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    Abstract     Obesity and diabetes are important risk factors for the development of 
heart failure. The metabolic abnormalities that accompany obesity and diabetes 
result in dramatic alterations in cardiac energy metabolism, which can contribute to 
the progression of heart failure. Elevated rates of fatty acid oxidation and depressed 
rates of glucose oxidation characterize the cardiac metabolic profi le in the setting of 
obesity-induced insulin resistance and diabetes. This metabolic profi le results in a 
marked cardiac insulin resistance, which is accompanied by decrements in both 
cardiac function and effi ciency, and by the accumulation of potentially toxic fatty 
acid metabolites in the heart. Acetylation of various mitochondrial and glycolytic 
enzymes are altered in obesity and diabetes, which may also contribute to the patho-
genesis of heart failure in obesity and diabetes. As a result, therapeutic interventions 
that prevent or reverse the energy metabolic switch in the heart of obese and diabetic 
individuals, and/or the accumulation of fatty acid metabolites may lessen the sever-
ity of heart failure. These interventions include inhibiting myocardial fatty acid oxi-
dation, stimulating glucose oxidation, restoring myocardial insulin sensitivity, 
preventing myocardial fatty acid metabolite accumulation, and inhibiting the acety-
lation of key enzymes involved in fatty acid oxidation. This paper reviews the meta-
bolic alterations that occur in heart failure associated with obesity and diabetes, and 
the molecular mechanisms responsible for these changes.  
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1         Introduction 

 Obesity and diabetes are major health concerns in our population, with the  incidence 
rapidly rising in both Canada and the world. Among the many complications associ-
ated with obesity and diabetes is an increased risk of developing heart failure, a 
complex clinical syndrome [ 1 ,  2 ], characterized by the progressive inability of the 
heart to fi ll with, and eject, adequate amounts of blood to meet the needs of the 
body. This increased risk of developing heart failure in obese and diabetic individu-
als persists even after adjusting for independent factors including coronary artery 
disease and hypertension [ 3 – 5 ]. As a result, a considerable research effort has 
focused on the mechanisms responsible for the increased prevalence of heart failure 
in obesity and diabetes. Potential contributing factors identifi ed thus far include: 
(1) increased oxidative stress [ 6 ], (2) development of cardiac autonomic neuropa-
thies [ 7 ], (3) accelerated apoptosis [ 8 ,  9 ], (4) accelerated infl ammatory responses 
[ 9 – 11 ], (5) accelerated fi brosis [ 12 ], (6) altered cardiac Ca 2+  and Na +  handling [ 13 ], 
(7) production of advanced glycation end products (AGE) and receptors for AGEs 
activation [ 14 ], (8) increased polyol pathway activity [ 15 ], (9) activation of NADPH 
oxidase [ 16 ,  17 ], (10) increased O-linked β-N-acetylglucosamine [ 18 ], and (11) 
alterations in cardiac energetics (discussed below). 

 Heart failure in obesity and diabetes is characterized by the early development of 
left ventricular (LV) diastolic dysfunction [ 19 ], increased LV mass, increased LV 
wall thickness, and the eventual development of LV systolic dysfunction [ 20 ]. This 
is accompanied by changes in control of fatty acid metabolism at both the level of 
the heart and skeletal muscle [ 22 – 28 ]. As heart failure progresses, myocardial ATP 
and PCr content decreases [ 23 – 28 ], with a decrease in the PCr/ATP ratio correlating 
with NYHA functional class 2 [ 29 ,  30 ]. Defects in the rates of oxygen consumption 
and mitochondrial electron transport chain activity (which impact oxidative phos-
phorylation, and hence ATP generation) also accompany heart failure (see for 
review [ 31 ]). Heart failure also impairs insulin signaling [ 32 ,  33 ]. These defi cits in 
insulin sensitivity and energy generation contribute to the pathogenesis and progres-
sion of heart failure in obesity and diabetes. Evidence is emerging that the exacerba-
tion of heart failure in obesity and diabetes is due, in part, to the alterations in the 
use of fatty acids as a source of ATP production.  

2     Cardiac Fatty Acid Use in Obesity, Diabetes, 
and Heart Failure 

 While fatty acids are a major energy source of the heart, fatty acid uptake and sub-
sequent mitochondrial fatty acid oxidation must be coordinately regulated in order 
to ensure adequate, but not excessive supply, for cardiac energetic requirements 
(Fig.  1 ). The presence of diabetes and/or obesity induced insulin-resistance can 
markedly alter this regulation, leading to adverse consequences on cardiac 
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function. In particular, numerous clinical and experimental studies have shown that 
the heart switches to a greater reliance on fatty acid oxidation as a source of energy 
in obesity and diabetes. We and others have shown that fatty acid oxidation rates in 
the heart are increased in diabetic rats, as well as in rats and mice subjected to 
 diet-induced obesity and in insulin-resistant  db / db  and  ob / ob  mice, with the increase 
in fatty acid oxidation occurring primarily at the expense of glucose oxidation 
 [ 33 – 48 ]. Human studies using positron emission tomography and  11 C-palmitate 
imaging found that obese women and type 2 diabetics also have increased cardiac 
fatty acid oxidation [ 49 ,  50 ].

   Heart failure itself results in signifi cant alterations in cardiac energy metabolism, 
with the metabolic phenotype dependent on the stage/severity of the syndrome. 
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  Fig. 1    Alterations in cardiac energy metabolism that occur during heart failure associated with 
obesity and diabetes       
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Fatty acid oxidation rates are normal in acute heart failure secondary to aortic 
 banding in rats [ 51 ], in the failing canine heart [ 52 ], and in patients with asymptom-
atic hypertrophic cardiomyopathy [ 53 ]. However, in NYHA functional class III 
patients fatty acid use is increased [ 54 ], and is accompanied by elevated plasma 
lactate levels, indicative of fatty acid impairment of carbohydrate oxidation [ 54 ]. In 
clinically stable NYHA functional class II and III patients, cardiac fatty acid uptake 
[ 55 ,  56 ] and subsequent oxidation [ 55 ] is greater than that observed in healthy con-
trols, while glucose uptake [ 56 ] and oxidation are lower [ 55 ]. Mitochondrial TCA 
cycle and oxidative phosphorylation are also depressed in heart failure [ 57 ]. In mice 
subjected to an abdominal aortic constriction (AAC), we show that the development 
of hypertrophy and diastolic heart failure is accompanied by early decreases in 
overall mitochondrial oxidative capacity [ 58 ]. An early change that occurs in heart 
failure is a decrease in overall mitochondrial oxidative metabolism, with a promi-
nent decrease in carbohydrate oxidation [ 59 – 62 ]. Of importance is that a decrease 
in carbohydrate oxidation is primarily responsible for the decrease in mitochondrial 
oxidation, and fatty acid oxidation is only marginally decreased. In addition, a 
marked decrease in insulin sensitivity occurs in the heart during the development of 
diastolic heart failure [ 59 – 62 ]. We also recently showed that development of sys-
tolic heart failure secondary to pressure overload is accelerated in obese mice [ 62 ]. 
Of interest, is that decreasing obesity by switching mice to a low fat diet or by 
caloric restriction markedly increases insulin-sensitivity, decreases fatty acid oxida-
tion, and improves glucose oxidation [ 62 ,  63 ]. We therefore propose that worsening 
of heart failure occurs secondary to obesity-induced changes in fatty acid oxidation, 
and an exacerbation of the insulin resistance that occurs in heart failure.  

3     The Controversy of Fatty Acid Metabolism 
and Insulin-Resistance 

 High circulating levels of fatty acids, as well as increased uptake and esterifi cation 
of fatty acids contributes to muscle insulin-resistance and cardiac lipotoxicity (see 
[ 64 ] for review). Decreasing muscle fatty acid uptake and/or esterifi cation can 
decrease the accumulation of these toxic lipid intermediates [ 21 ,  22 ,  65 – 69 ]. 
However, a controversial strategy for decreasing lipid accumulation is based on 
enhancing fatty acid oxidation, which has been proposed to help remove cytoplas-
mic lipid metabolites, thereby improving insulin sensitivity [ 21 ,  22 ,  69 ,  70 ]. This 
concept is based on the observation that the size and number of mitochondria, as 
well as the activity of proteins in the respiratory chain are reduced in obese insulin- 
resistant humans, rodents [ 71 – 76 ], or subjects with type II diabetes [ 77 – 79 ]. 
However, contrary evidence suggests that several markers of mitochondrial function 
and fatty acid oxidative capacity (oxidative enzyme activity and protein expression) 
are elevated in muscle of high fat-fed mice and rats, obese Zucker rats ( fa / fa ), and 
 db / db  mice [ 80 ,  81 ], and direct measurements of fatty acid oxidation in the heart 
have shown that in insulin resistance fatty acid oxidation rates are accelerated 
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[ 39 ,  42 ,  82 ]. Furthermore, we and others have shown that inhibiting fatty acid 
 oxidation in heart and skeletal muscle can increase insulin sensitivity [ 40 ,  41 ,  83 ,  84 ]. 
Products of incomplete fatty acid oxidation can also contribute to muscle insulin-
resistance [ 41 ]. As a result, debate still exists as to whether stimulating or inhibiting 
muscle fatty acid oxidation is an approach to lessen insulin resistance, prevent lipid 
accumulation and improve contractile dysfunction.  

4     High Fatty Acid Oxidation Decreases Cardiac 
Effi ciency and Contractile Function in Obesity, 
Diabetes and Heart Failure 

 Cardiac effi ciency (the amount of work performed by the heart per oxygen 
 consumed) [ 85 ], is infl uenced by alterations in fatty acid oxidation [ 86 ]. This has 
potentially important consequences in heart failure, as well as in the setting of obe-
sity and diabetes where rates of fatty acid use are markedly altered. As the majority 
of ATP utilized to drive cardiac contraction is generated by mitochondrial oxidative 
phosphorylation, cardiac effi ciency itself can be infl uenced by both the effi ciency of 
ATP generation and hydrolysis (i.e. the effi ciency of converting chemical energy 
into mechanical energy). Interestingly, there are relatively few studies that have 
examined cardiac mechanical effi ciency in heart failure, and there appears to be 
discrepant results between these studies. Studies have shown a preservation of car-
diac effi ciency secondary to decreases in MVO 2  [ 87 ,  88 ]; while, in contrast, others 
have demonstrated decreased cardiac effi ciency secondary to oxygen wasting 
effects in the failing heart [ 89 ,  90 ]. The effects of obesity and/or diabetes on cardiac 
effi ciency are less ambiguous. In murine models of obesity, insulin resistance, and 
diabetes (including leptin-defi cient  ob / ob  and leptin receptor-defi cient  db / db  mice) 
cardiac fatty acid use is increased, while cardiac effi ciency is decreased [ 39 ,  42 , 
 91 – 94 ]. The decrease occurs in response to increased MVO 2  [ 38 ,  39 ,  91 ], decreased 
LV work [ 39 ,  92 ] or a combination of both [ 39 ,  92 ].  

5     Mechanism by Which Fatty Acid Oxidation 
is Altered in Obesity, Diabetes, and Heart Failure 

5.1     Alterations in Fatty Acid Supply 

 Both human and animal studies have shown that a prevalent metabolic change in 
obesity/insulin resistance involves an elevation in circulating fatty acids and triacyl-
glycerol (TAG) levels [ 38 ,  95 – 100 ], resulting in an increase in cardiac fatty acid 
uptake and oxidation. Increased fatty acid supply to the cardiomyocyte may also be 
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due to an increase in lipoprotein lipase (LPL) activity in insulin-resistant [ 101 ], and 
diabetic animals [ 102 ,  103 ], although a consistent increase in LPL has not been 
found [ 102 – 106 ]. The uptake of fatty acids into cardiomyocytes is facilitated by the 
action of a number of fatty acid transporters (e.g. FAT/CD36, FABPpm, and FATPs) 
(Fig.  1 ). Translocation of FAT/CD36 to the sarcolemmal membrane is increased in 
the presence of insulin resistance and diabetes resulting in increased fatty acid 
uptake [ 96 ,  97 ,  107 ]. Increased expression and sarcolemmal localization of fatty 
acid transporters may also partially account for increased fatty acid supply and oxi-
dation [ 108 – 110 ] (Fig   .  2 ).
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  Fig. 2    Increased fatty acid uptake and oxidation in failing hearts associated with obesity and dia-
betes is accompanied by a marked decrease in energy production from glucose oxidation. Decreases 
in tricarboxylic acid (TCA) cycle activity and electron transport chain activity can lead to an 
increase in incomplete fatty acid oxidation. The increase in fatty acid oxidation in failing hearts 
associated with heart failure can be explained by: (1) an increased fatty acid supply to the heart, (2) 
a decrease in cardiac malonyl CoA levels resulting in a decreased inhibition of carnitine palmito-
yltransferase 1 (CPT1), and/or (3) an increased acetylation of fatty acid oxidative enzymes.  FAT  
fatty acid transporter,  MCD  malonyl CoA decarboxylase,  ACC  acetyl CoA carboxylase,  AMPK  
AMP-activated protein kinase,  CPT  carnitine palmitoyltransferase,  CT  carnitine acylcarnitine 
translocase,  PDH  pyruvate dehydrogenase,  MPC  mitochondrial pyruvate carrier,  LDH  lactate 
dehydrogenase,  Glut  glucose transporter       
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5.2        Alterations in the Intracellular Fate of Fatty Acids 

 This can also contribute to the high fatty acid oxidation rates in obesity and  diabetes. 
Once transported into the cytosol, fatty acids are esterifi ed to CoA by fatty acyl CoA 
synthetase (Fig.  1 ), forming long chain acyl CoA. Most of the long chain acyl CoAs 
is destined for mitochondrial fatty acid oxidation, but a small portion can be con-
verted into intracellular lipid intermediates, such as TAG, phospholipids, diacylg-
lycerol (DAG), and ceramide. To undergo ß-oxidation, the acyl groups from long 
chain acyl-CoA are transported into the mitochondria via a carnitine-dependent 
transport system (Fig.  1 ) involving carnitine palmitoyl transferase-1 (CPT-1). CPT-1 
activity is controlled by malonyl CoA, a potent allosteric inhibitor of CPT-1) [ 111 ]. 
Malonyl CoA content, in turn, is controlled by its rate of turnover. Acetyl CoA car-
boxylase (ACC) catalyzes the synthesis of malonyl-CoA, whereas malonyl CoA 
decarboxylase (MCD) catalyzes its degradation. In diabetes malonyl CoA control of 
CPT-1 is decreased, due in part to an increased expression of MCD [ 112 ], resulting 
in increased mitochondrial uptake and oxidation of fatty acids.  

5.3     Alterations in the Fatty Acid ß-Oxidative Pathway 

 This can also contribute to increased fatty acid oxidation in obesity and diabetes. In 
 db / db  mice, increased cardiac fatty acid oxidation [ 35 ,  43 ,  113 ,  114 ] is associated 
with a concomitant increase in the activity of enzymes of mitochondrial oxidation. 
This increase in fatty acid oxidative enzymes may be related to an increase in the 
transcriptional regulator PPARα   , which increases fatty acid oxidative enzyme 
expression and produces a dramatic increase in fatty acid oxidation that has the 
potential to decrease cardiac effi ciency [ 115 ]. Pharmacologically shifting the bal-
ance of oxidative metabolism from fatty acid oxidation towards glucose oxidation 
by targeting either (1) the cellular uptake of energy substrates, (2) transcriptional 
regulators of energy substrate metabolism, (3) mitochondrial fatty acid uptake, 
(4) mitochondrial fatty acid oxidation, and (5) glucose oxidation can improve the 
effi ciency of ATP generation and hydrolysis (see for review [ 31 ]).  

5.4     Acetylation Control of Cardiac Fatty Acid Oxidation 
in Insulin Resistance and Diabetes 

 Protein acetylation is an important dynamic/reversible post-translational modifi ca-
tion involved in many cellular processes, including nuclear transcription, cell sur-
vival, apoptosis, and differentiation [ 116 ,  117 ]. Nuclear lysine acetylation has been 
extensively studied, and is linked to active gene transcription [ 118 – 120 ]. This post- 
translational modifi cation is mediated by histone acetyltransferases (HATs) and is 
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reversed by histone deacetylases (HDACs). Both class 1 and class 2 HDACs play 
important roles in cardiac hypertrophy [ 116 ,  121 – 124 ]. Nuclear acetylation has an 
important role in regulating cardiac energy metabolism. For instance, PGC-1α and 
HIF-1α, important transcriptional regulators of genes involved in mitochondrial 
oxidative metabolism and glycolysis, are both under acetylation control [ 125 – 130 ]. 

 Non-nuclear lysine acetylation has also emerged as an important post- 
translational regulator of many metabolic pathways [ 131 – 134 ]. This includes 
enzymes that are involved in mitochondrial metabolism and glycolysis and tran-
scriptional regulation of glycolysis and mitochondrial oxidative metabolism [ 133 – 138 ]. 
Despite the recent identifi cation of numerous acetylation sites on metabolic 
enzymes, the role of acetylation in regulating cardiac energy metabolism is still 
poorly understood. While it is generally thought that acetylation decreases enzyme 
activity, this is not always the case. A number of glycolytic enzymes appear to be 
activated by acetylation [ 133 ,  136 ,  138 ]. Acetylation of fatty acid oxidation enzymes 
is generally considered to inhibit fatty acid oxidation. For instance, Hirschey et al. 
[ 133 ,  139 ] proposed that acetylation inhibits liver fatty acid oxidation, via inhibition 
of the fatty acid oxidation enzyme, long chain acyl CoA dehydrogenase (LCAD). 
However, we recently showed that acetylation is actually associated with increased 
fatty acid oxidation in the heart. Increased acetylation of LCAD and hydroxyacyl 
CoA dehydrogenase (HACD) is associated with increased HACD activity under 
conditions where cardiac fatty acid oxidation is high. In support of this, Zhao et al. 
showed that acetylation of the hepatic fatty acid oxidation enzyme enoyl-CoA 
hydratase/3-HACD is associated with its activation [ 132 ]. Of importance, we have 
demonstrated that cardiac fatty acid oxidation rates are increased in SIRT3 ko mice, 
which occurs concomitant with a decreased glucose oxidation. The overall acetyla-
tion of myocardial proteins is enhanced in SIRT3 ko mice. Elevated acetylation of 
myocardial HCAD and LCAD are also evident, which is accompanied by an 
increased activity of LCAD. In agreement, a decrease in the acetylation of mito-
chondrial proteins has been reported in cells overexpressing SIRT3 [ 140 ,  141 ]. 
Further support for the concept that increased acetylation increases, rather than 
decreases, fatty acid oxidation was found in hindlimb muscle of fasted mice, where 
increased acetylation and fatty acid oxidation rates were observed [ 142 ]. Diaphragm 
muscle of SIRT3 ko mice also have increased fatty acid oxidation rates [ 142 ]. 

 Multiple enzymes in the TCA cycle and ETC are also targets for acetylation. The 
effects of acetylation on these enzymes is poorly understood, but it is generally 
considered that acetylation decreases TCA cycle and ETC activity, thereby compro-
mising mitochondrial ATP production [ 133 ,  139 – 141 ]. 

 Another target of acetylation are enzymes in the insulin signaling and glycolytic 
pathway [ 142 ,  143 ], suggesting that alterations in acetylation may contribute to the 
insulin resistance seen in obesity, diabetes, and heart failure. A number of glycolytic 
enzymes are acetylated, and inhibition of glycolysis is associated with a reduction 
in SIRT1 expression [ 138 ]. Hepatic insulin resistance is also associated with reduced 
expression levels of SIRT1 [ 144 – 149 ]. Reduced SIRT1 expression also leads to 
reduced Akt activation and decreased insulin-induced IRS-2 tyrosine phosphoryla-
tion in several cell lines  in vitro  [ 150 ]. Conversely, SIRT1-mediated deacetylation of 
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Akt, and its upstream activator, phosphoinositide dependent kinase 1 (PDK1) 
 promotes Akt activation [ 151 ]. Of importance is that low levels of SIRT1 expression 
negatively correlate with obesity and BMI in humans [ 152 ]. In obese mice, SIRT1 
activation can also improve insulin sensitivity [ 153 ].   

6     The Consequences of Altered Fatty Acid Oxidation 
in Obesity, Diabetes, and Heart Failure 

6.1     Altered Insulin Signaling and Lipid Intermediate 
Accumulation 

 Increased myocardial uptake of fatty acids leads to accumulation of lipid metabo-
lites, which can have a profound impact on insulin signaling and cardiac function. 
Diacylglycerol (DAG), and ceramides can activate kinases involved in the down- 
regulation of insulin action [ 154 – 158 ]. Activation of JNK-AP-1, IKK-NF-κB and 
PKC cascades by lipid intermediates has a negative feedback on insulin action, 
acting via serine phosphorylation of IRS-1 [ 159 ]. A negative relationship between 
the accumulation of intracellular lipids in skeletal muscle and insulin sensitivity has 
been reported in obesity in both humans [ 160 ] and rodents [ 161 – 163 ]. 

 Long chain acyl CoA’s (LC acyl CoA) are also potential mediators of insulin 
resistance [ 164 ], and elevated levels of LC acyl CoA have been associated with 
decreased glucose uptake in obese individuals [ 165 ]. Obesity promotes accumula-
tion of LC acyl CoA in muscle, which is accompanied by insulin resistance. Studies 
have shown an inverse relationship between muscle LC acyl CoA content and insu-
lin resistance [ 164 ,  166 – 170 ], although this relationship does not always hold [ 171 ]. 

 Ceramide may also be a mediator of insulin resistance. Accumulation of 
ceramide occurs either by the hydrolysis of sphingomyelin [ 172 ] or by  de novo  
synthesis from saturated fatty acids [ 173 ]. Ceramide decreases insulin-stimulated 
glucose uptake in skeletal muscle [ 174 ,  175 ], and inhibition of ceramide [ 176 ]. 
Interestingly, although cardiac ceramide content does not increase in obesity [ 4 ], 
the salutary effects of decreasing ceramide content in promoting insulin sensitivity 
in skeletal muscle may nonetheless be transferable to cardiac muscle. Ceramides 
inhibit insulin action via the inhibition of Akt phosphorylation [ 174 ,  175 ], while 
inhibition of ceramide synthesis restores phosphorylation of Akt in insulin-resistant 
myotubes [ 174 ]. 

 DAG content is increased in muscle from insulin resistant rodents and humans 
[ 158 ,  177 – 179 ]. In human studies, accumulation of DAG in skeletal muscle of 
obese, and diabetic individuals is positively correlated with the increased activity 
of PKC-θ [ 180 ,  181 ], which can impair insulin signaling via serine phosphorylation of 
IRS-1 [ 158 ,  181 ]. 

 Accumulation of lipids has been implicated as an important mediator of cardiac 
dysfunction [ 182 ]. The increased concentration of TAG in association with insulin 

Energy Metabolism in Heart Failure



78

resistance is seen in hearts from obese humans and rodents, and genetically obese 
and type 2 diabetic rodents [ 176 ,  183 – 187 ]. Cardiac dysfunction in Zucker obese 
rats is positively correlated with the accumulation of myocardial TAG and ceramide 
[ 186 ]. Accumulation of ceramide in the rat heart following obesity has also been 
observed [ 188 ]. Cardiac overexpression of PPARγ in mice subjected to obesity also 
augments myocardial ceramide content [ 189 ], which is implicated in the develop-
ment of insulin resistance and heart failure [ 190 – 192 ].  

6.2     Incomplete Fatty Acid Oxidation in Obesity 

 Increases in fatty acid oxidation that exceed the ability of the mitochondria to 
metabolize its downstream products can lead to the failure of muscle to com-
pletely oxidize fatty acids, leading to the accumulation of acid soluble metabolites 
(markers of incomplete oxidation) [ 45 ,  80 ]. In contrast, increasing TCA cycle and 
ETC activity prevents incomplete fatty acid oxidation [ 80 ]. Indeed, increased fatty 
acid oxidation in the skeletal muscle and heart during high fat feeding contributes 
to the mismatch between β-oxidation and TCA cycle activity, leading to incom-
plete fatty acid oxidation [ 60 ,  193 ]. This is supported by the observation that inter-
mediates of incomplete fatty acid oxidation accumulate in muscle from 
insulin-resistant animals, and that decreasing this accumulation can improve insu-
lin sensitivity [ 45 ,  194 ]. 

 In order for insulin resistance to develop, excess fatty acids have to enter the 
mitochondria [ 5 ], a concept supported by the observation that channeling excessive 
fats to storage in the form of TAG limits insulin resistance [ 183 ,  195 ]. Acylcarnitines, 
which are markers of incomplete oxidation, may contribute to the acylation and 
acetylation of mitochondrial proteins to alter their function [ 196 ]. We speculate that 
enhancing fatty acid oxidation does not increase insulin sensitivity. Rather, correct-
ing the ‘mismatch’ between oxidation and TCA cycle activity by lowering 
β-oxidation may alleviate insulin resistance.   

7     Conclusions 

 Heart failure associated with obesity and diabetes results in dramatic changes in 
cardiac energy metabolism. While overall mitochondrial energy production is 
decreased in the heart, fatty acid oxidation rates are markedly increased. This is 
associated with a decrease in glucose oxidation and a decrease in insulin stimulation 
of glucose metabolism. These metabolic changes are associated with a decrease in 
cardiac effi ciency that can compromise cardiac function. As a result, inhibition of 
fatty acid oxidation in heart failure associated with obesity and diabetes has the 
potential to improve cardiac function and effi ciency.     
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