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    Abstract     The creatine kinase (CK) system is the fi nal step in cardiac energy metabolism 
providing a direct link between energy production in the mitochondria and energy 
utilising ATPases. It acts as an energy storage and transport mechanism and maintains 
favourable local ATP/ADP ratios, thereby supporting further energy production and 
high levels of free energy from ATP hydrolysis. Down-regulation of CK activity and 
myocardial creatine levels is a universal fi nding in chronic heart failure, and the degree 
of impairment has been shown to be an excellent prognostic indicator in patients. 
However, it is unclear whether these changes represent epiphenomenon or contribute 
to disease pathophysiology. This chapter focuses on attempts over the past 20 years to 
address this question using genetic loss-of-function models in the mouse. Findings 
from these models have been equivocal and at times contradictory, however, recent 
evidence suggests that loss of creatine or CK is not detrimental in surgical models of 
chronic heart failure, providing the clearest evidence to date that such changes do not 
contribute to dysfunction. Despite this conclusion, over-expression of CK in mouse 
heart has been found to protect against heart failure and improve survival. In the 
setting of ischaemia-reperfusion injury, loss of creatine or CK impairs functional 
recovery and augmentation of either is cardioprotective. We are therefore entering an 
exciting new era of research in this fi eld aimed at understanding the benefi ts of CK 
system augmentation and identifying new mechanisms to achieve this without genetic 
modifi cation for possible future clinical translation.  
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1         Introduction 

1.1     The Phosphocreatine/Creatine Kinase System 
in the Healthy Heart 

 All vertebrates use creatine kinase as a phosphagen system in the heart, the role of which 
is to ensure continuity of energy supply in the face of fl uctuating demands via the buffer-
ing and transport of high-energy phosphates. The utility of this system is based on 
the intracellular compartmentation of the reactants (Fig.  1 ) [ 1 ]. The forward reaction 
occurs at the mitochondrial membrane where sarcomeric mitochondrial- creatine kinase 

  Fig. 1    Schematic showing creatine synthesis pathway and the creatine kinase system in cardiomyo-
cytes. Creatine can be biosynthesised via arginine:glycine amidinotransferase (AGAT), found prin-
cipally in the kidneys, which catalyses the formation of guanidinoacetate from arginine and glycine. 
Guanidinoacetate is then methylated, predominately in the liver, by guanidinoacetate methyltrans-
ferase (GAMT) to form creatine. Creatine is taken up into the cardiomyocyte by a specifi c plasma 
membrane creatine transporter, where mitochondrial creatine kinase (Mito-CK) catalyses the trans-
fer of a phosphoryl group from ATP to form phosphocreatine (PCr). PCr acts as an energy buffer and 
transport molecule with the reverse reaction catalysed by muscle-CK (MM- CK) to liberate ATP at 
times of high energy demand. Created using Servier Medical Art by Servier which is licensed under 
a Creative Commons Attribution 3.0 Unported License http://www.servier.com/slidekit       
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(Mt-CK) catalyses the transfer of a phosphoryl group from ATP onto creatine to 
form phosphocreatine (PCr), which accumulates to high levels within the cytosol. 
Compared to ATP, PCr is relatively small and less polar and therefore more readily 
diffusible. In this way the CK system acts as both a spatial and temporal energy buf-
fer, with PCr providing a mobile form of high-energy phosphate storage and trans-
port for near instantaneous regeneration of ATP at times of rapidly increasing 
demand. This reverse reaction is catalysed by cytosolic dimers of CK which are also 
found closely coupled to ATPases, e.g. the myosin ATPase [ 2 ]. In this way local 
metabolites are maintained at favourable levels, i.e. low [ATP/ADP] ratio at the 
mitochondria to stimulate oxidative phosphorylation, and relatively high (ATP/
ADP) ratio at the ATPases to ensure maximal energy is available from the hydroly-
sis of ATP (i.e. ∆G ATP  is high) [ 3 – 5 ].

1.2        Origin of Creatine and CK in the Heart 

 The heart expresses four isoenzymes of CK, with Mt-CK and MM-CK by far the 
most abundant (35 % and 67 % of total CK activity in human heart, respectively) 
[ 6 ]. However, the brain isoform is also expressed and can form homo-dimers or 
dimerize with the muscle-isoform to give the low abundance cytosolic isoenzymes 
BB-CK and MB-CK. 

 Creatine is either obtained from the diet or via a two-step biosynthetic pathway 
(see Fig.  1 ) [ 2 ]. The proteins required for creatine biosynthesis are not expressed in 
cardiomyocytes; therefore creatine must be actively taken-up from the bloodstream 
against a large concentration gradient via a specifi c creatine transporter located in 
the plasma membrane (CrT: SLC6A8).  

1.3     Scope of this Chapter: Lessons from the Genetic Era 

 Knockout mouse models have been described for all CK isoforms and also for 
loss-of- creatine models, CrT, GAMT and AGAT. In this review we seek to bring the 
story up-to-date by critical appraisal of what has been learnt from these mouse 
models, with particular reference to the role of CK system impairment as a putative 
causal factor in chronic heart failure and the potential for CK system augmentation 
as a novel therapeutic strategy for the treatment of cardiac disease.   

2     Observations that Implicate a Role for the PCr/CK System 
in Heart Failure 

 The observation that myocardial creatine content and CK activity are signifi cantly 
lower in the failing heart raises the possibility that such changes may have a direct role 
in disease progression. These fi ndings occur regardless of disease aetiology or 
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species, and the examples are numerous (see [ 7 ] for a summary). It should be noted 
that ATP is maintained at near normal levels in the failing heart due to the buffering 
capacity of PCr and only reduces signifi cantly during end-stage disease as a result of 
cumulative loss of adenine nucleotides across the plasma membrane [ 3 ,  8 ]. Loss of 
creatine during heart failure is likely to occur secondary to reduced expression of the 
CrT [ 7 ,  9 ] (i.e. steady cellular loss but reduced uptake), although the signalling path-
ways governing this have yet to be established. Similarly, the mechanisms behind loss 
of CK activity are not yet known and would be a fruitful area for further research. 

 A signifi cant relationship between maximal CK reaction velocity (the product of 
CK activity and [Cr]) and ventricular function has been observed in several models 
of heart failure (e.g. in mice [ 7 ] and Syrian cardiomyopathic hamsters [ 10 ]). 
The ratio of PCr to ATP measured by  31 P-MRS is often used since absolute values 
are diffi cult to obtain and is a sensitive indicator of energetic status. In a murine 
model of transverse aortic constriction (TAC), low PCr/ATP measured at 3 weeks 
was predictive of chamber dilatation observed at 6 weeks [ 11 ], suggesting that ener-
getic changes precede adverse LV remodelling and therefore could have a causal 
role. Particularly convincing is the correlative evidence from observations of PCr/
ATP ratio in the clinical setting, where low PCr/ATP is associated with more severe 
heart failure in patients with dilated cardiomyopathy, correlating with New York 
Heart Association (NYHA) class [ 12 ], ejection fraction and wall thickness [ 13 ]. 
In a 2.5 year prospective follow-up study, PCr/ATP was found to be a better prog-
nostic indicator of mortality than ejection fraction [ 14 ]. However, the question 
remains whether these are simply very good biomarkers, or whether loss of creatine 
and CK activity plays an active role in disease pathophysiology.  

3     Loss-of-Function Models 

 Loss-of-function represent a standard experimental paradigm used to imply causality. 
For example, the importance of PCr/CK system down-regulation in the progression 
of heart failure would be inferred by the recapitulation of a failing phenotype when 
the system is ablated in otherwise normal animals. 

3.1     Pharmacological Inhibition Studies 

     1.    A number of creatine analogues have been shown to compete with creatine for 
cellular uptake at the CrT, but are poor substrates for the CK reaction [ 2 ]. Of these, 
the most commonly used is β-guanidinopropionic acid (β-GPA), see [ 15 ] for a 
recent systematic review. β-GPA can be given in chow or water, however, loss of 
creatine from the myocardium is a slow process (~2 % of the total creatine pool 
per day [ 16 ]), therefore β-GPA has to be chronically dosed over a period of 
weeks, which may allow time for substantive compensatory adaptations to 
develop (for examples see [ 17 ,  18 ]). A further limitation is that creatine loss is 
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incomplete (residual creatine 10–50 % of starting values). This is an important 
point since cardiac work is maintained over a wide-range of creatine levels and 
only drops signifi cantly when total [Cr] falls below a threshold value of ~15 % 
of control, and even then, only under high workload conditions [ 19 ]. This may 
go some way to explain the variability in fi ndings using this approach. 
Furthermore, there are potentially confounding systemic effects of creatine inhi-
bition, for example, practically all studies using β-GPA report reduced body 
weight by ~10–15 %. Despite these limitations, there is general agreement that 
dysfunction becomes apparent or is exacerbated at higher workloads.   

   2.    Iodoacetamide (IA) is a rapid irreversible inhibitor of CK activity, affecting all 
CK isoenzymes to an equal extent [ 20 ]. It is an alkylating agent that prevents 
formation of disulphide bonds and is therefore likely to have diverse activity on 
multiple protein targets, as such, it is too toxic for chronic dosing and has been 
used in acute studies only (mostly perfused heart). Experimental fi ndings have 
been highly variable, but, in general, the effects of CK ablation are mostly 
observed at high workloads. Of particular note is a study by Tian et al. who used 
different doses of IA in isolated perfused rat hearts to demonstrate dose- 
dependency between CK inhibition and dysfunction, establishing a role for the 
CK system in setting contractile reserve [ 21 ].      

3.2     Evidence from CK Knockout Studies 

 Mice defi cient in creatine kinase (CK) have been described for the myofi bril-bound 
(M-CK −/− ) [ 22 ], the sarcoplasmic mitochondrial isoenzyme (Mt-CK −/− ) [ 23 ], and for 
the combined double knockout (M/Mt-CK −/− ) [ 24 ]. There is broad agreement in the 
literature that M-CK −/−  mice do not exhibit any discernible cardiac dysfunction or 
remodelling, either at baseline or at higher workloads, regardless of whether mea-
sured in isolated fi bres,  ex vivo  perfused heart or  in vivo  [ 25 – 29 ]. 

  Ex vivo —Numerous studies have failed to observe a functional defi cit in CK 
knockout mice  ex vivo  (e.g. [ 25 – 27 ,  30 – 33 ]), and it may be that the workloads 
attainable are simply too low, even under maximally stimulated conditions. This is 
despite signifi cantly impaired energetics e.g. lower PCr, reduced ATP synthesis rate 
[ 34 ], and low ΔG ATP  at high workloads [ 27 ]. 

  In vivo  fi ndings have produced mixed results. Echocardiography showed impaired 
contractile reserve in M/Mt-CK −/−  mice compared to C57BL/6 controls under one 
anaesthetic regime, but not another [ 35 ]. Lower systemic blood pressure has been 
reported in Mt-CK −/−  when compared to either controls, M-CK −/− , or M/Mt-CK −/−  [ 28 ]. 
However, subsequent measurements by aortic cannulation have not observed any differ-
ences in systolic or diastolic pressures [ 35 ,  36 ]. By 41 weeks of age both Mt-CK −/−  and 
M/Mt-CK −/−  mice were found to have signifi cant LV dilatation, hypertrophy, and 
impaired perfusion using MRI, although with normal ejection fraction [ 28 ,  37 ]. 

 All three CK −/−  strains were generated on a mixed genetic background of 
C57BL/6 and 129/Sv, and it seems likely that much of the variability in the published 
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literature is related to genetic drift combined with differences in gender and age. 
Our laboratory has compared mixed and pure genetic backgrounds at 1 year of age 
under identical experimental conditions. Male M/Mt-CK −/−  mice with a mixed 
background had overt hypertrophy and congestive heart failure, whereas females 
only had LV dysfunction [ 29 ]. In comparison, M/Mt-CK −/−  mice on a pure C57BL/6 
background had normal LV dimensions, absence of LVH, and only mild functional 
impairment [ 29 ]. These results show that a primary defect in the PCr/CK system 
(i.e. loss of CK activity) is suffi cient to drive the heart into failure. However, it 
also shows that this deterioration is progressive, occurring over a prolonged period 
of time, perhaps suggesting that initial adaptive mechanisms are not sustainable in 
the long run.  

3.3     Evidence from “Cr Knockouts” 

 GAMT knockout mice lack the second essential enzyme in creatine biosynthesis 
and therefore have a whole body creatine defi ciency. This has profound effects on 
body weight with GAMT −/−  mice considerably lighter than controls despite normal 
activity and food intake [ 38 ]. In the initial description, GAMT −/−  mice had creatine 
levels ~27 % of control values in the heart, which was later attributed to copropha-
gia of wild-type faeces [ 39 ]. When housed separately from wild-type mice, myocar-
dial creatine and PCr levels are undetectable, while ATP is unaffected [ 40 ]. However, 
GAMT −/−  mice accumulate the creatine pre-cursor guanidinoacetate, which is phos-
phorylated in the CK reaction to form phospho-guanidinoacetate (P-GA). This 
may partially compensate for the loss of PCr in an acute setting, since P-GA is 
apparently used up during ischaemia [ 39 ,  40 ], however, regeneration of P-GA is 
insuffi cient to aid recovery [ 40 ]. Saturation transfer experiments have since shown 
that the rate of phospho-transfer from ATP to P-GA is below the limits of detection 
suggesting that the kinetics of this reaction are too slow to be useful under most 
conditions [ 39 ,  41 ]. 

 GAMT −/−  mice do not develop cardiac hypertrophy and there were no differences 
in LV structure and function under baseline conditions with the exception of low LV 
systolic pressure. However, in general agreement with β-GPA feeding studies, 
contractile reserve was blunted in GAMT −/−  mice [ 40 ]. Our laboratory has gone to 
considerable lengths to identify compensatory adaptations, but without success. For 
example, adenylate kinase, AMPK activation and mitochondrial organisation and 
respiration are all unaffected [ 41 ,  42 ]. We also took a non-biased approach using 
2-D difference in-gel electrophoresis and quantitative mass spectrometry to com-
pare proteomes of GAMT −/−  and WT hearts. There were no signifi cant differences 
in any of the 546 proteins detected [ 41 ]. It is not possible to prove the absence of 
adaptations, however these fi ndings rule out the adaptations previously suggested 
for CK knockout mice and after β-GPA feeding [ 17 ]. 

  AGAT KO —Mice with ablation of the fi rst essential enzyme in creatine biosyn-
thesis have the theoretical advantage that there is no accumulation of the potentially 
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confounding creatine pre-cursor guanidinoacetate. These mice also have a low body 
fat phenotype and this was associated with protection against metabolic syndrome 
when mice were exposed to high-fat feeding [ 43 ]. The cardiac phenotype of AGAT −/−  
has yet to be described. 

  Comment on loss - of - function models : The current consensus view seems a reason-
able one and is supported by the largest body of evidence, i.e. that loss or impair-
ment of the CK system is generally not essential to support normal cardiac function 
under baseline and low workload conditions, and that the PCr/CK system is only 
truly important to cardiac function at times of high demand or stress.   

4     Consequences of PCr/CK System Ablation During 
Pathological Stress 

4.1     Ischaemia/Reperfusion 

 A fully-functioning CK system is vitally important for recovery of cardiac pump func-
tion following ischaemia. Rat hearts perfused with iodoacetamide prior to hypoxic 
challenge are incapable of regenerating PCr and subsequently fail to recover [ 20 ]. 
Identical results have been obtained in the genetic ablation models. Both GAMT −/−  
and M/Mt-CK −/−  mice are more susceptible to ischaemia/reperfusion injury than wild-
type controls [ 33 ,  40 ]. For example, in M/Mt-CK −/−  mice, systolic recovery was 
prolonged, LVEDP increased, and there were more instances of contracture. This 
was associated with greater accumulation of diastolic calcium suggesting a role for 
CK in maintaining calcium homeostasis under stress conditions [ 33 ].  

4.2     Myocardial Infarction 

 The results from β-GPA feeding are unequivocal, with two independent studies both 
suggesting that creatine is obligate for surviving acute MI. Following permanent 
ligation of the left coronary artery, mortality in creatine-depleted rats ranged from 
93 % after 60 min [ 44 ] to 100 % mortality at 24 h [ 45 ]. In stark contrast, GAMT −/−  
mice, with zero myocardial creatine, have normal survival in the 24 h following 
myocardial infarction (~90 %) [ 41 ]. This is unlikely to be due to the presence of 
P-GA in GAMT −/−  since β-GPA can also be phosphorylated by CK with similar 
reaction kinetics [ 46 ]. Another explanation might be off-target effects of β-GPA, but 
mice injected with β-GPA prior to infarction have normal survival [ 41 ]. It seems 
likely that these apparently contradictory results can be explained by species differ-
ences in arrhythmogenicity, with ventricular arrhythmia increased post-MI in the 
β-GPA fed rats [ 44 ]. Increased mortality in the β-GPA studies does not therefore 
necessarily refl ect an energetic defi cit.  
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4.3     Chronic Heart Failure 

 Rats fed β-GPA starting immediately after permanent coronary artery ligation had a 
trend for more substantial LV hypertrophy at 8 weeks, but cardiac function was 
indistinguishable from the untreated infarct group despite myocardial ATP levels 
18 % lower [ 45 ]. A disadvantage of this approach is that creatine levels gradually 
decline throughout the experiment, reaching 13 % of control values by the end of 
the study. However, these fi ndings have been recapitulated in the GAMT −/−  mouse. 
Six weeks after MI, knockout mice were indistinguishable from wild-type infarct 
mice in terms of survival, LV remodelling and cardiac function [ 41 ]. Loss of CK 
activity is also well tolerated in the failing heart. M/Mt-CK −/−  mice survive myocardial 
infarction and the extent of cardiac remodelling and dysfunction was found to be 
similar to infarcted wild-types when studied 4 weeks post-MI using MRI [ 28 ,  37 ]. 

  Conclusion : Four studies taking three different approaches have all shown that 
reducing creatine or CK to very low levels in rodent models of heart failure does not 
have any consequences in terms of survival, LV function or remodelling. This con-
stitutes strong (albeit surprising) evidence that the down-regulation of PCr/CK con-
sistently observed in the failing heart does not make a signifi cant contribution to 
disease progression.   

5     Augmenting the Cr/CK System in Heart Failure 

 The phenotype of knockout mice may be confounded by physiological redundancy 
and/or metabolic fl exibility, which obscures the full signifi cance of the protein 
being studied. However, the more clinically interesting question is whether CK 
system augmentation has promise as a therapeutic intervention, and this requires 
testing in relevant disease models. 

5.1     Elevating [Cr] in Heart Failure 

 Our laboratory has produced mice constitutively over-expressing the creatine trans-
porter (CrT-OE) resulting in mice with variable levels of creatine and phosphocre-
atine in the heart [ 47 ]. Very high levels of total creatine (>2-fold above wild-type) 
were found to be detrimental resulting in hypertrophy, dilatation and progressive 
dysfunction [ 47 ]. This was due to an inability to keep the enlarged creatine pool 
adequately phosphorylated, which adversely affects the energy available from ATP 
hydrolysis [ 47 ]; and reduced expression of enolase resulting in impaired glycolytic 
capacity [ 48 ]. However, levels of creatine up to twofold (<140 nmol/mg protein) are 
well tolerated even in ageing mice [ 49 ], and, using  in vivo   1 H-MRS [ 50 ], we there-
fore pre-selected mice within this range before subjecting them to permanent coro-
nary artery ligation. Six weeks later both WT and CrT-OE groups developed LV 
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remodelling and chronic heart failure, but there was no benefi t associated with 
maintaining elevated creatine levels throughout. While creatine alone was not 
benefi cial in heart failure,  in silico  modelling suggests that combination with other 
metabolic approaches could yet prove energetically favourable [ 51 ].  

5.2     Elevating CK in Heart Failure 

 Mice overexpressing M-CK have been created using a “tet-off” conditional expression 
approach (M-CK-OE). With the transgene switched on, total CK activity and fl ux 
was signifi cantly increased without altering PCr and ATP concentrations or baseline 
cardiac function [ 52 ]. Following transverse aortic constriction (TAC),  in vivo  CK 
fl ux remained elevated in M-CK mice throughout development of heart failure and 
PCr/ATP ratio was better preserved. This was associated with higher indices of 
contractile function and signifi cantly improved survival. In an elegant demonstra-
tion of cause and effect, the protective effect was lost when the transgene was 
switched off [ 52 ]. This represents the fi rst direct evidence that augmentation of the 
CK system can be therapeutically benefi cial in the failing heart.   

6     Augmenting Cr/CK System in Ischaemia/Reperfusion 

6.1     Moderately Increasing Myocardial Creatine is Benefi cial 

 Our laboratory tested CrT-OE mice using an  in vivo  model of 45 min ischaemia and 
24 h reperfusion. CrT-OE mice had 27 % less myocardial injury than control mice 
correlating with [Cr] levels suggesting a “dose-dependent” protective effect. CrT-OE 
mice also exhibited signifi cantly improved functional recovery following 20 min 
global ischaemia  ex vivo  (Fig.  2 ) [ 49 ]. We have identifi ed the key mechanisms 
behind this benefi cial effect [ 49 ]: (1) Baseline myocardial PCr levels were 49 % 
higher in CrT-OE mice, thereby delaying ischaemic onset, and PCr recovery was 
more rapid and complete at reperfusion. (2) CrT-OE mice maintained a more favour-
able ATP/ADP ratio resulting in higher ΔG ATP . (3) CrT-OE mice had baseline levels 
of myocardial glycogen 2.8-fold above WT, which may in itself be protective [ 53 ]. 
(4) Creatine reduced the opening probability of the mitochondrial permeability 
transition pore (mPTP) when tested in HL1 cells.

6.2        Over-Expression of M-CK is Benefi cial 

 A similar benefi cial effect has recently been described in M-CK-OE [ 54 ]. Isolated 
perfused hearts were subjected to 25 min global no-fl ow ischaemia and 40 min 
reperfusion. M-CK-OE hearts had signifi cantly better functional recovery (65 % of 
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baseline vs. 14 %) and reduced LDH release indicating less cellular damage. The rate 
of ATP synthesis via CK was higher in transgenic mice, both at baseline and during 
recovery, resulting in reduced acidosis during ischaemia, and greatly improved 
re-synthesis of PCr. 

  Comment : Both augmentation of substrate (creatine) and enzyme (M-CK) have now 
independently shown promise as cardio-protective agents in I/R. Much additional 
work remains to be done in this area. For example, studies need to be repeated under 
more clinically relevant conditions, e.g. in older animals with co-morbidities. There 
are other obvious related targets such as testing the combination of elevated sub-
strate + enzyme and over-expression of other CK isoenzymes, e.g. Mt-CK and 
B-CK. Mt-CK is of particular interest in I/R injury since creatine has an inhibitory 
effect on mPTP opening, with mito-CK localisation within the inter-mitochondrial 
membrane obligate for this effect [ 55 ]. 

 Clinical translation remains a long way off and the lack of pharmacological tools 
for activating CrT and CK activity is a major limiting factor. This will require a 
much better understanding of the normal physiological control of creatine levels 
and CK activity in the heart, and non-biased approaches may be particularly useful 

  Fig. 2    Creatine transporter overexpressing mice (CrT-OE) are protected from ischaemia- 
reperfusion injury.  In vivo : ( a ) Mice with elevated myocardial creatine subjected to 45 min isch-
aemia and 24 h reperfusion had 27 % smaller infarct size compared to control mice, a reduction 
comparable in effect to ischaemic post-conditioning (IPC). ( b ) There was a signifi cant inverse 
correlation between infarct size and myocardial creatine levels.  Ex vivo : ( c ) Isolated perfused 
CrT-OE hearts had elevated phosphocreatine at baseline and during reperfusion, which resulted in 
greatly improved functional recovery ( d ) compared to wild-type (WT). RPP is rate pressure prod-
uct, i.e. heart rate x developed pressure. Reproduced from [ 49 ] with permission from Oxford 
University Press on behalf of the European Society of Cardiology       
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in this regard. For example, we recently used gene-expression profi ling to identify 
thioredoxin interacting protein (Txnip) as an endogenous inhibitor of CrT activity, 
which suggests a potential role for redox regulation [ 56 ].   

7     Conclusions 

 Observational studies in animal models and patients clearly suggest a causal role 
for the CK system in the development of heart failure. However, evidence from 
knockout mice is equivocal in this regard and diffi cult to interpret. CK system defi -
ciency probably limits contractile reserve, but on the whole, does not readily reca-
pitulate a heart failure phenotype. The one exception is the M/Mt-CK −/−  mouse, but 
only in ageing male mice with permissive genetic backgrounds. Since equivalent 
creatine loss is much better tolerated, we should be open to the possibility that the 
CK proteins may have other, as yet undefi ned, functions within the cell. The stron-
gest evidence against causality is that loss of CK activity or creatine does not affect 
outcome in chronic heart failure models. It could be argued that this simply refl ects 
physiological redundancy or the development of compensatory adaptations, but in 
that case, why don’t similar adaptations occur in the failing heart. Ultimately, the 
argument over causality has been side-lined by the fi ndings that CK or creatine 
augmentation can be cardio-protective in ischaemia/reperfusion injury and that 
M-CK overexpression is benefi cial in heart failure. This heralds a new and exciting 
phase of research with the opportunity to focus on translational aspects of creatine 
and CK augmentation in the heart.     
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