bounded extension from
Lq1 ×·· ·×Lqm to Lq for all 1< q1, . . . ,qm,q< ∞ satisfying

1
q1

+ · · ·+ 1
qm

=
1
q

(7.4.21)



550 7 Multilinear Harmonic Analysis

if and only if the following condition is satisfied:

m

∑
j=0

sup
ki>0

sup
ξi∈Rn

‖T ∗ j(ηk1e
2πiξ1·( ·), . . . ,ηkme

2πiξm·( ·))‖BMO ≤ B< ∞ . (7.4.22)

Moreover, if (7.4.22) holds, then we have that

‖T‖Lq1×···×Lqm→Lq ≤Cn,m,ε ,q j(A+B),

for some constant Cn,m,ε ,q j , depending only on the parameters indicated.

Proof. We begin by observing that the necessity of the conditions in (7.4.22) is a
consequence of Proposition 7.4.8. Thus, the main implication in the proof is con-
tained in their sufficiency, i.e., the fact that if (7.4.22) holds, then T extends to a
bounded operator from Lq1 ×·· ·×Lqm to Lq.

We show the required sufficiency by induction on m. We start with m= 1.
Recall from Definition 4.3.1 that a normalized bump is a smooth function ϕ

supported in the ball B(0,10) that satisfies |∂αx ϕ(x)| ≤ 1 for all multi-indices
|α| ≤ 2 [ n2 ] + 2. Let us fix a normalized bump ϕ . We use the notation ϕx0,R(x) =
R−nϕ(R−1(x− x0)) for R > 0 and x0 ∈ Rn. Then it is easy to see that ηkϕx0,R con-
verges to ϕx0,R in the topology of S (Rn), and thus, given a function ψ in S (Rn),
with integral zero, since Tt(ψ) is an element of S ′(Rn) we have

〈

Tt(ψ),ηkϕx0,R
〉→ 〈

Tt(ψ),ϕx0,R
〉

. (7.4.23)

We show that for any fixed k > 0, x0 ∈ Rn, and R> 0 we have

〈

Tt(ψ),ηkϕx0,R
〉

=
∫

Rn
̂ϕx0,R(ξ )

〈

Tt(ψ),ηk(·)e2πi(·)·ξ
〉

dξ . (7.4.24)

This will be a consequence of the facts that as the positive integers M,N tend to
infinity, we have that

∑
m∈Zn

|mj |≤MN

̂ϕx0,R(mN )ηk(x)e
2πix·mN 1

Nn (7.4.25)

converges to
∫

Rn
̂ϕx0,R(ξ )ηk(x)e2πix·ξ dξ (7.4.26)

in the topology of S and that
〈

Tt(ψ), ∑
m∈Zn

|mj |≤MN

̂ϕx0,R(mN )ηke
2πi(·)·mN 1

Nn

〉

= ∑
m∈Zn

|mj |≤MN

̂ϕx0,R(mN )
〈

Tt(ψ),ηke
2πi(·)·mN

〉 1
Nn
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converges pointwise to
∫

Rn
̂ϕx0,R(ξ )

〈

Tt(ψ),ηk(·)e2πi(·)·ξ
〉

dξ . (7.4.27)

Of these assertions, the second one is straightforward in view of the fact that the
integrand in (7.4.27) is a continuous1 and integrable function of ξ and the associated
Riemann sums converge to the integral in (7.4.27) as M,N → ∞. To prove the first
assertion, for given α,β multi-indices we set

F(x,ξ ) = ∂αx
(

xβηk(x)e2πix·ξ
)

.

Note that
|F(x,ξ )| ≤Ck,α ,β (1+ |ξ |)|α |

and
|∇ξF(x,ξ )| ≤Ck,α ,β (1+ |ξ |)|α | .

Given δ > 0 find M ∈ Z+ (depending on R,k,α,β ) such that for all N ≥ 1 we have
∫

([−MN,MN]n)c

∣
∣̂ϕx0,R(ξ )F(x,ξ )

∣
∣dξ < δ .

Breaking up the complementary integral and applying the mean value theorem
yields

sup
x∈Rn

∣
∣
∣
∣

∫

[−MN,MN]n
̂ϕx0,R(ξ )F(x,ξ )dξ − ∑

m∈Zn

|mj |≤MN

̂ϕx0,R(mN )F(x,
m
N )

1
Nn

∣
∣
∣
∣

≤
√
n

N ∑
m∈Zn

|mj |≤MN

sup
x∈Rn

sup
ξ∈m

N+[0, 1N ]n

∣
∣∇ξ

[

F(x,ξ )̂ϕx0,R(ξ )
]∣
∣ 1
Nn

≤ C
N ∑

m∈Zn
(1+ |mN |)|α |

[∣
∣̂ϕx0,R(mN )

∣
∣+
∣
∣∇̂ϕx0,R(mN )

∣
∣

]
1
Nn

≤ C′
N

∥
∥(1+ | · |)|α |̂ϕx0,R

∥
∥
L1 +

C′
N

∥
∥(1+ | · |)|α |∣∣∇̂ϕx0,R

∣
∣
∥
∥
L1

which can also be made less than δ if N is large enough. This shows that every
Schwartz seminorm ρα ,β of the difference of (7.4.25) and (7.4.26) tends to zero as
N,M → ∞. This proves (7.4.24).

Taking absolute values in (7.4.24), applying the H1-BMO duality, and using
(7.4.22), we obtain that

sup
k>0

∣
∣
〈

Tt(ψ),ηkϕx0,R
〉∣
∣≤ cR−nB‖ψ‖H1 , (7.4.28)

1 The Schwartz seminorms of ηk(·)(e2πi(·)·ξ − e2πi(·)·ξ ′) tend to zero as ξ ′ → ξ .
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where c = Rn‖̂ϕx0,R‖L1 , which is a constant independent of x0 and R, in view of
(4.3.1). Combining (7.4.28) and (7.4.23) yields

∣
∣
〈

T (ϕx0,R),ψ
〉∣
∣≤ cR−nB‖ψ‖H1 .

Since this is valid for all ψ Schwartz functions with mean value zero, we conclude
that T (ϕx0,R) is a linear functional on H1, and thus it can be identified with an
element of BMO that satisfies

Rn∥∥T (ϕx0,R)
∥
∥
BMO ≤ c′n B ,

where the constant c′n is uniform in x0 ∈ Rn, R > 0, and the normalized bump ϕ .
Also, the same conclusion is valid for Tt in place of T . It follows from Theorem
4.3.3 (vi) that T admits a bounded extension on L2 and, thus, on any Lq, 1< q< ∞,
with constant at most a multiple of A+B.

We now consider the casem≥ 2. Suppose by induction that the claimed assertion
holds for all k ∈ Z+, with 1 ≤ k ≤ m− 1. Given an operator T associated with a
kernel in m-CZK(A,ε), for j = 0,1, . . . ,m, we consider the linear operators

Lj(g) = T ∗ j(ηk1e
2πiξ1·( ·), . . . ,ηkm−1e

2πiξm−1·( ·),g)

which are associated with kernels of class 1-CZK(A,ε); see Exercise 7.4.2. Applying
the case m = 1, we obtain that each Lj has a bounded extension on Lq for all 1 <
q < ∞ with norm bounded by a constant a multiple of A+B. Thus, by Proposition
7.4.8, each Lj satisfies (uniformly on ξi ∈ Rn and ki > 0)

∥
∥T ∗ j(ηk1e

2πiξ1·( ·), . . . ,ηkm−1e
2πiξm−1·( ·),g)

∥
∥
BMO ≤Cn(A+B)‖g‖L∞ (7.4.29)

for every compactly supported and bounded function g on Rn. Now fix such a func-
tion g and consider the (m−1)-linear operator

T ′( f1, . . . , fm−1) = T ( f1, . . . , fm−1,g)

which is associated with a kernel in (m−1)-CZK(Cn,mA‖g‖L∞ ,ε); see Exercise 7.4.2.
Estimate (7.4.29) provides condition (7.4.22) for T ′ for all j= 0,1, . . . ,m−1. Indeed,
for j = 0 it is straightforward. Also, Exercise 7.4.1 gives that

(T ′)∗k(ηk1e
2πiξ1·( ·), . . . ,ηkm−1e

2πiξm−1·( ·))

=T ∗(k+1)(ηk1e
2πiξ1·( ·), . . . ,ηkm−1e

2πiξm−1·( ·),g)

for all k= 1, . . . ,m−1. Thus, the induction hypothesis holds. Applying the result in
the case m− 1 yields that T ′ admits a bounded extension from Lq1 ×·· ·×Lqm−1 to
Lq (when 1/q1+ · · ·+1/qm−1 = 1/q, 1< q1, . . . ,qm−1,q< ∞) with norm at most a
multiple of (A+B)‖g‖L∞ +A‖g‖L∞ . In other words, T has an extension on products
of bounded and compactly supported functions that satisfies

∥
∥T (g1, . . . ,gm)

∥
∥
Lq ≤C(n,m,ε ,q j)(A+B)

(m−1

∏
j=1

‖g j‖Lq j
)

‖gm‖L∞ .
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By symmetry, we can replace the role of the last variable by any other variable, and
thus we obtain

∥
∥T (g1, . . . ,gm)

∥
∥
Lr ≤C(n,m,ε ,r j)(A+B)

m

∏
j=1

‖g j‖Lr j

where 1/r1+ · · ·+1/rm = 1/r, exactly one r j =∞, and the functions g j are bounded
and compactly supported.

Every point in the open convex set H = {( 1
q1
, . . . , 1

qm
) : 1 < q1, . . . ,qm,q < ∞,

1/q1+ · · ·+ 1/qm = 1/q} can be written as a convex combination of points of the
form ( 1

r1
, . . . , 1

rm
), where exactly one ri = ∞; note that these points lie on the ∂H.

Next, consider the measure spaces X1 = · · ·=Xm =B(0,M) for some fixedM> 0.
Applying Corollary 7.2.4 we obtain that T admits an extension that satisfies

∥
∥T ( f1, . . . , fm)

∥
∥
Lq ≤C(n,m,ε ,q j)(A+B)

m−1

∏
j=1

‖ f j‖Lq j

whenever 1 < q1, . . . ,qm,q < ∞ and (7.4.21) holds for all functions f j in Lqj that
are supported in B(0,M). Since the bound does not depend on M, by density it also
holds for all functions f j in Lqj , as claimed. �
Corollary 7.4.10. Let K0(u1, . . . ,um) be a function on (Rn)m \{0} that satisfies the
size estimate

|K0(u1, . . . ,um)| ≤ A|(u1, . . . ,um)|−nm, (7.4.30)

the cancellation condition
∣
∣
∣
∣

∫

R1<|(u1,...,um)|<R2
K0(u1, . . . ,um)d�u

∣
∣
∣
∣
≤ A< ∞ (7.4.31)

for all 0< R1 < R2 < ∞, and the smoothness condition

|K0(u1, . . . ,u j, . . . ,um)−K0(u1, . . . ,u′j, . . . ,um)| ≤ A
|u j−u′j|ε

|(u1, . . . ,um)|nm+ε (7.4.32)

whenever |u j−u′j|< 1
m+1 ∑

m
k=1 |u j−uk|. Suppose that for some sequence ε j ↓ 0 the

limit

lim
j→∞

∫

ε j<|�u|≤1
K0(u1, . . . ,um)d�u

exists, and therefore K0 extends to a tempered distribution W on (Rn)m. Then the
multilinear operator

S( f1, . . . , fm)(x)= lim
ε j→0

∫

|x−y1|+···+|x−ym|>ε j
f1(y1) · · · fm(ym)K0(x−y1, . . . ,x−ym)d�y,

initially defined on S (Rn) × ·· · ×S (Rn), admits a bounded extension from
Lp1(Rn)×·· ·×Lpm(Rn) to Lp(Rn) when 1< p j <∞ and 1/p1+ · · ·+1/pm = 1/p.
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Proof. LetW be a tempered distribution that coincides with K0 on Rn \{0}. In view
of Theorem 5.4.1 in [156], we have that the Fourier transform of W is a bounded
function whose L∞ norm is controlled by a multiple of A. We note that condition
(7.4.30) implies (7.4.1) and (7.4.32) implies (7.4.2); see Example 7.4.2.

We now obtain the claimed boundedness by applying Theorem 7.4.9. An easy
calculation shows that

S(ηk1e
2πiξ1·( ·), . . . ,ηkme

2πiξm·( ·))(x)

=
∫

(Rn)m
Ŵ (�u)e2πix·(u1+···+um)

m

∏
j=1

knj η̂(k j(u j−ξ j))d�u .

This function has L∞ norm bounded by ‖Ŵ‖L∞‖η̂‖mL1 < ∞ and thus it belongs to
BMO; hence, condition (7.4.22) holds uniformly on ξi and ki.

The calculation with the jth transpose is similar; the only difference is that Ŵ (u)
is replaced by Ŵ (v), where vl = ul if l �= j and v j = −(u1 + · · ·+ um). Thus the
functions S∗ j(ηk1e

2πiξ1·( ·), . . . ,ηkme
2πiξm·( ·)), j = 1, . . . ,m, are in L∞ with the same

bounds as in the case j = 0 and thus they are in BMO.
In view of Theorem 7.4.9, we obtain the boundedness when p > 1. To extend

this corollary to the case where p ≤ 1, we first use Theorem 7.4.6 to obtain a weak
type (1, . . . ,1,1/m) estimate, and then we apply multilinear interpolation (Theorem
7.2.2) to obtain the claimed boundedness in the case p≤ 1. �

We now apply Corollary 7.4.10 in a specific case.

Example 7.4.11. Suppose that K0 has the form

K0(u1, . . . ,um) =
Ω
(

(u1, . . . ,um)
|(u1, . . . ,um)|

)

|(u1, . . . ,um)|mn ,

where Ω is a continuous function with mean value zero on the sphere Snm−1 which
is Lipschitz of order ε > 0. This means that there is a constant C such that for all
�w,�w′ ∈ Snm−1 we have

∣
∣Ω(�w)−Ω(�w′)

∣
∣≤C |�w−�w′|ε .

It is not hard to show that K0 satisfies (7.4.32). Then the m-linear homogeneous
singular integral operator

TΩ ( f1, . . . , fm)(x) = p.v.
∫

(Rn)m
f1(x1− y1) · · · fm(x− ym)

Ω
(

(y1, . . . ,ym)
|(y1, . . . ,ym)|

)

|(y1, . . . ,ym)|mn d�y ,

initially defined for f j ∈ S (Rn), admits a bounded extension from the product
Lp1(Rn)×·· ·×Lpm(Rn) to Lp(Rn) when 1< p1, . . . , pm < ∞ and 1/m< p< ∞.
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In particular the m-linear Riesz transform of Example 7.4.4 is a special case of a
multilinear homogeneous singular integral operator.

Exercises

7.4.1. Let m ≥ 2. Given an m-linear operator T and a fixed function f j for some
1≤ j ≤ m, we define (m−1)-linear operators

Tf j( f1, . . . , f j−1, f j+1, . . . , fm) = T ( f1, . . . , f j−1, f j, f j+1, . . . , fm).

Show that the transposes of Tf j are

(Tf j)
∗k =(T ∗k) f j when k = 1, . . . , j−1,

(Tf j)
∗k =(T ∗(k+1)) f j when k = j, . . . ,m−1.

7.4.2. Let K be in m-CZK(A,ε), and let 2 ≤ l ≤ m, fl , . . . , fm ∈ L∞. For
(x,y1, . . . ,yl−1) not in the diagonal of (Rn)l define

Kfl ,..., fm(x,y1, . . . ,yl−1) =
∫

(Rn)m−l+1
K(x,y1, . . . ,ym) fl(yl) · · · fm(ym)dyl · · ·dym.

Then Kfl ,..., fm lies in (l−1)-CZK(cn,m,l‖ fl‖L∞ · · ·‖ fm‖L∞A,ε) for some constant
cn,m,l > 0.

7.4.3. Let T be an m-linear operator that mapsS (Rn)×·· ·×S (Rn) continuously
into S ′(Rn) which is associated with a kernel K in m-CZK(A,ε). Then T has a
bounded extension from Lq1 ×·· ·×Lqm to Lq for all 1< q1, . . . ,qm,q<∞ satisfying
1
q1
+ · · ·+ 1

qm
= 1

q if and only if the condition

sup
ϕ1,...,ϕm

m

∑
j=0

sup
R1,...,Rm>0

sup
xi∈Rn

(R1 · · ·Rm)
n‖T ∗ j(ϕx1,R1

1 , . . . ,ϕxm,Rm
m )‖BMO ≤ B′ < ∞ ,

is satisfied, where the first supremum is taken over all m-tuples of normalized
bumps. Moreover, if this condition holds, then

‖T‖Lq1×···×Lqm→Lq ≤Cn,m,ε ,q j(A+B′)

for some constant Cn,m,ε ,q j .

7.4.4. Let σ be a smooth function on (Rn)m+1 satisfying

|∂αx ∂β1ξ1 . . .∂
βm
ξm
σ(x,ξ1, . . . ,ξm)| ≤Cα ,β (1+ |ξ1|+ · · ·+ |ξm|)|α |−(|β1|+···+|βm|)
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for all α,β1, . . . ,βm n-tuples of nonnegative integers. Let σ∨(x,�z) be the inverse
Fourier transform of σ(x,�ξ ) in the ξ variable.
(a) Show that the function

K(y0,y1, . . . ,ym) = σ∨(y0,y0− y1, . . . ,y0− ym)

satisfies

∣
∣∂α0y0 · · ·∂αmym K(y0,y1, . . . ,ym)

∣
∣≤ Cα0,...,αm

(|y0− y1|+ · · ·+ |y0− ym|)mn+|α0|+···+|αm| ,

in particular, that it is of class m-CZK(A,1).
(b) Consider a multilinear pseudodifferential operator

T ( f1, . . . , fm)(x) =
∫

Rn
. . .

∫

Rn
σ(x,�ξ ) f̂1(ξ1) . . . f̂m(ξm)e2πix·(ξ1+···+ξm)dξ1 . . .dξm .

Suppose that all of the transposes T ∗ j also have symbols that satisfy the same esti-
mates as σ . Then T extends as a bounded operator from Lp1 × ·· ·×Lpm to Lp for
1< p j < ∞ and 1

p1
+ · · ·+ 1

pm
= 1

p .

7.4.5. LetΨ be a Schwartz function on Rn whose Fourier transform is supported in
the annulus 6

7 ≤ |ξ ≤ 2 and is equal to 1 on 1≤ |ξ ≤ 12
7 , and let ΔΨ

j ( f ) = f ∗Ψ2− j

and S j( f ) = ∑k≤ jΔΨ
j ( f ). Show that the paraproduct

Π2( f ,g) = ∑
j∈Z

ΔΨ
j ( f )S j(g) ,

defined for f ,g ∈S (Rn), has a bounded extension that maps L1×L1 to L1/2,∞.
[

Hint: Show thatΠ2 maps L4×L4→L2 by writingΠ2( f ,g)=∑ j∈ZΔΨ
j ( f )S j−2(g)+

Π ′
2( f ,g), where Π ′

2( f ,g) = ∑ j∈ZΔΨ
j ( f )ΔΨ

j−1(g)+∑ j∈ZΔΨ
j ( f )ΔΨ

j (g). Then prove
that Π2 has a kernel in 2-CZK(A,1) for some A> 0 and use Theorem 7.4.6.

]

7.4.6. With the notation of the preceding exercise, show that the trilinear
paraproduct

Π3( f ,g,h) = ∑
j∈Z

ΔΨ
j ( f )S j(g)S j(h)

maps L1(Rn)×L1(Rn)×L1(Rn)→ L1/3,∞(Rn).

7.5 Multilinear Multiplier Theorems

We begin this section with a fact concerning the Littlewood–Paley theorem. Given
a Schwartz functionΘ , we denote by ΔΘ

k the operator given by convolution with the
functionΘ2−k(x) = 2knΘ(2kx).
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7.5.1 Some Preliminary Facts

Proposition 7.5.1. Let m ∈ Zn and Θ(x) = θ(x+m) for some Schwartz function θ
whose Fourier transform is supported in an annulus of the form 2b1 ≤ |ξ | ≤ 2b2 ,
where −∞ < b1 < b2 < ∞. Let 1 < p < ∞. Then there is a constant Cn,p,b1,b2 such
that for every Schwartz function f on Rn we have

∥
∥
∥

(

∑
j∈Z

|ΔΘ
j ( f )|2

) 1
2
∥
∥
∥
Lp(Rn)

≤Cn,p,b1,b2 log(2+ |m|)∥∥ f∥∥Lp(Rn)
(7.5.1)

and
∥
∥
∥sup
k∈Z

∣
∣∑
j≤k

ΔΘ
j ( f )

∣
∣

∥
∥
∥
Lp(Rn)

≤Cn,p,b1,b2 log(2+ |m|)∥∥ f∥∥Lp(Rn)
. (7.5.2)

Proof. We recall the following version of the Littlewood–Paley theorem (Theorem
6.1.2 in [156]). Suppose thatΘ is an integrable function on Rn that satisfies

∑
j∈Z

|Θ̂(2− jξ )|2 ≤ B2 (7.5.3)

and

sup
y∈Rn\{0}

∑
j∈Z

∫

|x|≥2|y|

∣
∣Θ2− j(x− y)−Θ2− j(x)

∣
∣dx≤ B . (7.5.4)

Then there exists a constantCn < ∞ such that for all 1< p< ∞ and all f in Lp(Rn),

∥
∥
∥

(

∑
j∈Z

|ΔΘ
j ( f )|2

) 1
2
∥
∥
∥
Lp(Rn)

≤CnBmax
(

p,(p−1)−1)∥∥ f
∥
∥
Lp(Rn)

. (7.5.5)

In proving the claimed estimates (7.5.1) and (7.5.2), it suffices to assume m �= 0.
Note that

Θ̂(ξ ) = θ̂(ξ )e2πiξ ·m.

The fact that θ̂ is supported in an annulus implies (7.5.3) with some constant B that
depends on b1,b2, and we now focus on (7.5.4) . We fix a nonzero y in Rn and j ∈ Z
and we examine
∫

|x|≥2|y|

∣
∣Θ2− j(x−y)−Θ2− j(x)

∣
∣dx=

∫

|x|≥2|y|
2 jn∣∣θ(2 jx−2 jy+m)−θ(2 jx+m)

∣
∣dx .

Changing variables, we write the preceding expression as

I j =
∫

|x|≥2|y|

∣
∣Θ2− j(x− y)−Θ2− j(x)

∣
∣dx=

∫

|x−m|≥2 j+1|y|

∣
∣θ(x−2 jy)−θ(x)

∣
∣dx .
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Case 1: 2 j ≥ 2 |m| |y|−1. In this case, we estimate I j by
∫

|x−m|≥2 j+1|y|
c

(1+ |x−2 jy|)n+2 dx+
∫

|x−m|≥2 j+1|y|
c

(1+ |x|)n+2 dx

=
∫

|x+2 jy−m|≥2 j+1|y|
c

(1+ |x|)n+2 dx+
∫

|x−m|≥2 j+1|y|
c

(1+ |x|)n+2 dx . (7.5.6)

Suppose that x lies in the domain of integration of the first integral in (7.5.6). Then

|x| ≥ |x+2 jy−m|−2 j|y|− |m| ≥ 2 j+1|y|−2 j|y|− 1
2
2 j|y|= 1

2
2 j|y|.

If x lies in the domain of integration of the second integral in (7.5.6), then

|x| ≥ |x−m|− |m| ≥ 2 j+1|y|− |m| ≥ 2 j+1|y|− 1
2
2 j|y|= 3

2
2 j|y|.

In both cases we have

I j ≤ 2
∫

|x|≥ 1
2 2

j |y|
c

(1+ |x|)n+2 dx≤
C

2 j|y|
∫

Rn

1
(1+ |x|)n+1 dx≤

Cn

2 j|y| ,

and clearly
∑

j: 2 j |y|≥2|m|
I j ≤ ∑

j: 2 j |y|≥2

I j ≤Cn.

Case 2: |y|−1 < 2 j < 2 |m| |y|−1. The number of j in this case is O(1+ log |m|).
Thus, uniformly bounding I j by a constant, we obtain

∑
j: 1<2 j |y|<2|m|

I j ≤Cn(1+ log |m|).

Case 3: 2 j ≤ |y|−1. In this case we have

∣
∣θ(x−2 jy)−θ(x)

∣
∣=

∣
∣
∣
∣

∫ 1

0
2 j∇θ(x−2 jty) · ydt

∣
∣
∣
∣
≤ 2 j|y|

∫ 1

0

c
(1+ |x−2 jty|)n+1 dt .

Integrating over x ∈ Rn gives the bound I j ≤Cn 2 j|y|. Thus, we deduce

∑
j: 2 j |y|≤1

I j ≤Cn.

Overall, we obtain the desired bound Cn log(2+ |m|) in (7.5.4). This proves (7.5.1).
We now turn to the proof of (7.5.2). Define a Schwartz functionΦ whose Fourier

transform is equal to 1 on the ball B(0,2b2) and vanishes off the ball B(0,2b2+1)
and define an operator Sk given by multiplication on the Fourier transform side by
Φ̂(2−kξ ). Then we have

∑
j≤k

ΔΘ
j = Sk

(

∑
j≤k

ΔΘ
j
)

= Sk
(

∑
j∈Z

ΔΘ
j
)−Sk

(

∑
j>k

ΔΘ
j
)

.
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We also have

Sk
(

∑
j>k

ΔΘ
j
)

= Sk
( b2−b1+k+1

∑
j=k+1

ΔΘ
j

)

= (Sk−Sk+b1+1)
( b2−b1−b2

∑
r=1

ΔΘ
k+r
)

in view of the support properties of these functions. Set Δ̃k = Sk− Sk+b1−b2 . Com-
bining all these facts, for every Schwartz function f on Rn we deduce that

sup
k∈Z

∣
∣∑
j≤k

ΔΘ
j ( f )

∣
∣≤M

(

∑
j∈Z

ΔΘ
j ( f )

)

+
b2−b1+1

∑
r=1

(

∑
k∈Z

|Δ̃kΔΘ
k+r( f )|2

) 1
2
, (7.5.7)

where M is the Hardy–Littlewood maximal operator. Using duality and Theorem
6.1.2 in [156] we obtain that

∥
∥∑ j∈ZΔΘ

j ( f )
∥
∥
Lp ≤ c

∥
∥
(

∑ j∈Z |ΔΘ
j ( f )|2

)1/2∥∥
Lp and

hence the Lp norm of the first term on the right-hand side in (7.5.7) is bounded
by a constant multiple of log(2+ |m|)‖ f‖Lp in view of (7.5.1). For the second term
in (7.5.7) we use Proposition 6.1.4 (with r = 2) in [156] and then again (7.5.1) to
derive the desired conclusion. �

Next we have an orthogonality lemma for Lp, which is especially useful when
p< 1 due to the lack of duality in this case.

Lemma 7.5.2. Let Ψ be a Schwartz function whose Fourier transform is sup-
ported in the set 6

7 ≤ |ξ | ≤ 2, equals 1 on the annulus 1 ≤ |ξ | ≤ 12
7 , and satisfies

∑ j∈ZΨ̂(2− jξ )= 1 for ξ �= 0. Fix b1,b2, with b1 < b2, and define a Schwartz function
Ω via

Ω̂(ξ ) =
b2

∑
j=b1

Ψ̂(2− jξ ) . (7.5.8)

Define ΔΩ
k (g)̂(ξ ) = ĝ(ξ )Ω̂(2−kξ ), k ∈ Z. Let q= b2−b1+1 and fix 0< p< ∞.

(a) For any r ∈ {0,1, . . . ,q−1} there is a constant c= c(n, p,b1,b2,Ψ) such that
for all L2 functions F we have

‖F‖Lp ≤ c
∥
∥
∥

(

∑
k=r mod q

|ΔΩ
k (F)|2

)1/2∥∥
∥
Lp
. (7.5.9)

(b) Let Fk be L2 functions that satisfy ∑k∈Z ‖Fk‖2L2 <∞. Suppose that the Fourier
transforms of Fk are supported in the annulus 2k+b1 ≤ |ξ | ≤ 2k+b2 . Then for any
0< p< ∞ there is a constant C =C(n, p,b1,b2,Ψ) such that

∥
∥∑
k∈Z

Fk
∥
∥
Lp ≤C

∥
∥
∥

(

∑
k∈Z

|Fk|2
)1/2∥∥

∥
Lp
. (7.5.10)
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Proof. (a) Assume that the expression on the right-hand side in (7.5.9) is finite;
otherwise there is nothing to prove. It follows from Corollary 2.2.10 that there is a
polynomial Q such that F−Q lies in Hp(Rn) and that

∥
∥F−Q

∥
∥
Hp ≤ c′(n, p,b1,b2,Ψ)

∥
∥
∥

(

∑
k=r mod q

|ΔΩ
k (F)|2

)1/2∥∥
∥
Lp

< ∞ .

By the characterization of Hp quasi-norms, this implies

∥
∥sup

t>0
|(F−Q)∗Φt |

∥
∥
Lp ≤ c′′(n, p,b1,b2,Ψ)

∥
∥
∥

(

∑
k=r mod q

|ΔΩ
k (F)|2

)1/2∥∥
∥
Lp
, (7.5.11)

where Φ is a fixed Schwartz function with integral equal to 1. We clearly have

|F−Q| ≤ sup
t>0

|(F−Q)∗Φt |

since the family {Φt}t>0 is an approximate identity and F is locally integrable.
Taking Lp quasi-norms and using (7.5.11) we obtain

‖F−Q‖Lp ≤ c(n, p,b1,b2,Ψ)
∥
∥
∥

(

∑
k=r mod q

|ΔΩ
k (F)|2

)1/2∥∥
∥
Lp

< ∞ . (7.5.12)

Next, we show that Q is the zero polynomial. If Q is nonconstant, then

∞= |{|Q|> 2λ}| ≤ {|F |> λ}|+ |{|F−Q|> λ}| ≤ 1
λ 2 ‖F‖2L2 +

1
λ p ‖F−Q‖pLp → 0

as λ → ∞, which is a contradiction. Thus, Q is a constant, and since F ∈ L2 and
F−Q ∈ Lp, we obtain that Q= 0. Now (7.5.9) follows from (7.5.12).

(b) Notice that the function ξ �→ Ω̂(2−kξ ) is equal to 1 on the support of F̂k,
and thus we have Fk = ΔΩ

k (Fk) for all k. Set q = b2 − b1 + 1. Moreover, for any
r ∈ {0,1, . . . ,q− 1} we have ∑k=r mod q Ω̂(2−kξ ) = 1 as long as ξ �= 0. For r in
{0,1,2, . . . ,q−1} we define the functions

Gr = ∑
l=r mod q

Fl

and observe that

∑
j∈Z

Fj =
q−1

∑
r=0

Gr .

Then, if k = r mod q, we have

ΔΩ
k (Gr) = ΔΩ

k

(

∑
l=r mod q

Fl
)

= ΔΩ
k (Fk)= Fk (7.5.13)



7.5 Multilinear Multiplier Theorems 561

since the intersection of the annuli 6
72

k+b1 ≤ |ξ | ≤ 2k+b2+1 and 2b1+l ≤ |ξ | ≤ 2b2+l

has measure zero if l = r mod q, k = r mod q, and l is not equal to k modulo q. The
function Gr lies in L2 by the assumption ∑k ‖Fk‖2L2 <∞, and thus part (a) yields that

∥
∥Gr

∥
∥
Lp ≤ c(n, p,b1,b2,Ψ)

∥
∥
∥

(

∑
k=r mod q

|ΔΩ
k (Gr)|2

)1/2∥∥
∥
Lp
.

This inequality, combined with (7.5.13), implies (7.5.10), withGr in place of∑k∈ZFk.
Summing over r ∈ {0,1, . . . ,q−1} yields (7.5.10) with a bigger constant. �

7.5.2 Coifman-Meyer Method

In this subsection we describe a method to obtain boundedness for a bilinear multi-
plier operator using Fourier series expansions.

Theorem 7.5.3. Suppose that a bounded function σ on (Rn)2 \{(0,0)} satisfies
∣
∣∂α1∂α2σ(ξ1,ξ2)

∣
∣≤Cα1,α2(|ξ1|+ |ξ2|)−|α1|+|α2| (7.5.14)

for all (ξ1,ξ2) �= (0,0) and all multi-indices α1,α2, with |α1|+ |α2| ≤ 2n. Given
p1, p2, p such that 1< p1, p2 ≤ ∞ and 1/2< p< ∞ satisfying 1/p= 1/p1+1/p2,
the bilinear operator Tσ is bounded from Lp1(Rn)×Lp2(Rn) to Lp(Rn).

Proof. We first assume that p1, p2 <∞. We fix a Schwartz functionΨ whose Fourier
transform is nonnegative, supported in the set {ξ ∈ Rn : 6

7 ≤ |ξ | ≤ 2}, is equal to 1
on the set {ξ ∈ Rn : 1≤ |ξ | ≤ 12

7 }, and satisfies

∑
j∈Z

Ψ̂(ξ/2 j) = 1 (7.5.15)

for all ξ �= 0. We set Φ̂(ξ ) = ∑ j≤0Ψ̂(2− jξ ) and define Φ̂(0) = 1. Then Φ̂(ξ ) is a
smooth bump with compact support that is equal to 1 when |ξ | ≤ 12

7 and is equal to
zero when |ξ | ≥ 2.

We introduce the Littlewood–Paley operators ΔΨ
j associated withΨ via ΔΨ

j ( f ) =
f ∗Ψ2− j , and we fix Schwartz functions f1, f2 on Rn. We express each f j as

f j = ∑
k∈Z

ΔΨ
k ( f j)

where the sum is rapidly converging. We write

Tσ ( f1, f2) = ∑
k∈Z

[

Tσ1
k
( f1, f2)+Tσ2

k
( f1, f2)+Tσ3

k
( f1, f2)

]

, (7.5.16)
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where

σ1
k (ξ1,ξ2) =σ(ξ1,ξ2)Ψ̂(2−kξ1)Φ̂(2−k+6ξ2)

σ2
k (ξ1,ξ2) =σ(ξ1,ξ2)Ψ̂(2−kξ1)

5

∑
s=−5

Ψ̂(2−k+sξ2)

σ3
k (ξ1,ξ2) =σ(ξ1,ξ2)Φ̂(2−k+6ξ1)Ψ̂(2−kξ2) .

We start with σ1
k which is supported in B(0,2k+1)×B(0,2k−5) and is C ∞ since

its support does not contain the origin. Thus the C ∞ function

(ξ1,ξ2) �→ σ1
k (2

k+3ξ1,2k+3ξ2) (7.5.17)

is supported in the cube [− 1
4 ,

1
4 ]

2n. Set ψ̂(ξ ) = Ψ̂( 12ξ )+Ψ̂(ξ )+Ψ̂(2ξ ). Expanding
the function in (7.5.17) in Fourier series over the cube [− 1

2 ,
1
2 ]

2n we write

σ1
k (2

k+3ξ1,2k+3ξ2) = ∑
l1∈Zn

∑
l2∈Zn

Ck(l1, l2)e2πi(ξ1·l1+ξ2·l2)ψ̂(23ξ1)Φ̂(28ξ2), (7.5.18)

where the factor ψ̂(23ξ1)Φ̂(28ξ2) is equal to 1 on the support of the function
(ξ1,ξ2) �→σ1

k (2
k+3ξ1,2k+3ξ2) and is itself supported in [− 1

2 ,
1
2 ]

2n. (Notice that with-
out this factor the series produces a periodic function on R2n.) Here Ck(l1, l2) is the
Fourier coefficient given by

Ck(l1, l2) =
∫∫

[− 1
2 ,

1
2 ]

2n

e−2πi(y1·l1+y2·l2)σ1
k (2

k+3y1,2k+3y2)dy1dy2 . (7.5.19)

FixN ∈Z+. We estimate the expression in (7.5.19) using integration by parts with re-
spect to the differential operator (1−Δy1)

N(1−Δy2)
N , which can also be expressed

as a sum of derivatives of the form ∂α1y1 ∂
α2
y2 with |α j| ≤ 2N. Since

∣
∣∂α1y1 ∂

α2
y2 σ

1
k (2

k+3y1,2k+3y2)
∣
∣≤ C′

NCα1,α2
(|y1|+ |y2|)|α1|+|α2| χ 6

7
1
8≤|y1|≤2 1

8
≤CNCα1,α2 ,

which is a consequence of Leibniz’s rule and (7.5.14), it follows that

sup
k∈Z

|Ck(l1, l2)| ≤
CN sup|α1|,|α2|≤2NCα1,α2
(1+ |l1|2)N(1+ |l2|2)N . (7.5.20)

Dilating back in (7.5.18) we write

σ1
k (ξ1,ξ2) = ∑

l1∈Zn
∑

l2∈Zn
Ck(l1, l2)e2πi2

−k−3ξ1·l1ψ̂(2−kξ1)e2πi2
−k−3ξ2·l2Φ̂(2−k+5ξ2).
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Notice that
(

e2πi2
−k−3(·)·l1ψ̂(2−k(·)))∨ = (τ−l1/8ψ)2−k , where τh f (x) = f (x− h),

and thus

∑
k∈Z

Tσ1
k
( f1, f2) = ∑

l1∈Zn
∑

l2∈Zn
∑
k∈Z

Ck(l1, l2)Δ
τ−l1/8ψ
k ( f1)S

l2
k ( f2)

where Δτ−l1/8ψ
k ( f1) is the associated Littlewood–Paley operator and

Sl2k ( f2) = 2−5n[τ−l2/8Φ(2−5(·))]2−k ∗ f2 = 2−5n∑
j≤k

Δτ−l2/8Ψ(2−5(·))
j ( f2).

Note that supk∈Z |Sl2k (·)| is bounded on Lp2 in view of (7.5.2).
Next we fix l1, l2 and obtain Lp1 ×Lp2 → Lp bounds for the bilinear operator

∑
k∈Z

Ck(l1, l2)Δ
τ−l1/8ψ
k ( f1) S

l2
k ( f2) (7.5.21)

with constant C′(1+ |l1|2)−N(1+ |l2|2)−N log(2+ |l1|) log(2+ |l2|). These bounds
can be trivially summed in l1, l2 when p ≥ 1 by Minkowski’s inequality as long as
2N > n. When p ≤ 1, we use the subadditivity of the quantity ‖ · ‖pLp to derive the
same conclusion, provided 2Np> n.

We notice that the Fourier transform of Sl2k ( f2) is supported in the ball B(0,2
k−4),

whereas that of Δτ−l1/8ψ
k ( f1) is contained in the annulus 1

2
6
72

k ≤ |ξ | ≤ 222k. Thus,
the support of the Fourier transform of

Fk = Δτ−l1/8ψ
k ( f1)S

l2
k ( f2)

is contained in the algebraic sum of these sets, which is contained in the annulus
2−22k ≤ |ξ | ≤ 232k. Moreover, we have that

∑
k
‖Fk‖2L2 ≤ c‖M( f2)‖2L∞‖ f1‖2L2 < ∞ .

Applying Lemma 7.5.2(b) and (7.5.20) we obtain that
∥
∥
∥∑
k∈Z

Ck(l1, l2)Δ
τ−l1/8ψ
k ( f1)S

l2
k ( f2)

∥
∥
∥
Lp

≤ Cp,nCN sup|α1|,|α2|≤2N

(1+ |l1|2)N(1+ |l2|2)N
∥
∥
∥

(

∑
k∈Z

|Δτ−l1/8ψ
k ( f1)S

l2
k ( f2)|2

) 1
2
∥
∥
∥
Lp
. (7.5.22)

The Lp quasi-norm in (7.5.22) is bounded by

∥
∥
∥

(

∑
k∈Z

|Δτ−l1/8ψ
k ( f1)|2

) 1
2
sup
k∈Z

|Sl2k ( f2)|
∥
∥
∥
Lp

≤Cn,p

2

∏
i=1

log(2+ |li|)
∥
∥ fi
∥
∥
Lpi (7.5.23)
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in view of Hölder’s inequality and Proposition 7.5.1. Combining (7.5.23) and (7.5.22)
yields the claimed bound for the bilinear operator in (7.5.21).

Since in σ1
k and σ3

k the roles of ξ1 and ξ2 are symmetric, a similar decomposition
is valid for Tσ3

k
.

Finally, for σ2
k we apply a similar Fourier series expansion technique to write

∑
k∈Z

Tσ2
k
( f1, f2) = ∑

l1∈Zn
∑

l2∈Zn

[

∑
k∈Z

C′
k(l1, l2)Δ

τ−l1/2
8
θ

k ( f1)Δτ−l2/2
8
θ

k ( f2)
]

, (7.5.24)

where θ is a Schwartz function whose Fourier transform is equal to 1 on the smallest
annulus that contains [− 1

4 ,
1
4 ]

n and vanishes outside another annulus contained in
[− 1

2 ,
1
2 ]

n; here C′
k(l1, l2) is a constant that satisfies estimates similar to the estimates

ofCk(l1, l2). Then the expression inside the square brackets in (7.5.24) is bounded by
the product of two square functions such as those in (7.5.1) times a constant multiple
of (1+ |l1|2)−N(1+ |l2|2)−N . Applying Hölder’s inequality and Proposition 7.5.1 we
obtain that the Lp quasi-norm of the product of these square functions is bounded
by Cp,n log(2+ |l1|) log(2+ |l2|)‖ f1‖Lp1 ‖ f2‖Lp2 . The series in l1, l2 in (7.5.24) are
summable, and thus the claimed conclusion follows.

This argument requires 2Np> n and 2N > n. Since p> 1/2, we may take N = n.
But 2N was the maximum number of derivatives required of σ . This is compatible
with (7.5.14) which holds for all multi-indices α1,α2, with |α1|+ |α2| ≤ 2n= 2N.

We now dispose of the assumption that p1, p2 < ∞. Assume, for instance, that
p1 = ∞; in this case we should have p2 < ∞ since p2 = p < ∞ by assumption. The
fact that Tσ maps L∞ × Lp to Lp is equivalent to the fact that T ∗1

σ maps Lp′ × Lp

to L1. But T ∗1
σ = Tσ∗1 , and σ∗1(ξ1,ξ2) = σ(−ξ1−ξ2,ξ2) is another multiplier that

satisfies (7.5.14); see Exercise 7.5.1. The conclusion of the theorem proved when
p1, p2, p< ∞ implies the claim by duality in the case p1 = ∞. �

7.5.3 Hörmander-Mihlin Multiplier Condition

In this section we extend Theorem 7.5.3 in two ways. First, we reduce the number of
derivatives required of the symbol. Secondly, we extend it to multilinear operators.
Multi-indices in (Rn)m are denoted by �α = (α1, . . . ,αm), where each α j is a multi-
index in Rn. We denote by |�α |= |α1|+ · · ·+ |αm| the total length of �α .

Definition 7.5.4. We denote by S∗(Rd) the space of all Schwartz functions Ψ on
Rd whose Fourier transforms are supported in an annulus of the form c1 < |ξ |< c2,
are nonvanishing in a smaller annulus c′1 ≤ |ξ | ≤ c′2, for some choice of constants
0< c1 < c′1 < c′2 < c2 < ∞ and satisfy for some nonzero constant b

∑
j∈Z

Ψ̂(2− jξ ) = b (7.5.25)

for all ξ ∈ Rd \{0}.
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Recall that the Sobolev Lrγ norm of a function g is defined as the Lr norm of the
function (I−Δ)γ/2(g). The main result of this section is as follows.

Theorem 7.5.5. Let 1< r≤ 2. Suppose that σ is a bounded function on (Rn)m\{0}.
LetΨ be inS∗((Rn)m). Suppose that for some γ satisfying mn

r < γ ≤ mn we have

sup
k∈Z

∥
∥σ kΨ̂

∥
∥
Lrγ ((Rn)m)

= K < ∞, (7.5.26)

where

σ k(ξ1, . . . ,ξm) = σ(2kξ1, . . . ,2kξm) . (7.5.27)

Then the m-linear operator Tσ is bounded from Lp1(Rn)×·· ·×Lpm(Rn) to Lp(Rn),
whenever mn

γ < p j < ∞ for all j = 1, . . . ,m, and p satisfies

1
p
=

1
p1

+ · · ·+ 1
pm

.

Before we prove this theorem we discuss some preliminary facts.

Definition 7.5.6. For s ∈ R, we introduce the weight

ws(x) = (1+4π2|x|2)s/2 .

For 1 ≤ p < ∞ the weighted Lebesgue space Lp(ws) is defined as the set of all
measurable functions f on Rn such that

‖ f‖Lp(ws) =

(∫

Rn
| f (x)|p ws(x)dx

)1/p

< ∞.

We note that for 1< r ≤ 2 one has

‖ĝ‖Lr′ (ws)
=

(∫

Rn
|ĝ |r′ws dξ

) 1
r′

=

(∫

Rn
|ĝws/r′ |r

′
dξ
) 1

r′

=

(∫

Rn

∣
∣
[

(I−Δ)
s
2r′ g
]
̂
∣
∣r

′
dξ
) 1

r′

≤
(∫

Rn

∣
∣(I−Δ)

s
2r′ g
∣
∣r dx

) 1
r

= ‖g‖Lr
s/r′

(7.5.28)

via the Hausdorff-Young inequality (Proposition 2.2.16 in [156]).
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Lemma 7.5.7. Let 1 < p < q < ∞. Let R0 > 0. Then for every s ≥ 0 there exists a
constantC=C(p,q,s,n,R0)> 0 such that for all functions g in Lqs that are supported
in a ball of radius R0 in Rn we have

‖g‖Lps (Rn) ≤C‖g‖Lqs (Rn) . (7.5.29)

Proof. We fix a smooth and compactly supported function ϕ that is equal to one on
the ball of radius R0. It will suffice to prove that

‖ϕg‖Lps (Rn) ≤C‖g‖Lqs (Rn) . (7.5.30)

Since Schwartz functions are dense in Lqs (Exercise 2.2.4), it will suffice to prove
(7.5.30) for a Schwartz function g. If g is a Schwartz function, then so are
(I−Δ)s/2(g) and (I−Δ)−s/2(g); thus, we may write (7.5.30) equivalently as

∥
∥(I−Δ)s/2

[

ϕ(I−Δ)−s/2(ψ)
]∥
∥
Lp(Rn)

≤C‖ψ‖Lq(Rn) , (7.5.31)

where ψ is a Schwartz function.
We fix an index r such that 1/p= 1/q+1/r. We fix a Schwartz function h with

Lp′ norm equal to one. For z ∈ C we define an entire function

G(z) =
∫

Rn
(I−Δ)z/2

[

ϕ(I−Δ)−z/2(ψ)
]

(x)h(x)dx

=

∫

Rn
(1+4π2|ξ |2)z/2

∫

Rn
ϕ̂(ξ −η)(1+4π2|η |2)−z/2ψ̂(η)dη ĥ(ξ )dξ .

We show that
∣
∣G(z)

∣
∣≤C (1+ |Imz|)c ‖ψ‖Lq(Rn) (7.5.32)

where C,c are positive constants and z is a complex number that satisfies either
Rez= 0 or Rez= 2[s]+2. Note that in view of the Mihlin multiplier theorem (The-
orem 6.2.7 in [156]), we have that

∥
∥(I−Δ)−it/2(g)

∥
∥
Lq ≤Cn,q(1+ |t|)[n/2]+1‖g‖Lq .

When z= 0+ it, using Hölder’s inequality we obtain

|G(it)| ≤ ∥∥(I−Δ)it/2
[

ϕ(I−Δ)−it/2(ψ)
]∥
∥
Lp‖h‖Lp′

≤ c(1+ |t|)[ n2 ]+1∥∥ϕ(I−Δ)−it/2(ψ)
∥
∥
Lp‖h‖Lp′

≤ c‖ϕ‖Lr(1+ |t|)[ n2 ]+1∥∥(I−Δ)−it/2(ψ)
∥
∥
Lq

≤ c′ (1+ |t|)2[ n2 ]+2‖ψ‖Lq .

Set N = [s]+1. When z= it+2N, we have

|G(it+2N)|
≤∥∥(I−Δ)it/2+N[ϕ(I−Δ)−it/2−N(ψ)

]∥
∥
Lp‖h‖Lp′



7.5 Multilinear Multiplier Theorems 567

≤c(1+ |t|)[ n2 ]+1∥∥(I−Δ)N
[

ϕ(I−Δ)−it/2−N(ψ)
]∥
∥
Lp

≤c(1+ |t|)[ n2 ]+1 ∑
|α |≤2N

Cα
∥
∥∂α

[

ϕ(I−Δ)−it/2−N(ψ)
]∥
∥
Lp

≤c(1+ |t|)[ n2 ]+1 ∑
|β |+|γ |≤2N

Cβ ,γ
∥
∥∂βϕ∂ γ(I−Δ)−it/2−N(ψ)

]∥
∥
Lp

≤c(1+ |t|)[ n2 ]+1 ∑
|β |+|γ |≤2N

Cβ ,γ
∥
∥∂βϕ

∥
∥
Lr
∥
∥(I−Δ)−it/2∂ γ(I−Δ)−N(ψ)

]∥
∥
Lq

≤c′ (1+ |t|)2[ n2 ]+2 ∑
|β |+|γ |≤2N

Cβ ,γ
∥
∥∂βϕ

∥
∥
Lr
∥
∥∂ γ(I−Δ)−N(ψ)

]∥
∥
Lq

≤c′′ (1+ |t|)2[ n2 ]+2‖ψ‖Lq

since ∂ γ(I−Δ)−N is an Lq multiplier operator as long as |γ | ≤ 2N by another appli-
cation of the Mihlin multiplier theorem (Theorem 6.2.7 in [156]).

Now consider the function F(z) = G(2Nz) defined on the strip [0,1]×R. We
observe that F is analytic on the open strip and continuous on its closure. Moreover,
it satisfies |F(z)| ≤C(Rez) as it easily follows by applying Parserval’s identity; thus,
(7.2.53) holds. Lemma 7.2.10 applies and, combined with the result of Exercise 1.3.8
in [156], yields that

|F(t)| ≤C‖ψ‖Lq
for any t ∈ (0,1). Taking t = s/2N we obtain the proof of (7.5.31). �
Lemma 7.5.8. Suppose that s ≥ 0 and 1 < r < ∞. Assume that ϕ lies in S (Rn).
Then there is a constant cϕ such that for all g ∈ Lrs(Rn) we have

‖gϕ‖Lrs ≤ cϕ ‖g‖Lrs . (7.5.33)

Proof. Since Schwartz functions are dense in Lqs (Exercise 2.2.4), it will suffice to
prove (7.5.33) for a Schwartz function g. We have

(I−Δ)s/2(gϕ) =
∫

Rn
ϕ̂(τ)(I−Δ)s/2(ge2πiτ ·(·))dτ .

Wewill show that the Lr norm of (I−Δ)s/2(ge2πiτ ·(·)) is controlled byCs,n (1+ |τ |)s
times the Lr norm of (I−Δ)s/2(g). This statement will be a consequence of the fact
that the function

(
1+4π2|ξ + τ |2
1+4π2|ξ |2

) s
2

(7.5.34)

is an Lr Fourier multiplier with norm that is bounded by a multiple of (1+ |τ |)B,
where B = s+ n+ 4. But this is an easy consequence of the Mihlin multiplier the-
orem (Theorem 6.2.7 in [156]) in view of the fact that for all multi-indices α , with
|α| ≤ [n/2]+1, we have

∣
∣
∣∂αξ

(
1+ |ξ + τ |2
1+ |ξ |2

) s
2 ∣
∣
∣≤Cα ,s(1+ |τ |)B(1+ |ξ |)−|α | (7.5.35)
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and so the Mr norm of the function in (7.5.34) is bounded by Cs,n (1+ |τ |)B. To
verify (7.5.35), we argue as follows. Set

F(ξ ,τ) =
1+ |ξ + τ |2
1+ |ξ |2 =

|ξ |2
1+ |ξ |2 +

n

∑
j=1

ξ j

1+ |ξ |2 2τ j+
1+ |τ |2
1+ |ξ |2

and note that
1
2
(1+ |τ |2)−1 ≤ F(ξ ,τ)≤ 2(1+ |τ |2)

and that
∣
∣∂αξ F(ξ ,τ)

∣
∣≤Cα(1+ |τ |)2(1+ |ξ |)−|α | .

Then for 1≤ |α| ≤ [n/2]+1 we have

∣
∣∂αξ (F(ξ ,τ)

s
2 )
∣
∣≤

|α |
∑
k=1

F(ξ ,τ)
s
2−kCk,α

(1+ |τ |)2
(1+ |ξ |)|α | ≤Cα ,s

(1+ |τ |)s+2[ n2 ]+2+2

(1+ |ξ |)|α | .

This proves (7.5.35) and concludes the proof of the lemma. �

Corollary 7.5.9. Assume that r = 2 in Theorem 7.5.5. Then Tσ is bounded from
Lp1(Rn)×·· ·×Lpm(Rn) to Lp(Rn) whenever 1 < p1, . . . , pm, p < ∞, and the rela-
tionship 1/p1+ · · ·+1/pm = 1/p holds.

We prove Corollary 7.5.9 assuming Theorem 7.5.5.

Proof. We first prove that condition (7.5.26) is invariant under the transposes, that
is, it is also valid for the symbols of the dual operators. Indeed, the symbol of the
kth transpose operator is

σ∗k(ξ1, . . . ,ξm) = σ(ξ1, . . . ,ξk−1,−(ξ1+ · · ·+ξm),ξk+1, . . . ,ξm) ,

with the obvious modification if k = 1 or k = m. This is equal to σ(Ak
�ξ ), where �ξ

is the column vector (ξ1, . . . ,ξm) and Ak is a modified m×m identity matrix whose
kth row has been replaced by the row (−1, . . . ,−1). Notice that A−1

k = Ak. Condition
(7.5.26) for σ∗k is

sup
j∈Z

∫

(Rn)m

∣
∣
[

σ(2 jAk
�ξ )Ψ̂(�ξ )]̂(�y)

∣
∣2wγ(�y)d�y< ∞ , (7.5.36)

where the hat denotes Fourier transform in the �ξ variable. We note that the function
Ψk whose Fourier transform is the function �ξ �→ Ψ̂(Ak

�ξ ), lies in S∗((Rn)m) since
it satisfies (7.5.25).

By a change of variables inside the Fourier transform, (7.5.36) transforms into

sup
j∈Z

∫

(Rn)m

∣
∣
[

σ(2 j�ξ )Ψ̂k(ξ )]̂(At
k�y)
∣
∣2wγ(�y)d�y< ∞ , (7.5.37)
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where At
k is the transpose of Ak. But (At

k)
−1 = At

k and |At
k�y | ≈ |�y |; thus we have

wγ(At
k�y) ≈ wγ(�y). Therefore, by another change of variables, condition (7.5.37) is

equivalent to

sup
j∈Z

∫

(Rn)m

∣
∣
[

σ(2 j�ξ )Ψ̂k(ξ )]̂(�y)
∣
∣2wγ(�y)d�y< ∞ . (7.5.38)

Thus, condition (7.5.26) for σ∗k holds.
We now have that (7.5.26) holds for σ∗k for allΨ in S∗((Rn)m). Theorem 7.5.5

implies that (Tσ )∗k, the kth adjoint of Tσ , is bounded from Lp1(Rn)×·· ·×Lpm(Rn)
to Lp(Rn) whenever 2 < p j < ∞, in particular when 2 ≤ m < p j < ∞. In this case,
each (Tσ )∗k is bounded from Lp1(Rn)×·· ·×Lpm(Rn) to Lp(Rn), with 1 < p < ∞.
By duality we obtain that Tσ is bounded from Lp1(Rn)×·· ·×Lpm(Rn) to Lp(Rn),
where m < p j < ∞ when j �= k and 1 < pk < m/(m− 1). This is also valid when
m= 1.

We now have boundedness for Tσ from Lq1(Rn)×·· ·×Lqm(Rn) to Lq(Rn) in the
following m+ 1 cases: (a) when all indices q j are near infinity and (b) when the
m−1 indices q j, j �= k are near infinity and qk is near 1 for all k ∈ {1, . . . ,m}. Ap-
plying Corollary 7.2.4 we obtain that Tσ is bounded from Lp1(Rn)×·· ·×Lpm(Rn)
to Lp(Rn) for indices p j satisfying 1< p1, . . . , pm, p< ∞. �

7.5.4 Proof of Main Result

In this section we discuss the proof of Theorem 7.5.5.

Proof. For each j= 1, . . . ,mwe let Rj be the set of points (ξ1, . . . ,ξm) in (Rn)m such
that |ξ j| = max{|ξ1|, . . . , |ξm|}. For j = 1, . . . ,m we introduce nonnegative smooth
functions φ j on [0,∞)m−1 that are supported in [0, 1110 ]

m−1 such that

1=
m

∑
j=1

φ j

( |ξ1|
|ξ j| , . . . ,

̂|ξ j|
|ξ j| , . . . ,

|ξm|
|ξ j|

)

for all (ξ1, . . . ,ξm) �= 0, with the understanding that the variable with the hat is
missing. These functions introduce a partition of unity of (Rn)m \ {0} subordinate
to a conical neighborhood of the region Rj. See Exercise 7.5.4.

Each region Rj can be written as the union of sets

Rj,k =
{

(ξ1, . . . ,ξm) ∈ Rj : |ξk| ≥ |ξs| for all s �= j
}

over k= 1, . . . ,m. We need to work with a finer partition of unity, subordinate to each
Rj,k. To achieve this, for each j we introduce smooth functions φ j,k on [0,∞)m−2

supported in [0, 1110 ]
m−2 such that
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1=
m

∑
k=1
k �= j

φ j,k

( |ξ1|
|ξk| , . . . ,

̂|ξk|
|ξk| , . . . ,

̂|ξ j|
|ξk| , . . . ,

|ξm|
|ξk|

)

for all (ξ1, . . . ,ξm) in the support of φ j with ξk �= 0.
We now have obtained the following partition of unity of (Rn)m minus a set of

measure zero

1=
m

∑
j=1

m

∑
k=1
k �= j

φ j

( |ξ1|
|ξ j| , . . . ,

̂|ξ j|
|ξ j| , . . . ,

|ξm|
|ξ j|

)

φ j,k

( |ξ1|
|ξk| , . . . ,

̂|ξk|
|ξk| , . . . ,

̂|ξ j|
|ξk| , . . . ,

|ξm|
|ξk|

)

,

where the dots indicate the variables of each function.
We now introduce a nonnegative smooth bump ψ supported in the interval

[(10m)−1,2] and equal to 1 on the interval [(5m)−1, 1210 ], and we decompose the
identity on (Rn)m \E, where |E|= 0, as follows:

1=
m

∑
j=1

m

∑
k=1
k �= j

[

Φ j,k+Ψj,k
]

,

where Φ j,k(ξ1, . . . ,ξm) is equal to

φ j

( |ξ1|
|ξ j| , . . . ,

̂|ξ j|
|ξ j| , . . . ,

|ξm|
|ξ j|

)

φ j,k

( |ξ1|
|ξk| , . . . ,

̂|ξk|
|ξk| , . . . ,

̂|ξ j|
|ξk| , . . . ,

|ξm|
|ξk|

)(

1−ψ
( |ξk|
|ξ j|

))

andΨj,k(ξ1, . . . ,ξm) is equal to

φ j

( |ξ1|
|ξ j| , . . . ,

̂|ξ j|
|ξ j| , . . . ,

|ξm|
|ξ j|

)

φ j,k

( |ξ1|
|ξk| , . . . ,

̂|ξk|
|ξk| , . . . ,

̂|ξ j|
|ξk| , . . . ,

|ξm|
|ξk|

)

ψ
( |ξk|
|ξ j|

)

.

This partition of unity induces the following decomposition of σ :

σ =
m

∑
j=1

m

∑
k=1
k �= j

(

σ Φ j,k+σΨj,k
)

. (7.5.39)

We will prove the required assertion for each piece of this decomposition, i.e., for
the multipliers σ Φ j,k and σΨj,k for each pair ( j,k) in the previous sum. In view of
the symmetry of the decomposition, it suffices to consider the case of a fixed pair
( j,k) in the sum in (7.5.39). To simplify the notation, we fix the pair (m,m− 1);
thus, for the rest of the proof we fix j=m and k=m−1, and we prove boundedness
for the m-linear operators whose symbols are σ1 = σ Φm,m−1 and σ2 = σΨm,m−1.
These correspond to the m-linear operators Tσ1 and Tσ2 , respectively. An important
note is that σ1 is supported in the set where

max(|ξ1|, . . . , |ξm−2|)≤ 11
10 |ξm−1| ≤ 11

10 · 1
5m |ξm| .
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Also σ2 is supported in the set where

max(|ξ1|, . . . , |ξm−2|)≤ 11
10 |ξm−1|

and
1

10m ≤ |ξm−1|
|ξm| ≤ 2 .

We first consider Tσ1( f1, . . . , fm), where f j are fixed Schwartz functions. We fix
a Schwartz radial function η whose Fourier transform is supported in the annulus
1− 1

25 ≤ |ξ | ≤ 2 and satisfies

∑
j∈Z

η̂(2− jξ ) = 1, ξ ∈ Rn\{0}.

Associated with η we define the Littlewood–Paley operator Δη
j ( f )= f ∗η2− j ,where

ηt(x) = t−nη(t−1x) for t > 0. We decompose

fm = ∑
j∈Z

Δη
j ( fm)

and we note that the support of the Fourier transform of Tσ1( f1, . . . , fm−1,Δη
j ( fm))

is contained in the set
{

ξ1 : |ξ1| ≤ 3·2 j
5m

}

+ · · ·+{ξm−1 : |ξm−1| ≤ 3·2 j
5m

}

+
{

ξm : 24
25 ·2 j ≤ |ξm| ≤ 2 ·2 j} .

The algebraic sum of these sets is contained in the annulus

{z ∈ Rn : 2 j−2 ≤ |z| ≤ 2 j+3} .

Next, we define an operator S j by setting

S j(g) = g∗ζ2− j ,

where ζ is a smooth function whose Fourier transform is equal to 1 on the ball
|z|< 3/5m and vanishes outside the double of this ball.

The Fourier transforms of Tσ1(S j( f1), . . . ,S j( fm−1),Δη
j ( fm)) are supported in the

annuli {z ∈ Rn : 2 j−2 ≤ |z| ≤ 2 j+3}, and we claim that

∑
j∈Z

∥
∥
∥Tσ1(S j( f1), . . . ,S j( fm−1),Δη

j ( fm))
∥
∥
∥

2

L2
< ∞ . (7.5.40)

Indeed, using Exercise 7.5.3 we have that Tσ1(S j( f1), . . . ,S j( fm−1),Δη
j ( fm))̂(ξ ) is

bounded by

‖σ1‖L∞
∫

(Rn)m−1

∣
∣
∣
̂S j( f1)(ξ1) · · · ̂S j( fm−1)(ξm−1)

̂Δη
j ( fm)

(

ξ −
m−1

∑
k=1

ξk
)
∣
∣
∣dξ1 · · ·dξm−1 .
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In view of the Cauchy-Schwarz inequality, the square of the L2 norm of the preced-
ing expression is at most

‖σ1‖2L∞
m−1

∏
i=1

∫

Rn

∣
∣̂S j( fi)(ξi)

∣
∣dξi

[∫

(Rn)m

m−1

∏
i=1

∣
∣̂S j( fi)(ξi)

∣
∣
∣
∣ ̂Δη

j ( fm)
(

ξ−
m−1

∑
k=1

ξk
)∣
∣2d�ξ ′dξ

]

,

where d�ξ ′ = dξ1 · · ·dξm−1, and this expression is bounded by

‖σ1‖2L∞
m−1

∏
i=1

∥
∥̂S j( fi)

∥
∥2
L1
∥
∥ ̂Δη

j ( fm)
∥
∥2
L2 < ∞ ,

thus (7.5.40) holds. Lemma 7.5.2(b) now yields that for some constant C we have

‖Tσ1( f1, . . . , fm−1, fm)‖Lp ≤C
∥
∥
∥

[

∑
j

∣
∣Tσ1

(

S j( f1), . . . ,S j( fm−1),Δη
j ( fm)

)∣
∣2
] 1
2
∥
∥
∥
Lp
.

By definition, we have

Tσ1
(

S j( f1), . . . ,S j( fm−1),Δη
j ( fm)

)

(x)

=
∫

(Rn)m
e2πix·(ξ1+···+ξm)σ1(ξ1, . . . ,ξm)

m−1

∏
k=1

̂S j( fk)(ξk) ̂Δη
j ( fm)(ξm)dξ1 · · ·dξm .

A simple calculation yields that the support of the integrand in the previous integral
is contained in the annulus

{

(ξ1, . . . ,ξm) ∈ (Rn)m : 7
10 ·2 j < |(ξ1, . . . ,ξm)|< 21

10 ·2 j
}

,

so one may introduce in the previous integral the factor Ψ̂(2− jξ1, . . . ,2− jξm), where
Ψ is a radial function in S∗((Rn)m) whose Fourier transform is supported in some
annulus and is equal to 1 on the annulus

{

(z1, . . . ,zm) ∈ (Rn)m : 7
10 ≤ |(z1, . . . ,zm)| ≤ 21

10

}

.

Inserting this factor and taking the inverse Fourier transform, we obtain that

Tσ1
(

S j( f1), . . . ,S j( fm−1),Δη
j ( fm)

)

(x)

is equal to

∫

(Rn)m
2mn j(σ j

1 Ψ̂)∨(2 j(x− y1), . . . ,2 j(x− ym))
m−1

∏
i=1

S j( fi)(yi)Δη
j ( fm)(ym)d�y,

where d�y= dy1 · · ·dym, the check indicates the inverse Fourier transform in all vari-
ables, and

σ j
1 (ξ1,ξ2, . . . ,ξm) = σ1(2 jξ1,2 jξ2, . . . ,2 jξm) .
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Recall our assumptions that r > 1, mn
γ < r, and 1≤ mn

γ < p j for j = 1, . . . ,m. We
pick a ρ such that max(mnγ ,1) = mn

γ < ρ <min(p1, . . . , pm,r). We now have

|Tσ1(S j( f1), . . . ,S j( fm−1),Δη
j ( fm))(x)|

≤
∫

(Rn)m
wγ
(

2 j(x− y1), . . . ,2 j(x− ym)
) |(σ j

1 Ψ̂)∨(2 j(x− y1), . . . ,2 j(x− ym))|

× 2mn j|S j( f1)(y1) · · ·S j( fm−1)(ym−1)Δη
j ( fm)(ym)|

wγ
(

2 j(x− y1), . . . ,2 j(x− ym)
) d�y

≤
[∫

(Rn)m

∣
∣
(

wγ (σ j
1 Ψ̂)∨

)

(2 j(x− y1), . . . ,2 j(x− ym))
∣
∣ρ

′
d�y
] 1
ρ ′

×2mn j
(
∫

(Rn)m

|S j( f1)(y1) · · ·S j( fm−1)(ym−1)Δη
j ( fm)(ym)|ρ

wγρ
(

2 j(x− y1), . . . ,2 j(x− ym)
) d�y

) 1
ρ

≤C
(∫

(Rn)m
wγρ ′(y1, . . . ,ym)|(σ j

1 Ψ̂)∨(y1, . . . ,ym)|ρ ′d�y
) 1

ρ ′

×
(
∫

(Rn)m

2mn j|S j( f1)(y1) · · ·S j( fm−1)(ym−1)Δη
j ( fm)(ym)|ρ

(1+2 j|x− y1|)γρ/m · · ·(1+2 j|x− ym|)γρ/m
d�y

) 1
ρ

≤C‖(σ j
1 Ψ̂)∨‖Lρ ′ (wγρ ′ )

m−1

∏
i=1

(∫

Rn

2 jn|S j( fi)(yi)|ρ
(1+2 j|x− yi|)γρ/m

dyi

) 1
ρ

×
(
∫

Rn

2 jn|Δη
j ( fm)(ym)|ρ

(1+2 j|x− ym|)γρ/m
dym

) 1
ρ

≤C′‖(σ j
1 Ψ̂)∨‖Lρ ′ (wγρ ′ )c

m/ρ
m−1

∏
i=1

(M(M( fi)ρ)(x))
1
ρ
(

M(|Δη
j ( fm)|ρ)(x)

) 1
ρ
,

where we used that
∫

Rn

2 jn|h(y)|
(1+2 j|x− y|)γρ/m dy≤ cM(h)(x) ,

a consequence of the fact that γρ/m> n.
We now have the following sequence of inequalities:

‖(σ j
1 Ψ̂)∨‖Lρ ′ (wγρ ′ ) ≤ ‖σ j

1 Ψ̂‖Lργ ≤C′′ ‖σ j
1 Ψ̂‖Lrγ ≤C′ ‖σ jΨ̂‖Lrγ <CK ,

justified by the result in calculation (7.5.28) for the first inequality, Lemma 7.5.7
together with the facts that 1 < ρ < r and σ j

1 is supported in a ball of fixed radius
for the second inequality, Lemma 7.5.8 for the third inequality, and the hypothesis
of Theorem 7.5.5 for the last inequality.
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Thus, we have obtained the estimate

|Tσ1(S j( f1), . . . ,S j( fm−1),Δη
j ( fm))| ≤CK

m−1

∏
i=1

(

M(M( fi)ρ)
) 1
ρ
(

M(|Δη
j ( fm)|ρ)

) 1
ρ
.

We now square the previous expression, sum over j ∈Z, and take square roots. Since
by the choice of ρ we have p j > ρ , each function (M(M( fi)ρ))

1
ρ lies in Lpi(Rn).

We obtain
∥
∥Tσ1( f1, . . . , fm−1, fm)

∥
∥
Lp(Rn)

≤ CK
∥
∥
∥

{

∑
j
|Tσ1(S j( f1), . . . ,S j( fm−1),Δη

j ( fm))|2
} 1

2
∥
∥
∥
Lp(Rn)

≤ C′K
∥
∥
∥

{

∑
j
M(|Δη

j ( fm)|ρ)
2
ρ
} 1

2
∥
∥
∥
Lpm (Rn)

m−1

∏
i=1

∥
∥
(

M
(

M( fi)ρ
)) 1

ρ
∥
∥
Lpi (Rn)

≤ C′′K
∥
∥
∥

{

∑
j
M(|Δη

j ( fm)|ρ)
2
ρ
} ρ

2
∥
∥
∥

1
ρ

Lpm/ρ (Rn)

m−1

∏
i=1

‖ fi‖Lpi (Rn)

and this is bounded by

C′′′K
m

∏
i=1

‖ fi‖Lpi (Rn)

in view of Theorem 5.6.6 in [156] with q = 2/ρ (note q > 1 since ρ < r ≤ 2) and
the Littlewood–Paley theorem (c.f. Theorem 6.1.2 in [156]).

Next we deal with σ2. Using the notation introduced earlier, we write

Tσ2( f1, . . . , fm−1, fm) = ∑
j∈Z

Tσ2( f1, . . . , fm−1,Δη
j ( fm)) .

We introduce another Littlewood–Paley operator Δθ
j , which is given on the Fourier

transform by multiplication with a bump θ̂(2− jξ ), where θ̂ is equal to one on the
annulus {ξ ∈ Rn : 24

25 · 1
10m ≤ |ξ | ≤ 4} and vanishes on a larger annulus. Also, we

define S′j as the operator given by convolution with ζ2− j , where ζ is a smooth func-
tion whose Fourier transform is equal to 1 on the ball |z|< 22

10 and vanishes outside
the double of this ball.

The key observation in this case is that for each j ∈ Z we have

Tσ2( f1, . . . , fm−1,Δη
j ( fm)) = Tσ2

(

S′j( f1), . . . ,S
′
j( fm−2),Δθ

j ( fm−1),Δη
j ( fm)

)

.

As in the previous case, one has that in the support of the integral

Tσ2
(

S′j( f1), . . . ,S
′
j( fm−2),Δθ

j ( fm−1),Δη
j ( fm)

)

(x)

=
∫

(Rn)m
e2πix·(ξ1+···+ξm)σ2(�ξ )

m−2

∏
t=1

̂S′j( ft)(ξt)
̂Δθ
j ( fm−1)(ξm−1)

̂Δη
j ( fm)(ξm)d�ξ
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we have that
|ξ1|+ · · ·+ |ξm| ≈ 2 j ;

thus one may insert into the integrand the factor Ψ̂(2− jξ1, . . . ,2− jξm) for someΨ
inS∗((Rn)m) such that Ψ̂ is equal to one on a sufficiently wide annulus.

A calculation similar to that in the case for σ1 yields the estimate

|Tσ2(S′j( f1), . . . ,S′j( fm−2),Δθ
j ( fm−1),Δη

j ( fm))|

≤CK
m−2

∏
i=1

(M(M( fi)ρ))
1
ρ
(

M(|Δθ
j ( fm−1)|ρ)

) 1
ρ
(

M(|Δη
j ( fm)|ρ)

) 1
ρ
.

Summing over j and taking Lp norms yields
∥
∥Tσ2( f1, . . . , fm−1, fm)

∥
∥
Lp(Rn)

≤CK
∥
∥
∥

m−2

∏
i=1

(M(M( fi)ρ))
1
ρ ∑

j∈Z

(

M
(

|Δθ
j ( fm−1)|ρ

)) 1
ρ
(

M
(

|Δη
j ( fm)|ρ

)) 1
ρ
∥
∥
∥
Lp

≤CK
∥
∥
∥

m−2

∏
i=1

(M(M( fi)ρ))
1
ρ
{ m

∏
i=m−1

∑
j∈Z

∣
∣M (|Δ j( fi)|ρ)

∣
∣
2
ρ
} 1

2
∥
∥
∥
Lp(Rn)

where the last step follows by the Cauchy-Schwarz inequality and Δ j is Δθ
j if j =

m− 1 and Δη
j if j = m. Applying Hölder’s inequality and using that ρ < 2 and

Theorem 5.6.6 in [156] we obtain the conclusion that the preceding expression is
bounded by

C′K ‖ f1‖Lp1 (Rn) · · ·‖ fm‖Lpm (Rn) .

This concludes the proof of the theorem. �

Exercises

7.5.1. Suppose that a function σ defined on (Rn)m \{�0} satisfies

|∂α1ξ1
· · ·∂αmξm

σ(ξ1, . . . ,ξm)| ≤Cα1,...,αm(|ξ1|+ · · ·+ |ξm|)−(|α1|+···+|αm|)

for all multi-indices α j satisfying |α1|+ · · ·+ |αm| ≤ N. Show that the same is valid
for each function σ∗ j defined in (7.3.20).

7.5.2. Let 1< r < ∞. Fix a function σ on Rn. Prove that if the condition

sup
k∈Z

∥
∥σ(2k(·))Ψ̂∥∥Lrγ (Rn)

= K < ∞

holds for some functionΨ inS∗(Rn), then it holds for all functionsΘ inS∗(Rn).
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7.5.3. (a) Let f j be in S (Rn). Show that for an m-linear multiplier operator Tσ we
have that Tσ ( f1, . . . , fm)̂(ξ ) is equal to

∫

(Rn)m−1
σ
(

ξ1, . . . ,ξm−1,ξ −
m−1

∑
k=1

ξk
)m−1

∏
l=1

f̂l(ξl) f̂m
(

ξ −
m−1

∑
k=1

ξk
)

dξ1 · · ·dξm−1 .

(b) Show that for functions f j ∈S (Rn) we have
∫

Rn
Tσ ( f1, . . . , fm) f0 dx=

∫

(Rn)m
σ(�ξ ) f̂0(−(ξ1+ · · ·+ξm)) f̂1(ξ1) · · · f̂m(ξm)d�ξ .

7.5.4. Let a> 1. Construct nonnegative smooth functions φm
j on [0,∞)m−1 that are

supported in [0,am−1]m−1 such that

1=
m

∑
j=1

φm
j

( |ξ1|
|ξ j| , . . . ,

̂|ξ j|
|ξ j| , . . . ,

|ξm|
|ξ j|

)

for all (ξ1, . . . ,ξm) �= 0, with the understanding that the variable with the hat is
missing, and that |ξi|/|ξ j|= ∞, when ξ j = 0 regardless of the value of ξi.[

Hint: Use induction. When m= 2, pick a smooth function φ 1
1 that is equal to 1 on

the set [0,1/a] and supported in [0,a], and define φ 1
2 (t) = 1−φ 1

1 (1/t). Assume that

1=
m−1

∑
j=1

φm−1
j

( |ξ1|
|ξ j| , . . . ,

̂|ξ j|
|ξ j| , . . . ,

|ξm−1|
|ξ j|

)

for some smooth functions φm−1
j supported in [0,am−2]m−2, j= 1, . . . ,m−1. Define

φm
j

( |ξ1|
|ξ j| , . . . ,

̂|ξ j|
|ξ j| , . . . ,

|ξm|
|ξ j|

)

= φm−1
j

( |ξ1|
|ξ j| , . . . ,

̂|ξ j|
|ξ j| , . . . ,

|ξm−1|
|ξ j|

)

φ 1
1

( |ξm|
|ξ j|

)

when j = 1, . . . ,m−1 and

φm
m

( |ξ1|
|ξm| , . . . ,

|ξ j|
|ξm| , . . . ,

|ξm−1|
|ξm|

)

=
m−1

∑
j=1

φm−1
j

( |ξ1|
|ξ j| , . . . ,

̂|ξ j|
|ξ j| , . . . ,

|ξm−1|
|ξ j|

)

φ 1
2

( |ξ j|
|ξm|

)

.

Then the function

φm
m
(

u1, . . . ,u j, . . . ,um−1
)

=
m−1

∑
j=1

φm−1
j

(u1
u j

, . . . ,
û j

u j
, . . . ,

um−1

u j

)

φ 1
2
(

u j
)

is supported in [0,am−1]m−1 since each φm−1
j is supported in [0,am−2]m−2.

]
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7.5.5. Consider the following function on R2n:

m(ξ1,ξ2) =
∫

Rn

∫

Rn
m0(y1,y2)m1(ξ1− y1,y2)m2(y1,ξ2− y2)dy1dy2 ,

where m0,m1,m2 are functions on R2n such that the preceding integral is absolutely
convergent.
(a) Prove that

∥
∥Tm

∥
∥
L2×L2→L1 ≤ ‖m0‖L1‖m1‖L∞‖m2‖L∞ .

(b) Suppose, moreover, that the Fourier transform ofm is compactly supported. Then
show that for any indices 1≤ p1, p2, p≤ ∞, with 1/= 1/p1+1/p2, we have

∥
∥Tm

∥
∥
Lp1×Lp2→Lp ≤

√
K ‖m0‖L2‖m1‖L2‖m2‖L2 ,

where K is the measure of the support of m∨.
7.5.6. ([161]) Let 2 ≤ p1, p2 < ∞, 1 < p ≤ 2, and 1/p1+1/p2 = 1/p and suppose
that {Lm}m∈Z is a family of bilinear operators that satisfy

sup
m∈Z

‖Lm‖Lp1 (R)×Lp2 (R)→Lp(R) =M < ∞ .

Let {Am}m∈Z be a sequence of disjoint intervals of equal length, and let {Bm}m∈Z be
another sequence of disjoint intervals of equal length. Suppose that for allm inZ and
all Schwartz functions f ,g on the line we have that Lm( f ,g) = Lm(Δ 1

m( f ),Δ 2
m(g)),

where Δ 1
m( f )= ( f̂ χAm)∨, Δ 2

m(g)= ( f̂ χBm)∨, and suppose, moreover, that the Fourier
transforms of Lm( f ,g) are supported in disjoint intervals of equal length. Prove that
there is a constantC=C(p1, p2, p) such that for all Schwartz functions f ,g we have

∥
∥
∥ ∑
m∈Z

Lm( f ,g)
∥
∥
∥
Lp(R)

≤CM
∥
∥ f
∥
∥
Lp1 (R)

∥
∥g
∥
∥
Lp2 (R) .

[

Hint: First show that ‖∑m∈ZLm( f ,g)‖Lp ≤ Cp′‖(∑m∈Z |Lm( f ,g)|2)1/2‖Lp , using
duality and Theorem 5.2.7. Then use the embeddings �p � �2, �2 � �p1 ∩ �p2 , and
the uniform boundedness of Lm to derive the conclusion.

]

7.6 An Application Concerning the Leibniz Rule of Fractional
Differentiation

In this section we use the theory of m-linear multiplier operators to obtain a version
of Hölder’s inequality for the Leibniz rule of fractional differentiation. We consider
the following differentiation operators for s≥ 0:

Ds f =
(

f̂ (ξ )|ξ |s)∨
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defined for Schwartz functions f onRn. This operator is singular at the origin on the
Fourier transform side unless s is a nonnegative even integer. We have the following
result concerning it.

Theorem 7.6.1. Let 1
2 < r<∞, 1< p1, p2,q1,q2 ≤∞ satisfy 1

r =
1
p1
+ 1

p2
= 1

q1
+ 1

q2
.

Given s>max
(

0, nr −n
)

or s ∈ 2Z+, there exists a C =C(n,s,r, p1,q1, p2,q2)< ∞
such that for all f ,g ∈S (Rn) we have

‖Ds( f g)‖Lr(Rn) ≤C
[

‖Ds f‖Lp1 (Rn)‖g‖Lp2 (Rn) +‖ f‖Lq1 (Rn)‖Dsg‖Lq2 (Rn)

]

. (7.6.1)

This result is sharp in the sense that for 0 ≤ s ≤ max( nr −n,0) and s �∈ 2Z+∪{0},
inequality (7.6.1) fails for any 1< p1,q1, p2,q2 ≤ ∞.

The inequality also fails for s< 0; see Exercise 7.6.3.

7.6.1 Preliminary Lemma

We begin with the following useful lemma.

Lemma 7.6.2. Fix a function f ∈ S (Rn), and for a given s > 0 define fs = Ds f .
Then fs lies in L∞(Rn), and there exists a constant C(n,s, f ) such that

| fs(x)| ≤C(n,s, f )|x|−n−s for all |x| ≥ 2. (7.6.2)

Moreover, for s �∈ 2Z+, if f (x) ≥ 0 for all x ∈ Rn and f �≡ 0, then there exist a
constant R> 0 and a constant C(n,s, f ,R) such that

| fs(x)| ≥C(n,s, f ,R)|x|−n−s for all |x|> R. (7.6.3)

Proof. For any z ∈ C with Rez>−n and g ∈S (Rn), define the distribution uz by

〈uz,g〉=
∫

Rn

π z+n
2

Γ
( z+n

2

) |x|zg(x)dx, (7.6.4)

where Γ (·) denotes the gamma function. In view of the discussion in Subsection
2.4.3 in [156], we know that uz admits an extension to an entire function with values
in the space of tempered distributions. This means that for each g∈S (Rn), the map
z �→ 〈uz,g〉 is an entire function. Moreover, using Theorem 2.4.6 in [156], we have
ûz = u−n−z, i.e., 〈uz, ĝ〉 = 〈u−n−z,g〉, for all g ∈ S (Rn). Notice that both uz and
u−n−z lie in L1loc if and only if −n< Rez< 0.
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Now, fix f ∈S (Rn), write for s> 0

fs(x) =
∫

Rn
|ξ |s f̂ (ξ )e2πiξ ·x dξ =

Γ
( s+n

2

)

π s+n
2

〈

us, f̂ (·)e2πi(·)·x
〉

,

and note that Γ
( s+n

2

)

/π s+n
2 �= 0 when s > 0. Now it suffices to prove estimates

(7.6.2) and (7.6.3) for
〈

us, f̂ (·)e2πi(·)·x
〉

.
Applying Theorem 2.4.6 in [156] we write

〈

uz, f̂ (·)e2πi(·)·x
〉

=
〈

u−n−z, f (·+ x)
〉

.

Using the notation in Subsection 2.4.3 in [156] we write
〈

u−n−z, f (·+ x)
〉

= I0(x,z)+ I1(x,z)+ I2(x,z),

where

I0(x,z) = ∑
|α |≤N

b(n,α,z)(−1)|α |
〈

∂αδ0, f ( · + x)
〉

,

I1(x,z) =
∫

|y|≤1

π− z
2

Γ
(− z

2

)

{

f (x+ y)− ∑
|α |≤N

(∂α f )(x)
α!

yα
}

|y|−n−z dy ,

I2(x,z) =
π− z

2

Γ
(− z

2

)

∫

|y|>1
|y|−n−z f (x+ y)dy ,

for some N ∈ Z+ and suitable entire functions b(n,α,z). Notice that I1(x,z) is holo-
morphic in the region Rez< N+1 and that there is a constant C(z,n,N) such that

|I0(x,z)|+ |I1(x,z)| ≤C(z,n,N)

(

∑
|α |≤N

|∂α f (x)|+ sup
|y|≤1

∑
|β |=N+1

sup |∂β f (x+ y)|
)

.

It follows that I0(x,z)+ I1(x,z) decays like a Schwartz function for any fixed z ∈ C.
Now we consider I2(x,z), which is an entire function in z and can be written as

I2(x,z) =
∫

|x−y|>1

π− z
2

Γ
(− z

2

) |x− y|−n−z f (y)dy. (7.6.5)

We notice that the constant Cz = π− z
2 /Γ

(− z
2

)

vanishes when z is a nonnegative
even integer since the Gamma function has poles at the points 0,−1,−2, . . . . How-
ever, if z /∈ {0}∪2Z+, thenCz �= 0. Thus, assertion (7.6.2) follows when s is an even
integer.

Now fix s ∈ R+ \ 2Z+. It is easily seen from (7.6.5) that I2(x,s) is bounded for
all x ∈ Rn. Next we examine the decay rate of I2(x,s) for |x| > 2. Split the integral
in (7.6.5) as a sum I12 (x,s)+ I22 (x,s), where
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I12 (x,s) =
∫

|x|≤2|y|
|x−y|>1

π− s
2

Γ
(− s

2

) |x− y|−n−s f (y)dy

I22 (x,s) =
∫

|x|>2|y|
|x−y|>1

π− s
2

Γ
(− s

2

) |x− y|−n−s f (y)dy .

Then for every M > 0 there is a constant Cf (M)> 0 satisfying

|I12 (x,s)| ≤ |Cs|
∫

|y|≥ |x|
2

| f (y)|dy≤ |Cs|
(1+ 1

2 |x|)M
∫

Rn
(1+ |y|)M| f (y)|dy≤ |Cs|Cf (M)

(1+ |x|)M .

For the integrand of I22 (x,s) we notice that 1
2 |x| ≤ |x− y| ≤ 3

2 |x| when |x| > 2|y|.
Thus, |I22 (x,s)| ≤Cs2n+s‖ f‖L1 |x|−n−s for |x|> 2. This fact, combined with the pre-
ceding estimates for I12 (x,s) and I0(x,s)+ I1(x,s), yields (7.6.2).

Moreover, if f (y)≥ 0 for all y ∈ Rn but f �≡ 0, then for |x| ≥ 2 we have

|I22 (x,s)| ≥
(
3
2

)n+s |Cs|
|x|n+s

∫

|x|>2|y|
f (y)dy .

Taking |x| large enough so that f �≡ 0 on the ball B(0, |x|/2) = {y∈Rn : |y|< |x|/2},
the preceding integral is bounded from below. This proves (7.6.3). �

7.6.2 Proof of Theorem 7.6.1

Proof. Note that (7.6.3) states that for all s satisfying s �= 2k for some k ∈ Z+ and
0 < s ≤ n

r − n, Ds f �∈ Lr(Rn). In particular, we can choose any nonzero function
f ∈ S (Rn) so that Ds(| f |2) /∈ Lr(Rn). On the other hand, (7.6.2) says that Ds f
lies in Lp1(Rn) for any s > 0 and 1 < p1 ≤ ∞. This disproves inequality (7.6.1)
when 0 < s ≤ n

r − n. We remark also that if s > n
r − n, then Ds f ∈ Lr(Rn) for any

f ∈S (Rn).
We now prove (7.6.1). Fix ϕ ∈S (Rn) whose Fourier transform is supported in

B(0,3/2) and is equal to 1 on B(0,1). Also, let ψ̂(ξ ) = ϕ̂(ξ )− ϕ̂(2ξ ), and note that
ψ̂ is supported on an annulus 1/2≤ |ξ | ≤ 3/2 and ∑k∈Z ψ̂(2−kξ ) = 1 for all ξ �= 0.

Given f ,g ∈S (Rn), we decompose Ds( f g)(x) as follows:
∫

R2n
|ξ +η |s f̂ (ξ )ĝ(η)e2πi(ξ+η)·x dξ dη

=
∫

R2n
|ξ +η |s

(

∑
j∈Z

ψ̂(2− jξ ) f̂ (ξ )

)(

∑
k∈Z

ψ̂(2−kη)ĝ(η)

)

e2πi(ξ+η)·x dξ dη

=Π1[ f ,g](x)+Π2[ f ,g](x)+Π3[ f ,g](x) ,
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where

Π1[ f ,g](x) = ∑
j∈Z

∑
k< j−1

∫

R2n
|ξ +η |sψ̂(2− jξ ) f̂ (ξ )ψ̂(2−kη)ĝ(η)e2πi(ξ+η)·x dξ dη

Π2[ f ,g](x) = ∑
k∈Z

∑
j<k−1

∫

R2n
|ξ +η |sψ̂(2− jξ ) f̂ (ξ )ψ̂(2−kη)ĝ(η)e2πi(ξ+η)·x dξ dη

Π3[ f ,g](x) = ∑
k∈Z

k+1

∑
j=k−1

∫

R2n
|ξ +η |sψ̂(2− jξ ) f̂ (ξ )ψ̂(2−kη)ĝ(η)e2πi(ξ+η)·x dξ dη .

The treatments of the terms Π1 and Π2 are identical in view of the symmetry be-
tween ξ and η , so it suffices to consider Π1 and Π3. We write Π1[ f ,g](x) as

∫

R2n

{

∑
j∈Z

ψ̂(2− jξ )ϕ̂(2− j+2η)
|ξ +η |s
|ξ |s

}

D̂s f (ξ )ĝ(η)e2πi(ξ+η)·x dξ dη

and we note that the symbol inside the curly brackets in the preceding expression
is supported in the set {(ξ ,η) : |η | ≤ 3

4 |ξ |}, is C ∞ on R2n \ {(0,0)}, and satisfies
(7.5.14); hence, Π1[ f ,g] satisfies

∥
∥Π1[ f ,g]

∥
∥
Lr ≤C‖Ds f‖Lp1 (Rn)‖g‖Lp2 (Rn) .

Likewise, we have
∥
∥Π2[ f ,g]

∥
∥
Lr ≤C‖ f‖Lq1 (Rn)‖Dsg‖Lq2 (Rn)

and thus (7.6.1) holds for Π1[ f ,g]+Π2[ f ,g].
For Π3[ f ,g], note that the summation in j is finite; thus, it suffices to show esti-

mate (7.6.1) for one of the three terms, say for

∑
k∈Z

∫

R2n
|ξ +η |sψ̂(2−kξ ) f̂ (ξ )ψ̂(2−kη)ĝ(η)e2πi(ξ+η)·x dξ dη

which can be written as
∫

R2n

{

∑
k∈Z

|ξ +η |s
|η |s ψ̂(2−kξ )ψ̂(2−kη)

}

f̂ (ξ )D̂sg(η)e2πi(ξ+η)·x dξ dη . (7.6.6)

The symbol in the curly brackets is supported in {(ξ ,η) : |η |/3≤ |ξ | ≤ 3|η |}, and
it may not be smooth along the line ξ+η = 0 if s is not in 2Z+. However, if s∈ 2Z+

then the symbol in (7.6.6) is C ∞ on R2n \{(0,0)} and satisfies (7.5.14), and thus the
corresponding operator is bounded in the claimed range of exponents, in view of
Theorem 7.5.3.

We therefore fix s ∈ R+ \2Z+ and focus on the estimate for Π3, which requires
a more careful study. We consider the following cases.
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Case 1: 1
2 < r < ∞ and 1< p1, p2,q1,q2 < ∞.

Notice that when |ξ |, |η | ≤ 3
2 2

k, then we have |ξ + η | ≤ 2k+2, and thus
ϕ̂(2−k−2(ξ +η)) = 1. Using this fact we write Π3[ f ,g](x) as
∫∫

R2n ∑
k∈Z

|ξ +η |sψ̂(2−kξ ) f̂ (ξ )ψ̂(2−kη)ĝ(η)e2πi(ξ+η)·x dξ dη

=

∫∫

R2n ∑
k∈Z

|ξ +η |sϕ̂(2−k−2(ξ +η))ψ̂(2−kξ ) f̂ (ξ )ψ̂(2−kη)ĝ(η)e2πi(ξ+η)·xdξdη

=22s ∑
k∈Z

∫∫

R2n
ϕ̂s(2−k−2(ξ +η))ψ̂(2−kξ ) f̂ (ξ )ψ̂s(2−kη)̂Ds(g)(η)e2πi(ξ+η)·xdξdη

where ψ̂s(·) = | · |−sψ̂(·) and ϕ̂s(·) = | · |sϕ̂(·).
The function ξ �→ ϕ̂s(2−2ξ ) is supported in [−8,8]n and can be expressed in

terms of its Fourier series multiplied by the characteristic function of the set [−8,8]n.
Specifically, we have

ϕ̂s(2−2(ξ +η)) = ∑
m∈Zn

csme
2πi
16 (ξ+η)·mχ[−8,8]n(ξ +η), (7.6.7)

where
csm =

1
16n

∫

[−8,8]n
|y|s ϕ̂(2−2y)e−

2πi
16 y·m dy.

Due to the support properties we also have

χ[−8,8]n
(

2−k(ξ +η)
)

ψ̂(2−kξ )ψ̂s(2−kη) = ψ̂(2−kξ )ψ̂s(2−kη) . (7.6.8)

Inserting a dilation into (7.6.7) we have

ϕ̂s(2−k−2(ξ +η)) = ∑
m∈Zn

csme
2πi
16 2−k(ξ+η)·mχ[−8,8]n

(

2−k(ξ +η)
)

.

Using this identity and (7.6.8) we express Π3[ f ,g](x) as

22s ∑
m∈Zn

∑
k∈Z

∫∫

R2n
csme

2πi
16 2−k(ξ+η)·mψ̂(2−kξ ) f̂ (ξ )ψ̂s(2−kη)D̂sg(η)e2πi(ξ+η)·xdξdη

which can also be written as

22s ∑
m∈Zn

csm ∑
k∈Z

Δm
k ( f )(x)Δ

m,s
k (Dsg)(x), (7.6.9)

where Δm
k is the Littlewood–Paley operator given by multiplication on the Fourier

transform side by e2πi2
−kξ · m16 ψ̂(2−kξ ), whereas Δm,s

k is the Littlewood–Paley oper-
ator given by multiplication on the Fourier transform side by e2πi2

−kξ · m16 ψ̂s(2−kξ ).
Both Littlewood–Paley operators have the form
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∫

Rn
2nkΘ(2k(x− y)+ 1

16m) f (y)dy

for some Schwartz functionΘ whose Fourier transform is supported in some annu-
lus centered at zero.

Let r∗ =min(r,1). Taking the Lr quasi-norm of (7.6.9) we obtain
∥
∥Π3[ f ,g]

∥
∥r∗
Lr

≤ 22sr∗ ∑
m∈Zn

|csm|r∗
∥
∥
∥
∥
∥
∑
k∈Z

Δm
k ( f ) Δ

m,s
k (Dsg)

∥
∥
∥
∥
∥

r∗

Lr(Rn)

≤ 22sr∗ ∑
m∈Zn

|csm|r∗
∥
∥
∥
∥
∥

√

∑
k∈Z

|Δm
k ( f )|2

∥
∥
∥
∥
∥

r∗

Lq1 (Rn)

∥
∥
∥
∥
∥

√

∑
k∈Z

|Δm,s
k (Dsg)|2

∥
∥
∥
∥
∥

r∗

Lq2 (Rn)

since 1/q1+1/q2 = 1/r. By Proposition 7.5.1, the preceding expression is bounded
by a constant multiple of

∑
m∈Zn

|csm|r∗ [log(2+ |m|)]2r∗‖ f‖r∗Lq1 ‖Dsg‖r∗Lq2

since 1 < q1,q2 < ∞, and this term yields the required inequality, provided we can
show that the preceding series converges.

Applying Lemma 7.6.2 we obtain

csm =
1
16n

∫

[−8,8]n
|ξ |sϕ̂(2−2ξ )e−

2πi
16 m·ξ dξ

= cDs(ϕ(4(·)))(− m
16 )

= O((1+ |m|)−n−s)

as |m| → ∞ and csm is uniformly bounded for all m ∈ Z. Thus, since r∗(n+ s) > n,
the series

∑
m∈Zn

|csm|r∗ [log(2+ |m|)]2r∗

converges. This concludes the proof in Case 1.

Case 2: 1< r < ∞, p1 or p2 equals infinity, q1 or q2 equals infinity.
The treatment of the terms Π1[ f ,g] and Π2[ f ,g] was based on Theorem 7.5.3,

which allows one of p1 or p2 to be equal to infinity, and likewise with q1 or q2.
To treat the term Π3[ f ,g], we use the Littlewood–Paley theorem (Theorem 6.1.2 in
[156]) to write

∥
∥Π3[ f ,g]

∥
∥
Lr(Rn)

≤C(r,n)
∥
∥
∥

(

∑
j∈Z

|Δψ
j (Π3[ f ,g])|2

) 1
2
∥
∥
∥
Lr(Rn)
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for the given function ψ . We have the following estimate:

|Δψ
j (Π3[ f ,g])(x)|

=

∣
∣
∣
∣

∫

R2n
|ξ +η |sψ̂( ξ+η2 j

)

∑
k≥ j−2

ψ̂(2−kξ ) f̂ (ξ )ψ̂(2−kη)ĝ(η)e2πi(ξ+η)·x dξ dη
∣
∣
∣
∣

=

∣
∣
∣
∣

∫

R2n
2 jsψ̂s

( ξ+η
2 j
)

ψ̂
( ξ
2k
)

f̂ (ξ ) ∑
k≥ j−2

2−ksψ̂−s(2−kη)D̂sg(η)e2πi(ξ+η)·x dξ dη
∣
∣
∣
∣

= 2 js
∣
∣
∣
∣ ∑
k≥ j−2

2−ksΔψs
j

[

Δψ
k ( f )Δ

ψ−s
k (Dsg)

]

(x)
∣
∣
∣
∣

≤ 2 js
(

∑
k≥ j−2

2−2ks
) 1

2
(

∑
k≥ j−2

∣
∣Δψs

j

[

Δψ
k ( f )Δ

ψ−s
k (Dsg)

]∣
∣2
) 1

2

≤C(s)
(

∑
k≥ j−2

∣
∣
∣Δψs

j

[

Δψ
k ( f )Δ

ψ−s
k (Dsg)

]
∣
∣
∣

2) 1
2
,

where ψ̂s(·) = | · |sψ̂(·) and ψ̂−s(·) = | · |−sψ̂(·). Thus, we have
∥
∥Π3[ f ,g]

∥
∥
Lr ≤C(r,n,s)

∥
∥
∥

(

∑
j∈Z
∑
k∈Z

∣
∣Δψs

j

[

Δψ
k ( f )Δ

ψ−s
k (Dsg)

]∣
∣2
) 1

2
∥
∥
∥
Lr
.

We now apply Proposition 6.1.4 in [156] (with r = 2), which yields

∥
∥Π3[ f ,g]

∥
∥
Lr ≤C1(r,n,s)

∥
∥
∥

(

∑
k∈Z

∣
∣Δψ

k ( f )Δ
ψ−s
k (Dsg)

∣
∣
2
) 1

2
∥
∥
∥
Lr

≤C1(r,n,s)
∥
∥
∥sup
k∈Z

Δψ−s
k (Dsg)

∥
∥
∥
L∞

∥
∥
∥

(

∑
k∈Z

∣
∣Δψ

k ( f )
∣
∣
2
) 1

2
∥
∥
∥
Lr

≤C2(r,n,s)‖M(Dsg)‖L∞‖ f‖Lr
≤C3(r,n,s)‖Dsg‖L∞‖ f‖Lr ,

where M is the Hardy–Littlewood maximal operator. This proves the case where
q2 = ∞, whereas the case where q1 = ∞ follows by symmetry. �

Exercises

7.6.1. Show that for all functions ϕ ∈S (Rn) we have

n

∑
j=1

∥
∥∂ jϕ‖L∞ ≤ 2n

[∥
∥ϕ‖L∞

] 1
2
[ n

∑
j,k=1

∥
∥∂ j∂kϕ‖L∞

] 1
2
.

[

Hint: Start with the identity ϕ(x+h)−ϕ(x) = ∇ϕ(x) ·h+ 1
2 ∑

n
j,k=1 ∂ j∂kϕ(ξ )hih j,

take absolute values and optimize in h.
]
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7.6.2. Given positive integers Q,N, with 1 ≤ Q ≤ N, show that there is a constant
C =C(n,Q,N) such that for all ϕ ∈S (Rn) we have

n

∑
j1=1

· · ·
n

∑
jQ=1

∥
∥∂ j1 · · ·∂ jQϕ

∥
∥
L∞ ≤C

[∥
∥ϕ
∥
∥
L∞

] N−Q
N

[
n

∑
k1=1

· · ·
n

∑
kN=1

‖∂k1 · · ·∂kNϕ‖L∞
]Q

N

.

[

Hint: Prove by induction on N that the preceding statement is valid for all Q ≤ N;
use the previous exercise.

]

7.6.3. (S. Oh) Let 1
2 < r < ∞, 1< p1, p2,q1,q2 ≤ ∞ satisfy 1

r =
1
p1
+ 1

q1
= 1

p2
+ 1

q2
.

Show that when s< 0, the inequality

‖Ds( f g)‖Lr(Rn) ≤C
[‖Ds f‖Lp1 (Rn)‖g‖Lq1 (Rn) +‖ f‖Lp2 (Rn)‖Dsg‖Lq2 (Rn)

]

,

fails even for f ,g ∈S (Rn).
[

Hint: Try f (x) = e2πi2
ke1·xΦ(x) and g(x) = e−2πi2ke1·xΦ(x), whereΦ ∈S (Rn) has

Fourier transform supported in the unit ball. Here e1 = (1,0, . . . ,0).
]

7.6.4. ([164]) Let 0≤ r < s< t. Prove that there exist constants C1,C2 such that for
all f ,g ∈S (Rn) we have

‖Ds( f g)‖L∞ ≤C1

[(‖Dr f‖L∞ +
∥
∥Dt f

∥
∥
L∞
)‖g‖L∞ +

(‖Drg‖L∞+
∥
∥Dtg

∥
∥
L∞
)‖ f‖L∞

]

,

‖Ds( f g)‖L∞ ≤C2

[

‖Dr f‖
t−s
t−r
L∞
∥
∥Dt f

∥
∥

s−r
t−r
L∞ ‖g‖L∞+‖Dr f‖

t−s
t−r
L∞
∥
∥Dt f

∥
∥

s−r
t−r
L∞ ‖ f‖L∞

]

.

[

Hint: Obtain the second inequality by applying the first inequality to functions of
the form fλ (x) = f (λx) and gλ (x) = g(λx) and optimizing over λ > 0. To obtain the
first inequality, split the function |ξ +η |s as ∑ j∈Z∑k< j |ξ +η |sψ̂(2− jξ )ψ̂(2−kη)
plus ∑ j∈Z∑k≥ j |ξ +η |sψ̂(2− jξ )ψ̂(2−kη), where ψ is as in the proof of Theorem
7.6.1 and show that the operator corresponding to the first symbol has L∞ norm
bounded by a multiple of (‖Dr f‖L∞ + ‖Dt f‖L∞)‖g‖L∞ by considering the terms
j ≤ 0 and j > 0 in the sum.

]

7.6.5. (a) Let Θ and Ω be Schwartz functions whose Fourier transforms are sup-
ported in an annulus that does not contain the origin. Let s > 0. Show that the
function

σ(ξ ,η) = ∑
j≥−2

2−s j ∑
k∈Z

Θ̂(2−k(ξ +η))Ω̂(2−( j+k)ξ )Ω̂(2−( j+k)η)

satisfies |∂αξ ∂
β
η σ(ξ ,η)| ≤Cα ,β (|ξ |+ |η |)−|α |−|β | for all multi-indices α,β satisfy-

ing |α|+ |β |< s.
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(b) LetΨ be a Schwartz function on R2n whose Fourier transform is supported in
an annulus that does not contain the origin and let s > 0. Show that for 1 < r < ∞
and 0< γ < s we have

sup
l∈Z

∥
∥σ l Ψ̂

∥
∥
Lrγ (R2n)

< ∞,

where σ l(ξ ,η) = σ(2lξ ,2lη ).
[

Hint: Part (b): Use the 3-lines lemma to show that

sup
l∈Z

∥
∥
∥∑
k∈Z

Θ̂(2l−k(ξ +η))Ω̂(2l−( j+k)ξ )Ω̂(2l−( j+k)η)Ψ̂(ξ ,η)
∥
∥
∥
Lrγ (R2n)

≤C2 jγ ,

where the norm is taken in the variables (ξ ,η).
]

HISTORICAL NOTES

The systematic study of multilinear operators originated in the work of Coifman and Meyer
[91], [92] in connection with the study of commutators of singular integrals, initiated by Calderón
[54]. It was not until about a quarter century later, when Lacey and Thiele [236], [237] obtained the
boundedness of the bilinear Hilbert transform Hα,β ( f1, f2)(x) =

1
π p.v.

∫

R f1(x−αt) f2(x−β t) dt
t ,

that this area attracted significant research attention. In their fundamental work Lacey and Thiele
showed that Hα,β is bounded from Lp1 (R)×Lp2(R) to Lp(R) when 1< p1, p2 ≤∞, 2/3< p<∞,
and 1/p= 1/p1+1/p2, whenever α �= β . The family Hα,β arose in early attempts of A. Calderón
to show that the first commutator (Example 4.3.8, m = 1) is bounded on L2 when A′ is in L∞, via
the relationship C1( f ;A) =

∫ 1
0 H1,α ( f ,A′)dα; this approach was completed only using the uniform

(in α ,β ) boundedness of Hα,β , obtained by Thiele [346], Grafakos and Li [160], and Li [244].
The less singular bilinear fractional integrals were studied by Kenig and Stein [219] and Grafakos
and Kalton [157], who proved Theorem 7.1.4 independently. On multilinear fractional integrals,
see also the work of Bak [15], Moen [269], Kuk and Lee [231], and of Kokilashvili, Mastyło, and
Meskhi [221]. The material in Subsection 7.1.3 is based on Grafakos and Soria [171]. The version
of Schur’s lemma in Exercise 7.1.5 appeared in Bekollé, Bonami, Peloso, and Ricci [20] and in
Grafakos and Torres [174]. The interplay between distributional estimates and the boundedness of
multilinear operators was studied by Bilyk and Grafakos [36]; these ideas have been used to obtain
distributional estimates for the bilinear Hilbert transform by the same authors [37].

Multilinear complex interpolation, even for analytic families of operators as in Theorem 7.2.9,
is a straightforward adaptation of linear interpolation; see Zygmund [377, 21, Chapter XII, (3.3)]
and Berg and Löfström [27, Theorem 4.4.2]. The multilinear real interpolation method is more
involved. References on the subject include the articles of Strichartz [328], Sharpley [315] and
[316], Zafran [375], Christ [76], Janson [204], Grafakos and Kalton [157]. The present exposition
of Theorem 7.2.2 is based on Grafakos, Liu, Lu, and Zhao [162]. Theorem 7.2.9 is the main result
in Grafakos and Tao [172]. Multilinear complex interpolation with respect to analytic families of
operators has been developed by Grafakos and Mastyło [167].

Theorem 7.3.1 appears in Grafakos and Martell [165]. Basic properties of m-linear multi-
pliers are listed in Grafakos and Torres [177]. The regularization process of Theorem 7.3.5 is
due to Rodrı́guez-López [306]. This result makes it possible to extend the basic properties of
Mp1,...,pm (R

n) multipliers to situations where the target space is Lp, with p = (1/p1 + · · ·+
1/pm)−1 < 1. The characteristic function of the two-dimensional unit ball lies inMp1,p2 (R) when
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1 < p1, p2 < 2 and 2 < p = (1/p1 + 1/p2)−1 < ∞; this was shown by Grafakos and Li [161].
The analogous result fails in dimensions n ≥ 2 when p1, p2, or p′ is greater than 2, as shown by
Diestel and Grafakos [120]. The last reference contains a version of de Leeuw’s theorem in the
multilinear setting (Exercise 7.3.10).

The m-linear version of the Calderón–Zygmund theorem (Theorem 7.4.6) is due to Grafakos
and Torres [177], although the bilinear case was independently obtained by Kenig and Stein [219].
Both sets of authors employed the Calderón–Zygmund decomposition, which first appeared in the
trilinear setting as a lemma in the work of Coifman and Meyer [91]. Proposition 7.4.8 (the m-
linear Peetre–Spanne–Stein theorem) and a version of Theorem 7.4.9 is also from [177]. The latter
provides a T (1) type theorem for m-linear operators associated with Calderón–Zygmund kernels.
Other results of this type are due to Christ and Journé [84], Bényi, Demeter, Nahmod, Thiele, Tor-
res, and Villaroya [23], Bényi [22], and Hart [186]. The action of multilinear Calderón–Zygmund
singular integrals on Hardy spaces was studied by Grafakos and Kalton [159].

The case m= 1 of Theorem 7.5.5 is essentially contained in Hörmander’s article [193]. The m-
linear version was obtained by Tomita [351] when the target index is Lp for p> 1 and r= 2 (Corol-
lary 7.5.9). The extension to indices p ≤ 1 is due to Grafakos and Si [170], while the extension to
the endpoint cases where L∞ is allowed in the domain (but not in all spaces) is due to Grafakos,
Miyachi, and Tomita [168]. Miyachi and Tomita [267] extended Theorem 7.5.5 to situations where
Lebesgue spaces are replaced by Hardy spaces in the domain and obtained minimal smoothness
conditions for the multipliers; see also the related work [268]. The formulation of Theorem 7.5.5
in the text was suggested by Tomita and is natural according to the viewpoint of a corresponding
theorem in Kurtz and Wheeden [232]. Theorem 7.5.3 was first proved by Coifman and Meyer [92]
via Fourier series techniques; see Coifman and Meyer [93] for extensions. Bernicot and Germain
[30] obtained boundedness for bilinear multipliers whose symbols have narrow support.

Gilbert and Nahmod [154] obtained boundedness for bilinear multipliers on R×R whose
derivatives of order α blow up like the distance to a line (with slope not taking three values)
raised to the power −|α |. Muscalu, Tao, and Thiele [280] provided an analogous m-linear version
of this result. A maximal function related to the bilinear Hilbert transform was shown by Lacey
[234] to be bounded on the same products of spaces as the bilinear Hilbert transform. More gen-
eral singular multilinear maximal operators were studied by Demeter, Tao, and Thiele [118]. Deep
counterexamples for trilinear operators were devised by Christ [82] and Demeter [117]. On the
topic of multilinear Littlewood–Paley theory, one may consult the articles of Lacey [233], Diestel
[119], Bernicot [29], Bernicot and Shrivastava [32], and Mohanty and Shrivastava [270], [271].

Paraproducts provide important examples of multilinear operators with specific properties.
They first emerged in Bony’s theory of paradifferential operators [41], which took the pseudodiffer-
ential operator theory of Coifman and Meyer [93] a step further. The boundedness of paraproducts
on Lp spaces for p > 1 is easily achieved via duality, but the extension to indices p ≤ 1 is more
delicate and was proved independently by Grafakos and Kalton [158] and by Auscher, Hofmann,
Muscalu, Thiele, and Tao [10]; subsequently this result was reproved by Lacey and Metcalfe [235],
while a different proof was given by Bényi, Maldonado, Nahmod, and Torres [24]. The articles
of Bernicot [28], Bilyk, Lacey, Li, Wick [38] Muscalu, Pipher, Thiele, and Tao [278], [279] study
certain forms of paraproducts in depth. The expository article of Bényi, Maldonado, Naibo [25]
makes a strong case for the use of paraproducts in analysis and partial differential equations.

A large body of literature on the topic of multilinear weighted norm inequalities appeared after
the initial work of Grafakos and Torres [175]. A natural class of multiple weights that satisfies a vec-
tor Ap condition suitable for the multilinear Calderón–Zygmund theory was developed by Lerner,
Ombrosi, Pérez, Torres and Trujillo-González [241]. Other weighted estimates were obtained by
Bui and Duong [51], Hu [198], Li, Xue, and Yabuta [243]. Fujita and Tomita [147] and Li and Sun
[242] obtained weighted estimates for multilinear Fourier multipliers.

The commutator estimate ‖Js( f g)− fJs(g)‖Lp ≤C‖∇ f‖L∞‖Js−1(g)‖Lp +C‖Js( f )‖Lp‖g‖L∞ ,
where 1 < p < ∞ and s > 0, was proved by Kato and Ponce [210], where Js = (1−Δ)s/2 is the
Bessel potential on Rn. Kenig, Ponce, Vega [218] obtained the homogeneous commutator esti-
mate ‖Ds( f g)− fDs f −gDs f‖Lr ≤C‖Ds1 f‖Lp‖Ds2g‖Lq , with Ds = (−Δ)s/2 in place of Js, with
s = s1+ s2 for s,s1,s2 ∈ (0,1), and 1 < p,q,r < ∞ satisfying 1/r = 1/p+ 1/r. The inequality in
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Theorem 7.6.1 is referred to as the Kato–Ponce inequality. Proofs of this inequality when r> 1 were
given by Christ andWeinstein [85], Gulisashvili and Kon [179], Muscalu and Schlag [276], and Bae
and Biswas [13]. Bernicot, Maldonado, Moen, and Naibo [31] proved the Kato–Ponce inequality
in weighted Lebesgue spaces under certain restrictions on the weights and they considered indices
r < 1 under the assumption s> n. Muscalu and Schlag [277] and, independently, Grafakos and Oh
[169] extended the Kato–Ponce inequality to indices r < 1 under the sharp restriction s> n/r−n.
Bourgain and Li [46] have obtained the endpoint case r = ∞ in Theorem 7.6.1. Muscalu, Pipher,
Tao, and Thiele, [278] extended the Kato–Ponce inequality to allow for partial fractional deriva-
tives in R2. A more general multiparameter situation was considered in [169]. Cordero and Zucco
[100] showed that the homogeneous Kato–Ponce inequality can be derived by its inhomogeneous
counterpart, where (I−Δ)s/2 is in place of Ds.

The following expositions contain aspects of the theory of multilinear operators: Coifman and
Meyer [93] focusing on multilinear pseudodifferential operators, Thiele [348] centering around
wave packet analysis, a chapter in Meyer and Coifman [264] with emphasis on multilinear
Calderón–Zygmund operators, Grafakos, Liu Maldonado and Yang [163] extending the theory to
the setting of metric spaces, and Muscalu and Schlag [276], [277] encompassing a rather general
study of singular multilinear theory.

The subject of Fourier analysis is currently enjoying a surge of activity. Emerging connections
with number theory, combinatorics, geometric measure theory, and partial differential equations,
have introduced new dynamics into the field and present promising developments. These connec-
tions are also creating new research directions that extend beyond the scope and level of this book.



Appendix A
The Schur Lemma

Schur’s lemma provides sufficient conditions for linear operators to be bounded on
Lp. Moreover, for positive operators it provides necessary and sufficient such condi-
tions. We discuss these situations.

A.1 The Classical Schur Lemma

We begin with an easy situation. Suppose that K(x,y) is a locally integrable function
on a product of two σ -finite measure spaces (X ,μ)× (Y,ν), and let T be a linear
operator given by

T ( f )(x) =
∫

Y
K(x,y) f (y)dν(y)

when f is bounded and compactly supported. It is a simple consequence of Fubini’s
theorem that for almost all x ∈ X the integral defining T converges absolutely. The
following lemma provides a sufficient criterion for the Lp boundedness of T .

Lemma. Suppose that a locally integrable function K(x,y) satisfies

sup
x∈X

∫

Y
|K(x,y)|dν(y) = A< ∞ ,

sup
y∈Y

∫

X
|K(x,y)|dμ(x) = B< ∞ .

Then the operator T extends to a bounded operator from Lp(Y ) to Lp(X) with norm

A1− 1
p B

1
p for 1≤ p≤ ∞.

Proof. The second condition gives that T maps L1 to L1 with bound B, while the
first condition gives that T maps L∞ to L∞ with bound A. It follows by the Riesz–
Thorin interpolation theorem that T maps Lp to Lp with bound A1− 1

p B
1
p . �

This lemma can be improved significantly when the operators are assumed to be
positive.

A.2 Schur’s Lemma for Positive Operators

We have the following necessary and sufficient condition for the Lp boundedness of
positive operators.

L. Grafakos, Modern Fourier Analysis, Graduate Texts in Mathematics 250,
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590 A The Schur Lemma

Lemma. Let (X ,μ) and (Y,ν) be two σ -finite measure spaces, where μ and ν are
positive measures, and suppose that K(x,y) is a nonnegative measurable function
on X×Y . Let 1< p< ∞ and 0< A< ∞. Let T be the linear operator

T ( f )(x) =
∫

Y
K(x,y) f (y)dν(y)

and Tt its transpose operator

T t(g)(y) =
∫

X
K(x,y)g(x)dμ(x) .

To avoid trivialities, we assume that there is a compactly supported, bounded, and
positive ν-a.e. function h1 on Y such that T (h1) > 0 μ-a.e. Then the following are
equivalent:

(i) T maps Lp(Y ) to Lp(X) with norm at most A.
(ii) For all B > A there is a measurable function h on Y that satisfies 0 < h < ∞
ν-a.e., 0< T (h)< ∞ μ-a.e., and such that

T t(T (h)
p
p′
)≤ Bp h

p
p′ .

(iii) For all B > A there are measurable functions u on X and v on Y such that
0< u< ∞ μ-a.e., 0< v< ∞ ν-a.e., and such that

T (up
′
) ≤ Bvp

′
,

Tt(vp) ≤ Bup.

Proof. First we assume (ii) and we prove (iii). Define u,v by the equations vp
′
=

T (h) and up
′
= Bh and observe that (iii) holds for this choice of u and v. Moreover,

observe that 0< u,v< ∞ a.e. with respect to the measures μ and ν , respectively.
Next we assume (iii) and we prove (i). For g in Lp′(X) we have

∫

X
T ( f )(x)g(x)dμ(x) =

∫

X

∫

Y
K(x,y) f (y)g(x)

v(x)
u(y)

u(y)
v(x)

dν(y)dμ(x).

We now apply Hölder’s inequality with exponents p and p′ to the functions

f (y)
v(x)
u(y)

and g(x)
u(y)
v(x)

with respect to the measure K(x,y)dν(y)dμ(x) on X×Y . Since

(∫

Y

∫

X
f (y)p

v(x)p

u(y)p
K(x,y)dμ(x)dν(y)

)1
p

≤ B
1
p
∥
∥ f
∥
∥
Lp(Y )
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and
(∫

X

∫

Y
g(x)p

′ u(y)p
′

v(x)p′
K(x,y)dν(y)dμ(x)

)1
p′ ≤ B

1
p′
∥
∥g
∥
∥
Lp′ (X),

we conclude that
∣
∣
∣
∣

∫

X
T ( f )(x)g(x)dμ(x)

∣
∣
∣
∣
≤ B

1
p+

1
p′ ‖ f‖Lp(Y )

∥
∥g
∥
∥
Lp′ (X).

Taking the supremum over all g with Lp′(X) norm 1, we obtain
∥
∥T ( f )

∥
∥
Lp(X) ≤ B

∥
∥ f
∥
∥
Lp(Y ).

Since B was any number greater than A, we conclude that
∥
∥T
∥
∥
Lp(Y )→Lp(X) ≤ A ,

which proves (i).
We finally assume (i) and we prove (ii). Without loss of generality, take here

A= 1 and B> 1. Define a map S : Lp(Y )→ Lp(Y ) by setting

S( f )(y) =
(

Tt(T ( f )
p
p′
))p′

p (y).

We observe two things. First, f1 ≤ f2 implies S( f1) ≤ S( f2), which is an easy con-
sequence of the fact that the same monotonicity is valid for T . Next, we observe that
‖ f‖Lp ≤ 1 implies that ‖S( f )‖Lp ≤ 1 as a consequence of the boundedness of T on
Lp (with norm at most 1).

Construct a sequence hn, n = 1,2, . . . , by induction as follows. Pick h1 > 0 on
Y as in the hypothesis of the theorem such that T (h1) > 0 μ-a.e. and such that
‖h1‖Lp ≤ B−p′(Bp′ −1). (The last condition can be obtained by multiplying h1 by a
small constant.) Assuming that hn has been defined, we define

hn+1 = h1+
1
Bp′ S(hn).

We check easily by induction that we have the monotonicity property hn ≤ hn+1 and
the fact that ‖hn‖Lp ≤ 1. We now define

h(x) = sup
n
hn(x) = lim

n→∞
hn(x).

Fatou’s lemma gives that ‖h‖Lp ≤ 1, from which it follows that h < ∞ ν-a.e. Since
h≥ h1 > 0 ν-a.e., we also obtain that h> 0 ν-a.e.
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Next we use the Lebesgue dominated convergence theorem to obtain that hn → h
in Lp(Y ). Since T is bounded on Lp, it follows that T (hn) → T (h) in Lp(X). It

follows that T (hn)
p
p′ → T (h)

p
p′ in Lp′(X). Our hypothesis gives that Tt maps Lp′(X)

to Lp′(Y ) with norm at most 1. It follows Tt
(

T (hn)
p
p′
)→ Tt

(

T (h)
p
p′
)

in Lp′(Y ).

Raising to the power p′
p , we obtain that S(hn)→ S(h) in Lp(Y ).

It follows that for some subsequence nk of the integers we have S(hnk)→ S(h) a.e.
in Y . Since the sequence S(hn) is increasing, we conclude that the entire sequence
S(hn) converges almost everywhere to S(h). We use this information in conjunction
with hn+1 = h1+ 1

Bp′ S(hn). Indeed, letting n→ ∞ in this identity, we obtain

h= h1+
1
Bp′ S(h) .

Since h1 > 0 ν-a.e. it follows that S(h) ≤ Bp′h ν-a.e., which proves the required
estimate in (ii).

It remains to prove that 0 < T (h) < ∞ μ-a.e. Since ‖h‖Lp ≤ 1 and T is Lp

bounded, it follows that ‖T (h)‖Lp ≤ 1, which implies that T (h)< ∞ μ-a.e. We also
have T (h)≥ T (h1)> 0 μ-a.e. �

A.3 An Example

Consider the Hilbert operator

T ( f )(x) =
∫ ∞

0

f (y)
x+ y

dy ,

where x∈ (0,∞). The operator T takes measurable functions on (0,∞) to measurable
functions on (0,∞). We claim that T maps Lp(0,∞) to itself for 1< p<∞; precisely,
we have the estimate

∫ ∞

0
T ( f )(x)g(x)dx≤ π

sin(π/p)
∥
∥ f
∥
∥
Lp(0,∞)

∥
∥g
∥
∥
Lp′ (0,∞) .

To see this we use Schur’s lemma. We take

u(x) = v(x) = x−
1
pp′ .

We have that

T (up
′
)(x) =

∫ ∞

0

y−
1
p

x+ y
dy= x−

1
p

∫ ∞

0

t−
1
p

1+ t
dt = v(x)p

′
∫ 1

0
(1− s)

1
p′ −1s

1
p−1 ds ,
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where last identity follows from the change of variables s= (1+ t)−1. Now an easy
calculation yields

∫ 1

0
(1− s)

1
p′ −1s

1
p−1 ds= B

( 1
p′ ,

1
p

)

=
π

sin(π/p)
,

so the lemma in Appendix I.2 gives that ‖T‖Lp→Lp ≤ π
sin(π/p) . The sharpness of this

constant follows by considering the sequence of functions

hε(t) = t−
1+ε
p χ(1,∞)(t)

for ε > 0. To verify the last assertion notice that for x> 1 and 0< ε < p−1 we have

T (hε)(x) =
∫ ∞

0

t−
1+ε
p

x+ t
dt−

∫ 1

0

t−
1+ε
p

x+ t
dt

= x−
1+ε
p

∫ ∞

0

t−
1+ε
p

1+ t
dt− x−

1+ε
p

∫ 1
x

0

t−
1+ε
p

1+ t
dt

≥ x−
1+ε
p

∫ ∞

0

t−
1+ε
p

1+ t
dt− x−

1+ε
p

x
x+1

∫ 1
x

0
t−

1+ε
p dt

= x−
1+ε
p

∫ ∞

0

t−
1+ε
p

1+ t
dt− 1

x+1
p

p−1− ε
.

Notice that the expression directly after the ≥ sign is nonnegative, and so is the last
expression. It follows that

∥
∥T (hε)

∥
∥
Lp(1,∞) ≥

∫ ∞

0

t−
1+ε
p

1+ t
dt ‖hε‖Lp(1,∞)−

p
p−1− ε

∥
∥ 1
( ·)+1

∥
∥
Lp(1,∞) .

Dividing both sides of this inequality by ‖hε‖Lp(0,∞) = ‖hε‖Lp(1,∞) = ε−1/p, and
letting ε → 0 we obtain

liminf
ε→0

‖T (hε)‖Lp(0,∞)
‖hε‖Lp(0,∞)

≥
∫ ∞

0

t−
1
p

1+ t
dt = B

( 1
p′ ,

1
p

)

=
π

sin(π/p)
.

Since

limsup
ε→0

‖T (hε)‖Lp(0,∞)
‖hε‖Lp(0,∞)

≤ π
sin(π/p)

as already shown, it follows that

lim
ε→0

‖T (hε)‖Lp(0,∞)
‖hε‖Lp(0,∞)

=
π

sin(π/p)
.
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A.4 Historical Remarks

We make some comments related to the history of Schur’s lemma. Schur [312] first
proved a matrix version of the lemma in Appendix I.1 when p= 2. Precisely, Schur’s
original version was the following: IfK(x,y) is a positive decreasing function in both
variables and satisfies

sup
m
∑
n
K(m,n)+ sup

n
∑
m
K(m,n)< ∞ ,

then
∑
m
∑
n
amK(m,n)bn ≤C‖{am}m‖�2‖{bn}n‖�2 .

Hardy–Littlewood and Pólya [185] extended this result to Lp for 1 < p < ∞ and
disposed of the condition that K be a decreasing function. Aronszajn, Mulla, and
Szeptycki [6] proved that (iii) implies (i) in the lemma of Appendix I.2. Gagliardo
in [149] proved the converse direction that (i) implies (iii) in the same lemma. The
case p = 2 was previously obtained by Karlin [208]. Condition (ii) was introduced
by Howard and Schep [197], who showed that it is equivalent to (i) and (iii). A multi-
linear analogue of the lemma in Appendix I.2 was obtained by Grafakos and Torres
[174]; the easy direction (iii) implies (i) was independently observed by Bekollé,
Bonami, Peloso, and Ricci [20]. See also Cwikel and Kerman [107] for an alterna-
tive multilinear formulation of the Schur lemma.

The case p= p′ = 2 of the application in Appendix I.3 is a continuous version of
Hilbert’s double series theorem. The discrete version was first proved by Hilbert in
his lectures on integral equations (published byWeyl [367]) without a determination
of the exact constant. This exact constant turns out to be π , as discovered by Schur
[312]. The extension to other p’s (with sharp constants) is due to Hardy andM. Riesz
and published by Hardy [181].



Appendix B
Smoothness and Vanishing Moments

B.1 The Case of No Cancellation

Let a,b ∈ Rn, μ ,ν ∈ R, and M,N > n. Set

I(a,μ ,M;b,ν ,N) =
∫

Rn

2μn

(1+2μ |x−a|)M
2νn

(1+2ν |x−b|)N dx .

Then we have

I(a,μ ,M;b,ν ,N)≤C0
2min(μ ,ν)n

(

1+2min(μ ,ν)|a−b|)min(M,N)
,

where

C0 = vn

(
M4N

M−n
+

N4M

N−n

)

and vn is the volume of the unit ball in Rn.
To prove this estimate, first observe that

∫

Rn

dx
(1+ |x|)M ≤ vnM

M−n
.

Without loss of generality, assume that ν ≤ μ . Consider the cases 2ν |a−b| ≤ 1 and
2ν |a−b| ≥ 1. In the case 2ν |a−b| ≤ 1 we use the estimate

2νn

(1+2ν |x−b|)N ≤ 2νn ≤ 2νn2min(M,N)

(1+2ν |a−b|)min(M,N)
,

and the claimed inequality is a consequence of the estimate

I(a,μ ,M;b,ν ,N)≤ 2νn2min(M,N)

(1+2ν |a−b|)min(M,N)

∫

Rn

2μn

(1+2μ |x−a|)M dx .

In the case 2ν |a−b| ≥ 1 let Ha and Hb be the two half-spaces, containing the points
a and b, respectively, formed by the hyperplane perpendicular to the line segment
[a,b] at its midpoint. Split the integral overRn as the integral overHa and the integral
over Hb. For x∈Ha use that |x− b| ≥ 1

2 |a− b|. For x ∈ Hb use a similar inequality
and the fact that 2ν |a−b| ≥ 1 to obtain

L. Grafakos, Modern Fourier Analysis, Graduate Texts in Mathematics 250,
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2μn

(1+2μ |x−a|)M ≤ 2μn

(2μ 1
2 |a−b|)M ≤ 4M2(ν−μ)(M−n)2νn

(1+2ν |a−b|)M .

The claimed estimate follows.

B.2 One Function has Cancellation

Fix a,b ∈ Rn, M > 0, μ ,ν ∈ R, and L ∈ Z+. Assume that ν ≥ μ and that N >
L+M+n.

Given a functionΨ on Rn and another function Φ ∈ C L(Rn) consider the quan-
tities

KM,L
μ ,a (Φ) = sup

|β |=L
sup
x∈Rn

(1+2μ |x−a|)M|∂βΦ(x)| ,

KN
ν ,b(Ψ) = sup

x∈Rn
(1+2ν |x−b|)N |Ψ(x)|

and assume they are both finite. Suppose, moreover, that
∫

Rn
Ψ(x)xβ dx= 0 for all |β | ≤ L−1.

Then there is a constant CM,N,L,n such that
∣
∣
∣
∣

∫

Rn
Φ(x)Ψ(x)dx

∣
∣
∣
∣
≤CM,N,L,n K

M,L
μ ,a (Φ)KN

ν ,b(Ψ)
2−νL−νn

(1+2μ |a−b|)M .

To prove this claim, we subtract the Taylor polynomial of order L−1 of Φ at the
point a from the function Φ using the cancellation ofΨ . Then we write

∣
∣
∣
∣

∫

Rn
Φ(x)Ψ(x)dx

∣
∣
∣
∣

=

∣
∣
∣
∣

∫

Rn

[

Φ(x)− ∑
|γ |≤L−1

∂ γΦ(b)
γ!

(x−b)γ
]

Ψ(x)dx
∣
∣
∣
∣

=

∣
∣
∣
∣

∫

Rn
∑

|β |=L

∂βΦ(ξb,x)
β !

(x−b)βΨ(x)dx
∣
∣
∣
∣

≤ KM,L
μ ,a (Φ)KN

ν ,b(Ψ) ∑
|β |=L

1
β !

∫

Rn

|x−b|L
(1+2μ |ξb,x−a|)M

1
(1+2ν |x−b|)N dx

≤ KM,L
μ ,a (Φ)KN

ν ,b(Ψ) ∑
|β |=L

1
β !

∫

Rn

2−νL

(1+2μ |ξb,x−a|)M
1

(1+2ν |x−b|)N−L dx

where ξb,x lies on the open segment joining b to x.
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Now since ν ≥ μ , the triangle inequality and the fact μ ≤ ν give

1+2μ |a−b| ≤ 1+2μ |a−ξb,x|+2μ |ξb,x−b|
≤ 1+2μ |a−ξb,x|+2ν |x−b|
≤ (1+2μ |ξb,x−a|)(1+2ν |x−b|) ,

hence
1

1+2μ |ξb,x−a| ≤
1+2ν |x−b|
1+2μ |a−b| .

Thus we obtain the estimate
∣
∣
∣
∣

∫

Rn
Φ(x)Ψ(x)dx

∣
∣
∣
∣

≤ KM,L
μ ,a (Φ)KN

ν ,b(Ψ)
2−νL

(1+2μ |a−b|)M
(

∑
|β |=L

1
β !

)∫

Rn

1
(1+2ν |x−b|)N−L−M dx

= KM,L
μ ,a (Φ)KN

ν ,b(Ψ)
2−νn2−νL

(1+2μ |a−b|)MCM,N,L,n ,

since the last integral produces a constant in view of the assumption N > L+M+n.

B.3 One Function has Cancellation: An Example

Fix L ∈ Z+, A,B,M,N > 0, and a,b ∈ Rn satisfy N > M+ L+ n and ν ≥ μ . Let
Φ ∈ C L(Rn) andΨ be another function on Rn. Let

A= sup
|α |=L

sup
x∈Rn

|∂αΦ(x)|(1+ |x|)M

and
B= sup

x∈Rn
|∂αΨ(x)|(1+ |x|)N

and suppose that A+B< ∞. Suppose moreover that
∫

Rn
Ψ(x)xβ dx= 0 for all |β | ≤ L−1.

Then there is a constant C′
M,N,L,n such that

∣
∣
∣
∣

∫

Rn
Φ2−μ (x−a)Ψ2−ν (x−b)dx

∣
∣
∣
∣
≤C′

M,N,L,n AB
2μn2−(ν−μ)L

(1+2μ |a−b|)M .
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In particular, we have

∣
∣(Φ2−μ ∗Ψ2−ν )(x)

∣
∣≤C′

M,N,L,n AB
2μn2−(ν−μ)L

(1+2μ |x|)M

Let Φt(x) = t−nΦ(t−1x) and Ψs(x) = s−nΨ(s−1x) for t,s > 0. Set 2−μ = t and
2−ν = s. The assumption ν ≥ μ can be equivalently stated as s≥ t.

The preceding inequalities can also be written equivalently as

∣
∣
∣
∣

∫

Rn
Φt(x−a)Ψs(x−b)dx

∣
∣
∣
∣
≤C′

M,N,L,n AB
t−n
( s
t

)L

(1+ t−1|a−b|)M .

and
∣
∣(Φt ∗Ψs)(x)

∣
∣≤C′

M,N,L,n AB
t−n
( s
t

)L

(1+2μ |x|)M
for all x ∈ Rn.

These results are easy consequences of the inequality in Appendix B.2. IfΨ has
no cancellation (i.e., L= 0), then the estimate reduces to that in Appendix B.1.

B.4 Both Functions have Cancellation: An Example

Let L ∈ Z+, A,B,N > 0 and μ ,ν ∈ R. Suppose that N > L+ n. Let Ω ,Ψ be C L

functions on Rn such that

A= sup
|γ |≤L

sup
x∈Rn

|∂ γΩ(x)|(1+ |x|)N < ∞

B= sup
|γ |≤L

sup
x∈Rn

|∂ γΨ(x)|(1+ |x|)N < ∞

and moreover, for all multi-indices β with |β | ≤ L−1 we have
∫

Rn
Ω(x)xβdx=

∫

Rn
Ψ(x)xβdx= 0 .

Then givenM > 0 satisfyingM < N−L−n there is a constantC′′
N,M,L,n such that

for all x,a,b ∈ Rn we have
∣
∣
∣
∣

∫

Rn
Ω2−μ (x−a)Ψ2−ν (x−b)dx

∣
∣
∣
∣
≤C′′

N,M,L,n AB
min(2μn,2νn)2−|ν−μ |L

(1+min(2μ ,2ν)|a−b|)M .
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In particular, we have

∣
∣(Ω2−μ ∗Ψ2−ν )(x)

∣
∣≤C′′

N,M,L,n AB
min(2μn,2νn)2−|ν−μ |L

(1+min(2μ ,2ν)|x|)M

for all x ∈ Rn and for all μ ,ν ∈ R.
Let Ωt(x) = t−nΩ(t−1x) and Ψs(x) = s−nΨ(s−1x) for t,s > 0. Then if 2−μ = t

and 2−ν = s, the preceding statements can also be written as

∣
∣
∣
∣

∫

Rn
Ωt(x−a)Ψs(x−b)dx

∣
∣
∣
∣
≤C′′

N,M,L,n AB
max(t,s)−nmin

( s
t ,

t
s

)L

(1+max(t,s)−1|a−b|)M .

and
∣
∣(Ωt ∗Ψs)(x)

∣
∣≤C′′

N,M,L,n AB
max(t,s)−nmin

( s
t ,

t
s

)L

(1+max(t,s)−1|x|)M
for all x ∈ Rn and for all t,s> 0.

These assertions follow from the results in Appendix B.3 by interchanging the
roles of Ω andΨ , noting that

A≥ sup
|γ |≤L

sup
x∈Rn

|∂ γΩ(x)|(1+ |x|)M

B≥ sup
|γ |≤L

sup
x∈Rn

|∂ γΨ(x)|(1+ |x|)M

since M < N.

B.5 The Case of Three Factors with No Cancellation

Given three numbers a,b,c we denote by med(a,b,c) the number with the property
min(a,b,c)≤med(a,b,c)≤max(a,b,c).

Let xν ,xμ ,xλ ∈ Rn. Suppose that ψν , ψμ , ψλ are functions defined on Rn such
that for some N > n and some Aν ,Aμ ,Aλ < ∞ we have

|ψν(x)| ≤ Aν
2νn/2

(1+2ν |x− xν |)N ,

|ψμ(x)| ≤ Aμ
2μn/2

(1+2μ |x− xμ |)N ,

|ψλ (x)| ≤ Aλ
2λn/2

(1+2λ |x− xλ |)N
,



600 B Smoothness and Vanishing Moments

for all x ∈ Rn. Then the following estimate is valid:
∫

Rn
|ψν(x)| |ψμ(x)| |ψλ (x)|dx

≤ CN,n Aν Aμ Aλ 2−max(μ ,ν ,λ )n/2 2med(μ ,ν ,λ )n/2 2min(μ ,ν ,λ )n/2

((1+2min(ν ,μ)|xν − xμ |)(1+2min(μ ,λ )|xμ − xλ |)(1+2min(λ ,ν)|xλ − xν |))N

for some constant CN,n > 0 independent of the remaining parameters.
Analogous estimates hold if some of these three factors are assumed to have

cancellation and the others vanishing moments; see Grafakos and Torres [176] for
precise statements and applications. Similar estimates with m factors, m ∈ Z+, are
studied in Bényi and Tzirakis [26].



Glossary

A⊆ B A is a subset of B (also denoted by A⊆ B)

A� B A is a proper subset of B

A⊃ B B is a proper subset of A

Ac the complement of a set A

χE the characteristic function of the set E

df the distribution function of a function f

f ∗ the decreasing rearrangement of a function f

fn ↑ f fn increases monotonically to a function f

Z the set of all integers

Z+ the set of all positive integers {1,2,3, . . .}
Zn the n-fold product of the integers

R the set of real numbers

R+ the set of positive real numbers

Rn the Euclidean n-space

Q the set of rationals

Qn the set of n-tuples with rational coordinates

C the set of complex numbers

Cn the n-fold product of complex numbers

T the unit circle identified with the interval [0,1]

Tn the n-dimensional torus [0,1]n,

|x|
√

|x1|2+ · · ·+ |xn|2 when x= (x1, . . . ,xn) ∈ Rn
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Sn−1 the unit sphere {x ∈ Rn : |x|= 1}
e j the vector (0, . . . ,0,1,0, . . . ,0) with 1 in the jth entry and 0 elsewhere

log t the logarithm to base e of t > 0

loga t the logarithm to base a of t > 0 (1 �= a> 0)

log+ t max(0, log t) for t > 0

[t] the integer part of the real number t

x · y the quantity ∑n
j=1 x jy j when x= (x1, . . . ,xn) and y= (y1, . . . ,yn)

B(x,R) the ball of radius R centered at x in Rn

ωn−1 the surface area of the unit sphere Sn−1

vn the volume of the unit ball {x ∈ Rn : |x|< 1}
|A| the Lebesgue measure of the set A⊆ Rn

dx Lebesgue measure

AvgB f the average 1
|B|
∫

B f (x)dx of f over the set B
〈

f ,g
〉

the real inner product
∫

Rn f (x)g(x)dx
〈

f |g〉 the complex inner product
∫

Rn f (x)g(x)dx
〈

u, f
〉

the action of a distribution u on a function f

p′ the number p/(p−1), whenever 0< p �= 1< ∞

1′ the number ∞

∞′ the number 1

f = O(g) means | f (x)| ≤M|g(x)| for someM for x near x0

f = o(g) means | f (x)| |g(x)|−1 → 0 as x→ x0

At the transpose of the matrix A

A∗ the conjugate transpose of a complex matrix A

A−1 the inverse of the matrix A

O(n) the space of real matrices satisfying A−1 = At

‖T‖X→Y the norm of the (bounded) operator T : X → Y

A≈ B means that there exists a c> 0 such that c−1 ≤ B
A ≤ c

|α| indicates the size |α1|+ · · ·+ |αn| of a multi-index α = (α1, . . . ,αn)

∂m
j f the mth partial derivative of f (x1, . . . ,xn) with respect to x j

∂α f ∂α11 · · ·∂αnn f
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C k the space of functions f with ∂α f continuous for all |α| ≤ k

C0 space of continuous functions with compact support

C00 the space of continuous functions that vanish at infinity

C ∞
0 the space of smooth functions with compact support

D the space of smooth functions with compact support

S the space of Schwartz functions

C ∞ the space of smooth functions
⋂∞

k=1C
k

D ′(Rn) the space of distributions on Rn

S ′(Rn) the space of tempered distributions on Rn

E ′(Rn) the space of distributions with compact support on Rn

P the set of all complex-valued polynomials of n real variables

S ′(Rn)/P the space of tempered distributions on Rn modulo polynomials

�(Q) the side length of a cube Q in Rn

∂Q the boundary of a cube Q in Rn

Lp(X ,μ) the Lebesgue space over the measure space (X ,μ)

Lp(Rn) the space Lp(Rn, | · |)
Lp,q(X ,μ) the Lorentz space over the measure space (X ,μ)

Lp
loc(R

n) the space of functions that lie in Lp(K) for any compact set K in Rn

|dμ | the total variation of a finite Borel measure μ on Rn

M (Rn) the space of all finite Borel measures on Rn

Mp(Rn) the space of Lp Fourier multipliers, 1≤ p≤ ∞

M p,q(Rn) the space of translation-invariant operators that map Lp(Rn) to Lq(Rn)
∥
∥μ
∥
∥
M

∫

Rn |dμ | the norm of a finite Borel measure μ on Rn

M the centered Hardy–Littlewood maximal operator with respect to balls

M the uncentered Hardy–Littlewood maximal operator with respect to
balls

Mc the centered Hardy–Littlewood maximal operator with respect to cubes

Mc the uncentered Hardy–Littlewood maximal operator with respect to
cubes

Mμ the centered maximal operator with respect to a measure μ

Mμ the uncentered maximal operator with respect to a measure μ
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Ms the strong maximal operator

Md the dyadic maximal operator

M# the sharp maximal operator

M the grand maximal operator

Lp
s (Rn) the inhomogeneous Lp Sobolev space

L̇p
s (Rn) the homogeneous Lp Sobolev space

Λα(Rn) the inhomogeneous Lipschitz space

Λ̇α(Rn) the homogeneous Lipschitz space

Hp(Rn) the real Hardy space on Rn

Bp
s,q(Rn) the inhomogeneous Besov space on Rn

Ḃp
s,q(Rn) the homogeneous Besov space on Rn

Ḃp
s,q(Rn) the homogeneous Besov space on Rn

F p
s,q(Rn) the inhomogeneous Triebel–Lizorkin space on Rn

Ḟ p
s,q(Rn) the homogeneous Triebel–Lizorkin space on Rn

BMO(Rn) the space of functions of bounded mean oscillation on Rn
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295. Pérez, C., Endpoint estimates for commutators of singular integral operators, J. Funct. Anal.

128 (1995), no. 1, 163–185.
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Hörmander-Mihlin multiplier theorem

multilinear, 564
Hardy space, 56

vector-valued, 80
Hardy space characterizations, 59, 80
Hardy–Littlewood–Sobolev theorem, 11
hemispherical tent, 182
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