
Chapter 7
Weighted Inequalities

Weighted inequalities arise naturally in Fourier analysis, but their use is best justified
by the variety of applications in which they appear. For example, the theory of
weights plays an important role in the study of boundary value problems for
Laplace’s equation on Lipschitz domains. Other applications of weighted inequal-
ities include extrapolation theory, vector-valued inequalities, and estimates for cer-
tain classes of nonlinear partial differential equations.

The theory of weighted inequalities is a natural development of the principles and
methods we have acquainted ourselves with in earlier chapters. Although a variety
of ideas related to weighted inequalities appeared almost simultaneously with the
birth of singular integrals, it was only in the 1970s that a better understanding of
the subject was obtained. This was spurred by Muckenhoupt’s characterization of
positive functions w for which the Hardy–Littlewood maximal operator M maps
Lp(Rn,w(x)dx) to itself. This characterization led to the introduction of the class
Ap and the development of weighted inequalities. We pursue exactly this approach
in the next section to motivate the introduction of the Ap classes.

7.1 The Ap Condition

A weight is a nonnegative locally integrable function on Rn that takes values in
(0,∞) almost everywhere. Therefore, weights are allowed to be zero or infinite only
on a set of Lebesgue measure zero. Hence, if w is a weight and 1/w is locally inte-
grable, then 1/w is also a weight.

Given a weight w and a measurable set E, we use the notation

w(E) =
∫
E
w(x)dx
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500 7 Weighted Inequalities

to denote the w-measure of the set E. Since weights are locally integrable functions,
w(E)< ∞ for all sets E contained in some ball. The weighted Lp spaces are denoted
by Lp(Rn,w) or simply Lp(w). Recall the uncentered Hardy–Littlewood maximal
operators on Rn over balls

M( f )(x) = sup
B�x

Avg
B

| f |= sup
B�x

1
|B|

∫
B
| f (y)|dy ,

and over cubes

Mc( f )(x) = sup
Q�x

Avg
Q

| f |= sup
Q�x

1
|Q|

∫
Q
| f (y)|dy ,

where the suprema are taken over all balls B and cubes Q (with sides parallel to the
axes) that contain the given point x. A classical result (Theorem 2.1.6) states that for
all 1< p< ∞ there is a constant Cp(n)> 0 such that

∫
Rn

M( f )(x)p dx≤Cp(n)p
∫
Rn

| f (x)|p dx (7.1.1)

for all functions f ∈ Lp(Rn). We are concerned with the situation in which the mea-
sure dx in (7.1.1) is replaced by w(x)dx for some weight w(x).

7.1.1 Motivation for the Ap Condition

The question we raise is whether there is a characterization of all weights w(x) such
that the strong type (p, p) inequality

∫
Rn

M( f )(x)p w(x)dx≤Cp
p

∫
Rn

| f (x)|p w(x)dx (7.1.2)

is valid for all f ∈ Lp(w).
Suppose that (7.1.2) is valid for some weight w and all f ∈ Lp(w) for some

1 < p < ∞. Apply (7.1.2) to the function f χB supported in a ball B and use that
AvgB | f | ≤M( f χB)(x) for all x ∈ B to obtain

w(B)
(
Avg
B

| f |)p ≤
∫
B
M( f χB)

p wdx≤Cp
p

∫
B
| f |p wdx . (7.1.3)

It follows that
(

1
|B|

∫
B
| f (t)|dt

)p

≤ Cp
p

w(B)

∫
B
| f (x)|p w(x)dx (7.1.4)

for all balls B and all functions f . At this point, it is tempting to choose a function
such that the two integrands are equal. We do so by setting f = w−p′/p, which gives
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f pw= w−p′/p. Under the assumption that infBw> 0 for all balls B, it would follow
from (7.1.4) that

sup
B balls

(
1
|B|

∫
B
w(x)dx

)(
1
|B|

∫
B
w(x)−

1
p−1 dx

)p−1

≤Cp
p . (7.1.5)

If infBw= 0 for some balls B, we take f = (w+ ε)−p′/p to obtain

(
1
|B|

∫
B
w(x)dx

)(
1
|B|

∫
B
(w(x)+ ε)−

p′
p dx

)p( 1
|B|

∫
B

w(x)dx
(w(x)+ ε)p′

)−1

≤Cp
p (7.1.6)

for all ε > 0. Replacing w(x)dx by (w(x)+ ε)dx in the last integral in (7.1.6) we
obtain a smaller expression, which is also bounded by Cp

p . Since −p′/p=−p′+1,
(7.1.6) implies that

(
1
|B|

∫
B
w(x)dx

)(
1
|B|

∫
B
(w(x)+ ε)−

p′
p dx

)p−1

≤Cp
p , (7.1.7)

from which we can still deduce (7.1.5) via the Lebesgue monotone convergence the-
orem by letting ε → 0. We have now obtained that every weight w that satisfies
(7.1.2) must also satisfy the rather strange-looking condition (7.1.5), which we refer
to in the sequel as the Ap condition. It is a remarkable fact, to be proved in this chap-
ter, that the implication obtained can be reversed, that is, (7.1.2) is a consequence
of (7.1.5). This is the first significant achievement of the theory of weights [i.e., a
characterization of all functions w for which (7.1.2) holds]. This characterization is
based on some deep principles discussed in the next section and provides a solid
motivation for the introduction and careful examination of condition (7.1.5).

Before we study the converse statements, we consider the case p = 1. Assume
that for some weight w the weak type (1,1) inequality

w
({x ∈ Rn : M( f )(x)> α})≤ C1

α

∫
Rn

| f (x)|w(x)dx (7.1.8)

holds for all functions f ∈ L1(Rn). SinceM( f )(x)≥AvgB | f | for all x∈ B, it follows
from (7.1.8) that for all α < AvgB | f | we have

w(B)≤ w
({x ∈ Rn : M( f )(x)> α})≤ C1

α

∫
Rn

| f (x)|w(x)dx . (7.1.9)

Taking f χB instead of f in (7.1.9), we deduce that

Avg
B

| f |= 1
|B|

∫
B
| f (t)|dt ≤ C1

w(B)

∫
B
| f (x)|w(x)dx (7.1.10)
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for all functions f and balls B. Taking f = χS, we obtain

|S|
|B| ≤C1

w(S)
w(B)

, (7.1.11)

where S is any measurable subset of the ball B.
Recall that the essential infimum of a function w over a set E is defined as

ess.inf
E

(w) = inf
{
b> 0 : |{x ∈ E : w(x)< b}|> 0

}
.

Then for every a > ess.infB(w) there exists a subset Sa of B with positive measure
such that w(x)< a for all x ∈ Sa. Applying (7.1.11) to the set Sa, we obtain

1
|B|

∫
B
w(t)dt ≤ C1

|Sa|
∫
Sa
w(t)dt ≤C1a , (7.1.12)

which implies

1
|B|

∫
B
w(t)dt ≤C1w(x) for all balls B and almost all x ∈ B. (7.1.13)

It remains to understand what condition (7.1.13) really means. For every ball B, there
exists a null set N(B) such that (7.1.13) holds for all x in B\N(B). Let N be the union
of all the null sets N(B) for all balls B with centers in Qn and rational radii. Then
N is a null set and for every x in B \N, (7.1.13) holds for all balls B with centers in
Qn and rational radii. By density, (7.1.13) must also hold for all balls B that contain
a fixed x in Rn \N. It follows that for x ∈ Rn \N we have

M(w)(x) = sup
B�x

1
|B|

∫
B
w(t)dt ≤C1w(x) . (7.1.14)

Therefore, assuming (7.1.8), we have arrived at the condition

M(w)(x)≤C1w(x) for almost all x ∈ Rn, (7.1.15)

where C1 is the same constant as in (7.1.13).
We later see that this deduction can be reversed and we can obtain (7.1.8) as a

consequence of (7.1.15). This motivates a careful study of condition (7.1.15), which
we refer to as the A1 condition. Since in all the previous arguments we could have
replaced balls with cubes, we give the following definitions in terms of cubes.

Definition 7.1.1. A function w(x)≥ 0 is called an A1 weight if

M(w)(x)≤C1w(x) for almost all x ∈ Rn (7.1.16)

for some constant C1. If w is an A1 weight, then the (finite) quantity

[w]A1 = sup
Q cubes in Rn

(
1
|Q|

∫
Q
w(t)dt

)
‖w−1‖L∞(Q) (7.1.17)
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is called the A1 Muckenhoupt characteristic constant of w, or simply the A1 charac-
teristic constant of w. Note that A1 weights w satisfy

1
|Q|

∫
Q
w(t)dt ≤ [w]A1 ess.infy∈Q

w(y) (7.1.18)

for all cubes Q in Rn.

Remark 7.1.2. We also define

[w]ballsA1 = sup
B balls in Rn

(
1
|B|

∫
B
w(t)dt

)∥∥w−1∥∥
L∞(B) . (7.1.19)

Using (7.1.13), we see that the smallest constant C1 that appears in (7.1.16) is equal
to the A1 characteristic constant of w as defined in (7.1.19). This is also equal to the
smallest constant that appears in (7.1.13). All these constants are bounded above and
below by dimensional multiples of [w]A1 .

We now recall condition (7.1.5), which motivates the following definition of Ap
weights for 1< p< ∞.

Definition 7.1.3. Let 1< p< ∞. A weight w is said to be of class Ap if

sup
Q cubes in Rn

(
1
|Q|

∫
Q
w(x)dx

)(
1
|Q|

∫
Q
w(x)−

1
p−1 dx

)p−1

< ∞ . (7.1.20)

The expression in (7.1.20) is called the Ap Muckenhoupt characteristic constant of
w (or simply the Ap characteristic constant of w) and is denoted by [w]Ap .

Remark 7.1.4. Note that Definitions 7.1.1 and 7.1.3 could have been given with the
set of all cubes in Rn replaced by the set of all balls in Rn. Defining [w]ballsAp

as in
(7.1.20) except that cubes are replaced by balls, we see that

(
vn2−n)p ≤ [w]Ap

[w]ballsAp

≤ (
nn/2vn2−n)p . (7.1.21)

7.1.2 Properties of Ap Weights

It is straightforward that translations, isotropic dilations, and scalar multiples of Ap
weights are also Ap weights with the same Ap characteristic. We summarize some
basic properties of Ap weights in the following proposition.

Proposition 7.1.5. Let w ∈ Ap for some 1≤ p< ∞. Then

(1) [δ λ (w)]Ap = [w]Ap , where δ λ (w)(x) = w(λx1, . . . ,λxn).

(2) [τz(w)]Ap = [w]Ap , where τz(w)(x) = w(x− z), z ∈ Rn.
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(3) [λw]Ap = [w]Ap for all λ > 0.

(4) When 1< p< ∞, the function w− 1
p−1 is in Ap′ with characteristic constant

[
w− 1

p−1
]
Ap′

= [w]
1

p−1
Ap

.

Therefore, w ∈ A2 if and only if w−1 ∈ A2 and both weights have the same A2
characteristic constant.

(5) [w]Ap ≥ 1 for all w ∈ Ap. Equality holds if and only if w is a constant.

(6) The classes Ap are increasing as p increases; precisely, for 1 ≤ p < q < ∞ we
have

[w]Aq ≤ [w]Ap .

(7) lim
q→1+

[w]Aq = [w]A1 if w ∈ A1.

(8) The following is an equivalent characterization of the Ap characteristic constant
of w:

[w]Ap = sup
Qcubes
in Rn

sup
f ∈ Lp(Q,wdt)∫
Q | f |pwdt>0

{ ( 1
|Q|

∫
Q | f (t)|dt

)p
1

w(Q)

∫
Q | f (t)|pw(t)dt

}
.

(9) The measure w(x)dx is doubling: precisely, for all λ > 1 and all cubes Q we
have

w(λQ)≤ λ np[w]Ap w(Q) .

(λQ denotes the cube with the same center as Q and side length λ times the side
length of Q.)

Proof. The simple proofs of (1), (2), and (3) are left as an exercise. Property (4) is
also easy to check and plays the role of duality in this context. To prove (5) we use
Hölder’s inequality with exponents p and p′ to obtain

1=
1
|Q|

∫
Q
dx=

1
|Q|

∫
Q
w(x)

1
p w(x)−

1
p dx≤ [w]

1
p
Ap

,

with equality holding only when w(x)
1
p = cw(x)−

1
p for some c> 0 (i.e., when w is a

constant). To prove (6), observe that 0< q′ −1< p′ −1≤ ∞ and that the statement

[w]Aq ≤ [w]Ap

is equivalent to the fact
∥∥w−1∥∥

Lq′−1(Q, dx|Q| )
≤ ∥∥w−1∥∥

Lp′−1(Q, dx|Q| )
.

Property (7) is a consequence of part (a) of Exercise 1.1.3.



7.1 The Ap Condition 505

To prove (8), apply Hölder’s inequality with exponents p and p′ to get

(Avg
Q

| f |)p =
(

1
|Q|

∫
Q
| f (x)|dx

)p

=

(
1
|Q|

∫
Q
| f (x)|w(x) 1

p w(x)−
1
p dx

)p

≤ 1
|Q|p

(∫
Q
| f (x)|pw(x)dx

)(∫
Q
w(x)−

p′
p dx

) p
p′

=

(
1

ω(Q)

∫
Q
| f (x)|pw(x)dx

)(
1
|Q|

∫
Q
w(x)dx

)(
1
|Q|

∫
Q
w(x)−

1
p−1 dx

)p−1

≤ [w]Ap

(
1

ω(Q)

∫
Q
| f (x)|pw(x)dx

)
.

This argument proves the inequality ≥ in (8) when p > 1. In the case p = 1 the
obvious modification yields the same inequality. The reverse inequality follows by
taking f = (w+ ε)−p′/p as in (7.1.6) and letting ε → 0.

Applying (8) to the function f = χQ and putting λQ in the place of Q in (8), we
obtain

w(λQ)≤ λ np[w]Apw(Q) ,

which says that w(x)dx is a doubling measure. This proves (9). �

Example 7.1.6. A positive measure dμ is called doubling if for some C < ∞,

μ(2B)≤Cμ(B) (7.1.22)

for all balls B. We show that the measures |x|a dx are doubling when a > −n. We
divide all balls B(x0,R) in Rn into two categories: balls of type I that satisfy |x0| ≥
3R and type II that satisfy |x0|< 3R. For balls of type I we observe that

∫
B(x0,2R)

|x|a dx ≤ vn(2R)n
{
(|x0|+2R)a when a≥ 0,
(|x0|−2R)a when a< 0,

∫
B(x0,R)

|x|a dx ≥ vnRn

{
(|x0|−R)a when a≥ 0,
(|x0|+R)a when a< 0.

Since |x0| ≥ 3R, we have |x0|+2R≤ 4(|x0|−R) and |x0|−2R ≥ 1
4 (|x0|+R), from

which (7.1.22) follows with C = 23n4|a|.
For balls of type II, we have |x0| ≤ 3R and we note two things: first

∫
B(x0,2R)

|x|a dx≤
∫
|x|≤5R

|x|a dx= cnRn+a,



506 7 Weighted Inequalities

and second, since |x|a is radially decreasing for a < 0 and radially increasing for
a≥ 0, we have

∫
B(x0,R)

|x|a dx≥

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
B(0,R)

|x|a dx when a≥ 0,

∫
B(3R x0

|x0| ,R)
|x|a dx when a< 0.

For x ∈ B(3R x0
|x0| ,R) we must have |x| ≥ 2R, and hence both integrals on the right

are at least a multiple of Rn+a. This establishes (7.1.22) for balls of type II.

Example 7.1.7. We investigate for which real numbers a the power function |x|a is
an Ap weight onRn. For 1< p<∞, we examine for which a the following expression
is finite:

sup
B balls

(
1
|B|

∫
B
|x|a dx

)(
1
|B|

∫
B
|x|−a p′

p dx
) p

p′
. (7.1.23)

As in the previous example we split the balls in Rn into those of type I and those of
type II. If B= B(x0,R) is of type I, then for x satisfying |x− x0| ≤ R we must have

2
3
|x0| ≤ |x0|−R≤ |x| ≤ |x0|+R≤ 4

3
|x0| ,

thus the expression inside the supremum in (7.1.23) is comparable to

|x0|a
(|x0|−a p′

p
) p

p′ = 1.

If B(x0,R) is a ball of type II, then B(0,5R) has size comparable to B(x0,R) and
contains it. Since the measure |x|a dx is doubling, the integrals of the function |x|a
over B(x0,R) and over B(0,5R) are comparable. It suffices therefore to estimate the
expression inside the supremum in (7.1.23), in which we have replaced B(x0,R) by
B(0,5R). But this is

(
1

vn(5R)n

∫
B(0,5R)

|x|a dx
)(

1
vn(5R)n

∫
B(0,5R)

|x|−a p′
p dx

) p
p′

=

(
n

(5R)n

∫ 5R

0
ra+n−1dr

)(
n

(5R)n

∫ 5R

0
r−a p′

p +n−1dr
) p

p′
,

which is seen easily to be finite and independent of R exactly when −n < a < n p
p′ .

We conclude that |x|a is an Ap weight, 1< p< ∞, if and only if −n< a< n(p−1).
The previous proof can be suitably modified to include the case p= 1. In this case

we obtain that |x|a is an A1 weight if and only if −n < a ≤ 0. As we have seen, the
measure |x|a dx is doubling on the larger range −n< a< ∞. Thus for a> n(p−1),
the function |x|a provides an example of a doubling measure that is not in Ap.
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Example 7.1.8. On Rn the function

u(x) =

{
log 1

|x| when |x|< 1
e ,

1 otherwise,

is an A1 weight. Indeed, to check condition (7.1.19) it suffices to consider balls of
type I and type II as defined in Example 7.1.6. In either case the required estimate
follows easily.

We now return to a point alluded to earlier, that the Ap condition implies the
boundedness of the Hardy–Littlewood maximal function M on the space Lp(w). To
this end we introduce four maximal functions acting on functions f that are locally
integrable with respect to w:

Mw( f )(x) = sup
B�x

1
w(B)

∫
B
| f |wdy ,

where the supremum is taken over open balls B that contain the point x and

Mw( f )(x) = sup
δ>0

1
w(B(x,δ ))

∫
B(x,δ )

| f |wdy ,

Mw
c ( f )(x) = sup

Q�x
1

w(Q)

∫
Q
| f |wdy ,

where Q is an open cube containing the point x, and

Mw
c ( f )(x) = sup

δ>0

1
w(Q(x,δ ))

∫
Q(x,δ )

| f |wdy ,

where Q(x,δ ) = ∏n
j=1(x j − δ ,x j + δ ) is a cube of side length 2δ centered at

x = (x1, . . . ,xn). When w = 1, these maximal functions reduce to the standard ones
M( f ), M( f ), Mc( f ), and Mc( f ), the uncentered and centered Hardy–Littlewood
maximal functions with respect to balls and cubes, respectively.

Theorem 7.1.9. (a) Let w ∈ A1. Then we have
∥∥Mc

∥∥
L1(w)→L1,∞(w) ≤ 3n[w]A1 . (7.1.24)

(b) Let w ∈ Ap(Rn) for some 1< p< ∞. Then there is a constant Cn,p such that

∥∥Mc
∥∥
Lp(w)→Lp(w) ≤Cn,p[w]

1
p−1
Ap

. (7.1.25)

Since the operatorsMc, Mc,M, and M are pointwise comparable, a similar conclu-
sions hold for the other three as well.

Proof. (a) Since dμ = wdx is a doubling measure and dμ(3Q) ≤ 3n[w]A1μ(Q),
using Proposition 7.1.5 (9) and Exercise 2.1.1 we obtain that Mw

c maps L1(w) to
L1,∞(w) with norm at most 3n[w]A1 . This proves (7.1.24).
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(b) Fix a weight w in Ap and let σ = w− 1
p−1 be its dual weight. Fix an open cube

Q= Q(x0,r) in Rn with center x0 and side length 2r and write

1
|Q|

∫
Q
| f |dy= w(Q)

1
p−1 σ(3Q)

|Q| p
p−1

{ |Q|
w(Q)

(
1

σ(3Q)

∫
Q
| f |dy

)p−1} 1
p−1

. (7.1.26)

For any x ∈Q, consider the cube Q(x,2r). Then Q�Q(x,2r)� 3Q=Q(x0,3r) and
thus

1
σ(3Q)

∫
Q
| f |dy≤ 1

σ(Q(x,2r))

∫
Q(x,2r)

| f |dy≤Mσ
c (| f |σ−1)(x)

for any x ∈ Q. Inserting this expression in (7.1.26), we obtain

1
|Q|

∫
Q
| f |dy≤ w(Q)

1
p−1 σ(3Q)

|Q| p
p−1

{
1

w(Q)

∫
Q
Mσ

c (| f |σ−1)p−1 dy
} 1

p−1

. (7.1.27)

Since one may easily verify that

w(Q)σ(3Q)p−1

|Q|p ≤ 3np[w]Ap ,

it follows that

1
|Q|

∫
Q
| f |dy≤ 3

np
p−1 [w]

1
p−1
Ap

(
Mw

c
[(
Mσ

c (| f |σ−1)
)p−1w−1](x0)

) 1
p−1

,

since x0 is the center of Q. Hence, we have

Mc( f )≤ 3
np
p−1 [w]

1
p−1
Ap

(
Mw

c
[(
Mσ

c (| f |σ−1)
)p−1w−1]) 1

p−1
.

Applying Lp(w) norms, we deduce

∥∥Mc( f )
∥∥
Lp(w) ≤ 3

np
p−1 [w]

1
p−1
Ap

∥∥Mw
c
[(
Mσ

c (| f |σ−1)
)p−1w−1]∥∥ 1

p−1

Lp′ (w)

≤ 3
np
p−1 [w]

1
p−1
Ap

∥∥Mw
c
∥∥ 1

p−1

Lp′ (w)→Lp′ (w)

∥∥(Mσ
c (| f |σ−1)

)p−1w−1∥∥ 1
p−1

Lp′ (w)

= 3
np
p−1 [w]

1
p−1
Ap

∥∥Mw
c
∥∥ 1

p−1

Lp′ (w)→Lp′ (w)

∥∥Mσ
c (| f |σ−1)

∥∥
Lp(σ)

≤ 3
np
p−1 [w]

1
p−1
Ap

∥∥Mw
c
∥∥ 1

p−1

Lp′ (w)→Lp′ (w)

∥∥Mσ
c
∥∥
Lp(σ)→Lp(σ)

∥∥ f∥∥Lp(w) ,
and conclusion (7.1.25) follows, provided we show that

∥∥Mw
c
∥∥
Lq(w)→Lq(w) ≤C(q,n)< ∞ (7.1.28)

for any 1< q< ∞ and any weight w.
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We obtain this estimate by interpolation. Obviously (7.1.28) is valid when q= ∞
with C(∞,n) = 1. If we prove that

∥∥Mw
c
∥∥
L1(w)→L1,∞(w) ≤C(1,n)< ∞ , (7.1.29)

then (7.1.28) will follow from Theorem 1.3.2.
To prove (7.1.29) we fix f ∈ L1(Rn,wdx). We first show that the set

Eλ = {Mw
c ( f )> λ}

is open. For any r > 0, let Q(x,r) denote an open cube of side length 2r with center
x ∈ Rn. If we show that for any r > 0 and x ∈ Rn the function

x 	→ 1
w(Q(x,r))

∫
Q(x,r)

| f |wdy (7.1.30)

is continuous, then Mw
c ( f ) is the supremum of continuous functions; hence it is

lower semicontinuous and thus the set Eλ is open. But this is straightforward. If
xn → x0, then w(Q(xn,r))→ w(Q(x0,r)) and also

∫
Q(xn,r) | f |wdy→ ∫

Q(x0,r) | f |wdy
by the Lebesgue dominated convergence theorem. Since w(Q(x0,r)) 
= 0, it follows
that the function in (7.1.30) is continuous.

Given K a compact subset of Eλ , for any x ∈ K select an open cube Qx centered
at x such that

1
w(Qx)

∫
Qx

| f |wdy> λ .

Applying Lemma 7.1.10 (proved immediately afterward) we find a subfamily
{Qxj}mj=1 of the family of the balls {Qx : x ∈ K} such that (7.1.31) and (7.1.32)
hold. Then

w(K)≤
m

∑
j=1

w(Qxj)≤
m

∑
j=1

1
λ

∫
Qx j

| f |wdy≤ 24n

λ

∫
Rn

| f |wdy ,

where the last inequality follows by multiplying (7.1.32) by | f |w and integrating
over Rn. Taking the supremum over all compact subsets K of Eλ and using the inner
regularity of wdx, which is a consequence of the Lebesgue monotone convergence
theorem, we deduce thatMw

c maps L1(w) to L1,∞(w)with constant at most 24n. Thus
(7.1.29) holds with C(1,n) = 24n. �

Lemma 7.1.10. Let K be a bounded set in Rn and for every x ∈ K, let Qx be an open
cube with center x and sides parallel to the axes. Then there are an m ∈ Z+ ∪{∞}
and a sequence of points {x j}mj=1 in K such that

K �
m⋃
j=1

Qxj (7.1.31)
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and for almost all y ∈ Rn one has

m

∑
j=1

χQx j
(y)≤ 24n . (7.1.32)

Proof. Let s0 = sup{�(Qx) : x ∈ K}. If s0 = ∞, then there exists x1 ∈ K such that
�(Qx1) > 4L, where [−L,L]n contains K. Then K is contained in Qx1 and the state-
ment of the lemma is valid with m= 1.

Suppose now that s0 < ∞. Select x1 ∈ K such that �(Qx1)> s0/2. Then define

K1 = K \Qx1 , s1 = sup{�(Qx) : x ∈ K1} ,

and select x2 ∈ K1 such that �(Qx2)> s1/2. Next define

K2 = K \ (Qx1 ∪Qx2) , s2 = sup{�(Qx) : x ∈ K2} ,

and select x3 ∈ K2 such that �(Qx3) > s2/2. Continue until the first integer m is
found such that Km is an empty set. If no such integer exists, continue this process
indefinitely and set m= ∞.

We claim that for all i 
= j we have 1
3Qxi ∩ 1

3Qxj = /0. Indeed, suppose that i> j.
Then xi ∈ Ki−1 = K \ (Qx1 ∪·· ·∪Qxi−1); thus xi /∈Qj. Also xi ∈ Ki−1 � Kj−1, which
implies that �(Qxi) ≤ s j−1 < 2�(Qxj). If xi /∈ Qj and �(Qxj) >

1
2�(Qxi), it easily

follows that 1
3Qxi ∩ 1

3Qxj = /0.
We now prove (7.1.31). If m < ∞, then Km = /0 and therefore K � ⋃m

j=1Qxj . If
m= ∞, then there is an infinite number of selected cubes Qxj . Since the cubes

1
3Qxj

are pairwise disjoint and have centers in a bounded set, it must be the case that
some subsequence of the sequence of their lengths converges to zero. If there exists
a y ∈ K \⋃∞

j=1Qxj , this y would belong to all Kj, j = 1,2, . . . , and then s j ≥ �(Qy)
for all j. Since some subsequence of the s j’s tends to zero, it would follow that
�(Qy) = 0, which would force the open cube Qy to be the empty set, a contradiction.
Thus (7.1.31) holds.

Finally, we show that ∑m
j=1 χQx j

(y)≤ 24n for almost every point y ∈Rn. To prove
this we consider the n hyperplanes Hi that are parallel to the coordinate hyperplanes
and pass through the point y. Then we write Rn as a union of n hyperplanes Hi of
n-dimensional Lebesgue measure zero and 2n higher-dimensional open “octants”
Or, henceforth called orthants. We fix a y ∈ Rn and we show that there are only
12n points x j such that y lies in Or ∩Qxj for a given open orthant Or. To prove this
assertion, setting |z|�∞ = sup1≤i≤n |zi| for points z = (z1, . . . ,zn) in Rn, we pick an
xk0 ∈ K ∩Or such that Qxk0

contains y and |xk0 − y|�∞ is the largest possible among
all |x j−y|�∞ . If x j is another point in K∩Or such that Qxj contains y, then we claim
that x j ∈ Qxk0

. Indeed, to show this we notice that for each i ∈ {1, . . . ,n} we have

|x j,i− xk0,i| =
∣∣x j,i− yi− (xk0,i− yi)

∣∣
=

∣∣|x j,i− yi|− |xk0,i− yi|
∣∣
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≤ max
(|xk0,i− yi|, |x j,i− yi|

)
≤ max

(|xk0 − y|�∞ , |x j− y|�∞
)

= |xk0 − y|�∞

< 1
2�(Qxk0

) ,

where the second equality is due to the fact that x j,xk0 lie in the same orthant and
the last inequality in the fact that y ∈ Qxk0

; it follows that x j lies in Qxk0
.

We observed previously that i> j implies xi /∈Qj. Since x j lies in Qxk0
, one must

then have j ≤ k0, which implies that 1
2�(Qxk0

) < �(Qxj). Thus all cubes Qxj with
centers in K∩Or that contain the fixed point y have side lengths comparable to that
of Qxk0

. A simple geometric argument now gives that there are at most finitely many
cubes Qxj of side length between α and 2α that contain the given point y such that
1
3Qxj are pairwise disjoint. Indeed, let α = 1

2�(Qxk0
) and let {Qxr}r∈I be the cubes

with these properties. Then we have

αn|I|
3n

≤ ∑
r∈I

∣∣ 1
3Qxr

∣∣= ∣∣⋃
r∈I

1
3Qxr

∣∣≤ ∣∣⋃
r∈I

Qxr

∣∣≤ (4α)n ,

since all the cubes Qxr contain the point y and have length at most 2α and they
must therefore be contained in a cube of side length 4α centered at y. This obser-
vation shows that |I| ≤ 12n, and since there are 2n sets Or, we conclude the proof
of (7.1.32). �

Remark 7.1.11. Without use of the covering Lemma 7.1.10, (7.1.29) can be proved
via the doubling property of w (cf. Exercise 2.1.1(a)), but then the resulting constant
C(q,n) would depend on the doubling constant of the measure wdx and thus on
[w]Ap ; this would yield a worse dependence on [w]Ap in the constant in (7.1.25).

Exercises

7.1.1. Let k be a nonnegative measurable function such that k,k−1 are in L∞(Rn).
Prove that if w is an Ap weight for some 1≤ p< ∞, then so is kw.

7.1.2. Let w1, w2 be two A1 weights and let 1< p< ∞. Prove that w1w
1−p
2 is an Ap

weight by showing that

[w1w
1−p
2 ]Ap ≤ [w1]A1 [w2]

p−1
A1

.

7.1.3. Suppose that w ∈ Ap for some p ∈ [1,∞) and 0< δ < 1. Prove that wδ ∈ Aq,
where q= δ p+1−δ , by showing that

[wδ ]Aq ≤ [w]δAp
.
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7.1.4. Show that if the Ap characteristic constants of a weight w are uniformly
bounded for all p> 1, then w ∈ A1.

7.1.5. Let w0 ∈ Ap0 and w1 ∈ Ap1 for some 1≤ p0, p1 < ∞. Let 0≤ θ ≤ 1 and define

1
p
=

1−θ
p0

+
θ
p1

and w
1
p = w

1−θ
p0

0 w
θ
p1
1 .

Prove that

[w]Ap ≤ [w0]
(1−θ) p

p0
Ap0

[w1]
θ p

p1
Ap1

;

thus w is in Ap.

7.1.6. ([122]) Fix 1< p< ∞. A pair of weights (u,w) that satisfies

[u,w](Ap,Ap) = sup
Q cubes
in Rn

(
1
|Q|

∫
Q
udx

)(
1
|Q|

∫
Q
w− 1

p−1 dx
)p−1

< ∞

is said to be of class (Ap,Ap). The quantity [u,w](Ap,Ap) is called the (Ap,Ap) char-
acteristic constant of the pair (u,w).
(a) Suppose that pair of weights (u,w) is of class (Ap,Ap). Show that for all non-
negative measurable functions f and all cubes Q′ we have

(
1

|Q′|
∫
Q′
| f |dx

)p

u(Q′)≤C0

∫
Q′
| f |pwdx ,

where C0 = [u,w](Ap,Ap).
(b) Suppose that a pair of weights (u,w) satisfies the inequality in part (a) for some
constant C0. Prove that M maps Lp(w) to Lp,∞(u) with norm at most C(n, p)C1/p

0 ,
where C(n, p) is a fixed constant.
(c) Suppose that for a pair of weights (u,w), M maps Lp(w) to Lp,∞(u). Show that
the pair (u,w) is of class (Ap,Ap).[
Hint: Part (b): Replacing f by f χQ in part (a), where Q⊆ Q′, obtain that

u(Q′)≤C0|Q′|p
∫
Q | f |pwdx(∫
Q | f |dx

)p .

Then use Exercise 5.3.9 to find disjoint cubes Qj such that the set Eα = {x ∈ Rn :
Mc( f )(x) > α} is contained in the union of 3Qj and α

4n < 1
|Qj |

∫
Qj

| f (t)|dt ≤ α
2n .

Then u(Eα)≤∑ j u(3Qj), and bound each u(3Qj) by takingQ′ = 3Qj andQ=Qj in
the preceding estimate. Part (c): First prove the assertion in part (b) and then derive
the inequality in part (a) by adapting the idea in the discussion in the beginning of
Subsection 7.1.1.

]
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7.1.7. ([122]) Let 1 < p < ∞ and let (u,w) be a pair of weights of class (Ap,Ap).
Show that for any q with p < q < ∞ there is a constant Cp,q,n < ∞ such that for all
f ∈ Lq(w) we have

(∫
Rn

M( f )(x)qu(x)dx
)1/q

≤Cp,q,n

(∫
Rn

f (x)qw(x)dx
)1/q

.

[
Hint: Use Exercise 7.1.6 and interpolate between Lp and L∞.

]
7.1.8. Let k > 0. For an A1 weight w show that [min(w,k)]A1 ≤ [w]A1 . If 1< p< ∞
and w ∈ Ap, show that

[min(w,k)]Ap ≤ cp[w]Ap ,

where cp = 1 if 1< p≤ 2 and cp = 2p−1 if 2< p< ∞.[
Hint:Use the inequality 1

|Q|
∫
Qmin(w,k)−

1
p−1 dx≤ 1

|Q|
∫
Qw

− 1
p−1 dx+k−

1
p−1 and also

1
|Q|

∫
Qmin(w,k)dx≤min

{
k, 1

|Q|
∫
Qwdx

}
.
]

7.1.9. Suppose that wj ∈ Apj with 1 ≤ j ≤ m for some 1 ≤ p1, . . . , pm < ∞ and let
0< θ1, . . . ,θm < 1 be such that θ1+ · · ·+θm = 1. Show that

wθ1
1 · · ·wθm

m ∈ Amax{p1,...,pm} .
[
Hint: First note that each weight wj lies in Amax{p1,...,pm} and then apply Hölder’s
inequality.

]
7.1.10. Let w1 ∈ Ap1 and w2 ∈ Ap2 for some 1≤ p1, p2 < ∞. Prove that

[w1+w2]Ap ≤ [w1]Ap1
+[w2]Ap2

,

where p=max(p1, p2).

7.1.11. Show that the function

u(x) =

{
log 1

|x| when |x|< 1
e ,

1 otherwise,

in Example 7.1.8 is an A1 weight on Rn.[
Hint: Use [u]ballsA1

instead of [u]A1 and consider balls of type I and II as in Example
7.1.7.

]
7.1.12. Let 1 < p < ∞ and w ∈ A1. Show that the uncentered Hardy-Littlewood
maximal function M maps Lp,∞(w) to itself.[
Hint: Prove first the inequality

w({M(g)> λ})≤ 3n([w]ballsA1
)2

λ

∫
{M(g)>λ}

|g|wdx

and then use the characterization of Lp,∞ given in Exercise 1.1.12.]
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7.2 Reverse Hölder Inequality for Ap Weights and Consequences

An essential property of Ap weights is that they assign to subsets of balls mass
proportional to the percentage of the Lebesgue measure of the subset within the
ball. The following lemma provides a way to quantify this statement.

Lemma 7.2.1. Let w ∈ Ap for some 1≤ p< ∞ and let 0< α < 1. Then there exists
β < 1 such that whenever S is a measurable subset of a cube Q that satisfies |S| ≤
α|Q|, we have w(S)≤ β w(Q).

Proof. Taking f = χA in property (8) of Proposition 7.1.5, we obtain
( |A|
|Q|

)p

≤ [w]Ap

w(A)
w(Q)

. (7.2.1)

We write S= Q\A to get
(
1− |S|

|Q|
)p

≤ [w]Ap

(
1− w(S)

w(Q)

)
. (7.2.2)

Given 0< α < 1, set

β = 1− (1−α)p

[w]Ap

(7.2.3)

and use (7.2.2) to obtain the required conclusion. �

7.2.1 The Reverse Hölder Property of Ap Weights

We are now ready to state and prove one of the main results of the theory of weights,
the reverse Hölder inequality for Ap weights.

Theorem 7.2.2. Let w ∈ Ap for some 1 ≤ p < ∞. Then there exist constants C and
γ > 0 that depend only on the dimension n, on p, and on [w]Ap such that for every
cube Q we have

(
1
|Q|

∫
Q
w(t)1+γ dt

) 1
1+γ

≤ C
|Q|

∫
Q
w(t)dt . (7.2.4)

Proof. Let us fix a cube Q and set

α0 =
1
|Q|

∫
Q
w(x)dx .

We also fix 0< α < 1. We define an increasing sequence of scalars

α0 < α1 < α2 < · · ·< αk < · · ·
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for k ≥ 0 by setting

αk+1 = 2nα−1αk or αk = (2nα−1)kα0,

and for each k ≥ 1 we apply a Calderón–Zygmund decomposition to w at height αk.
Precisely, for dyadic subcubes R of Q, we let

1
|R|

∫
R
w(x)dx> αk (7.2.5)

be the selection criterion. Since Q does not satisfy the selection criterion, it is not
selected. We divide the cube Q into a mesh of 2n subcubes of equal side length, and
among these cubes we select those that satisfy (7.2.5). We subdivide each unselected
subcube into 2n cubes of equal side length and we continue in this way indefinitely.
We denote by {Qk, j} j the collection of all selected subcubes of Q. We observe that
the following properties are satisfied:

(1) αk <
1

|Qk, j|
∫
Qk, j

w(t)dt ≤ 2nαk.

(2) For almost all x /∈Uk we have w(x)≤ αk, whereUk =
⋃
j
Qk, j.

(3) Each Qk+1, j is contained in some Qk,l .

Property (1) is satisfied since the unique dyadic parent of Qk, j was not chosen in the
selection procedure. Property (2) follows from the Lebesgue differentiation theorem
using the fact that for almost all x /∈Uk there exists a sequence of unselected cubes
of decreasing lengths whose closures’ intersection is the singleton {x}. Property (3)
is satisfied since each Qk, j is the maximal subcube of Q satisfying (7.2.5). And since
the average of w over Qk+1, j is also bigger than αk, it follows that Qk+1, j must be
contained in some maximal cube that possesses this property.

We now compute the portion of Qk,l that is covered by cubes of the form Qk+1, j
for some j. We have

2nαk ≥ 1
|Qk,l |

∫
Qk,l∩Uk+1

w(t)dt

=
1

|Qk,l | ∑
j:Qk+1, j⊆Qk,l

|Qk+1, j| 1
|Qk+1, j|

∫
Qk+1, j

w(t)dt

>

∣∣Qk,l ∩Uk+1
∣∣

|Qk,l | αk+1

=

∣∣Qk,l ∩Uk+1
∣∣

|Qk,l | 2nα−1αk .

It follows that
∣∣Qk,l ∩Uk+1

∣∣≤ α|Qk,l |; thus, applying Lemma 7.2.1, we obtain

w(Qk,l ∩Uk+1)

w(Qk,l)
< β = 1− (1−α)p

[w]Ap

,
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from which, summing over all l, we obtain

w(Uk+1)≤ βw(Uk) .

The latter gives w(Uk)≤ β kw(U0). We also have |Uk+1| ≤ α|Uk|; hence |Uk| → 0 as
k→ ∞. Therefore, the intersection of theUk’s is a set of Lebesgue measure zero. We
can therefore write

Q=
(
Q\U0

)⋃( ∞⋃
k=0

Uk \Uk+1
)

modulo a set of Lebesgue measure zero. Let us now find a γ > 0 such that the reverse
Hölder inequality (7.2.4) holds. We have w(x) ≤ αk for almost all x in Q \Uk and
therefore

∫
Q
w(t)1+γ dt =

∫
Q\U0

w(t)γw(t)dt+
∞

∑
k=0

∫
Uk\Uk+1

w(t)γw(t)dt

≤ αγ
0w(Q\U0)+

∞

∑
k=0

αγ
k+1w(Uk)

≤ αγ
0w(Q\U0)+

∞

∑
k=0

((2nα−1)k+1α0)
γ β kw(U0)

≤ αγ
0

(
1+(2nα−1)γ

∞

∑
k=0

(2nα−1)γkβ k
)
w(Q)

=

(
1
|Q|

∫
Q
w(t)dt

)γ(
1+

(2nα−1)γ

1− (2nα−1)γ β

)∫
Q
w(t)dt ,

provided γ > 0 is chosen small enough that (2nα−1)γ β < 1. Keeping track of the
constants, we conclude the proof of the theorem with

γ =
1
2

− logβ
log2n− logα

=
log

(
[w]Ap

)− log
(
[w]Ap − (1−α)p

)
2log 2n

α
(7.2.6)

and

Cγ+1 = 1+
(2nα−1)γ

1− (2nα−1)γ β

= 1+
(2nα−1)γ

1− (2nα−1)γ
(
1− (1−α)p

[w]Ap

)

= 1+
1

(2nα−1)−γ − (
1− (1−α)p

[w]Ap

) ,
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which yields

C =

[
1+

1(
1− (1−α)p

[w]Ap

) 1
2 − (

1− (1−α)p

[w]Ap

)
] 2log 2

n
α

2log 2
n

α −log
(
1− (1−α)p

[w]Ap

)
. (7.2.7)

Note that up to this point, α was an arbitrary number in (0,1). �

Remark 7.2.3. It is worth observing that for α such that (1−α)p = 3
4 , the constant

γ in (7.2.6) decreases as [w]Ap increases, while the constantC in (7.2.7) increases as
[w]Ap increases. This is because 1− 3

4 [w]
−1
Ap

≥ 1
4 and for t ∈ ( 14 ,1) the function

√
t−t

is decreasing. This allows us to obtain the following stronger version of Theorem
7.2.2: For any 1 ≤ p < ∞ and B > 1, there exist positive constants C = C(n, p,B)
and γ = γ(n, p,B) such that for all w ∈ Ap satisfying [w]Ap ≤ B the reverse Hölder
condition (7.2.4) holds for every cube Q. See Exercise 7.2.4(a) for details.

Observe that in the proof of Theorem 7.2.2 it was crucial to know that for some
0< α,β < 1 we have

|S| ≤ α |Q| =⇒ w(S)≤ β w(Q) (7.2.8)

whenever S is a subset of the cube Q. No special property of Lebesgue measure was
used in the proof of Theorem 7.2.2 other than its doubling property. Therefore, it is
reasonable to ask whether Lebesgue measure in (7.2.8) can be replaced by a general
measure μ satisfying the doubling property

μ(3Q)≤Cn μ(Q)< ∞ (7.2.9)

for all cubes Q in Rn. A straightforward adjustment of the proof of the previous
theorem indicates that this is indeed the case.

Corollary 7.2.4. Let w be a weight and let μ be a measure on Rn satisfying (7.2.9).
Suppose that there exist 0< α,β < 1, such that

μ(S)≤ α μ(Q) =⇒
∫
S
w(t)dμ(t)≤ β

∫
Q
w(t)dμ(t)

whenever S is a μ-measurable subset of a cube Q. Then there exist 0 < C,γ < ∞
[which depend only on the dimension n, the constant Cn in (7.2.9), α , and β ] such
that for every cube Q in Rn we have

(
1

μ(Q)

∫
Q
w(t)1+γ dμ(t)

) 1
1+γ

≤ C
μ(Q)

∫
Q
w(t)dμ(t). (7.2.10)

Proof. The proof of the corollary can be obtained almost verbatim from that of
Theorem 7.2.2 by replacing Lebesgue measure with the doubling measure dμ and
the constant 2n byCn.
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Precisely, we define αk = (Cnα−1)kα0, where α0 is the μ-average of w over Q;
then properties (1), (2), (3) concerning the selected cubes {Qk, j} j are replaced by

(1μ ) αk <
1

μ(Qk, j)

∫
Qk, j

w(t)dμ(t)≤Cn αk.

(2μ ) On Q\Uk we have w≤ αk μ-almost everywhere, whereUk =
⋃
j
Qk, j.

(3μ ) Each Qk+1, j is contained in some Qk,l .

To prove the upper inequality in (1μ ) we use that the dyadic parent of each selected
cube Qk, j was not selected and is contained in 3Qk, j. To prove (2μ ) we need a dif-
ferentiation theorem for doubling measures, analogous to that in Corollary 2.1.16.
This can be found in Exercise 2.1.1. The remaining details of the proof are trivially
adapted to the new setting. The conclusion is that for

0< γ <
− logβ

logCn− logα
(7.2.11)

and

C =

[
1+

(Cnα−1)γ

1− (Cnα−1)γ β

] 1
γ+1

, (7.2.12)

(7.2.10) is satisfied. Notice that the choice of the constants (7.2.6) and (7.2.7) is valid
in this case withCn in place of 2n. �

7.2.2 Consequences of the Reverse Hölder Property

Having established the crucial reverse Hölder inequality for Ap weights, we now
pass to some very important applications. Among them, the first result of this section
yields that an Ap weight that lies a priori in L1loc(R

n) must actually lie in the better
space L1+σ

loc (Rn) for some σ > 0 depending on the weight.

Theorem 7.2.5. If w ∈ Ap for some 1 ≤ p < ∞, then there exists a number γ > 0
(that depends on n, p, and [w]Ap) such that w1+γ ∈ Ap.

Proof. Let C be the constant in the proof of Theorem 7.2.2. When p= 1, we apply
the reverse Hölder inequality of Theorem 7.2.2 to the weight w to obtain

1
|Q|

∫
Q
w(t)1+γ dt ≤

(
C
|Q|

∫
Q
w(t)dt

)1+γ
≤C1+γ [w]1+γ

A1
w(x)1+γ

for almost all x in the cube Q. Therefore, w1+γ is an A1 weight with characteristic
constant at mostC1+γ [w]1+γ

A1
. When p> 1, there exist γ1,γ2 > 0 andC1,C2 > 0 such

that the reverse Hölder inequality of Theorem 7.2.2 holds for the weights w ∈ Ap

and w− 1
p−1 ∈ Ap′ , that is,
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(
1
|Q|

∫
Q
w(t)1+γ1dt

) 1
1+γ1 ≤ C1

|Q|
∫
Q
w(t)dt,

(
1
|Q|

∫
Q
w(t)−

1
p−1 (1+γ2)dt

) 1
1+γ2 ≤ C2

|Q|
∫
Q
w(t)−

1
p−1 dt .

Taking γ =min(γ1,γ2), both inequalities are satisfied with γ in the place of γ1, γ2. It
follows that w1+γ is in Ap and satisfies

[w1+γ ]Ap ≤ (C1C
p−1
2 )1+γ [w]1+γ

Ap
. (7.2.13)

This concludes the proof of the theorem. �
Corollary 7.2.6. For any 1< p<∞ and for every w∈Ap there is a q= q(n, p, [w]Ap)
with q< p such that w ∈ Aq. In other words, we have

Ap =
⋃

q∈(1,p)
Aq .

Proof. Given w ∈ Ap, let γ ,C1,C2 be as in the proof of Theorem 7.2.5. In view of
the result in Exercise 7.1.3 with δ = 1/(1+ γ), if w1+γ ∈ Ap and

q= p
1

1+ γ
+1− 1

1+ γ
=

p+ γ
1+ γ

,

then w ∈ Aq and

[w]Aq = [(w1+γ)
1

1+γ ]Aq ≤
[
w1+γ] 1

1+γ
Ap

≤C1C
p−1
2 [w]Ap ,

where the last estimate comes from (7.2.13). Since 1 < q = p+γ
1+γ < p, the required

conclusion follows. Observe that the constants C1C
p−1
2 , q, and 1

γ increase as [w]Ap

increases. �
Another powerful consequence of the reverse Hölder property of Ap weights is

the following characterization of all A1 weights.

Theorem 7.2.7. Let w be an A1 weight. Then there exist 0 < ε < 1, a nonnegative
function k such that k,k−1 ∈ L∞, and a nonnegative locally integrable function f
that satisfies M( f )< ∞ a.e. such that

w(x) = k(x)M( f )(x)ε . (7.2.14)

Conversely, given a nonnegative function k such that k,k−1 ∈ L∞ and given a
nonnegative locally integrable function f that satisfies M( f ) < ∞ a.e., define w via
(7.2.14). Then w is an A1 weight that satisfies

[w]A1 ≤
Cn

1− ε
‖k‖L∞‖k−1‖L∞ , (7.2.15)

where Cn is a universal dimensional constant.
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Proof. In view of Theorem 7.2.2, there exist 0 < γ ,C < ∞ such that the reverse
Hölder condition

(
1
|Q|

∫
Q
w(t)1+γ dt

) 1
1+γ

≤ C
|Q|

∫
Q
w(t)dt ≤C [w]A1w(x) (7.2.16)

holds for all cubes Q and for all x in Q\EQ, where EQ is a null subset of Q. We set

ε =
1

1+ γ
and f (x) = w(x)1+γ = w(x)

1
ε .

Letting N be the union of EQ over all Q with rational radii and centers in Qn, it
follows from (7.2.16) that the uncentered Hardy–Littlewood maximal functionMc( f )
with respect to cubes satisfies

Mc( f )(x)≤C1+γ [w]1+γ
A1

f (x) for x ∈ Rn \N.

This implies that M( f ) ≤ CnC1+γ [w]1+γ
A1

f a.e. for some constant Cn that depends
only on the dimension. We now set

k(x) =
f (x)ε

M( f )(x)ε ,

and we observe that C−1C−ε
n [w]−1

A1
≤ k ≤ 1 a.e.

It remains to prove the converse. Given a weight w= kM( f )ε in the form (7.2.14)
and a cube Q, it suffices to show that

1
|Q|

∫
Q
M( f )(t)ε dt ≤ Cn

1− ε
M( f )ε(x) for almost all x ∈ Q, (7.2.17)

since then (7.2.15) follows trivially from (7.2.17) with w = kM( f )ε using that
k,k−1 ∈ L∞. To prove (7.2.17), we write

f = f χ3Q+ f χ(3Q)c .

Then

1
|Q|

∫
Q
M( f χ3Q)(t)ε dt ≤ C′

n

1− ε

(
1
|Q|

∫
Rn
( f χ3Q)(t)dt

)ε
(7.2.18)

in view of Kolmogorov’s inequality (Exercise 2.1.5). But the last expression in
(7.2.18) is at most a dimensional multiple of M( f )(x)ε for almost all x ∈ Q, which
proves (7.2.17) when f is replaced by f χ3Q on the left-hand side of the inequality.
And for f χ(3Q)c we only need to notice that

M( f χ(3Q)c)(t)≤ 2nM( f χ(3Q)c)(t)≤ 2nn
n
2M( f )(x)
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for all x, t in Q, since any ball B centered at t that gives a nonzero average for
f χ(3Q)c must have radius at least the side length of Q, and thus

√
nB must also

contain x. (Here M is the centered Hardy–Littlewood maximal operator introduced
in Definition 2.1.1.) Hence (7.2.17) also holds when f is replaced by f χ(3Q)c on the
left-hand side. Combining these two estimates and using the subadditivity property
M( f1+ f2)ε ≤M( f1)ε +M( f2)ε , we obtain (7.2.17). �

We end this section with the following consequence of the reverse Hölder prop-
erty of Ap weights which can be viewed as a reverse property to (7.2.1).

Proposition 7.2.8. Let 1≤ p< ∞ and w ∈ Ap. Then there exist δ ∈ (0,1) and C> 0
depending only on n, p, and [w]Ap such that for any cube Q and any measurable
subset S of Q we have

w(S)
w(Q)

≤C
( |S|
|Q|

)δ
.

Proof. Let C and γ be as in Theorem 7.2.2. We use Hölder’s inequality to write

w(S)
w(Q)

=
1

w(Q)

∫
Q
w(x)χS(x)dx

≤ 1
w(Q)

(∫
Q
w(x)1+γ dx

) 1
1+γ

|S|
γ

1+γ

=
1

w(Q)

(
1
|Q|

∫
Q
w(x)1+γ dx

) 1
1+γ

|Q| 1
1+γ |S|

γ
1+γ

=
C

w(Q)

(∫
Q
w(x)dx

)
|Q|−

γ
1+γ |S|

γ
1+γ

= C
( |S|
|Q|

)δ
,

where δ = γ
1+γ . This proves the assertion. �

Exercises

7.2.1. Let w ∈ Ap for some 1 < p < ∞ and let 1 ≤ q < ∞. Prove that the sublinear
operator

S( f ) =
(
M(| f |qw)w−1) 1

q

is bounded on Lp′q(w).

7.2.2. Let v be a real-valued locally integrable function on Rn and let 1 < p < ∞.
For a cube Q, let νQ be the average of ν over Q.
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(a) If ev is an Ap weight, show that

sup
Q cubes

1
|Q|

∫
Q
ev(t)−vQ dt ≤ [eν ]Ap ,

sup
Q cubes

1
|Q|

∫
Q
e−(v(t)−vQ) 1

p−1 dt ≤ [eν ]Ap .

(b) Conversely, if the preceding inequalities hold with some constant C in place of
[ν ]Ap , then ν lies in Ap with [ν ]Ap ≤C.[
Hint: Part (a): If ev ∈ Ap, use that

1
|Q|

∫
Q
ev(t)−vQ dt ≤

(
Avg
Q

e−
v

p−1
)p−1(

Avg
Q

ev
)

and obtain a similar estimate for the second quantity.
]

7.2.3. This exercise assumes familiarity with the space BMO.
(a) Show that if ϕ ∈ A2, then logϕ ∈ BMO and ‖ logϕ‖BMO ≤ [ϕ]A2 .
(b) Prove that every BMO function is equal to a constant multiple of the logarithm
of an A2 weight. Precisely, given f ∈ BMO show that

[
ec f

]
A2

≤ 1+2e ,

where c= 1/(2n+1‖ f‖BMO).
(c) Prove that if ϕ is in Ap for some 1 < p < ∞, then logϕ is in BMO by showing
that

∥∥ logϕ
∥∥
BMO ≤

⎧⎨
⎩
[ϕ]Ap when 1< p≤ 2,

(p−1)[ϕ]
1

p−1
Ap

when 2< p< ∞ .
[
Hint: Part (a): Use Exercise 7.2.2 with p = 2. Part (b): Use Exercise 7.2.2 and

Corollary 3.1.7 in [131]. Use Part (c): Use that ϕ− 1
p−1 ∈ Ap′ when p> 2.

]
7.2.4. Prove the following quantitative versions of Theorem 7.2.2 and
Corollary 7.2.6.
(a) For any 1 ≤ p < ∞ and B > 1, there exists a positive constant C3(n, p,B) and
γ = γ(n, p,B) such that for all w ∈ Ap satisfying [w]Ap ≤ B, (7.2.4) holds for every
cube Q with C3(n, p,B) in place of C.
(b) Given any 1 < p < ∞ and B > 1 there exists a constant C4(n, p,B) and δ =
δ (n, p,B) such that for all w ∈ Ap we have

[w]Ap ≤ B =⇒ [w]Ap−δ ≤C4(n, p,B) .

7.2.5. Given a positive doubling measure μ onRn, define the characteristic constant
[w]Ap(μ) and the class Ap(μ) for 1< p< ∞.
(a) Show that statement (8) of Proposition 7.1.5 remains valid if Lebesgue measure
is replaced by μ .
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(b) Obtain as a consequence that if w ∈ Ap(μ), then for all cubes Q and all μ-
measurable subsets A of Q we have

(
μ(A)
μ(Q)

)p

≤ [w]Ap(μ)
w(A)
w(Q)

.

Conclude that if Lebesgue measure is replaced by μ in Lemma 7.2.1, then the lemma
is valid for w ∈ Ap(μ).
(c) Use Corollary 7.2.4 to obtain that weights in Ap(μ) satisfy a reverse Hölder
condition.
(d) Prove that given a weight w ∈ Ap(μ), there exists 1< q< p, which depends on
[w]Ap(μ), such that w ∈ Aq(μ).
7.2.6. Let 1< q<∞ and μ a positive measure onRn. We say that a positive function
K on Rn satisfies a reverse Hölder condition of order q with respect to μ , symboli-
cally K ∈ RHq(μ), if

[K]RHq(μ) = sup
Qcubes in Rn

( 1
μ(Q)

∫
QK

q dμ
) 1
q

1
μ(Q)

∫
QK dμ

< ∞ .

For positive functions u,v on Rn and 1< p< ∞, show that

[vu−1]RHp′ (udx) = [uv−1]
1
p
Ap(vdx)

,

that is, vu−1 satisfies a reverse Hölder condition of order p′ with respect to udx if
and only if uv−1 is in Ap(vdx). Conclude that

w ∈ RHp′(dx) ⇐⇒ w−1 ∈ Ap(wdx) ,

w ∈ Ap(dx) ⇐⇒ w−1 ∈ RHp′(wdx) .

7.2.7. ([125]) Suppose that a positive function K on Rn lies in RHp(dx) for some
1< p< ∞. Show that there exists a δ > 0 such that K lies in RHp+δ (dx).[
Hint:By Exercise 7.2.6,K ∈RHp(dx) is equivalent to the fact thatK−1 ∈Ap′(Kdx),
and the index p′ can be improved by Exercise 7.2.5 (d).

]
7.2.8. (a) Show that for any w ∈ A1 and any cube Q in Rn and a> 1 we have

ess.inf
Q

w≤ an[w]A1 ess.infaQ
w .

(b) Prove that there is a constant Cn such that for all locally integrable functions f
on Rn and all cubes Q in Rn we have

ess.inf
Q

M( f )≤Cn ess.inf
3Q

M( f ) ,

and an analogous statement is valid forMc.
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[
Hint: Part (a): Use (7.1.18). Part (b): Apply part (a) toM( f )

1
2 , which is an A1 weight

in view of Theorem 7.2.7.
]

7.2.9. ([223]) For a weight w ∈ A1(Rn) define a quantity r = 1+ 1
2n+1[w]A1

. Show

that
Mc(wr)

1
r ≤ 2 [w]A1 w a.e.

[
Hint: Fix a cubeQ and consider the familyFQ of all cubes obtained by subdividing
Q into a mesh of (2n)m subcubes of side length 2−m�(Q) for all m= 1,2, . . . . Define
Md

Q( f )(x) = supR∈FQ,R�x |R|−1 ∫
R | f |dy. Using Corollary 2.1.21 obtain

∫
Q∩{Md

Q(w)>λ}
w(x)dx≤ 2nλ |{x ∈ Q : Md

Q(w)(x)> λ}|

for λ > wQ = 1
|Q|

∫
Qwdt. Multiply by λ δ−1 and integrate to obtain

∫
Q
Md

Q(w)
δwdx≤ (wQ)

δ
∫
Q
wdx+

2nδ
δ +1

∫
Q
Md

Q(w)
δ+1dx .

Replace w by wk =min(k,w) and select δ = 1
2n+1[w]A1

to deduce

1
|Q|

∫
Q
wδ+1
k dx≤ 1

|Q|
∫
Q
Md

Q(wk)
δwk dx≤ 2(wQ)

δ+1,

using [wk]A1 ≤ [w]A1 . Then let k→ ∞.
]

7.2.10. Let 1< p< ∞. Recall that a pair of weights (u,w) that satisfies

[u,w](Ap,Ap) = sup
Q cubes
in Rn

(
1
|Q|

∫
Q
udx

)(
1
|Q|

∫
Q
w− 1

p−1 dx
)p−1

< ∞

is said to be of class (Ap,Ap). The quantity [u,w](Ap,Ap) is called the (Ap,Ap) char-
acteristic constant of the pair (u,w).
(a) Show that for any g ∈ L1loc(R

n) with 0< g< ∞ a.e., the pair (g,M(g)) is of class
(Ap,Ap) with characteristic constant independent of f .
(b) If (u,w) is of class (Ap,Ap), then the Hardy–Littlewood maximal operator M
may not map Lp(w) to Lp(u).
(c) Given g ∈ L1loc(R

n) with 0 < g < ∞ a.e., conclude that Hardy–Littlewood max-
imal operator M maps Lp(M(g)dx) to Lp,∞(gdx) and also Lq(M(g)dx) to Lq(gdx)
for any q with p< q< ∞.[
Hint: Part (a): Use Hölder’s inequality and Theorem 7.2.7. Part (b): Try the pair(
M(g)1−p, |g|1−p

)
for a suitable g. Part (c): Use Exercises 7.1.6 and 7.1.7.

]
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7.3 The A∞ Condition

In this section we examine more closely the class of all Ap weights. It turns out that
Ap weights possess properties that are p-independent but delicate enough to char-
acterize them without reference to a specific value of p. The Ap classes increase
as p increases, and it is only natural to consider their limit as p→ ∞. Not surpris-
ingly, a condition obtained as a limit of the Ap conditions as p→ ∞ provides some
unexpected but insightful characterizations of the class of all Ap weights.

7.3.1 The Class of A∞ Weights

Let us start by recalling a simple consequence of Jensen’s inequality:

(∫
X
|h(t)|q dμ(t)

) 1
q

≥ exp
(∫

X
log |h(t)|dμ(t)

)
, (7.3.1)

which holds for all measurable functions h on a probability space (X ,μ) and all
0 < q < ∞. See Exercise 1.1.3(b). Moreover, part (c) of the same exercise says that
the limit of the expressions on the left in (7.3.1) as q→ 0 is equal to the expression
on the right in (7.3.1).

We apply (7.3.1) to the function h = w−1 for some weight w in Ap with q =
1/(p−1). We obtain

w(Q)
|Q|

(
1
|Q|

∫
Q
w(t)−

1
p−1 dt

)p−1

≥ w(Q)
|Q| exp

(
1
|Q|

∫
Q
logw(t)−1 dt

)
, (7.3.2)

and the limit of the expressions on the left in (7.3.2) as p → ∞ is equal to the ex-
pression on the right in (7.3.2). This observation provides the motivation for the
following definition.

Definition 7.3.1. A weight w is called an A∞ weight if

[w]A∞ = sup
Q cubes in Rn

{(
1
|Q|

∫
Q
w(t)dt

)
exp

(
1
|Q|

∫
Q
logw(t)−1 dt

)}
< ∞ .

The quantity [w]A∞ is called the A∞ characteristic constant of w.

It follows from the previous definition and (7.3.2) that for all 1≤ p< ∞ we have

[w]A∞ ≤ [w]Ap .

This means that ⋃
1≤p<∞

Ap ⊆ A∞ , (7.3.3)
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but the remarkable thing is that equality actually holds in (7.3.3), a deep property
that requires some work.

Before we examine this and other characterizations of A∞ weights, we discuss
some of their elementary properties.

Proposition 7.3.2. Let w ∈ A∞. Then

(1) [δ λ (w)]A∞ = [w]A∞ , where δ λ (w)(x) = w(λx1, . . . ,λxn) and λ > 0.

(2) [τz(w)]A∞ = [w]A∞ , where τz(w)(x) = w(x− z), z ∈ Rn.

(3) [λw]A∞ = [w]A∞ for all λ > 0.

(4) [w]A∞ ≥ 1.

(5) The following is an equivalent characterization of the A∞ characteristic constant
of w:

[w]A∞ = sup
Qcubes
in Rn

sup
log | f | ∈ L1(Q)∫
Q | f |wdt > 0

{
w(Q)∫

Q | f (t)|w(t)dt
exp

(
1
|Q|

∫
Q
log | f (t)|dt

)}
.

(6) The measure w(x)dx is doubling; precisely, for all λ > 1 and all cubes Q we
have

w(λQ)≤ 2λ n
[w]λ

n

A∞ w(Q) .

As usual, λQ here denotes the cube with the same center as Q and side length
λ times that of Q.

We note that estimate (6) is not as good as λ → ∞ but it can be substantially
improved using the case λ = 2. We refer to Exercise 7.3.1 for an improvement.

Proof. Properties (1)–(3) are elementary, while property (4) is a consequence of
Exercise 1.1.3(b). To show (5), first observe that by taking f = w−1, the expression
on the right in (5) is at least as big as [w]A∞ . Conversely, (7.3.1) gives

exp
(

1
|Q|

∫
Q
log

(| f (t)|w(t))dt
)
≤ 1

|Q|
∫
Q
| f (t)|w(t)dt ,

which, after a simple algebraic manipulation, can be written as

w(Q)∫
Q | f |wdt

exp
(

1
|Q|

∫
Q
log | f |dt

)
≤ w(Q)

|Q| exp
(
− 1

|Q|
∫
Q
log |w|dt

)
,

whenever f does not vanish almost everywhere on Q. Taking the supremum over all
such f and all cubes Q in Rn, we obtain that the expression on the right in (5) is at
most [w]A∞ .
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To prove the doubling property for A∞ weights, we fix λ > 1 and we apply prop-
erty (5) to the cube λQ in place of Q and to the function

f =

{
c on Q,
1 on Rn \Q, (7.3.4)

where c is chosen so that c1/λ n
= 2[w]A∞ . We obtain

w(λQ)
w(λQ\Q)+ cw(Q)

exp
( logc

λ n

)
≤ [w]A∞ ,

which implies (6) if we take into account the chosen value of c. �

7.3.2 Characterizations of A∞ Weights

Having established some elementary properties of A∞ weights, we now turn to some
of their deeper properties, one of which is that every A∞ weight lies in some Ap
for p< ∞. It also turns out that A∞ weights are characterized by the reverse Hölder
property, which as we saw is a fundamental property of Ap weights. The following
is the main theorem of this section.

Theorem 7.3.3. Suppose that w is a weight. Then w is in A∞ if and only if any one
of the following conditions holds:
(a) There exist 0< γ ,δ < 1 such that for all cubes Q in Rn we have

∣∣{x ∈ Q : w(x)≤ γ AvgQw
}∣∣≤ δ |Q| .

(b) There exist 0< α,β < 1 such that for all cubes Q and all measurable subsets A
of Q we have

|A| ≤ α |Q| =⇒ w(A)≤ β w(Q) .

(c) The reverse Hölder condition holds for w, that is, there exist 0<C1,ε < ∞ such
that for all cubes Q we have

(
1
|Q|

∫
Q
w(t)1+ε dt

) 1
1+ε

≤ C1

|Q|
∫
Q
w(t)dt .

(d) There exist 0<C2,ε0 < ∞ such that for all cubes Q and all measurable subsets
A of Q we have

w(A)
w(Q)

≤C2

( |A|
|Q|

)ε0
.

(e) There exist 0 < α ′,β ′ < 1 such that for all cubes Q and all measurable subsets
A of Q we have

w(A)< α ′w(Q) =⇒ |A|< β ′ |Q| .
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(f) There exist p,C3 < ∞ such that [w]Ap ≤C3. In other words, w lies in Ap for some
p ∈ [1,∞).

All the constants C1,C2,C3,α,β ,γ ,δ ,α ′,β ′,ε ,ε0, and p in (a)–(f) depend only
on the dimension n and on [w]A∞ . Moreover, if any of the statements in (a)–(f) is
valid, then so is any other statement in (a)–(f) with constants that depend only on
the dimension n and the constants that appear in the assumed statement.

Proof. The proof follows from the sequence of implications

w ∈ A∞ =⇒ (a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (e) =⇒ ( f ) =⇒ w ∈ A∞ .

At each step we keep track of the way the constants depend on the constants of the
previous step. This is needed to validate the last assertion of the theorem.
w ∈ A∞ =⇒ (a)

Fix a cube Q. Since multiplication of an A∞ weight with a positive scalar does
not alter its A∞ characteristic, we may assume that

∫
Q logw(t)dt = 0. This implies

that AvgQw≤ [w]A∞ . Then we have
∣∣{x ∈ Q : w(x)≤ γ Avg

Q
w}∣∣ ≤ ∣∣{x ∈ Q : w(x)≤ γ [w]A∞}

∣∣
=

∣∣{x ∈ Q : log(1+w(x)−1)≥ log(1+(γ [w]A∞)
−1)}∣∣

≤ 1
log(1+(γ [w]A∞)

−1)

∫
Q
log

1+w(t)
w(t)

dt

=
1

log(1+(γ [w]A∞)
−1)

∫
Q
log(1+w(t))dt

≤ 1
log(1+(γ [w]A∞)

−1)

∫
Q
w(t)dt

≤ [w]A∞ |Q|
log(1+(γ [w]A∞)

−1)

=
1
2
|Q| ,

which proves (a ) with γ = [w]−1
A∞
(e2[w]A∞ −1)−1 and δ = 1

2 .
(a) =⇒ (b)

Let Q be fixed and let A be a subset of Q with w(A) > βw(Q) for some β to be
chosen later. Setting S=Q\A, we have w(S)< (1−β )w(Q). We write S= S1∪S2,
where

S1 = {x ∈ S : w(x)> γ AvgQw} and S2 = {x ∈ S : w(x)≤ γ AvgQw} .

For S2 we have |S2| ≤ δ |Q| by assumption (a ). For S1 we use Chebyshev’s inequality
to obtain

|S1| ≤ 1
γ Avg

Q
w

∫
S
w(t)dt =

|Q|
γ

w(S)
w(Q)

≤ 1−β
γ

|Q| .



7.3 The A∞ Condition 529

Adding the estimates for |S1| and |S2|, we obtain

|S| ≤ |S1|+ |S2| ≤ 1−β
γ

|Q|+δ |Q|=
(

δ +
1−β

γ

)
|Q| .

Choosing numbers α,β in (0,1) such that δ + 1−β
γ = 1−α , for example α = 1−δ

2

and β = 1− (1−δ )γ
2 , we obtain |S| ≤ (1−α)|Q|, that is, |A|> α|Q|.

(b) =⇒ (c)
This was proved in Corollary 7.2.4. To keep track of the constants, we note that

the choices

ε =
− 1

2 logβ
log2n− logα

and C1 = 1+
(2nα−1)ε

1− (2nα−1)ε β

as given in (7.2.6) and (7.2.7) serve our purposes.
(c) =⇒ (d )

We apply first Hölder’s inequality with exponents 1+ ε and (1+ ε)/ε and then
the reverse Hölder estimate to obtain

∫
A
w(x)dx ≤

(∫
A
w(x)1+ε dx

) 1
1+ε

|A| ε
1+ε

≤
(

1
|Q|

∫
Q
w(x)1+ε dx

) 1
1+ε

|Q| 1
1+ε |A| ε

1+ε

≤ C1

|Q|
∫
Q
w(x)dx |Q| 1

1+ε |A| ε
1+ε ,

which gives
w(A)
w(Q)

≤C1

( |A|
|Q|

) ε
1+ε

.

This proves (d ) with ε0 = ε
1+ε and C2 =C1.

(d ) =⇒ (e)
Pick an 0 < α ′′ < 1 small enough that β ′′ = C2(α ′′)ε0 < 1. It follows from (d )

that
|A|< α ′′|Q| =⇒ w(A)< β ′′w(Q) (7.3.5)

for all cubes Q and all A measurable subsets of Q. Replacing A by Q\A, the impli-
cation in (7.3.5) can be equivalently written as

|A| ≥ (1−α ′′)|Q| =⇒ w(A)≥ (1−β ′′)w(Q) .

In other words, for measurable subsets A of Q we have

w(A)< (1−β ′′)w(Q) =⇒ |A|< (1−α ′′)|Q| , (7.3.6)
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which is the statement in (e ) if we set α ′ = (1− β ′′) and β ′ = 1−α ′′. Note that
(7.3.5) and (7.3.6) are indeed equivalent.
(e) =⇒ ( f )

We begin by examining condition (e ), which can be written as
∫
A
w(t)dt ≤ α ′

∫
Q
w(t)dt =⇒

∫
A
w(t)−1w(t)dt ≤ β ′

∫
Q
w(t)−1w(t)dt ,

or, equivalently, as

μ(A)≤ α ′μ(Q) =⇒
∫
A
w(t)−1 dμ(t)≤ β ′

∫
Q
w(t)−1 dμ(t)

after defining the measure dμ(t) = w(t)dt. As we have already seen, the assertions
in (7.3.5) and (7.3.6) are equivalent. Therefore, we may use Exercise 7.3.2 to deduce
that the measure μ is doubling, i.e., it satisfies property (7.2.9) for some constant
Cn =Cn(α ′,β ′), and hence the hypotheses of Corollary 7.2.4 are satisfied. We con-
clude that the weight w−1 satisfies a reverse Hölder estimate with respect to the
measure μ , that is, if γ ,C are defined as in (7.2.11) and (7.2.12) [in which α is re-
placed by α ′, β by β ′, and Cn is the doubling constant of w(x)dx], then we have

(
1

μ(Q)

∫
Q
w(t)−1−γ dμ(t)

) 1
1+γ

≤ C
μ(Q)

∫
Q
w(t)−1 dμ(t) (7.3.7)

for all cubes Q in Rn. Setting p= 1+ 1
γ and raising to the pth power, we can rewrite

(7.3.7) as the Ap condition for w. We can therefore take C3 = Cp to conclude the
proof of (f).
( f ) =⇒ w ∈ A∞

This is trivial, since [w]A∞ ≤ [w]Ap . �

An immediate consequence of the preceding theorem is the following result
relating A∞ to Ap.

Corollary 7.3.4. The following equality is valid:

A∞ =
⋃

1≤p<∞
Ap.

Exercises

7.3.1. Let λ > 0, Q be a cube in Rn, and w ∈ A∞(Rn).
(a) Show that property (6) in Proposition 7.3.2 can be improved to

w(λQ)≤min
ε>0

(1+ ε)λ n
[w]λ

n

A∞
−1

ε
w(Q) .
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(b) Prove that
w(λQ)≤ (2λ )2

n(1+log2[w]A∞ )w(Q) .[
Hint: Part (a): Take c in (7.3.4) such that c1/λ n

= (1+ ε)[w]A∞ . Part (b): Use the
estimate in property (6) of Proposition 7.3.2 with λ = 2.

]

7.3.2. Suppose that μ is a positive Borel measure on Rn with the property that for
all cubes Q and all measurable subsets A of Q we have

|A|< α|Q| =⇒ μ(A)< β μ(Q)

for some fixed 0< α,β < 1. Show that μ is doubling [i.e., it satisfies (7.2.9)].[
Hint: Use that |S|> (1−α)|Q| ⇒ μ(S)> (1−β )μ(Q) when S� Q.

]

7.3.3. Prove that a weight w is in Ap if and only if both w and w− 1
p−1 are in A∞.[

Hint: You may want to use the result of Exercise 7.2.2.
]

7.3.4. ([33], [343]) Prove that if P(x) is a polynomial of degree k in Rn, then
log |P(x)| is in BMO with norm depending only on k and n and not on the coef-
ficients of the polynomial.[
Hint: Use that all norms on the finite-dimensional space of polynomials of degree
at most k are equivalent to show that |P(x)| satisfies a reverse Hölder inequality.
Therefore, |P(x)| is an A∞ weight and thus Exercise 7.2.3 (c) is applicable.

]

7.3.5. Show that the product of two A1 weights may not be an A∞ weight.

7.3.6. Let g be in Lp(w) for some 1≤ p≤ ∞ and w ∈ Ap. Prove that g ∈ L1loc(R
n).[

Hint: Let B be a ball. In the case p < ∞, write
∫
B |g|dx =

∫
B(|g|w− 1

p )w
1
p dx and

apply Hölder’s inequality. In the case p= ∞, use that w ∈ Ap0 for some p0 < ∞.
]

7.3.7. ([278]) Show that a weight w lies in A∞ if and only if there exist γ ,C> 0 such
that for all cubes Q we have

w
({

x ∈ Q : w(x)> λ
})≤Cλ

∣∣{x ∈ Q : w(x)> γλ
}∣∣

for all λ > AvgQw.[
Hint: The displayed condition easily implies that

1
|Q|

∫
Q
w1+ε
k dx≤

(w(Q)
|Q|

)ε+1
+

C′δ
γ1+ε

1
|Q|

∫
Q
w1+ε
k dx ,

where k > 0, wk =min(w,k) and δ = ε/(1+ ε). Take ε > 0 small enough to obtain
the reverse Hölder condition (c ) in Theorem 7.3.3 for wk. Let k → ∞ to obtain the
same conclusion for w. Conversely, find constants γ ,δ ∈ (0,1) as in condition (a) of
Theorem 7.3.3 and for λ >AvgQw write the set {w> λ}∩Q as a union of maximal
dyadic cubes Qj such that λ < AvgQj

w ≤ 2nλ for all j. Then w(Qj) ≤ 2nλ |Qj| ≤
2nλ
1−δ |Qj ∩{w> γλ}| and the required conclusion follows by summing on j.

]
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7.4 Weighted Norm Inequalities for Singular Integrals

We now address a topic of great interest in the theory of singular integrals, their
boundedness properties on weighted Lp spaces. It turns out that a certain amount
of regularity must be imposed on the kernels of these operators to obtain the afore-
mentioned weighted estimates.

7.4.1 Singular Integrals of Non Convolution type

We introduce some definitions.

Definition 7.4.1. Let 0 < δ ,A < ∞. A function K(x,y) defined for x,y ∈ Rn with
x 
= y is called a standard kernel (with constants δ and A) if

|K(x,y)| ≤ A
|x− y|n , x 
= y, (7.4.1)

and whenever |x− x′| ≤ 1
2 max

(|x− y|, |x′ − y|) we have

|K(x,y)−K(x′,y)| ≤ A|x− x′|δ
(|x− y|+ |x′ − y|)n+δ (7.4.2)

and also when |y− y′| ≤ 1
2 max

(|x− y|, |x− y′|) we have

|K(x,y)−K(x,y′)| ≤ A|y− y′|δ
(|x− y|+ |x− y′|)n+δ . (7.4.3)

The class of all kernels that satisfy (7.4.1), (7.4.2), and (7.4.3) is denoted by
SK(δ ,A).
Definition 7.4.2. Let 0< δ ,A< ∞ and K in SK(δ ,A). A Calderón–Zygmund opera-
tor associated with K is a linear operator T defined onS (Rn) that admits a bounded
extension on L2(Rn), ∥∥T ( f )∥∥L2 ≤ B

∥∥ f∥∥L2 , (7.4.4)

and that satisfies
T ( f )(x) =

∫
Rn

K(x,y) f (y)dy (7.4.5)

for all f ∈ C ∞
0 and x not in the support of f . The class of all Calderón–Zygmund

operators associated with kernels in SK(δ ,A) that are bounded on L2 with norm at
most B is denoted by CZO(δ ,A,B). Note that there is no unique T associated with
a given K. Given a Calderón–Zygmund operator T in CZO(δ ,A,B), we define the
truncated operator T (ε) as

T (ε)( f )(x) =
∫
|x−y|>ε

K(x,y) f (y)dy
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and the maximal operator associated with T as follows:

T (∗)( f )(x) = sup
ε>0

∣∣T (ε)( f )(x)
∣∣ .

We note that if T is in CZO(δ ,A,B), then T (ε)( f ) and T (∗)( f ) are well defined
for all f in

⋃
1≤p<∞Lp(Rn). It is also well defined whenever f is locally integrable

and satisfies
∫
|x−y|≥ε | f (y)| |x− y|−ndy< ∞ for all x ∈ Rn and ε > 0.

The class of kernels in SK(δ ,A) extends the family of convolution kernels that
satisfy conditions (5.3.10), (5.3.11), and (5.3.12). Obviously, the associated operators
in CZO(δ ,A,B) generalize the associated convolution operators.

A fundamental property of operators in CZO(δ ,A,B) is that they have bounded
extensions on all the Lp(Rn) spaces and also from L1(Rn) to weak L1(Rn). This is
proved via an adaptation of Theorem 5.3.3; see Theorem 4.2.2 in [131]. There are
analogous results for the maximal counterparts T (∗) of elements of CZO(δ ,A,B).
In fact, an analogue of Theorem 5.3.5 yields that T (∗) is Lp bounded for 1< p< ∞
and weak type (1,1); this result is contained in Theorem 4.2.4 in [131].

We discuss weighted inequalities for singular integrals for general operators in
CZO(δ ,A,B). In Subsections 7.4.2 and 7.4.3, the reader may wish to replace kernels
in SK(δ ,A) by the more familiar functions K(x) defined on Rn \ {0} that satisfy
(5.3.10), (5.3.11), and (5.3.12).

7.4.2 A Good Lambda Estimate for Singular Integrals

The following theorem is the main result of this section.

Theorem 7.4.3. Let 1 ≤ p ≤ ∞, w ∈ Ap, and T in CZO(δ ,A,B). Then there exist
positive constants1 C0 =C0(n, p, [w]Ap), ε0 = ε0(n, p, [w]Ap), and c0(n,δ ), such that
if γ0 = c0(n,δ )/A, then for all 0< γ < γ0 we have

w
({T (∗)( f )> 3λ}∩{M( f )≤ γλ})≤C0γε0(A+B)ε0w

({T (∗)( f )> λ}) , (7.4.6)

for all locally integrable functions f for which
∫
|x−y|≥ε

| f (y)| |x− y|−ndy< ∞

for all x ∈ Rn and ε > 0. Here M denotes the Hardy–Littlewood maximal operator.

Proof. We write the open set

Ω = {T (∗)( f )> λ}=
⋃
j

Q j ,

1 the dependence on p is relevant only when p< ∞
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where Qj are the Whitney cubes (see Appendix J). We set

Q∗
j = 10

√
nQj ,

Q∗∗
j = 10

√
nQ∗

j ,

where aQ denotes the cube with the same center as Q whose side length is a�(Q),
where �(Q) is the side length of Q. We note that in view of the properties of the
Whitney cubes, the distance from Qj to Ω c is at most 4

√
n�(Qj). But the distance

from Qj to the boundary of Q∗
j is (5

√
n− 1

2 )�(Qj), which is bigger than 4
√
n�(Qj).

Therefore, Q∗
j must meet Ω c and for every cube Qj we fix a point y j in Ω c∩Q∗

j . See
Figure 7.1.

Qj

Q
j

Q
j

**

* y
j

.

..

.
x

zj

t

c

(50 -

-

 n  5   n ) l (Q )j 

(5   n ) l (Q )
j

1
2

ΩΩ

Fig. 7.1 A picture of the proof.

We also fix f in
⋃

1≤p<∞Lp(Rn), and for each j we write f = f j0 + f j∞, where
f j0 = f χQ∗∗

j
is the part of f near Qj and f j∞ = f χ(Q∗∗

j )c is the part of f away from Qj.
We now claim that the following estimate is true:

∣∣Qj ∩{T (∗)( f )> 3λ}∩{M( f )≤ γλ}∣∣≤Cn γ (A+B)
∣∣Qj

∣∣ . (7.4.7)

Once the validity of (7.4.7) is established, we apply Theorem 7.3.3 (d) when p= ∞
or Proposition 7.2.8 when p < ∞ to obtain constants ε0,C2 > 0, which depend on
[w]Ap , p, n when p< ∞ and on [w]A∞ and n when p= ∞, such that

w
(
Qj ∩{T (∗)( f )> 3λ}∩{M( f )≤ γλ})≤C2 (Cn)

ε0 γε0 (A+B)ε0 w(Qj) .
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Then a simple summation in j gives (7.4.6) with C0 =C2(Cn)
ε0 , and recall that C2

and ε0 depend on n and [w]Ap and on p if p< ∞.
In proving estimate (7.4.7), we may assume that for each cube Qj there exists a

z j ∈ Qj such that M( f )(z j)≤ γ λ ; otherwise, the set on the left in (7.4.7) is empty.
We now invoke Theorem 4.2.4 in [131], which states that T (∗) maps L1(Rn) to

L1,∞(Rn) with norm at most C(n)(A+B). We have the estimate
∣∣Qj ∩{T (∗)( f )> 3λ}∩{M( f )≤ γλ}∣∣≤ Iλ

0 + Iλ
∞ , (7.4.8)

where

Iλ
0 =

∣∣Qj ∩{T (∗)( f j0 )> λ}∩{M( f )≤ γλ}∣∣ ,
Iλ
∞ =

∣∣Qj ∩{T (∗)( f j∞)> 2λ}∩{M( f )≤ γλ}∣∣ .
To control Iλ

0 we note that f j0 is in L1(Rn) and we argue as follows:

Iλ
0 ≤ ∣∣{T (∗)( f j0 )> λ}∣∣

≤ ‖T (∗)‖L1→L1,∞

λ

∫
Rn

| f j0 (x)|dx

≤ C(n)(A+B)
|Q∗∗

j |
λ

1
|Q∗∗

j |
∫
Q∗∗

j

| f (x)|dx

≤ C(n)(A+B)
|Q∗∗

j |
λ

Mc( f )(z j)

≤ C̃(n)(A+B)
|Q∗∗

j |
λ

M( f )(z j)

≤ C̃(n)(A+B)
|Q∗∗

j |
λ

λ γ

= Cn (A+B)γ |Qj| .

(7.4.9)

Next we claim that Iλ
∞ = 0 if we take γ sufficiently small. We first show that for all

x ∈ Qj we have

sup
ε>0

∣∣T (ε)( f j∞)(x)−T (ε)( f j∞)(y j)
∣∣≤C(1)

n,δ AM( f )(z j) . (7.4.10)

Indeed, let us fix an ε > 0. We have

∣∣T (ε)( f j∞)(x)−T (ε)( f j∞)(y j)
∣∣ =

∣∣∣∣
∫

|t−x|>ε

K(x, t) f j∞(t)dt−
∫

|t−y j|>ε

K(y j, t) f j∞(t)dt
∣∣∣∣

≤ L1+L2+L3 ,



536 7 Weighted Inequalities

where

L1 =

∣∣∣∣
∫

|t−y j |>ε

[
K(x, t)−K(y j, t)

]
f j∞(t)dt

∣∣∣∣ ,

L2 =

∣∣∣∣
∫

|t−x|>ε
|t−y j |≤ε

K(x, t) f j∞(t)dt
∣∣∣∣ ,

L3 =

∣∣∣∣
∫

|t−x|≤ε
|t−y j |>ε

K(x, t) f j∞(t)dt
∣∣∣∣ ,

in view of identity (5.4.7).
We now make a couple of observations. For t /∈ Q∗∗

j , x,z j ∈ Qj, and y j ∈ Q∗
j we

have

3
4
≤ |t− x|

|t− y j| ≤
5
4
,

48
49

≤ |t− x|
|t− z j| ≤

50
49

. (7.4.11)

Indeed,
|t− y j| ≥ (50n−5

√
n)�(Qj)≥ 44n�(Qj)

and
|x− y j| ≤ 1

2
√
n�(Qj)+

√
n10

√
n�(Qj)≤ 11n�(Qj)≤ 1

4
|t− y j| .

Using this estimate and the inequalities

3
4
|t− y j| ≤ |t− y j|− |x− y j| ≤ |t− x| ≤ |t− y j|+ |x− y j| ≤ 5

4
|t− y j| ,

we obtain the first estimate in (7.4.11). Likewise, we have

|x− z j| ≤
√
n�(Qj)≤ n�(Qj)

and
|t− z j| ≥ (50n− 1

2 )�(Qj)≥ 49n�(Qj) ,

and these give

48
49

|t− z j| ≤ |t− z j|− |x− z j| ≤ |t− x| ≤ |t− z j|+ |x− z j| ≤ 50
49

|t− z j| ,

yielding the second estimate in (7.4.11).
Since |x− y j| ≤ 1

2 |t− y j| ≤ 1
2 max

(|t− x|, |t− y j|
)
, we have

|K(x, t)−K(y j, t)| ≤ A|x− y j|δ
(|t− x|+ |t− y j|)n+δ ≤C′

n,δA
�(Qj)

δ

|t− z j|n+δ ;



7.4 Weighted Norm Inequalities for Singular Integrals 537

hence, we obtain

L1 ≤
∫

|t−z j |≥49n�(Qj)

C′
n,δA

�(Qj)
δ

|t− z j|n+δ | f (t)|dt ≤C′′
n,δAM( f )(z j)

using Theorem 2.1.10. Using (7.4.11) we deduce

L2 ≤
∫

|t−z j |≤ 5
4 · 4948 ε

A
|x− t|n χ|t−x|≥ε | f j∞(t)|dt ≤C′

nAM( f )(z j) .

Again using (7.4.11), we obtain

L3 ≤
∫

|t−z j |≤ 49
48 ε

A
|x− t|n χ|t−x|≥ 3

4 ε | f j∞(t)|dt ≤C′′
nAM( f )(z j) .

This proves (7.4.10) with constant C(1)
n,δ =C′′

n,δ +C′
n+C′′

n .
Having established (7.4.10), we next claim that

sup
ε>0

∣∣T (ε)( f j∞)(y j)
∣∣≤ T (∗)( f )(y j)+C(2)

n AM( f )(z j) . (7.4.12)

To prove (7.4.12) we fix a cube Qj and ε > 0. We let Rj be the smallest number such
that

Q∗∗
j ⊆ B(y j,Rj) .

See Figure 7.2. We consider the following two cases.

Q
j

Qj

Q
j

**

* y
j.

Rj

Fig. 7.2 The ball B(y j,Rj).
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Case (1): ε ≥ Rj. Since Q∗∗
j ⊆ B(y j,ε), we have B(y j,ε)c ⊆ (Q∗∗

j )
c and therefore

T (ε)( f j∞)(y j) = T (ε)( f )(y j) ,

so (7.4.12) holds easily in this case.
Case (2): 0 < ε < Rj. Note that if t ∈ (Q∗∗

j )
c, then |t − y j| ≥ 40n�(Qj). On the

other hand, Rj ≤ diam(Q∗∗
j ) = 100n

3
2 �(Qj). This implies that

Rj ≤ 5
√
n

2 |t− y j| , when t ∈ (Q∗∗
j )

c .

Notice also that in this case we have B(y j,Rj)
c ⊆ (Q∗∗

j )
c, hence

T (Rj)( f j∞)(y j) = T (Rj)( f )(y j) .

Therefore, we have
∣∣T (ε)( f j∞)(y j)

∣∣ ≤ ∣∣T (ε)( f j∞)(y j)−T (Rj)( f j∞)(y j)
∣∣+ ∣∣T (Rj)( f )(y j)

∣∣
≤

∫

ε≤|y j−t|≤Rj

|K(y j, t)| | f j∞(t)|dt+T (∗)( f )(y j)

≤
∫

2
5
√
n R j≤|y j−t|≤Rj

|K(y j, t)|| f j∞(t)|dt+T (∗)( f )(y j)

≤
A( 2

5
√
n )

−n

Rn
j

∫

|z j−t|≤ 5
4 · 4948 Rj

| f (t)|dt+T (∗)( f )(y j)

≤ C(2)
n AM( f )(z j)+T (∗)( f )(y j) ,

where in the penultimate estimate we used (7.4.11). The proof of (7.4.12) follows
with the required bound C(2)

n A.
Combining (7.4.10) and (7.4.12), we obtain

T (∗)( f j∞)(x)≤ T (∗)( f )(y j)+
(
C(1)
n,δ +C(2)

n
)
AM( f )(z j) .

Recalling that y j /∈ Ω and that M( f )(z j)≤ γλ , we deduce

T (∗)( f j∞)(x)≤ λ +
(
C(1)
n,δ +C(2)

n
)
Aγλ .

Setting γ0 =
(
C(1)
n,δ +C(2)

n
)−1A−1 = c0(n,δ )A−1, for 0< γ < γ0, we have that the set

Qj ∩{T (∗)( f j∞)> 2λ}∩{M( f )≤ γλ}
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is empty. This shows that the quantity Iγ
∞ vanishes if γ is smaller than γ0. Returning

to (7.4.8) and using the estimate (7.4.9) proved earlier, we conclude the proof of
(7.4.7), which, as indicated earlier, implies the theorem. �

Remark 7.4.4. We observe that for any δ > 0, estimate (7.4.6) also holds for the
operator

T (∗)
δ ( f )(x) = sup

ε≥δ
|T (ε)( f )(x)| (7.4.13)

with the same constant (which is independent of δ ).
To see the validity of (7.4.6) for T (∗)

δ , it suffices to prove

∣∣T (∗)
δ ( f j∞)(y j)

∣∣≤ T (∗)
δ ( f )(y j)+C(2)

n AM( f )(z j) , (7.4.14)

which is a version of (7.4.12) with T (∗) replaced by T (∗)
δ . The following cases arise:

Case (1′): Rj ≤ δ ≤ ε or δ ≤ Rj ≤ ε . Here, as in Case (1) we have

|T (ε)( f j∞)(y j)|= |T (ε)( f )(y j)| ≤ T (∗)
δ ( f )(y j) .

Case (2′): δ ≤ ε < Rj. As in Case (2) we have

T (Rj)( f j∞)(y j) = T (Rj)( f )(y j),

thus
∣∣T (ε)( f j∞)(y j)

∣∣ ≤ ∣∣T (ε)( f j∞)(y j)−T (Rj)( f j∞)(y j)
∣∣+ ∣∣T (Rj)( f )(y j)

∣∣ .
As in the proof of Case (2), we bound the first term on the right of the last displayed
expression by C(2)

n AM( f )(z j) while the second term is at most T (∗)
δ ( f )(y j).

7.4.3 Consequences of the Good Lambda Estimate

Having obtained the important good lambda weighted estimate for singular inte-
grals, we now pass to some of its consequences. We begin with the following lemma:

Lemma 7.4.5. Let 1≤ p< ∞, ε > 0, w ∈ Ap, x ∈Rn, and f ∈ Lp(w). Then we have

∫
|x−y|≥ε

| f (y)|
|x− y|n dy≤C00(w,n, p,x,ε)

∥∥ f∥∥Lp(w)
for some constant C00 depending on the stated parameters. In particular, T (ε)( f )
and T (∗)( f ) are defined for f ∈ Lp(w).

Proof. For each ε > 0 and x pick a cube Q0 = Q0(x,ε) of side length cnε (for some
constant cn) such that Q0 � B(x,ε). Set Qj = 2 jQ0 for j ≥ 0. We have
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∫
|y−x|≥ε

| f (y)|
|x− y|n dy ≤ Cn

∞

∑
j=0

(2 jε)−n
∫
Qj+1\Qj

| f (y)|dy

≤ Cn

∞

∑
j=1

(
1

|Qj|
∫
Qj

| f (y)|pwdy
) 1

p
(

1
|Qj|

∫
Qj

w− p′
p dy

) 1
p′

≤ Cn [w]
1
p
Ap

∞

∑
j=1

(∫
Qj

| f (y)|pwdy
) 1

p
(

1
w(Qj)

) 1
p

≤ Cn [w]
1
p
Ap

∥∥ f∥∥Lp(w)
∞

∑
j=1

(
w(Qj)

)− 1
p .

But Proposition 7.2.8 gives for some δ = δ (n, p, [w]Ap) that

w(Q0)

w(Qj)
≤C(n, p, [w]Ap)

|Q0|δ
|Qj|δ

,

from which it follows that

w(Qj)
− 1

p ≤C′(n, p, [w]Ap)2
− j nδ

p w(Q0)
− 1

p .

In view of this estimate, the previous series converges. Note that C′ and thus C00
depend on [w]Ap ,n, p,x,ε , and w(Q0).

This argument is also valid in the case p= 1 by an obvious modification. �

Theorem 7.4.6. Let A,B,β > 0 and let T be a CZO(β ,A,B). Then given 1< p< ∞,
there is a constant Cp =Cp(n,β , [w]Ap) such that

∥∥T (∗)( f )
∥∥
Lp(w) ≤Cp (A+B)

∥∥ f∥∥Lp(w) (7.4.15)

for all w∈ Ap and f ∈ Lp(w). There is also a constant C1 =C1(n,β , [w]A1) such that
∥∥T (∗)( f )

∥∥
L1,∞(w) ≤C1 (A+B)

∥∥ f∥∥L1(w) (7.4.16)

for all w ∈ A1 and f ∈ L1(w).

Proof. This theorem is a consequence of the estimate proved in the previous the-
orem. For technical reasons, it is useful to fix a δ > 0 and work with the auxil-
iary maximal operator T (∗)

δ defined in (7.4.13) instead of T (∗). We begin by taking
1< p< ∞ and f ∈ Lp(w) for some w ∈ Ap. We write

∥∥T (∗)
δ ( f )

∥∥p
Lp(w) =

∫ ∞

0
pλ p−1w

({T (∗)
δ ( f )> λ})dλ

= 3p
∫ ∞

0
pλ p−1w

({T (∗)
δ ( f )> 3λ})dλ ,



7.4 Weighted Norm Inequalities for Singular Integrals 541

which we control by

3p
∫ ∞

0
pλ p−1w

({T (∗)
δ ( f )> 3λ}∩{M( f )≤ γλ})dλ

+ 3p
∫ ∞

0
pλ p−1w

({M( f )> γλ})dλ .

Using Theorem 7.4.3 (or rather Remark 7.4.4), there are C0 = C0(n, [w]Ap), ε0 =
ε0(n, [w]Ap), and γ0 = c0(n,β )A−1, such that the preceding displayed expression is
bounded by

3pC0γε0(A+B)ε0
∫ ∞

0
pλ p−1w

({T (∗)
δ ( f )> λ})dλ

+
3p

γ p

∫ ∞

0
pλ p−1w

({M( f )> λ})dλ ,

which is equal to

3pC0γε0(A+B)ε0
∥∥T (∗)

δ ( f )
∥∥p
Lp(w) +

3p

γ p

∥∥M( f )
∥∥p
Lp(w) .

Taking γ =min
( 1
2c0(n,β )A

−1, 12 (2C03p)
− 1

ε0 (A+B)−1
)
< γ0, we conclude that

∥∥T (∗)
δ ( f )

∥∥p
Lp(w)

≤ 1
2

∥∥T (∗)
δ ( f )

∥∥p
Lp(w) +C̃p(n,β , [w]Ap)(A+B)p

∥∥M( f )
∥∥p
Lp(w) .

(7.4.17)

We now prove a similar estimate when p= 1. For f ∈ L1(w) and w ∈ A1 we have

3λw
({

T (∗)
δ ( f )> 3λ

})
≤ 3λw

({
T (∗)

δ ( f )> 3λ
}∩{M( f )≤ γλ})+3λw

({M( f )> γλ}) ,
and this expression is controlled by

3λC0γε0(A+B)ε0w
({

T (∗)
δ ( f )> λ

})
+

3
γ
∥∥M( f )

∥∥
L1,∞(w) .

Recalling that γ0 = c0(n,β )A−1 and choosing γ = min
( 1
2γ0, 12 (6C0)

− 1
ε0 (A+B)−1

)
,

it follows that
∥∥T (∗)

δ ( f )
∥∥
L1,∞(w)

≤ 1
2

∥∥T (∗)
δ ( f )

∥∥
L1,∞(w)+C̃1(n,β , [w]A1)(A+B)

∥∥M( f )
∥∥
L1,∞(w).

(7.4.18)
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Estimate (7.4.15) would follow from (7.4.17) if we knew that ‖T (∗)
δ ( f )‖Lp(w) < ∞

whenever 1 < p < ∞, w ∈ Ap and f ∈ Lp(w), while (7.4.16) would follow from
(7.4.18) if we had ‖T (∗)

δ ( f )‖L1,∞(w) < ∞ whenever w ∈ A1 and f ∈ L1(w). Since we
do not know that these quantities are finite, a certain amount of work is needed.

To deal with this problem we momentarily restrict attention to a special class
of functions on Rn, the class of bounded functions with compact support. Such
functions are dense in Lp(w) when w ∈ Ap and 1 ≤ p < ∞; see Exercise 7.4.1. Let
h be a bounded function with compact support on Rn. Then T (∗)

δ (h)≤C1δ−n‖h‖L1
and T (∗)

δ (h)(x)≤C2(h)|x|−n for x away from the support of h. It follows that

T (∗)
δ (h)(x)≤C3(h,δ )(1+ |x|)−n

for all x ∈ Rn. Furthermore, if h is nonzero, then

M(h)(x)≥ C4(h)
(1+ |x|)n ,

and therefore for w ∈ A1,
∥∥T (∗)

δ (h)
∥∥
L1,∞(wdx) ≤C5(h,δ )

∥∥M(h)
∥∥
L1,∞(wdx) < ∞ ,

while for 1< p< ∞ and w ∈ Ap,
∫
Rn
(T (∗)

δ (h)(x))pw(x)dx≤C5(h, p,δ )
∫
Rn

M(h)(x)pw(x)dx< ∞

in view of Theorem 7.1.9. Using these facts, (7.4.17), (7.4.18), and Theorem 7.1.9
once more, we conclude that for all δ > 0 and 1< p< ∞ we have

∥∥T (∗)
δ (h)

∥∥p
Lp(w) ≤2C̃p

∥∥M(h)
∥∥p
Lp(w) ≤ C̃′

p[w]
p

p−1
Ap

∥∥h∥∥p
Lp(w) =Cp

p
∥∥h∥∥p

Lp(w),∥∥T (∗)
δ (h)

∥∥
L1,∞(w) ≤2C̃1

∥∥M(h)
∥∥
L1,∞(w) ≤ C̃1[w]A1

∥∥h∥∥L1(w) =C1
∥∥h∥∥L1(w),

(7.4.19)

whenever h a bounded function with compact support. The constants C̃p, C̃′
p, andCp

depend only on the parameters n, β , p, and [w]Ap .
We now extend estimates (7.4.16) and (7.4.15) to functions in Lp(Rn,wdx). Given

1≤ p< ∞, w ∈ Ap, and f ∈ Lp(w), let

fN(x) = f (x)χ| f |≤Nχ|x|≤N .

Then fN is a bounded function with compact support that converges to f in Lp(w)
(i.e., ‖ fN − f‖Lp(w) → 0 as N → ∞) by the Lebesgue dominated convergence theo-
rem. Also | fN | ≤ | f | for all N. Sublinearity and Lemma 7.4.5 give for all x ∈ Rn,

|T (∗)
δ ( fN)(x)−T (∗)

δ ( f )(x)| ≤ T (∗)
δ ( f − fN)(x)

≤ AC00(w,n, p,x,δ )
∥∥ fN − f

∥∥
Lp(w) ,
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and this converges to zero as N → ∞ since C00(w,n, p,x,δ )< ∞. Therefore

T (∗)
δ ( f ) = lim

N→∞
T (∗)

δ ( fN)

pointwise, and Fatou’s lemma for weak type spaces [see Exercise 1.1.12 (d)] gives
for w ∈ A1 and f ∈ L1(w),

∥∥T (∗)
δ ( f )

∥∥
L1,∞(w) =

∥∥ liminf
N→∞

T (∗)
δ ( fN)

∥∥
L1,∞(w)

≤ liminf
N→∞

∥∥T (∗)
δ ( fN)

∥∥
L1,∞(w)

≤ C1 liminf
N→∞

∥∥M( fN)
∥∥
L1,∞(w)

≤ C1
∥∥M( f )

∥∥
L1,∞(w) ,

since | fN | ≤ | f | for all N. An analogous argument gives the estimate

∥∥T (∗)
δ ( f )

∥∥
Lp(w) ≤Cp

∥∥ f∥∥Lp(w)
for w ∈ Ap and f ∈ Lp(w) when 1< p< ∞.

It remains to prove (7.4.15) and (7.4.16) for T (∗). But this is also an easy conse-
quence of Fatou’s lemma, since the constants Cp and C1 are independent of δ and

lim
δ→0

T (∗)
δ ( f ) = T (∗)( f )

for all f ∈ Lp(w). �

We end this subsection by making the comment that if a given T inCZO(δ ,A,B)
is pointwise controlled by T (∗), then the estimates of Theorem 7.4.6 also hold for it.
This is the case for the Hilbert transform, the Riesz transforms, and other classical
singular integral operators.

7.4.4 Necessity of the Ap Condition

We have established the main theorems relating Calderón–Zygmund operators and
Ap weights, namely that such operators are bounded on Lp(w) whenever w lies in
Ap. It is natural to ask whether the Ap condition is necessary for the boundedness of
singular integrals on Lp. We end this section by indicating the necessity of the Ap
condition for the boundedness of the Riesz transforms on weighted Lp spaces.

Theorem 7.4.7. Let w be a weight in Rn and let 1≤ p< ∞. Suppose that each of the
Riesz transforms Rj is of weak type (p, p) with respect to w. Then w must be an Ap
weight. Similarly, let w be a weight in R. If the Hilbert transform H is of weak type
(p, p) with respect to w, then w must be an Ap weight.
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Proof. We prove the n-dimensional case, n≥ 2. The one-dimensional case is essen-
tially contained in following argument, suitably adjusted.

Let Q be a cube and let f be a nonnegative function on Rn supported in Q that
satisfies AvgQ f > 0. Let Q′ be the cube that shares a corner with Q, has the same
length as Q, and satisfies x j ≥ y j for all 1≤ j ≤ n whenever x ∈Q′ and y ∈Q. Then
for x ∈ Q′ we have

∣∣∣∣
n

∑
j=1

Rj( f )(x)
∣∣∣∣= Γ ( n+1

2 )

π n+1
2

n

∑
j=1

∫
Q

x j− y j
|x− y|n+1 f (y)dy≥

Γ ( n+1
2 )

π n+1
2

∫
Q

f (y)
|x− y|n dy .

But if x ∈ Q′ and y ∈ Q we must have that |x− y| ≤ 2
√
n�(Q), which implies that

|x− y|−n ≥ (2
√
n)−n|Q|−1. Let Cn = Γ ( n+1

2 )(2
√
n)−nπ− n+1

2 . It follows that for all
0< α <CnAvgQ f we have

Q′ ⊆
{
x ∈ Rn :

∣∣ n

∑
j=1

Rj( f )(x)
∣∣> α

}
.

Since the operator ∑n
j=1Rj is of weak type (p, p) with respect to w (with constant

C), we must have

w(Q′)≤ Cp

α p

∫
Q
f (x)pw(x)dx

for all α <CnAvgQ f , which implies that

(
Avg
Q

f
)p ≤ C−p

n Cp

w(Q′)

∫
Q
f (x)pw(x)dx . (7.4.20)

We observe that we can reverse the roles of Q and Q′ and obtain

(
Avg
Q′

g
)p ≤ C−p

n Cp

w(Q)

∫
Q′
g(x)pw(x)dx (7.4.21)

for all g supported in Q′. In particular, taking g= χQ′ in (7.4.21) gives that

w(Q)≤C−p
n Cpw(Q′) .

Using this estimate and (7.4.20), we obtain

(
Avg
Q

f
)p ≤ (C−p

n Cp)2

w(Q)

∫
Q
f (x)pw(x)dx . (7.4.22)

Using the characterization of the Ap characteristic constant in Proposition 7.1.5 (8),
it follows that

[w]Ap ≤ (C−p
n Cp)2 < ∞ ;

hence w ∈ Ap. �
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Exercises

7.4.1. Let 1 ≤ p < ∞ and let w ∈ L1loc(R
n) satisfy w > 0 a.e. Show that C ∞

0 (Rn) is
dense in Lp(w). In particular this assertion holds for any w ∈ A∞.

7.4.2. ([74]) Let T be in CZO(δ ,A,B). Show that for all ε > 0 and all 1 < p < ∞
there exists a constant Cn,p,ε ,δ such that for all f ∈ Lp(Rn) and for all measurable
nonnegative functions u with u1+ε ∈ L1loc(R

n) and M(u1+ε)< ∞ a.e. we have
∫
Rn

|T (∗)( f )|p udx≤Cn,p,ε ,δ (A+B)p
∫
Rn

| f |pM(u1+ε)
1

1+ε dx .

[
Hint: Obtain this result as a consequence of Theorems 7.4.6 and 7.2.7.

]

7.4.3. Use the idea of the proof of Theorem 7.4.6 to prove the following result.
Suppose that for some fixed A,B > 0 the nonnegative μ-measurable functions F
and G on a σ -finite measure space (X ,μ) satisfy the distributional inequality

μ
({G> α}∩{F ≤ cα})≤ Aμ

({G> Bα})

for all α > 0. Given 0< p< ∞, if A< Bp and ‖G‖Lp(μ) < ∞, show that

‖G‖Lp(μ) ≤
B

(Bp−A)1/p
1
c
‖F‖Lp(μ) .

7.4.4. Let α > 0, w ∈ A1, and f ∈ L1(Rn,w) ∩ L1(Rn). Let f = g+ b be the
Calderón–Zygmund decomposition of f at height α > 0 given in Theorem 5.3.1,
such that b=∑ j b j, where each b j is supported in a dyadic cubeQj,

∫
Qj

b j(x)dx= 0,
and Qj and Qk have disjoint interiors when j 
= k. Prove that

(a) ‖g‖L1(w) ≤ [w]A1‖ f‖L1(w) and ‖g‖L∞(w) = ‖g‖L∞ ≤ 2nα ,

(b) ‖b j‖L1(w) ≤ (1+[w]A1)‖ f‖L1(Qj ,w) and ‖b‖L1(w) ≤ (1+[w]A1)‖ f‖L1(w),

(c) ∑ j w(Qj)≤ [w]A1
α ‖ f‖L1(w).

7.4.5. Assume that T is an operator associated with a kernel in SK(δ ,A). Suppose
that T maps L2(w) to L2(w) for all w ∈ A1 with bound Bw. Prove that there is a
constant Cn,δ such that

‖T‖L1(w)→L1,∞(w) ≤Cn,δ (A+Bw) [w]2A1

for all w ∈ A1.[
Hint: Apply the idea of the proof of Theorem 5.3.3 using the Calderón-Zygmund
decomposition f = g+b of Exercise 7.4.4 at height γα for a suitable γ . To estimate
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T (g) use an L2(w) estimate and Exercise 7.4.4. To estimate T (b) use the mean value
property, the fact that

∫
Rn\Q∗

j

|y− c j|δ
|x− c j|n+δ w(x)dx≤Cδ ,nM(w)(y)≤C′

δ ,n[w]A1 w(y) ,

and Exercise 7.4.4 to obtain the required estimate.
]

7.4.6. Recall that the transpose Tt of a linear operator T is defined by
〈
T ( f ),g

〉
=

〈
f ,Tt(g)

〉

for all suitable f and g. Suppose that T is a linear operator that maps Lp(Rn,vdx)
to itself for some 1 < p< ∞ and some v ∈ Ap. Show that the transpose operator Tt

maps Lp′(Rn,wdx) to itself with the same norm, where w= v1−p′ ∈ Ap′ .

7.4.7. Suppose that T is a linear operator that maps L2(Rn,vdx) to itself for all v
such that v−1 ∈ A1. Show that the transpose operator Tt of T maps L2(Rn,wdx) to
itself for all w ∈ A1.

7.4.8. Let 1 < p < ∞. Suppose that T is a linear operator that maps Lp(v) to itself
for all v satisfying v−1 ∈ Ap. Show that the transpose operator Tt of T maps Lp′(w)
to itself for all w satisfying w−1 ∈ Ap′ .

7.5 Further Properties of Ap Weights

In this section we discuss other properties of Ap weights. Many of these proper-
ties indicate deep connections with other branches of analysis. We focus attention
on three such properties: factorization, extrapolation, and relations of weighted in-
equalities to vector-valued inequalities.

7.5.1 Factorization of Weights

Recall the simple fact that if w1,w2 are A1 weights, then w = w1w
1−p
2 is an Ap

weight (Exercise 7.1.2). The factorization theorem for weights says that the converse
of this statement is true. This provides a surprising and striking representation of Ap
weights.

Theorem 7.5.1. Suppose that w is an Ap weight for some 1 < p < ∞. Then there
exist A1 weights w1 and w2 such that

w= w1w
1−p
2 .
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Proof. Let us fix a p≥ 2 and w ∈ Ap. We define an operator T as follows:

T ( f ) =
(
w− 1

pM( f p−1w
1
p )
) 1

p−1 +w
1
pM( f w− 1

p ) ,

where M is the Hardy–Littlewood maximal operator. We observe that T is well
defined and bounded on Lp(Rn). This is a consequence of the facts that w− 1

p−1

is an Ap′ weight and that M maps Lp′(w− 1
p−1 ) to itself and also Lp(w) to itself.

Thus the norm of T on Lp depends only on the Ap characteristic constant of w.
Let B(w) = ‖T‖Lp→Lp , the norm of T on Lp. Next, we observe that for f ,g ≥ 0 in
Lp(Rn) and λ ≥ 0 we have

T ( f +g)≤ T ( f )+T (g) , T (λ f ) = λT ( f ) . (7.5.1)

To see the first assertion, we need only note that for every ball B, the operator

f →
(

1
|B|

∫
B
| f |p−1w

1
p dx

) 1
p−1

is sublinear as a consequence of Minkowski’s integral inequality, since p−1≥ 1.
We now fix an Lp function f0 with ‖ f0‖Lp = 1 and we define a function ϕ in

Lp(Rn) as the sum of the Lp convergent series

ϕ =
∞

∑
j=1

(2B(w))− jT j( f0) . (7.5.2)

We define
w1 = w

1
p ϕ p−1 , w2 = w− 1

p ϕ ,

so that w= w1w
1−p
2 . It remains to show that w1,w2 are A1 weights. Applying T and

using (7.5.1), we obtain

T (ϕ) ≤ 2B(w)
∞

∑
j=1

(2B(w))− j−1T j+1( f0)

= 2B(w)
(

ϕ − T ( f0)
2B(w)

)

≤ 2B(w)ϕ ,

that is, (
w− 1

pM(ϕ p−1w
1
p )
) 1

p−1 +w
1
pM(ϕw− 1

p )≤ 2B(w)ϕ .

Using that ϕ = (w− 1
p w1)

1
p−1 = w

1
p w2, we obtain

M(w1)≤ (2B(w))p−1w1 and M(w2)≤ 2B(w)w2 .
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These show that w1 and w2 are A1 weights whose characteristic constants depend on
[w]Ap (and also the dimension n and p). This concludes the case p≥ 2.

We now turn to the case p< 2. Given a weight w∈ Ap for 1< p< 2, we consider
the weight w−1/(p−1), which is in Ap′ . Since p′ > 2, using the result we obtained, we

write w−1/(p−1) = v1v
1−p′
2 , where v1, v2 are A1 weights. It follows that w= v1−p

1 v2,
and this completes the asserted factorization of Ap weights. �

Combining the result just obtained with Theorem 7.2.7, we obtain the following
description of Ap weights.

Corollary 7.5.2. Let w be an Ap weight for some 1< p< ∞. Then there exist locally
integrable functions f1 and f2 with

M( f1)+M( f2)< ∞ a.e.,

constants 0 < ε1,ε2 < 1, and a nonnegative function k satisfying k,k−1 ∈ L∞ such
that

w= kM( f1)ε1M( f2)ε2(1−p) . (7.5.3)

7.5.2 Extrapolation from Weighted Estimates on a Single Lp0

Our next topic concerns a striking application of the class of Ap weights. It says
that an estimate on Lp0(v) for a single p0 and all Ap0 weights v implies a similar Lp

estimate for all p in (1,∞). This property is referred to as extrapolation.
Surprisingly the operator T is not needed to be linear or sublinear in the following

extrapolation theorem. The only condition required is that T be well defined on⋃
1≤q<∞

⋃
w∈Aq L

q(w). If T happens to be a linear operator, this condition can be
relaxed to T being well defined on C ∞

0 (Rn).

Theorem 7.5.3. Suppose that T is defined on
⋃

1≤q<∞
⋃

w∈Aq L
q(w) and takes values

in the space of measurable complex-valued functions. Let 1 ≤ p0 < ∞ and suppose
that there exists a positive increasing function N on [1,∞) such that for all weights
v in Ap0 we have ∥∥T∥∥Lp0 (v)→Lp0 (v) ≤ N

(
[v]Ap0

)
. (7.5.4)

Then for any 1< p< ∞ and for all weights w in Ap we have
∥∥T∥∥Lp(w)→Lp(w) ≤ K

(
n, p, p0, [w]Ap

)
, (7.5.5)

where

K
(
n, p, p0, [w]Ap

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2N
(

κ1(n, p, p0) [w]
p0−1
p−1
Ap

)
when p< p0,

2
p−p0

p0(p−1)N
(
κ2(n, p, p0) [w]Ap

)
when p> p0,

and κ1(n, p, p0) and κ2(n, p, p0) are constants that depend on n, p, and p0.
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Proof. Let 1< p< ∞ and w ∈ Ap. We define an operator

M′( f ) =
M( f w)

w
,

whereM is the Hardy–Littlewood maximal operator. We observe that since w1−p′ is
in Ap′ , the operator M′ maps Lp′(w) to itself; indeed, we have

∥∥M′∥∥
Lp′ (w)→Lp′ (w) =

∥∥M∥∥
Lp′ (w1−p′ )→Lp′ (w1−p′ )

≤ Cn,p[w1−p′ ]
1

p′−1
Ap′

= Cn,p[w]Ap

(7.5.6)

in view of Theorem 7.1.9 and property (4) of Proposition 7.1.5.
We introduce operators M0( f ) = | f | and Mk =M ◦M ◦ · · · ◦M, where M is the

Hardy–Littlewood maximal function and the composition is taken k times. Likewise,
we introduce powers (M′)k of M′ for k ∈ Z+ ∪{0}. The following lemma provides
the main tool in the proof of Theorem 7.5.3. Its simple proof uses Theorem 7.1.9 and
(7.5.6) and is omitted.

Lemma 7.5.4. Let 1< p< ∞ and w ∈ Ap. Define operators R and R′

R( f ) =
∞

∑
k=0

Mk( f )(
2‖M‖Lp(w)→Lp(w)

)k

for functions f in Lp(w) and also

R′( f ) =
∞

∑
k=0

(M′)k( f )(
2
∥∥M′∥∥

Lp′ (w)→Lp′ (w)
)k

for functions f in Lp′(w). Then there exist constants C1(n, p) and C2(n, p) that de-
pend on n and p such that

| f | ≤ R( f ) , (7.5.7)∥∥R( f )∥∥Lp(w) ≤ 2
∥∥ f∥∥Lp(w) , (7.5.8)

M(R( f )) ≤ C1(n, p) [w]
1

p−1
Ap

R( f ) , (7.5.9)

for all functions f in Lp(w) and such that

|h| ≤ R′(h) , (7.5.10)∥∥R′(h)
∥∥
Lp′ (w) ≤ 2

∥∥h∥∥Lp′ (w) , (7.5.11)

M′(R′(h)) ≤ C2(n, p) [w]Ap R
′(h) , (7.5.12)

for all functions h in Lp′(w).
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We now proceed with the proof of the theorem. It is natural to split the proof into
the cases p< p0 and p> p0.

Case (1): p< p0. Assume momentarily that R( f )
− p0

(p0/p)
′ is an Ap0 weight. Then we

have
∥∥T ( f )∥∥p

Lp(w)

=
∫
Rn

|T ( f )|pR( f )−
p

(p0/p)
′ R( f )

p
(p0/p)

′ wdx

≤
(∫

Rn
|T ( f )|p0R( f )−

p0
(p0/p)

′ wdx
) p

p0
(∫

Rn
R( f )p wdx

) 1
(p0/p)

′

≤ N
([

R( f )
− p0

(p0/p)
′ ]

Ap0

)p
(∫

Rn
| f |p0R( f )−

p0
(p0/p)

′ wdx
) p

p0
(∫

Rn
R( f )p wdx

) 1
(p0/p)

′

≤ N
([

R( f )
− p0

(p0/p)
′ ]

Ap0

)p
(∫

Rn
R( f )p0R( f )

− p0
(p0/p)

′ wdx
) p

p0
(∫

Rn
R( f )p wdx

) 1
(p0/p)

′

= N
([

R( f )
− p0

(p0/p)
′ ]

Ap0

)p
(∫

Rn
R( f )pwdx

) p
p0
(∫

Rn
R( f )p wdx

) 1
(p0/p)

′

≤ N
([

R( f )
− p0

(p0/p)
′ ]

Ap0

)p(
2
∥∥ f∥∥Lp(w)

)p
,

where we used Hölder’s inequality with exponents p0/p and (p0/p)′, the hypothesis
of the theorem, (7.5.7), and (7.5.8). Thus, we have the estimate

∥∥T ( f )∥∥Lp(w) ≤ 2N
([

R( f )
− p0

(p0/p)
′ ]

Ap0

)∥∥ f∥∥Lp(w) (7.5.13)

and it remains to obtain a bound for the Ap0 characteristic constant of R( f )
− p0

(p0/p)
′ .

In view of (7.5.9), the function R( f ) is an A1 weight with characteristic constant at

most a constant multiple of [w]
1

p−1
Ap

. Consequently, there is a constant C′
1 such that

R( f )−1 ≤C′
1 [w]

1
p−1
Ap

(
1
|Q|

∫
Q
R( f )dx

)−1

for any cube Q in Rn. Thus we have

1
|Q|

∫
Q
R( f )

− p0
(p0/p)

′ wdx

≤ (
C′
1 [w]

1
p−1
Ap

) p0
(p0/p)

′
(

1
|Q|

∫
Q
R( f )dx

)− p0
(p0/p)

′( 1
|Q|

∫
Q
wdx

)
.

(7.5.14)
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Next we have
(

1
|Q|

∫
Q

(
R( f )

− p0
(p0/p)

′ w
)1−p′0

dx
)p0−1

=

(
1
|Q|

∫
Q
R( f )

p0(p
′
0−1)

(p0/p)
′ w1−p′0 dx

)p0−1

≤
(

1
|Q|

∫
Q
R( f )dx

) p0
(p0/p)

′ ( 1
|Q|

∫
Q
w1−p′

)p−1

,

(7.5.15)

where we applied Hölder’s inequality with exponents
(

p′ −1
p′0−1

)′
and

p′ −1
p′0−1

,

and we used that

p0(p′0−1)
(p0/p)′

(
p′ −1
p′0−1

)′
= 1 and

p0−1(
p′−1
p′0−1

)′ =
p0

(p0/p)′
.

Multiplying (7.5.14) by (7.5.15) and taking the supremum over all cubes Q in Rn we
deduce that

[
R( f )

− p0
(p0/p)

′
]
Ap0

≤ (
C′
1 [w]

1
p−1
Ap

) p0
(p0/p)

′ [w]Ap = κ1(n, p, p0) [w]
p0−1
p−1
Ap

.

Combining this estimate with (7.5.13) and using the fact that N is an increasing
function, we obtain the validity of (7.5.5) in the case p< p0.

Case (2): p> p0. In this case we set r = p/p0 > 1. Then we have

∥∥T ( f )∥∥p
Lp(w) =

∥∥ |T ( f )|p0∥∥rLr(w) =
(∫

Rn
|T ( f )|p0hwdx

)r

(7.5.16)

for some nonnegative function h with Lr
′
(w) norm equal to 1. We define a function

H =
[
R′(h r′

p′
)] p′

r′ .

Obviously, we have 0≤ h≤ H and thus
∫
Rn

|T ( f )|p0hwdx ≤
∫
Rn

|T ( f )|p0Hwdx

≤ N
(
[Hw]Ap0

)p0∥∥ f∥∥p0
Lp0 (Hw)

≤ N
(
[Hw]Ap0

)p0∥∥ | f |p0∥∥Lr(w)
∥∥H∥∥

Lr′ (w)

≤ 2
p′
r′ N

(
[Hw]Ap0

)p0∥∥ f∥∥p0
Lp(w) ,

(7.5.17)
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noting that

∥∥H∥∥r′
Lr′ (w) =

∫
Rn

R′(hr
′/p′)p

′
wdx≤ 2p

′
∫
Rn

hr
′
wdx= 2p

′
,

which is valid in view of (7.5.11). Moreover, this argument is based on the hypothesis
of the theorem and requires that Hw be an Ap0 weight. To see this, we observe that
condition (7.5.12) implies that Hr′/p′w is an A1 weight with characteristic constant
at most a multiple of [w]A1 . Thus, there is a constant C

′
2 that depends only on n and

p such that
1
|Q|

∫
Q
H

r′
p′ wdx≤C′

2 [w]ApH
r′
p′ w

for all cubes Q in Rn. From this it follows that

(Hw)−1 ≤ κ2(n, p, p0) [w]
p′
r′
Ap

(
1
|Q|

∫
Q
H

r′
p′ wdx

)− p′
r′
w

p′
r′ −1 ,

where we set κ2(n, p, p0) = (C′
2)

p′/r′ . We raise the preceding displayed expression
to the power p′0 − 1, we average over the cube Q, and then we raise to the power
p0−1. We deduce the estimate

(
1
|Q|

∫
Q
(Hw)1−p′0 dx

)p0−1

≤ κ2(n, p, p0) [w]
p′
r′
Ap

(
1
|Q|

∫
Q
H

r′
p′ wdx

)− p′
r′
(

1
|Q|

∫
Q
w1−p′ dx

)p0−1

,

(7.5.18)

where we use the fact that
(
p′

r′
−1

)(
p′0−1

)
= 1− p′ .

Note that r′/p′ ≥ 1, since p0 ≥ 1. Using Hölder’s inequality with exponents r′/p′
and (r′/p′)−1 we obtain that

1
|Q|

∫
Q
Hwdx≤

(
1
|Q|

∫
Q
H

r′
p′ wdx

) p′
r′
(

1
|Q|

∫
Q
wdx

) p0−1
p−1

, (7.5.19)

where we used that
1

( r
′
p′ )

′ =
p0−1
p−1

.

Multiplying (7.5.18) by (7.5.19), we deduce the estimate

[
Hw

]
Ap0

≤ κ2(n, p, p0) [w]
p′
r′
Ap

[w]
p0−1
p−1
Ap

= κ2(n, p, p0) [w]Ap .
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Inserting this estimate in (7.5.17) we obtain
∫
Rn

|T ( f )|p0hwdx≤ 2
p′
r′ N

(
κ2(n, p, p0) [w]Ap

)p0∥∥ f∥∥p0
Lp(w) ,

and combining this with (7.5.16) we conclude that

∥∥T ( f )∥∥p
Lp(w) ≤ 2

p′r
r′ N

(
κ2(n, p, p0) [w]Ap

)p0r∥∥ f∥∥p0r
Lp(w) .

This proves the required estimate (7.5.5) in the case p> p0. �

There is a version of Theorem 7.5.3 in which the initial strong type assumption
is replaced by a weak type estimate.

Theorem 7.5.5. Suppose that T is a well defined operator on
⋃

1<q<∞
⋃

w∈Aq L
q(w)

that takes values in the space of measurable complex-valued functions. Fix 1 ≤
p0 < ∞ and suppose that there is an increasing function N on [1,∞) such that for all
weights v in Ap0 we have ∥∥T∥∥Lp0 (v)→Lp0,∞(v) ≤ N([v]Ap0

) . (7.5.20)

Then for any 1< p< ∞ and for all weights w in Ap we have
∥∥T∥∥Lp(w)→Lp,∞(w) ≤ K

(
n, p, p0, [w]Ap

)
, (7.5.21)

where K
(
n, p, p0, [w]Ap

)
is as in Theorem 7.5.3.

Proof. For every fixed λ > 0 we define

Tλ ( f ) = λ χ|T ( f )|>λ .

The operator Tλ is not linear but is well defined on
⋃

1<q<∞
⋃

w∈Aq L
q(w), since T is

well defined on this union. We show that Tλ maps Lp0(v) to Lp0(v) for every v∈ Ap0 .
Indeed, we have

(∫
Rn

|Tλ ( f )|p0 vdx
) 1

p0
=

(∫
Rn

λ p0χ|T ( f )|>λ vdx
) 1

p0

=
(

λ p0v
({|T ( f )|> λ}))

1
p0

≤ N([v]Ap0
)
∥∥ f∥∥Lp0 (v)

using the hypothesis on T . Applying Theorem 7.5.3, we obtain that Tλ maps Lp(w)
to itself for all 1< p< ∞ and all w∈ Ap with a constant independent of λ . Precisely,
for any w ∈ Ap and any f ∈ Lp(w) we have

∥∥Tλ ( f )
∥∥
Lp(w) ≤ K

(
n, p, p0, [w]Ap

)∥∥ f∥∥Lp(w) .
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Since ∥∥T ( f )∥∥Lp,∞(w) = sup
λ>0

∥∥Tλ ( f )
∥∥
Lp(w) ,

it follows that T maps Lp(w) to Lp,∞(w) with the asserted norm. �
Assuming that the operator T in the preceding theorem is sublinear (or quasi-

sublinear), we obtain the following result that contains a stronger conclusion.

Corollary 7.5.6. Suppose that T is a sublinear operator on
⋃

1<q<∞
⋃

w∈Aq L
q(w)

that takes values in the space of measurable complex-valued functions. Fix 1 ≤
p0 < ∞ and suppose that there is an increasing function N on [1,∞) such that for all
weights v in Ap0 we have ∥∥T∥∥Lp0 (v)→Lp0,∞(v) ≤ N([v]Ap0

) . (7.5.22)

Then for any 1< p<∞ and any weight w in Ap there is a constant K′(n, p, p0, [w]Ap)
such that ∥∥T ( f )∥∥Lp(w) ≤ K′(n, p, p0, [w]Ap)

∥∥ f∥∥Lp(w) .
Proof. The proof follows from Theorem 7.5.5 and the Marcinkiewicz interpolation
theorem. �

We end this subsection by observing that the conclusion of the extrapolation The-
orem 7.5.3 can be strengthened to yield vector-valued estimates. This strengthening
may be achieved by a simple adaptation of the proof discussed.

Corollary 7.5.7. Suppose that T is defined on
⋃

1≤q<∞
⋃

w∈Aq L
q(w) and takes val-

ues in the space of all measurable complex-valued functions. Fix 1 ≤ p0 < ∞ and
suppose that there is an increasing function N on [1,∞) such that for all weights v
in Ap0 we have ∥∥T∥∥Lp0 (v)→Lp0 (v) ≤ N

(
[v]Ap0

)
.

Then for every 1< p< ∞ and every weight w ∈ Ap we have

∥∥∥
(
∑
j
|T ( f j)|p0

) 1
p0
∥∥∥
Lp(w)

≤ K(n, p, p0, [w]Ap)
∥∥∥
(
∑
j
| f j|p0

) 1
p0
∥∥∥
Lp(w)

for all sequences of functions f j in Lp(w), where K
(
n, p, p0, [w]Ap

)
is as in Theorem

7.5.3.

Proof. To derive the claimed vector-valued inequality follow the proof of Theorem

7.5.3 replacing the function f by (∑ j | f j|p0)
1
p0 and T ( f ) by (∑ j |T ( f j)|p0)

1
p0 . �

7.5.3 Weighted Inequalities Versus Vector-Valued Inequalities

We now discuss connections between weighted inequalities and vector-valued
inequalities. The next result provides strong evidence that there is a nontrivial
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connection of this sort. The following is a general theorem saying that any vector-
valued inequality is equivalent to some weighted inequality. The proof of the the-
orem is based on a minimax lemma whose precise formulation and proof can be
found in Appendix H.

Theorem 7.5.8. (a) Let 0 < p < q,r < ∞. Let {Tj} j be a sequence of sublinear
operators that map Lq(μ) to Lr(ν), where μ and ν are arbitrary measures. Then
the vector-valued inequality

∥∥∥(∑
j
|Tj( f j)|p

)1
p
∥∥∥
Lr
≤C

∥∥∥(∑
j
| f j|p

)1
p
∥∥∥
Lq

(7.5.23)

holds for all f j ∈ Lq(μ) if and only if for every u≥ 0 in L
r

r−p (ν) there exists U ≥ 0

in L
q

q−p (μ) with

‖U‖
L

q
q−p

≤ ‖u‖
L

r
r−p

,

sup
j

∫
|Tj( f )|p udν ≤ Cp

∫
| f |pU dμ .

(7.5.24)

(b) Let 0 < q,r < p < ∞. Let {Tj} j be as before. Then the vector-valued inequality

(7.5.23) holds for all f j ∈ Lq(μ) if and only if for every u≥ 0 in L
q

p−q (μ) there exists
U ≥ 0 in L

r
p−r (ν) with

‖U‖
L

r
p−r

≤ ‖u‖
L

q
p−q

,

sup
j

∫
|Tj( f )|pU−1 dν ≤ Cp

∫
| f |p u−1 dμ .

(7.5.25)

Proof. We begin with part (a). Given f j ∈ Lq(Rn,μ), we use (7.5.24) to obtain

∥∥∥
(
∑
j
|Tj( f j)|p

) 1
p
∥∥∥
Lr(ν)

=
∥∥∥∑

j
|Tj( f j)|p

∥∥∥
1
p

L
r
p (ν)

= sup
‖u‖

L
r

r−p
≤1

(∫
Rn

∑
j
|Tj( f j)|p udν

)1
p

≤ sup
‖u‖

L
r

r−p
≤1

C
(∫

Rn
∑
j
| f j|pU dμ

)1
p

≤ sup
‖u‖

L
r

r−p
≤1

C
∥∥∥∑

j
| f j|p

∥∥∥
1
p

L
q
p (μ)

‖U‖
1
p

L
q

q−p

≤ C
∥∥∥
(
∑
j
| f j|p

) 1
p
∥∥∥
Lq(μ)

,
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which proves (7.5.23) with the same constantC as in (7.5.24). To prove the converse,
given a nonnegative u ∈ L

r
r−p (ν) with ‖u‖

L
r

r−p
= 1, we define

A=
{
a= (a0,a1) : a0 = ∑

j
| f j|p, a1 = ∑

j
|Tj( f j)|p, f j ∈ Lq(μ)

}

and
B=

{
b ∈ L

q
q−p (μ) : b≥ 0 , ‖b‖

L
q

q−p
≤ 1= ‖u‖

L
r

r−p

}
.

Notice that A and B are convex sets and B is weakly compact. (The sublinearity of
each Tj is used here.) We define the function Φ on A×B by setting

Φ(a,b) =
∫

a1udν −Cp
∫

a0bdμ = ∑
j

(∫
|Tj( f j)|pudν −Cp

∫
| f j|pbdμ

)
.

Then Φ is concave on A and weakly continuous and convex on B. Thus the minimax
lemma in Appendix H is applicable. This gives

min
b∈B

sup
a∈A

Φ(a,b) = sup
a∈A

min
b∈B

Φ(a,b) . (7.5.26)

At this point observe that for a fixed a=
(

∑ j | f j|p,∑ j |Tj( f j)|p
)
in A we have

min
b∈B

Φ(a,b) ≤
∥∥∥∑

j
|Tj( f j)|p

∥∥∥
L
r
p (ν)

‖u‖
L

r
r−p

−Cpmax
b∈B

∫
∑
j
| f j|p bdμ

≤
∥∥∥∑

j
|Tj( f j)|p

∥∥∥
L
r
p (ν)

−Cp
∥∥∥∑

j
| f j|p

∥∥∥
L
q
p (μ)

≤ 0

using the hypothesis (7.5.23). It follows that supa∈Aminb∈B Φ(a,b) ≤ 0 and hence
(7.5.26) yields minb∈B supa∈A Φ(a,b) ≤ 0. Thus there exists a U ∈ B such that
Φ(a,U)≤ 0 for every a ∈ A. This completes the proof of part (a).

The proof of part (b) is similar. Using the result of Exercise 7.5.1 and (7.5.25),
given f j ∈ Lq(Rn,μ) we have

∥∥∥(∑
j
| f j|p

) 1
p
∥∥∥
Lq(μ)

=
∥∥∥∑

j
| f j|p

∥∥∥
1
p

L
q
p (μ)

= inf
‖u‖

L
q

p−q
≤1

(∫
Rn

∑
j
| f j|p u−1 dμ

)1
p

≥ 1
C

inf
‖U‖

L
r

p−r
≤1

(∫
Rn

∑
j
|Tj( f j)|pU−1 dν

)1
p
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=
1
C

∥∥∥∑
j
|Tj( f j)|p

∥∥∥
1
p

L
r
p (ν)

=
1
C

∥∥∥
(
∑
j
|Tj( f j)|p

) 1
p
∥∥∥
Lr(ν)

.

To prove the converse direction in part (b), given a fixed u ≥ 0 in L
q

p−q (μ) with∥∥u∥∥
L

q
p−q

= 1, we define A as in part (a) and

B=
{
b ∈ L

p
p−r (ν) : b≥ 0, ‖b‖

L
p

p−r
≤ 1= ‖u‖

L
q

p−q

}
.

We also define the function Φ on A×B by setting

Φ(a,b) =
∫

a1b−1dν −Cp
∫

a0u−1 dμ

= ∑
j

(∫
|Tj( f j)|pb−1 dν −Cp

∫
| f j|pu−1 dμ

)
.

Then Φ is concave on A and weakly continuous and convex on B. Also, using Exer-
cise 7.5.1, for any a=

(
∑ j | f j|p,∑ j |Tj( f j)|p

)
in A, we have

min
b∈B

Φ(a,b)≤
∥∥∥∑

j
|Tj( f j)|p

∥∥∥
L
r
p (ν)

−Cp
∥∥∥∑

j
| f j|p

∥∥∥
L
q
p (μ)

≤ 0 .

Thus supa∈Aminb∈B Φ(a,b) ≤ 0. Using (7.5.26), yields minb∈B supa∈A Φ(a,b) ≤ 0,
and the latter implies the existence of a U in B such that Φ(a,U)≤ 0 for all a ∈ A.
This proves (7.5.25). �

Example 7.5.9. We use the previous theorem to obtain another proof of the vector-
valued Hardy–Littlewood maximal inequality in Corollary 5.6.5. We take Tj =M for

all j. For given 1< p< q<∞ and u in L
q

q−p we set s= q
q−p andU = ‖M‖−1

Ls→Ls M(u).
In view of Exercise 7.1.7 we have

‖U‖Ls ≤ ‖u‖Ls and
∫
Rn

M( f )p udx≤Cp
∫
Rn

| f |pU dx .

Using Theorem 7.5.8, we obtain
∥∥∥(∑

j
|M( f j)|p

)1
p
∥∥∥
Lq

≤Cn,p,q

∥∥∥(∑
j
| f j|p

)1
p
∥∥∥
Lq

(7.5.27)

whenever 1< p< q< ∞, an inequality obtained earlier in (5.6.25).

It turns out that no specific properties of the Hardy–Littlewood maximal function
were used in the preceding inequality, and one could obtain a general result along
these lines.
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Exercises

7.5.1. Let (X ,μ) be a measure space, 0< s< 1, and f ∈ Ls(X ,μ). Show that

∥∥ f∥∥Ls = inf
{∫

X
| f |u−1 dμ : ‖u‖

L
s

1−s
≤ 1

}

and that the infimum is attained.[
Hint: Try u= c | f |1−s for a suitable constant c.

]
7.5.2. (K. Yabuta) Let w ∈ Ap for some 1 < p < ∞ and let f be in Lp

loc(R
n,wdx).

Show that f lies in L1loc(R
n).[

Hint:Write w= w1/w
p−1
2 via Theorem 7.5.1.

]
7.5.3. Use the same idea of the proof of Theorem 7.5.1 to prove the following gen-
eral result: Let μ be a positive measure on a measure space X and let T be a bounded
sublinear operator on Lp(X ,μ) for some 1≤ p< ∞. Suppose that T ( f )≥ 0 for all f
in Lp(X ,μ). Prove that for all f0 ∈ Lp(X ,μ), there exists an f ∈ Lp(X ,μ) such that

(a) f0(x)≤ f (x) for μ-almost all x ∈ X .

(b) ‖ f‖Lp(X) ≤ 2‖ f0‖Lp(X).
(c) T ( f )(x)≤ 2‖T‖Lp→Lp f (x) for μ-almost all x ∈ X .[
Hint: Try the expression in (7.5.2) starting the sum at j = 0.

]
7.5.4. ([100]) Suppose that T is an operator defined on

⋃
1<q<∞

⋃
w∈Aq L

q(w) that
satisfies ‖T‖Lr(v)→Lr(v) ≤ N([v]Ar) for some increasing function N : [1,∞) → R+.
Without using Theorem 7.5.3 prove that for 1< q< r and all v ∈ A1, T maps Lq(v)
to Lq(v) with constant depending on q,r, n, and [v]A1 .[
Hint: Hölder’s inequality gives that

∥∥T ( f )∥∥Lq(v) ≤
(∫

Rn
|T ( f )(x)|rM( f )(x)q−r v(x)dx

)1
r
(∫

Rn
M( f )(x)qv(x)dx

)r−q
rq

.

Then use the fact that the weight M( f )
r−q
r−1 is in A1 and Exercise 7.1.2.

]
7.5.5. Let T be a sublinear operator defined on

⋃
2≤q<∞Lq. Suppose that for all

functions f and u we have
∫
Rn

|T ( f )|2udx≤
∫
Rn

| f |2M(u)dx .

Prove that T maps Lp(Rn) to itself for all 2< p< ∞.[
Hint: Use that

∥∥T ( f )∥∥Lp = sup
‖u‖

L(p/2)
′ ≤1

(∫
Rn

|T ( f )|2udx
)1

2

and Hölder’s inequality.
]
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7.5.6. (X. C. Li) Let T be a sublinear operator defined on
⋃

1<q≤2
⋃

w∈Aq L
q(w).

Suppose that T maps L2(w) to L2(w) for all weights w that satisfy w−1 ∈ A1. Prove
that T maps Lp to itself for all 1< p< 2.[
Hint:We have

∥∥T ( f )∥∥Lp ≤
(∫

Rn
|T ( f )|2M( f )−(2−p) dx

)1
2
(∫

Rn
M( f )p dx

)2−p
2p

by Hölder’s inequality. Apply the hypothesis to the first term of the product.
]

HISTORICAL NOTES

Weighted inequalities can probably be traced back to the beginning of integration, but the
Ap condition first appeared in a paper of Rosenblum [298] in a somewhat different form. The
characterization of Ap when n= 1 in terms of the boundedness of the Hardy–Littlewood maximal
operator was obtained by Muckenhoupt [260]. The estimate on the norm in (7.1.25) can also be
reversed, as shown by Buckley [38]. The simple proof of Theorem 7.1.9 is contained in Lerner’s
article [218] and yields both the Muckenhoupt theorem and Buckley’s optimal growth of the norm
of the Hardy–Littlewood maximal operator in terms of the Ap characteristic constant of the weight.
Another proof of this result is given by Christ and Fefferman [61]. Versions of Lemma 7.1.10 for
balls were first obtained by Besicovitch [27] and independently by Morse [258]. The particular
version of Lemma 7.1.10 that appears in the text is adapted from that in de Guzmán [93]. Another
version of this lemma is contained in the book of Mattila [246]. The fact that A∞ is the union
of the Ap spaces was independently obtained by Muckenhoupt [261] and Coifman and Fefferman
[66]. The latter paper also contains a proof that Ap weights satisfy the crucial reverse Hölder
condition. This condition first appeared in the work of Gehring [125] in the following context: If F
is a quasiconformal homeomorphism from Rn into itself, then |det(∇F)| satisfies a reverse Hölder
inequality. The characterization of A1 weights is due to Coifman and Rochberg [68]. The fact that
M( f )δ is in A∞ when δ < 1 was previously obtained by Córdoba and Fefferman [74]. The different
characterizations of A∞ (Theorem 7.3.3) are implicit in [260] and [66]. Another characterization of
A∞ in terms of the Gurov-Reshetnyak condition supQ

1
|Q|

∫
Q | f −AvgQ f |dx ≤ ε AvgQ f for f ≥ 0

and 0 < ε < 2 was obtained by Korenovskyy, Lerner, and Stokolos [201]. The definition of A∞
using the reverse Jensen inequality herein was obtained as an equivalent characterization of that
space by Garcı́a-Cuerva and Rubio de Francia [122] (p. 405) and independently by Hrusčev [161].
The reverse Hölder condition was extensively studied by Cruz-Uribe and Neugebauer [82].

Weighted inequalities with weights of the form |x|a for the Hilbert transform were first obtained
by Hardy and Littlewood [147] and later by Stein [332] for other singular integrals. The necessity
and sufficiency of the Ap condition for the boundedness of the Hilbert transform on weighted Lp

spaces was obtained by Hunt, Muckenhoupt, and Wheeden [167]. Historically, the first result re-
lating Ap weights and the Hilbert transform is the Helson-Szegő theorem [149], which says that
the Hilbert transform is bounded on L2(w) if and only if logw = u+Hv, where u,v ∈ L∞(R) and
‖v‖L∞ < π

2 . The Helson-Szegő condition easily implies the A2 condition, but the only known direct
proof for the converse gives ‖v‖L∞ < π; see Coifman, Jones, and Rubio de Francia [67]. A related
result in higher dimensions was obtained by Garnett and Jones [123]. Weighted Lp estimates con-
trolling Calderón–Zygmund operators by the Hardy–Littlewood maximal operator were obtained
by Coifman [65]. Coifman and Fefferman [66] extended one-dimensional weighted norm inequal-
ities to higher dimensions and also obtained good lambda inequalities for A∞ weights for more
general singular integrals and maximal singular integrals (Theorem 7.4.3). Bagby and Kurtz [19],
and later Alvarez and Pérez [4], gave a sharper version of Theorem 7.4.3, by replacing the good
lambda inequality by a rearrangement inequality. See also the related work of Lerner [217]. The
following relation ‖Md( f )‖Lp(w) ≤C(p,n, [w]A∞)‖M#( f )‖Lp(w) between the dyadic maximal func-
tion and the sharp maximal function is valid for any w ∈ A∞ under the condition M( f ) ∈ Lp0 but
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also under the weaker assumption that w({| f | > t}) < ∞ for every t > 0; see Kurtz [208]. Using
that min(M,w) is an A∞ weight with constant independent ofM and Fatou’s lemma, this condition
can be relaxed to |{| f |> t}|< ∞ for every t > 0. A rearrangement inequality relating f andM#( f )
is given in Bagby and Kurtz [18].

The factorization of Ap weights was conjectured by Muckenhoupt and proved by Jones [179].
The simple proof given in the text can be found in [67]. Extrapolation of operators (Theorem 7.5.3)
is due to Rubio de Francia [300]. An alternative proof of this theorem was given later by Garcı́a-
Cuerva [121]. The value of the constant K(n, p, p0, [w]Ap ) first appeared in Dragičević, Grafakos,
Pereyra, and Petermichl [98]. Another proof with sharp bounds (in terms of the characteristic con-
stant of the weights) was given by Duoandikoetxea [101]. The present treatment of Theorem 7.5.3,
based on crucial Lemma 7.5.4, was communicated to the author by J. M. Martell. One may also
consult the related work of Cruz-Uribe, Martell, and Pérez [80]. The simple proof of Theorem 7.5.5
was conceived by J. M. Martell and first appeared in the treatment of extrapolation of operators of
many variables; see Grafakos and Martell [135]. The idea of extrapolation can be carried to general
pairs of functions, see Cruz-Uribe, Martell, and Pérez [78]. Estimates for the distribution function
in extrapolation theory were obtained by Carro, Torres, and Soria [58]. The equivalence between
vector-valued inequalities and weighted norm inequalities of Theorem 7.5.8 is also due to Rubio de
Francia [299]. The difficult direction in this equivalence is obtained using a minimax principle (see
Fan [111]). Alternatively, one can use the factorization theory of Maurey [247], which brings an
interesting connection with Banach space theory. The book of Garcı́a-Cuerva and Rubio de Francia
[122] provides an excellent reference on this and other topics related to weighted norm inequalities.

A primordial double-weighted norm inequality is the observation of Fefferman and Stein [115]
that the maximal function maps Lp(M(w)) to Lp(w) for nonnegative measurable functions w (Exer-
cise 7.1.7). Sawyer [312] obtained that the condition supQ

(∫
Q v

1−p′dx
)−1∫

QM(v1−p′ χQ)
pwdx< ∞

provides a characterization of all pairs of weights (v,w) for which the Hardy–Littlewood maximal
operator M maps Lp(v) to Lp(w). Simpler proofs of this result were obtained by Cruz-Uribe [77]
and Verbitsky [367]. The fact that Sawyer’s condition reduces to the usual Ap condition when v=w
was shown by Hunt, Kurtz, and Neugebauer [166]. The two-weight problem for singular integrals
is more delicate, since they are not necessarily bounded from Lp(M(w)) to Lp(w). Known results
in this direction are that singular integrals map Lp(M[p]+1(w)) to Lp(w), whereMr denotes the rth
iterate of the maximal operator. See Wilson [377] (for 1< p< 2) and Pérez [277] for the remaining
p’s. A necessary condition for the boundedness of the Hilbert transform from Lp(v) to Lp(w) was
obtained by Muckenhoupt and Wheeden [262].

For an approach to two-weighted inequalities using Bellman functions, we refer to the article of
Nazarov, Treil, and Volberg [266]. The notion of Bellman functions originated in control theory;
the article [267] of the previous authors analyzes the connections between optimal control and
harmonic analysis. Bellman functions have been used to derive estimates for the norms of classical
operators on weighted Lebesgue spaces; for instance, Petermichl [279] showed that for w ∈ A2(R),
the norm of the Hilbert transform from L2(R,w) to L2(R,w) is bounded by a constant times the
characteristic constant [w]A2 .

The theory of Ap weights in this chapter carries through to the situation in which Lebesgue
measure is replaced by a general doubling measure. This theory also has a substantial analogue
when the underlying measure is nondoubling but satisfies μ(∂Q) = 0 for all cubes Q in Rn with
sides parallel to the axes; see Orobitg and Pérez [272]. A thorough account of weighted Littlewood–
Paley theory and exponential-square function integrability is contained in the book ofWilson [378].

The conjecture whether ‖T‖L1(M(w))→L1,∞(w) < ∞ holds for a weight w was disproved by
Reguera [287] when T is a Haar multiplier and then by Reguera and Thiele [288] for the Hilbert
transform. However, the slightly weaker version of this inequality, in which M(w) is replaced by
the Orlicz maximal operator ML(logL)ε (w), holds for any ε > 0 and any Calderón-Zygmund oper-
ator T , as shown by Pérez [277]. For A1 weights w the aforementioned conjecture would imply
‖T‖L1(w)→L1,∞(w) ≤C [w]A1 . However, Nazarov, Reznikov, Vasyunin, and Volberg [265] disproved
the weaker inequality ‖T‖L1(w)→L1,∞(w) ≤ C [w]A1

(
log(e+ [w]A1)

)α for α < 1
5 . Lerner, Ombrosi,

and Pérez [223] had previously shown that the preceding inequality holds with α = 1 for any
Calderón-Zygmund operator T .
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Concerning the sharp weighted bound ‖T‖L2(w)→L2(w) ≤ cT [w]A2 for a Calderón-Zygmund op-
erator T we have the work of Petermichl and Volberg [281] which answered a question by Astala,
Iwaniecz and Saksman [14] on the regularity of solutions to the Beltrami equation. The proofs of
this inequality for the Hilbert and Riesz transforms via the Bellman function technique were ob-
tained soon afterwards by Petermichl [279], [280]. The use of Bellman functions was first avoided
in the work of Lacey, Petermichl, and Reguera [210], whose proof recovered the already known
cases and used Haar shift operators, the two-weight theory for them of Nazarov, Treil and Volberg
[268], and corona decompositions. The simplest proof for these classical operators was obtained
by Cruz-Uribe, Martell, and Pérez [79], [81] using a very powerful inequality due to Lerner [219].
The complete proof for a general Calderón-Zygmund operator was given by Hytönen [168]. A sim-
plified proof was provided by Lerner [220], [221]. For other improvements and estimates involving
Ap and A∞ constants see the work of Lerner [222], Hytönen and Pérez [170], and Lacey, Hytönen,
and Pérez [169].
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