
199G.D. Lopaschuk and N.S. Dhalla (eds.), Cardiac Energy Metabolism 
in Health and Disease, Advances in Biochemistry in Health and Disease 11,
DOI 10.1007/978-1-4939-1227-8_13, © Springer Science+Business Media New York 2014

    Abstract     The development of cardiac hypertrophy in response to sustained cardiac 
stress causes considerable structural and metabolic remodeling of the heart that can 
have profound detrimental consequences. AMP-activated protein kinase (AMPK), 
a well-studied mediator of cellular energy homeostasis, has been shown to be a 
regulator of cardiac hypertrophy via its infl uence on several key signaling pathways 
involved in cardiomyocyte growth control. Although the ability of activated AMPK 
to inhibit protein synthesis has been a major focus of the anti-hypertrophic effects 
of AMPK, alterations in other cellular processes such as cardiac energy metabolism 
and cytoskeletal remodeling have also emerged as complimentary pathways by 
which AMPK is thought to inhibit the development of cardiac hypertrophy. 
Consistent with this, increasing evidence supports the use of pharmacological acti-
vators of AMPK to prevent the progression of cardiac hypertrophy. Despite these 
fi ndings, this concept is not universally accepted as AMPK has also been shown to 
be elevated in hypertrophic hearts, suggesting that AMPK plays a role in promoting 
rather than inhibiting cardiomyocyte growth. This chapter reviews some of the pub-
lished literature that focuses on the role of AMPK in the control of cardiomyocyte 
growth and discusses the potential benefi ts and pitfalls that may accompany the 
approach of pharmacologically activating AMPK to control the pathogenesis of 
cardiac hypertrophy.  
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1         Introduction 

 In response to hemodynamic stress such as an increase in aortic pressure, the heart 
undergoes both structural and metabolic remodeling. Early structural remodeling 
often involves thickening of the walls of the left ventricle (LV), which leads to a 
physiological condition known as cardiac hypertrophy [ 1 ]. There are several pro-
cesses necessary for cardiac hypertrophy including enhanced protein synthesis [ 2 ], 
cell enlargement, expansion of the cytoskeleton and a higher degree of sarcomeric 
organization [ 3 ]. Although early morphological changes involved in LV hypertro-
phy (LVH) are initially adaptive in order to normalize wall stress and maintain car-
diac output [ 4 ], prolonged pathological stimuli such as hypertension or valvular 
heart disease often induce changes in the cardiomyocyte that become maladaptive. 
This condition can worsen over time and transition from a compensated hypertrophy 
to a decompensated hypertrophy and eventually heart failure [ 3 ,  5 ]. 

 Although much of the pathogenesis to decompensated hypertrophy can be attrib-
uted to structural remodeling of the cardiomyocyte and the surrounding extracellular 
matrix, these changes in cardiac morphology also impact other parameters including 
cardiac energy metabolism. Indeed, it has been well documented that pathological 
LVH results in a genetic “reprograming” of the metabolic regulatory circuits of the 
cardiomyocyte such that rates of fatty acid oxidation (FAO) are reduced while rates 
of glycolysis are increased [ 6 – 11 ]. This reprograming to a more fetal metabolic 
profi le ultimately results in impaired cardiac energetics and contributes to impaired 
cardiac performance [ 11 – 14 ]. As such, interventions that would lessen cardiomyo-
cyte growth as well as improve cardiac energetics could be of great benefi t in the 
treatment of pathological LVH. Importantly, the energy sensing kinase, AMP-
activated protein kinase (AMPK) has emerged as a key player in these processes (i.e. 
cell growth control and cardiac energetics) providing a potential therapeutic target in the 
prevention and/or treatment of cardiac hypertrophy. 

 LVH is recognized as a signifi cant independent risk factor for cardiac-related 
morbidity and mortality [ 15 ,  16 ], and a growing body of evidence shows that regres-
sion of LVH greatly improves outcomes [ 17 ,  18 ]. Therefore, there has been a great 
deal of research aimed at understanding the mechanisms involved in the development 
of cardiac hypertrophy and developing new therapeutic strategies for the treatment 
of LVH. Our current understanding of the pathophysiology of LVH with a focus on 
the role of AMPK in the hypertrophic process will be discussed herein, as well as 
the use of AMPK modulators as a potential anti-hypertrophic therapy.  

2     AMP-Activated Protein Kinase (AMPK) 

 AMPK is known to be a major regulator of cellular substrate metabolism, which is 
necessary to maintain an adequate energy level for cell survival during both normal 
and pathological conditions [ 19 – 21 ]. AMPK is a serine-threonine kinase that 
responds to metabolic stresses by sensing changes in the intracellular AMP:ATP 
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ratio and turning on catabolic pathways to generate ATP while turning off anabolic 
processes, such as protein synthesis, that consume ATP [ 21 – 23 ]. This has led to 
AMPK being termed the “fuel gauge” of the cell and it plays an important role in 
the heart, which has the highest energy demand of any organ in the body. 

 AMPK is a heterotrimeric protein comprised of a catalytic α subunit as well as 
β and γ regulatory subunits. While the α and β subunits each have two isoforms 
[ 24 – 26 ], both of which are found in the mammalian heart, only two of three 
isoforms of the γ subunit are expressed in the heart [ 27 ]. Of the two isoforms of the 
α subunit, the α2 subunit is found predominantly in the murine heart [ 27 ,  28 ], 
whereas both α1 and α2 are expressed equally in the human heart [ 27 ]. Activating 
phosphorylation of Thr172 residue in the activation loop of the α subunit by 
upstream kinases (AMPKKs) is a key mechanism by which AMPK is activated 
[ 29 ]. The regulatory γ subunit senses the metabolic status of the cell upon allosteric 
binding of two molecules of either AMP or ATP in one of its two competing binding 
sites [ 27 ,  30 ], thereby regulating phosphorylation of Thr172 under varying energy 
conditions. Lastly, the regulatory β subunit has a central region that binds glycogen, 
as well as serves as a scaffolding protein that binds both the α- and γ-subunits at 
their C-terminal region to hold the holoenzyme together as one complex [ 28 ]. 
As mentioned earlier, activation of AMPK is dependent upon both allosteric activation 
by AMP and most importantly phosphorylation at Thr172 of the α1 and α2 subunit 
by upstream AMPKKs [ 31 ]. In addition, hormones such as adiponectin, insulin and 
leptin have also been shown to alter AMPK phosphorylation and activity [ 32 ]. 
Studies have also shown that AMPK can undergo inhibitory phosphorylation at 
AMPK α1 on its Ser485 residue and AMPK α2 on its Ser491 residue by Akt or 
protein kinase A, respectively [ 33 ,  34 ].  

3     Activation of AMPK 

 To date, three upstream kinases of AMPK have been identifi ed; including calcium/
malmodulin-dependent protein kinase kinase (CaMKK) [ 35 ,  36 ], the tumor sup-
pressor LKB1 [ 37 ] and transforming growth factor-beta-activating kinase 1 TAK1 
(Fig.  1 ). However, LKB1 has been recognized as the major AMPKK in the heart 
[ 31 ] and more work on the role of LKB1 in the heart has been performed compared 
to the other two known AMPKKs. While LKB1 was originally thought to be consti-
tutively active [ 37 ], studies in cancer cells have shown that LKB1 can be inhibited 
by covalent modifi cation [ 38 ], suggesting that LKB1 activity may be regulated in a 
similar manner in other cell types such as the cardiomyocyte. Consistent with this, 
more recent studies have shown that inhibition of cardiac LKB1 occurs upon forma-
tion of covalent adducts with 4-hydroxy-2-nonenal (HNE) [ 39 ,  40 ], which subse-
quently decreases the activity of AMPK. As the LKB1/AMPK signaling axis has 
been shown to act to suppress cardiomyocyte cell growth [ 39 ,  41 ], decreased LKB1 
activity by HNE adduct formation leads to a permissive environment for increased 
protein synthesis and hypertrophic growth [ 39 ]. In agreement with impaired LKB1 
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activity allowing increased cellular growth, mice with a cardiomyocyte-specifi c 
deletion of LKB1 have reduced AMPK activity and develop LVH [ 41 ]. Although 
LKB1 is known to regulate at least 13 different downstream kinases [ 37 ,  42 ], it has 
been shown that cardiomyocyte cell growth induced by LKB1 suppression can be 
rescued via activation of AMPK [ 41 ], demonstrating that AMPK and not another 
LKB1 target protein is the mediator of this specifi c cellular process. Together, these 
fi ndings support the concept that an intact LKB1/AMPK signaling pathway is nec-
essary to prevent abnormal cardiomyocyte cell growth.

4        The Role of AMPK in Cardiac Metabolism and Cell 
Growth 

 The healthy heart has a high energy demand and as a result must produce a consid-
erable amount of energy in the form of ATP (estimated 3.5–5 kg of ATP in the 
human heart) in order to support normal contractile function and ionic homeostasis 
[ 43 ]. Under normal physiological conditions, the healthy adult heart derives >95 % 
of its ATP from mitochondrial oxidative phosphorylation, while the remainder is 
generated from glycolysis [ 44 – 47 ]. Although the heart can utilize a variety of sub-
strates to produce energy, the normal healthy adult heart preferably uses fatty acids as 
a fuel substrate and obtains 50–70 % of its ATP from the oxidation of fatty acids. 

  Fig. 1    Structure and activation of AMPK. AMPK is made up of three subunits: α, β, and γ. 
Activation of AMPK requires binding of AMP to the γ subunit during times of cellular stress, 
which promotes phosphorylation of threonine 172 of the α subunit by upstream kinases (AMPKKs). 
Known upstream kinases include the calcium-dependent protein kinase kinase (CaMKK), trans-
forming growth factor-β-activated kinase-1 (TAK1), and most importantly in the heart, LKB1 in a 
complex with two accessory subunits (STRAD and MO25). In the presence of low AMP:ATP 
ratio, ATP molecules bind to AMPK thus inhibiting the allosteric activation of the molecule       
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 Cardiac AMPK plays a pivotal role in regulating cardiac energy metabolism and 
increasing net ATP production [ 48 ]. Indeed, AMPK increases FA utilization in 
response to increased energy demand by enhancing the availability [ 49 ] and uptake 
of fatty acids [ 50 ,  51 ] as well as via direct effects on acetyl CoA carboxylase (ACC) 
to promote FAO [ 52 ]. In addition to its actions on the regulation of FAO, AMPK 
also regulates glucose metabolism by inducing expression and promoting transloca-
tion of the glucose-transporter GLUT4 to the plasma membrane, thus enhancing 
glucose uptake [ 53 ] and subsequently stimulating glycolysis [ 54 ]. Moreover, AMPK 
is partially responsible for turning off energy consuming processes, such as protein 
synthesis, in times of metabolic stress in order to help conserve ATP [ 55 ,  56 ]. More 
recent evidence supports the role of AMPK in regulating the expansion of microtubules 
[ 57 ], which is a key component of the cytoskeleton. This is especially important in 
modulating cell growth and proliferation in the context of preventing and/or treating 
cardiac hypertrophy. Therefore, it is now recognized that AMPK targets a wide variety 
of signaling pathways involved in controlling cardiac energy metabolism as well as cell 
growth, which will each be further discussed throughout this review. 

 As mentioned earlier, energy production from the oxidation of FAs is signifi -
cantly reduced in the setting of pressure-overload induced cardiac hypertrophy [ 6 , 
 58 – 60 ]. Reduced expression of both oxidative enzymes [ 9 ,  61 ] and fatty acid trans-
port proteins [ 45 ,  62 ] following chronically increased cardiac load have been noted 
as possible explanations. Furthermore, hypertrophied hearts display a signifi cant 
down-regulation of peroxisome proliferator-activated receptor-alpha (PPARα) and 
PPAR gamma coactivator 1alpha (PGC-1α), which are critical regulators of genes 
involved in cellular energy metabolism, in particular FAO [ 63 ,  64 ]. Deactivation of 
PPARα has previously been linked to the development of cardiac hypertrophy [ 63 ]. 
In fact, both transcription and protein levels of PPARα in the heart were found to be 
reduced in rats subjected to transverse aortic constriction (TAC) [ 65 ], an experimental 
model of pressure-overload induced hypertrophy. 

 Although the exact mechanism responsible for decreased PPARα levels remains 
unclear, it has been shown that AMPK has the ability to inhibit cardiac hypertrophy 
by enhancing the activity of PPARα [ 66 ] and that it mediates this effect by reducing 
the activity of extracellular signal regulated protein kinase (ERK1/2) [ 65 ]. This 
fi nding correlates with previous studies showing that inhibition of ERK1/2 may 
play a role in regulating hypertrophy [ 67 ,  68 ]. In fact, pharmacological activation of 
AMPK by 5-aminoimidazole-4-carboxamide 1-β- D -ribofuranoside (AICAR) pre-
vented the development of cardiac hypertrophy and increased the transcriptional 
level and activity of PPARα  in vitro  and  in vivo  [ 65 ]. Importantly, this effect of 
AMPK activation on PPARα and ERK1/2 was abolished in the presence of EGF, an 
activator of ERK1/2 [ 65 ]. Thus, AMPK is thought to restore PPARα activity by 
reducing the phosphorylation of ERK1/2, thereby promoting FAO and leading 
to improved myocardial energy metabolism [ 66 ]. As well, these fi ndings suggest 
that AMPK activation may be benefi cial to alleviate pressure-overload induced 
cardiac hypertrophy. However, it should be noted that not all evidence supports 
PPARα as an effective target for treatment of cardiac hypertrophy as overexpression 
of PPARα can cause contractile dysfunction in the hypertrophied rat heart [ 69 ]. 
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Therefore it remains to be determined whether targeting this pathway as a potential 
treatment for LVH is an appropriate strategy. 

 The heart displays tremendous metabolic fl exibility and the subsequent increase 
in glucose metabolism in the hypertrophied heart is thought to be a compensatory 
mechanism to generate ATP in response to decreased rates of FAO [ 6 ]. Indeed, both 
humans and animal models with cardiac hypertrophy demonstrate an increase in 
glucose utilization [ 70 ,  71 ]. AMPK acts on PGC-1α to promote expression of the 
glucose transporter GLUT4 [ 72 ] and has also been shown to indirectly promote the 
translocation of vesicles containing GLUT4 to the plasma membrane [ 53 ]. In addition, 
AMPK also accelerates rates of glycolysis via its effects on phosphofructokinase 2 
(PFK2) [ 54 ] (Fig.  2 ). Together, these effects may provide benefi t to the hypertro-
phying heart by increasing the production of ATP via glycolysis [ 73 ,  74 ] and the 
ability of AMPK to increase glycolytic fl ux may play a critical role in the heart’s 
response to stress. However, this shift towards accelerated rates of glycolysis in the 
hypertrophied heart does not fully compensate for the reduced energy output resulting 

  Fig. 2    Regulation of cardiac metabolism by AMPK. Once activated, AMPK is shown to act on 
numerous signaling cascades that alter energy metabolism of the cardiomyocyte. For example, 
AMPK is thought to reduce phosphorylation of extracellular signal regulated protein kinase 
(ERK1/2), thus restoring activity of PPARα which then upregulates genes that encode oxidative 
enzymes involved in fatty acid β oxidation. PPAR gamma coactivator 1alpha (PGC-1α) acts as a 
coactivator with PPARα to promote mitochondrial biogenesis, thereby improving myocardial oxi-
dative metabolism. FAO is also increased upon phosphorylation of acetyl-CoA carboxylase (ACC) 
by AMPK. This inactivation of ACC reduces the conversion of acetyl-CoA to malonyl-CoA, thus 
permitting carnitine palmitoyltransferase I (CPT1) to transport fatty acids into the mitochondria 
for subsequent oxidation. AMPK also enhances glucose metabolism by inducing expression of the 
glucose-transporter GLUT4 via PGC-1α as well as promoting translocation of vesicles containing 
GLUT4 to the plasma membrane. This together with the activation of phosphofructokinase 2 
(PFK2) by AMPK ultimately stimulates glycolysis       
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from diminished FAO [ 6 ,  10 ,  75 ]. In fact, despite increased glucose uptake and 
accelerated rates of glycolysis, most studies show either no change or a reduction in 
mitochondrial glucose oxidation in the hypertrophied heart [ 6 ,  76 – 78 ]. As a result, 
by-products of incomplete glucose metabolism such as protons and lactate, are 
shown to accumulate in cardiomyocytes and may divert ATP towards clearance of 
these by-products, thereby reducing effi ciency of myocardial contraction [ 79 ,  80 ].

5        AMPK Inhibits Protein Synthesis 

 Cell growth is a complex and energetically costly process that is highly regulated at 
several levels. Along with the energy status of the cell, gene transcription and pro-
tein synthesis are key requirements for cell enlargement. As mentioned earlier, there 
is increasing evidence showing that AMPK acts as a negative regulator of LVH by 
down-regulating protein synthesis in cardiomyocytes [ 81 ]. Indeed, AMPK has been 
shown to infl uence several pathways involved in protein synthesis through both 
direct and indirect control of multiple mediators. For example, eukaryotic elonga-
tion factor-2 (eEF2) functions in mediating the translocation of the ribosome along 
mRNA during peptide-chain elongation [ 82 ]. Phosphorylation of eEF2 (Thr56) by 
its upstream kinase eEF2 kinase (eEF2K) results in the inactivation of eEF2 [ 83 ]. 
Interestingly, AMPK is able to directly phosphorylate eEF2K at Ser398 (and subse-
quently activate eEF2K) [ 56 ], and thus has the ability to regulate the activity of 
eEF2 [ 2 ,  19 ,  84 ,  85 ]. Indeed, activation of AMPK by AICAR in adult rat ventricular 
myocytes results in increased phosphorylation of eEF2 (thus reducing its activity) 
and subsequent inhibition of protein synthesis [ 85 ]. Furthermore, pharmacological 
activation of AMPK by metformin and AICAR was shown to inhibit protein synthe-
sis and cardiac hypertrophy induced by phenylephrine treatment or activated Akt, 
and this was mediated by an increase in phosphorylation of eEF2 [ 2 ,  84 ]. Therefore, 
increased AMPK activity is shown to negatively regulate protein synthesis and 
cardiac hypertrophy through the eEF2 kinase/eEF2 signaling pathway and may be 
a key pathway by which cell growth can be controlled. 

 In addition to controlling peptide-chain elongation, AMPK also regulates protein 
synthesis through indirect regulation of the pro-hypertrophic mammalian target 
of rapamycin (mTOR)/p70S6 kinase signaling cascade [ 55 ,  86 ]. mTOR is a key 
regulator of myocardial protein synthesis [ 87 ] and can regulate cell growth and 
proliferation by coordinating a response to availability of amino acids and nutri-
tional requirements [ 87 ,  88 ]. Assembly of mTOR with numerous adaptor proteins 
forms a distinct complex named mTOR complex 1 (mTORC1), and its activation 
leads to increased cardiac growth [ 89 ]. Phosphorylation of mTOR at Ser2448 by 
Akt leads to activation of this kinase [ 90 ], which in turn activates p70S6K by phos-
phorylation of this protein at multiple sites [ 91 ]. Activation of p70S6K occurs via 
phosphorylation of Ser411, Ser418, Thr421 and Ser424 residues [ 91 ,  92 ]; which is 
then followed by phosphorylation of the catalytic domain [ 93 ] and the linker region 
[ 94 ] to promote activity of the kinase. Through phosphorylation of the 40S ribosomal 
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protein S6, p70S6K promotes translation of mRNAs specifi c for ribosomal proteins 
as well as initiation and elongation factors [ 95 ]. Importantly, AMPK is able to 
inhibit protein synthesis and cardiac hypertrophy by directly phosphorylating and 
inactivating mTOR at Thr 2446 [ 96 ]. Indeed, several studies suggest that mTOR 
signaling is involved in regulating cardiac hypertrophy [ 89 ,  97 – 99 ]. Rapamycin, a 
specifi c inhibitor of mTOR, attenuates pressure- overload induced hypertrophy and 
prevents the activation p70S6K, a target of mTOR [ 89 ,  99 ]. Furthermore, the AMPK 
activator metformin prevented the development of cardiac hypertrophy induced by 
pressure overload as well as blunted mTOR activation. However this effect of met-
formin was abolished in AMPKα2-defi cient mice [ 99 ], suggesting that inhibition of 
mTOR by metformin is dependent upon activation of the AMPK pathway. Moreover, 
AMPKα2-defi cient mice are shown to have increased phosphorylation of cardiac 
p70S6K and are more prone to developing cardiac hypertrophy in response to iso-
proterenol or TAC [ 100 ]. Lastly, spontaneously hypertensive rats with impaired car-
diac LKB1/AMPK signaling display enhanced mTOR/p70S6K signaling, which is 
consistent with the profound cardiac hypertrophy observed in these animals [ 39 ]. 
Interestingly, restoration of the LKB1/AMPK signaling pathway using resveratrol, 
a known AMPK activator, decreases the activation of p70S6K and lessens the devel-
opment of cardiac hypertrophy in these rats [ 39 ]. Similarly, pharmacological activa-
tion of AMPK in neonatal rat cardiomyocytes has been shown to result in a 
signifi cant decrease in p70S6K activity and subsequently reduced rates of protein 
synthesis [ 56 ,  84 ]. Taken together, there is strong evidence supporting the role of 
activated AMPK in controlling mTOR/p70s6K activity and preventing protein syn-
thesis and hypertrophic growth in the cardiomyocyte. 

 Another possible mechanism by which AMPK regulates protein synthesis is via 
TSC2 [ 55 ,  86 ], a tumor suppressor gene shown to inhibit mTORC1 activity [ 101 , 
 102 ] and reduce cell growth [ 103 ]. The ability of AMPK to promote TSC2 activity, 
which is normally active under unstressed conditions [ 104 ,  105 ], was fi rst observed 
in HEK293 cells where it was shown to phosphorylate the enzyme at two residues 
(Thr1227 and Ser1345), leading to increased activity [ 55 ]. The heterodimeric com-
plex that forms between TSC1 and TSC2 [ 106 ] goes on to inhibit the mTOR/
p70S6K signaling cascade described above [ 55 ]. Consistent with this, mice embryos 
carrying TSC1/2 homozygous mutations display excessive cardiac cell growth dur-
ing maturation and die prematurely [ 107 ]. In addition, inhibition of AMPK in neo-
natal rat cardiomyocytes is thought to prevent activation of TSC2, thus allowing for 
stimulation of the mTOR/p70S6K pathway to up-regulate protein synthesis, result-
ing in increased cell size [ 108 ]. Taken together, these studies suggest that AMPK 
also down-regulates protein synthesis and the development of cardiac hypertrophy 
through TSC2, which lies upstream of the mTOR/p70S6K signaling axis (Fig.  3 ).

   Although somewhat controversial, the serine/threonine protein kinase Akt 
appears to oppose the effects of AMPK on the mTOR/p70S6K pathway [ 109 ,  110 ]. 
In numerous studies, activation of Akt has been found to be involved in promoting 
cardiac growth [ 109 ,  111 ] as well as cardiac hypertrophy [ 101 ,  106 ,  112 ]. More 
specifi cally, overexpression of Akt in neonatal rat cardiomyocytes results in 
increased activity of p70S6K, increased protein synthesis and increased myocardial 
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cell size [ 84 ,  110 ]. Furthermore, Akt is known to reduce activation of AMPK by 
phosphorylating Ser485/491, which subsequently impedes phosphorylation of AMPK 
at Thr172 by LKB1 [ 106 ,  109 ,  111 ,  113 ,  114 ]. In agreement with this, LKB1 was 
unable to activate AMPK in cardiomyocytes expressing a constitutively active form of 
Akt1 [ 115 ], providing further evidence that Akt may promote the development of 
cardiac hypertrophy in part by preventing AMPK activation [ 84 ]. Furthermore, phar-
macological activation of AMPK was shown to inhibit Akt- induced protein synthesis 
in neonatal rat cardiomyocytes, likely through its regulation of both p70S6K and eEF2 
signaling pathways [ 84 ]. Therefore, pharmacological activation of AMPK may be an 
approach to counteract the pro-hypertrophic actions of Akt.  

6     The Role of AMPK in Transcriptional Remodeling 
and Cell Growth 

 In addition to the role of AMPK in regulating protein synthesis, AMPK has also 
been shown to regulate the calcineurin/nuclear factor of activated T cells (NFAT) 
pathway that is responsible for mediating transcription of several pro-hypertrophic 

  Fig. 3    Regulation of cellular growth by AMPK. AMPK is also shown to act on several signaling 
cascades that limit cell growth. Primarily, AMPK activates the tuberous sclerosis complex 2-gene 
product (TSC2), which forms a complex with TSC1 to inhibit the mammalian target of rapamycin 
(mTOR)—p70S6 kinase (p70S6K) signaling cascade and thus reduces protein synthesis. AMPK also 
inhibits protein synthesis via activation of eEF2 kinase which phosphorylates/deactivates the eukary-
otic elongation factor-2 (eEF2). In addition to these effects, AMPK may also contribute to increased 
degradation of unnecessary bulk proteins via inhibition of the FOXO/MuRF1 signaling pathway       
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genes [ 116 ]. Calcineurin is a calcium-calmodulin-dependent protein phosphatase 
that dephosphorylates the transcription factor NFAT causing it to translocate into 
the nucleus and promote transcription of its target genes [ 117 ]. Of importance, 
calcineurin/NFAT signaling is thought to play an important role in pathologic 
hypertrophic signaling. Indeed, calcineurin transgenic mice display signifi cant 
enlargement of the LV when compared to their non-transgenic littermates [ 118 ]. 
However, activation of AMPK has been shown to reduce the degree of NFAT trans-
location [ 2 ,  119 ] and thus may contribute to the anti-hypertrophic effect of AMPK 
in the heart. Indeed, pharmacological activation of AMPK using resveratrol was 
associated with suppression and inhibition of calcineurin [ 2 ], as well as its down- 
stream target NFAT [ 119 ]. Although the precise molecular signaling events involved 
in this regulatory circuit have not yet been fully investigated, blocking the calcineu-
rin/NFAT pathway clearly reduces the hypertrophic response, providing some 
insight into signaling mechanisms involved in pathological hypertrophy as opposed 
to physiological hypertrophy. 

 As cardiac hypertrophy is characterized by cardiomyocyte enlargement in the 
absence of cellular division [ 57 ], cytoskeletal remodeling is a very important aspect 
of this process. An imbalance between protein synthesis and turnover can lead to 
enhanced accumulation of contractile myofi bers and other proteins that is also char-
acteristic of cell hypertrophy [ 120 ]. As such, preventing the accumulation of con-
tractile myofi bers may be another approach that could be used to lessen the 
development of LVH [ 113 ]. Importantly, it has been hypothesized that part of 
AMPK’s anti-hypertrophic effects also involves inhibiting the atrophy-related 
FOXO/MuRF1 signaling pathway [ 113 ]. Muscle RING fi nger 1 (MuRF1), a ubiq-
uitin ligase, is thought to both degrade unnecessary bulk proteins (that would other-
wise augment cell growth) [ 121 ] and impede pro-hypertrophic stimuli (i.e. ERK1/2) 
[ 122 ]. Interestingly, activation of AMPK by AICAR in neonatal rat cardiac myo-
cytes prevents phenylephrine-induced hypertrophy and upregulates MuRF1 via the 
FOXO1 transcription factor [ 113 ]. Although the exact mechanism through which 
this AMPK-mediated activation occurs is unknown, MuRF1 is thought to regulate 
pressure-overload induced cardiac hypertrophy via interaction with several proteins 
and transcription factors [ 123 ]. Therefore, a better of understanding of how/if 
AMPK regulates MuRF1 to prevent cardiac hypertrophy is needed. 

 Independent of protein synthesis and transcription events, AMPK has also been 
shown to limit cellular expansion of cultured cells by reducing the proliferation 
of microtubules [ 57 ]. Microtubules play a key role in determining cellular size 
and organization and contribute to both structure and transport within the cell. 
As microtubules accumulate they are known to contribute to the development of 
 pressure- overload induced hypertrophy leading to contractile dysfunction and thus 
may play a signifi cant role in the development of heart failure [ 124 ,  125 ]. Interestingly, 
AMPK has been shown to change the binding of the microtubule-associated protein 
tau to microtubules in neurons [ 126 ]. However, whether or not this occurs in the 
cardiomyocyte has not been fi rmly established. That said, AMPK is closely related 
to the MAP-microtubule affi nity-regulating kinases (MARK) subfamily, which is 
responsible for phosphorylating microtubule-associated proteins (MAPs) [ 127 ]. 
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In fact, AMPK is thought to be able to phosphorylate and thus deactivate MAP4 
[ 57 ], which would otherwise promote assembly and stabilization of microtubules 
[ 128 ,  129 ] in response to pressure overload [ 130 ]. Following pharmacological acti-
vation of AMPK, phosphorylation of MAP4 was increased and this was associated 
with reduced stability of microtubules and more importantly limited cell expansion 
and microtubule growth [ 57 ]. However, MAP4-defi cient cells demonstrate similar 
reduction in microtubule stability [ 57 ], thus it has yet to be shown to what extent 
this microtubule instability depends on MAP4 alone as opposed to in conjunction 
with other kinases. Furthermore AMPK defi cient mice showed increased levels of 
total tubulin in the heart following TAC [ 57 ]. As increased levels of total tubulin is 
known to be required for microtubule growth, these fi ndings strongly suggest that 
AMPK may also play a role in the regulation of microtubule levels and may repre-
sent an alternative mechanism whereby AMPK regulates the development of  cardiac 
hypertrophy [ 57 ].  

7     PRKAG2 Mutations 

 In addition to changes in AMPK activity via phosphorylation and/or pharmacological 
activation, perturbations in the AMPK γ subunits have also been associated with the 
development of cardiac hypertrophy. Indeed, mutations in the  prkag2  gene that 
encodes for the γ2 subunit result in the decreased ability of AMPK to bind ATP 
[ 131 ]. This disruption of the ability to sense AMP:ATP homeostasis has been shown 
to result in changes in AMPK activity [ 131 ] and may be responsible for excessive 
cellular glycogen storage that is characteristic of these mutations [ 58 ]. In addition 
to glycogen accumulation in hearts of humans with  prkag2  mutations, ventricular 
pre-excitation can develop in these patients and they display symptoms similar to 
Wolff-Parkinson-White syndrome (WPW) [ 132 ]. Ventricular pre-excitation is 
caused by glycogen accumulation in cardiomyocytes that leads to functional bypass 
tracts which connect the atria and ventricles [ 131 ]. These abnormal conduction 
pathways allow electrical impulses to bypass the atrioventricular node, resulting in 
a defective cardiac conduction system [ 132 – 134 ]. In addition, up to 80 % of indi-
viduals affected with this naturally occurring mutation also exhibit left ventricular 
hypertrophy [ 132 ], supporting the concept that alterations in AMPK signalling may 
be causative in the development of ventricular pre-excitation and/or LVH. 

 In order to further elucidate the mechanisms by which  prkag2  mutations produce 
LVH and electrophysiological abnormalities characteristic of this condition, several 
transgenic mouse models have been generated. Data from these  in vivo  models as 
well as  in vitro  models have suggested that the PRKAG2 cardiac syndrome arises as 
a result of alterations in AMPK activity [ 135 ,  136 ]. However, it is unclear if 
PRKAG2 mutations are AMPK activating or inactivating mutations. While N488I 
and T400N mutations of the  prkag2  gene have been reported to increase activity of 
AMPK [ 136 ,  137 ], both R302Q and R531G mutations result in inhibition of AMPK 
activity [ 138 ]. In the past, these variations in the activity of AMPK have made it 
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diffi cult to distinguish between compensatory alterations and changes which are a 
direct product of the mutation itself [ 131 ]. Nonetheless, the cardiac phenotype of 
glycogen accumulation is consistent in all murine models exhibiting a  prkag2  
missense mutation [ 136 ,  139 ]. 

 Comparing the activity of cardiac AMPK in early and later stages of the disease 
in the various transgenic mouse models with  prkag2  mutations has allowed for a 
better understanding of the role of AMPK in this disease. Transgenic mouse models 
with heart-specifi c R302Q mutations revealed signifi cantly higher activity of AMPK 
at 7 days than at 2–5 months of age [ 139 ]. Although not shown directly, it is specu-
lated that this latter decrease in AMPK activity is due to a feedback mechanism in 
which the accumulation of glycogen found as a result of AMPK activation eventu-
ally inhibits AMPK [ 139 ]. Contrary to this, the N488I mutation has been shown to 
be an AMPK activating mutation in both early development and in adulthood of the 
mice [ 136 ,  140 ,  141 ]. Therefore, regardless of the mechanism responsible for gly-
cogen accumulation, the development of ventricular pre-excitation commonly 
observed in patients with  prkag2  mutations is now known to be a result of excessive 
deposition of glycogen and not directly attributed to alterations in AMPK activity 
[ 142 ]. This condition highlights the important role that AMPK has in normal  cellular 
physiology and how alterations in AMPK activity can contribute to glycogen  storage 
cardiomyopathy and cardiac hypertrophy. In addition, the phenotype induced by the 
activating  prkag2  mutations also raise concerns about whether pharmacological 
activation of AMPK for the treatment of LVH would cause additional cellular 
growth or glycogen deposition.  

8     AMPK in the Hypertrophied Heart 

 The precise role of AMPK in the hypertrophied heart remains somewhat controver-
sial, as various studies have implicated AMPK as both contributing to and inhibiting 
the development of cardiac hypertrophy. For instance, an early study by Tian et al. 
[ 59 ] showed that both expression and activity of AMPK are elevated in hearts sub-
jected to chronic pressure overload. While this fi nding appears to be in direct con-
trast with the concept that AMPK activation prevents LVH, it is also possible that 
AMPK activation occurs at a much later stage of LVH development when growth 
has already occurred and energetic defi ciency is driving the activation of AMPK. 
In agreement with this, decreased AMPK signaling in adiponectin-defi cient mice was 
found to permit hypertrophic growth in response to pressure overload [ 143 ,  144 ], 
thus supporting the concept that AMPK activation may, indeed, be benefi cial in the 
treatment of LVH. 

 Although the question of whether harmful or benefi cial results arise from the 
activation of AMPK in cardiac hypertrophy remains, these seemingly opposite 
results may, in fact, be explained by the stage of hypertrophy studied. The afore-
mentioned studies showing increased activity of AMPK in the hypertrophied heart 
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were performed in animal models with advanced stages of hypertrophy [ 59 ], at a 
point when activation of AMPK may be an adaptive response of the heart in response 
to ATP depletion. Contrary to this, numerous pharmacological activators of AMPK 
have been shown to prevent cardiac hypertrophy in a number of models, which sup-
port the idea that AMPK is a negative regulator of cardiac hypertrophy. Therefore, 
it is likely that AMPK activation early on during the development of hypertrophy 
may be able to prevent cardiac hypertrophy. However, activation of AMPK during 
later stages of pathological hypertrophy may be an adaptive response to an energetic 
defi ciency and thus pharmacological activation at this stage may also be of benefi t, 
albeit for ATP supply and not cellular growth control.  

9     AMPK as a Pharmacological Target to Prevent Cardiac 
Hypertrophy 

 The discovery of an association between AMPK and the development of LVH has 
led to numerous studies investigating pharmacological agents that may be able to 
activate AMPK in order to clinically treat this pathological condition. Due to its role 
in maintenance of glucose and lipid homeostasis, AMPK is a well-known target in 
the treatment of type 2 diabetes and has more recently emerged as a potential target 
in the treatment of the metabolic syndrome [ 145 ]. Similarly, the antidiabetic drug, 
metformin, was found capable of activating AMPK [ 146 ] and is under investigation 
to determine its potential role in attenuating LVH [ 147 ]. However, more recent 
evidence also supports the potential effectiveness of the polyphenol resveratrol, an 
active ingredient of green tea and red wine, in preventing LVH [ 2 ,  39 ,  148 ,  149 ]. 
Lastly, the AMP-analog AICAR has long been used as an AMPK activator follow-
ing the fi nding of its ability to stimulate glucose uptake in skeletal muscle [ 150 ]. 
Studies providing evidence that indirect pharmacological activators of AMPK (such 
as metformin, resveratrol and AICAR) as well as specifi c AMPK activators (such as 
A-769662) may prevent and/or reverse the development of cardiac hypertrophy will 
be further outlined below. 

 Metformin has been found to lessen the hypertrophic effects of pressure overload 
in TAC mice [ 99 ] through indirect activation of AMPK [ 22 ,  151 ]. Moreover, admin-
istration of metformin following occlusion of the left coronary artery of a mouse 
model was associated with increased phosphorylation of AMPK but also a reduced 
heart to body weight ratio [ 152 ]. Metformin has been shown to not only reduce 
protein synthesis in the cardiomyocyte [ 84 ], but is also capable of suppressing 
 oxidative stress and associated cardiac hypertrophy [ 22 ]. The ability of metformin 
to attenuate cardiac hypertrophy appears to rely on activation of AMPK as this 
effect of metformin is lost in AMPKα2−/− mice [ 99 ]. Lastly, long-term metformin 
treatment shows promise in preventing pressure overload-induced LVH via activa-
tion of AMPK and downstream endothelial nitric oxide synthase (eNOS) [ 147 ]. 
Although the exact mechanism through which metformin activates AMPK is not 
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fully understood, there is speculation that it may infl uence the AMP:ATP ratio or 
perhaps activate an upstream kinase (AMPKK) [ 153 ]. 

 The naturally-occurring polyphenol resveratrol has also been used to activate 
AMPK in hopes of developing a strategy to treat LVH. Evidence from studies with 
resveratrol suggests that resveratrol-mediated AMPK activation attenuates cardiac 
hypertrophy via a direct effect on pathways controlling protein synthesis and cell 
growth including eEF2 and p70S6 kinase [ 154 ]. Resveratrol treatment was also 
found to reduce hypertrophy in the spontaneously hypertensive rat upon reactiva-
tion of the LKB1/AMPK signaling pathway [ 39 ]. Resveratrol treatment prevented 
LVH in hypertensive rodents in both the presence or absence of changes in systolic 
blood pressure, suggesting that resveratrol may have direct effects on the heart to 
prevent LVH independent of changes in cardiac load [ 39 ,  149 ,  155 – 157 ]. Although 
preliminary data supports the use of resveratrol as a potential adjunct therapy in the 
treatment of LVH, future studies are required to show whether its anti-hypertrophic 
effects do, in fact, depend on AMPK. 

 Another activator of AMPK is AICAR, an analog of adenosine that mimics the 
effects of AMP by allosterically activating AMPK [ 158 ,  159 ]. Following treatment 
with AICAR, rats subjected to TAC demonstrated both elevated AMPK activation 
and reduced cardiac hypertrophy [ 119 ]. Pharmacological activation of AMPK via 
AICAR is also associated with regression of cardiac hypertrophy [ 2 ] as a result of 
reduced protein synthesis and growth of cardiac fi broblasts [ 2 ,  19 ,  139 ]. Neonatal 
cardiomyocytes treated with AICAR to activate AMPK demonstrated reduced free 
tubulin and therefore a signifi cant decrease in stability of microtubules, as well as a 
weakened hypertrophic response to phenylephrine [ 57 ]. However, it should be noted 
that mimicking the stimulatory effects of adenosine is reported to have other conse-
quences on cardiac function, and thus requires further understanding prior to any 
pharmacological use of AICAR [ 160 ,  161 ]. While these studies provide evidence 
that the use of AICAR can reduce or eliminate the development of cardiac hypertro-
phy, a better understanding of AICAR’s mode of action, both in activating AMPK 
in the heart as well as potential side effects is necessary. 

 Since the compounds discussed above are indirect AMPK activators, treatment 
with these compounds may cause undesirable off-target effects resulting from acti-
vation of non-AMPK signaling cascades. Therefore, many arguments favor the use 
of specifi c AMPK activators such as A-769662, a thienopyridone compound devel-
oped by Abbott Laboratories [ 162 ]. The compound has shown to be effective in 
activating and maintaining phosphorylation of AMPK in cell-free assays [ 163 , 
 164 ], likely through binding to a novel site on the β subunit of AMPK [ 163 ,  164 ]. 
Recent studies have demonstrated the cardioprotective effect of the small molecule 
A-769662 on the ischemic heart    [ 164 ]. Although A-769662 activates AMPK 
 independent of alterations in the AMP:ATP ratio, due to its poor oral availability 
the drug may not be ideal for pharmacological use in patients [ 163 ]. Nonetheless, 
this small molecule is a useful experimental tool that offers insight into the effec-
tiveness of targeted AMPK activation as a therapeutic approach to treat different 
cardiac diseases.  

N.J. Byrne et al.



213

10     Conclusions 

 AMPK is known to phosphorylate multiple downstream targets and has a critical role 
in modulating metabolic activities such as glucose transport and fatty acid oxidation. 
In addition, AMPK has emerged as a key player in protein synthesis and cell remod-
eling. Since alterations in both metabolism and cell growth occur in the development 
and pathogenesis of LVH, AMPK agonists may prove to be useful in the treatment of 
cardiac hypertrophy. However, genetic mutations in the AMPK γ2 subunit gene 
( prkag2 ) cause inappropriate activation of AMPK and a glycogen storage myopathy 
that ultimately leads to ventricular pre-excitation. Therefore, whether or not pharma-
cological activation of AMPK by compounds such as metformin, resveratrol, 
AICAR, and A-769662 (or newly developed AMPK agonists) is benefi cial or harm-
ful in the setting of LVH is still being investigated. Thus, despite exciting pre- 
clinical fi ndings, additional research in this area is necessary before AMPK agonism 
can be considered for further development with the aim of treating LVH in humans.     
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