Chapter 6
Littlewood—Paley Theory and Multipliers

In this chapter we are concerned with orthogonality properties of the Fourier trans-
form. This orthogonality is easily understood on L?, but at this point it is not clear
how it manifests itself on other spaces. Square functions introduce a way to express
and quantify orthogonality of the Fourier transform on L? and other function spaces.
The introduction of square functions in this setting was pioneered by Littlewood and
Paley, and the theory that subsequently developed is named after them. The extent
to which Littlewood—Paley theory characterizes function spaces is remarkable.

Historically, Littlewood—Paley theory first appeared in the context of one-dimen-
sional Fourier series and depended on complex function theory. With the develop-
ment of real-variable methods, the whole theory became independent of complex
methods and was extended to R”. This is the approach that we follow in this chapter.
It turns out that the Littlewood—Paley theory is intimately related to the Calderén—
Zygmund theory introduced in the previous chapter. This connection is deep and
far-reaching, and its central feature is that one is able to derive the main results of
one theory from the other.

The thrust and power of the Littlewood—Paley theory become apparent in some of
the applications we discuss in this chapter. Such applications include the derivation
of certain multiplier theorems, that is, theorems that yield sufficient conditions for
bounded functions to be L” multipliers. As a consequence of Littlewood-Paley the-
ory we also prove that the lacunary partial Fourier integrals f‘ g|<av f (é)ezm‘x-'ﬁ dé
converge almost everywhere to an L? function f on R".

6.1 Littlewood-Paley Theory

We begin by examining more closely what we mean by orthogonality of the Fourier
transform. If the functions f; defined on R" have Fourier transforms f; supported in
disjoint sets, then they are orthogonal in the sense that
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Unfortunately, when 2 is replaced by some p # 2 in (6.1.1), the previous quanti-
ties may not even be comparable, as we show in Examples 6.1.8 and 6.1.9. The
Littlewood—Paley theorem provides a substitute inequality to (6.1.1) expressing the
fact that certain orthogonality considerations are also valid in L” (R").

6.1.1 The Littlewood—Paley Theorem

The orthogonality we are searching for is best seen in the context of one-dimensional

Fourier series (which was the setting in which Littlewood and Paley formulated

their result). The primary observation is that the exponential ¢>*2'* oscillates half

iyk+1 . . .
as much as e2™2"* and is therefore nearly constant in each period of the latter.

This observation was instrumental in the proof of Theorem 3.6.4, which implied in
particular that for all 1 < p < oo we have

N P 1
H Z akezm2 X
k=1

N N
L2[0,1] ~ (Z || ) . (6.1.2)

k=1

In other words, we can calculate the LP norm of ¥, ae?™2* in almost a pre-
cise fashion to obtain (modulo multiplicative constants) the same answer as in the
L? case. Similar calculations are valid for more general blocks of exponentials in
the dyadic range {2% +1,...,2¥*1 — 1}, since the exponentials in each such block
behave independently from those in each previous block. In particular, the L? inte-
grability of a function on T' is not affected by the randomization of the sign of its
Fourier coefficients in the previous dyadic blocks. This is the intuition behind the
Littlewood—Paley theorem.

Motivated by this discussion, we introduce the Littlewood—Paley operators in the
continuous setting.

Definition 6.1.1. Let ¥ be an integrable function on R" and j € Z. We define the
Littlewood—Paley operator A; associated with ¥ by

Aj(f) = f ¥,

where ¥,_; (x) = 2/"¥(2/x) for all x in R". Thus we have ¥_; (&) = ¥(27/&) for
all £ in R". We note that whenever ¥ is a Schwartz function and f is a tempered
distribution, the quantity A;(f) is a well defined function.

These operators depend on the choice of the function ¥; in most applications
we choose ¥ to be a smooth function with compactly supported Fourier transform.
Observe that if ¥ is supported in some annulus 0 < ¢; < |&| < ¢z < o, then the
Fourier transform of A; is supported in the annulus c12/ < |€| < ¢22/; in other
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words, it is localized near the frequency |&| ~ 2/. Thus the purpose of A j is to
isolate the part of frequency of a function concentrated near |&| ~ 2/.
The square function associated with the Littlewood—Paley operators A; is

defined by
1
2
fo (X 1a00P)
jez
This quadratic expression captures the intrinsic orthogonality of the function f.

Theorem 6.1.2. (Littlewood—Paley theorem) Suppose that ¥ is an integrable €'
function on R" with mean value zero that satisfies

W ()| + [V ()| <B(1+ )" (6.1.3)

Then there exists a constant C,, < oo such that for all 1 < p < e and all f in LP (R")
we have

H(;Zm,»(fnzf

< CuBmax (p, (p— 1)) /1] 1o - (6.1.4)

(R")

There also exists a Cl, < oo such that for all f in L'(R") we have

|(Z1a0R)’

i€z

L'=(R") < CIQBHfHLl (R?)" (6.1.5)

Conversely, let W be a Schwartz function such that either li’(O) =0and

Y PP =1, for all & € R"\ {0}, (6.1.6)
JEZ

or ¥ is compactly supported away from the origin and

Y P27 =1, for all £ € R"\ {0}. (6.1.7)
jez

1
Then there is a constant Cy,p, such that for any f € 7" (R") with (¥ ez |4;(f)]*)?

in LP(R") for some 1 < p < oo, there exists a unique polynomial Q such that the
tempered distribution f — Q coincides with an LP function, and we have

Ilr =2

LP(R") < Cn xmeax H ( Z |A ) (618)

]EZ Ly (Rn)

Consequently, if g lies in LP (R") for some 1 < p < o, then

HgHLP R") NH(Z\A )

JjEZ

LP(RY)
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Proof. We first prove (6.1.4) when p = 2. Using Plancherel’s theorem, we see that
(6.1.4) is a consequence of the inequality

YIP@7EP<cB (6.1.9)
J
for some C,, < o. Because of (6.1.3), Fourier inversion holds for ¥. Furthermore, ¥
has mean value zero and we may write

V)= [ e wwar= [ (- P@ar, (6.110)

n

from which we obtain the estimate

(&) < VAmE] [ I+l 1P ()] dx < CBIEI 6.L11)

For & = (&1,...,&,) #0, let j be such that |[§;| > |&| forall k € {1,...,n}. Integrate
by parts with respect to d; in (6.1.10) to obtain

P(E)=— [ (-2mig) e 0 (1) d
Rﬂ
from which we deduce the estimate
PE) < Valel ! [ IVeldx < CBIEN . (6.112)

We now break the sum in (6.1.9) into the parts where 27/|&| < 1 and 27/ |€| > 1
and use (6.1.11) and (6.1.12), respectively, to obtain (6.1.9). (See also Exercise 6.1.2.)
This proves (6.1.4) when p = 2.

‘We now turn our attention to the case p # 2 in (6.1.4). We view (6.1.4) and (6.1.5)
as vector-valued inequalities in the spirit of Section 5.5. Define an operator 7 acting
on functions on R” as follows:

T(f)(x) = {A;(H %)}

The inequalities (6.1.4) and (6.1.5) we wish to prove say simply that T is a bounded
operator from L”(R",C) to LP(R",¢?) and from L' (R",C) to L' (R", £?). We just
proved that this statement is true when p = 2, and therefore the first hypothesis of
Theorem 5.6.1 is satisfied. We observe that the operator T can be written in the form

w={ [ wi-nrs ()dy} = [ Ra=3)(0)dy

where for each x € R”, K (x) is a bounded linear operator from C to ¢? given by

=

K(x)(a) = {¥-j(x)a},. (6.1.13)
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. 1
We clearly have that [|K(x)|c_,2 = (¥, [¥-i(x)]*)?, and to be able to apply
Theorem 5.6.1 we need to know that for some constant C,, we have

|K@)|| e < CaBlx| ™", (6.1.14)
. - 1
lim K(y)dy= {/ %j(y)dy} : (6.1.15)
el0 Je<|y|<1 0 P
SUP/ R(x=y) =K ()| dx < CuB. (6.1.16)
y£0 ‘X|22‘y| H ( ) ( )HC—>[2 n

Of these, (6.1.14) is easily obtained using (6.1.3), (6.1.15) i.e. trivial, and so we focus
on (6.1.16). Since ¥ is a ¢’ function, for |x| > 2|y| we have

Wi (x—y) = ¥ (%)

<2+ DI v (2] (x — 8y))| |y for some 6 € [0, 1],
(6.1.17)

< B2HDI (14275~ gy]) "y

< B2 (1427 [xf) "2y since |x— 6] > 7]

We also have that
|‘P2,j(x—y)—‘1’2ﬁ'(x)|
<2MW(2/ (x—y)) |+ 27" (2/x)]

(6.1.18)

< B2 (1+27)x]) ") 4 Bain (1427 ) Y

<2B2 (1427 1))~

Taking the geometric mean of (6.1.17) and (6.1.18), we obtain for any y € [0, 1]
%5 (x—y) — ¥ ()] < 2177 B2Y (I y))7 (1427 )~ HY (6.1.19)

Using this estimate, when |x| > 2|y|, we obtain

) 12
IRG—) Rl = (2 |%,-<x—y>—lf'2,~<x>\2)

JEL
< Y [ r—y) — )|
JEL
<28(b] I 204yt Y 2 )
Ve Yz

—n— T
<GByl ™+ 22,

where we used (6.1.19) with ¥y =1 in the first sum and (6.1.19) with y =1/2 in
the second sum. Using this bound, we easily deduce (6.1.16) by integrating over the
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region |x| > 2|y|. Finally, using Theorem 5.6.1 we conclude the proofs of (6.1.4) and
(6.1.5), which establishes one direction of the theorem.
We now turn to the converse direction. Let A7 be the adjoint operator of A;

given by A/j’—*? = f'}/’z—?] Let f be in .#/(R"). Then the series ¥.jczA7A;(f) con-
verges in ./ (R"). To see this, it suffices to show that the sequence of partial sums
UN = Y|j|<N A;Aj(f) converges in .¥”’. This means that if we test this sequence
against a Schwartz function g, then it is a Cauchy sequence and hence it converges as
N — oo. But an easy argument using duality and the Cauchy—Schwarz and Holder’s
inequalities shows that for M > N we have
1
pl(, X Jaer)

N<|j \<M
and this can be made small by picking M > N > Ny(g). Since the sequence (uy, g) is
Cauchy, it converges to some A (g). Now it remains to show that the map g — A(g)
is a tempered distribution. Obviously A(g) is a linear functional. Also,

[(Zm? UH@WY ,
(ZIA el

and since || g|| L is controlled by a finite number of Schwartz seminorms of g, it
follows that A is in .. The distribution A is the limit of the series Y ; j A Aj.

Under hypothesis (6.1.6), the Fourier transform of the tempered dlstrlbutlon f—
YjczAjAj ;(f) is supported at the origin. This implies that there exists a polynomial
Q such that f—=0=YczA;A;(f). Now let g be a Schwartz function. We have

[(f=0.8)| = (X 474,(f).3)]

JEZ
=X (474,(f).2)|
iz
= | Z <Aj(f)7m>’

jez

/ ) Aj(g)dx

]EZ

S/Rng;fx ) (5 a0

JEZL
< H(Qﬁ‘f(fﬂzf U,H(ngm.,-(g)z)é

IRl

)94

[(un,8) — (um, 8)| < H (Z'Af(f %
J

[A(g)]

IN

\ /\

Lr

L’



6.1 Littlewood—Paley Theory 425
!
2
<||(L P
jez

having used the definition of the adjoint (Section 2.5.2), the Cauchy—Schwarz in-
equality, Holder’s inequality, and (6.1.4). Taking the supremum over all g in L
with norm at most one, we obtain that the tempered distribution f — Q is a bounded
linear functional on L”'. By the Riesz representation theorem, f — Q coincides with
an L? function whose norm satisfies the estimate

LanBmax(p ' =D"sll (6120

||f QHU<CBmax p,(p H(Z\A )

JEZ Lr

We now show uniqueness. If Q; is another polynomial, with f — Q; € LP, then
Q — O must be an L? function; but the only polynomial that lies in L? is the zero
polynomial. This completes the proof of the converse of the theorem under hypoth-
esis (6.1.6).

To obtain the same conclusion under the hypothesis (6.1.7) we argue in a similar
way but we leave the details as an exercise. (One may adapt the argument in the
proof of Corollary 6.1.7 to this setting.) O

Remark 6.1.3. We make some observations. If ¥ is real-valued, then the operators
A; are self-adjoint. Indeed,

anza= | B gae= [ % gas= [ ragax

R”

Moreover, if ¥ is a radial function, we see that the operators A; are self-transpose,
that is, they satisfy

[ ai(Ngds= [ rai(g)as

Assume now that ¥ is both radial and has a real-valued Fourier transform. Suppose
also that ¥ satisfies (6.1.3) and that it has mean value zero. Then the inequality

‘ZA (f) H < C,Bmax (p H(Z|f] )
JEZL
is true for sequences of functions { f;} ;. To see this we use duality. Let

T(f)={A;(N};-

(6.1.21)

Then
{g]}] ZA g]

Inequality (6.1.4) says that the operator ' maps L? (R”,C) to L”(R”", £?), and its dual
statement is that 7* maps L” (R, ¢2) to L” (R",C). This is exactly the statement in
(6.1.21) if p is replaced by p’. Since p is any number in (1,00), (6.1.21) is proved.
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6.1.2 Vector-Valued Analogues

We now obtain a vector-valued extension of Theorem 6.1.2. We have the following.

Proposition 6.1.4. Let W be an integrable € function on R" with mean value zero
that satisfies (6.1.3) and let A; be the Littlewood—Paley operator associated with 'P.
Then there exists a constant C, < oo such that for all 1 < p,r < o and all sequences
of L? functions f; we have

(5, (g o)’y

JEZ kel

< -~
LP(RY) — C”Bcp’r

(;Zml’)i

LP(RY)’

where 5,7,, =max(p, (p— 1)~V max(r,(r — 1)~1). Moreover, for some C!, > 0 and
all sequences of L' functions f ' we have

I(Z (% 1anr)?)

< C,Bmax(r,(r—1)" H(Zlf] ,)r

jEZ keZ Ll’m(Rn) jez L] R") :
In particular,
H(Z |A;(f/)] ) ) < G,BC,, (Z Wil ) (6.1.22)
JEZL JEZ

Proof. We introduce Banach spaces % = C and %, = (2 and for f € L”(R") define

an operator .
T(f) = {Ac(f) }kez -

In the proof of Theorem 6.1.2 we showed that T has a kernel K that satisfies con-
dition (6.1.16). Furthermore, 7 obviously maps L"(R",C) to L"(R",¢"). Applying
Proposition 5.6.4, we obtain the first two statements of the proposition. Restricting
to k = j yields (6.1.22). 0

6.1.3 L? Estimates for Square Functions Associated with Dyadic
Sums

Let us pick a Schwartz function ¥ whose Fourier transform is compactly supported
in the annulus 27! < |&| < 22 such that (6.1.6) is satisfied. (Clearly (6.1.6) has no
chance of being satisfied if P is supported only in the annulus 1 < || < 2.) The
Littlewood—Paley operation f + A( f) represents the smoothly truncated frequency
localization of a function f near the dyadic annulus |£| ~ 2/. Theorem 6.1.2 says that
the square function formed by these localizations has L” norm comparable to that of
the original function. In other words, this square function characterizes the L” norm
of a function. This is the main feature of Littlewood—Paley theory.
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One may ask whether Theorem 6.1.2 still holds if the Littlewood—Paley operators
A; are replaced by their nonsmooth versions

[ (XQJ§\§\<2J'+1J/C\(€))V(X)- (6.1.23)

This question has a surprising answer that already signals that there may be some
fundamental differences between one-dimensional and higher-dimensional Fourier
analysis. The square function formed by the operators in (6.1.23) can be used to
characterize L”(R) in the same way A; did, but not L”(R") when n > 1 and p # 2.
The problem lies in the fact that the characteristic function of the unit disk is not
an L? multiplier on R” when n > 2 unless p = 2; see Section 5.1 in [131]. The
one-dimensional result we alluded to eatrlier is the following.
For j € Z we introduce the one-dimensional operator

AR ) = (Far)Y (%), (6.1.24)
where o . .
=022 u(=2*, 2],
and A;f is a version of the operator A; in which the characteristic function of the set
2J < |E| < 27! replaces the function ¥(27E).

Theorem 6.1.5. There exists a constant Cy such that for all 1 < p < e and all f in
L?(R) we have

o, .
a6 < (g aor)

Proof. Pick a Schwartz function y on the line whose Fourier transform is supported
in the set 27! < |&| < 22 and is equal to 1 on the set 1 < |&| < 2. Let A; be the
Littlewood—Paley operator associated with . Observe that A;A% = A¥A; = A¥,
since ¥ is equal to one on the support of Af( /). We now use Exercise 5.6.1(a) to
obtain

(6.1.25)

12
iy SC0+ P

U’(R") N

I(5 st0)'],

L ,.Mf»zf

< Cmax(p H(): 1A (f )

JjeZ
< CBmax(p,(p—1)"1)? ||f||Ll”

Lr

where the last inequality follows from Theorem 6.1.2. The reverse inequality for
1 < p < oo follows just like the reverse inequality (6.1.8) of Theorem 6.1.2 by simply
replacing the A;’s by the Af’s and setting the polynomial Q equal to zero. (There is
no need to use the Riesz representation theorem here, just the fact that the L” norm
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of f can be realized as the supremum of expressions |{f,g)| where g has L” norm
at most 1.) [l

There is a higher-dimensional version of Theorem 6.1.5 with dyadic rectan-
gles replacing the dyadic intervals. As has already been pointed out, the higher-
dimensional version with dyadic annuli replacing the dyadic intervals is false.

Let us introduce some notation. For j € Z, we denote by I; the dyadic set
[27,2771) (=271, —2/] as in the statement of Theorem 6.1.5. For ji,...,j, € Z
define a dyadic rectangle

Rjyju = 1jy X X,

in R". Actually Rj, . ;, is not a rectangle but a union of 2" rectangles; with some
abuse of language we still call it a rectangle. For notational convenience we write

Ri=Rj i where j = (ji,...,jn) €Z".

Observe that for different j,j' € Z" the rectangles R;j and Ry have disjoint interiors
and that the union of all the R;’s is equal to R"\ {0}. In other words, the family of
Ry’s, where j € Z", forms a tiling of R", which we call the dyadic decomposition of
R”. We now introduce operators

AP () ) = (Faw) " (), (6.1.26)
and we have the following n-dimensional extension of Theorem 6.1.5.

Theorem 6.1.6. For a Schwartz function y on the line with integral zero we define
the operator

A(HE) = (P& R TE)F(E)) (), (6.1.27)
where j = (j1,...,jn) € Z". Then there is a dimensional constant C,, such that
—1\n
G RER oy SG 00 gy 6128)

jezr

Let Aj# be the operators defined in (6.1.26). Then there exists a positive constant C,
such that for all 1 < p < oo and all f € LP(R") we have

e %
T [ (ZA0r)

Gl GZ,, Lr(R?)

<Calp+ 55 I |y ey (61:29)

Proof. We first prove (6.1.28). Note that if j = (ji,...,j,) € Z", then the operator
4;j is equal to

Ai(f) = A0 AD (),
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where the Aj(r”) are one-dimensional operators given on the Fourier transform

by multiplication by y(27/7€,), with the remaining variables fixed. Inequality in
(6.1.28) is a consequence of the one-dimensional case. For instance, we discuss the
case n = 2. Using Proposition 6.1.4, we obtain

I(x )|

Lr(R?)
- /R {/R (_ilze:ijze:Z|A’(11)A;22)(f)(x1’x2)|2)gdxl}dxz
< CPmax(p,(p—1)"" /{/(szh )(x1,x2)| )gdxl]dxz
RAS
—crmasipp=0 7 [ [ (E 142 (0 w0)F) d] s
nE

< C*’max(p,(p—1)"" /[/ |fx1,x2)”dx2]dx1
=¥ max(p,(p— 1)) fII}

Lp(RZ) 9

where we also used Theorem 6.1.2 in the calculation. Higher-dimensional versions
of this estimate may easily be obtained by induction.

We now turn to the upper inequality in (6.1.29). We pick a Schwartz function y
whose Fourier transform is supported in the union [—4, —1/2](J[1/2,4] and is equal
to 1 on [—2,—1]U[L,2]. Then we clearly have

#_ A#g

since W(27/1&;)--- y(27/&,) is equal to 1 on the rectangle R;. We now use Exercise
5.6.1(b) and estimate (6.1.28) to obtain

I( mory], =g uraoe) ],

(£ 1anR)?

jezr
< CBmax(p,(p—1)"")"||f|,.» -

< Cmax(p,(p—

Ly

The lower inequality in (6.1.29) for 1 < p < oo is proved like inequality (6.1.8) in
Theorem 6.1.2. The fundamental ingredient in the proof is that f = }jcz» AJ# Aj# ()
for all Schwartz functions f, where the sum is interpreted as the L2-limit of the se-
quence of partial sums. Thus the series converges in ./, and pairing with a Schwartz
function g, we obtain the lower inequality in (6.1.29) for Schwartz functions, by
applying the steps that prove (6.1.20) (with Q = 0). To prove the lower inequality
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in (6.1.29) for a general function f € LP(R") we approximate an L” function by a
sequence of Schwartz functions in the L” norm. Then both sides of the lower in-
equality in (6.1.29) for the approximating sequence converge to the corresponding
sides of the lower inequality in (6.1.29) for f; the convergence of the sequence of
L? norms of the square functions requires the upper inequality in (6.1.29) that was
previously established. This concludes the proof of the theorem. (|

Next we observe that if the Schwartz function W is suitably chosen, then the
reverse inequality in estimate (6.1.28) also holds. More precisely, suppose W(&) is
an even smooth real-valued function supported in the set 1% <|é| < % in R that
satisfies

Y yeie)=1, EecR\{0} (6.1.30)

JEZ
then we have the following.
Corollary 6.1.7. Suppose that  satisfies (6.1.30) and let A; be as in (6.1.27). Let f

1
be an LP function on R" such that the function (Ljczn |Aj(f)|?)? is in LP(R"). Then
there is a constant C, that depends only on the dimension and  such that the lower

estimate || || ]
L <|(
Iy < Ai(f )

Cn(P"‘ﬁ)n jezzﬂl .]( )|

(6.1.31)
Lr

holds.

Proof. 1f we had ¥ ey |W(277E)|? = 1 instead of (6.1.30), then we could apply the
method used in the lower estimate of Theorem 6.1.2 to obtain the required conclu-
sion. In this case we provide another argument that is very similar in spirit.

We first prove (6.1.31) for Schwartz functions f. Then the series ¥ jczn Aj(f)
converges in L? (and hence in .#”’) to f. Now let g be another Schwartz function. We
express the inner product < f ,§> as the action of the distribution Y jcz» Aj(f) on the
test function g:

(e = [ T ai().2)]

= X <Aj(f),§>‘

jezn

JEL" k=(ky,....kn)EZL"
Ir [ke—jr|<1}

LY X (a0]lade]d
R GEZ k= (ky k)2
3r Jkr—jrl <1}

IA

1 1

< [ (jezznmj(fw)z (X () ax
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' (Z!Aj<f>|) (XL laxs |)

jezn keZ"

174

(Z!A \)

where we used the fact that A;(f) and Ak(g) are orthogonal operators unless every
coordinate of k is within 1 unit of the corresponding coordinate of j; this is an easy
consequence of the support properties of {. We now take the supremum over all g
in P with norm at most 1, to obtain (6.1.31) for Schwartz functions f.

To extend this estimate to general L? functions f, we use the density argument
described in the last paragraph in the proof of Theorem 6.1.6. U

SerlmaX(p (p _1 HgHLP Ll’,

6.1.4 Lack of Orthogonality on L

We discuss two examples indicating why (6.1.1) cannot hold if the exponent 2 is
replaced by some other exponent g # 2. More precisely, we show that if the functions
f;j have Fourier transforms supported in disjoint sets, then the inequality

Hsz ip <G Y |fillz (6.1.32)
J J
cannot hold if p > 2, and similarly, the inequality
Y illz SCpHij Zp (6.1.33)
J j

cannot hold if p < 2. In both (6.1.32) and (6.1.33) the constants C,, are supposed to
be independent of the functions f;.

Example 6.1.8. Pick a Schwartz function { whose Fourier transform is positive and
supported in the interval |£| < 1/4. Let N be a large integer and let

fi(x) = 7 (x).

Then R R
fi(&)=¢&(E—J)

and the fj’s have disjoint Fourier transforms. We obviously have

ZHf/HLp N+ D817
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On the other hand, we have the estimate
2711(N+1)x
| z i, = || Zme Il ax

(NP P o i
e[ SRS

=Ce(N+1),

since { does not vanish in a neighborhood of zero. We conclude that (6.1.32) cannot
hold for this choice of f;’s for p > 2.

Example 6.1.9. We now indicate why (6.1.33) cannot hold for p < 2. We pick a

smooth function ¥ on the line whose Fourier transform ¥ is supported in [%, %] ,
is nonnegative, is equal to 1 on [2, 3], and satisfies

Y vy =1, E>0.

JEZ

Extend ¥ to be an even function on the whole line and let A ; be the Littlewood—

Paley operator associated with ¥. Also pick a nonzero Schwartz function ¢ on the

real line whose Fourier transform is nonnegative and supported in the set [%, %]

Fix N a large positive integer and let
£(x) = 2ME g (x), (6.1.34)

for j =1,2,...,N. Then the function fj(é‘) =& - %21 ) is supported in the set

[181 1221 13 + 1221] which is contained in [%2/', %Zj] for j > 3. In other words,

A(Z Y é) is equal to 1 on the support of fj This implies that
Ai(fi)=f;  for  j=3.
This observation combined with (6.1.21) gives for N > 3,
N N N\
|25l =l Lo, <al (Zwe) ],

where 1 < p < oo. On the other hand, (6.1.34) trivially yields that

NTAY: 1
(Zg”fjHU’) :H(PHL,;(N—Z)P.
j=

Letting N — oo we see that (6.1.33) cannot hold for p < 2 even when the f;’s have
Fourier transforms supported in disjoint sets.

L(N=2)

:CPH(p‘
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Example 6.1.10. A similar idea illustrates the necessity of the £ norm in (6.1.4). To
see this, let ¥ and A; be as in Example 6.1.9. Let us fix 1 < p < e and g < 2. We
show that the inequality

(6.1.35)

|(Z a0

jez

L, <Coallf]

Lr

cannot hold. Take f = 27:3 fj» where the f; are as in (6.1.34) and N > 3. Then

the left-hand side of (6.1.35) is bounded from below by ||¢||z» (N —2)!/4, while the
right-hand side is bounded above by ||@||z» (N —2)!/2. Letting N — oo, we deduce
that (6.1.35) is impossible when g < 2.

Example 6.1.11. For 1 < p < e and 2 < g < oo, the inequality

(6.1.36)

Ielr < il (J;ZAW);

Lr

cannot hold even under assumption (6.1.6) on ¥'. Let A; be as in Example 6.1.9.
Let us suppose that (6.1.36) did hold for some g > 2 for these A;’s. Then the self-
adjointness of the A;’s and duality would give

|(Z o)

kel

L

= sup
(| 1A delea ]| <1

/R T Ao

< ||gHLP’ sup ‘ Zm
| HAedillea || <1 k€2

SCHgHU,/ sup H(Z
iteliea]| p<t €2

Lp

Aj( Y Ak(hk)> 'qf

keZ

b 1.
\Lp y (6.1.36)

! 1
<C|gll,» sup { Y H(Z|AjAj+l(hj)|q>q Lp}
bl || <1 S1=m1 ez
1
SC//HgHU,/ sup H(ZU,,],‘q)q . :C,/HgHLp”
1mdelea| <t €2

where the next-to-last inequality follows from (6.1.22) applied twice, while the one
before that follows from support considerations. But since ¢’ < 2, this exactly proves
(6.1.35), previously shown to be false, a contradiction.

We conclude that if both assertions (6.1.4) and (6.1.8) of Theorem 6.1.2 were to
hold, then the > norm inside the L” norm could not be replaced by an ¢ norm for
some g # 2. Exercise 6.1.6 indicates the crucial use of the fact that > is a Hilbert
space in the converse inequality (6.1.8) of Theorem 6.1.2.
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Exercises

6.1.1. Construct a Schwartz function ¥’ that satisfies ¥ jcz, (2 &)|? =1 for all
& € R"\ {0} and whose Fourier transform is supported in the annulus % <l|é| <2
and is equal to 1 on the annulus 1 < |€| < 174.

[Hint: Set P(&) = n(&) (Laez |n(27E)[2) " for a suitable ) € 6 (R") ]

6.1.2. Suppose that ¥ is an integrable function on R” that satisfies |¥(&)| <

B min(|&|,|E|€) for some &', > 0. Show that for some constant Ce g < oo we
have

Sup (/Ow|@(t§)|2dtt>é+ sup (Z |@(2—J§)‘2)% §C£7g/B.

EeRn EeR" * jeZ

6.1.3. Let ¥ be an integrable function on R” with mean value zero that satisfies
I SBA+) " [ —y) — )l dr < Bl

for some B, €’,& > 0 and for all y # 0.

(a) Prove that [¥(§)| < ¢, ¢ ¢ Bmin(|§ min(5.1) || €|~€) for some constant Cnee and
conclude that (6.1.4) holds for p = 2.

(b) Deduce the validity of (6.1.4) and (6.1.5).

(c) If € < 1 and the assumption |¥(x)| < B(1+ |x])~" "¢ is weakened to |¥(x)| <
B|x| "¢ for all x € R", then show that | (&)| < Cn.e.er Bmin(|§ |3,|€|7%) and thus
(6.1.4) and (6.1.5) are valid.

[Hint: Part (a): Make use of the identity

‘f’(‘g’) = /ne_zmx'élf’(x)dx: —/ e FEW (x — y)dx,

n

where y = %@ when || > 1. For |£| < 1 use the mean value property of ¥’ to write

PE) = Sy P ) (e727& _ 1) dx and split the integral in the regions |x| < 1 and
|x| > 1. Part (b): If K is defined by (6.1.13), then control the /2(Z) norm by the ¢! (Z)
norm to prove (6.1.16). Then split the sum ¥jcz, [j>a), |Fo-i (¥ =) — ¥o-j ()| dx
into the parts ZZ/S\)’I’I and 22j>|y‘71. Part (c): Notice that when € < 1, we have

[ figr P () (€274 —1)dx| < G, BIE|5. ]

6.1.4. Let ¥ be an integrable function on R"” with mean value zero that satisfies

WO SBU+) [ ey =)y < B
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for some B,€’,& > 0 and for all y # 0. Let ¥ (x) =t "¥(x/t). (a) Prove that there
are constants ¢y, c; such that

1
bl dt 2
(/ |%<x>|2,dx) < cuBIx| ",
0

1
: o dt\ 2
w | (/ I‘E(x—y)—‘E(X)zt) dx<c,B.
yeRn\ {0} 7 [x[22y] \ /O !

(b) Show that there exist constants C,,C,, such that for all 1 < p < oo and for all
f € LP(R") we have

I ety

and also for all f € L'(R") we have

I ey

(c) Under the additional hypothesis that 0 < f;° P (€)[2 & — ¢y forall £ € R"\ {0},
prove that for all f € L”(R") we have

o CuBmax(p, (p = 1) H|f || g

< GBI\l 11y

Ll=(R")

d 1
7y <GB maxtr (o)D) ([ 1P )

LP(RY)

[Hint: Part (a): Use the Cauchy-Schwarz inequality to obtain

/\X\zz\y\ (/ow [#x—y) - ‘E(X)Izityczx

1
_e « dt
<abl 5 ( [ i [T - P ar)
x[>2ly| 0

and split the integral on the right into the regions 7 < |y| and ¢ > |y|. In the second
region use that ¥ is bounded to replace the square by the first power. Part (b): Use
Exercise 6.1.2 and part (a) of Exercise 6.1.3 and to deduce the inequality when p = 2.
Then apply Theorem 5.6.1. Part (c): Prove the inequality first for f € . (R") using
duality.]

6.1.5. Prove the following generalization of Theorem 6.1.2. Let A > 0. Suppose that
{K;} jez is a sequence of locally integrable functions on R” \ {0} that satisfies

sup st (X I, 0F) <4

x#0 jez

2
sup / K (x—y) —K; () dx < A < oo,
yeRM\ {0} \x\>2m(z ! ! )
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and for each j € Z there is a number L; such that

lim K:i(y)dy=L;.
&40 e <ly|<1 i0)dy=L;

If the K coincide with tempered distributions W; that satisfy

Y W& < B2,

€z
then the operator 1
f— (Z |Kj>'<f|2)7
7/
maps LP(R") to itself and is weak type (1, 1) norms at most multiples of A + B.

6.1.6. Suppose that .77 is a Hilbert space with inner product (-, -) . Let A > 0 and
1 < p < . Suppose that an operator T from L?>(R") — L*(R",.#) is a multiple of
an isometry, that is,

||T(8)HL2<Rn,,;f) :AHg||L2(R”)

for all g € L*(R", 7). Then the inequality [|7(f)l|z»(n ) < Cpllf Lo (rn) for all
f€.Z(R") implies

HfHLP'(R") = CP’A%HT(f) HLP’(R"JK)

forallin f € & (R").
[Hint: Use the inner product structure and polarization to obtain

AN [ f(x)g(x)dx| =
Rn

[ (rhw. 1) dx

H

and then argue as in the proof of inequality (6.1.8).]

6.1.7. Suppose that {m;}jcz is a sequence of bounded functions supported in the

intervals [2/,2/71]. Let Tj(f) = (fm ;)" be the corresponding multiplier operators.
Assume that for all sequences of functions { f;}; the vector-valued inequality

I(zmer) ], <sl(z)

is valid for some 1 < p < oo. Prove there is a C;, > 0 such that for all finite subsets S
of Z we have
‘ ijH <CpAp.
jes My

[Hint: Use that (¥ jes T(f).8) = Ljes <Aij(f)aAf(8)>~]

p
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6.1.8. Let m be a bounded function on R” that is supported in the annulus
1 < || <2 and define T;(f) = (f F(EmE2 fé)) Suppose that the square func-

tion f — (L,ez|T;()I?) 1/2 is bounded on L”(R") for some 1 < p < eo. Show that
for every finite subset S of the integers we have

|5mv

for some constant C,, , independent of S.

ey <ol e

6.1.9. Fix a nonzero Schwartz function 4 on the line whose Fourier transform is
supported in the interval [ 8, 8} For {a;} a sequence of numbers, set

ajeZn,'iZ-/xh(x) )

™

fx) =

1

J

Prove that for all 1 < p < oo there exists a constant C,, such that

I low) < Co (L laj)* lalos-

J

[Hint: Write f = Y7 Aj(a €22 ()p), where A; is given by convolution with @,-;

for some ¢ whose Fourier transform is supported in the interval [9 %] and is equal

to 1 on [, 5] Then use (6.1.21).]

6.1.10. Let ¥ be a Schwartz function whose Fourier transform is supported in the
annulus % < |€| < 2 and that satisfies (6.1.7). Define a Schwartz function @ by
setting

_ JTj«0®(277E) when & £0,
(é)_{l when & = 0.

Let Sy be the operator given by convolution with @. Let | < p <o and f € LP(R").

Show that . 1
171l = 80H Lo + | (X 1410F)
=

[Hinz: Use Theorem 6.1.2 together with the identity So+ Y7, A; =1.]

7

6.2 Two Multiplier Theorems

We now return to the spaces .#), introduced in Section 2.5. We seek sufficient con-
ditions on L* functions defined on R”" to be elements of .#),. In this section we are
concerned with two fundamental theorems that provide such sufficient conditions.
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These are the Marcinkiewicz and the Hormander—Mihlin multiplier theorems. Both
multiplier theorems are consequences of the Littlewood—Paley theory discussed in
the previous section.

Using the dyadic decomposition of R”, we can write any L™ function m as the
sum

m= Z mej a.e.,
jezn

where j = (ji,...,jn), Rj =1, x -+ x I;,, and I = [2,2KF1) [ J(—2%+1 —2K] For j
inZ" we set mj = myg;. A consequence of the ideas developed so far is the following
characterization of .#,(R") in terms of a vector-valued inequality.

Proposition 6.2.1. Let m € L*(R") and let mj = mg,. Then m lies in ./ ,(R"), that
is, for some c, we have

fel’R),

1)l < 1]

if and only if for some C, > 0 we have

I i e)'], <l (),

jezr jezn

Lp>

(6.2.1)

for all sequences of functions fj in L (R").

Proof. Suppose that m € .#,(R"). Exercise 5.6.1 gives the first inequality below

I i B, <6l (3 IR ], <l (057,

jezn jezn jezn

3

while the second inequality follows from Theorem 5.5.1. (Observe that when p = ¢
in Theorem 5.5.1, then C,, , = 1.) Conversely, suppose that (6.2.1) holds for all se-

quences of functions fj. Fix a function f and apply (6.2.1) to the sequence (foj )V,
where Rj is the dyadic rectangle indexed by j = (ji,...,j.) € Z". We obtain

(g mn) ), <6 (5, ) )

EZ"

I

Using Theorem 6.1.6, we obtain that the previous inequality is equivalent to the
inequality
IGFm) s = epllfllo

which implies that m € .#,(R"). O
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6.2.1 The Marcinkiewicz Multiplier Theorem on R

Proposition 6.2.1 suggests that the behavior of m on each dyadic rectangle R; should
play a crucial role in determining whether m is an L” multiplier. The Marcinkiewicz
multiplier theorem provides such sufficient conditions on m restricted to any dyadic
rectangle R;. Before stating this theorem, we illustrate its main idea via the follow-
ing example. Suppose that m is a bounded function that vanishes near —eo, that is
differentiable at every point, and whose derivative is integrable. Then we may write

: oo
m(&) = [ wlOydr= [ gyl )ar,

from which it follows that for a Schwartz function f we have
(Fm)* = [ (Ftye) ().

Since the operators f +— (fx[,.m))v map L”(R) to itself independently of 7, it follows
that

H(fm)\/HLp = CPHm/HLl HfHu”

thus yielding that m is in ., (R). The next multiplier theorem is an improvement
of this result and is based on the Littlewood—Paley theorem. We begin with the one-
dimensional case, which already captures the main ideas.

Theorem 6.2.2. (Marcinkiewicz multiplier theorem) Let m : R — R be a bounded

function that is €' in every dyadic set (27,271 J(—=2/+1, —27) for j € Z. Assume
that the derivative m' of m satisfies

sup{/_zj Im’ (& \déJr/

Then for all 1 < p < oo we have that m € .#,(R) and for some C > 0 we have

2]+1

|d¢§] <A<, (6.2.2)

]|y, ) < Cmax (p, (p—=1)7") (|| m] - +4). (6.2.3)

Proof. Since the function m has an integrable derivative on (2/,2/*1!), it has
bounded variation in this interval and hence it is a difference of two increasing
functions. Therefore, m has left and right limits at the points 2/ and 2/*!, and by
redefining m at these points we may assume that m is right continuous at the points
2/ and left continuous at the points —2/.

Set I; = [2/,2/* 1)y (=2/*1 ~2/] and I =, 2/t1) whenever j € Z. Given
an interval / in R, we introduce an operator A; defined by A;(f) = (fx;)¥. With
this notation A 1t (f) is “half” of the operator Af introduced in the previous section.

Given m as in the statement of the theorem, we write m(&§) = my (&) +m—_(&),
where m (&) = m(&) xg>o and m_(§) = m(&) xg <. We show that both m . and m
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are LP multipliers. Since m' is integrable over all intervals of the form [2/,&] when
2/ < E< 2/+1 the fundamental theorem of calculus gives

: g . .
m(&)=m(2))+ [ m(t)dt, for 2/ < & <271,
2J
from which it follows that for a Schwartz function f on the real line we have
R y+l
m(EF(E) () =m@NFE) 1 )+ [ FEm () ) (1)
We therefore obtain the identity
=N . ) 2Jj+1
(Fryme)’ = (fmgye) " =m@)Ap () + | Ay () (1)

which implies that

2/+]

GV < ol 0+ a2 ([ 180 (0l

using the hypothesis (6.2.2). Taking ¢>(Z) norms we obtain

1

(X 1Gam ) F) <l (X 14, ()’

JEZ JEZL

(/ |4t Afogs )|2|m'(t)|dt)2.

Exercise 5.6.2 gives

o0 1
([ Ayl (D ' )] )

< Cmax(p, (p—1)"1)A?

Az

LpP

([ Al (Il 0]t

while the hypothesis on m’ implies the inequality

(% 5P [ I jar) |, = o

)

Lp

(Eiay 02
J

I

Using Theorem 6.1.5 we obtain that

(i)

L <Cmax(p(p= 1) (From) 1
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and the latter is at most a constant multiple of max(p, (p —1)~1)3 || f || ;- Putting
things together we deduce that

H(Z|f"”"+ )H <C"max(p, (p— 1)) A+ mle=) || f]|»> (6.24)

from which we obtain the estimate

(fm)|

using the lower estimate of Theorem 6.1.5. This proves (6.2.3) for m.. A similar
argument also works for m_, and this concludes the proof by summing the corre-
sponding estimates for m. and m_. O

 <Cmax(p,(p—1)"")°(A+ |Iml|=) |||

Ly

We remark that the same proof applies under the more general assumption that
m is a function of bounded variation on every interval [2/,2/71] and [-2/*!, —27].
In this case the measure |m’(r)|dt should be replaced by the total variation |dm(r)|
of the Lebesgue—Stieltjes measure dm(t).

Example 6.2.3. Any bounded function that is constant on dyadic intervals is an L
multiplier. Also, the function

m(E) = |E[2 Tz 5]

is an L? multiplier on R for 1 < p < co.

6.2.2 The Marcinkiewicz Multiplier Theorem on R"

We now extend this theorem on R". As usual we denote the coordinates of a point
& e R" by (&1,...,&). We recall the notation I; = (—2/+1,—2/]{J[2/,2/1) and
Rj=1;, x---xI; whenever j = (ji,...,Jx) € Z".

Theorem 6.2.4. Let m be a bounded function on R" such that forall . = (a, .. ., 04)
with [ |,...,|0| < 1 the derivatives d*m are continuous up to the boundary of R;
for all j € Z"'. Assume that there is a constant A < o such that for all partitions
{s1, s U{r, .oy ={1,2,...,n} withn =k + L and all § € Rj we have

up - sup /‘ e ) (Erse o En)|dEs, - dE <A (6.2.5)
1 J‘k

§r1 ir Str[ EI/, Ljs

forallj= (ji,...,jn) €Z". Then m is in #,(R") whenever 1 < p < e and there is
a constant C, < oo such that

]l g, ey < Ca(A+ [l =) max (p, (p—1) 7)™ (6.2.6)
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Proof. We prove this theorem only in dimension n = 2, since the general case
presents no substantial differences but only some notational inconvenience. We de-
compose the given function m as

m(&) =my (&) +m_ (&) +my (&) +m__(&),

where each of the last four terms is supported in one of the four quadrants. For
instance, the function m,_(&;,&,) is supported in the quadrant & > 0 and &, < 0.
As in the one-dimensional case, we work with each of these pieces separately. By
symmetry we choose to work with m  in the following argument.

Using the fundamental theorem of calculus, we obtain the following simple iden-
tity, valid for 2/t < & < 2/1+! and 272 < &, < 2/2+1:

S & .
m(&8) = m2,22)+ [ @um)n,27)dn
& .
+ / ” (0am) (271, 12) di 6.2.7)

/ (d10am)(t1,12) dtp dty .
271 J2)2

We introduce operators Al(r), r € {1,2}, acting in the rth variable (with the other
variable remaining fixed) given by multiplication on the Fourier transform side by
the characteristic function of the interval /. Likewise, we introduce operators Afm,
r € {1,2} (also acting in the rth variable), given by multiplication on the Fourier
transform side by the characteristic function of the set (—2/+1, —2/]J[2/,2/*1). For

notational convenience, for a given Schwartz function f we write

frv = (J?X(o,w)Z)v’

and likewise we define f;_, f_ 4, and f__. R
Multiplying both sides of (6.2.7) by the function [y 2(0,00)2 and taking inverse
Fourier transforms yields

(J?Xij++)v: (2“ 212) (f++)
50 () ) :
+ [ AR AN ) @ ,27) dn
izt (6.2.8)

“, Af1<”Aé§?w>AZ<”<f++><azm><2f'wrz>drz

J2
2/1+1 2/2+ 2
/ / [1 Jl )A[<tz (f++) (81 82m) (tl,l‘z) dtydty .
271 22 ’

We apply the Cauchy—Schwarz inequality in the last three terms of (6.2.8) with re-
spect to the measures |(dym)(t1,2/2)|dty, |(dam) (271, 12)|dt2, |(910am)(t1,12)| dtrdty
and we use hypothesis (6.2.5) to deduce
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(Fame )| < o= |47 4%

443

(fis)]

=

2
a7 A4 480
+ 21 | J2 [l].,w) J

(f++)|2|(91m)(t1,2/2)|d11)
N TNCIe)
+A2</2j2 |Aj1 A[lz}m>AJ2

! 2’2” H1) A2 AHO) P2 :
( /2 /2 AMDAD AR ()| |(8132m)(t1,t2)|dtzdt1) .

Both sides of the preceding inequality are sequences indexed by j € Z>. We apply
¢%(Z?) norms and use Minkowski’s inequality to deduce the pointwise estimate

(S

o) |(92m)(2j17t2)|dt2)

1

(X |G ) <limle- (X |afCF0]?)
jez2 jez2

1
1 T ) L #2) #(1) 2 lo ?
+A2</o /0 |45 ) Aogs i Alogyny ()| [ (Grm) (11,2 gmmdndv(h))

1
LA bl A0 #(1 #02 2 2
A </0 /0 ‘A[iz?W)A[légit1]A[lc(>gltz](f++)’ ’(agm)(Z[logZ”],tz)‘dv(tl)dtz)

l
(// ‘A[,lm 1022’1] 10g272 (f++) ‘ |(910om) (11,12 ’dhdtz) ;

where v is the counting measure ¥ .z 8,; defined by v(A) =#{j € Z: 2/ € A}
for subsets A of (0,0). We now take L”(R?) norms and we estimate separately the

contribution of each of the four terms on the right side. Using Exercise 5.6.2 we
obtain

1

(T [Famme)'[P)’

jez?

+C2A2max( J(p—1)" )

< e | (L 14

jez?

Ly

1
oo oo 2 2
{ ([ 180 8 (7O (@) 255 anavie

1

oo oo 2 o 2
140 A1 e P L@@t v an )

1
ST #L) L #(2) 2 2
+ (/0 /0 | Altogy 118 10gy 1] (F)| ‘(9192m)(117l2)|dt1dt2> LP}

Ly

Lp
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#(1) 4 #(2)
But the functions (#1,1) — A[10g2 1108y 2]

vals of the form [2/1,2/1+1) x [2/2 2/2+1); hence using hypothesis (6.2.5) again we
deduce the estimate

I

(f++) are constant on products of inter-

1

¥ |Farme)'F)?

jez?

L?(R?)

(L lafror)

jez2
< C2(||m||L°° +A) max (pa (p - 1)71)6H (fX(O,oc)z)v HLP(RZ)

< Co((mlle=+4) max (p, (p = 1)) || £ e

< Cy(|Im| = +A) max (p,(p—1)~

LP(R2)

where the penultimate estimate follows from Theorem 6.1.6 and the last estimate
by the boundedness of the Hilbert transform (Theorem 5.1.7). We now appeal
to inequality (6.1.29) which yields the required estimate for the L”(R?) norm of
(fm++)v. A similar argument also works for the remaining parts of my_, m_,
m__, and summing concludes the proof of (6.2.6).

The analogous estimate on R” is

1
-~ 2\2 14
( Y | (Famgmis)” | ) < Cu(|lmllz= +A) max (p, (p = 1)) ™[ £ Lo g
LP(R
which is obtained in a similar fashion. Using (6.1.29), this implies that

jezr

H(J?m+~~+)vHLP(Rﬂ> < Cu([lm]|= +A) max (p., (p— 1)71)6anHLP(R”) ’
A similar inequality holds when some (or all) 4-’s are replaced by —’s. t

We now give a condition that implies (6.2.5) and is well suited for a variety of
applications.

Corollary 6.2.5. Let m be a bounded 6" function defined away from the coordinate
axes on R". Assume that for all k € {1,...,n}, all distinct jy,...,jr € {1,2,...,n},
and all & € R\ {0} for r ¢ {j1,..., jx} we have

(8, -+ 3im) (&, -, &) | S ALE; |71 18" (6.2.9)
Then m satisfies (6.2.6).

Proof. Simply observe that condition (6.2.9) implies (6.2.5). O
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Example 6.2.6. The following are examples of functions that satisfy the hypotheses
of Corollary 6.2.5:

_ 3
GiE 8D

PR
G +E++ED

where a1 +0p +---+ 0, = o, & >0,

m(§)

my(§) =

_&E
m3(8) = & +E2+EH

The functions m; and m; are defined on R"\ {0} and m3 on R3\ {0}.

The previous examples and many other examples that satisfy the hypothesis
(6.2.9) of Corollary 6.2.5 are invariant under a set of dilations in the following sense:
suppose that there exist k1,...,k, € R™ and s € R such that the smooth function m
on R"\ {0} satisfies

m(AKE L ARE) = ABm(Ey, ... &)

for all &;,...,&, € Rand A > 0. Then m satisfies condition (6.2.9). Indeed, differ-
entiation gives

Akt ek gem(QRE, L ARE) = A59%m (&, ..., &)

for every multi-index ot = (@i, ..., o,). Now for every & € R"\ {0} pick the unique
Ag > 0 such that (Aglél,...,kg"én) € §"!. Then kgjaj < |&;|7%, and it follows
that

|8am(€1,...,§n)| < {Sup |&am|} lglk‘+"‘+a”k" < Ca|§1|70t1 ...|§n|fan.

Sn—1

6.2.3 The Mihlin—-Hormander Multiplier Theorem on R"

We now discuss another multiplier theorem that also requires decay of derivatives.
We will consider the situation where each differentiation produces uniform decay in
all variables, quantitatively expressed via the condition

|0£m(E)| < Col&| 1™ (6.2.10)
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for each multi-index . The decay can also be expressed in terms of a square inte-
grable estimate that has the form

(/ o |8gm(§)|2d§) <CLR Y < oo (6.2.11)
R<|G|<2R

for all multi-indices & and all R > 0. Obviously (6.2.10) implies (6.2.11)

Theorem 6.2.7. Let m(&) be a complex-valued bounded function on R\ {0} that
satisfies for some A < oo

1
(/ ¢ |3E‘M(§)|2d5> T <ARYI < oo (6.2.12)
JR<|E|<2R

Sor all multi-indices |a| < [n/2]+ 1 and all R > 0.
Then for all 1 < p < oo, m lies in .#,(R") and the following estimate is valid:

Imll. 7, < Comax(p, (p—1)"") (A+ [[m]z=) - (6.2.13)

Moreover, the operator f — (fm)" maps L' (R") to L'*(R") with norm at most a
dimensional constant multiple of A+ ||m|| .

We remark that in most applications, condition (6.2.12) appears in the form
|9gm(&)| < Col&[1, (6.2.14)

which should be, in principle, easier to verify.

Proof. Since m is a bounded function, the operator given by convolution with W =
V' is bounded on L?(R"). To prove that this operator maps L! (R") to L1 (R"), it
suffices to prove that the distribution W coincides with a function K on R"\ {0} that
satisfies Hormander’s condition.
Let ¢ be a smooth function supported in the annulus % < |€] < 2 such that

Y C2E) =1, when & # 0.

jez

Set m;j(&) = m(§)2(2_/§) for j € Z and K; = mJv We begin by observing that
YNy K; converges to W in .#”(R"). Indeed, for all ¢ € . (R") we have

<j=§‘_'NKj7¢> < Z i ¢ > m(p >=<W,q)>.

We set ng = [5] + 1. We claim that there is a constant C, such that

sup [ [K;(x ) (1+27|x))3 dx <C,A, (6.2.15)
JjeZ
sup 2~ / \VK,(x)|(1+2f\x\)%dx <GA. (6.2.16)
jezZ R”
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To prove (6.2.15) we multiply and divide the integrand in (6.2.15) by the expression
(1+2/|x|)™. Applying the Cauchy—Schwarz inequality to |K;(x)| (1 +2/|x|)™ and
(1+2/ \x|)’”0+%, we control the integral in (6.2.15) by the product

1 1
. 2
( / K (x 1+2f|x|)2"0dx> ( / (1+2/|x|)—2”0+%dx> . (62.17)
Rn

We now note that —2ngy + % < —n, and hence the second factor in (6.2.17) is equal
to a constant multiple of 27/n/2 To estimate the first integral in (6.2.17) we use the
simple fact that
(1+2/x)o <c(n) Y, |(27x)7
l7I<no
We now have that the expression inside the supremum in (6.2.15) is controlled by

1

C'(n272 Y (/ K j(x)| 2% |x7|2dx> , (6.2.18)
[YI<no
which, by Plancherel’s theorem, is equal to
1
2 2 :
272y ¢l (/ 1(37m;) ()] d§> (6.2.19)
[vI<ng
for some constants Cy.
For multi-indices 6 = (61,...,8,) and Yy = (11,...,%) we introduce the notation
0 <ytomean §; < yjforall j=1,...,n.Forany |y| < ng we use Leibniz’s rule to

obtain for some constants Cs

(/Rn|(mm«,') 2d§> Y Cs, (/Rn|2—”“3'(ag‘ )(277&)(@¢m) |d§)

§<y

< Z’c(;,72—1'721‘5|</2j1<|‘§<2j+1 (8§m)(<§)|2d§)2

5=y

< Z C67y271\7|21'|5\ 24 24n/29=Jl8]
o<y

=C,A2/"/2~iM

which inserted in (6.2.19) and combined with (6.2.18) yields (6.2.15). To obtain
(6.2.16) we repeat the same argument for every derivative d,K;. Since the Fourier
transform of (d,K;)(x)x" is equal to a constant multiple of 87(§,m(§)2(2’j &),
we observe thal the extra factor 27/ i/I\l (6.2.16) can be ci)mbined vz\ith &, to write
27997 (Em(E)E(2778)) as 07 (m(E)G(2IE)). where §(&) = &E(E). The pre-
vious calculation with §, replacing ¢ can then be used to complete the proof of
(6.2.16).
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We now show that for all x # 0, the series Y jcz K;(x) converges to a function,
which we denote by K(x). Indeed, as a consequence of (6.2.15) we have that

(1+2f'5)%/ IK;(x)| dx < CoA,

[x|>6

for any 6 > 0, which implies that the function Y ;- |K;(x)| is integrable away from
the origin and satisfies [5|,<>5 ¥j>0 [Kj(x)[dx < eo. Now note that (6.2.15) also

holds with —% in place of %. Using this observation we obtain

(1+2f25)*%/

i 1 ~
x|<25 |Kj(x)|dx§/ K (0)|(1+27)x]) 4 dx < C,A,

lx|<28

and from this it follows that [5-,<>5 ¥ <0 |Kj(x)|dx <ee.
We conclude that the series ) jcz K;(x) converges a.e. on R"\ {0} to a function
K(x) that coincides with the distribution W = m" on R"\ {0} and satisfies

sup/ |K(x)|dx < oo.
§>0/0<[x[<26

We now prove that the function K = Y.z K; (defined on R"\ {0}) satisfies
Hormander’s condition. It suffices to prove that for all y ## 0 we have

) / Ki(x—y) — K;(x)|dx <2C,A. (6.2.20)
jez’ Ix=2lyl

Fix ay € R"\ {0} and pick a k € Z such that 2% < |y| < 27%+!, The part of the sum
in (6.2.20) where j > k is bounded by

)y /Ix\zzm |Kj(x—y)|+|K;(x)|dx 522/ IK;(x)| dx

>k >k X1yl
: 1
1427 |x])4
<Y [ kU2 g
S =1y (142/]x))3
2C,A
<y ———
i~k (1+27]y])#
< 2C7”A:C/A

n )

T Si(1+2i20)1

where we used (6.2.15). The part of the sum in (6.2.20) where j < k is bounded by

L o K=Kl
J<k?XI=

- St
< / / |~y VK;(x— 0y)|d0.dx
,% ixi>2ly] Jo !



6.2 Two Multiplier Theorems 449

1 .
g/ Zz-"“/ VK (x— 6y)|(1+2/|x — 6y])¥ dxd#
0 j<k R

1 _
< / Y 2 *1G,427d0 < ClA,
0 j<k

using (6.2.16). Hormander’s condition is satisfied for K, and we appeal to Theorem
5.3.3 to complete the proof of (6.2.13). (|

Example 6.2.8. Let m be a smooth function away from the origin that is homoge-
neous of imaginary order, i.e., for some fixed 7 real and all A > 0 we have

m(AE) = A"m(E). (6.2.21)

Then m is an L? Fourier multiplier for 1 < p < . Indeed, differentiating both sides
of (6.2.21) with respect to &g‘ we obtain

Al*9g¢m(AE) = A779¢m(E)

and taking A = |€|~!, we deduce condition (6.2.14) with Cy = sup|g|1 [0%m(0)].
An explicit example of such a function is m(&) = |&|". Another example is

B 52_,'_52
mo(6n8.85) = gy

which is homogeneous of degree zero and also smooth on R"\ {0}.

Example 6.2.9. Let z be a complex numbers with Rez > 0. Then the functions

m©=({5) m@= ()

defined on R" are L” Fourier multipliers for 1 < p < co. To prove this assertion for
my, we verify condition (6.2.14). To achieve this, introduce the function on R

(GG N 1EP Y
Ml<éh-~’é‘mf>—<t2+|§1|2+---+én|2> ‘<r2+|52) ’

where & = (&,...,&,). Then M is homogeneous of degree 0 and smooth on
R"*1\ {0}. The derivatives 9% M, are homogeneous of degree —|B| and by the cal-
culation in the preceding example they satisfy |dP M (E,7)| < C,;|(§,t)|’|m, with
Cp = supjg|— |0P M, (8)|, whenever (£,1) # 0 and B is a multi index of n 4 1 vari-
ables. In particular, taking § = («,0), we obtain

Ca

a Oy
|3€11 aén Ml(él,...,én,t” < Wﬂ

and setting = 1 we deduce that |0%m; (€)| < Cg (14 |E[?)~1¥/2 < Cy|E|719,
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For m, we introduce the function

1 z
M2(‘§17~~'>§n71) = <t2+|€1|2—|—~"+|‘§n|2>

on R"t!, which is homogeneous of degree —2z. Then the derivative 9P M5 is homo-
geneous of degree —|B| — 2z, hence it satisfies [9P M, (&,1)| < Cp|(&,1)|~IPI-2Rez
for all multi-indices 8 of n+ 1 variables. In particular, taking § = («,0), we obtain

Ca

o My (&, E )| < ——F
’ 3] &n 2(6 S )’ - (t2+|§|2)@+Rez

and setting f = 1, we deduce |d%my (E)| < Cq (14 |E[?)71#1/2 < Cy|E|~1#I, where in
the first inequality we used that Rez > 0.

We end this section by comparing Theorems 6.2.2 and 6.2.4 with Theorem 6.2.7.
It is obvious that in dimension n = 1, Theorem 6.2.2 is stronger than Theorem 6.2.7
in view of the inequality

1

/zj<|e:\<2.f+1 ()1t <27 (/2/‘<5|<2j+1 |m/(§>|2d§> E

which implies that (6.2.2) is weaker than (6.2.12). Note also that in Theorem 6.2.2
the multiplier m is not required to be differentiable at the points 4-2/. But in higher
dimensions neither theorem includes the other. In Theorem 6.2.4 the multiplier is
allowed to be singular on a set of measure zero but is required to be differentiable in
every variable, i.e., to be at least ™ in the complement of this null set. In Theorem
6.2.7, the multiplier is only allowed to be singular only at the origin, but it is assumed
to be ¢/2+1, requiring almost half the differentiability called for by condition
(6.2.9). It should be noted that both theorems have their shortcomings. In particular,
they are not L sensitive, i.e., delicate enough to detect whether m is a bounded
Fourier multiplier on some L?” but not on some other L9.

Exercises

6.2.1. Let y(&) be a smooth function supported in [3/4,2]U[—2,—3/4] and equal
to 1 on [1,3/2]U[-3/2,—1] that satisfies ¥ ;cz W(27/&) =1 for all & # 0. Let
1 <k < n. Prove that m € .4, (R") if and only if (6.2.1) is satisfied with m;(&) re-
placed by the function m(&)w(27/1&) - w(27/kE).

[Hint: To prove one direction, partition Z* in 2% sets such that for every j =
(j1,---,Jjk) in each of these sets, j; has a fixed remainder modulo 2. For the
other direction, use Theorem 6.1.6 in the variables xi,...,x;. Also use the inequal-
ity (£l ey < Coll (g |Fotrg)Y P2 o eys Ry = (=2, — UL, 2])f x RO,
which can be derived by duality from the identity }.,czx Xr; = 2k.]
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6.2.2. Let ¢ be a smooth function on the real line supported in the interval [—1, 1].
Let y(¢) be a smooth function on the real line that is equal to 1 when |¢| > 10 and

vanishes when || < 9. Show that for the function m(&;,&;) = i3 /5 o(&)w(é)
lies in .#,(R?), 1 < p < o, using Theorem 6.2.4. Also show that Theorem 6.2.7
does not apply.

6.2.3. Consider the differential operators
Ly =0 —d;+95,
Ly 281—‘1-822-1-&32.

Prove that for every 1 < p < oo there exists a constant C, < oo such that for all
Schwartz functions f on R? we have

19233l < Coll2 ()l
o1 £l < CollL2(F)]s -

[Him‘: Use Corollary 6.2.5 and the idea of Example 6.2.6.]

6.2.4. Suppose that m(&) is a real-valued function that satisfies either (6.2.9) or
|0%m(&)| < Cy|€|~1%! for all multi-indices o with |et| <[]+ 1 and all &€ € R"\ {0}.
Show that ¢™(%) lies in ., (R") for any 1 < p < co.

[Hint: Prove by induction and use that

. . 1 k
94 (M) =" Y epr (P m(E)) - (0P m(E)),
1j20p/<a
LB 4+ Br=a

where the sum is taken over all partitions of the multi-index ¢ as a linear combina-
tion of multi-indices B/ with coefficients /; € Z* U {0}.]

6.2.5. Suppose that @(£) is a smooth function on R” that vanishes in a neighbor-
hood of the origin and is equal to 1 in a neighborhood of infinity. Prove that the

function €615 (&) is in Mp(R") for 1 < p < co.

6.2.6. Let 7,71,...,T, be real numbers and py,...,p, be even natural numbers.
Prove that the following functions are L” multipliers on R” for 1 < p < oo:
[STASEERN A

(I[P o (&P
(&P + 18P
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6.2.7. Let (&) be a smooth function on R" is supported in a compact set that does
not contain the origin and let a; be a bounded sequence of complex numbers. Prove

that the function R .
m(&) =Y a;{(277&)
JEZL

isin .#,(R") forall 1 < p < co.

6.2.8. Let Z(é) be a smooth function on R” supported in a compact set that does

o~ ~

not contain the origin and let Ajg (f)=(f(&)E(277¢)) " Show that the operator

f—sup| ¥ A5 ()|

NeZ' j<N

is bounded on L”(R) when 1 < p < oo, .
[Hint: Pick a Schwartz function @ satisfying ¥ ;cz ®(27/&) = 1 on R"\ {0} with

@(&) supported in § < |&| < 2. Then A,;ijC = 0if |j — k| < co and we have

Yai= Y Ay ar= Y A'¥ai- ¥ AlY 4,

J<N k<N+cy  j<N k<N+cp j k<N+cy  j=N
which is a finite sum plus a term controlled by a multiple of the operator
froM(Y A7),
j€z
where M is the Hardy—Littlewood maximal function.}

6.2.9. Let ¥ be a Schwartz function whose Fourier transform is real-valued, sup-
ported in a compact set that does not contain the origin, and satisfies

Y ®(27/€)=1  when& #0.

Jjez
Let A; be the Littlewood—Paley operator associated with ¥'. Prove that

'Y 4i8)~sl,—0
lil<N

as N — oo for all functions g € .(R"). Deduce that Schwartz functions whose
Fourier transforms have compact supports that do not contain the origin are dense
in LP(R") for 1 < p < oo.

[Hint: Use the result of Exercise 6.2.8 and the Lebesgue dominated convergence
theorem. |



6.3 Applications of Littlewood—Paley Theory 453

6.3 Applications of Littlewood—Paley Theory

We now turn our attention to some important applications of Littlewood—Paley the-
ory. We are interested in obtaining bounds for singular and maximal operators.
These bounds are obtained by controlling the corresponding operators by quadratic
expressions.

6.3.1 Estimates for Maximal Operators

One way to control the maximal operator sup;, |7 (f)| is by introducing a good aver-
aging function ¢ and using the majorization

sgp\Tk(f)l < sgplTk(f)—f*¢z—k|+sgp|f*¢z—k|
6.3.1)

IN

1
2
(LI~ £ 0242)” +CoM(y)
k
for some constant C, depending on ¢. We apply this idea to prove the following

theorem.

Theorem 6.3.1. Let m be a bounded function on R" that is €' in a neighborhood
of the origin and satisfies m(0) = 1 and |m(§)| < C|&|~¢ for some C,€ > 0 and
all & # 0. For each k € Z define Ty (f)(x) = (f(E)m(27*E))Y (x). Then there is a

constant C,, such that for all L* functions f on R" we have

(| sup| (N 2 < Cal| £ 2- (6.3.2)
keZ

Proof. Select a Schwartz function ¢ such that ¢(0) = 1. Then there are positive
constants C; and C, such that |m(§) — @(€)| < Cy|&| ¢ for |£| away from zero and
[m(&) — @(&)| < G|&| for |&| near zero. These two inequalities imply that

Y Im(274E) — 927 E)> < G5 < oo,
k
from which the L? boundedness of the operator
1/2
fo (LI~ fropa)
k

follows easily. Using estimate (6.3.1) and the well-known L? estimate for the Hardy—
Littlewood maximal function, we obtain (6.3.2). ([

If m(&) is the characteristic function of a rectangle with sides parallel to the axes,
this result can be extended to L”.
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Theorem 6.3.2. Let 1 < p <ooand let U be the n-fold product of open intervals that
contain zero. For each k € Z define T, (f)(x) = (f(&)xu (27%E))V (x). Then there is
a constant Cy, , such that for all L? functions f on R" we have

||I§2§‘Tk(f)‘||LP(RH) < CP»"||f||Ll’(R”)'

Proof. Let us fix an open annulus A whose interior contains the boundary of U and
take a smooth function with compact support ¥ that vanishes in a neighborhood of
zero and a neighborhood of infinity and is equal to 1 on the annulus A. Then the
function ¢ = (1 — ¥ )y is Schwartz. Since Yy = Yy ¥ + @, it follows that for all
f € LP(R") we have

L(f)=T(f) = f* i+ [ Qi =Ti(fx Wpi) + [Py
Taking the supremum over k and using Corollary 2.1.12 we obtain

supl7i(f)] < (L I7ilf) — fr i) P CoM(f). (6.3.3)
€ k

The operator T (f) — f * ¢,—« is given by multiplication on the Fourier transform
side by the multiplier

2w27HE) = 927"E) = xw 27O W(2TE) = 2y (E)W(271E).

Since {2kU tkez is a measurable family of rectangles with sides parallel to the axes,
Exercise 5.6.1(b) yields the following inequality:

(X 1fvoel?)?

keZ

H(Z T(f) = £ 0o i[?)? (6.3.4)

keZ

<C
[p = P

7

Since f* W, = A;’/( f), estimate (6.1.4) of Theorem 6.1.2 yields that the expres-
sion on the right in (6.3.4) is controlled by a multiple of || f||.». Taking L? norms in
(6.3.3) and using the L? estimate for the square function yields the required conclu-
sion. |

The following lacunary version of the Carleson—Hunt theorem is yet another in-
dication of the powerful techniques of Littlewood—Paley theory.

Corollary 6.3.3. (a) Let f be in L>(R") and let Q be an open set that contains the
origin in R". Then

lim [ f(€)e™™5dé = f(x)

k—reo J2kQ

for almost all x € R".
(b) Let f be in LP(R") for some 1 < p < . Then

lim [ (&) dE = £
|&, | <2k

for almost all x € R".
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Proof. Both limits exist everywhere for functions f in the Schwartz class. To obtain
almost everywhere convergence for general f in L” we appeal to Theorem 2.1.14.
The required control of the corresponding maximal operator is a consequence of
Theorem 6.3.1 with m = ) in case (a) and Theorem 6.3.2 in case (b). ([l

6.3.2 Estimates for Singular Integrals with Rough Kernels

We now turn to another application of the Littlewood—Paley theory involving singu-
lar integrals.

Theorem 6.3.4. Suppose that |l is a finite Borel measure on R" with compact sup-
port that satisfies |[1(&)| < Bmin (|& |’.h, |E|P) for some b > 0 and all & # 0. Define
measures [L; by setting [;(§) = (277 &). Then the operator

Tu(f) ) = Y (f*m))(x)

jez
is bounded on LP (R") for all 1 < p < oo,

Proof. Tt is natural to begin with the L? boundedness of Ty. The estimate on [
implies that

Y a2 7€)[ < Y Bmin (277", [277E[ ") < CyB < oo. (6.3.5)
JEZL JjEZL

The L? boundedness of T, is an immediate consequence of (6.3.5).
We now turn to the L? boundedness of 7}, for 1 < p < e. We fix a radial Schwartz

function y whose Fourier transform is supported in the annulus % < |&] < 2 that
satisfies

Y vie) =1 (6.3.6)
jez
whenever & # 0. We let W, (x) = 2Ky(2kx), so that y, (&) = y(27%&), and we
observe that the identity

Hj= Z Hj* Yok
keZ

is valid by taking Fourier transforms and using (6.3.6). We now define operators Sy
by setting
Si(f) = Y ey jaxf=) (Wx¥pa)yi*f.
JEZ JEZ
Then for f in . we have that
() =Y wixf=), Y Wi uxf=) S(f).

JEZL JELKEL keZ
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It suffices therefore to obtain L” boundedness for the sum of the S;’s. We begin
by investigating the L? boundedness of each S;. Since the product @(lm is
nonzero only when j/ € {j—1,j, j+ 1}, it follows that

ISchll < X X [ 186 (©)FQ 7 &) g7 ¥ 7€) 2dE

jez jiez’R"
1 R
<oy Y / O E)IIFE)Pag
JELT=I=1 g p itk
<Gy [ Bmin(2El 2RI
T g i
<ap 2y [ 7P
jez

g2tk

R
We have therefore obtained that for all k € Z and f € .(R") we have
1S(f)|| 2 < G B2 | £l 2 - (6.3.7)

We notice that for any R > 0 we have

[?<\x|<2RZ‘ ¥ k 2-i( ’dx - Z/ :u*‘l’z—k)(x)‘dx

]EZ ]EZ /R<|x\<2/+]R

[ v ) 0

thus condition (5.3.4) of Theorem 5.3.3 is satisfied.
Next we verify that the kernel of each S; satisfies Hormander’s condition with
constant at most a multiple of (1 + |k|). Fix y # 0. Then

/IXIZZM

dx

y ((u Vo s y) — (5 Y1) <x>)

=4

<X [ 2w )@= 20) — ey ) (20 dx
i =2

= lek()’)

jez

where 4
B0 = [ By (=2 = (s ) ()
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We observe that /;;(y) < C4||i|.~. Let |u| be the total variation of u. To obtain a
more delicate estimate for /; ;(y) we argue as follows:

Lix(y) < Wk (x— 2y —2) — Wy i (x — 2)| d | (z) dx
Rn

2271
= /2 / |y(25x — 25 — 277ky) — (2 — 2%7) | dd | (2)
227+
<cs [ [ 22| vy 22— )| dil(z) dx
. JR?
22741}y
< c62/+’</Rn / 29y] (14|25 — 2%z — 6]) " dxd|u|(2)
2271
—c@ i [ [ (le-2—e) " Paval).
2271y

where |6 < 2/*|y|. Note that 6 depends on j,k, and y. From this and from 1, ;(y) <
Cy4l||tt]|.» we obtain

Lix(y) < Cq 1| , min (1,27%5]y]), (6.3.8)

which is valid for all j,k, and y # 0. To estimate the last double integral even more
delicately, we consider the following two cases: |x| > 25*2|z| and |x| < 2K*2|z|. In
the first case we have [x — 2%z — 6| > 1|x|, given the fact that [x| > 2/*F1]y[. In
the second case we have that |x| < 2¥*2R, where B(0,R) contains the support of
. Applying these observations in the last double integral, we obtain the following
estimate:

Lix(y) < C82’+k|y|/ { /

ot [ afauie

x| >20+ )y | 4‘ ‘ [x[>2/ KLy
x| >28+2 ] e
‘ 1
+k
< 2 ¥ lull, [@M)*O}

= G ) ull -

provided 2/|y| > 2R. Combining this estimate with (6.3.8), we obtain

min (1,2/%%|y|)  forall j,k and y,

I; <C . . 6.3.9
) < IOH’JH'/// {(2/”‘)1)] when 2/|y| > 2R. ( )
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We now estimate Y ;7; x(y). When 2¢ > (2R) ™! we use (6.3.9) to obtain

Y < Collull [ X 2+ X 1+ Y @)
J

2i< L L <9j<2R 2j>2R
= 2kyy| 2k|y| =7 = Dyl =l

< Cuil|ul| ,(|1ogR|+[k]).

Also when 2% < (2R)~! we again use (6.3.9) to obtain

Yo <Colul [ L 2+ ¥ @) <cnllu],
: |

2Jj< 1 2j>_1_
2Kpy] )y

since in the second sum we have 2/[y| > 27% > 2R, which justifies use of the corre-
sponding estimate in (6.3.9). This gives

Y ix(y) < Cusl|uf| ,(1+Ik]), (6.3.10)
J

where the constant C;3 depends on the dimension and on R. We now use esti-
mates (6.3.7) and (6.3.10) and Theorem 5.3.3 to obtain that each S; maps L'(R")
to L1 (R") with constant at most

G2 "M+ 1+ kD) el < Cu@+ KD lu] -

It follows from the Marcinkiewicz interpolation theorem (Theorem 1.3.2) that S
maps L”(R") to itself for 1 < p < 2 with bound at most C,, ,2 7?6 (1 + |k[)! =,
when 1 = % +1—6,. Summing over all k € Z, we obtain that 7, maps L”(R") to
itself fgr 1 < p < 2. The boundedness of 7, for p > 2 follows by duality. (]

An immediate consequence of the previous result is the following.

Corollary 6.3.5. Suppose that | is a finite Borel measure on R" with compact sup-
port that satisfies |[L(§)| < Bmin (|§| %, |&|%) for some b > 0 and all & # 0. Define
measures |L; by setting [1;(&) = W(27/&). Then the square function

1
G(f) = (Z I *f|2) ’ (6.3.11)
JEZ
maps LP (R") to itself whenever 1 < p < oo,

Proof. To obtain the boundedness of the square function in (6.3.11) we use the
Rademacher functions r j(t), introduced in Appendix C.1, reindexed so that their
index set is the set of all integers (not the set of nonnegative integers). For each ¢t we

introduce the operators
Ti(f) =) ri()(f*1;).
JjeZ
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Next we observe that for each ¢ in [0, 1] the operators 7;; map L”(R") to itself with
the same constant as the operator 7};, which is in particular independent of ¢. Using
that the square function in (6.3.11) raised to the power p is controlled by a multiple

of the quantity

a fact stated in Appendix C.2, we obtain the required conclusion by integrating
over R". (]

er f*,uj‘ dt,

JEL

6.3.3 An Almost Orthogonality Principle on LP

Suppose that 7; are multiplier operators given by T;(f) = (fm )V, for some multi-
pliers m;. If the functions m; have disjoint supports and they are bounded uniformly
in j, then the operator
T=}7
J

is bounded on L?. The following theorem gives an L” analogue of this result.

Theorem 6.3.6. Suppose that 1 < p <2 < g < oo. Let mj be Schwartz functions

supported in the annuli 27~' < || <2/ and let Tj(f) = (fmj)v. Suppose that the
T;’s are uniformly bounded operators from L (R") to L1(R"), i.e

sgp ITillp g =A<

Then for each f € LP(R"), the series

converges in the LY norm and there exists a constant Cp, 4 , < o such that

HTHL,;_,M < CpgnA. (6.3.12)

Proof. Fix aradial Schwartz function ¢ whose Fourier transform @ is real, equal to
one on the annulus %'g |€| <2, and vanishes outside the annulus } < |&| < 4. We
set @, (x) =2/"(2/x), so that ¢, is equal to 1 on the support of each m;. Setting
A;(f) = f*@,-;, we observe that

Tj=AjT;A;
for all j € Z. For a positive integer N we set

= ) ATiA;.

ljl<N
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Fix f € LP(R"). Clearly for every N, TV (f) is in L¢(R"). Using (6.1.21) we obtain

1Tl =1 X AT,

[i|<N
1
N
<c|[(zimamnp)|,
jez
=C|| Y IT;A;(f )|2
! jez L

s%(ZWanVLwy

7CI(ZHTA Hm) )

where we used Minkowski’s inequality, since ¢/2 > 1. Using the uniform bounded-
ness of the 7;’s from L? to L4, we deduce that

1 1

(g Imamii)” <ca(glawmii,)

€

= (L N4 P e)’
Ll’/2> :

Z A (P
Lr

=Gl (L)’

JEL

~.
N

~.

<cpa(

< GG Ao ey

where we used the result of Exercise 1.1.5(b), since p < 2, and Theorem 6.1.2. We
conclude that the operators 7" are uniformly bounded from L”(R") to L4(R™).

If 72 is compactly supported in a subset of R” \ {0}, then the sequence TV (h)
becomes independent of N for N large enough and hence it is Cauchy in L?. But in
view of Exercise 6.2.9, the set of all such 4 is dense in L”(R"). Combining these
two results with the uniform boundedness of the T"’s from L” to L4, a simple £
argument gives that for all f € L” the sequence TV (f) is Cauchy in L9. Therefore,
for all f € L the sequence {7 (f)}x converges in LY to some T'(f). Fatou’s lemma
gives

17 s <S5 11l

which proves (6.3.12). (]
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Exercises

n+l1

6.3.1. (The g-function) Let P(x) = ['(%1)m "7 1(2+ |x[?) "% be the Poisson
kernel on R".
(a) Use Exercise 6.1.4 with P'(x) = %P,(x) | ,_; (o obtain that the operator

5 1/2
f— 1|2 (P x f)(x)| dr)

S

is bounded from L?(R") to LP(R") for 1 < p < oo.
(b) Use Exercise 6.1.4 with ¥(x) = d;P; (x) to obtain that the operator

£ ((/Omtlak(Pf*f)(X)lzdt)l/z

is bounded from L?(R") to L (R") for 1 < p < eo.
(c) Conclude that the g-function

g(f)lx) = (/Owtlvx,t(Pz *f)(X)zdt> "

is bounded from L? (R") to L (R") for 1 < p < eo.

6.3.2. Suppose that 1t is a finite Borel measure on R" with compact support that sat-
isfies (0) = 0 and |1(&)| < C|E|~* for some a > 0 and all § # 0. Define measures
W by setting [1;(&) = [1(277&). Show that the operator

Tu(f)(x) = Y (f+my)(x)

JEZ

is bounded from L?(R") to L (R") forall 1 < p < oo,
[Hint: Use Theorem 6.3.4]

6.3.3. ([50], [71]) (a) Suppose that u is a finite Borel measure on R” with compact
support that satisfies |(&)| < C|€|~* for some a > 0 and all £ # 0. Show that the
maximal function

fx=27y)du(y)
R)l

Ay (f)(x) = sup

jez

is bounded from L?(R") to L (R") forall 1 < p < oo.

(b) Let u be the surface measure on the sphere $"~! when n > 2. Conclude that the
dyadic spherical maximal function .#), is bounded on L”(R") for all 1 < p < co.
[Hint: Part (a): Pick a 6;° function @ on R” with @(0) = 1. Then the measure
o = p— 1(0) o satisfies the hypotheses of Corollary 6.3.5. Since,

(1)@ < (LloNE@P) " + RO M) ).
J



462 6 Littlewood—Paley Theory and Multipliers

it follows that .2, is bounded on L”(R") whenever 1 < p < 0. Part (b): If u =do
—1

is surface measure on 8", then [do (&) < C|€|~"Z" (Appendices B.4 and B.7).]
6.3.4. Let Q be in LI(S"~!) for some 1 < g < o and define the absolutely continu-
ous measure 2/
x/|x
dp(x) = — = Xi<|xj<2dx.

|X‘"

Show that for all a < 1/¢’ we have that |fi(&)| < C|€|~“. Under the additional hy-
pothesis that £2 has mean value zero, conclude that the singular integral operator

Ta(r)e) =p. [ FE ey dy =L oy
J

is L? bounded for all 1 < p < . This provides an alternative proof of Theorem
5.2.10 under the hypothesis that Q € L4(S"~!).

6.3.5. For a continuous function F on R define

u(F)(x)= (/Om|F(x—&-t)—|—F()c—t)—2F(x)|2 dt>%

13

Given f € LL (R) we denote by Fy the indefinite integral of £, that i,

loc

F0 = [ fyar.

Prove that for all 1 < p < oo there exist constants ¢, and C}, such that for all functions
f € LP(R) we have

cpllfll < luED ] < GollF -
[Hint: Let ¢ = x[_1,0— X[o,1]- Then
1
(@ % f)(x) = ;(Ff(x—&-t) + Fp(x—1) —2Fy(x))

and the double inequality follows from parts (b) and (c) of Exercise 6.1.4.]

6.3.6. Let m be a bounded function on R” that is %! in a neighborhood of zero, it
satisfies m(0) = 1 and |m(&)| < B|&| ¢ for all & # 0, for some B, € > 0. Define an
operator T; by setting 7;(f) (&) = f(&€)m(¢€). Show that the maximal operator

(v [ oot a)

maps L?(R") to itself.
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[Him‘: Majorize this maximal operator by a constant multiple of the sum

= dry 3
MW +( [ 1@ e@PE)’
where ¢ is a 4;° function such that $(0) = 1.]

6.3.7. ([150]) Let 0 < B < 1 and po = (1 —3/2)~'. Suppose that {f;},cz are L
functions on the real line with norm at most 1. Assume that each f; is supported in
interval of length 1 and that the orthogonality relation |(f; | fi)| < (1+[j— k)P
holds for all j, k € Z.

(a) Let I £ Z be such that for all j € I the functions f; are supported in a fixed
interval of length 3. Show that for all p satisfying 0 < p <2 there is C), g < oo such
that

whenever €; are complex numbers with |g;| < 1.
(b) Under the same hypothesis as in part (a), prove that for all 0 < p < pg there is a
constant C; p < oo such that

Y cifi
Jel

B
Yeifi|, sl
jel Lr

1
P
LP S C;Lﬁ ( Z |c]‘p)
JEZL

for all complex-valued sequences {c;}; in ¢7.

(c) Derive the conclusion of part (b) without the assumption that the f; are sup-
ported in a fixed interval of length 3.

[Him‘: Part (a): Pass from L? to L? and use the hypothesis. Part (b): Assume
YjezlcjlP =1.Foreachk=0,1,...,setfy = {j € Z: 2751 <|c;| <27*}. Write
| Ejezcifilly < Eimo27¥|| Ejer (¢j25) ]| ,» use part (b), Holder’s inequality, and
the fact that ;7 27kP|I| < 2P. Part (c): Write Yjcz¢ifi = Ymez Fn, Where F, is
the sum of ¢;f; over all j such that the support of f; meets the interval [m,m + 1].
These F,,’s are supported in [m — 1,m+ 2] and are almost orthogonal.]

6.4 The Haar System, Conditional Expectation, and Martingales

There is a very strong connection between the Littlewood—Paley operators and cer-
tain notions from probability, such as conditional expectation and martingale differ-
ence operators. The conditional expectation we are concerned with is with respect
to the increasing o-algebra of all dyadic cubes on R".
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6.4.1 Conditional Expectation and Dyadic Martingale Differences

We recall the definition of dyadic cubes.
Definition 6.4.1. A dyadic interval in R is an interval of the form
[m27*, (m+1)27%)

where m, k are integers. A dyadic cube in R" is a product of dyadic intervals of the
same length. That is, a dyadic cube is a set of the form

n

Hl [mj27%, (mj+1)27%)
i

for some integers my, ..., my,k.

We defined dyadic intervals to be closed on the left and open on the right, so that
different dyadic intervals of the same length are always disjoint sets.

Given a cube Q in R" we denote by |Q| its Lebesgue measure and by ¢(Q) its
side length. We clearly have |Q| = £(Q)". We introduce some more notation.

Definition 6.4.2. For k € Z we denote by Z; the set of all dyadic cubes in R"” whose
side length is 27%. We also denote by Z the set of all dyadic cubes in R”". Then we
have

9 = U D,

keZ

and moreover, the o-algebra (%) of measurable subsets of R” formed by count-
able unions and complements of elements of 7 is increasing as k increases.

We observe the fundamental property of dyadic cubes, which clearly justifies
their usefulness. Any two dyadic intervals of the same side length either are disjoint
or coincide. Moreover, either two given dyadic intervals are disjoint, or one contains
the other. Similarly, either two dyadic cubes are disjoint, or one contains the other.

Definition 6.4.3. Given a locally integrable function f on R", we denote by
1
avef= o [ fle)dr
0 101 Jo

the average of f over a cube Q.
The conditional expectation of a locally integrable function f on R” with respect
to the increasing family of G-algebras o (%) generated by % is defined as

Ef(f)(x) =) (AQvgf)xQ(x),

Q€Y
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for all k € Z. We also define the dyadic martingale difference operator Dy, as follows:

Di(f) = Ex(f) — Ex-1(f),
also for k € Z.
Next we introduce the family of Haar functions.

Definition 6.4.4. For a dyadic interval [ = [m2~*, (m + 1)27%) we define I =
[m27%, (m+%)27*) and Ig = [(m+ %)27%, (m+ 1)27*) to be the left and right parts
of I, respectively. The function

_1 _1
hl(x):|” ZXIL_‘H 2 Xix
is called the Haar function associated with the interval I.

We remark that Haar functions are constructed in such a way that they have L?
norm equal to 1. Moreover, the Haar functions have the following fundamental or-
thogonality property:

0 whenl#T7,
hy(xX)hp (x)dx = 6.4.1
/1; 1) (x) dx {1 whenl =1. ( )

To see this, observe that the Haar functions have L? norm equal to 1 by construction.
Moreover, if I # I, then I and I’ must have different lengths, say we have [I'| < |I|.
If I and I’ are not disjoint, then I’ is contained either in the left or in the right half of
1, on either of which A; is constant. Thus (6.4.1) follows.

We recall the notation

(f:8) = [ F0)gx)d

valid for square integrable functions. Under this notation, (6.4.1) can be rewritten as
(hi,hy) = & p, where the latter is 1 when / = I" and zero otherwise.

6.4.2 Relation Between Dyadic Martingale Differences and Haar
Functions

We have the following result relating the Haar functions to the dyadic martingale
difference operators in dimension one.

Proposition 6.4.5. For every locally integrable function f on R and for all k € Z. we
have the identity

Di(f)="Y, (fihi)li (6.4.2)

1€D)_
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and also

||Dk(f)||12_2: ) |<f7h1>|2- (6.4.3)

1€y

Proof. We observe that every interval J in % is either an I, or an I for some unique
1 € 9,_,. Thus we can write

El(f) = ) (Avef)u

Je, I
(et (3 roa)a]

(6.4.4)

IEQk 1

But we also have

E(f) = Y (Avgf)u

1€D)_ I

s <|1| / U G/IRf(t)dt> (o, + 1) -

Now taking the difference between (6.4.4) and (6.4.5) we obtain

(lll /f )X’L_ <|11|/1Rf(f)dt>xa
(e Gofo)e]

which is easily checked to be equal to

(/f G dt>h1 Y (fou)h
Iejkl

I1€D)

(6.4.5)

Di(f) =

169)( 1

Finally, (6.4.3) is a consequence of (6.4.1). (I

Theorem 6.4.6. Every function f € L*(R") can be written as

=Y D), (6.4.6)

kel

where the series converges almost everywhere and in L*. We also have
2 e = Y DD 6.4.7
11wy = 12 647)
S

Moreover, when n = 1 we have the representation

=Y (fih)h, (6.4.8)

e
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where the sum converges a.e. and in 12 and also
2 2
1Az = X 1<Fn)] " (6.4.9)
e

Proof. In view of the Lebesgue differentiation theorem, Corollary 2.1.16, given a
function f € L*(R") there is a set N '+ of measure zero on R” such that for all x €
R"\ Ny we have that

Avg f = f(x)

9j

whenever Q; is a sequence of decreasing cubes such that j@ = {x}. Given x
in R"\ Ny there exists a unique sequence of dyadic cubes Q;(x) € Z; such that

N7=0Q;(x) = {x}. Then for all x € R"\ Ny we have

lim E;(f)(x) = lim ) (Avgf)xo(x) :}ggoAng:f(X)~

joe I7%0cy; Q 0;(x)

From this we conclude that E;(f) — f a.e. as j — co. We also observe that since
|E;(f)| < Mc(f), where M, denotes the uncentered maximal function with respect
to cubes, we have that |E;(f) — f| < 2M.(f), which allows us to obtain from the
Lebesgue dominated convergence theorem that E;(f) — f in L2 as j — oo,

Next we study convergence of E;(f) as j — —eo. For a given x € R" and Q;(x)
as before we have that

1

1= A 1] < |<r)|2dt) <2475,

0,(x (Qj( ) o)

which tends to zero as j — —oo, since the side length of each Q;(x) is 27/, Since
|E;j(f)| < Mc(f), the Lebesgue dominated convergence theorem allows us to con-
clude that E;(f) — 0 in L? as j — —oo. To obtain the conclusion asserted in (6.4.6)
we simply observe that

Di(f) =En(f) —Em—1(f) = f

»
i
M=

in L? and almost everywhere as N — oo and M — —oo,
To prove (6.4.7) we first observe that we can rewrite Dy (f) as

Di(f) = Y, (Avgf)xo— ). (Alggf)xk

Q<€D 0 ReZy

= Y | ¥ (Avef)xo—(Avef) xr
RE_Wk,l QE_@k (&) R
OCR
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Y | Y (Ang)XQ_% Y (Avef) xr

ReZ_ Loey, 2 0cy, @
OCR OCR
= Y Y (Avef)(ro—2"x)- (6.4.10)
RED,_1 Q€D 0
OCR

Using this identity we obtain that for given integers k' > k we have

Dy (f)(x) Dy (f) (x) dx

RVl

=Y Y e Y Y ag) / (xo—27"xr) (X0 —2 " xr) dx.
RED_10€%, Q@ RePy_ 0eczy <
QCR Q’QR'

Since k' > k, the last integral may be nonzero only when R’ G R. If this is the case,
then R' C Qg for some dyadic cube Q' € % with Qrr G R. See Figure 6.1.

Fig. 6.1 Picture of the cubes 0n
R, R, and Qp. R

Then the function Yy — 27" ¥ is supported in the cube Qp and the function
Xo — 27" Xr is constant on any dyadic subcube Q of R (of half its side length) and in
particular is constant on Q. Then

Y (Avef) | xg—2"xwdx= Y (Avef)(|Q|-27"IR|)=0,
oez, ¢ or oez, ¢
Q'R Q'CR

since |R'| = 2"|Q'|. We conclude that (Di(f), Dy (f)) = 0 whenever k # k', from
which we easily derive (6.4.7).

Now observe that (6.4.8) is a direct consequence of (6.4.2), and (6.4.9) is a direct
consequence of (6.4.3). O
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6.4.3 The Dyadic Martingale Square Function

As a consequence of identity (6.4.7), proved in the previous subsection, we obtain

that 1
|(Z per)R)*

kel

(6.4.11)

ey =
which says that the dyadic martingale square function
1
st = (L IDHP)
keZ

is L2 bounded. It is natural to ask whether there exist L” analogues of this result, and
this is the purpose of the following theorem.

Theorem 6.4.7. For any 1 < p < oo there exists a constant ¢y, such that for every
Sunction f in LP(R") we have

1
%HJ(HLP(RH) = HS(f)HLP(R”) = CP~”HfHLP(R")' (6.4.12)

The lower inequality subsumes the fact that if HS (f) H Lr(rr) <% then f must be an
L? function.

Proof. Let {r;}; be the Rademacher functions (see Appendix C.1) enumerated in
such a way that their index set is the set of integers. We rewrite the upper estimate
in (6.4.12) as

1
/o / kZZi’k((O)Dk(f)(x)‘pdxd(l) <c||f1, - (6.4.13)
S

We prove a stronger estimate than (6.4.13), namely that for all @ € [0, 1] we have

[ |rotne| ax< ezl G4t

where
To(f)(x) = Y r(@)De(f)(x).
keZ

In view of the L2 estimate (6.4.11), we have that the operator Ty, is L? bounded with
norm 1. We show that T, is weak type (1,1).

To show that T}, is of weak type (1,1) we fix a function f € L' and o > 0. We
apply the Calderén—Zygmund decomposition (Theorem 5.3.1) to f at height  to
write

f=g+b, b=Y (f-Avef)xo;.
- |

J
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where Q; are dyadic cubes that satisfy Y ;[Q;| < é” f H ;1 and g has L? norm at

most (2"06H f H /1 )%; see (5.3.1). To achieve this decomposition, we apply the proof
of Theorem 5.3.1 starting with a dyadic mesh of large cubes such that |Q| > éH f H 1
for all Q in the mesh. Then we subdivide each Q in the mesh by halving each side,
and we select those cubes for which the average of f over them is bigger than o (and
thus at most 2" ). Since the original mesh consists of dyadic cubes, the stopping-
time argument of Theorem 5.3.1 ensures that each selected cube is dyadic.

We observe (and this is the key observation) that Ty, (b) is supported in |J ;0. To
see this, we use identity (6.4.10) to write T, (b) as

Y (Yn(o) Y ) Avg[(f—AQvgf)xQ,-] (xo—27"xr)|- (6415
k J

J RED_ 1 Q€D 0
QCR

We consider the following three cases for the cubes Q that appear in the inner sum in
(6.4.15): 1) Q; € Q, (i1) @;NQ = 0, and (iii) Q ; Q;.Itis simple to see that in cases
(i) and (ii) we have Avg,[(f — Ang/_ 5 ij] = 0. Therefore the inner sum in (6.4.15)
is taken over all Q that satisfy Q ; Q;. But then we must have that the unique dyadic
parent R of Q is also contained in Q;. It follows that the expression inside the square
brackets in (6.4.15) is supported in R and therefore in Q;. We conclude that T, (b)
is supported in {J; Q;. Using Exercise 5.3.5(a) we obtain that T, is weak type (1,1)
with norm at most

a{|To(e) > S} +aU;05] _ 4ol + 111l
(WAl - (Walrx

We have now established that T, is weak type (1,1). Since T, is L? bounded with
norm 1, it follows by interpolation that 7, is L” bounded for all 1 < p < 2. The
L? boundedness of T, for the remaining p > 2 follows by duality. (Note that the
operators Dy, and E} are self-transpose.) We conclude the validity of (6.4.14), which
implies that of (6.4.13). As observed, this is equivalent to the upper estimate in
(6.4.12).

Finally, we notice that the lower estimate in (6.4.12) is a consequence of the
upper estimate as in the case of the Littlewood—Paley operators A;. Indeed, we need
to observe that in view of (6.4.6) we have

!MM=K§mm;m@m
=[EX (200 0)
H

= ‘ Y <Dk(f),Dk(g)>‘ [Exercise 6.4.6(a)]
x

§2n+2+].

< J ZIPN@IIPK) ]
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< /R S(f)(x)S(g)(x)dx (Cauchy—-Schwarz inequality)

< (IS 15l
< ISCMp epnllsllr-

(Holder’s inequality)

Taking the supremum over all functions g on R” with L”' norm at most 1, we obtain
. . . . / -

that f gives rise to a bounded linear functional on L? . It follows by the Riesz repre-

sentation theorem that f must be an L” function that satisfies the lower estimate in

(6.4.12). ]

6.4.4 Almost Orthogonality Between the Littlewood—Paley
Operators and the Dyadic Martingale Difference Operators

Next, we discuss connections between the Littlewood-Paley operators A; and the
dyadic martingale difference operators Dy. It turns out that these operators are al-
most orthogonal in the sense that the L? operator norm of the composition DA i
decays exponentially as the indices j and k get farther away from each other.

For the purposes of the next theorem we define the Littlewood—Paley operators
A; as convolution operators with the function ¥,-;, where

P(E) = D(E) - (28)

and @ is a fixed radial Schwartz function whose Fourier transform @ is real-valued,
supported in the ball || < 2, and equal to 1 on the ball |&| < 1. In this case we
clearly have the identity

Y $2E) =1, £ #0.

JEZ
Then we have the following theorem.

Theorem 6.4.8. There exists a constant C such that for every k, j in Z the following
estimate on the operator norm of DyA; : L*(R") — L*(R") is valid:

_ Ly
1P| 2 gy 120y = 1A 2 ) 12y < €27207H. (6.4.16)

Proof. Since ¥ is a radial function, it follows that A; is equal to its transpose oper-
ator on L?. Moreover, the operator Dy, is also equal to its transpose. Thus

(DyA;) = A;Dy
and it therefore suffices to prove only that

DiAill,, ., <C2 217K (6.4.17)
il Lj—kl

—12
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By a simple dilation argument it suffices to prove (6.4.17) when k = 0. In this
case we have the estimate

D04 1212 = [[Eod; — 14| 2,2
< [|Bodj = Aj oo + B4 = 4|2 2
and since the Dy’s and A;’s are self-transposes, we have
1P 1212 = 145D0l| 2 2 = [14jE0 = AjE-i]| o 2
< HAiEO _E0HL2—>L2 + HAJ'E*I _EOHL2

=12

Estimate (6.4.17) when k = 0 will be a consequence of the pair of inequalities

|Eodj = Ajl| 2, o+ ||E-14; = Aj]| 2,0 < C2F for j <0, (6.4.18)

HAJ'EO _E0HL2aL2 + HAJ'E*I _EOHLZ

—L2?
2 <C2 Y for j>0. (6.4.19)
We start by proving (6.4.18). We consider only the term EgA; — Aj, since the term
E_jA;—Ajis similar. Let f € L*>(R"). Then
2
[Eod;(f) = 4500 2

= L s — (/)i

< T, = (et )0 dras

gsgéo/Q/Q(/mej<x—y>|dy)2dtdx
+3Q€Z%/Q_/Q</5ﬁQf(y)l‘Pz.f(t—y)ldy>2dtdx

+3Q§%/Q./Q (/@MC )R [V (24 —y))dy)zdzdx,

where &, lies on the line segment joining x and 7. Applying the Cauchy-Schwarz
inequality to the first two terms, we see that the last expression is bounded by

in 2 2j _2MfO)ldy ’
oy /sﬁQ|f(y)| e ]QGZ%/Q(/R" (1+2/|x—y|)M> e

(S

which is clearly controlled by C(2/" 4-2%/) ||f|\12‘2 <202/ ||fH12‘2 This proves (6.4.18).

We now turn to the proof of (6.4.19). We set §; = }x< ; Ax. Since A; is the differ-
ence of two §;’s, it suffices to prove (6.4.19), where A; is replaced by S;. We work
only with the term S;Ey — Ey, since the other term can be treated similarly. We have
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2

IsiEo(H) - Eo(Hl7> = X (Ave ) (@21 20~ 20)

€%

<2| ¥ (Ave f) (@3-4+ 0 = o)
0<%y

2

+2‘

(Avg f) (Dr-j * 20) X(
QG_JO o

Since the functions appearing inside the sum in the first term have supports with
bounded overlap, we obtain

H Y (Avef) (D, * X0 — Xo) <C Y (avelfD)?||®, s+ 20— %ol
ocz, ©Q 0c7y @

and the crucial observation is that
2 3
| @57 % 20 — xo||;. < €27,

a consequence of Plancherel’s identity and the fact that |1 — ®(27E)| < Xjg>2i-
Putting these observations together, we deduce

and the required conclusion will be proved if we can show that

We prove (6.4.20) by using an estimate based purely on size. Let ¢ be the center of
the dyadic cube Q. For x ¢ 3Q we have the estimate

2 . .
Vg 21 * X0 — X0 S Ve =2 iz,
Y (Avgf) (@ ) ,<C Y (Avglf))2/ <c27||f|
0e7y @ L 0cgy @

2 .
L <271l (6.4.20)

Y (Ave ) (D * 20) X (30)¢
0€2y 2

Cy27" - Cy2/n 1
142/ x—co )M = (142/)M/2 (14 |x—co|)M/?”

(D) * x0)(¥)| < (

since both 2/ > 1, and |x — co| > 1. We now control the left-hand side of (6.4.20) by

j(2n— Cy dx
2/ Y Y (Avelfl) (Avelf]) [ .
o © @ R (Iti—eo) ¥ (I+v—cq)

(Avg|f])(Avg|f])
< 9i(2n—M) Y o Cy dx

= M M M
p)

0oy 0ica, (14 |CQ —CQ/|)7 R (1+]x—cgl) * (1+|x—cg|)

<2y ¥ M< Jrorave [ 1o |2dy>
Qe%Q’e%(HICQ*CQ' +

M
2
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< Cy2/n=M) /|f (y)|?dy
QG%

= Cu2 | [

By taking M large enough, we obtain (6.4.20) and thus (6.4.19). (]

Exercises

6.4.1. (a) Prove that no dyadic cube in R” contains the point 0 in its interior.

(b) Prove that every interval [a, b] is contained in the union of three dyadic intervals
of length less than b — a.

(c) Prove that every cube of length / in R" is contained in the union of 3" dyadic
cubes, each having length less than /.

6.4.2. Let k € Z. Show that the set [m27*, (m 4 5)27%) is a dyadic interval if and
only if s = 2 for some p € Z and m is an integer multiple of s.

6.4.3. Given a cube Q in R” of side length ¢(Q) < 2K~! for some integer k, prove
that there is a dyadic cube Dy of side length 2 such that Q € & + D for some
o =(01,...,0y), where 0; € {0,1/3,—1/3}.

6.4.4. Show that the martingale maximal function f — sup,z |Ex(f)] is weak type
(1,1) with constant at most 1.
[Him‘: Use Exercise 2.1.12.}

6.4.5. (a) Show that Ey(f) — f a.e.as N — oo forall f € L] (R").
(b) Prove that Ex(f) — f in L? as N — o for all f € LP(R") whenever 1 < p < co.

6.4.6. (a) Let k, k' € Z be such that k # k’. Show that for functions f and g in L>(R")
we have

(Di(f), Dy (g)) =0.
(b) Conclude that for functions f; in L*>(R") we have
1

2 2
Di(f; - ( D) )
jEZZ ]( j) LZ(R”) jEZZH ]( ])HLZ(R)
(c) Let A; and C be as in the statement of Theorem 6.4.8. Show that for any r € Z

we have
D:A:..D;
’jgi SR L2(R")—L2(R")

6.4.7. ([133]) Let D}, A; be as in Theorem 6.4.8.
(a) Prove that the operator

<c2 2l

V=Y DA,
JEZ

is bounded from L?(R") to itself with norm at most a multiple of 23,
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(b) Show that V, is L”(R") bounded for all 1 < p < oo with a constant depending
only on p and n.
(c) Conclude that for each 1 < p < oo there is a constant ¢, > 0 such that V, is

bounded on L”(R") with norm at most a multiple of 21",
[Hint: Part (a): Write A; = A;A;, where A; is another family of Littlewood—Paley
operators and use Exercise 6.4.6 (b). Part (b): Use duality and (6.1.21).}

6.5 The Spherical Maximal Function
In this section we discuss yet another consequence of the Littlewood—Paley theory,
the boundedness of the spherical maximal operator.

6.5.1 Introduction of the Spherical Maximal Function

We denote throughout this section by do the normalized Lebesgue measure on the
sphere S"! For Fin LP(R"), 1 < p < oo, we define the maximal operator

A (f)(x) = sup

t>0

(x—16)do(0) 6.5.1)

§n—1

and we observe that by Minkowski’s integral inequality each expression inside the
supremum in (6.5.1) is well defined for f € L? for almost all x € R". The operator
M is called the spherical maximal function. It is unclear at this point for which
functions f we have .#(f) < oo a.e. and for which values of p < e the maximal
inequality

1), < Coll o (652)

holds for all functions f € L?(R").
Spherical averages often make their appearance as solutions of partial differential
equations. For instance, the spherical average

u(x, 1) = ﬁ /S 1 fr—1y)do(y) (6.5.3)

is a solution of the wave equation

2I/l
Au)(rr) = S ().
u(x,0) =0,
du
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in R3. The introduction of the spherical maximal function is motivated by the fact
that the related spherical average

u(x) = o / x—1y)do(y) (6.5.4)

solves Darboux’s equation

2%u u
AX(”)(xvt) _W( ) )+ ) (xat)v
u(x,0) = f(x),
du
E(X,O) _O7

in R3. It is rather remarkable that the Fourier transform can be used to study almost
everywhere convergence for several kinds of maximal averaging operators such as
the spherical averages in (6.5.4). This is achieved via the boundedness of the cor-
responding maximal operator; the maximal operator controlling the averages over
S"~!is given in (6.5.1).

Before we begin the analysis of the spherical maximal function, we recall that

— 2n
d = 72 n—2 (2

as shown in Appendix B.4. Using the estimates in Appendices B.6 and B.7 and the
identity

d 1

2770 =5 Uv1(t) =Sy (1))

derived in Appendix B.2, we deduce the crucial estimate
— —~ Cn
[do(8)[+|Vdo(5)| < ——— . (6.5.5)
(1+181) 2

Theorem 6.5.1. Let n > 3. For each n%l < p < oo, there is a constant C,, such that
||///(f)Hu(Rn) < CI’HfHLP(R”) (6.5.6)

holds for all f in LP(R"). Consequently, for all -5 < p < oo and f € LP(R") we
have

lim
t—0 Wy —1 JSn-1

fx—10)do(0) = f(x) (6.5.7)

for almost all x € R". Here we set @,_1 = |S"_1 |-
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The proof of this theorem is given in the rest of this section. Before we present the
proof we explain the validity of (6.5.7). Clearly this assertion is valid for functions
€ (R"). Using inequality (6.5.6) and Theorem 2.1.14 we obtain that (6.5.7) holds
for all functions in f € L”(R").

We now focus on (6.5.6). Define m(&) = c??)'(é) and notice that m(§) is a €
function. To study the maximal multiplier operator

sup| (F(&)m(r€))"|

t>0

we decompose the multiplier m(&) into radial pieces as follows: We fix a radial €™
function ¢ in R” such that @o(€) =1 when |&| < 1 and @p(&) = 0 when |E| > 2.
For j > 1 we let

0;(&) =@o(277E) — po(2' &) (6.5.8)

and we observe that @;(&) is localized near || ~ 2/. Then we have

Jj=0

Set mj = @;m for all j > 0. The m;’s are ;" functions that satisfy

j=0

Also, the following estimate is valid:

where

A(f)() = sup (F(&)m;(e8))" (x)].

>0

Since the function myg is %;°, we have that .#() maps L? to itself for all 1 < p < oo,
(See Exercise 6.5.1.)
We define g-functions associated with m; as follows:

Gitne = [ |A,-J<f><x>“f)5,

where A (f)(x) = (f(é)mj(té))v(x)
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6.5.2 The First Key Lemma

We have the following lemma:

Lemma 6.5.2. There is a constant C = C(n) < oo such that for any j > 1 we have
the estimate

| #P)ll, < €237 | 1]
for all functions f in L*(R").

|L2

Proof. We define a function
mj(¢) =& -Vm;(&),
we let A, (f)(x) = (f(&)ﬁfl](té))v(x), and we let

- ([ oty

be the associated g-function. For f € L?(R"), the identity

dA;, -
s () = Aj()

is clearly valid for all j and 5. Since A; (f) = f* (m ) and m has integral zero for
J > 1 (here (m))s(x) = s~"m (s~ 'x)), it follows from Corollary 2.1.19 that

limA;(f)(x)=0

s—0

for all x € R"\ Ef, where E is some set of Lebesgue measure zero. By the funda-
mental theorem of calculus for x € R" \ Ey we deduce that

AN = [ £ @sunE)2ds

zz.A[Aj,s(f)(x)s%(f)(x)?
2 [ A0

from which we obtain the estimate

A (NP <2 /0 ) A (F) ()| A, (f | - (6.5.9)
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Taking the supremum over all # > 0 on the left-hand side in (6.5.9) and integrating
over R”, we obtain the estimate

ds
s

sl <2 [ [ sl 6] Sax

<2 G{NWG,()0dx
<216 2 1G]z

by applying the Cauchy—Schwarz inequality twice. Next we claim that as a conse-
quence of (6.5.5) we have for some ¢, ¢ < oo,

sl - <2777 and i < @200

Using these facts together with the facts that the functions m; and m; are sup-
ported in the annuli 2/-1 < IE] < 2741 we obtain that the g-functions G; and G;

. . .. sn—1
are L? bounded with norms at most a constant multiple of the quantities 2~/°2 and
. 1 . . .
2/(1="77) , respectively; see Exercise 6.5.2. Note that since n > 3, both exponents are
negative. We conclude that

|52 < €272

which is what we needed to prove. O

6.5.3 The Second Key Lemma

Next we need the following lemma.

Lemma 6.5.3. There exists a constant C = C(n) < oo such that for all j > 1 and for
all f in L'(R") we have

e < €2 £l

Proof. Let KU) = (¢;)"*do = @, xdo, where P is a Schwartz function. Setting
(KUY, (x) =t7"KY) (¢ x)

we have that
() = sup [(KY)),x f]. (6.5.10)

The proof of the lemma is based on the estimate:

MG(f) < C2M(F) (6.5.11)
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and the weak type (1, 1) boundedness of the Hardy-Littlewood maximal operator M
(Theorem 2.1.6). To establish (6.5.11), it suffices to show that for any M > n there is
a constant Cy; < oo such that

Cy 2/

W (6.5.12)

KV ()] = (@, *do)(x)] <

Then Theorem 2.1.10 yields (6.5.11) and hence the required conclusion.
Using the fact that & is a Schwartz function, we have for every N > 0,

(D)) xdo)(x)] < CN/SH m

We pick an N to depend on M (6.5.12); in fact, any N > M suffices for our purposes.
We split the last integral into the regions

S(x)=8"1n{yeR": 2x—y| <1}
and for r > 0,
S(x) =8"'n{yeR": 2" < 2|x—y| <2""}.

The key observation is that whenever B(y,R) is a ball of radius R in R” centered at
y € S""!, then the spherical measure of the set $"~! N B(y,R) is at most a dimen-
sional constant multiple of R"~!. This implies that the spherical measure of each
S,(x) is at most ¢,201=)"=1) "an estimate that is useful only when r < j. Using
this observation, together with the fact that for y € S,(x) we have |x| <217/ 41,
we obtain the following estimate for the expression |(P, ;j *do)(x)]:

Xj:/ Cn2" do(y) Z/ _Cy2'do(y)
o s (27— YDV & (1+27x—yV

<C1/v2nj|: i do(S r(x))XB(o,z)(X) n i d()-(Sf(x))%B(O,Z’“j+1)(x):|

= orN el orN
j (r+1—j)(n—1) o .
SC}/\/Z"/{ i cn2 / _ XB(0,3)(%) Y “’nfl%B(or,i]r+2 ,)(x)}
r=-1 2 r=j+1 2
. .= 1 ]+2r+27j M
= G [2’943(0,3)()5) +2v ) 2N()]

r=j+1 (1+|x|)M
0i o (r—j)(M-N)
<c [1+ }
7n(1+|x‘)M Ml 2](N+17n)
cy, 2/
(1M

where we used that N > M > n. This establishes (6.5.12). [l
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6.5.4 Completion of the Proof

It remains to combine the previous ingredients to complete the proof of the theorem.
Interpolating between the L> — L? and L! — L estimates obtained in Lemmas
6.5.2 and 6.5.3, we obtain

150 | o ey < €02 ]

for all 1 < p <2. When p > % the series Z;":lz(%—(n—l))f converges and we
conclude that .# is LP bounded for these p’s. The boundedness of .# on L? for
p > 2 follows by interpolation between L7 for ¢ < 2 and the estimate .# : L™ — L.

Exercises

6.5.1. Let m be in L' (R”) N L= (R") that satisfies |[m" (x)| < C(1+|x|) ¢ for some
0 > 0. Show that the maximal multiplier

Mn(f)(x) = sup | (F(&)m(1€)) " (»)]

t>0

is L? bounded for all 1 < p < co.

6.5.2. Suppose that the function m is supported in the annulus R < |&| < 2R and is
bounded by A. Show that the g-function

6w = [ w(m(rcf)f(é)w(x)sz

maps L*(R") to L?(R") with bound at most A+/Tog2.

6.5.3. ([302]) Let A,a,b > 0 with a+ b > 1. Use the idea of Lemma 6.5.2 to show
that if m(&) satisfies [m(E)| < A(1+]€])~ and |[Vm(E)| < A(1+|E])~° for all
& € R”, then the maximal operator

M (f)(x) = sup | (F(&)m(1€)) " (x)]

t>0

is bounded from L?(R") to itself.
[Hint: Use that

M <Y .

j=0
where ., ; corresponds to the multiplier ¢;m; here @; is as in (6.5.8). Show that

1—(a+b)

1 L :
[ i () 2 < Cll@m|| e @ o | ]l o < €272 |1 ]| o

where m(§) =& -Vm(&).]
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6.54.Let A,c > 0,a>1/2,0 < b < n. Follow the idea of the proof of Theorem
6.5.1 to obtain the following more general result: If du is a finite Borel measure
supported in the closed unit ball that satisfies |57,L\1(§ ) <A(1+|E]) 4 forall &£ e R”
and du(B(y,R)) < cR? for all R > 0, then the maximal operator

frsu| [ flem)du()

t>0

maps L? (R") to itself when p > %.

[Hint: Using the notation of the preceding exercise, show that ||.#Z, ;(f)l,2 <

C2j(%_“)||f||Lz and that ||, ()| 1 < C2/0D)||f||1 for all j € Z*, where C
is a constant depending on the given parameters.]

6.5.5. Show that Theorem 6.5.1 is false when n = 1, that is, show that the maximal
operator
lfx+8)+flx—1)
M ()) = sup !
t>0

is unbounded on L”(R) for all p < co.

6.5.6. Show that when n > 2 and p < .”5 there exists an L”(R") function f such
that .# (f)(x) = oo for all x € R". Hence Theorem 6.5.1 is false is this case.

[Hint: Choose a compactly supported and radial function equal to |y|' ™" (—log |y|) !
when [y < 1/2.]

6.6 Wavelets and Sampling

In this section we construct orthonormal bases of L?(R) generated by translations
and dilations of a single function. An example of such base is given by the Haar
functions we encountered in Section 6.4. The Haar functions are generated by in-
teger translations and dyadic dilations of the single function X%y~ XL .1y This

function is not smooth, and the main question addressed in this section is whether
there exist smooth analogues of the Haar functions.

Definition 6.6.1. A square integrable function ¢ on R" is called a wavelet if the
family of functions

Pvi(x) =27 9(2"x—k),

where v ranges over Z and k over Z", is an orthonormal basis of LZ(R”). This
means that the functions @, ; are mutually orthogonal and span L*(R"), and ¢ is
normalized to have L? norm equal to 1. Note that the Fourier transform of Qy i 1S
given by
P _ 2—% - 2=V —2mi2"VEk 6.6.1
Pvi(S) P(27"8)e - (6.6.1)
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Rephrasing the question posed earlier, the main issue addressed in this section is
whether smooth wavelets actually exist. Before we embark on this topic, we recall
that we have already encountered examples of nonsmooth wavelets.

Example 6.6.2. (The Haar wavelet) Recall the family of functions

ha(x) = 1112 G, — 22,
where [ ranges over Z (the set of all dyadic intervals) and 7y, is the left part of 7 and
I is the right part of 1. Note that if I = [27Vk,27V(k+ 1)), then
hi(x) =27 @(2"x— k),
where

@) = Xpo,1) = L1y (6.6.2)

2
The single function ¢ in (6.6.2) therefore generates the Haar basis by taking trans-
lations and dilations. Moreover, we observed in Section 6.4 that the family {#;}; is
orthonormal. Moreover, in Theorem 6.4.6 we obtained the representation

f: Z<f7hl>hl iana

e

which proves the completeness of the system {/;};c4 in L*>(R).

6.6.1 Some Preliminary Facts
Before we look at more examples, we make some observations. We begin with the
following useful fact.
Proposition 6.6.3. Let g € L' (R"). Then
gm)=0  forallmeZ"\{0}

if and only if
Z g(x+k) Z/Rng(t)dt

kezr
for almost all x € T".

Proof. We define the periodic function

Gx)= ) glx+k),

keZr
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which is easily shown to be in L' (T"). Moreover, we have

for all m € Z", where G(m) denotes the mth Fourier coefficient of G and g(m) de-
notes the Fourier transform of g at & = m. If g(m) = 0 for all m € Z"\ {0}, then
all the Fourier coefficients of G (except for m = 0) vanish, which means that the
sequence {G(m)}ezn lies in £'(Z") and hence Fourier inversion applies. We con-
clude that for almost all x € T" we have

G)= Y G(m)e™™* = G(0) = g(0) = / s(tyar.

meZ

Conversely, if G is a constant, then G(m) = 0 for all m € Z"\ {0}, and so the same
holds for g. U

A consequence of the preceding proposition is the following.

Proposition 6.6.4. Let ¢ € L>(R"). Then the sequence

{o(x—k) brezn (6.6.3)

forms an orthonormal set in L*(R") if and only if

Y 9E+hP=1 (6.6.4)

kezn
for almost all & € R™.

Proof. Observe that either (6.6.4) or the hypothesis that the sequence in (6.6.3) is
orthonormal implies that ||@||;2 = 1. Also the orthonormality condition

1 when j=k,

— el —Kk)dx =
o PPl k) dx {o when j £k,

is equivalent to

J RN TTERE)dE = (19 (k1) = {1 when J =k

0 when j#k,

in view of Parseval’s identity. Proposition 6.6.3 with g(&) = |@(&)|? gives that the
latter is equivalent to

Y IpE+RP= [ 190)Pd=1

keZr

for almost all £ € R". O
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Corollary 6.6.5. Let ¢ € L*>(R") and suppose that the sequence

{o(x—k)}ezn (6.6.5)

forms an orthonormal set in L*(R"). Then the measure of the support of @ is at least
1, that is,
|supp@| > 1. (6.6.6)

Moreover, if [supp ©| = 1, then |@(&)| = 1 for almost all & € supp .

Proof. Tt follows from (6.6.4) that |@| < 1 for almost all £ € R" and thus

sppl> [ 19E)PaE= [ Y @ RPac= [ a1,

" kezn

If equality holds in (6.6.6), then equality holds in the preceding inequality, and since
|p] <1 ae., it follows that |@(&)| = 1 for almost all £ in supp @. O

6.6.2 Construction of a Nonsmooth Wavelet

Having established these preliminary facts, we now start searching for examples of
wavelets. It follows from Corollary 6.6.5 that the support of the Fourier transform of
a wavelet must have measure at least 1. It is reasonable to ask whether this support
can have measure exactly 1. Example 6.6.6 indicates that this can indeed happen. As
dictated by the same corollary, the Fourier transform of such a wavelet must satisfy
|@(E)| =1 for almost all & € supp @, so it is natural to look for a wavelet ¢ such
that = y, for some set A. We can start by asking whether the function

O=x1y

=
Ol—

on R is an appropriate Fourier transform of a wavelet, but a moment’s thought shows
that the functions @ o and ¢y cannot be orthogonal to each other when p # 0.
The problem here is that the Fourier transforms of the functions @, ; cluster near
the origin and do not allow for the needed orthogonality. We can fix this problem
by considering a function whose Fourier transform vanishes near the origin. Among
such functions, a natural candidate is

7([71’,%)"‘7([%71)» (6.6.7)
which is indeed the Fourier transform of a wavelet.

Example 6.6.6. Let A = [—1,—1)J[4, 1) and define a function ¢ on R by setting

®=xa-
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Then we assert that the family of functions

{@vi () Ykezvez = {2"20(2"x — k) Yeezvez

is an orthonormal basis of L?(R) (i.e., the function ¢ is a wavelet). This is an exam-
ple of a wavelet with minimally supported frequency.

To verify this assertion, first note that {(Po,k}kez is an orthonormal set, since
(6.6.4) is easily seen to hold. Dilating by 2Y, it follows that {@y s }xcz is also an
orthonormal set for every fixed v € Z. Next, observe that if u # v, then

Supp @y x Nsupp @ = 0. (6.6.8)

This implies that the family {2"/2¢(2"x — k) }xez.vez is also orthonormal.
Next, we observe that the completeness of {@y }v kcz is equivalent to that of

{m(é)}v,kel = {27v/2€72mk§27vxzvfx(&)}v,kel- Let f € LZ(R), fix any v € Z,

and define
h(§) =2"7f(2"¢).
Suppose that for all k € Z,

0=(fPvx) :/ f(é)Z‘V/2e—27rik§27vd<§

2VA

— \/sz/zf(zvé)eizﬂikédg

= (Xah,e ™).

Exercise 6.6.1(a) shows {e 275}, , is an orthonormal basis of L2(A), and there-
fore y4h = 0 almost everywhere. From the definition of # it follows that y,v4 f =0
almost everywhere. Now suppose for all v,k € Z

0={(f.Pvi)

Then yovaf = 0 almost everywhere for all v € Z. Since Uycz2"A = R\ {0}, it
follows that f = 0 almost everywhere. We conclude {@}v,kez is complete.

6.6.3 Construction of a Smooth Wavelet

The wavelet basis of L?(R") constructed in Example 6.6.6 is forced to have slow
decay at infinity, since the Fourier transforms of the elements of the basis are non-
smooth. Smoothing out the function @ but still expecting ¢ to be wavelet is a bit
tricky, since property (6.6.8) may be violated when i ## v, and moreover, (6.6.4)
may be destroyed. These two obstacles are overcome by the careful construction of
the next theorem.
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Theorem 6.6.7. There exists a Schwartz function @ on the real line that is a wavelet,
that is, the collection of functions {Qy i} vez With @y (x) = 27 o2¥x—k) is an
orthonormal basis of L*(R). Moreover, the function ¢ can be constructed so that its
Fourier transform satisfies

supp @ C [—g,—%]u[%,%]. (6.6.9)
Note that in view of condition (6.6.9), the function ¢ must have vanishing mo-

ments of all orders.

Proof. We start with an odd smooth real-valued function @ on the real line such that
O(t) =% fort > % and such that @ is strictly increasing on the interval [ — %, %]
We set

a(r) =sin(O(1)+ §), B (1) =cos(O(t) + %),

and we observe that

a(r)’ +B()* =
and that
a(=1)=B()
for all real #. Next we introduce the smooth function @ defined via
B(-5—3)=a(t+%) whente [—%,—3],
o(t) = o(—t—%)=P(+45) whente[—3 —1],
o(r — %) whent € [%,%L
B(%_%) Whente[%,%}’

: 4
on the interval [—3%, —%] U[3.
the function ¢ by letting

] Note that @ is an even function. Finally we define

P(&) =e ™ w(8),

and we note that
/ (&) dé = 2/ )cos (2m(x — $)&) dE .
It follows that the function ¢ is symmetric about the number , that is, we have

¢(x) = @(1-x)

for all x € R. Note that ¢ is a Schwartz function whose Fourier transform is sup-
ported in the set [f %,f%] U [%, %]

Having defined ¢, we proceed by showing that it is a wavelet. In view of identity
(6.6.1) we have that @, 4 is supported in the set %2" < < %2", while @, is
supported in the set %2” <|é| < %2"‘. The intersection of these sets has measure
zero when |t — v| > 2, which implies that such wavelets are orthogonal to each
other. Therefore, it suffices to verify orthogonality between adjacent scales (i.e.,

whenv=pgandv=pu-+1).
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We begin with the case v = i, which, by a simple dilation, is reduced to the case
v = u = 0. Thus to obtain the orthogonality of the functions @ x(x) = ¢(x—k) and
®o,j(x) = @(x— j), in view of Proposition 6.6.4, it suffices to show that

Y 19 +h))P=1. (6.6.10)

kel

Since the sum in (6.6.10) is 1-periodic, we check that is equal to 1 only for & in
[1,3]. First for € € [, 3], the sum in (6.6.10) is equal to

)P +I9E -1 =)+ 1)
(G =3 +B((E~1)+3)
1

from the definition of @. A similar argument also holds for & € [3, 3} and this
completes the proof of (6.6.10). As a consequence of this identity we also obtain
that the functions @ ; have L? norm equal to 1, and thus so have the functions Oy ks
via a change of variables.

Next we prove the orthogonality of the functions @, ; and @y ; for general
V,k, j € Z. We begin by observing the validity of the following identity:

) when%ﬁégi,

6.6.11
+3) when—%gég—%. ( )

— (emiE2g (& _
P()(3) = { _mg/zi((%

This function is supported in

{feR: j<[E[<3In{EeR: F<|<f)={feR: F<[E[<3},

and on this set it is equal to
B(5-Da(3-3) when}<

—miE )2 3—3)a(3—3) when3<¢

¢ EygEal <

2 T2/P\2T2 =

by the definition of @. This establishes (6.6.11).
We now turn to the orthogonality of the functions @y ; and @y ; for general
Vv,k,j € Z. Using (6.6.1) and (6.6.11) we have

<(Pv,k|(Pv+l7j> = <m|¢v+l,j>
_ /2—%6(24 2m‘5"2 %@(Zf(vﬂ)é)e*z”i% dé
R
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:07

where the last identity follows from the change of variables & = £’ — 2 in the second-
to-last integral, which transforms its range of integration to [5 g} and its integrand
to the negative of that of the last displayed integral.

Our final task is to show that the orthonormal system {@y i}y ez is complete.
We show this by proving that whenever a square-integrable function f satisfies

(flove)=0 (6.6.12)

for all v,k € Z, then f must be zero. Suppose that (6.6.12) holds. Plancherel’s iden-
tity yields

V="

/f ) 2 vé) —2mi2~ Vékdé =0

for all v,k and thus

72765
R

for all v,k € Z. It follows from Proposition 6.6.3 and (6.6.13) (with k = 0) that

ezmgkdé _ (f(z"(-))?)A(—k) =0 (6.6.13)

Y Fe* & +i)9E+h = [ 72°6)3E)dE = (F2*(1) ) (0) =0

keZ

forallv € Z.
Next, we show that the identity

Y F2'E+h)P(E+k) =0 (6.6.14)

keZ

for all v € Z implies that fis identically equal to zero. Suppose that % <&E< % In
this case the support properties of @ imply that the only terms in the sum in (6.6.14)
that do not vanish are k = 0 and k = —1. Thus for <& < % the identity in (6.6.14)
reduces to

0 =F2"(E-1)9(E - 1) +/(2"6)9(E)

(&)
= F2Y(E = 1)e™EVB(E — 1) +5) + (2" )™ a(E — 1)
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hence
—fRYE-D)BE-H+fEaE -1 =0, 1<E<i (6615

Next we observe that when < & < %, only the terms with k =0 and k = —2 survive

in the identity in (6.6.14). ThlS is because whenk=—1,6 +k=E—1¢€ [—3.3] and
this interval has null intersection with the support of @. Therefore, (6.6.14) reduces
to

~ _—

0 = f(2"(6 ~2)9(E ~2)+ [(2"€)9(¢)
= F(2(& - 2)e P37 +5) + 2 6™ B(5 - 1)

hence

FRYE-a3 -H+FREBGE-1) =0, 2<E<i  (6616)

FRYE-D)aE-H+fEpE-1)=0, 1<E<?. (6.6.17)

Now consider the 2 x 2 system of equations given by (6.6.15) and (6.6.17) with
unknown f(2V(& —1)) and f(2V&). The determinant of the system is

BE-1/2) alE—1/2)\
de‘( aE-1/2) B <5—1/2>) 170.

Therefore, the system has the unique solution
FRY(E-1))=f(2"€) =0

which is valid for all v € Z and all € € [, ]. We conclude that f(&)=0forallé eR
and thus f = 0. This proves the completeness of the system { ¢, x }. We conclude that
the function ¢ is a wavelet. (|

6.6.4 Sampling

Next we discuss how one can recover a band-limited function by its values at a
countable number of points.

Definition 6.6.8. An integrable function on R” is called band limited if its Fourier
transform has compact support.

For every band-limited function there is a B > 0 such that its Fourier transform
is supported in the cube [—B,B]". In such a case we say that the function is band
limited on the cube [—B, B]".
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It is an interesting observation that such functions are completely determined by
their values at the points x = k/2B, where k € Z". We have the following result.

Theorem 6.6.9. (a) Let f in L'(R") be band limited on the cube [—B,B]". Then f
can be sampled by its values at the points x = k/2B, where k € Z". In particular, we

have o .
I sin(2nBx; — mk;
.. —_—_ .6.1
flarsom) = ), f<ZB)H 27Bx; — Tk, (6615

keZ" =1

for almost all x € R".
(b) Suppose that f is band-limited on the cube [—B',B'|" where 0 < B' < B. Then f
can be sampled by its values at the points x = k/2B, k € Z" as follows

Fotyem) = ¥ f<ZB) (x—k), (6.6.19)

kezr
for some Schwartz function @ that depends on B,B'.

Proof. Since the function fis supported in [—B, B]", we use Exercise 6.6.2 to obtain

18) = (23 Zf(2B) i

kezn
( ) 2mifs &

Inserting this identity in the inversion formula

keZ"

X) = 7 e wix-&
0= Feemta,

which holds for almost all x € R” since fis continuous and therefore integrable over
[—B,B]", we obtain

1 k 27:1235 27ix-&
_ - d
f) /[_BVB]n (2B)" kezzlnf (- 25) .
ky o1
D (e / il +0)€ g g (6.6.20)
kezzln < 23) (23) AP
sin(2mBx; + k)
- SIMERDY T ) 6.6.21
kezzlnf< ZB) 2nBx; + mk; ( )

This is exactly (6.6.18) when we change k to —k and thus part (a) is proved. For part
(b) we argue similarly, except that we replace x| p g by P, where @ is smooth,
equal to 1 on [—B’, B']" and vanishes outside [—B, B]". Then we can insert the func-
tion @(é) in (6.6.20) and instead of (6.6.21) we obtain the expression on the right
in (6.6.19). O
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Remark 6.6.10. Identity (6.6.18) holds for any B” > B. In particular, we have
(27Bx;j — mk;) k sin(2wB"x; — mk;)

) f(zlia)nmzmj_m: Y /() 1T 50,

kezr j=1 kezr J=1

for all x € R" whenever f is band-limited in [—B, B]". In particular, band-limited
functions in [—B,B]" can be sampled by their values at the points k/2B” for any
B" > B.

However, band-limited functions in [—B,B]" cannot be sampled by the points
k/2B' for any B’ < B, as the following example indicates.

Example 6.6.11. For 0 < B’ < B, let f(x) = g(x)sin(27B'x), where g is supported
in the interval [—(B— B’),B— B']. Then f is band limited in [—B, B], but it cannot
be sampled by its values at the points k/2B’, since it vanishes at these points and f
is not identically zero if g is not the zero function.

Next, we give a couple of results that relate the L” norm of a given function with
the ¢7 norm (or quasi-norm) of its sampled values.

Theorem 6.6.12. Let f be a tempered' function whose Fourier transform is sup-
ported in the closed ball B(0,t) for some 0 <t < co. Assume that f lies in L’ (R")
for some 0 < p < oo. Then there is a constant C(n, p) such that

H{f(k)}kel" (P (Z1) < C(n,p)t(l +t%>”f‘

LP(R")"

Proof. The proof is based on the following fact, whose proof can be found in [131]
(Lemma 2.2.3). Let O < r < oo. Then there exists a constant C; = C»(n,r) such that
for all # > 0 and for all €' functions u on R" whose distributional Fourier transform
is supported in the ball |£| <t we have

\V4 _
TIVelE =3l o, pa(ufry oy (6.6.22)
ern b (1+tlz))r

where M denotes the Hardy-Littlewood maximal operator.

Notice that f is a ¢ function since its Fourier transform is compactly supported.
Assuming (6.6.22), for each k € Z" and x € [0, 1] we use the mean value theorem
to obtain

()] < |f(x+k)|+vn S[Eﬁ’] IVf(z+k)|
z€|0,1]"
S|fx+R)[+vn o sup  [VF(z)].

2E€B(x+k,\/n)

We raise this inequality to the power p, we integrate over the cube [0,1]", we sum
over k € Z", and then we take the 1/p power. Let ¢, = max (1,27~ 1) and c(n,r,1) =

! A function is called tempered if there are constants C,M such that | f(x)| < C (1 + |x|)™ for all
x € R". Tempered functions are tempered distributions.
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V/nt(141y/n)"". The sum over k and the integral over [0, 1]" yield an integral over
R" and thus we obtain

PG

keZ"

1

< | [ lrwevi s vsepar)’
R” 2€B(x,y/n)

[E—
==

<¢ ||f||Lp+\/ﬁ(/Rn E;(lépf)lVf(xZ)”dx)p}
L z RV

_ Vi(x— p 5
<< ||f||u’+c(n’r’t)</kﬂ{ e;(l;gf)t(lfctké)n"} dx) ]
_ \V/ _ P %

< ¢p Hf| e nt) (/Rn {ziuﬁlM} dx) }

< eIl +etmmnca( [ sl ar) ],

where the last step uses (6.6.22). We now select r = p/2 if p < e and r to be
any number if p = c. The required inequality follows from the boundedness of the
Hardy-Littlewood maximal operator on L? if p < oo or on L™ if p = oo, O

The next theorem could be considered a partial converse of Theorem 6.6.13

Theorem 6.6.13. Suppose that an integrable function f has Fourier transform sup-
ported in the cube [—(1 — €), 1 — €]" for some 0 < € < 1/2. Furthermore, suppose
that the sequence of coefﬁczents {f (k) }rezn lies in €P(Z") for some 0 < p < oo. Then
f lies in LP(R") and the following estimate is valid

171

LP(R") = Cn,p,eu{f(k)}ngp(Z@ . (6.6.23)

Proof. We fix a smooth function @ supported in [—%, %]” and equal to 1 on the

smaller cube [—(% —g), % — g]". Then we may write f = f x @, since @ is equal to

one on the support of f Writing fin terms of its Fourier series we have
= Y FE™ s 1w = Y F(=R)ETE 1 (6.6.24)

keZ" 2 keZ"

9

Since f is integrable, f is continuous and thus integrable over [—5, %}” By Fourier
inversion we have

1=

220"

feretag= [ || FOBEE A (6629
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efzm‘k«‘; eZnix~c§ 5(& ) d&

This identity combined with the rapid decay of @ yields (6.6.23) as follows. For

0 < p <1 we have

172 < [,

L I

keZ

while for 1 < p < oo, setting Q =

s < | 2 [, (Z

IPID 0= k)7 = L) Yl ) @1

1

[_21

31" we write:

(k)| (x — k)|) dx]’l’

1 P P

<C, ——— | d
—Wé/kgfzmwwMX]
<Cx d ’
- leZ”/ keZZ"|f \[Hl k)N ) x}

1 plr
<cC —_— .
- -l;;’"(kg"‘f \/ﬁ+ll—kl)N”

The preceding expression can be Viewed as the ¢” norm of the discrete convolution

of the sequences { (k) }; and

of H{f(k)}kH[p(Zn), since the se
This completes the proof.

f+\k|)

—=——— and thus it is bounded by a constant multiple

quence is in £1(Z") if N is large enough.

O

(ﬁ+\kl)N

Exercise 6.6.6 gives examples of functions for which Theorem 6.6.13 fails

if e =0.

Exercises

6.6.1. (a) Let A = [-1,- 1)U

orthonormal basis of L(A).

1

3.1). Show that the family {e*™™},,cz is an

(b) Obtain the same conclusion for the family {*™"*}, czn in L?(A").
[Hint: To show completeness, given f € L*(A), define / on [0, 1] by setting h(x) =

f(x—1) for x € [0,

1) and h(x) =

flx )forxé[é,l) Observe that 2(m) = f(m) for

all m € Z and expand £ in Fourier series. ]
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6.6.2. Let g be an integrable function on R”".
(a) Suppose that g is supported in [—b,b]" for some b > 0 and that the sequence
{g(k/2b)}rezn lies in £2(Z"). Show that

—-n ~ ikx
g(x)=(20)" Y, 8(35)e*™ % ¥y,
keZr

where the series converges in L?(R”") and deduce that g is in L?(R").
(b) Suppose that g is supported in [0,b]" for some b > 0 and that the sequence
{g(k/b)}rczn lies in £2(Z"). Show that

—n -~ ikox
glx)=>b Z g(g)ezn b X0.b)
keZr

where the series converges in L?(R”") and deduce that g is in L?(R").

(c) When n = 1, obtain the same as the conclusion in part (b) for x € [—b, f%) U
[g,b), provided g is supported in this set.

[Hint: Part (¢): Use the result in Exercise 6.6.1.]

6.6.3. Show that the sequence of functions

Hk()C1,. .. ,xn) _ (23)% " sin (7'[(2ij —k]))

is orthonormal in L?(R").
[Him‘: Interpret the functions Hy as the Fourier transforms of known functions.]

6.6.4. Prove the following spherical multidimensional version of Theorem 6.6.9.
Suppose that f is supported in the ball |§| < R. Show that

B & LJ%(2n|Rx+§|)
f(x)_zf( 2R)2n \Rx—|—§|%

keZn

)

where J, is the Bessel function of order a.

6.6.5. Let {ay }rezn be in €7 for some 1 < p < oo. Show that the partial sums

1 Sil‘l(27L’ij' — Ekj)

Z akH ZEBXjfﬂkj

kezr  j=1

k<N
converge in ./(R") as N — oo to an L” function on R” whose Fourier transform
is supported in [—B, B]". Here k = (ki,...,k,). Moreover, the L? norm of A is con-
trolled by a constant multiple of the £” norm of {ay }.

6.6.6. Consider the function []}_; sin(7x;)/(7x;) on R" to show that Theorem
6.6.13 fails when € =0 and p < 1. When 1 < p <  consider the function x; +

[T} sin(mx;) /(7).
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6.6.7. (a) Let w(x) be a nonzero continuous integrable function on R that satisfies

Jr¥(x)dx=0and
400 | 177 2
b= [P

- |‘

Define the wavelet transform of f in L>(R) by setting

W(fia,b) = jg/_ff(xw(xab) dx

when a # 0 and W (f;0,b) = 0. Show that for any f € L*(R) the following inversion
formula holds:

flx) = é{/_:m/_:wcj%w(xb)W(f;a,b)de;l.

a

(b) State and prove an analogous wavelet transform inversion property on R”.
[Hint: Apply Theorem 2.2.14 (5) in the b-integral and use Fourier inversion.]

6.6.8. (P. Casazza) On R" let ¢; be the vector whose coordinates are zero every-
where except for the jth entry, whichis 1. Set g; =e; — %):Zz 1ex for1 < j<mnand
also g1 = ﬁ Y %_1 ex. Prove that

n+1 ) )
Y lgj-x* = Ix|
j=1

for all x € R". This provides an example of a tight frame on R".

HISTORICAL NOTES

An early account of square functions in the context of Fourier series appears in the work of
Kolmogorov [196], who proved the almost everywhere convergence of lacunary partial sums of
Fourier series of periodic square-integrable functions. This result was systematically studied and
extended to L? functions, 1 < p < oo, by Littlewood and Paley [227], [228], [229] using complex-
analysis techniques. The real-variable treatment of the Littlewood and Paley theorem was pioneered
by Stein [334] and allowed the higher-dimensional extension of the theory. The use of vector-valued
inequalities in the proof of Theorem 6.1.2 is contained in Benedek, Calderdn, and Panzone [22]. A
Littlewood—Paley theorem for lacunary sectors in R? was obtained by Nagel, Stein, and Wainger
[264].

An interesting Littlewood—Paley estimate holds for 2 < p < eo: There exists a constant C}, such
that for all families of disjoint open intervals /; in R the estimate ||(¥; \(fx[j WV \2)% lr < Cpllfller
holds for all functions f € LP(R). This was proved by Rubio de Francia [301], but the special case
in which I; = (j, j+1) was previously obtained by Carleson [55]. An alternative proof of Rubio de
Francia’s theorem was obtained by Bourgain [34]. A higher-dimensional analogue of this estimate
for arbitrary disjoint open rectangles in R” with sides parallel to the axes was obtained by Journé
[181]. Easier proofs of the higher-dimensional result were subsequently obtained by Sj6lin [326],
Soria [329], and Sato [311].

Part (a) of Theorem 6.2.7 is due to Mihlin [254] and the generalization in part (b) to Héormander
[159]. Theorem 6.2.2 can be found in Marcinkiewicz’s article [241] in the context of one-
dimensional Fourier series. Calder6n and Torchinsky [45] have improved Theorem 6.2.7 in the
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following way: if for a suitable smooth bump 77 supported in an annulus the functions m(2%&)n (&)
lie in the Sobolev space L’}', uniformly in k € Z, where ¥ > n(% - %) 1<p<2, % = % — % then m
lies in .#,(R"). The power 6 in estimate (6.2.3) that appears in the statement of Theorem 6.2.2 is
not optimal. Tao and Wright [357] proved that in dimension 1, the best power of (p — 1)~! in this
theorem is % as p — 1. An improvement of the Marcinkiewicz multiplier theorem in one dimen-
sion was obtained by Coifman, Rubio de Francia, and Semmes [69]. Weighted norm estimates for
Hoérmander—Mihlin multipliers were obtained by Kurtz and Wheeden [209] and for Marcinkiwiecz
multipliers by Kurtz [208]. Heo, Nazarov, and Seeger [150] have obtained a very elegant charac-
terization of radial L” multipliers in large dimensions; precisely, they showed that for dimensions
n>4and1<p< 2:;12 , aradial function m on R" is an L? Fourier multiplier if and only if there

exists a nonzero Schwartz function 17 such that sup,- o "/?{|(m(- )1 (z-))"||» < co. This characteri-
zation builds on and extends a previously obtained simple characterization by Garrigds and Seeger
[124] of radial multipliers on the invariant subspace of radial L? functions when 1 < p < n%fl .

The method of proof of Theorem 6.3.4 is adapted from Duoandikoetxea and Rubio de Francia
[102]. The method in this article is rather general and can be used to obtain L” boundedness for a
variety of rough singular integrals. A version of Theorem 6.3.6 was used by Christ [59] to obtain
L? smoothing estimates for Cantor-Lebesgue measures. When p = g # 2, Theorem 6.3.6 is false
in general, but it is true for all r satisfying \% — %| < \% — %| under the additional assumption that
the m;’s are Lipschitz functions uniformly at all scales. This result was independently obtained
by Carbery [52] and Seeger [316]. Miyachi [255] has obtained a complete characterization of the
indices a, b > 0 such that the functions |x| ~?¢/* y(x) are L? Fourier multipliers; here v is a smooth
function that is equal to 1 near infinity and vanishes near zero.

The probabilistic notions of conditional expectations and martingales have a strong connection
with the Littlewood—Paley theory discussed in this chapter. For the purposes of this exposition we
considered only the case of the sequence of c-algebras generated by the dyadic cubes of side length
2=% in R”. The L” boundedness of the maximal conditional expectation (Doob [97]) is analogous
to the L” boundedness of the dyadic maximal function; likewise with the corresponding weak type
(1,1) estimate. The L” boundedness of the dyadic martingale square function was obtained by
Burkholder [39] and is analogous to Theorem 6.1.2. Moreover, the estimate || supy |E(f)]|| =
||S (f )‘ 1> 0 < p <o, obtained by Burkholder and Gundy [40] and also by Davis [90] is analogous
to the square-function characterization of the Hardy space H” norm. For an exposition on the
different and unifying aspects of Littlewood—Paley theory we refer to Stein [337]. The proof of
Theorem 6.4.8, which quantitatively expresses the almost orthogonality of the Littlewood—Paley
and the dyadic martingale difference operators, is taken from Grafakos and Kalton [133].

The use of quadratic expressions in the study of certain maximal operators has a long history.
We refer to the article of Stein [340] for a historical survey. Theorem 6.5.1 was first proved by Stein
[339]. The proof in the text is taken from an article of Rubio de Francia [302]. Another proof when
n > 3 is due to Cowling and Mauceri [76]. The more difficult case n = 2 was settled by Bour-
gain [36] about 10 years later. Alternative proofs when n = 2 were given by Mockenhaupt, Seeger,
and Sogge [256] as well as Schlag [313]. The boundedness of maximal operators associated to
more general smooth measures on compact surfaces of finite type were investigated by losevich
and Sawyer [173]. The powerful machinery of Fourier integral operators was used by Sogge [328]
to obtain the boundedness of spherical maximal operators on compact manifolds without bound-
ary and positive injectivity radius; a simple proof for the boundedness of the spherical maximal
function on the sphere was given by Nguyen [269]. Weighted norm inequalities for the spheri-
cal maximal operator were obtained by Duoandikoetxea and Vega [103]. The discrete spherical
maximal function was studied by Magyar, Stein, and Wainger [237].

Much of the theory of square functions and the ideas associated with them has analogues in the
dyadic setting. A dyadic analogue of the theory discussed here can be obtained. For an introduction
to the area of dyadic harmonic analysis, we refer to Pereyra [276].

The idea of expressing (or reproducing) a signal as a weighted average of translations and
dilations of a single function appeared in early work of Calderdn [42]. This idea is in some sense a
forerunner of wavelets. An early example of a wavelet was constructed by Stromberg [352] in his
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search for unconditional bases for Hardy spaces. Another example of a wavelet basis was obtained
by Meyer [249]. The construction of an orthonormal wavelet presented in Theorem 6.6.7 is in
Lemarié and Meyer [216]. A compactly supported wavelet was constructed by Daubechies [88].
Mallat [238] introduced the notion of multiresolution analysis, which led to a systematic production
of wavelets. Theorem 6.6.9 is Shannon’s [319] version of Nyquist’s theorem [270] and is referred
to as the Nyquist-Shannon sampling theorem. It is a fundamental result in telecommunications and
signal processing, since it describes how to reconstruct a signal that contains no frequencies higher
than B Hertz in terms of its values at a sequence of points spaced 1/(2B) seconds apart.

The area of wavelets has taken off significantly since its inception, spurred by these early re-
sults. A general theory of wavelets and its use in Fourier analysis was carefully developed in the
two-volume monograph of Meyer [250], [251] and its successor Meyer and Coifman [253]. For
further study and a deeper account of developments on the subject the reader may consult the
books of Daubechies [89], Chui [64], Wickerhauser [374], Kaiser [184], Benedetto and Frazier
[23], Hérnandez and Weiss [151], Wojtaszczyk [379], Mallat [239], Meyer [252], Frazier [120],
Grochenig [140], and the references therein. Theorems 6.6.12 and 6.6.13 first appeared in a com-
bined form in the work of Plancherel and Pélya [285] for restrictions of entire functions of expo-
nential type on the real line.
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