
Chapter 6
Littlewood–Paley Theory and Multipliers

In this chapter we are concerned with orthogonality properties of the Fourier trans-
form. This orthogonality is easily understood on L2, but at this point it is not clear
how it manifests itself on other spaces. Square functions introduce a way to express
and quantify orthogonality of the Fourier transform on Lp and other function spaces.
The introduction of square functions in this setting was pioneered by Littlewood and
Paley, and the theory that subsequently developed is named after them. The extent
to which Littlewood–Paley theory characterizes function spaces is remarkable.

Historically, Littlewood–Paley theory first appeared in the context of one-dimen-
sional Fourier series and depended on complex function theory. With the develop-
ment of real-variable methods, the whole theory became independent of complex
methods and was extended to Rn. This is the approach that we follow in this chapter.
It turns out that the Littlewood–Paley theory is intimately related to the Calderón–
Zygmund theory introduced in the previous chapter. This connection is deep and
far-reaching, and its central feature is that one is able to derive the main results of
one theory from the other.

The thrust and power of the Littlewood–Paley theory become apparent in some of
the applications we discuss in this chapter. Such applications include the derivation
of certain multiplier theorems, that is, theorems that yield sufficient conditions for
bounded functions to be Lp multipliers. As a consequence of Littlewood–Paley the-
ory we also prove that the lacunary partial Fourier integrals

∫
|ξ |≤2N f̂ (ξ )e2πix·ξ dξ

converge almost everywhere to an Lp function f on Rn.

6.1 Littlewood–Paley Theory

We begin by examining more closely what we mean by orthogonality of the Fourier
transform. If the functions f j defined on Rn have Fourier transforms f̂ j supported in
disjoint sets, then they are orthogonal in the sense that
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∥
∥∑

j
f j
∥
∥2
L2 =∑

j

∥
∥ f j
∥
∥2
L2 . (6.1.1)

Unfortunately, when 2 is replaced by some p �= 2 in (6.1.1), the previous quanti-
ties may not even be comparable, as we show in Examples 6.1.8 and 6.1.9. The
Littlewood–Paley theorem provides a substitute inequality to (6.1.1) expressing the
fact that certain orthogonality considerations are also valid in Lp(Rn).

6.1.1 The Littlewood–Paley Theorem

The orthogonality we are searching for is best seen in the context of one-dimensional
Fourier series (which was the setting in which Littlewood and Paley formulated
their result). The primary observation is that the exponential e2πi2

kx oscillates half
as much as e2πi2

k+1x and is therefore nearly constant in each period of the latter.
This observation was instrumental in the proof of Theorem 3.6.4, which implied in
particular that for all 1< p< ∞ we have

∥
∥
∥

N

∑
k=1

ake2πi2
kx
∥
∥
∥
Lp[0,1]

≈
( N

∑
k=1

|ak|2
) 1

2
. (6.1.2)

In other words, we can calculate the Lp norm of ∑N
k=1 ake

2πi2kx in almost a pre-
cise fashion to obtain (modulo multiplicative constants) the same answer as in the
L2 case. Similar calculations are valid for more general blocks of exponentials in
the dyadic range {2k + 1, . . . ,2k+1− 1}, since the exponentials in each such block
behave independently from those in each previous block. In particular, the Lp inte-
grability of a function on T1 is not affected by the randomization of the sign of its
Fourier coefficients in the previous dyadic blocks. This is the intuition behind the
Littlewood–Paley theorem.

Motivated by this discussion, we introduce the Littlewood–Paley operators in the
continuous setting.

Definition 6.1.1. Let Ψ be an integrable function on Rn and j ∈ Z. We define the
Littlewood–Paley operator Δ j associated withΨ by

Δ j( f ) = f ∗Ψ2− j ,

whereΨ2− j(x) = 2 jnΨ(2 jx) for all x in Rn. Thus we have Ψ̂2− j(ξ ) = Ψ̂(2− jξ ) for
all ξ in Rn. We note that whenever Ψ is a Schwartz function and f is a tempered
distribution, the quantity Δ j( f ) is a well defined function.

These operators depend on the choice of the function Ψ ; in most applications
we chooseΨ to be a smooth function with compactly supported Fourier transform.
Observe that if Ψ̂ is supported in some annulus 0 < c1 < |ξ | < c2 < ∞, then the
Fourier transform of Δ j is supported in the annulus c12 j < |ξ | < c22 j; in other



6.1 Littlewood–Paley Theory 421

words, it is localized near the frequency |ξ | ≈ 2 j. Thus the purpose of Δ j is to
isolate the part of frequency of a function concentrated near |ξ | ≈ 2 j.

The square function associated with the Littlewood–Paley operators Δ j is
defined by

f �→
(
∑
j∈Z

|Δ j( f )|2
) 1

2
.

This quadratic expression captures the intrinsic orthogonality of the function f .

Theorem 6.1.2. (Littlewood–Paley theorem) Suppose that Ψ is an integrable C 1

function on Rn with mean value zero that satisfies

|Ψ(x)|+ |∇Ψ(x)| ≤ B(1+ |x|)−n−1 . (6.1.3)

Then there exists a constant Cn < ∞ such that for all 1< p< ∞ and all f in Lp(Rn)
we have

∥
∥
∥
(
∑
j∈Z

|Δ j( f )|2
) 1

2
∥
∥
∥
Lp(Rn)

≤CnBmax
(
p,(p−1)−1)∥∥ f

∥
∥
Lp(Rn)

. (6.1.4)

There also exists a C′
n < ∞ such that for all f in L1(Rn) we have

∥
∥
∥
(
∑
j∈Z

|Δ j( f )|2
) 1

2
∥
∥
∥
L1,∞(Rn)

≤C′
nB
∥
∥ f
∥
∥
L1(Rn)

. (6.1.5)

Conversely, letΨ be a Schwartz function such that either Ψ̂(0) = 0 and

∑
j∈Z

|Ψ̂(2− jξ )|2 = 1, for all ξ ∈ Rn \{0}, (6.1.6)

or Ψ̂ is compactly supported away from the origin and

∑
j∈Z
Ψ̂(2− jξ ) = 1, for all ξ ∈ Rn \{0}. (6.1.7)

Then there is a constant Cn,Ψ , such that for any f ∈S ′(Rn) with
(
∑ j∈Z |Δ j( f )|2

) 1
2

in Lp(Rn) for some 1 < p < ∞, there exists a unique polynomial Q such that the
tempered distribution f −Q coincides with an Lp function, and we have

∥
∥ f −Q

∥
∥
Lp(Rn)

≤Cn,Ψ Bmax
(
p,(p−1)−1)

∥
∥
∥
(
∑
j∈Z

|Δ j( f )|2
) 1

2
∥
∥
∥
Lp(Rn)

. (6.1.8)

Consequently, if g lies in Lp(Rn) for some 1< p< ∞, then

∥
∥g‖Lp(Rn) ≈

∥
∥
∥
(
∑
j∈Z

|Δ j(g)|2
) 1

2
∥
∥
∥
Lp(Rn)

.
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Proof. We first prove (6.1.4) when p = 2. Using Plancherel’s theorem, we see that
(6.1.4) is a consequence of the inequality

∑
j
|Ψ̂(2− jξ )|2 ≤CnB2 (6.1.9)

for someCn <∞. Because of (6.1.3), Fourier inversion holds forΨ . Furthermore,Ψ
has mean value zero and we may write

Ψ̂(ξ ) =
∫

Rn
e−2πix·ξΨ(x)dx=

∫

Rn
(e−2πix·ξ −1)Ψ(x)dx , (6.1.10)

from which we obtain the estimate

|Ψ̂(ξ )| ≤
√
4π|ξ |

∫

Rn
|x| 12 |Ψ(x)|dx≤CnB|ξ | 12 . (6.1.11)

For ξ = (ξ1, . . . ,ξn) �= 0, let j be such that |ξ j| ≥ |ξk| for all k ∈ {1, . . . ,n}. Integrate
by parts with respect to ∂ j in (6.1.10) to obtain

Ψ̂(ξ ) =−
∫

Rn
(−2πiξ j)−1e−2πix·ξ (∂ jΨ)(x)dx,

from which we deduce the estimate

|Ψ̂(ξ )| ≤ √
n |ξ |−1

∫

Rn
|∇Ψ(x)|dx≤CnB|ξ |−1. (6.1.12)

We now break the sum in (6.1.9) into the parts where 2− j|ξ | ≤ 1 and 2− j|ξ | ≥ 1
and use (6.1.11) and (6.1.12), respectively, to obtain (6.1.9). (See also Exercise 6.1.2.)
This proves (6.1.4) when p= 2.

We now turn our attention to the case p �= 2 in (6.1.4). We view (6.1.4) and (6.1.5)
as vector-valued inequalities in the spirit of Section 5.5. Define an operator �T acting
on functions on Rn as follows:

�T ( f )(x) = {Δ j( f )(x)} j .

The inequalities (6.1.4) and (6.1.5) we wish to prove say simply that �T is a bounded
operator from Lp(Rn,C) to Lp(Rn, �2) and from L1(Rn,C) to L1,∞(Rn, �2). We just
proved that this statement is true when p = 2, and therefore the first hypothesis of
Theorem 5.6.1 is satisfied. We observe that the operator �T can be written in the form

�T ( f )(x) =
{∫

Rn
Ψ2− j(x− y) f (y)dy

}

j
=
∫

Rn
�K(x− y)( f (y))dy,

where for each x ∈ Rn, �K(x) is a bounded linear operator from C to �2 given by

�K(x)(a) = {Ψ2− j(x)a} j. (6.1.13)
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We clearly have that ‖�K(x)‖C→�2 =
(
∑ j |Ψ2− j(x)|2)

1
2 , and to be able to apply

Theorem 5.6.1 we need to know that for some constant Cn we have
∥
∥�K(x)

∥
∥
C→�2

≤CnB |x|−n , (6.1.14)

lim
ε↓0

∫

ε≤|y|≤1
�K(y)dy=

{∫ 1

0
Ψ2 j(y)dy

}

j∈Z
, (6.1.15)

sup
y �=0

∫

|x|≥2|y|

∥
∥�K(x− y)−�K(x)

∥
∥
C→�2

dx≤CnB. (6.1.16)

Of these, (6.1.14) is easily obtained using (6.1.3), (6.1.15) i.e. trivial, and so we focus
on (6.1.16). SinceΨ is a C 1 function, for |x| ≥ 2|y| we have

|Ψ2− j(x− y)−Ψ2− j(x)|
≤ 2(n+1) j|∇Ψ(2 j(x−θy))| |y| for some θ ∈ [0,1],

≤ B2(n+1) j(1+2 j|x−θy|)−(n+1)|y|
≤ B2n j

(
1+2 j−1|x|)−(n+1)2 j|y| since |x−θy| ≥ 1

2 |x|.

(6.1.17)

We also have that

|Ψ2− j(x− y)−Ψ2− j(x)|
≤ 2n j|Ψ(2 j(x− y))|+2 jn|Ψ(2 jx)|
≤ B2n j

(
1+2 j|x|)−(n+1)

+B2 jn(1+2 j−1|x|)−(n+1)

≤ 2B2n j
(
1+2 j−1|x|)−(n+1)

.

(6.1.18)

Taking the geometric mean of (6.1.17) and (6.1.18), we obtain for any γ ∈ [0,1]

|Ψ2− j(x− y)−Ψ2− j(x)| ≤ 21−γ B2n j(2 j|y|)γ(1+2 j−1|x|)−(n+1)
. (6.1.19)

Using this estimate, when |x| ≥ 2|y|, we obtain

∥
∥�K(x− y)−�K(x)

∥
∥
C→�2

=

(

∑
j∈Z

∣
∣Ψ2− j(x− y)−Ψ2− j(x)

∣
∣2
)1/2

≤ ∑
j∈Z

∣
∣Ψ2− j(x− y)−Ψ2− j(x)

∣
∣

≤ 2B
(
|y| ∑

2 j< 2
|x|

2(n+1) j+ |y| 12 ∑
2 j≥ 2

|x|

2(n+
1
2 ) j(2 j−1|x|)−(n+1)

)

≤CnB
(|y||x|−n−1+ |y| 12 |x|−n− 1

2
)
,

where we used (6.1.19) with γ = 1 in the first sum and (6.1.19) with γ = 1/2 in
the second sum. Using this bound, we easily deduce (6.1.16) by integrating over the
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region |x| ≥ 2|y|. Finally, using Theorem 5.6.1 we conclude the proofs of (6.1.4) and
(6.1.5), which establishes one direction of the theorem.

We now turn to the converse direction. Let Δ ∗
j be the adjoint operator of Δ j

given by Δ̂ ∗
j f = f̂ Ψ̂2− j . Let f be in S ′(Rn). Then the series ∑ j∈ZΔ ∗

j Δ j( f ) con-
verges in S ′(Rn). To see this, it suffices to show that the sequence of partial sums
uN = ∑| j|<N Δ ∗

j Δ j( f ) converges in S ′. This means that if we test this sequence
against a Schwartz function g, then it is a Cauchy sequence and hence it converges as
N → ∞. But an easy argument using duality and the Cauchy–Schwarz and Hölder’s
inequalities shows that for M > N we have

|〈uN ,g〉−〈uM,g〉| ≤
∥
∥
∥
(
∑
j
|Δ j( f )|2

) 1
2
∥
∥
∥
Lp

∥
∥
∥
(
∑

N≤| j|≤M
|Δ j(g)|2

) 1
2
∥
∥
∥
Lp′

,

and this can be made small by pickingM>N ≥N0(g). Since the sequence 〈uN ,g〉 is
Cauchy, it converges to some Λ(g). Now it remains to show that the map g �→Λ(g)
is a tempered distribution. Obviously Λ(g) is a linear functional. Also,

|Λ(g)| ≤
∥
∥
∥
(
∑
j
|Δ j( f )|2

) 1
2
∥
∥
∥
Lp

∥
∥
∥
(
∑
j
|Δ j(g)|2

) 1
2
∥
∥
∥
Lp′

≤ Cp′
∥
∥
∥
(
∑
j
|Δ j( f )|2

) 1
2
∥
∥
∥
Lp

∥
∥g
∥
∥
Lp′ ,

and since ‖g‖Lp′ is controlled by a finite number of Schwartz seminorms of g, it
follows that Λ is inS ′. The distribution Λ is the limit of the series ∑ jΔ ∗

j Δ j.
Under hypothesis (6.1.6), the Fourier transform of the tempered distribution f −

∑ j∈ZΔ ∗
j Δ j( f ) is supported at the origin. This implies that there exists a polynomial

Q such that f −Q= ∑ j∈ZΔ ∗
j Δ j( f ). Now let g be a Schwartz function. We have

∣
∣
〈
f −Q , g

〉∣
∣ =
∣
∣
〈
∑
j∈Z
Δ ∗

j Δ j( f ),g
〉∣
∣

=
∣
∣∑
j∈Z

〈
Δ ∗

j Δ j( f ),g
〉∣
∣

=
∣
∣∑
j∈Z

〈
Δ j( f ),Δ j(g)

〉∣
∣

=

∣
∣
∣
∣

∫

Rn
∑
j∈Z
Δ j( f ) Δ j(g)dx

∣
∣
∣
∣

≤
∫

Rn

(
∑
j∈Z

|Δ j( f )|2
) 1

2
(
∑
j∈Z

|Δ j(g)|2
) 1

2
dx

≤
∥
∥
∥
(
∑
j∈Z

|Δ j( f )|2
) 1

2
∥
∥
∥
Lp

∥
∥
∥
(
∑
j∈Z

|Δ j(g)|2
) 1

2
∥
∥
∥
Lp′
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≤
∥
∥
∥
(
∑
j∈Z

|Δ j( f )|2
) 1

2
∥
∥
∥
Lp
CnBmax

(
p′,(p′ −1)−1)∥∥g

∥
∥
Lp′ , (6.1.20)

having used the definition of the adjoint (Section 2.5.2), the Cauchy–Schwarz in-
equality, Hölder’s inequality, and (6.1.4). Taking the supremum over all g in Lp′

with norm at most one, we obtain that the tempered distribution f −Q is a bounded
linear functional on Lp′ . By the Riesz representation theorem, f −Q coincides with
an Lp function whose norm satisfies the estimate

∥
∥ f −Q

∥
∥
Lp ≤CnBmax

(
p,(p−1)−1)

∥
∥
∥
(
∑
j∈Z

|Δ j( f )|2
) 1

2
∥
∥
∥
Lp
.

We now show uniqueness. If Q1 is another polynomial, with f −Q1 ∈ Lp, then
Q−Q1 must be an Lp function; but the only polynomial that lies in Lp is the zero
polynomial. This completes the proof of the converse of the theorem under hypoth-
esis (6.1.6).

To obtain the same conclusion under the hypothesis (6.1.7) we argue in a similar
way but we leave the details as an exercise. (One may adapt the argument in the
proof of Corollary 6.1.7 to this setting.) �

Remark 6.1.3. We make some observations. If Ψ̂ is real-valued, then the operators
Δ j are self-adjoint. Indeed,

∫

Rn
Δ j( f )gdx=

∫

Rn
f̂ Ψ̂2− j ĝ dξ =

∫

Rn
f̂ Ψ̂2− j ĝ dξ =

∫

Rn
f Δ j(g)dx .

Moreover, ifΨ is a radial function, we see that the operators Δ j are self-transpose,
that is, they satisfy ∫

Rn
Δ j( f )gdx=

∫

Rn
f Δ j(g)dx.

Assume now thatΨ is both radial and has a real-valued Fourier transform. Suppose
also thatΨ satisfies (6.1.3) and that it has mean value zero. Then the inequality

∥
∥
∥∑

j∈Z
Δ j( f j)

∥
∥
∥
Lp

≤CnBmax
(
p,(p−1)−1)

∥
∥
∥
(
∑
j∈Z

| f j|2
)1

2
∥
∥
∥
Lp

(6.1.21)

is true for sequences of functions { f j} j. To see this we use duality. Let

�T ( f ) = {Δ j( f )} j .

Then
�T ∗({g j} j) =∑

j
Δ j(g j) .

Inequality (6.1.4) says that the operator �T maps Lp(Rn,C) to Lp(Rn, �2), and its dual
statement is that �T ∗ maps Lp′(Rn, �2) to Lp′(Rn,C). This is exactly the statement in
(6.1.21) if p is replaced by p′. Since p is any number in (1,∞), (6.1.21) is proved.
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6.1.2 Vector-Valued Analogues

We now obtain a vector-valued extension of Theorem 6.1.2. We have the following.

Proposition 6.1.4. LetΨ be an integrable C 1 function on Rn with mean value zero
that satisfies (6.1.3) and let Δ j be the Littlewood–Paley operator associated withΨ .
Then there exists a constant Cn < ∞ such that for all 1< p,r < ∞ and all sequences
of Lp functions f j we have

∥
∥
∥
(
∑
j∈Z

(
∑
k∈Z

|Δk( f j)|2
)r

2
)1

r
∥
∥
∥
Lp(Rn)

≤CnBC̃p,r

∥
∥
∥
(
∑
j∈Z

| f j|r
)1

r
∥
∥
∥
Lp(Rn)

,

where C̃p,r = max(p,(p− 1)−1)max(r,(r− 1)−1). Moreover, for some C′
n > 0 and

all sequences of L1 functions f j we have

∥
∥
∥
(
∑
j∈Z

(
∑
k∈Z

|Δk( f j)|2
)r

2
)1

r
∥
∥
∥
L1,∞(Rn)

≤C′
nBmax(r,(r−1)−1)

∥
∥
∥
(
∑
j∈Z

| f j|r
)1

r
∥
∥
∥
L1(Rn)

.

In particular,

∥
∥
∥
(
∑
j∈Z

|Δ j( f j)|r
)1

r
∥
∥
∥
Lp(Rn)

≤CnBC̃p,r

∥
∥
∥
(
∑
j∈Z

| f j|r
)1

r
∥
∥
∥
Lp(Rn)

. (6.1.22)

Proof. We introduce Banach spacesB1 =C andB2 = �2 and for f ∈ Lp(Rn) define
an operator

�T ( f ) = {Δk( f )}k∈Z .
In the proof of Theorem 6.1.2 we showed that �T has a kernel �K that satisfies con-
dition (6.1.16). Furthermore, �T obviously maps Lr(Rn,C) to Lr(Rn, �r). Applying
Proposition 5.6.4, we obtain the first two statements of the proposition. Restricting
to k = j yields (6.1.22). �

6.1.3 Lp Estimates for Square Functions Associated with Dyadic
Sums

Let us pick a Schwartz functionΨ whose Fourier transform is compactly supported
in the annulus 2−1 ≤ |ξ | ≤ 22 such that (6.1.6) is satisfied. (Clearly (6.1.6) has no
chance of being satisfied if Ψ̂ is supported only in the annulus 1 ≤ |ξ | ≤ 2.) The
Littlewood–Paley operation f �→ Δ j( f ) represents the smoothly truncated frequency
localization of a function f near the dyadic annulus |ξ | ≈ 2 j. Theorem 6.1.2 says that
the square function formed by these localizations has Lp norm comparable to that of
the original function. In other words, this square function characterizes the Lp norm
of a function. This is the main feature of Littlewood–Paley theory.
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One may ask whether Theorem 6.1.2 still holds if the Littlewood–Paley operators
Δ j are replaced by their nonsmooth versions

f �→ (χ2 j≤|ξ |<2 j+1 f̂ (ξ )
)∨(x). (6.1.23)

This question has a surprising answer that already signals that there may be some
fundamental differences between one-dimensional and higher-dimensional Fourier
analysis. The square function formed by the operators in (6.1.23) can be used to
characterize Lp(R) in the same way Δ j did, but not Lp(Rn) when n> 1 and p �= 2.
The problem lies in the fact that the characteristic function of the unit disk is not
an Lp multiplier on Rn when n ≥ 2 unless p = 2; see Section 5.1 in [131]. The
one-dimensional result we alluded to earlier is the following.

For j ∈ Z we introduce the one-dimensional operator

Δ #
j ( f )(x) = ( f̂ χI j)

∨(x) , (6.1.24)

where
I j = [2 j,2 j+1)∪ (−2 j+1,−2 j] ,

and Δ #
j is a version of the operator Δ j in which the characteristic function of the set

2 j ≤ |ξ |< 2 j+1 replaces the function Ψ̂(2− jξ ).

Theorem 6.1.5. There exists a constant C1 such that for all 1 < p < ∞ and all f in
Lp(R) we have
∥
∥ f
∥
∥
Lp(Rn)

C1(p+ 1
p−1 )

2
≤
∥
∥
∥
(
∑
j∈Z

|Δ #
j ( f )|2

)1
2
∥
∥
∥
Lp(Rn)

≤C1(p+ 1
p−1 )

2∥∥ f
∥
∥
Lp(Rn)

. (6.1.25)

Proof. Pick a Schwartz function ψ on the line whose Fourier transform is supported
in the set 2−1 ≤ |ξ | ≤ 22 and is equal to 1 on the set 1 ≤ |ξ | ≤ 2. Let Δ j be the
Littlewood–Paley operator associated with ψ . Observe that Δ jΔ #

j = Δ #
j Δ j = Δ #

j ,
since ψ̂ is equal to one on the support of Δ #

j ( f )̂ . We now use Exercise 5.6.1(a) to
obtain

∥
∥
∥
(
∑
j∈Z

|Δ #
j ( f )|2

)1
2
∥
∥
∥
Lp

=
∥
∥
∥
(
∑
j∈Z

|Δ #
j Δ j( f )|2

)1
2
∥
∥
∥
Lp

≤Cmax(p,(p−1)−1)
∥
∥
∥
(
∑
j∈Z

|Δ j( f )|2
)1

2
∥
∥
∥
Lp

≤CBmax(p,(p−1)−1)2
∥
∥ f
∥
∥
Lp ,

where the last inequality follows from Theorem 6.1.2. The reverse inequality for
1< p<∞ follows just like the reverse inequality (6.1.8) of Theorem 6.1.2 by simply
replacing the Δ j’s by the Δ #

j ’s and setting the polynomial Q equal to zero. (There is
no need to use the Riesz representation theorem here, just the fact that the Lp norm
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of f can be realized as the supremum of expressions |〈 f ,g〉| where g has Lp′ norm
at most 1.) �

There is a higher-dimensional version of Theorem 6.1.5 with dyadic rectan-
gles replacing the dyadic intervals. As has already been pointed out, the higher-
dimensional version with dyadic annuli replacing the dyadic intervals is false.

Let us introduce some notation. For j ∈ Z, we denote by I j the dyadic set
[2 j,2 j+1)

⋃
(−2 j+1,−2 j] as in the statement of Theorem 6.1.5. For j1, . . . , jn ∈ Z

define a dyadic rectangle

Rj1,..., jn = I j1 ×·· ·× I jn

in Rn. Actually Rj1,..., jn is not a rectangle but a union of 2n rectangles; with some
abuse of language we still call it a rectangle. For notational convenience we write

Rj = Rj1,..., jn , where j= ( j1, . . . , jn) ∈ Zn.

Observe that for different j, j′ ∈ Zn the rectangles Rj and Rj′ have disjoint interiors
and that the union of all the Rj’s is equal to Rn \{0}. In other words, the family of
Rj’s, where j ∈ Zn, forms a tiling of Rn, which we call the dyadic decomposition of
Rn. We now introduce operators

Δ #
j ( f )(x) = ( f̂ χRj)

∨(x) , (6.1.26)

and we have the following n-dimensional extension of Theorem 6.1.5.

Theorem 6.1.6. For a Schwartz function ψ on the line with integral zero we define
the operator

Δj( f )(x) =
(
ψ̂(2− j1ξ1) · · · ψ̂(2− jnξn) f̂ (ξ )

)∨
(x) , (6.1.27)

where j= ( j1, . . . , jn) ∈ Zn. Then there is a dimensional constant Cn such that

∥
∥
∥
(
∑
j∈Zn

|Δj( f )|2
)1

2
∥
∥
∥
Lp(Rn)

≤Cn(p+(p−1)−1)n
∥
∥ f
∥
∥
Lp(Rn)

. (6.1.28)

Let Δ #
j be the operators defined in (6.1.26). Then there exists a positive constant Cn

such that for all 1< p< ∞ and all f ∈ Lp(Rn) we have
∥
∥ f
∥
∥
Lp(Rn)

Cn(p+ 1
p−1 )

2n
≤
∥
∥
∥
(
∑
j∈Zn

|Δ #
j ( f )|2

)1
2
∥
∥
∥
Lp(Rn)

≤Cn(p+ 1
p−1 )

2n∥∥ f
∥
∥
Lp(Rn)

. (6.1.29)

Proof. We first prove (6.1.28). Note that if j = ( j1, . . . , jn) ∈ Zn, then the operator
Δj is equal to

Δj( f ) = Δ
( j1)
j1

· · ·Δ ( jn)
jn ( f ) ,



6.1 Littlewood–Paley Theory 429

where the Δ ( jr)
jr are one-dimensional operators given on the Fourier transform

by multiplication by ψ̂(2− jrξr), with the remaining variables fixed. Inequality in
(6.1.28) is a consequence of the one-dimensional case. For instance, we discuss the
case n= 2. Using Proposition 6.1.4, we obtain

∥
∥
∥
(
∑
j∈Z2

|Δj( f )|2
)1

2
∥
∥
∥
p

Lp(R2)

=

∫

R

[∫

R

(
∑
j1∈Z
∑
j2∈Z

|Δ (1)
j1
Δ (2)

j2
( f )(x1,x2)|2

)p
2
dx1

]

dx2

≤Cpmax(p,(p−1)−1)p
∫

R

[∫

R

(
∑
j2∈Z

|Δ (2)
j2
( f )(x1,x2)|2

)p
2
dx1

]

dx2

=Cpmax(p,(p−1)−1)p
∫

R

[∫

R

(
∑
j2∈Z

|Δ (2)
j2
( f )(x1,x2)|2

)p
2
dx2

]

dx1

≤C2pmax(p,(p−1)−1)2p
∫

R

[∫

R
| f (x1,x2)|p dx2

]

dx1

=C2pmax(p,(p−1)−1)2p
∥
∥ f
∥
∥p
Lp(R2)

,

where we also used Theorem 6.1.2 in the calculation. Higher-dimensional versions
of this estimate may easily be obtained by induction.

We now turn to the upper inequality in (6.1.29). We pick a Schwartz function ψ
whose Fourier transform is supported in the union [−4,−1/2]

⋃
[1/2,4] and is equal

to 1 on [−2,−1]
⋃
[1,2]. Then we clearly have

Δ #
j = Δ #

j Δj ,

since ψ̂(2− j1ξ1) · · · ψ̂(2− jnξn) is equal to 1 on the rectangle Rj. We now use Exercise
5.6.1(b) and estimate (6.1.28) to obtain

∥
∥
∥
(
∑
j∈Zn

|Δ #
j ( f )|2

)1
2
∥
∥
∥
Lp

=
∥
∥
∥
(
∑
j∈Zn

|Δ #
j Δj( f )|2

)1
2
∥
∥
∥
Lp

≤Cmax(p,(p−1)−1)n
∥
∥
∥
(
∑
j∈Zn

|Δj( f )|2
)1

2
∥
∥
∥
Lp

≤CBmax(p,(p−1)−1)2n
∥
∥ f
∥
∥
Lp .

The lower inequality in (6.1.29) for 1< p< ∞ is proved like inequality (6.1.8) in
Theorem 6.1.2. The fundamental ingredient in the proof is that f = ∑j∈Zn Δ #

j Δ
#
j ( f )

for all Schwartz functions f , where the sum is interpreted as the L2-limit of the se-
quence of partial sums. Thus the series converges inS ′, and pairing with a Schwartz
function g, we obtain the lower inequality in (6.1.29) for Schwartz functions, by
applying the steps that prove (6.1.20) (with Q = 0). To prove the lower inequality
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in (6.1.29) for a general function f ∈ Lp(Rn) we approximate an Lp function by a
sequence of Schwartz functions in the Lp norm. Then both sides of the lower in-
equality in (6.1.29) for the approximating sequence converge to the corresponding
sides of the lower inequality in (6.1.29) for f ; the convergence of the sequence of
Lp norms of the square functions requires the upper inequality in (6.1.29) that was
previously established. This concludes the proof of the theorem. �

Next we observe that if the Schwartz function ψ is suitably chosen, then the
reverse inequality in estimate (6.1.28) also holds. More precisely, suppose ψ̂(ξ ) is
an even smooth real-valued function supported in the set 9

10 ≤ |ξ | ≤ 21
10 in R that

satisfies
∑
j∈Z
ψ̂(2− jξ ) = 1, ξ ∈ R\{0}; (6.1.30)

then we have the following.

Corollary 6.1.7. Suppose that ψ satisfies (6.1.30) and let Δj be as in (6.1.27). Let f

be an Lp function on Rn such that the function
(
∑j∈Zn |Δj( f )|2

)1
2 is in Lp(Rn). Then

there is a constant Cn that depends only on the dimension and ψ such that the lower
estimate ∥

∥ f
∥
∥
Lp

Cn(p+ 1
p−1 )

n
≤
∥
∥
∥
(
∑
j∈Zn

|Δj( f )|2
)1

2
∥
∥
∥
Lp

(6.1.31)

holds.

Proof. If we had ∑ j∈Z |ψ̂(2− jξ )|2 = 1 instead of (6.1.30), then we could apply the
method used in the lower estimate of Theorem 6.1.2 to obtain the required conclu-
sion. In this case we provide another argument that is very similar in spirit.

We first prove (6.1.31) for Schwartz functions f . Then the series ∑ j∈Zn Δj( f )
converges in L2 (and hence inS ′) to f . Now let g be another Schwartz function. We
express the inner product

〈
f ,g
〉
as the action of the distribution ∑j∈Zn Δj( f ) on the

test function g:

∣
∣
〈
f ,g
〉∣
∣ =
∣
∣
∣
〈
∑
j∈Zn

Δj( f ),g
〉∣∣
∣

=
∣
∣
∣ ∑
j∈Zn

〈
Δj( f ),g

〉∣∣
∣

=
∣
∣
∣ ∑
j∈Zn

∑
k=(k1,...,kn)∈Zn

∃r |kr− jr |≤1}

〈
Δj( f ),Δk(g)

〉∣∣
∣

≤
∫

Rn
∑
j∈Zn

∑
k=(k1,...,kn)∈Zn

∃r |kr− jr |≤1}

∣
∣Δj( f )

∣
∣
∣
∣Δk(g)

∣
∣dx

≤ 3n
∫

Rn

(
∑
j∈Zn

∣
∣Δj( f )

∣
∣2
) 1

2
(
∑
k∈Zn

∣
∣Δk(g)

∣
∣2
) 1

2
dx
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≤ 3n
∥
∥
∥
(
∑
j∈Zn

∣
∣Δj( f )

∣
∣2
) 1

2
∥
∥
∥
Lp

∥
∥
∥
(
∑
k∈Zn

∣
∣Δk(g)

∣
∣2
) 1

2
∥
∥
∥
Lp′

≤C−1
n max

(
p′,(p′ −1)−1)n∥∥g

∥
∥
Lp′
∥
∥
∥
(
∑
j∈Zn

∣
∣Δj( f )

∣
∣2
) 1

2
∥
∥
∥
Lp
,

where we used the fact that Δj( f ) and Δk(g) are orthogonal operators unless every
coordinate of k is within 1 unit of the corresponding coordinate of j; this is an easy
consequence of the support properties of ψ̂ . We now take the supremum over all g
in Lp′ with norm at most 1, to obtain (6.1.31) for Schwartz functions f .

To extend this estimate to general Lp functions f , we use the density argument
described in the last paragraph in the proof of Theorem 6.1.6. �

6.1.4 Lack of Orthogonality on Lp

We discuss two examples indicating why (6.1.1) cannot hold if the exponent 2 is
replaced by some other exponent q �= 2. More precisely, we show that if the functions
f j have Fourier transforms supported in disjoint sets, then the inequality

∥
∥
∥∑

j
f j
∥
∥
∥
p

Lp
≤Cp∑

j

∥
∥ f j
∥
∥p
Lp (6.1.32)

cannot hold if p> 2, and similarly, the inequality

∑
j

∥
∥ f j
∥
∥p
Lp ≤Cp

∥
∥
∥∑

j
f j
∥
∥
∥
p

Lp
(6.1.33)

cannot hold if p < 2. In both (6.1.32) and (6.1.33) the constants Cp are supposed to
be independent of the functions f j.

Example 6.1.8. Pick a Schwartz function ζ whose Fourier transform is positive and
supported in the interval |ξ | ≤ 1/4. Let N be a large integer and let

f j(x) = e2πi jxζ (x).

Then
f̂ j(ξ ) = ζ̂ (ξ − j)

and the f̂ j’s have disjoint Fourier transforms. We obviously have

N

∑
j=0

∥
∥ f j
∥
∥p
Lp = (N+1)

∥
∥ζ
∥
∥p
Lp .
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On the other hand, we have the estimate

∥
∥
∥

N

∑
j=0

f j
∥
∥
∥
p

Lp
=

∫

R

∣
∣ e2πi(N+1)x−1

e2πix−1

∣
∣p|ζ (x)|p dx

≥ c
∫

|x|< 1
10 (N+1)−1

(N+1)p|x|p
|x|p |ζ (x)|p dx

=Cζ (N+1)p−1 ,

since ζ does not vanish in a neighborhood of zero. We conclude that (6.1.32) cannot
hold for this choice of f j’s for p> 2.

Example 6.1.9. We now indicate why (6.1.33) cannot hold for p < 2. We pick a
smooth functionΨ on the line whose Fourier transform Ψ̂ is supported in

[ 7
8 ,

17
8

]
,

is nonnegative, is equal to 1 on
[ 9
8 ,

15
8

]
, and satisfies

∑
j∈Z
Ψ̂(2− jξ )2 = 1, ξ > 0.

Extend Ψ̂ to be an even function on the whole line and let Δ j be the Littlewood–
Paley operator associated withΨ . Also pick a nonzero Schwartz function ϕ on the
real line whose Fourier transform is nonnegative and supported in the set

[ 11
8 ,

13
8

]
.

Fix N a large positive integer and let

f j(x) = e2πi
12
8 2 jxϕ(x), (6.1.34)

for j = 1,2, . . . ,N. Then the function f̂ j(ξ ) = ϕ̂(ξ − 12
8 2

j) is supported in the set[ 11
8 + 12

8 2
j, 138 + 12

8 2
j
]
, which is contained in

[ 9
82

j, 158 2
j
]
for j ≥ 3. In other words,

Ψ̂(2− jξ ) is equal to 1 on the support of f̂ j. This implies that

Δ j( f j) = f j for j ≥ 3.

This observation combined with (6.1.21) gives for N ≥ 3,

∥
∥
∥

N

∑
j=3

f j
∥
∥
∥
Lp

=
∥
∥
∥

N

∑
j=3
Δ j( f j)

∥
∥
∥
Lp

≤Cp

∥
∥
∥
( N

∑
j=3

| f j|2
)1

2
∥
∥
∥
Lp

=Cp
∥
∥ϕ
∥
∥
Lp(N−2)

1
2 ,

where 1< p< ∞. On the other hand, (6.1.34) trivially yields that

( N

∑
j=3

∥
∥ f j
∥
∥p
Lp

) 1
p
=
∥
∥ϕ
∥
∥
Lp(N−2)

1
p .

Letting N → ∞ we see that (6.1.33) cannot hold for p < 2 even when the f j’s have
Fourier transforms supported in disjoint sets.
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Example 6.1.10. A similar idea illustrates the necessity of the �2 norm in (6.1.4). To
see this, letΨ and Δ j be as in Example 6.1.9. Let us fix 1 < p < ∞ and q < 2. We
show that the inequality

∥
∥
∥
(
∑
j∈Z

|Δ j( f )|q
)1

q
∥
∥
∥
Lp

≤Cp,q
∥
∥ f
∥
∥
Lp (6.1.35)

cannot hold. Take f = ∑N
j=3 f j, where the f j are as in (6.1.34) and N ≥ 3. Then

the left-hand side of (6.1.35) is bounded from below by ‖ϕ‖Lp(N−2)1/q, while the
right-hand side is bounded above by ‖ϕ‖Lp(N− 2)1/2. Letting N → ∞, we deduce
that (6.1.35) is impossible when q< 2.

Example 6.1.11. For 1< p< ∞ and 2< q< ∞, the inequality

∥
∥g
∥
∥
Lp ≤Cp,q

∥
∥
∥
(
∑
j∈Z

|Δ j(g)|q
)1

q
∥
∥
∥
Lp

(6.1.36)

cannot hold even under assumption (6.1.6) on Ψ . Let Δ j be as in Example 6.1.9.
Let us suppose that (6.1.36) did hold for some q > 2 for these Δ j’s. Then the self-
adjointness of the Δ j’s and duality would give

∥
∥
∥
(
∑
k∈Z

|Δk(g)|q′
) 1

q′
∥
∥
∥
Lp′

= sup∥
∥‖{hk}k‖�q

∥
∥
Lp

≤1

∣
∣
∣
∣

∫

R
∑
k∈Z
Δk(g)hk dx

∣
∣
∣
∣

≤ ∥∥g∥∥Lp′ sup∥
∥‖{hk}k‖�q

∥
∥
Lp

≤1

∥
∥
∥∑
k∈Z
Δk(hk)

∥
∥
∥
Lp

≤C
∥
∥g
∥
∥
Lp′ sup∥
∥‖{hk}k‖�q

∥
∥
Lp

≤1

∥
∥
∥
(
∑
j∈Z

∣
∣
∣Δ j

(
∑
k∈Z
Δk(hk)

)∣
∣
∣
q)1q ∥∥
∥
Lp

by (6.1.36)

≤C′∥∥g
∥
∥
Lp′ sup∥
∥‖{hk}k‖�q

∥
∥
Lp

≤1

{ 1

∑
l=−1

∥
∥
∥
(
∑
j∈Z

|Δ jΔ j+l(h j)|q
)1

q
∥
∥
∥
Lp

}

≤C′′∥∥g
∥
∥
Lp′ sup∥
∥‖{hk}k‖�q

∥
∥
Lp

≤1

∥
∥
∥
(
∑
j∈Z

|h j|q
)1

q
∥
∥
∥
Lp

=C′′∥∥g
∥
∥
Lp′ ,

where the next-to-last inequality follows from (6.1.22) applied twice, while the one
before that follows from support considerations. But since q′ < 2, this exactly proves
(6.1.35), previously shown to be false, a contradiction.

We conclude that if both assertions (6.1.4) and (6.1.8) of Theorem 6.1.2 were to
hold, then the �2 norm inside the Lp norm could not be replaced by an �q norm for
some q �= 2. Exercise 6.1.6 indicates the crucial use of the fact that �2 is a Hilbert
space in the converse inequality (6.1.8) of Theorem 6.1.2.
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Exercises

6.1.1. Construct a Schwartz function Ψ that satisfies ∑ j∈Z |Ψ̂(2− jξ )|2 = 1 for all
ξ ∈ Rn \{0} and whose Fourier transform is supported in the annulus 6

7 ≤ |ξ | ≤ 2
and is equal to 1 on the annulus 1≤ |ξ | ≤ 14

7 .[
Hint: Set Ψ̂(ξ ) = η(ξ )

(
∑k∈Z |η(2−kξ )|2)−1/2 for a suitable η ∈ C ∞

0 (Rn) .
]

6.1.2. Suppose that Ψ is an integrable function on Rn that satisfies |Ψ̂(ξ )| ≤
Bmin(|ξ |ε , |ξ |−ε ′) for some ε ′,ε > 0. Show that for some constant Cε ,ε ′ < ∞ we
have

sup
ξ∈Rn

(∫ ∞

0
|Ψ̂(tξ )|2 dt

t

) 1
2
+ sup
ξ∈Rn

(
∑
j∈Z

|Ψ̂(2− jξ )|2
) 1

2 ≤Cε ,ε ′ B .

6.1.3. LetΨ be an integrable function on Rn with mean value zero that satisfies

|Ψ(x)| ≤ B(1+ |x|)−n−ε ,
∫

Rn
|Ψ(x− y)−Ψ(x)|dx≤ B |y|ε ′ ,

for some B,ε ′,ε > 0 and for all y �= 0.
(a) Prove that |Ψ̂(ξ )| ≤ cn,ε ,ε ′ Bmin(|ξ |min( ε2 ,1), |ξ |−ε) for some constant cn,ε ,ε ′ and
conclude that (6.1.4) holds for p= 2.
(b) Deduce the validity of (6.1.4) and (6.1.5).
(c) If ε < 1 and the assumption |Ψ(x)| ≤ B(1+ |x|)−n−ε is weakened to |Ψ(x)| ≤
B |x|−n−ε for all x ∈ Rn, then show that |Ψ̂(ξ )| ≤ cn,ε ,ε ′ Bmin(|ξ | ε2 , |ξ |−ε) and thus
(6.1.4) and (6.1.5) are valid.[
Hint: Part (a): Make use of the identity

Ψ̂(ξ ) =
∫

Rn
e−2πix·ξΨ(x)dx=−

∫

Rn
e−2πix·ξΨ(x− y)dx ,

where y= 1
2
ξ

|ξ |2 when |ξ | ≥ 1. For |ξ | ≤ 1 use the mean value property ofΨ to write

Ψ̂(ξ ) =
∫
|x|≤1Ψ(x)(e−2πix·ξ −1)dx and split the integral in the regions |x| ≤ 1 and

|x| ≥ 1. Part (b): If �K is defined by (6.1.13), then control the �2(Z) norm by the �1(Z)
norm to prove (6.1.16). Then split the sum ∑ j∈Z

∫
|x|≥2|y|

∣
∣Ψ2− j(x− y)−Ψ2− j(x)

∣
∣dx

into the parts ∑2 j≤|y|−1 and ∑2 j>|y|−1 . Part (c): Notice that when ε < 1, we have

|∫|x|≤1Ψ(x)(e−2πix·ξ −1)dx| ≤CnB |ξ | ε2 .
]

6.1.4. LetΨ be an integrable function on Rn with mean value zero that satisfies

|Ψ(x)| ≤ B(1+ |x|)−n−ε ,
∫

Rn
|Ψ(x− y)−Ψ(x)|dx≤ B|y|ε ′ ,
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for some B,ε ′,ε > 0 and for all y �= 0. LetΨt(x) = t−nΨ(x/t). (a) Prove that there
are constants cn,c′n such that

(∫ ∞

0
|Ψt(x)|2 dtt dx

) 1
2
≤ cn B |x|−n ,

sup
y∈Rn\{0}

∫

|x|≥2|y|

(∫ ∞

0
|Ψt(x− y)−Ψt(x)|2 dtt

) 1
2
dx≤ c′n B .

(b) Show that there exist constants Cn,C′
n such that for all 1 < p < ∞ and for all

f ∈ Lp(Rn) we have

∥
∥
∥
(∫ ∞

0
| f ∗Ψt |2 dtt

)1
2
∥
∥
∥
Lp(Rn)

≤CnBmax(p,(p−1)−1)
∥
∥ f
∥
∥
Lp(Rn)

and also for all f ∈ L1(Rn) we have

∥
∥
∥
(∫ ∞

0
| f ∗Ψt |2 dtt

)1
2
∥
∥
∥
L1,∞(Rn)

≤C′
nB
∥
∥ f
∥
∥
L1(Rn)

.

(c) Under the additional hypothesis that 0<
∫ ∞
0 |Ψ̂(tξ )|2 dtt = c0 for all ξ ∈Rn \{0},

prove that for all f ∈ Lp(Rn) we have

∥
∥ f
∥
∥
Lp(Rn)

≤C′′
n Bmax(p,(p−1)−1)

∥
∥
∥
(∫ ∞

0
| f ∗Ψt |2 dtt

)1
2
∥
∥
∥
Lp(Rn)

[
Hint: Part (a): Use the Cauchy-Schwarz inequality to obtain

∫

|x|≥2|y|

(∫ ∞

0
|Ψt(x− y)−Ψt(x)|2 dtt

) 1
2
dx

≤ cn|y|− ε
2

(∫

|x|≥2|y|
|x|n+ε

∫ ∞

0
|Ψt(x− y)−Ψt(x)|2 dtt dx

) 1
2
,

and split the integral on the right into the regions t ≤ |y| and t > |y|. In the second
region use thatΨ is bounded to replace the square by the first power. Part (b): Use
Exercise 6.1.2 and part (a) of Exercise 6.1.3 and to deduce the inequality when p= 2.
Then apply Theorem 5.6.1. Part (c): Prove the inequality first for f ∈S (Rn) using
duality.

]

6.1.5. Prove the following generalization of Theorem 6.1.2. Let A> 0. Suppose that
{Kj} j∈Z is a sequence of locally integrable functions on Rn \{0} that satisfies

sup
x �=0

|x|n
(
∑
j∈Z

|Kj(x)|2
) 1

2 ≤ A ,

sup
y∈Rn\{0}

∫

|x|≥2|y|

(
∑
j∈Z

|Kj(x− y)−Kj(x)|2
)1

2
dx≤ A< ∞ ,
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and for each j ∈ Z there is a number Lj such that

lim
εk↓0

∫

εk≤|y|≤1
Kj(y)dy= Lj .

If the Kj coincide with tempered distributionsWj that satisfy

∑
j∈Z

|Ŵj(ξ )|2 ≤ B2 ,

then the operator

f →
(
∑
j∈Z

|Kj ∗ f |2
)1

2

maps Lp(Rn) to itself and is weak type (1,1) norms at most multiples of A+B.

6.1.6. Suppose thatH is a Hilbert space with inner product 〈 · , · 〉H . Let A> 0 and
1< p< ∞. Suppose that an operator T from L2(Rn)→ L2(Rn,H ) is a multiple of
an isometry, that is, ∥

∥T (g)
∥
∥
L2(Rn,H )

= A
∥
∥g
∥
∥
L2(Rn)

for all g ∈ L2(Rn,H ). Then the inequality ‖T ( f )‖Lp(Rn,H ) ≤ Cp‖ f‖Lp(Rn) for all
f ∈S (Rn) implies

∥
∥ f
∥
∥
Lp′ (Rn)

≤Cp′A
−2∥∥T ( f )

∥
∥
Lp′ (Rn,H )

for all in f ∈S (Rn).[
Hint: Use the inner product structure and polarization to obtain

A2
∣
∣
∣
∣

∫

Rn
f (x)g(x)dx

∣
∣
∣
∣=

∣
∣
∣
∣

∫

Rn

〈
T ( f )(x),T (g)(x)

〉

H
dx
∣
∣
∣
∣

and then argue as in the proof of inequality (6.1.8).
]

6.1.7. Suppose that {mj} j∈Z is a sequence of bounded functions supported in the
intervals [2 j,2 j+1]. Let Tj( f ) = ( f̂ m j)

∨ be the corresponding multiplier operators.
Assume that for all sequences of functions { f j} j the vector-valued inequality

∥
∥
∥
(
∑
j
|Tj( f j)|2

)1
2
∥
∥
∥
Lp

≤ Ap

∥
∥
∥
(
∑
j
| f j|2
)1

2
∥
∥
∥
Lp

is valid for some 1< p< ∞. Prove there is aCp > 0 such that for all finite subsets S
of Z we have ∥

∥
∥∑

j∈S
mj

∥
∥
∥
Mp

≤CpAp.

[
Hint: Use that

〈
∑ j∈S Tj( f ),g

〉
= ∑ j∈S

〈
Δ #

j Tj( f ),Δ #
j (g)
〉
.
]
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6.1.8. Let m be a bounded function on Rn that is supported in the annulus
1 ≤ |ξ | ≤ 2 and define Tj( f ) =

(
f̂ (ξ )m(2− jξ )

)∨. Suppose that the square func-

tion f �→ (∑ j∈Z |Tj( f )|2
)1/2 is bounded on Lp(Rn) for some 1< p< ∞. Show that

for every finite subset S of the integers we have
∥
∥
∥∑

j∈S
Tj( f )
∥
∥
∥
Lp(Rn)

≤Cp,n
∥
∥ f
∥
∥
Lp(Rn)

for some constant Cp,n independent of S.

6.1.9. Fix a nonzero Schwartz function h on the line whose Fourier transform is
supported in the interval

[− 1
8 ,

1
8

]
. For {a j} a sequence of numbers, set

f (x) =
∞

∑
j=1

a je2πi2
jxh(x) .

Prove that for all 1< p< ∞ there exists a constant Cp such that

‖ f‖Lp(R) ≤Cp
(
∑
j
|a j|2
) 1
2 ‖h‖Lp .

[
Hint: Write f = ∑∞j=1Δ j(a je2πi2

j(·)h), where Δ j is given by convolution with ϕ2− j

for some ϕ whose Fourier transform is supported in the interval
[ 6
8 ,

10
8

]
and is equal

to 1 on
[ 7
8 ,

9
8

]
. Then use (6.1.21).

]

6.1.10. LetΨ be a Schwartz function whose Fourier transform is supported in the
annulus 1

2 ≤ |ξ | ≤ 2 and that satisfies (6.1.7). Define a Schwartz function Φ by
setting

Φ̂(ξ ) =

{
∑ j≤0Ψ̂(2− jξ ) when ξ �= 0,
1 when ξ = 0.

Let S0 be the operator given by convolution with Φ . Let 1< p<∞ and f ∈ Lp(Rn).
Show that

∥
∥ f
∥
∥
Lp ≈
∥
∥S0( f )

∥
∥
Lp +
∥
∥
∥
( ∞

∑
j=1

|Δ j( f )|2
) 1

2
∥
∥
∥
Lp
.

[
Hint: Use Theorem 6.1.2 together with the identity S0+∑∞j=1Δ j = I.

]

6.2 Two Multiplier Theorems

We now return to the spaces Mp introduced in Section 2.5. We seek sufficient con-
ditions on L∞ functions defined on Rn to be elements of Mp. In this section we are
concerned with two fundamental theorems that provide such sufficient conditions.
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These are the Marcinkiewicz and the Hörmander–Mihlin multiplier theorems. Both
multiplier theorems are consequences of the Littlewood–Paley theory discussed in
the previous section.

Using the dyadic decomposition of Rn, we can write any L∞ function m as the
sum

m= ∑
j∈Zn

mχRj a.e.,

where j = ( j1, . . . , jn), Rj = I j1 ×·· ·× I jn , and Ik = [2k,2k+1)
⋃
(−2k+1,−2k]. For j

in Zn we setmj =mχRj . A consequence of the ideas developed so far is the following
characterization of Mp(Rn) in terms of a vector-valued inequality.

Proposition 6.2.1. Let m ∈ L∞(Rn) and let mj =mχRj . Then m lies inMp(Rn), that
is, for some cp we have

∥
∥( f̂ m)∨

∥
∥
Lp ≤ cp

∥
∥ f
∥
∥
Lp , f ∈ Lp(Rn),

if and only if for some Cp > 0 we have

∥
∥
∥
(
∑
j∈Zn

|( f̂jmj)
∨|2
)1

2
∥
∥
∥
Lp

≤Cp

∥
∥
∥
(
∑
j∈Zn

| fj|2
)1

2
∥
∥
∥
Lp

(6.2.1)

for all sequences of functions fj in Lp(Rn).

Proof. Suppose that m ∈Mp(Rn). Exercise 5.6.1 gives the first inequality below

∥
∥
∥
(
∑
j∈Zn

|(χRjm f̂j)∨|2
)1

2
∥
∥
∥
Lp

≤Cp

∥
∥
∥
(
∑
j∈Zn

|(m f̂j)∨|2
)1

2
∥
∥
∥
Lp

≤Cp

∥
∥
∥
(
∑
j∈Zn

| fj|2
)1

2
∥
∥
∥
Lp
,

while the second inequality follows from Theorem 5.5.1. (Observe that when p= q
in Theorem 5.5.1, then Cp,q = 1.) Conversely, suppose that (6.2.1) holds for all se-
quences of functions fj. Fix a function f and apply (6.2.1) to the sequence ( f̂ χRj)

∨,
where Rj is the dyadic rectangle indexed by j= ( j1, . . . , jn) ∈ Zn. We obtain

∥
∥
∥
(
∑
j∈Zn

|( f̂ mχRj)∨|2
)1

2
∥
∥
∥
Lp

≤Cp

∥
∥
∥
(
∑
j∈Zn

|( f̂ χRj)∨|2
)1

2
∥
∥
∥
Lp
.

Using Theorem 6.1.6, we obtain that the previous inequality is equivalent to the
inequality ∥

∥( f̂ m)∨
∥
∥
Lp ≤ cp

∥
∥ f
∥
∥
Lp ,

which implies that m ∈Mp(Rn). �
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6.2.1 The Marcinkiewicz Multiplier Theorem on R

Proposition 6.2.1 suggests that the behavior of m on each dyadic rectangle Rj should
play a crucial role in determining whether m is an Lp multiplier. The Marcinkiewicz
multiplier theorem provides such sufficient conditions on m restricted to any dyadic
rectangle Rj. Before stating this theorem, we illustrate its main idea via the follow-
ing example. Suppose that m is a bounded function that vanishes near −∞, that is
differentiable at every point, and whose derivative is integrable. Then we may write

m(ξ ) =
∫ ξ

−∞
m′(t)dt =

∫ +∞

−∞
χ[t,∞)(ξ )m′(t)dt ,

from which it follows that for a Schwartz function f we have

( f̂ m)∨ =
∫

R
( f̂ χ[t,∞))∨m′(t)dt.

Since the operators f �→ ( f̂ χ[t,∞))∨ map Lp(R) to itself independently of t, it follows
that ∥

∥( f̂ m)∨
∥
∥
Lp ≤Cp

∥
∥m′∥∥

L1
∥
∥ f
∥
∥
Lp ,

thus yielding that m is in Mp(R). The next multiplier theorem is an improvement
of this result and is based on the Littlewood–Paley theorem. We begin with the one-
dimensional case, which already captures the main ideas.

Theorem 6.2.2. (Marcinkiewicz multiplier theorem) Let m : R→ R be a bounded
function that is C 1 in every dyadic set (2 j,2 j+1)

⋃
(−2 j+1,−2 j) for j ∈ Z. Assume

that the derivative m′ of m satisfies

sup
j

[∫ −2 j

−2 j+1
|m′(ξ )|dξ +

∫ 2 j+1

2 j
|m′(ξ )|dξ

]

≤ A< ∞ . (6.2.2)

Then for all 1< p< ∞ we have that m ∈Mp(R) and for some C > 0 we have

∥
∥m
∥
∥
Mp(R)

≤Cmax
(
p,(p−1)−1)6(∥∥m

∥
∥
L∞ +A

)
. (6.2.3)

Proof. Since the function m has an integrable derivative on (2 j,2 j+1), it has
bounded variation in this interval and hence it is a difference of two increasing
functions. Therefore, m has left and right limits at the points 2 j and 2 j+1, and by
redefining m at these points we may assume that m is right continuous at the points
2 j and left continuous at the points −2 j.

Set I j = [2 j,2 j+1)∪ (−2 j+1,−2 j] and I+j = [2 j,2 j+1) whenever j ∈ Z. Given
an interval I in R, we introduce an operator ΔI defined by ΔI( f ) = ( f̂ χI)∨. With
this notation ΔI+j ( f ) is “half” of the operator Δ

#
j introduced in the previous section.

Given m as in the statement of the theorem, we write m(ξ ) = m+(ξ ) +m−(ξ ),
where m+(ξ ) =m(ξ )χξ≥0 and m−(ξ ) =m(ξ )χξ<0. We show that both m+ and m−
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are Lp multipliers. Since m′ is integrable over all intervals of the form [2 j,ξ ] when
2 j ≤ ξ < 2 j+1, the fundamental theorem of calculus gives

m(ξ ) = m(2 j)+

∫ ξ

2 j
m′(t)dt, for 2 j ≤ ξ < 2 j+1,

from which it follows that for a Schwartz function f on the real line we have

m(ξ ) f̂ (ξ )χI+j (ξ ) = m(2 j) f̂ (ξ )χI+j (ξ )+
∫ 2 j+1

2 j
f̂ (ξ )χ[t,∞)(ξ )χI+j (ξ )m

′(t)dt .

We therefore obtain the identity

( f̂ χI jm+)
∨ = ( f̂ mχI+j )

∨ = m(2 j)ΔI+j ( f )+
∫ 2 j+1

2 j
Δ[t,∞)ΔI+j ( f )m

′(t)dt ,

which implies that

|( f̂ χI jm+)
∨| ≤ ‖m‖L∞ |ΔI+j ( f )|+A

1
2

(∫ 2 j+1

2 j

∣
∣Δ[t,∞)ΔI+j ( f )

∣
∣2 |m′(t)|dt

)1
2
,

using the hypothesis (6.2.2). Taking �2(Z) norms we obtain

(
∑
j∈Z

|( f̂ χI jm+)
∨|2
)1

2 ≤ ‖m‖L∞
(
∑
j∈Z

|ΔI+j ( f )|
2
)1

2

+A
1
2

(∫ ∞

0

∣
∣Δ[t,∞)Δ #

[log2 t]
( f )
∣
∣2 |m′(t)|dt

)1
2
.

Exercise 5.6.2 gives

A
1
2

∥
∥
∥
(∫ ∞

0

∣
∣Δ[t,∞)Δ #

[log2 t]
( f )
∣
∣2|m′(t)|dt

)1
2
∥
∥
∥
Lp

≤Cmax(p,(p−1)−1)A
1
2

∥
∥
∥
(∫ ∞

0

∣
∣Δ #

[log2 t]
( f )
∣
∣2|m′(t)|dt

)1
2
∥
∥
∥
Lp
,

while the hypothesis on m′ implies the inequality

∥
∥
∥
(
∑
j∈Z

∣
∣ΔI+j ( f )

∣
∣2
∫

I+j
|m′(t)|dt

)1
2
∥
∥
∥
Lp

≤ A
1
2

∥
∥
∥
(
∑
j
|ΔI+j ( f )|

2
)1

2
∥
∥
∥
Lp
.

Using Theorem 6.1.5 we obtain that

∥
∥
∥
(
∑
j
|ΔI+j ( f )|

2
)1

2
∥
∥
∥
Lp

≤C′max(p,(p−1)−1)2
∥
∥
(
f̂ χ(0,∞)

)∨∥∥
Lp ,
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and the latter is at most a constant multiple of max(p,(p− 1)−1)3
∥
∥ f
∥
∥
Lp . Putting

things together we deduce that

∥
∥
∥
(
∑
j
|( f̂ χI jm+)

∨|2
)1

2
∥
∥
∥
Lp

≤C′′max(p,(p−1)−1)4
(
A+‖m‖L∞

)∥
∥ f
∥
∥
Lp , (6.2.4)

from which we obtain the estimate
∥
∥( f̂ m+)

∨∥∥
Lp ≤Cmax(p,(p−1)−1)6

(
A+‖m‖L∞

)∥
∥ f
∥
∥
Lp ,

using the lower estimate of Theorem 6.1.5. This proves (6.2.3) for m+. A similar
argument also works for m−, and this concludes the proof by summing the corre-
sponding estimates for m+ and m−. �

We remark that the same proof applies under the more general assumption that
m is a function of bounded variation on every interval [2 j,2 j+1] and [−2 j+1,−2 j].
In this case the measure |m′(t)|dt should be replaced by the total variation |dm(t)|
of the Lebesgue–Stieltjes measure dm(t).

Example 6.2.3. Any bounded function that is constant on dyadic intervals is an Lp

multiplier. Also, the function

m(ξ ) = |ξ |2−[log2 |ξ |]

is an Lp multiplier on R for 1< p< ∞.

6.2.2 The Marcinkiewicz Multiplier Theorem on Rn

We now extend this theorem on Rn. As usual we denote the coordinates of a point
ξ ∈ Rn by (ξ1, . . . ,ξn). We recall the notation I j = (−2 j+1,−2 j]

⋃
[2 j,2 j+1) and

Rj = I j1 ×·· ·× I jn whenever j= ( j1, . . . , jn) ∈ Zn.

Theorem 6.2.4. Let m be a bounded function onRn such that for all α =(α1, . . . ,αn)
with |α1|, . . . , |αn| ≤ 1 the derivatives ∂αm are continuous up to the boundary of Rj
for all j ∈ Zn. Assume that there is a constant A < ∞ such that for all partitions
{s1, . . . ,sk}∪{r1, . . . ,r�}= {1,2, . . . ,n} with n= k+ � and all ξ ∈ Rj we have

sup
ξr1∈I jr1

· · · sup
ξr�∈I jr�

∫

I js1

· · ·
∫

I jsk

∣
∣(∂s1 · · ·∂skm)(ξ1, . . . ,ξn)

∣
∣dξsk · · ·dξs1 ≤ A (6.2.5)

for all j= ( j1, . . . , jn) ∈ Zn. Then m is inMp(Rn) whenever 1< p< ∞ and there is
a constant Cn < ∞ such that

‖m‖Mp(Rn) ≤Cn
(
A+‖m‖L∞

)
max
(
p,(p−1)−1)6n. (6.2.6)
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Proof. We prove this theorem only in dimension n = 2, since the general case
presents no substantial differences but only some notational inconvenience. We de-
compose the given function m as

m(ξ ) = m++(ξ )+m−+(ξ )+m+−(ξ )+m−−(ξ ) ,

where each of the last four terms is supported in one of the four quadrants. For
instance, the function m+−(ξ1,ξ2) is supported in the quadrant ξ1 ≥ 0 and ξ2 < 0.
As in the one-dimensional case, we work with each of these pieces separately. By
symmetry we choose to work with m++ in the following argument.

Using the fundamental theorem of calculus, we obtain the following simple iden-
tity, valid for 2 j1 ≤ ξ1 < 2 j1+1 and 2 j2 ≤ ξ2 < 2 j2+1:

m(ξ1,ξ2) = m(2 j1 ,2 j2)+
∫ ξ1

2 j1
(∂1m)(t1,2 j2)dt1

+
∫ ξ2

2 j2
(∂2m)(2 j1 , t2)dt2

+
∫ ξ1

2 j1

∫ ξ2

2 j2
(∂1∂2m)(t1, t2)dt2 dt1 .

(6.2.7)

We introduce operators Δ (r)
I , r ∈ {1,2}, acting in the rth variable (with the other

variable remaining fixed) given by multiplication on the Fourier transform side by
the characteristic function of the interval I. Likewise, we introduce operators Δ #(r)

j ,
r ∈ {1,2} (also acting in the rth variable), given by multiplication on the Fourier
transform side by the characteristic function of the set (−2 j+1,−2 j]

⋃
[2 j,2 j+1). For

notational convenience, for a given Schwartz function f we write

f++ =
(
f̂ χ(0,∞)2

)∨
,

and likewise we define f+−, f−+, and f−−.
Multiplying both sides of (6.2.7) by the function f̂ χRjχ(0,∞)2 and taking inverse

Fourier transforms yields

( f̂ χRjm++)
∨ = m(2 j1 ,2 j2)Δ #(1)

j1
Δ #(2)

j2
( f++)

+
∫ 2 j1+1

2 j1
Δ #(2)

j2
Δ (1)
[t1,∞)

Δ #(1)
j1

( f++)(∂1m)(t1,2 j2)dt1

+
∫ 2 j2+1

2 j2
Δ #(1)

j1
Δ (2)
[t2,∞)

Δ #(2)
j2

( f++)(∂2m)(2 j1 , t2)dt2

+

∫ 2 j1+1

2 j1

∫ 2 j2+1

2 j2
Δ (1)
[t1,∞)

Δ #(1)
j1
Δ (2)
[t2,∞)

Δ #(2)
j2

( f++)(∂1∂2m)(t1, t2)dt2 dt1 .

(6.2.8)

We apply the Cauchy–Schwarz inequality in the last three terms of (6.2.8) with re-
spect to the measures |(∂1m)(t1,2 j2)|dt1, |(∂2m)(2 j1 , t2)|dt2, |(∂1∂2m)(t1, t2)|dt2dt1
and we use hypothesis (6.2.5) to deduce
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∣
∣( f̂ χRjm++)

∨∣∣ ≤ ‖m‖L∞
∣
∣Δ #(1)

j1
Δ #(2)

j2
( f++)

∣
∣

+ A
1
2

(∫ 2 j1+1

2 j1

∣
∣Δ #(2)

j2
Δ (1)
[t1,∞)

Δ #(1)
j1

( f++)
∣
∣2 |(∂1m)(t1,2 j2)|dt1

) 1
2

+ A
1
2

(∫ 2 j2+1

2 j2

∣
∣Δ #(1)

j1
Δ (2)
[t2,∞)

Δ #(2)
j2

( f++)
∣
∣2 |(∂2m)(2 j1 , t2)|dt2

) 1
2

+ A
1
2

(∫ 2 j1+1

2 j1

∫ 2 j2+1

2 j2

∣
∣Δ (1)

[t1,∞)
Δ #(1)

j1
Δ (2)
[t2,∞)

Δ #(2)
j2

( f++)
∣
∣2 |(∂1∂2m)(t1, t2)|dt2 dt1

) 1
2
.

Both sides of the preceding inequality are sequences indexed by j ∈ Z2. We apply
�2(Z2) norms and use Minkowski’s inequality to deduce the pointwise estimate

(
∑
j∈Z2

∣
∣( f̂ χRjm++)

∨∣∣2
)1

2 ≤ ‖m‖L∞
(
∑
j∈Z2

∣
∣Δ #

j ( f++)
∣
∣2
)1

2

+A
1
2

(∫ ∞

0

∫ ∞

0

∣
∣Δ (1)

[t1,∞)
Δ #(2)
[log2 t2]

Δ #(1)
[log2 t1]

( f++)
∣
∣2
∣
∣(∂1m)(t1,2[log2 t2])

∣
∣dt1dν(t2)

)1
2

+A
1
2

(∫ ∞

0

∫ ∞

0

∣
∣Δ (2)

[t2,∞)
Δ #(1)
[log2 t1]

Δ #(2)
[log2 t2]

( f++)
∣
∣2
∣
∣(∂2m)(2[log2 t1], t2)

∣
∣dν(t1)dt2

)1
2

+A
1
2

(∫ ∞

0

∫ ∞

0

∣
∣Δ (1)

[t1,∞)
Δ (2)
[t2,∞)

Δ #(1)
[log2 t1]

Δ #(2)
[log2 t2]

( f++)
∣
∣2
∣
∣(∂1∂2m)(t1, t2)

∣
∣dt1dt2

)1
2

,

where ν is the counting measure ∑ j∈Z δ2 j defined by ν(A) = #{ j ∈ Z : 2 j ∈ A}
for subsets A of (0,∞). We now take Lp(R2) norms and we estimate separately the
contribution of each of the four terms on the right side. Using Exercise 5.6.2 we
obtain
∥
∥
∥
∥

(
∑
j∈Z2

∣
∣( f̂ χRjm++)

∨∣∣2
)1

2
∥
∥
∥
∥
Lp

≤ ‖m‖L∞
∥
∥
∥
∥

(
∑
j∈Z2

∣
∣Δ #

j ( f++)
∣
∣2
)1

2
∥
∥
∥
∥
Lp

+C2A
1
2 max

(
p,(p−1)−1)2

×
{∥
∥
∥
∥

(∫ ∞

0

∫ ∞

0

∣
∣Δ #(2)

[log2 t2]
Δ #(1)
[log2 t1]

( f++)
∣
∣2
∣
∣(∂1m)(t1,2[log2 t2])

∣
∣dt1 dν(t2)

)1
2
∥
∥
∥
∥
Lp

+

∥
∥
∥
∥

(∫ ∞

0

∫ ∞

0

∣
∣Δ #(1)

[log2 t1]
Δ #(2)
[log2 t2]

( f++)
∣
∣2
∣
∣(∂2m)(2[log2 t1], t2)

∣
∣dν(t1)dt2

)1
2
∥
∥
∥
∥
Lp

+

∥
∥
∥
∥

(∫ ∞

0

∫ ∞

0

∣
∣Δ #(1)

[log2 t1]
Δ #(2)
[log2 t2]

( f++)
∣
∣2
∣
∣(∂1∂2m)(t1, t2)

∣
∣dt1dt2

)1
2
∥
∥
∥
∥
Lp

}

.
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But the functions (t1, t2) �→ Δ #(1)
[log2 t1]

Δ #(2)
[log2 t2]

( f++) are constant on products of inter-

vals of the form [2 j1 ,2 j1+1)× [2 j2 ,2 j2+1); hence using hypothesis (6.2.5) again we
deduce the estimate

∥
∥
∥
∥

(
∑
j∈Z2

∣
∣( f̂ χRjm++)

∨∣∣2
)1

2
∥
∥
∥
∥
Lp(R2)

≤C2
(‖m‖L∞ +A

)
max
(
p,(p−1)−1)2

∥
∥
∥
∥

(
∑
j∈Z2

∣
∣Δ #

j ( f++)
∣
∣2
)1

2
∥
∥
∥
∥
Lp(R2)

≤C2
(‖m‖L∞ +A

)
max
(
p,(p−1)−1)6∥∥( f̂ χ(0,∞)2)

∨∥∥
Lp(R2)

≤C2
(‖m‖L∞ +A

)
max
(
p,(p−1)−1)8∥∥ f

∥
∥
Lp(R2)

,

where the penultimate estimate follows from Theorem 6.1.6 and the last estimate
by the boundedness of the Hilbert transform (Theorem 5.1.7). We now appeal
to inequality (6.1.29) which yields the required estimate for the Lp(R2) norm of
( f̂ m++)

∨. A similar argument also works for the remaining parts of m+−, m−+,
m−−, and summing concludes the proof of (6.2.6).

The analogous estimate on Rn is
∥
∥
∥
∥

(
∑
j∈Zn

∣
∣( f̂ χRjm+···+)∨

∣
∣2
)1

2
∥
∥
∥
∥
Lp(Rn)

≤Cn
(‖m‖L∞ +A

)
max
(
p,(p−1)−1)4n∥∥ f

∥
∥
Lp(Rn)

which is obtained in a similar fashion. Using (6.1.29), this implies that

∥
∥( f̂ m+···+)∨

∥
∥
Lp(Rn)

≤Cn
(‖m‖L∞ +A

)
max
(
p,(p−1)−1)6n∥∥ f

∥
∥
Lp(Rn)

.

A similar inequality holds when some (or all) +’s are replaced by −’s. �

We now give a condition that implies (6.2.5) and is well suited for a variety of
applications.

Corollary 6.2.5. Let m be a bounded C n function defined away from the coordinate
axes on Rn. Assume that for all k ∈ {1, . . . ,n}, all distinct j1, . . . , jk ∈ {1,2, . . . ,n},
and all ξr ∈ R\{0} for r /∈ { j1, . . . , jk} we have

∣
∣(∂ j1 · · ·∂ jkm)(ξ1, . . . ,ξn)

∣
∣≤ A |ξ j1 |−1 · · · |ξ jk |−1 . (6.2.9)

Then m satisfies (6.2.6).

Proof. Simply observe that condition (6.2.9) implies (6.2.5). �
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Example 6.2.6. The following are examples of functions that satisfy the hypotheses
of Corollary 6.2.5:

m1(ξ ) =
ξ1

ξ1+ i(ξ 22 + · · ·+ξ 2n )
,

m2(ξ ) =
|ξ1|α1 · · · |ξn|αn

(ξ 21 +ξ 22 + · · ·+ξ 2n )α/2
,

where α1+α2+ · · ·+αn = α , α j > 0,

m3(ξ ) =
ξ2ξ 23

iξ1+ξ 22 +ξ 43
.

The functions m1 and m2 are defined on Rn \{0} and m3 on R3 \{0}.
The previous examples and many other examples that satisfy the hypothesis

(6.2.9) of Corollary 6.2.5 are invariant under a set of dilations in the following sense:
suppose that there exist k1, . . . ,kn ∈ R+ and s ∈ R such that the smooth function m
on Rn \{0} satisfies

m(λ k1ξ1, . . . ,λ knξn) = λ ism(ξ1, . . . ,ξn)

for all ξ1, . . . ,ξn ∈ R and λ > 0. Then m satisfies condition (6.2.9). Indeed, differ-
entiation gives

λα1k1+···+αnkn∂αm(λ k1ξ1, . . . ,λ knξn) = λ is∂αm(ξ1, . . . ,ξn)

for every multi-index α = (α1, . . . ,αn). Now for every ξ ∈Rn \{0} pick the unique
λξ > 0 such that (λ k1

ξ ξ1, . . . ,λ
kn
ξ ξn) ∈ Sn−1. Then λ k jα j

ξ ≤ |ξ j|−α j , and it follows
that

|∂αm(ξ1, . . . ,ξn)| ≤
[

sup
Sn−1

|∂αm|
]

λα1k1+···+αnkn
ξ ≤Cα |ξ1|−α1 · · · |ξn|−αn .

6.2.3 The Mihlin–Hörmander Multiplier Theorem on Rn

We now discuss another multiplier theorem that also requires decay of derivatives.
We will consider the situation where each differentiation produces uniform decay in
all variables, quantitatively expressed via the condition

|∂αξ m(ξ )| ≤Cα |ξ |−|α | (6.2.10)
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for each multi-index α . The decay can also be expressed in terms of a square inte-
grable estimate that has the form

(∫

R<|ξ |<2R
|∂αξ m(ξ )|2 dξ

) 1
2
≤C′

α R
n
2−|α | < ∞ (6.2.11)

for all multi-indices α and all R> 0. Obviously (6.2.10) implies (6.2.11)

Theorem 6.2.7. Let m(ξ ) be a complex-valued bounded function on Rn \ {0} that
satisfies for some A< ∞

(∫

R<|ξ |<2R
|∂αξ m(ξ )|2 dξ

) 1
2
≤ AR

n
2−|α | < ∞ (6.2.12)

for all multi-indices |α| ≤ [n/2]+1 and all R> 0.
Then for all 1< p< ∞, m lies inMp(Rn) and the following estimate is valid:

‖m‖Mp ≤Cnmax(p,(p−1)−1)
(
A+‖m‖L∞

)
. (6.2.13)

Moreover, the operator f �→ ( f̂ m)∨ maps L1(Rn) to L1,∞(Rn) with norm at most a
dimensional constant multiple of A+‖m‖L∞ .

We remark that in most applications, condition (6.2.12) appears in the form

|∂αξ m(ξ )| ≤Cα |ξ |−|α | , (6.2.14)

which should be, in principle, easier to verify.

Proof. Since m is a bounded function, the operator given by convolution withW =
m∨ is bounded on L2(Rn). To prove that this operator maps L1(Rn) to L1,∞(Rn), it
suffices to prove that the distributionW coincides with a function K on Rn \{0} that
satisfies Hörmander’s condition.

Let ζ̂ be a smooth function supported in the annulus 1
2 ≤ |ξ | ≤ 2 such that

∑
j∈Z
ζ̂ (2− jξ ) = 1, when ξ �= 0.

Set mj(ξ ) = m(ξ )ζ̂ (2− jξ ) for j ∈ Z and Kj = m∨
j . We begin by observing that

∑N
−N Kj converges toW inS ′(Rn). Indeed, for all ϕ ∈S (Rn) we have

〈 N

∑
j=−N

Kj,ϕ
〉
=
〈 N

∑
j=−N

mj,ϕ ∨
〉
→ 〈m,ϕ ∨ 〉=

〈
W,ϕ
〉
.

We set n0 = [ n2 ]+1. We claim that there is a constant C̃n such that

sup
j∈Z

∫

Rn
|Kj(x)|(1+2 j|x|) 1

4 dx ≤ C̃nA , (6.2.15)

sup
j∈Z

2− j
∫

Rn
|∇Kj(x)|(1+2 j|x|) 1

4 dx ≤ C̃nA . (6.2.16)
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To prove (6.2.15) we multiply and divide the integrand in (6.2.15) by the expression
(1+ 2 j|x|)n0 . Applying the Cauchy–Schwarz inequality to |Kj(x)|(1+ 2 j|x|)n0 and
(1+2 j|x|)−n0+ 1

4 , we control the integral in (6.2.15) by the product

(∫

Rn
|Kj(x)|2(1+2 j|x|)2n0 dx

)1
2
(∫

Rn
(1+2 j|x|)−2n0+ 1

2 dx
)1

2
. (6.2.17)

We now note that −2n0+ 1
2 < −n, and hence the second factor in (6.2.17) is equal

to a constant multiple of 2− jn/2. To estimate the first integral in (6.2.17) we use the
simple fact that

(1+2 j|x|)n0 ≤C(n) ∑
|γ |≤n0

|(2 jx)γ | .

We now have that the expression inside the supremum in (6.2.15) is controlled by

C′(n)2− jn/2 ∑
|γ |≤n0

(∫

Rn
|Kj(x)|222 j|γ ||xγ |2 dx

)1
2

, (6.2.18)

which, by Plancherel’s theorem, is equal to

2− jn/2 ∑
|γ |≤n0

Cγ2 j|γ |
(∫

Rn
|(∂ γmj)(ξ )|2 dξ

)1
2

(6.2.19)

for some constants Cγ .
For multi-indices δ = (δ1, . . . ,δn) and γ = (γ1, . . . ,γn) we introduce the notation

δ ≤ γ to mean δ j ≤ γ j for all j = 1, . . . ,n . For any |γ | ≤ n0 we use Leibniz’s rule to
obtain for some constants Cδ ,γ

(∫

Rn
|(∂ γmj)(ξ )|2 dξ

)1
2

≤ ∑
δ≤γ

Cδ ,γ

(∫

Rn

∣
∣2− j|γ−δ |(∂ γ−δξ ζ̂ )(2− jξ )(∂δξ m)(ξ )

∣
∣2dξ
)1

2

≤ ∑
δ≤γ

Cδ ,γ2
− j|γ |2 j|δ |

(∫

2 j−1≤|ξ |≤2 j+1
|(∂δξ m)(ξ )

∣
∣2 dξ
)1

2

≤ ∑
δ≤γ

Cδ ,γ2
− j|γ |2 j|δ | 2A2 jn/22− j|δ |

=C̃n A2 jn/22− j|γ | ,

which inserted in (6.2.19) and combined with (6.2.18) yields (6.2.15). To obtain
(6.2.16) we repeat the same argument for every derivative ∂rKj. Since the Fourier
transform of (∂rKj)(x)xγ is equal to a constant multiple of ∂ γ

(
ξrm(ξ )ζ̂ (2− jξ )

)
,

we observe that the extra factor 2− j in (6.2.16) can be combined with ξr to write
2− j∂ γ

(
ξrm(ξ )ζ̂ (2− jξ )

)
as ∂ γ

(
m(ξ )ζ̂r(2− jξ )

)
, where ζ̂r(ξ ) = ξrζ̂ (ξ ). The pre-

vious calculation with ζ̂r replacing ζ̂ can then be used to complete the proof of
(6.2.16).
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We now show that for all x �= 0, the series ∑ j∈ZKj(x) converges to a function,
which we denote by K(x). Indeed, as a consequence of (6.2.15) we have that

(1+2 jδ )
1
4

∫

|x|≥δ
|Kj(x)|dx≤ C̃nA ,

for any δ > 0, which implies that the function ∑ j>0 |Kj(x)| is integrable away from
the origin and satisfies

∫
δ≤|x|≤2δ ∑ j>0 |Kj(x)|dx < ∞. Now note that (6.2.15) also

holds with − 1
4 in place of 1

4 . Using this observation we obtain

(1+2 j2δ )−
1
4

∫

|x|≤2δ
|Kj(x)|dx≤

∫

|x|≤2δ
|Kj(x)|(1+2 j|x|)− 1

4 dx≤ C̃nA ,

and from this it follows that
∫
δ≤|x|≤2δ ∑ j≤0 |Kj(x)|dx< ∞.

We conclude that the series ∑ j∈ZKj(x) converges a.e. on Rn \{0} to a function
K(x) that coincides with the distributionW = m∨ on Rn \{0} and satisfies

sup
δ>0

∫

δ≤|x|≤2δ
|K(x)|dx< ∞ .

We now prove that the function K = ∑ j∈ZKj (defined on Rn \ {0}) satisfies
Hörmander’s condition. It suffices to prove that for all y �= 0 we have

∑
j∈Z

∫

|x|≥2|y|
|Kj(x− y)−Kj(x)|dx≤ 2C′

nA . (6.2.20)

Fix a y ∈Rn \{0} and pick a k ∈ Z such that 2−k ≤ |y| ≤ 2−k+1. The part of the sum
in (6.2.20) where j > k is bounded by

∑
j>k

∫

|x|≥2|y|
|Kj(x− y)|+ |Kj(x)|dx ≤ 2∑

j>k

∫

|x|≥|y|
|Kj(x)|dx

≤ 2∑
j>k

∫

|x|≥|y|
|Kj(x)| (1+2 j|x|) 1

4

(1+2 j|x|) 1
4
dx

≤ ∑
j>k

2C̃nA

(1+2 j|y|) 1
4

≤ ∑
j>k

2C̃nA

(1+2 j2−k)
1
4
=C′

nA ,

where we used (6.2.15). The part of the sum in (6.2.20) where j ≤ k is bounded by

∑
j≤k

∫

|x|≥2|y|
|Kj(x− y)−Kj(x)|dx

≤ ∑
j≤k

∫

|x|≥2|y|

∫ 1

0
|− y ·∇Kj(x−θy)|dθ dx
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≤
∫ 1

0
∑
j≤k

2−k+1
∫

Rn
|∇Kj(x−θy)|(1+2 j|x−θy|) 1

4 dxdθ

≤
∫ 1

0
∑
j≤k

2−k+1C̃nA2 j dθ ≤C′
nA ,

using (6.2.16). Hörmander’s condition is satisfied for K, and we appeal to Theorem
5.3.3 to complete the proof of (6.2.13). �
Example 6.2.8. Let m be a smooth function away from the origin that is homoge-
neous of imaginary order, i.e., for some fixed τ real and all λ > 0 we have

m(λξ ) = λ iτm(ξ ) . (6.2.21)

Then m is an Lp Fourier multiplier for 1< p< ∞. Indeed, differentiating both sides
of (6.2.21) with respect to ∂αξ we obtain

λ |α |∂αξ m(λξ ) = λ
iτ∂αξ m(ξ )

and taking λ = |ξ |−1, we deduce condition (6.2.14) with Cα = sup|θ |=1 |∂αm(θ)|.
An explicit example of such a function is m(ξ ) = |ξ |iτ . Another example is

m0(ξ1,ξ2,ξ3) =
ξ 21 +ξ 22

ξ 21 + i(ξ 22 +ξ 23 )

which is homogeneous of degree zero and also smooth on Rn \{0}.
Example 6.2.9. Let z be a complex numbers with Rez≥ 0. Then the functions

m1(ξ ) =
( |ξ |2
1+ |ξ |2

)z
, m2(ξ ) =

(
1

1+ |ξ |2
)z

defined on Rn are Lp Fourier multipliers for 1 < p < ∞. To prove this assertion for
m1, we verify condition (6.2.14). To achieve this, introduce the function on Rn+1

M1(ξ1, . . . ,ξn, t) =
( |ξ1|2+ · · ·+ |ξn|2
t2+ |ξ1|2+ · · ·+ |ξn|2

)z
=

( |ξ |2
t2+ |ξ |2

)z
,

where ξ = (ξ1, . . . ,ξn). Then M is homogeneous of degree 0 and smooth on
Rn+1 \{0}. The derivatives ∂βM1 are homogeneous of degree −|β | and by the cal-
culation in the preceding example they satisfy |∂βM1(ξ , t)| ≤ Cβ |(ξ , t)|−|β |, with
Cβ = sup|θ |=1 |∂βM1(θ)|, whenever (ξ , t) �= 0 and β is a multi index of n+1 vari-
ables. In particular, taking β = (α,0), we obtain

∣
∣∂α1ξ1 · · ·∂αnξn M1(ξ1, . . . ,ξn, t)

∣
∣≤ Cα

(t2+ |ξ |2)|α |/2 ,

and setting t = 1 we deduce that |∂αm1(ξ )| ≤Cα(1+ |ξ |2)−|α |/2 ≤Cα |ξ |−|α |.
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For m2 we introduce the function

M2(ξ1, . . . ,ξn, t) =
(

1
t2+ |ξ1|2+ · · ·+ |ξn|2

)z

on Rn+1, which is homogeneous of degree−2z. Then the derivative ∂βM2 is homo-
geneous of degree −|β | − 2z, hence it satisfies |∂βM2(ξ , t)| ≤ Cβ |(ξ , t)|−|β |−2Rez

for all multi-indices β of n+1 variables. In particular, taking β = (α,0), we obtain

∣
∣∂α1ξ1 · · ·∂αnξn M2(ξ1, . . . ,ξn, t)

∣
∣≤ Cα

(t2+ |ξ |2) |α|
2 +Rez

,

and setting t = 1, we deduce |∂αm2(ξ )| ≤Cα(1+ |ξ |2)−|α |/2 ≤Cα |ξ |−|α |, where in
the first inequality we used that Rez≥ 0.

We end this section by comparing Theorems 6.2.2 and 6.2.4 with Theorem 6.2.7.
It is obvious that in dimension n= 1, Theorem 6.2.2 is stronger than Theorem 6.2.7
in view of the inequality

∫

2 j<|ξ |<2 j+1
|m′(ξ )|dξ ≤ 2 j/2

(∫

2 j<|ξ |<2 j+1
|m′(ξ )|2 dξ

) 1
2
,

which implies that (6.2.2) is weaker than (6.2.12). Note also that in Theorem 6.2.2
the multiplier m is not required to be differentiable at the points ±2 j. But in higher
dimensions neither theorem includes the other. In Theorem 6.2.4 the multiplier is
allowed to be singular on a set of measure zero but is required to be differentiable in
every variable, i.e., to be at least C n in the complement of this null set. In Theorem
6.2.7, the multiplier is only allowed to be singular only at the origin, but it is assumed
to be C [n/2]+1, requiring almost half the differentiability called for by condition
(6.2.9). It should be noted that both theorems have their shortcomings. In particular,
they are not Lp sensitive, i.e., delicate enough to detect whether m is a bounded
Fourier multiplier on some Lp but not on some other Lq.

Exercises

6.2.1. Let ψ(ξ ) be a smooth function supported in [3/4,2]∪ [−2,−3/4] and equal
to 1 on [1,3/2]∪ [−3/2,−1] that satisfies ∑ j∈Zψ(2− jξ ) = 1 for all ξ �= 0. Let
1 ≤ k ≤ n. Prove that m ∈Mp(Rn) if and only if (6.2.1) is satisfied with mj(ξ ) re-
placed by the function m(ξ )ψ(2− j1ξ1) · · ·ψ(2− jkξk).[
Hint: To prove one direction, partition Zk in 2k sets such that for every j =
( j1, . . . , jk) in each of these sets, ji has a fixed remainder modulo 2. For the
other direction, use Theorem 6.1.6 in the variables x1, . . . ,xk. Also use the inequal-
ity ‖ f‖Lp(Rn) ≤Cp‖(∑j∈Zk |( f̂ χRj)∨|2)1/2‖Lp(Rn), Rj = ([−2,− 1

2 ]∪ [ 12 ,2])
k×Rn−k,

which can be derived by duality from the identity ∑j∈Zk χRj = 2k.
]
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6.2.2. Let ϕ be a smooth function on the real line supported in the interval [−1,1].
Let ψ(t) be a smooth function on the real line that is equal to 1 when |t| ≥ 10 and
vanishes when |t| ≤ 9. Show that for the function m(ξ1,ξ2) = eiξ

2
2 /ξ1ϕ(ξ2)ψ(ξ1)

lies in Mp(R2), 1 < p < ∞, using Theorem 6.2.4. Also show that Theorem 6.2.7
does not apply.

6.2.3. Consider the differential operators

L1 = ∂1−∂ 22 +∂ 43 ,
L2 = ∂1+∂ 22 +∂ 23 .

Prove that for every 1 < p < ∞ there exists a constant Cp < ∞ such that for all
Schwartz functions f on R3 we have

∥
∥∂2∂ 23 f

∥
∥
Lp ≤Cp

∥
∥L1( f )

∥
∥
Lp ,∥

∥∂1 f
∥
∥
Lp ≤Cp

∥
∥L2( f )

∥
∥
Lp .

[
Hint: Use Corollary 6.2.5 and the idea of Example 6.2.6.

]

6.2.4. Suppose that m(ξ ) is a real-valued function that satisfies either (6.2.9) or
|∂αm(ξ )| ≤Cα |ξ |−|α | for all multi-indices α with |α| ≤ [ n2 ]+1 and all ξ ∈Rn\{0}.
Show that eim(ξ ) lies inMp(Rn) for any 1< p< ∞.[
Hint: Prove by induction and use that

∂α
(
eim(ξ )

)
= eim(ξ ) ∑

l j≥0,β j≤α
l1β 1+···+lkβ k=α

cβ 1,...,β k(∂
β 1m(ξ ))l1 · · ·(∂β km(ξ ))lk ,

where the sum is taken over all partitions of the multi-index α as a linear combina-
tion of multi-indices β j with coefficients l j ∈ Z+∪{0}.]

6.2.5. Suppose that ϕ(ξ ) is a smooth function on Rn that vanishes in a neighbor-
hood of the origin and is equal to 1 in a neighborhood of infinity. Prove that the
function eiξ j |ξ |−1ϕ(ξ ) is inMp(Rn) for 1< p< ∞.

6.2.6. Let τ ,τ1, . . . ,τn be real numbers and ρ1, . . . ,ρn be even natural numbers.
Prove that the following functions are Lp multipliers on Rn for 1< p< ∞:

|ξ1|iτ1 · · · |ξn|iτn ,
(|ξ1|ρ1 + · · ·+ |ξn|ρn)iτ ,
(|ξ1|−ρ1 + |ξ2|−ρ2)iτ .
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6.2.7. Let ζ̂ (ξ ) be a smooth function on Rn is supported in a compact set that does
not contain the origin and let a j be a bounded sequence of complex numbers. Prove
that the function

m(ξ ) = ∑
j∈Z

a jζ̂ (2− jξ )

is inMp(Rn) for all 1< p< ∞.

6.2.8. Let ζ̂ (ξ ) be a smooth function on Rn supported in a compact set that does
not contain the origin and let Δζj ( f ) =

(
f̂ (ξ )ζ̂ (2− jξ )

)∨. Show that the operator

f → sup
N∈Z

∣
∣
∣ ∑
j<N
Δζj ( f )

∣
∣
∣

is bounded on Lp(R) when 1< p< ∞.[
Hint: Pick a Schwartz function ϕ satisfying ∑ j∈Z ϕ̂(2− jξ ) = 1 on Rn \ {0} with

ϕ̂(ξ ) supported in 6
7 ≤ |ξ | ≤ 2. Then Δϕk Δ

ζ
j = 0 if | j− k|< c0 and we have

∑
j<N
Δζj = ∑

k<N+c0

Δϕk ∑
j<N
Δζj = ∑

k<N+c0

Δϕk ∑
j
Δζj − ∑

k<N+c0

Δϕk ∑
j≥N
Δζj ,

which is a finite sum plus a term controlled by a multiple of the operator

f �→M
(
∑
j∈Z
Δζj ( f )

)
,

where M is the Hardy–Littlewood maximal function.
]

6.2.9. LetΨ be a Schwartz function whose Fourier transform is real-valued, sup-
ported in a compact set that does not contain the origin, and satisfies

∑
j∈Z
Ψ̂(2− jξ ) = 1 when ξ �= 0.

Let Δ j be the Littlewood–Paley operator associated withΨ . Prove that
∥
∥ ∑
| j|<N

Δ j(g)−g
∥
∥
Lp → 0

as N → ∞ for all functions g ∈ S (Rn). Deduce that Schwartz functions whose
Fourier transforms have compact supports that do not contain the origin are dense
in Lp(Rn) for 1< p< ∞.[
Hint: Use the result of Exercise 6.2.8 and the Lebesgue dominated convergence
theorem.

]
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6.3 Applications of Littlewood–Paley Theory

We now turn our attention to some important applications of Littlewood–Paley the-
ory. We are interested in obtaining bounds for singular and maximal operators.
These bounds are obtained by controlling the corresponding operators by quadratic
expressions.

6.3.1 Estimates for Maximal Operators

One way to control the maximal operator supk |Tk( f )| is by introducing a good aver-
aging function ϕ and using the majorization

sup
k
|Tk( f )| ≤ sup

k
|Tk( f )− f ∗ϕ2−k |+ sup

k
| f ∗ϕ2−k |

≤
(
∑
k
|Tk( f )− f ∗ϕ2−k |2

) 1
2
+CϕM( f )

(6.3.1)

for some constant Cϕ depending on ϕ . We apply this idea to prove the following
theorem.

Theorem 6.3.1. Let m be a bounded function on Rn that is C 1 in a neighborhood
of the origin and satisfies m(0) = 1 and |m(ξ )| ≤ C|ξ |−ε for some C,ε > 0 and
all ξ �= 0. For each k ∈ Z define Tk( f )(x) = ( f̂ (ξ )m(2−kξ ))∨(x). Then there is a
constant Cn such that for all L2 functions f on Rn we have

∥
∥sup
k∈Z

|Tk( f )|
∥
∥
L2 ≤Cn

∥
∥ f
∥
∥
L2 . (6.3.2)

Proof. Select a Schwartz function ϕ such that ϕ̂(0) = 1. Then there are positive
constants C1 and C2 such that |m(ξ )− ϕ̂(ξ )| ≤C1|ξ |−ε for |ξ | away from zero and
|m(ξ )− ϕ̂(ξ )| ≤C2|ξ | for |ξ | near zero. These two inequalities imply that

∑
k
|m(2−kξ )− ϕ̂(2−kξ )|2 ≤C3 < ∞ ,

from which the L2 boundedness of the operator

f �→ (∑
k
|Tk( f )− f ∗ϕ2−k |2

)1/2

follows easily. Using estimate (6.3.1) and the well-known L2 estimate for the Hardy–
Littlewood maximal function, we obtain (6.3.2). �

Ifm(ξ ) is the characteristic function of a rectangle with sides parallel to the axes,
this result can be extended to Lp.
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Theorem 6.3.2. Let 1< p<∞ and let U be the n-fold product of open intervals that
contain zero. For each k ∈ Z define Tk( f )(x) = ( f̂ (ξ )χU(2−kξ ))∨(x). Then there is
a constant Cp,n such that for all Lp functions f on Rn we have

∥
∥sup
k∈Z

|Tk( f )|
∥
∥
Lp(Rn)

≤Cp,n
∥
∥ f
∥
∥
Lp(Rn)

.

Proof. Let us fix an open annulus A whose interior contains the boundary ofU and
take a smooth function with compact support ψ̂ that vanishes in a neighborhood of
zero and a neighborhood of infinity and is equal to 1 on the annulus A. Then the
function ϕ̂ = (1− ψ̂ )χU is Schwartz. Since χU = χU ψ̂ + ϕ̂ , it follows that for all
f ∈ Lp(Rn) we have

Tk( f ) = Tk( f )− f ∗ϕ2−k + f ∗ϕ2−k = Tk( f ∗ψ2−k)+ f ∗ϕ2−k .

Taking the supremum over k and using Corollary 2.1.12 we obtain

sup
k∈Z

|Tk( f )| ≤
(
∑
k
|Tk( f )− f ∗ϕ2−k |2

)1/2
+CϕM( f ) . (6.3.3)

The operator Tk( f )− f ∗ϕ2−k is given by multiplication on the Fourier transform
side by the multiplier

χU (2−kξ )− ϕ̂(2−kξ ) = χU (2−kξ )ψ̂(2−kξ ) = χ2kU (ξ )ψ̂(2
−kξ ) .

Since {2kU}k∈Z is a measurable family of rectangles with sides parallel to the axes,
Exercise 5.6.1(b) yields the following inequality:

∥
∥
∥
(
∑
k∈Z

|Tk( f )− f ∗ϕ2−k |2
) 1
2
∥
∥
∥
Lp

≤Cp,n

∥
∥
∥
(
∑
k∈Z

| f ∗ψ2−k |2
) 1
2
∥
∥
∥
Lp
. (6.3.4)

Since f ∗ψ2−k = Δψj ( f ), estimate (6.1.4) of Theorem 6.1.2 yields that the expres-
sion on the right in (6.3.4) is controlled by a multiple of ‖ f‖Lp . Taking Lp norms in
(6.3.3) and using the Lp estimate for the square function yields the required conclu-
sion. �

The following lacunary version of the Carleson–Hunt theorem is yet another in-
dication of the powerful techniques of Littlewood–Paley theory.

Corollary 6.3.3. (a) Let f be in L2(Rn) and let Ω be an open set that contains the
origin in Rn. Then

lim
k→∞

∫

2kΩ
f̂ (ξ )e2πix·ξ dξ = f (x)

for almost all x ∈ Rn.
(b) Let f be in Lp(Rn) for some 1< p< ∞. Then

lim
k→∞

∫

|ξ1|<2k
...

|ξn|<2k

f̂ (ξ )e2πix·ξ dξ = f (x)

for almost all x ∈ Rn.
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Proof. Both limits exist everywhere for functions f in the Schwartz class. To obtain
almost everywhere convergence for general f in Lp we appeal to Theorem 2.1.14.
The required control of the corresponding maximal operator is a consequence of
Theorem 6.3.1 with m= χΩ in case (a) and Theorem 6.3.2 in case (b). �

6.3.2 Estimates for Singular Integrals with Rough Kernels

We now turn to another application of the Littlewood–Paley theory involving singu-
lar integrals.

Theorem 6.3.4. Suppose that μ is a finite Borel measure on Rn with compact sup-
port that satisfies |μ̂(ξ )| ≤ Bmin

(|ξ |−b, |ξ |b) for some b> 0 and all ξ �= 0. Define
measures μ j by setting μ̂ j(ξ ) = μ̂(2− jξ ). Then the operator

Tμ( f )(x) = ∑
j∈Z

( f ∗μ j)(x)

is bounded on Lp(Rn) for all 1< p< ∞.

Proof. It is natural to begin with the L2 boundedness of Tμ . The estimate on μ̂
implies that

∑
j∈Z

|μ̂(2− jξ )| ≤ ∑
j∈Z

Bmin
(|2− jξ |b, |2− jξ |−b)≤CbB< ∞ . (6.3.5)

The L2 boundedness of Tμ is an immediate consequence of (6.3.5).
We now turn to the Lp boundedness of Tμ for 1< p<∞. We fix a radial Schwartz

function ψ whose Fourier transform is supported in the annulus 1
2 < |ξ | < 2 that

satisfies
∑
j∈Z
ψ̂(2− jξ ) = 1 (6.3.6)

whenever ξ �= 0. We let ψ2−k(x) = 2knψ(2kx), so that ψ̂2−k(ξ ) = ψ̂(2−kξ ), and we
observe that the identity

μ j = ∑
k∈Z
μ j ∗ψ2− j−k

is valid by taking Fourier transforms and using (6.3.6). We now define operators Sk
by setting

Sk( f ) = ∑
j∈Z
μ j ∗ψ2− j−k ∗ f = ∑

j∈Z
(μ ∗ψ2−k)2− j ∗ f .

Then for f inS we have that

Tμ( f ) = ∑
j∈Z
μ j ∗ f = ∑

j∈Z
∑
k∈Z
μ j ∗ψ2− j−k ∗ f = ∑

k∈Z
Sk( f ) .
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It suffices therefore to obtain Lp boundedness for the sum of the Sk’s. We begin
by investigating the L2 boundedness of each Sk. Since the product ψ̂2− j−k ψ̂2− j′−k is
nonzero only when j′ ∈ { j−1, j, j+1}, it follows that
∥
∥Sk( f )

∥
∥2
L2 ≤ ∑

j∈Z
∑
j′∈Z

∫

Rn
|μ̂ j(ξ )μ̂ j′ (ξ )ψ̂(2− j−kξ )ψ̂(2− j′−kξ )| | f̂ (ξ )|2 dξ

≤C1 ∑
j∈Z

j+1

∑
j′= j−1

∫

|ξ |≈2 j+k

|μ̂ j(ξ )μ̂ j′(ξ )| | f̂ (ξ )|2 dξ

≤C2 ∑
j∈Z

∫

|ξ |≈2 j+k

B2min(|2− jξ |b, |2− jξ |−b)2| f̂ (ξ )|2 dξ

≤C2
3B

22−2|k|b∑
j∈Z

∫

|ξ |≈2 j+k

| f̂ (ξ )|2 dξ

=C2
3B

2 2−2|k|b∥∥ f
∥
∥2
L2 .

We have therefore obtained that for all k ∈ Z and f ∈S (Rn) we have
∥
∥Sk( f )

∥
∥
L2 ≤C3B2−b|k|∥∥ f

∥
∥
L2 . (6.3.7)

We notice that for any R> 0 we have
∫

R≤|x|≤2R
∑
j∈Z

∣
∣
(
μ ∗ψ2−k

)
2− j(x)

∣
∣dx = ∑

j∈Z

∫

2 jR≤|x|≤2 j+1R

∣
∣
(
μ ∗ψ2−k

)
(x)
∣
∣dx

=
∫

Rn

∣
∣
(
μ ∗ψ2−k

)
(x)
∣
∣dx

≤ ∥∥μ∥∥‖ψ‖L1 ,

thus condition (5.3.4) of Theorem 5.3.3 is satisfied.
Next we verify that the kernel of each Sk satisfies Hörmander’s condition with

constant at most a multiple of (1+ |k|). Fix y �= 0. Then

∫

|x|≥2|y|

∣
∣
∣
∣∑
j∈Z

(

(μ ∗ψ2−k)2− j(x− y)− (μ ∗ψ2−k)2− j(x)
)∣
∣
∣
∣dx

≤ ∑
j∈Z

∫

|x|≥2|y|
2 jn∣∣(μ ∗ψ2−k)(2 jx−2 jy)− (μ ∗ψ2−k)(2 jx)

∣
∣dx

= ∑
j∈Z

I j,k(y) ,

where
I j,k(y) =

∫

|x|≥2 j+1|y|

∣
∣(μ ∗ψ2−k)(x−2 jy)− (μ ∗ψ2−k)(x)

∣
∣dx .
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We observe that I j,k(y) ≤C4‖μ‖M . Let |μ | be the total variation of μ . To obtain a
more delicate estimate for I j,k(y) we argue as follows:

I j,k(y) ≤
∫

|x|≥2 j+1|y|

∫

Rn

∣
∣ψ2−k(x−2 jy− z)−ψ2−k(x− z)

∣
∣d|μ |(z)dx

=
∫

Rn
2kn

∫

|x|≥2 j+1|y|

∣
∣ψ(2kx−2kz−2 j+ky)−ψ(2kx−2kz)

∣
∣dxd|μ |(z)

≤C5

∫

|x|≥2 j+1|y|

∫

Rn
2kn2 j+k|y|∣∣∇ψ(2kx−2kz−θ)∣∣d|μ |(z)dx

≤C62 j+k
∫

Rn

∫

|x|≥2 j+1|y|
2kn|y|(1+ |2kx−2kz−θ |)−n−2 dxd|μ |(z)

=C62 j+k|y|
∫

Rn

∫

|x|≥2 j+k+1|y|

(
1+ |x−2kz−θ |)−n−2 dxd|μ |(z) ,

where |θ | ≤ 2 j+k|y|. Note that θ depends on j,k, and y. From this and from I j,k(y)≤
C4‖μ‖M we obtain

I j,k(y)≤C7
∥
∥μ
∥
∥
M

min
(
1,2 j+k|y|), (6.3.8)

which is valid for all j,k, and y �= 0. To estimate the last double integral even more
delicately, we consider the following two cases: |x| ≥ 2k+2|z| and |x| < 2k+2|z|. In
the first case we have |x− 2kz− θ | ≥ 1

4 |x|, given the fact that |x| ≥ 2 j+k+1|y|. In
the second case we have that |x| ≤ 2k+2R, where B(0,R) contains the support of
μ . Applying these observations in the last double integral, we obtain the following
estimate:

I j,k(y)≤ C82 j+k|y|
∫

Rn

[ ∫

|x|≥2 j+k+1|y|
|x|≥2k+2|z|

dx
(
1+ 1

4 |x|
)n+2 +

∫

|x|≥2 j+k+1|y|
|x|<2k+2R

dx
]

d|μ |(z)

≤ C92 j+k|y|∥∥μ∥∥
M

[
1

(2 j+k|y|)2 +0
]

= C9(2 j+k|y|)−1∥∥μ
∥
∥
M

,

provided 2 j|y| ≥ 2R. Combining this estimate with (6.3.8), we obtain

I j,k(y)≤C10
∥
∥μ
∥
∥
M

{
min
(
1,2 j+k|y|) for all j,k and y,

(2 j+k|y|)−1 when 2 j|y| ≥ 2R.
(6.3.9)
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We now estimate ∑ j I j,k(y). When 2k ≥ (2R)−1 we use (6.3.9) to obtain

∑
j
I j,k(y) ≤ C10

∥
∥μ
∥
∥
M

[
∑

2 j≤ 1
2k |y|

2 j+k|y|+ ∑
1

2k |y| ≤2 j≤ 2R
|y|

1+ ∑
2 j≥ 2R

|y|

(2 j+k|y|)−1
]

≤C11
∥
∥μ
∥
∥
M
(| logR|+ |k|) .

Also when 2k < (2R)−1 we again use (6.3.9) to obtain

∑
j
I j,k(y)≤C10

∥
∥μ
∥
∥
M

[
∑

2 j≤ 1
2k |y|

2 j+k|y|+ ∑
2 j≥ 1

2k |y|

(2 j+k|y|)−1
]
≤C12

∥
∥μ
∥
∥
M

,

since in the second sum we have 2 j|y| ≥ 2−k > 2R, which justifies use of the corre-
sponding estimate in (6.3.9). This gives

∑
j
I j,k(y)≤C13

∥
∥μ
∥
∥
M
(1+ |k|) , (6.3.10)

where the constant C13 depends on the dimension and on R. We now use esti-
mates (6.3.7) and (6.3.10) and Theorem 5.3.3 to obtain that each Sk maps L1(Rn)
to L1,∞(Rn) with constant at most

Cn(2−b|k|+1+ |k|)∥∥μ∥∥
M

≤Cn(2+ |k|)∥∥μ∥∥
M

.

It follows from the Marcinkiewicz interpolation theorem (Theorem 1.3.2) that Sk
maps Lp(Rn) to itself for 1 < p < 2 with bound at most Cp,n2−b|k|θp(1+ |k|)1−θp ,
when 1

p =
θp
2 +1−θp. Summing over all k ∈ Z, we obtain that Tμ maps Lp(Rn) to

itself for 1< p< 2. The boundedness of Tμ for p> 2 follows by duality. �

An immediate consequence of the previous result is the following.

Corollary 6.3.5. Suppose that μ is a finite Borel measure on Rn with compact sup-
port that satisfies |μ̂(ξ )| ≤ Bmin

(|ξ |−b, |ξ |b) for some b> 0 and all ξ �= 0. Define
measures μ j by setting μ̂ j(ξ ) = μ̂(2− jξ ). Then the square function

G( f ) =
(
∑
j∈Z

|μ j ∗ f |2
) 1

2
(6.3.11)

maps Lp(Rn) to itself whenever 1< p< ∞.

Proof. To obtain the boundedness of the square function in (6.3.11) we use the
Rademacher functions r j(t), introduced in Appendix C.1, reindexed so that their
index set is the set of all integers (not the set of nonnegative integers). For each t we
introduce the operators

Tt
μ( f ) = ∑

j∈Z
r j(t)( f ∗μ j) .
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Next we observe that for each t in [0,1] the operators Tt
μ map Lp(Rn) to itself with

the same constant as the operator Tμ , which is in particular independent of t. Using
that the square function in (6.3.11) raised to the power p is controlled by a multiple
of the quantity

∫ 1

0

∣
∣
∣∑
j∈Z

r j(t)( f ∗μ j)
∣
∣
∣
p
dt ,

a fact stated in Appendix C.2, we obtain the required conclusion by integrating
over Rn. �

6.3.3 An Almost Orthogonality Principle on Lp

Suppose that Tj are multiplier operators given by Tj( f ) = ( f̂ m j)
∨, for some multi-

pliers mj. If the functions mj have disjoint supports and they are bounded uniformly
in j, then the operator

T =∑
j
Tj

is bounded on L2. The following theorem gives an Lp analogue of this result.

Theorem 6.3.6. Suppose that 1 < p ≤ 2 ≤ q < ∞. Let mj be Schwartz functions
supported in the annuli 2 j−1 ≤ |ξ | ≤ 2 j+1 and let Tj( f ) = ( f̂ m j)

∨. Suppose that the
Tj’s are uniformly bounded operators from Lp(Rn) to Lq(Rn), i.e.,

sup
j

∥
∥Tj
∥
∥
Lp→Lq = A< ∞ .

Then for each f ∈ Lp(Rn), the series

T ( f ) =∑
j
Tj( f )

converges in the Lq norm and there exists a constant Cp,q,n < ∞ such that
∥
∥T
∥
∥
Lp→Lq ≤Cp,q,nA. (6.3.12)

Proof. Fix a radial Schwartz function ϕ whose Fourier transform ϕ̂ is real, equal to
one on the annulus 1

2 ≤ |ξ | ≤ 2, and vanishes outside the annulus 1
4 ≤ |ξ | ≤ 4. We

set ϕ2− j(x) = 2 jnϕ(2 jx), so that ϕ̂2− j is equal to 1 on the support of each mj. Setting
Δ j( f ) = f ∗ϕ2− j , we observe that

Tj = Δ jTjΔ j

for all j ∈ Z. For a positive integer N we set

TN = ∑
| j|≤N

Δ jTjΔ j .
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Fix f ∈ Lp(Rn). Clearly for every N, TN( f ) is in Lq(Rn). Using (6.1.21) we obtain
∥
∥TN( f )

∥
∥
Lq =

∥
∥ ∑
| j|≤N

Δ jTjΔ j( f )
∥
∥
Lq

≤C′
q

∥
∥
∥
(
∑
j∈Z

|TjΔ j( f )|2
) 1
2
∥
∥
∥
Lq

=C′
q

∥
∥
∥∑

j∈Z
|TjΔ j( f )|2

∥
∥
∥

1
2

Lq/2

≤C′
q

(
∑
j∈Z

∥
∥
∥|TjΔ j( f )|2

∥
∥
∥
Lq/2

) 1
2

=C′
q

(
∑
j∈Z

∥
∥TjΔ j( f )

∥
∥2
Lq

) 1
2
,

where we used Minkowski’s inequality, since q/2≥ 1. Using the uniform bounded-
ness of the Tj’s from Lp to Lq, we deduce that

C′
q

(
∑
j∈Z

∥
∥TjΔ j( f )

∥
∥2
Lq

) 1
2 ≤C′

q A
(
∑
j∈Z

∥
∥Δ j( f )

∥
∥2
Lp

)1
2

=C′
q A
(
∑
j∈Z

∥
∥|Δ j( f )|2

∥
∥
Lp/2

)1
2

≤C′
q A
(∥
∥
∥∑

j∈Z
|Δ j( f )|2

∥
∥
∥
Lp/2

)1
2

=C′
q A
∥
∥
∥
(
∑
j∈Z

|Δ j( f )|2
) 1

2
∥
∥
∥
Lp

≤C′
qCp A

∥
∥ f
∥
∥
Lp(Rn)

,

where we used the result of Exercise 1.1.5(b), since p ≤ 2, and Theorem 6.1.2. We
conclude that the operators TN are uniformly bounded from Lp(Rn) to Lq(Rn).

If ĥ is compactly supported in a subset of Rn \ {0}, then the sequence TN(h)
becomes independent of N for N large enough and hence it is Cauchy in Lq. But in
view of Exercise 6.2.9, the set of all such h is dense in Lp(Rn). Combining these
two results with the uniform boundedness of the TN’s from Lp to Lq, a simple ε

3
argument gives that for all f ∈ Lp the sequence TN( f ) is Cauchy in Lq. Therefore,
for all f ∈ Lp the sequence {TN( f )}N converges in Lq to some T ( f ). Fatou’s lemma
gives ∥

∥T ( f )
∥
∥
Lq ≤C′

qCp A
∥
∥ f
∥
∥
Lp ,

which proves (6.3.12). �
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Exercises

6.3.1. (The g-function) Let Pt(x) = Γ ( n+1
2 )π− n+1

2 t(t2+ |x|2)− n+1
2 be the Poisson

kernel on Rn.
(a) Use Exercise 6.1.4 withΨ(x) = ∂

∂ t Pt(x)
∣
∣
t=1 to obtain that the operator

f →
(∫ ∞

0
t
∣
∣ ∂
∂ t (Pt ∗ f )(x)

∣
∣2 dt
)1/2

is bounded from Lp(Rn) to Lp(Rn) for 1< p< ∞.
(b ) Use Exercise 6.1.4 withΨ(x) = ∂kP1(x) to obtain that the operator

f →
(∫ ∞

0
t|∂k(Pt ∗ f )(x)|2 dt

)1/2

is bounded from Lp(Rn) to Lp(Rn) for 1< p< ∞.
(c) Conclude that the g-function

g( f )(x) =
(∫ ∞

0
t|∇x,t(Pt ∗ f )(x)|2 dt

)1/2

is bounded from Lp(Rn) to Lp(Rn) for 1< p< ∞.
6.3.2. Suppose that μ is a finite Borel measure onRn with compact support that sat-
isfies μ̂(0) = 0 and |μ̂(ξ )| ≤C|ξ |−a for some a> 0 and all ξ �= 0. Define measures
μ j by setting μ̂ j(ξ ) = μ̂(2− jξ ). Show that the operator

Tμ( f )(x) = ∑
j∈Z

( f ∗μ j)(x)

is bounded from Lp(Rn) to Lp(Rn) for all 1< p< ∞.[
Hint: Use Theorem 6.3.4

]

6.3.3. ([50], [71]) (a) Suppose that μ is a finite Borel measure on Rn with compact
support that satisfies |μ̂(ξ )| ≤C|ξ |−a for some a > 0 and all ξ �= 0. Show that the
maximal function

Mμ( f )(x) = sup
j∈Z

∣
∣
∣
∣

∫

Rn
f (x−2 jy)dμ(y)

∣
∣
∣
∣

is bounded from Lp(Rn) to Lp(Rn) for all 1< p< ∞.
(b) Let μ be the surface measure on the sphere Sn−1 when n≥ 2. Conclude that the
dyadic spherical maximal function Mμ is bounded on Lp(Rn) for all 1< p< ∞.[
Hint: Part (a): Pick a C ∞

0 function ϕ on Rn with ϕ̂(0) = 1. Then the measure
σ = μ− μ̂(0)ϕ satisfies the hypotheses of Corollary 6.3.5. Since,

Mμ( f )(x)≤
(
∑
j
|(σ j ∗ f )(x)|2

)1/2
+ |μ̂(0)|M( f )(x) ,
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it follows that Mμ is bounded on Lp(Rn) whenever 1< p< ∞. Part (b): If μ = dσ
is surface measure on Sn−1, then |d̂σ(ξ )| ≤C|ξ |− n−1

2 (Appendices B.4 and B.7).
]

6.3.4. Let Ω be in Lq(Sn−1) for some 1< q< ∞ and define the absolutely continu-
ous measure

dμ(x) =
Ω(x/|x|)

|x|n χ1<|x|≤2 dx .

Show that for all a < 1/q′ we have that |μ̂(ξ )| ≤C|ξ |−a. Under the additional hy-
pothesis that Ω has mean value zero, conclude that the singular integral operator

TΩ ( f )(x) = p.v.
∫

Rn

Ω(y/|y|)
|y|n f (x− y)dy=∑

j
f ∗μ j

is Lp bounded for all 1 < p < ∞. This provides an alternative proof of Theorem
5.2.10 under the hypothesis that Ω ∈ Lq(Sn−1).

6.3.5. For a continuous function F on R define

u(F)(x) =
(∫ ∞

0
|F(x+ t)+F(x− t)−2F(x)|2 dt

t3

) 1
2
.

Given f ∈ L1loc(R) we denote by Ff the indefinite integral of f , that is,

Ff (x) =
∫ x

0
f (t)dt .

Prove that for all 1< p<∞ there exist constants cp andCp such that for all functions
f ∈ Lp(R) we have

cp
∥
∥ f
∥
∥
Lp ≤
∥
∥u(Ff )

∥
∥
Lp ≤Cp

∥
∥ f
∥
∥
Lp .

[
Hint: Let ϕ = χ[−1,0]− χ[0,1]. Then

(ϕt ∗ f )(x) =
1
t

(
Ff (x+ t)+Ff (x− t)−2Ff (x)

)

and the double inequality follows from parts (b) and (c) of Exercise 6.1.4.
]

6.3.6. Let m be a bounded function on Rn that is C 1 in a neighborhood of zero, it
satisfies m(0) = 1 and |m(ξ )| ≤ B|ξ |−ε for all ξ �= 0, for some B,ε > 0. Define an
operator Tt by setting Tt( f )̂(ξ ) = f̂ (ξ )m(tξ ). Show that the maximal operator

sup
N>0

(
1
N

∫ N

0

∣
∣Tt( f )(x)

∣
∣2 dt
)1

2

maps L2(Rn) to itself.
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[
Hint:Majorize this maximal operator by a constant multiple of the sum

M( f )(x)+
(∫ ∞

0
|Tt( f )(x)− ( f ∗ϕt)(x)|2 dtt

) 1
2
,

where ϕ is a C ∞
0 function such that ϕ̂(0) = 1.

]

6.3.7. ([150]) Let 0 < β < 1 and p0 = (1−β/2)−1. Suppose that { f j} j∈Z are L2

functions on the real line with norm at most 1. Assume that each f j is supported in
interval of length 1 and that the orthogonality relation

∣
∣
〈
f j | fk〉

∣
∣ ≤ (1+ | j− k|)−β

holds for all j,k ∈ Z.
(a) Let I � Z be such that for all j ∈ I the functions f j are supported in a fixed
interval of length 3. Show that for all p satisfying 0< p≤ 2 there is Cp,β < ∞ such
that ∥

∥
∥∑

j∈I
ε j f j
∥
∥
∥
Lp

≤Cp,β |I|1−
β
2

whenever ε j are complex numbers with |ε j| ≤ 1.
(b) Under the same hypothesis as in part (a), prove that for all 0< p< p0 there is a
constant C′

p,β < ∞ such that

∥
∥
∥∑

j∈I
c j f j
∥
∥
∥
Lp

≤C′
p,β

(
∑
j∈Z

|c j|p
) 1

p

for all complex-valued sequences {c j} j in �p.
(c) Derive the conclusion of part (b) without the assumption that the f j are sup-
ported in a fixed interval of length 3.[
Hint: Part (a): Pass from Lp to L2 and use the hypothesis. Part (b): Assume
∑ j∈Z |c j|p = 1. For each k = 0,1, . . . , set Ik = { j ∈ Z : 2−k−1 < |c j| ≤ 2−k}. Write∥
∥∑ j∈Z c j f j

∥
∥
Lp ≤∑∞k=0 2

−k
∥
∥∑ j∈Ik(c j2

k) f j
∥
∥
Lp , use part (b), Hölder’s inequality, and

the fact that ∑∞k=0 2
−kp|Ik| ≤ 2p. Part (c): Write ∑ j∈Z c j f j = ∑m∈ZFm, where Fm is

the sum of c j f j over all j such that the support of f j meets the interval [m,m+ 1].
These Fm’s are supported in [m−1,m+2] and are almost orthogonal.

]

6.4 The Haar System, Conditional Expectation, and Martingales

There is a very strong connection between the Littlewood–Paley operators and cer-
tain notions from probability, such as conditional expectation and martingale differ-
ence operators. The conditional expectation we are concerned with is with respect
to the increasing σ -algebra of all dyadic cubes on Rn.
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6.4.1 Conditional Expectation and Dyadic Martingale Differences

We recall the definition of dyadic cubes.

Definition 6.4.1. A dyadic interval in R is an interval of the form
[
m2−k,(m+1)2−k)

where m,k are integers. A dyadic cube in Rn is a product of dyadic intervals of the
same length. That is, a dyadic cube is a set of the form

n

∏
j=1

[
mj2−k,(mj+1)2−k)

for some integers m1, . . . ,mn,k.

We defined dyadic intervals to be closed on the left and open on the right, so that
different dyadic intervals of the same length are always disjoint sets.

Given a cube Q in Rn we denote by |Q| its Lebesgue measure and by �(Q) its
side length. We clearly have |Q|= �(Q)n. We introduce some more notation.

Definition 6.4.2. For k ∈ Z we denote byDk the set of all dyadic cubes in Rn whose
side length is 2−k. We also denote by D the set of all dyadic cubes in Rn. Then we
have

D =
⋃

k∈Z
Dk ,

and moreover, the σ -algebra σ(Dk) of measurable subsets of Rn formed by count-
able unions and complements of elements of Dk is increasing as k increases.

We observe the fundamental property of dyadic cubes, which clearly justifies
their usefulness. Any two dyadic intervals of the same side length either are disjoint
or coincide. Moreover, either two given dyadic intervals are disjoint, or one contains
the other. Similarly, either two dyadic cubes are disjoint, or one contains the other.

Definition 6.4.3. Given a locally integrable function f on Rn, we denote by

Avg
Q

f =
1
|Q|
∫

Q
f (t)dt

the average of f over a cube Q.
The conditional expectation of a locally integrable function f on Rn with respect

to the increasing family of σ -algebras σ(Dk) generated by Dk is defined as

Ek( f )(x) = ∑
Q∈Dk

(Avg
Q

f )χQ(x),
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for all k∈Z. We also define the dyadic martingale difference operator Dk as follows:

Dk( f ) = Ek( f )−Ek−1( f ),

also for k ∈ Z.

Next we introduce the family of Haar functions.

Definition 6.4.4. For a dyadic interval I = [m2−k,(m+ 1)2−k) we define IL =
[m2−k,(m+ 1

2 )2
−k) and IR = [(m+ 1

2 )2
−k,(m+1)2−k) to be the left and right parts

of I, respectively. The function

hI(x) = |I|− 1
2 χIL −|I|− 1

2 χIR

is called the Haar function associated with the interval I.

We remark that Haar functions are constructed in such a way that they have L2

norm equal to 1. Moreover, the Haar functions have the following fundamental or-
thogonality property:

∫

R
hI(x)hI′(x)dx=

{
0 when I �= I′,
1 when I = I′.

(6.4.1)

To see this, observe that the Haar functions have L2 norm equal to 1 by construction.
Moreover, if I �= I′, then I and I′ must have different lengths, say we have |I′|< |I|.
If I and I′ are not disjoint, then I′ is contained either in the left or in the right half of
I, on either of which hI is constant. Thus (6.4.1) follows.

We recall the notation

〈
f ,g
〉
=
∫

R
f (x)g(x)dx

valid for square integrable functions. Under this notation, (6.4.1) can be rewritten as〈
hI ,hI′

〉
= δI,I′ , where the latter is 1 when I = I′ and zero otherwise.

6.4.2 Relation Between Dyadic Martingale Differences and Haar
Functions

We have the following result relating the Haar functions to the dyadic martingale
difference operators in dimension one.

Proposition 6.4.5. For every locally integrable function f on R and for all k ∈Z we
have the identity

Dk( f ) = ∑
I∈Dk−1

〈
f ,hI
〉
hI (6.4.2)
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and also ∥
∥Dk( f )

∥
∥2
L2 = ∑

I∈Dk−1

∣
∣
〈
f ,hI
〉∣
∣2. (6.4.3)

Proof. We observe that every interval J inDk is either an IL or an IR for some unique
I ∈Dk−1. Thus we can write

Ek( f ) = ∑
J∈Dk

(Avg
J

f )χJ

= ∑
I∈Dk−1

[(
2
|I|
∫

IL
f (t)dt

)

χIL +
(

2
|I|
∫

IR
f (t)dt

)

χIR

]

.
(6.4.4)

But we also have

Ek−1( f ) = ∑
I∈Dk−1

(Avg
I

f )χI

= ∑
I∈Dk−1

(
1
|I|
∫

IL
f (t)dt+

1
|I|
∫

IR
f (t)dt

)
(
χIL + χIR

)
.

(6.4.5)

Now taking the difference between (6.4.4) and (6.4.5) we obtain

Dk( f ) = ∑
I∈Dk−1

[(
1
|I|
∫

IL
f (t)dt

)

χIL −
(

1
|I|
∫

IR
f (t)dt

)

χIL

+

(
1
|I|
∫

IR
f (t)dt

)

χIR −
(

1
|I|
∫

IL
f (t)dt

)

χIR

]

,

which is easily checked to be equal to

∑
I∈Dk−1

(∫

I
f (t)hI(t)dt

)

hI = ∑
I∈Dk−1

〈
f ,hI
〉
hI .

Finally, (6.4.3) is a consequence of (6.4.1). �

Theorem 6.4.6. Every function f ∈ L2(Rn) can be written as

f = ∑
k∈Z

Dk( f ) , (6.4.6)

where the series converges almost everywhere and in L2. We also have

∥
∥ f
∥
∥2
L2(Rn)

= ∑
k∈Z

∥
∥Dk( f )

∥
∥2
L2(Rn)

. (6.4.7)

Moreover, when n= 1 we have the representation

f = ∑
I∈D

〈
f ,hI
〉
hI , (6.4.8)
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where the sum converges a.e. and in L2 and also

∥
∥ f
∥
∥2
L2(R) = ∑

I∈D

∣
∣
〈
f ,hI
〉∣
∣2 . (6.4.9)

Proof. In view of the Lebesgue differentiation theorem, Corollary 2.1.16, given a
function f ∈ L2(Rn) there is a set Nf of measure zero on Rn such that for all x ∈
Rn \Nf we have that

Avg
Qj

f → f (x)

whenever Qj is a sequence of decreasing cubes such that
⋂

j Q j = {x}. Given x
in Rn \Nf there exists a unique sequence of dyadic cubes Qj(x) ∈ D j such that
⋂∞

j=0Qj(x) = {x}. Then for all x ∈ Rn \Nf we have

lim
j→∞

Ej( f )(x) = lim
j→∞ ∑Q∈D j

(Avg
Q

f )χQ(x) = lim
j→∞

Avg
Qj(x)

f = f (x) .

From this we conclude that Ej( f ) → f a.e. as j → ∞. We also observe that since
|Ej( f )| ≤Mc( f ), where Mc denotes the uncentered maximal function with respect
to cubes, we have that |Ej( f )− f | ≤ 2Mc( f ), which allows us to obtain from the
Lebesgue dominated convergence theorem that Ej( f )→ f in L2 as j→ ∞.

Next we study convergence of Ej( f ) as j →−∞. For a given x ∈ Rn and Qj(x)
as before we have that

|Ej( f )(x)|=
∣
∣Avg
Qj(x)

f
∣
∣≤
(

1
|Qj(x)|

∫

Qj(x)
| f (t)|2 dt

)1
2
≤ 2

jn
2
∥
∥ f
∥
∥
L2 ,

which tends to zero as j → −∞, since the side length of each Qj(x) is 2− j. Since
|Ej( f )| ≤ Mc( f ), the Lebesgue dominated convergence theorem allows us to con-
clude that Ej( f )→ 0 in L2 as j→−∞. To obtain the conclusion asserted in (6.4.6)
we simply observe that

N

∑
k=M

Dk( f ) = EN( f )−EM−1( f )→ f

in L2 and almost everywhere as N → ∞ and M →−∞.
To prove (6.4.7) we first observe that we can rewrite Dk( f ) as

Dk( f ) = ∑
Q∈Dk

(Avg
Q

f )χQ− ∑
R∈Dk−1

(Avg
R

f )χR

= ∑
R∈Dk−1

[

∑
Q∈Dk
Q⊆R

(Avg
Q

f )χQ− (Avg
R

f )χR
]



468 6 Littlewood–Paley Theory and Multipliers

= ∑
R∈Dk−1

[

∑
Q∈Dk
Q⊆R

(Avg
Q

f )χQ− 1
2n ∑Q∈Dk

Q⊆R

(Avg
Q

f )χR
]

= ∑
R∈Dk−1

∑
Q∈Dk
Q⊆R

(Avg
Q

f )
(
χQ−2−nχR

)
. (6.4.10)

Using this identity we obtain that for given integers k′ > k we have
∫

Rn
Dk( f )(x)Dk′( f )(x)dx

= ∑
R∈Dk−1

∑
Q∈Dk
Q⊆R

(Avg
Q

f ) ∑
R′∈Dk′−1

∑
Q′∈Dk′
Q′⊆R′

(Avg
Q′

f )
∫ (

χQ−2−nχR
)(
χQ′ −2−nχR′

)
dx .

Since k′ > k, the last integral may be nonzero only when R′
� R. If this is the case,

then R′ ⊆ QR′ for some dyadic cube QR′ ∈Dk with QR′ � R. See Figure 6.1.

Fig. 6.1 Picture of the cubes
R, R′, and QR′ .

Then the function χQ′ − 2−nχR′ is supported in the cube QR′ and the function
χQ−2−nχR is constant on any dyadic subcube Q of R (of half its side length) and in
particular is constant on QR′ . Then

∑
Q′∈Dk′
Q′⊆R′

(
Avg
Q′

f
)∫

QR′
χQ′ −2−nχR′ dx= ∑

Q′∈Dk′
Q′⊆R′

(
Avg
Q′

f
)(|Q′|−2−n|R′|)= 0 ,

since |R′| = 2n|Q′|. We conclude that
〈
Dk( f ),Dk′( f )

〉
= 0 whenever k �= k′, from

which we easily derive (6.4.7).
Now observe that (6.4.8) is a direct consequence of (6.4.2), and (6.4.9) is a direct

consequence of (6.4.3). �
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6.4.3 The Dyadic Martingale Square Function

As a consequence of identity (6.4.7), proved in the previous subsection, we obtain
that ∥

∥
∥
(
∑
k∈Z

|Dk( f )|2
) 1

2
∥
∥
∥
L2(Rn)

=
∥
∥ f
∥
∥
L2(Rn)

, (6.4.11)

which says that the dyadic martingale square function

S( f ) =
(
∑
k∈Z

|Dk( f )|2
) 1

2

is L2 bounded. It is natural to ask whether there exist Lp analogues of this result, and
this is the purpose of the following theorem.

Theorem 6.4.7. For any 1 < p < ∞ there exists a constant cp,n such that for every
function f in Lp(Rn) we have

1
cp′,n

∥
∥ f
∥
∥
Lp(Rn)

≤ ∥∥S( f )∥∥Lp(Rn)
≤ cp,n

∥
∥ f
∥
∥
Lp(Rn)

. (6.4.12)

The lower inequality subsumes the fact that if
∥
∥S( f )

∥
∥
Lp(Rn)

< ∞, then f must be an
Lp function.

Proof. Let {r j} j be the Rademacher functions (see Appendix C.1) enumerated in
such a way that their index set is the set of integers. We rewrite the upper estimate
in (6.4.12) as

∫ 1

0

∫

Rn

∣
∣
∣∑
k∈Z

rk(ω)Dk( f )(x)
∣
∣
∣
p
dxdω ≤Cp

p
∥
∥ f
∥
∥p
Lp . (6.4.13)

We prove a stronger estimate than (6.4.13), namely that for all ω ∈ [0,1] we have
∫

Rn

∣
∣
∣Tω( f )(x)

∣
∣
∣
p
dx≤Cp

p
∥
∥ f
∥
∥p
Lp , (6.4.14)

where
Tω( f )(x) = ∑

k∈Z
rk(ω)Dk( f )(x) .

In view of the L2 estimate (6.4.11), we have that the operator Tω is L2 bounded with
norm 1. We show that Tω is weak type (1,1).

To show that Tω is of weak type (1,1) we fix a function f ∈ L1 and α > 0. We
apply the Calderón–Zygmund decomposition (Theorem 5.3.1) to f at height α to
write

f = g+b, b=∑
j

(
f −Avg

Qj

f
)
χQj ,
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where Qj are dyadic cubes that satisfy ∑ j |Qj| ≤ 1
α
∥
∥ f
∥
∥
L1 and g has L2 norm at

most (2nα
∥
∥ f
∥
∥
L1)

1
2 ; see (5.3.1). To achieve this decomposition, we apply the proof

of Theorem 5.3.1 starting with a dyadic mesh of large cubes such that |Q| ≥ 1
α
∥
∥ f
∥
∥
L1

for all Q in the mesh. Then we subdivide each Q in the mesh by halving each side,
and we select those cubes for which the average of f over them is bigger than α (and
thus at most 2nα). Since the original mesh consists of dyadic cubes, the stopping-
time argument of Theorem 5.3.1 ensures that each selected cube is dyadic.

We observe (and this is the key observation) that Tω(b) is supported in
⋃

j Q j. To
see this, we use identity (6.4.10) to write Tω(b) as

∑
j

[

∑
k
rk(ω) ∑

R∈Dk−1

∑
Q∈Dk
Q⊆R

Avg
Q

[( f −Avg
Qj

f )χQj ]
(
χQ−2−nχR

)
]

. (6.4.15)

We consider the following three cases for the cubesQ that appear in the inner sum in
(6.4.15): (i) Qj ⊆Q, (ii) Qj∩Q= /0, and (iii) Q�Qj. It is simple to see that in cases
(i) and (ii) we have AvgQ[( f −AvgQj

f )χQj ] = 0. Therefore the inner sum in (6.4.15)
is taken over all Q that satisfy Q�Qj. But then we must have that the unique dyadic
parent R of Q is also contained in Qj. It follows that the expression inside the square
brackets in (6.4.15) is supported in R and therefore in Qj. We conclude that Tω(b)
is supported in

⋃
j Q j. Using Exercise 5.3.5(a) we obtain that Tω is weak type (1,1)

with norm at most

α
∣
∣{|Tω(g)|> α

2 }
∣
∣+α
∣
∣⋃

j Q j
∣
∣

‖ f‖L1
≤ α4α−2‖g‖2L2 +‖ f‖L1

‖ f‖L1
≤ 2n+2+1 .

We have now established that Tω is weak type (1,1). Since Tω is L2 bounded with
norm 1, it follows by interpolation that Tω is Lp bounded for all 1 < p < 2. The
Lp boundedness of Tω for the remaining p > 2 follows by duality. (Note that the
operators Dk and Ek are self-transpose.) We conclude the validity of (6.4.14), which
implies that of (6.4.13). As observed, this is equivalent to the upper estimate in
(6.4.12).

Finally, we notice that the lower estimate in (6.4.12) is a consequence of the
upper estimate as in the case of the Littlewood–Paley operators Δ j. Indeed, we need
to observe that in view of (6.4.6) we have
∣
∣
〈
f ,g
〉∣
∣ =
∣
∣
〈
∑
k
Dk( f ),∑

k′
Dk′(g)

〉∣
∣

=
∣
∣
∣∑

k
∑
k′

〈
Dk( f ),Dk′(g)

〉∣∣
∣

=
∣
∣
∣∑

k

〈
Dk( f ),Dk(g)

〉∣∣
∣ [Exercise 6.4.6(a)]

≤
∫

Rn
∑
k
|Dk( f )(x)| |Dk(g)(x)|dx
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≤
∫

Rn
S( f )(x)S(g)(x)dx (Cauchy–Schwarz inequality)

≤ ∥∥S( f )∥∥Lp
∥
∥S(g)

∥
∥
Lp′ (Hölder’s inequality)

≤ ∥∥S( f )∥∥Lp cp′,n
∥
∥g
∥
∥
Lp′ .

Taking the supremum over all functions g on Rn with Lp′ norm at most 1, we obtain
that f gives rise to a bounded linear functional on Lp′ . It follows by the Riesz repre-
sentation theorem that f must be an Lp function that satisfies the lower estimate in
(6.4.12). �

6.4.4 Almost Orthogonality Between the Littlewood–Paley
Operators and the Dyadic Martingale Difference Operators

Next, we discuss connections between the Littlewood–Paley operators Δ j and the
dyadic martingale difference operators Dk. It turns out that these operators are al-
most orthogonal in the sense that the L2 operator norm of the composition DkΔ j
decays exponentially as the indices j and k get farther away from each other.

For the purposes of the next theorem we define the Littlewood–Paley operators
Δ j as convolution operators with the functionΨ2− j , where

Ψ̂(ξ ) = Φ̂(ξ )− Φ̂(2ξ )

and Φ is a fixed radial Schwartz function whose Fourier transform Φ̂ is real-valued,
supported in the ball |ξ | < 2, and equal to 1 on the ball |ξ | < 1. In this case we
clearly have the identity

∑
j∈Z
Ψ̂(2− jξ ) = 1, ξ �= 0 .

Then we have the following theorem.

Theorem 6.4.8. There exists a constant C such that for every k, j in Z the following
estimate on the operator norm of DkΔ j : L2(Rn)→ L2(Rn) is valid:

∥
∥DkΔ j

∥
∥
L2(Rn)→L2(Rn)

=
∥
∥Δ jDk

∥
∥
L2(Rn)→L2(Rn)

≤C2−
1
2 | j−k|. (6.4.16)

Proof. SinceΨ is a radial function, it follows that Δ j is equal to its transpose oper-
ator on L2. Moreover, the operator Dk is also equal to its transpose. Thus

(DkΔ j)
t = Δ jDk

and it therefore suffices to prove only that

∥
∥DkΔ j

∥
∥
L2→L2 ≤C2−

1
2 | j−k| . (6.4.17)
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By a simple dilation argument it suffices to prove (6.4.17) when k = 0. In this
case we have the estimate

∥
∥D0Δ j

∥
∥
L2→L2 =

∥
∥E0Δ j−E−1Δ j

∥
∥
L2→L2

≤ ∥∥E0Δ j−Δ j
∥
∥
L2→L2 +

∥
∥E−1Δ j−Δ j

∥
∥
L2→L2 ,

and since the Dk’s and Δ j’s are self-transposes, we have
∥
∥D0Δ j

∥
∥
L2→L2 =

∥
∥Δ jD0

∥
∥
L2→L2 =

∥
∥Δ jE0−Δ jE−1

∥
∥
L2→L2

≤ ∥∥Δ jE0−E0
∥
∥
L2→L2 +

∥
∥Δ jE−1−E0

∥
∥
L2→L2 .

Estimate (6.4.17) when k = 0 will be a consequence of the pair of inequalities

∥
∥E0Δ j−Δ j

∥
∥
L2→L2 +

∥
∥E−1Δ j−Δ j

∥
∥
L2→L2 ≤C2

j
2 for j ≤ 0, (6.4.18)

∥
∥Δ jE0−E0

∥
∥
L2→L2 +

∥
∥Δ jE−1−E0

∥
∥
L2→L2 ≤C2−

1
2 j for j ≥ 0. (6.4.19)

We start by proving (6.4.18). We consider only the term E0Δ j −Δ j, since the term
E−1Δ j−Δ j is similar. Let f ∈ L2(Rn). Then

∥
∥E0Δ j( f )−Δ j( f )

∥
∥2
L2

= ∑
Q∈D0

∥
∥ f ∗Ψ2− j −Avg

Q
( f ∗Ψ2− j)

∥
∥2
L2(Q)

≤ ∑
Q∈D0

∫

Q

∫

Q
|( f ∗Ψ2− j)(x)− ( f ∗Ψ2− j)(t)|2 dt dx

≤ 3 ∑
Q∈D0

∫

Q

∫

Q

(∫

5
√
nQ

| f (y)||Ψ2− j(x− y)|dy
)2

dt dx

+3 ∑
Q∈D0

∫

Q

∫

Q

(∫

5
√
nQ

| f (y)||Ψ2− j(t− y)|dy
)2

dt dx

+3 ∑
Q∈D0

∫

Q

∫

Q

(∫

(5
√
nQ)c

| f (y)|2 jn+ j|∇Ψ(2 j(ξx,t − y))|dy
)2

dt dx,

where ξx,t lies on the line segment joining x and t. Applying the Cauchy-Schwarz
inequality to the first two terms, we see that the last expression is bounded by

C2 jn ∑
Q∈D0

∫

5
√
nQ

| f (y)|2 dy+CM22 j ∑
Q∈D0

∫

Q

(∫

Rn

2 jn| f (y)|dy
(1+2 j|x− y|)M

)2
dx ,

which is clearly controlled byC(2 jn+22 j)‖ f‖2L2 ≤ 2C2 j‖ f‖2L2 . This proves (6.4.18).
We now turn to the proof of (6.4.19). We set S j = ∑k≤ jΔk. Since Δ j is the differ-

ence of two S j’s, it suffices to prove (6.4.19), where Δ j is replaced by S j. We work
only with the term S jE0−E0, since the other term can be treated similarly. We have



6.4 Haar System, Conditional Expectation, and Martingales 473

∥
∥S jE0( f )−E0( f )

∥
∥2
L2 =

∥
∥
∥ ∑
Q∈D0

(Avg
Q

f )(Φ2− j ∗χQ− χQ)
∥
∥
∥
2

L2

≤ 2
∥
∥
∥ ∑
Q∈D0

(Avg
Q

f )(Φ2− j ∗χQ− χQ)χ5√nQ

∥
∥
∥
2

L2

+2
∥
∥
∥ ∑
Q∈D0

(Avg
Q

f )(Φ2− j ∗χQ)χ(5√nQ)c

∥
∥
∥
2

L2
.

Since the functions appearing inside the sum in the first term have supports with
bounded overlap, we obtain

∥
∥
∥ ∑
Q∈D0

(Avg
Q

f )(Φ2− j ∗χQ− χQ)χ5√nQ

∥
∥
∥
2

L2
≤C ∑

Q∈D0

(Avg
Q

| f |)2∥∥Φ2− j ∗χQ− χQ
∥
∥2
L2 ,

and the crucial observation is that
∥
∥Φ2− j ∗χQ− χQ

∥
∥2
L2 ≤C2− j,

a consequence of Plancherel’s identity and the fact that |1− Φ̂(2− jξ )| ≤ χ|ξ |≥2 j .
Putting these observations together, we deduce

∥
∥
∥ ∑
Q∈D0

(Avg
Q

f )(Φ2− j ∗χQ− χQ)χ3Q
∥
∥
∥
2

L2
≤C ∑

Q∈D0

(Avg
Q

| f |)22− j ≤C2− j∥∥ f
∥
∥2
L2 ,

and the required conclusion will be proved if we can show that

∥
∥
∥ ∑
Q∈D0

(Avg
Q

f )(Φ2− j ∗χQ)χ(3Q)c
∥
∥
∥
2

L2
≤C2− j∥∥ f

∥
∥2
L2 . (6.4.20)

We prove (6.4.20) by using an estimate based purely on size. Let cQ be the center of
the dyadic cube Q. For x /∈ 3Q we have the estimate

|(Φ2− j ∗χQ)(x)| ≤ CM2 jn

(1+2 j|x− cQ|)M ≤ CM2 jn

(1+2 j)M/2

1
(1+ |x− cQ|)M/2 ,

since both 2 j ≥ 1, and |x−cQ| ≥ 1. We now control the left-hand side of (6.4.20) by

2 j(2n−M) ∑
Q∈D0

∑
Q′∈D0

(Avg
Q

| f |)(Avg
Q′

| f |)
∫

Rn

CM dx

(1+|x−cQ|)M
2 (1+|x−cQ′ |)M

2

≤ 2 j(2n−M) ∑
Q∈D0

∑
Q′∈D0

(Avg
Q

| f |)(Avg
Q′

| f |)

(1+ |cQ− cQ′ |)M
4

∫

Rn

CM dx

(1+|x−cQ|)M
4 (1+|x−cQ′ |)M

4

≤ 2 j(2n−M) ∑
Q∈D0

∑
Q′∈D0

CM

(1+ |cQ− cQ′ |)M
4

(∫

Q
| f (y)|2 dy+

∫

Q′
| f (y)|2 dy

)
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≤CM2 j(2n−M) ∑
Q∈D0

∫

Q
| f (y)|2 dy

=CM2 j(2n−M)
∥
∥ f
∥
∥2
L2 .

By taking M large enough, we obtain (6.4.20) and thus (6.4.19). �

Exercises

6.4.1. (a) Prove that no dyadic cube in Rn contains the point 0 in its interior.
(b) Prove that every interval [a,b] is contained in the union of three dyadic intervals
of length less than b−a.
(c) Prove that every cube of length l in Rn is contained in the union of 3n dyadic
cubes, each having length less than l.

6.4.2. Let k ∈ Z. Show that the set [m2−k,(m+ s)2−k) is a dyadic interval if and
only if s= 2p for some p ∈ Z and m is an integer multiple of s.

6.4.3. Given a cube Q in Rn of side length �(Q) ≤ 2k−1 for some integer k, prove
that there is a dyadic cube DQ of side length 2k such that Q � σ +DQ for some
σ = (σ1, . . . ,σn), where σ j ∈ {0,1/3,−1/3}.
6.4.4. Show that the martingale maximal function f �→ supk∈Z |Ek( f )| is weak type
(1,1) with constant at most 1.[
Hint: Use Exercise 2.1.12.

]

6.4.5. (a) Show that EN( f )→ f a.e. as N → ∞ for all f ∈ L1loc(R
n).

(b) Prove that EN( f )→ f in Lp as N → ∞ for all f ∈ Lp(Rn) whenever 1< p< ∞.
6.4.6. (a) Let k,k′ ∈Z be such that k �= k′. Show that for functions f and g in L2(Rn)
we have 〈

Dk( f ),Dk′(g)
〉
= 0 .

(b) Conclude that for functions f j in L2(Rn) we have

∥
∥
∥∑

j∈Z
Dj( f j)

∥
∥
∥
L2(Rn)

=
(
∑
j∈Z

∥
∥Dj( f j)

∥
∥2
L2(Rn)

) 1
2
.

(c) Let Δ j and C be as in the statement of Theorem 6.4.8. Show that for any r ∈ Z
we have ∥

∥
∥∑

j∈Z
DjΔ j+rD j

∥
∥
∥
L2(Rn)→L2(Rn)

≤C2−
1
2 |r| .

6.4.7. ([133]) Let Dj, Δ j be as in Theorem 6.4.8.
(a) Prove that the operator

Vr = ∑
j∈Z

DjΔ j+r

is bounded from L2(Rn) to itself with norm at most a multiple of 2−
1
2 |r|.
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(b) Show that Vr is Lp(Rn) bounded for all 1 < p < ∞ with a constant depending
only on p and n.
(c) Conclude that for each 1 < p < ∞ there is a constant cp > 0 such that Vr is
bounded on Lp(Rn) with norm at most a multiple of 2−cp |r|.[
Hint: Part (a): Write Δ j = Δ jΔ̃ j, where Δ̃ j is another family of Littlewood–Paley
operators and use Exercise 6.4.6 (b). Part (b): Use duality and (6.1.21).

]

6.5 The Spherical Maximal Function

In this section we discuss yet another consequence of the Littlewood–Paley theory,
the boundedness of the spherical maximal operator.

6.5.1 Introduction of the Spherical Maximal Function

We denote throughout this section by dσ the normalized Lebesgue measure on the
sphere Sn−1. For f in Lp(Rn), 1≤ p≤ ∞, we define the maximal operator

M ( f )(x) = sup
t>0

∣
∣
∣
∣

∫

Sn−1
f (x− tθ)dσ(θ)

∣
∣
∣
∣ (6.5.1)

and we observe that by Minkowski’s integral inequality each expression inside the
supremum in (6.5.1) is well defined for f ∈ Lp for almost all x ∈ Rn. The operator
M is called the spherical maximal function. It is unclear at this point for which
functions f we have M ( f ) < ∞ a.e. and for which values of p < ∞ the maximal
inequality ∥

∥M ( f )
∥
∥
Lp(Rn)

≤Cp
∥
∥ f
∥
∥
Lp(Rn)

(6.5.2)

holds for all functions f ∈ Lp(Rn).
Spherical averages often make their appearance as solutions of partial differential

equations. For instance, the spherical average

u(x, t) =
1
4π

∫

S2
t f (x− ty)dσ(y) (6.5.3)

is a solution of the wave equation

Δx(u)(x, t) =
∂ 2u
∂ t2

(x, t) ,

u(x,0) = 0 ,
∂u
∂ t

(x,0) = f (x) ,
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in R3. The introduction of the spherical maximal function is motivated by the fact
that the related spherical average

u(x, t) =
1
4π

∫

S2
f (x− ty)dσ(y) (6.5.4)

solves Darboux’s equation

Δx(u)(x, t) =
∂ 2u
∂ t2

(x, t)+
2
t
∂u
∂ t

(x, t) ,

u(x,0) = f (x) ,

∂u
∂ t

(x,0) = 0 ,

in R3. It is rather remarkable that the Fourier transform can be used to study almost
everywhere convergence for several kinds of maximal averaging operators such as
the spherical averages in (6.5.4). This is achieved via the boundedness of the cor-
responding maximal operator; the maximal operator controlling the averages over
Sn−1 is given in (6.5.1).

Before we begin the analysis of the spherical maximal function, we recall that

d̂σ(ξ ) =
2π

|ξ | n−2
2
Jn−2

2
(2π|ξ |) ,

as shown in Appendix B.4. Using the estimates in Appendices B.6 and B.7 and the
identity

d
dt
Jν(t) =

1
2
(Jν−1(t)− Jν+1(t))

derived in Appendix B.2, we deduce the crucial estimate

|d̂σ(ξ )|+ |∇d̂σ(ξ )| ≤ Cn

(1+ |ξ |) n−1
2

. (6.5.5)

Theorem 6.5.1. Let n≥ 3. For each n
n−1 < p≤ ∞, there is a constant Cp such that

∥
∥M ( f )

∥
∥
Lp(Rn)

≤Cp
∥
∥ f
∥
∥
Lp(Rn)

(6.5.6)

holds for all f in Lp(Rn). Consequently, for all n
n−1 < p ≤ ∞ and f ∈ Lp(Rn) we

have
lim
t→0

1
ωn−1

∫

Sn−1
f (x− tθ)dσ(θ) = f (x) (6.5.7)

for almost all x ∈ Rn. Here we set ωn−1 = |Sn−1|.
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The proof of this theorem is given in the rest of this section. Before we present the
proof we explain the validity of (6.5.7). Clearly this assertion is valid for functions
f ∈S (Rn). Using inequality (6.5.6) and Theorem 2.1.14 we obtain that (6.5.7) holds
for all functions in f ∈ Lp(Rn).

We now focus on (6.5.6). Define m(ξ ) = d̂σ(ξ ) and notice that m(ξ ) is a C ∞

function. To study the maximal multiplier operator

sup
t>0

∣
∣
(
f̂ (ξ )m(tξ )

)∨∣∣

we decompose the multiplier m(ξ ) into radial pieces as follows: We fix a radial C ∞

function ϕ0 in Rn such that ϕ0(ξ ) = 1 when |ξ | ≤ 1 and ϕ0(ξ ) = 0 when |ξ | ≥ 2.
For j ≥ 1 we let

ϕ j(ξ ) = ϕ0(2− jξ )−ϕ0(21− jξ ) (6.5.8)

and we observe that ϕ j(ξ ) is localized near |ξ | ≈ 2 j. Then we have

∞

∑
j=0
ϕ j = 1 .

Set mj = ϕ jm for all j ≥ 0. The mj’s are C ∞
0 functions that satisfy

m=
∞

∑
j=0

mj .

Also, the following estimate is valid:

M ( f )≤
∞

∑
j=0

M j( f ) ,

where
M j( f )(x) = sup

t>0

∣
∣
(
f̂ (ξ )mj(tξ )

)∨
(x)
∣
∣ .

Since the function m0 is C ∞
0 , we have that M0 maps Lp to itself for all 1 < p ≤ ∞.

(See Exercise 6.5.1.)
We define g-functions associated with mj as follows:

Gj( f )(x) =
(∫ ∞

0
|Aj,t( f )(x)|2 dtt

)1
2
,

where Aj,t( f )(x) =
(
f̂ (ξ )mj(tξ )

)∨
(x).
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6.5.2 The First Key Lemma

We have the following lemma:

Lemma 6.5.2. There is a constant C = C(n) < ∞ such that for any j ≥ 1 we have
the estimate ∥

∥M j( f )
∥
∥
L2 ≤C2(

1
2− n−1

2 ) j∥∥ f
∥
∥
L2

for all functions f in L2(Rn).

Proof. We define a function

m̃ j(ξ ) = ξ ·∇mj(ξ ) ,

we let Ã j,t( f )(x) =
(
f̂ (ξ ) m̃ j(tξ )

)∨
(x), and we let

G̃ j( f )(x) =
(∫ ∞

0
|Ã j,t( f )(x)|2 dtt

)1
2

be the associated g-function. For f ∈ L2(Rn), the identity

s
dA j,s

ds
( f ) = Ã j,s( f )

is clearly valid for all j and s. Since Aj,s( f ) = f ∗ (m∨
j )s and m

∨
j has integral zero for

j ≥ 1 (here (m∨
j )s(x) = s−nm∨

j (s
−1x)), it follows from Corollary 2.1.19 that

lim
s→0

Aj,s( f )(x) = 0

for all x ∈ Rn \Ef , where Ef is some set of Lebesgue measure zero. By the funda-
mental theorem of calculus for x ∈ Rn \Ef we deduce that

(Aj,t( f )(x))2 =
∫ t

0

d
ds

(Aj,s( f )(x))2 ds

= 2
∫ t

0
Aj,s( f )(x)s

dA j,s

ds
( f )(x)

ds
s

= 2
∫ t

0
Aj,s( f )(x)Ã j,s( f )(x)

ds
s
,

from which we obtain the estimate

∣
∣Aj,t( f )(x)

∣
∣2 ≤ 2

∫ ∞

0

∣
∣Aj,s( f )(x)

∣
∣
∣
∣Ã j,s( f )(x)

∣
∣ ds
s
. (6.5.9)
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Taking the supremum over all t > 0 on the left-hand side in (6.5.9) and integrating
over Rn, we obtain the estimate

∥
∥M j( f )

∥
∥2
L2 ≤ 2

∫

Rn

∫ ∞

0

∣
∣Aj,s( f )(x)

∣
∣
∣
∣Ã j,s( f )(x)

∣
∣ ds
s
dx

≤ 2
∫

Rn
G j( f )(x)G̃ j( f )(x)dx

≤ 2
∥
∥Gj( f )

∥
∥
L2
∥
∥G̃ j( f )

∥
∥
L2 ,

by applying the Cauchy–Schwarz inequality twice. Next we claim that as a conse-
quence of (6.5.5) we have for some c, c̃< ∞,

∥
∥mj
∥
∥
L∞ ≤ c2− j n−1

2 and
∥
∥m̃ j
∥
∥
L∞ ≤ c̃2 j(1− n−1

2 ) .

Using these facts together with the facts that the functions mj and m̃ j are sup-
ported in the annuli 2 j−1 ≤ |ξ | ≤ 2 j+1, we obtain that the g-functions Gj and G̃ j

are L2 bounded with norms at most a constant multiple of the quantities 2− j n−1
2 and

2 j(1− n−1
2 ), respectively; see Exercise 6.5.2. Note that since n≥ 3, both exponents are

negative. We conclude that

∥
∥M j( f )

∥
∥
L2 ≤C2 j( 12− n−1

2 )
∥
∥ f
∥
∥
L2 ,

which is what we needed to prove. �

6.5.3 The Second Key Lemma

Next we need the following lemma.

Lemma 6.5.3. There exists a constant C =C(n)< ∞ such that for all j ≥ 1 and for
all f in L1(Rn) we have

∥
∥M j( f )

∥
∥
L1,∞ ≤C2 j∥∥ f

∥
∥
L1 .

Proof. Let K( j) = (ϕ j)
∨ ∗dσ =Φ2− j ∗dσ , where Φ is a Schwartz function. Setting

(K( j))t(x) = t−nK( j)(t−1x)

we have that
M j( f ) = sup

t>0
|(K( j))t ∗ f | . (6.5.10)

The proof of the lemma is based on the estimate:

M j( f )≤C2 jM( f ) (6.5.11)
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and the weak type (1,1) boundedness of the Hardy–Littlewood maximal operatorM
(Theorem 2.1.6). To establish (6.5.11), it suffices to show that for anyM > n there is
a constant CM < ∞ such that

|K( j)(x)|= |(Φ2− j ∗dσ)(x)| ≤ CM 2 j

(1+ |x|)M . (6.5.12)

Then Theorem 2.1.10 yields (6.5.11) and hence the required conclusion.
Using the fact that Φ is a Schwartz function, we have for every N > 0,

|(Φ2− j ∗dσ)(x)| ≤CN

∫

Sn−1

2n j dσ(y)
(1+2 j|x− y|)N .

We pick an N to depend onM (6.5.12); in fact, any N >M suffices for our purposes.
We split the last integral into the regions

S−1(x) = Sn−1∩{y ∈ Rn : 2 j|x− y| ≤ 1}

and for r ≥ 0,

Sr(x) = Sn−1∩{y ∈ Rn : 2r < 2 j|x− y| ≤ 2r+1} .

The key observation is that whenever B(y,R) is a ball of radius R in Rn centered at
y ∈ Sn−1, then the spherical measure of the set Sn−1 ∩B(y,R) is at most a dimen-
sional constant multiple of Rn−1. This implies that the spherical measure of each
Sr(x) is at most cn2(r+1− j)(n−1), an estimate that is useful only when r ≤ j. Using
this observation, together with the fact that for y ∈ Sr(x) we have |x| ≤ 2r+1− j + 1,
we obtain the following estimate for the expression |(Φ2− j ∗dσ)(x)|:

j

∑
r=−1

∫

Sr(x)

CN2n j dσ(y)
(1+2 j|x− y|)N +

∞

∑
r= j+1

∫

Sr(x)

CN2n j dσ(y)
(1+2 j|x− y|)N

≤C′
N2

n j
[ j

∑
r=−1

dσ(Sr(x))χB(0,3)(x)
2rN

+
∞

∑
r= j+1

dσ(Sr(x))χB(0,2r+1− j+1)(x)

2rN

]

≤C′
N2

n j
[ j

∑
r=−1

cn2(r+1− j)(n−1)χB(0,3)(x)
2rN

+
∞

∑
r= j+1

ωn−1 χB(0,2r+2− j)(x)

2rN

]

≤CN,n

[

2 jχB(0,3)(x)+2n j
∞

∑
r= j+1

1
2rN

(1+2r+2− j)M

(1+ |x|)M
]

≤C′
M,n

2 j

(1+ |x|)M
[

1+
∞

∑
r= j+1

2(r− j)(M−N)

2 j(N+1−n)

]

≤ C′′
M,n2

j

(1+ |x|)M ,

where we used that N >M > n. This establishes (6.5.12). �
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6.5.4 Completion of the Proof

It remains to combine the previous ingredients to complete the proof of the theorem.
Interpolating between the L2 → L2 and L1 → L1,∞ estimates obtained in Lemmas
6.5.2 and 6.5.3, we obtain

∥
∥M j( f )

∥
∥
Lp(Rn)

≤Cp2
( np−(n−1)) j∥∥ f

∥
∥
Lp(Rn)

for all 1 < p ≤ 2. When p > n
n−1 the series ∑∞j=1 2

( np−(n−1)) j converges and we
conclude that M is Lp bounded for these p’s. The boundedness of M on Lp for
p> 2 follows by interpolation between Lq for q< 2 and the estimateM : L∞→ L∞.

Exercises

6.5.1. Letm be in L1(Rn)∩L∞(Rn) that satisfies |m∨(x)| ≤C(1+ |x|)−n−δ for some
δ > 0. Show that the maximal multiplier

Mm( f )(x) = sup
t>0

∣
∣
(
f̂ (ξ )m(tξ )

)∨
(x)
∣
∣

is Lp bounded for all 1< p< ∞.
6.5.2. Suppose that the function m is supported in the annulus R≤ |ξ | ≤ 2R and is
bounded by A. Show that the g-function

G( f )(x) =
(∫ ∞

0
|(m(tξ ) f̂ (ξ ))∨(x)|2 dt

t

)1
2

maps L2(Rn) to L2(Rn) with bound at most A
√
log2.

6.5.3. ([302]) Let A,a,b> 0 with a+b> 1. Use the idea of Lemma 6.5.2 to show
that if m(ξ ) satisfies |m(ξ )| ≤ A(1+ |ξ |)−a and |∇m(ξ )| ≤ A(1+ |ξ |)−b for all
ξ ∈ Rn, then the maximal operator

Mm( f )(x) = sup
t>0

∣
∣
(
f̂ (ξ )m(tξ )

)∨
(x)
∣
∣

is bounded from L2(Rn) to itself.[
Hint: Use that

Mm ≤
∞

∑
j=0

Mm, j ,

where Mm, j corresponds to the multiplier ϕ jm; here ϕ j is as in (6.5.8). Show that

∥
∥Mm, j( f )

∥
∥
L2 ≤C

∥
∥ϕ jm

∥
∥

1
2
L∞
∥
∥ϕ jm̃

∥
∥

1
2
L∞
∥
∥ f
∥
∥
L2 ≤C2 j 1−(a+b)

2
∥
∥ f
∥
∥
L2 ,

where m̃(ξ ) = ξ ·∇m(ξ ).]
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6.5.4. Let A,c > 0, a > 1/2, 0 < b < n. Follow the idea of the proof of Theorem
6.5.1 to obtain the following more general result: If dμ is a finite Borel measure
supported in the closed unit ball that satisfies |d̂μ(ξ )| ≤ A(1+ |ξ |)−a for all ξ ∈Rn

and dμ(B(y,R))≤ cRb for all R> 0, then the maximal operator

f �→ sup
t>0

∣
∣
∣
∫

Rn
f (x− ty)dμ(y)

∣
∣
∣

maps Lp(Rn) to itself when p> 2n−2b+2a−1
n−b+2a−1 .[

Hint: Using the notation of the preceding exercise, show that ‖Mm, j( f )‖L2 ≤
C2 j( 12−a)‖ f‖L2 and that ‖Mm, j( f )‖L1,∞ ≤ C2 j(n−b)‖ f‖L1 for all j ∈ Z+, where C
is a constant depending on the given parameters.

]

6.5.5. Show that Theorem 6.5.1 is false when n= 1, that is, show that the maximal
operator

M1( f )(x) = sup
t>0

| f (x+ t)+ f (x− t)|
2

is unbounded on Lp(R) for all p< ∞.

6.5.6. Show that when n ≥ 2 and p ≤ n
n−1 there exists an Lp(Rn) function f such

that M ( f )(x) = ∞ for all x ∈ Rn. Hence Theorem 6.5.1 is false is this case.[
Hint:Choose a compactly supported and radial function equal to |y|1−n(− log |y|)−1

when |y| ≤ 1/2.
]

6.6 Wavelets and Sampling

In this section we construct orthonormal bases of L2(R) generated by translations
and dilations of a single function. An example of such base is given by the Haar
functions we encountered in Section 6.4. The Haar functions are generated by in-
teger translations and dyadic dilations of the single function χ[0, 12 ) − χ[ 12 ,1). This
function is not smooth, and the main question addressed in this section is whether
there exist smooth analogues of the Haar functions.

Definition 6.6.1. A square integrable function ϕ on Rn is called a wavelet if the
family of functions

ϕν ,k(x) = 2
νn
2 ϕ(2νx− k) ,

where ν ranges over Z and k over Zn, is an orthonormal basis of L2(Rn). This
means that the functions ϕν ,k are mutually orthogonal and span L2(Rn), and ϕ is
normalized to have L2 norm equal to 1. Note that the Fourier transform of ϕν ,k is
given by

ϕ̂ν ,k(ξ ) = 2−
νn
2 ϕ̂(2−νξ )e−2πi2−νξ ·k . (6.6.1)
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Rephrasing the question posed earlier, the main issue addressed in this section is
whether smooth wavelets actually exist. Before we embark on this topic, we recall
that we have already encountered examples of nonsmooth wavelets.

Example 6.6.2. (The Haar wavelet) Recall the family of functions

hI(x) = |I|− 1
2 (χIL − χIR) ,

where I ranges over D (the set of all dyadic intervals) and IL is the left part of I and
IR is the right part of I. Note that if I = [2−νk,2−ν(k+1)), then

hI(x) = 2
ν
2 ϕ(2νx− k) ,

where
ϕ(x) = χ[0, 12 )− χ[ 12 ,1) . (6.6.2)

The single function ϕ in (6.6.2) therefore generates the Haar basis by taking trans-
lations and dilations. Moreover, we observed in Section 6.4 that the family {hI}I is
orthonormal. Moreover, in Theorem 6.4.6 we obtained the representation

f = ∑
I∈D

〈
f ,hI
〉
hI in L2 ,

which proves the completeness of the system {hI}I∈D in L2(R).

6.6.1 Some Preliminary Facts

Before we look at more examples, we make some observations. We begin with the
following useful fact.

Proposition 6.6.3. Let g ∈ L1(Rn). Then

ĝ(m) = 0 for all m ∈ Zn \{0}

if and only if

∑
k∈Zn

g(x+ k) =
∫

Rn
g(t)dt

for almost all x ∈ Tn.

Proof. We define the periodic function

G(x) = ∑
k∈Zn

g(x+ k) ,
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which is easily shown to be in L1(Tn). Moreover, we have

Ĝ(m) = ĝ(m)

for all m ∈ Zn, where Ĝ(m) denotes the mth Fourier coefficient of G and ĝ(m) de-
notes the Fourier transform of g at ξ = m. If ĝ(m) = 0 for all m ∈ Zn \ {0}, then
all the Fourier coefficients of G (except for m = 0) vanish, which means that the
sequence {Ĝ(m)}m∈Zn lies in �1(Zn) and hence Fourier inversion applies. We con-
clude that for almost all x ∈ Tn we have

G(x) = ∑
m∈Zn

Ĝ(m)e2πim·x = Ĝ(0) = ĝ(0) =
∫

Rn
g(t)dt .

Conversely, if G is a constant, then Ĝ(m) = 0 for all m ∈ Zn \{0}, and so the same
holds for g. �

A consequence of the preceding proposition is the following.

Proposition 6.6.4. Let ϕ ∈ L2(Rn). Then the sequence

{ϕ(x− k)}k∈Zn (6.6.3)

forms an orthonormal set in L2(Rn) if and only if

∑
k∈Zn

|ϕ̂(ξ + k)|2 = 1 (6.6.4)

for almost all ξ ∈ Rn.

Proof. Observe that either (6.6.4) or the hypothesis that the sequence in (6.6.3) is
orthonormal implies that ‖ϕ‖L2 = 1. Also the orthonormality condition

∫

Rn
ϕ(x− j)ϕ(x− k)dx=

{
1 when j = k,
0 when j �= k,

is equivalent to

∫

Rn
e−2πik·ξ ϕ̂(ξ )e−2πi j·ξ ϕ̂(ξ )dξ = (|ϕ̂|2)̂(k− j) =

{
1 when j = k,
0 when j �= k,

in view of Parseval’s identity. Proposition 6.6.3 with g(ξ ) = |ϕ̂(ξ )|2 gives that the
latter is equivalent to

∑
k∈Zn

|ϕ̂(ξ + k)|2 =
∫

Rn
|ϕ̂(t)|2 dt = 1

for almost all ξ ∈ Rn. �
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Corollary 6.6.5. Let ϕ ∈ L2(Rn) and suppose that the sequence

{ϕ(x− k)}k∈Zn (6.6.5)

forms an orthonormal set in L2(Rn). Then the measure of the support of ϕ̂ is at least
1, that is,

|supp ϕ̂| ≥ 1 . (6.6.6)

Moreover, if |supp ϕ̂|= 1, then |ϕ̂(ξ )|= 1 for almost all ξ ∈ supp ϕ̂ .

Proof. It follows from (6.6.4) that |ϕ̂| ≤ 1 for almost all ξ ∈ Rn and thus

|supp ϕ̂| ≥
∫

Rn
|ϕ̂(ξ )|2 dξ =

∫

[0,1)n
∑
k∈Zn

|ϕ̂(ξ + k)|2 dξ =
∫

[0,1)n
1dξ = 1 .

If equality holds in (6.6.6), then equality holds in the preceding inequality, and since
|ϕ̂| ≤ 1 a.e., it follows that |ϕ̂(ξ )|= 1 for almost all ξ in supp ϕ̂ . �

6.6.2 Construction of a Nonsmooth Wavelet

Having established these preliminary facts, we now start searching for examples of
wavelets. It follows from Corollary 6.6.5 that the support of the Fourier transform of
a wavelet must have measure at least 1. It is reasonable to ask whether this support
can have measure exactly 1. Example 6.6.6 indicates that this can indeed happen. As
dictated by the same corollary, the Fourier transform of such a wavelet must satisfy
|ϕ̂(ξ )| = 1 for almost all ξ ∈ supp ϕ̂ , so it is natural to look for a wavelet ϕ such
that ϕ̂ = χA for some set A. We can start by asking whether the function

ϕ̂ = χ[− 1
2 ,

1
2 ]

onR is an appropriate Fourier transform of a wavelet, but a moment’s thought shows
that the functions ϕμ ,0 and ϕν ,0 cannot be orthogonal to each other when μ �= 0.
The problem here is that the Fourier transforms of the functions ϕν ,k cluster near
the origin and do not allow for the needed orthogonality. We can fix this problem
by considering a function whose Fourier transform vanishes near the origin. Among
such functions, a natural candidate is

χ[−1,− 1
2 )
+ χ[ 12 ,1) , (6.6.7)

which is indeed the Fourier transform of a wavelet.

Example 6.6.6. Let A= [−1,− 1
2 )
⋃
[ 12 ,1) and define a function ϕ on R by setting

ϕ̂ = χA .
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Then we assert that the family of functions

{ϕν ,k(x)}k∈Z,ν∈Z = {2ν/2ϕ(2νx− k)}k∈Z,ν∈Z
is an orthonormal basis of L2(R) (i.e., the function ϕ is a wavelet). This is an exam-
ple of a wavelet with minimally supported frequency.

To verify this assertion, first note that {ϕ0,k}k∈Z is an orthonormal set, since
(6.6.4) is easily seen to hold. Dilating by 2ν , it follows that {ϕν ,k}k∈Z is also an
orthonormal set for every fixed ν ∈ Z. Next, observe that if μ �= ν , then

supp ϕ̂ν ,k ∩ supp ϕ̂μ ,l = /0 . (6.6.8)

This implies that the family {2ν/2ϕ(2νx− k)}k∈Z,ν∈Z is also orthonormal.
Next, we observe that the completeness of {ϕν ,k}ν ,k∈Z is equivalent to that of

{ϕ̂ν ,k(ξ )}ν ,k∈Z = {2−ν/2e−2πikξ2−ν χ2νA(ξ )}ν ,k∈Z. Let f ∈ L2(R), fix any ν ∈ Z,
and define

h(ξ ) = 2ν/2 f (2νξ ).

Suppose that for all k ∈ Z,

0= 〈 f , ϕ̂ν ,k〉=
∫

2νA
f (ξ )2−ν/2e−2πikξ2−νdξ

=
∫

A
2ν/2 f (2νξ )e−2πikξdξ

= 〈χAh,e−2πikξ 〉 .

Exercise 6.6.1(a) shows {e−2πikξ}k∈Z is an orthonormal basis of L2(A), and there-
fore χAh= 0 almost everywhere. From the definition of h it follows that χ2νA f = 0
almost everywhere. Now suppose for all ν ,k ∈ Z

0= 〈 f , ϕ̂ν ,k〉.

Then χ2νA f = 0 almost everywhere for all ν ∈ Z. Since ∪ν∈Z2νA = R \ {0}, it
follows that f = 0 almost everywhere. We conclude {ϕ̂ν ,k}ν ,k∈Z is complete.

6.6.3 Construction of a Smooth Wavelet

The wavelet basis of L2(Rn) constructed in Example 6.6.6 is forced to have slow
decay at infinity, since the Fourier transforms of the elements of the basis are non-
smooth. Smoothing out the function ϕ̂ but still expecting ϕ to be wavelet is a bit
tricky, since property (6.6.8) may be violated when μ �= ν , and moreover, (6.6.4)
may be destroyed. These two obstacles are overcome by the careful construction of
the next theorem.
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Theorem 6.6.7. There exists a Schwartz function ϕ on the real line that is a wavelet,
that is, the collection of functions {ϕν ,k}k,ν∈Z with ϕν ,k(x) = 2

ν
2 ϕ(2νx− k) is an

orthonormal basis of L2(R). Moreover, the function ϕ can be constructed so that its
Fourier transform satisfies

supp ϕ̂ ⊆ [− 4
3 ,− 1

3

]∪ [ 13 , 43
]
. (6.6.9)

Note that in view of condition (6.6.9), the function ϕ must have vanishing mo-
ments of all orders.

Proof. We start with an odd smooth real-valued functionΘ on the real line such that
Θ(t) = π

4 for t ≥ 1
6 and such that Θ is strictly increasing on the interval

[− 1
6 ,

1
6

]
.

We set
α(t) = sin(Θ(t)+ π

4 ), β (t) = cos(Θ(t)+ π
4 ),

and we observe that
α(t)2+β (t)2 = 1

and that
α(−t) = β (t)

for all real t. Next we introduce the smooth function ω defined via

ω(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β (− t
2 − 1

2 ) = α(
t
2 +

1
2 ) when t ∈ [− 4

3 ,− 2
3

]
,

α(−t− 1
2 ) = β (t+

1
2 ) when t ∈ [− 2

3 ,− 1
3

]
,

α(t− 1
2 ) when t ∈ [ 13 , 23

]
,

β ( t2 − 1
2 ) when t ∈ [ 23 , 43

]
,

on the interval
[− 4

3 ,− 1
3

]⋃[ 1
3 ,

4
3

]
. Note thatω is an even function. Finally we define

the function ϕ by letting
ϕ̂(ξ ) = e−πiξω(ξ ) ,

and we note that

ϕ(x) =
∫

R
ω(ξ )e2πiξ (x−

1
2 )dξ = 2

∫ ∞

0
ω(ξ )cos

(
2π(x− 1

2 )ξ
)
dξ .

It follows that the function ϕ is symmetric about the number 1
2 , that is, we have

ϕ(x) = ϕ(1− x)

for all x ∈ R. Note that ϕ is a Schwartz function whose Fourier transform is sup-
ported in the set

[− 4
3 ,− 1

3

]⋃[ 1
3 ,

4
3

]
.

Having defined ϕ , we proceed by showing that it is a wavelet. In view of identity
(6.6.1) we have that ϕ̂ν ,k is supported in the set 1

32
ν ≤ |ξ | ≤ 4

32
ν , while ϕ̂μ , j is

supported in the set 1
32
μ ≤ |ξ | ≤ 4

32
μ . The intersection of these sets has measure

zero when |μ − ν | ≥ 2, which implies that such wavelets are orthogonal to each
other. Therefore, it suffices to verify orthogonality between adjacent scales (i.e.,
when ν = μ and ν = μ+1).
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We begin with the case ν = μ , which, by a simple dilation, is reduced to the case
ν = μ = 0. Thus to obtain the orthogonality of the functions ϕ0,k(x) = ϕ(x−k) and
ϕ0, j(x) = ϕ(x− j), in view of Proposition 6.6.4, it suffices to show that

∑
k∈Z

|ϕ̂(ξ + k)|2 = 1 . (6.6.10)

Since the sum in (6.6.10) is 1-periodic, we check that is equal to 1 only for ξ in[ 1
3 ,

4
3

]
. First for ξ ∈ [ 13 , 23

]
, the sum in (6.6.10) is equal to

|ϕ̂(ξ )|2+ |ϕ̂(ξ −1)|2 = ω(ξ )2+ω(ξ −1)2

= α(ξ − 1
2 )

2+β ((ξ −1)+ 1
2 )

2

= 1

from the definition of ω . A similar argument also holds for ξ ∈ [ 23 , 43
]
, and this

completes the proof of (6.6.10). As a consequence of this identity we also obtain
that the functions ϕ0,k have L2 norm equal to 1, and thus so have the functions ϕν ,k,
via a change of variables.

Next we prove the orthogonality of the functions ϕν ,k and ϕν+1, j for general
ν ,k, j ∈ Z. We begin by observing the validity of the following identity:

ϕ̂(ξ )ϕ̂( ξ2 ) =

{
e−πiξ/2β ( ξ2 − 1

2 )α(
ξ
2 − 1

2 ) when 2
3 ≤ ξ ≤ 4

3 ,
e−πiξ/2α( ξ2 +

1
2 )β (

ξ
2 +

1
2 ) when − 4

3 ≤ ξ ≤− 2
3 .

(6.6.11)

Indeed, from the definition of ϕ , it follows that

ϕ̂(ξ )ϕ̂( ξ2 ) = e−πiξ/2ω(ξ )ω( ξ2 ) .

This function is supported in

{ξ ∈ R : 1
3 ≤ |ξ | ≤ 4

3}∩{ξ ∈ R : 2
3 ≤ |ξ | ≤ 8

3}= {ξ ∈ R : 2
3 ≤ |ξ | ≤ 4

3} ,

and on this set it is equal to

e−πiξ/2
{
β ( ξ2 − 1

2 )α(
ξ
2 − 1

2 ) when 2
3 ≤ ξ ≤ 4

3 ,
α( ξ2 +

1
2 )β (

ξ
2 +

1
2 ) when − 4

3 ≤ ξ ≤− 2
3 ,

by the definition of ω . This establishes (6.6.11).
We now turn to the orthogonality of the functions ϕν ,k and ϕν+1, j for general

ν ,k, j ∈ Z. Using (6.6.1) and (6.6.11) we have

〈
ϕν ,k |ϕν+1, j

〉
=
〈
ϕ̂ν ,k | ϕ̂ν+1, j

〉

=

∫

R
2−

ν
2 ϕ̂(2−νξ )e−2πi ξ k2ν 2−

ν+1
2 ϕ̂(2−(ν+1)ξ )e−2πi ξ j

2ν+1 dξ
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=
1√
2

∫

R
ϕ̂(ξ )ϕ̂( ξ2 )e

−2πiξ (k− j
2 ) dξ

=
1√
2

∫ − 2
3

− 4
3

α( ξ2 +
1
2 )β (

ξ
2 +

1
2 )e

−2πiξ (k− j
2+

1
4 ) dξ

+
1√
2

∫ 4
3

2
3

α( ξ2 − 1
2 )β (

ξ
2 − 1

2 )e
−2πiξ (k− j

2+
1
4 ) dξ

= 0 ,

where the last identity follows from the change of variables ξ = ξ ′−2 in the second-
to-last integral, which transforms its range of integration to

[ 2
3 ,

4
3

]
and its integrand

to the negative of that of the last displayed integral.
Our final task is to show that the orthonormal system {ϕν ,k}ν ,k∈Z is complete.

We show this by proving that whenever a square-integrable function f satisfies
〈
f |ϕν ,k

〉
= 0 (6.6.12)

for all ν ,k ∈ Z, then f must be zero. Suppose that (6.6.12) holds. Plancherel’s iden-
tity yields ∫

R
f̂ (ξ )2−

ν
2 ϕ̂(2−νξ )e−2πi2−νξk dξ = 0

for all ν ,k and thus
∫

R
f̂ (2νξ )ϕ̂(ξ )e2πiξk dξ =

(
f̂ (2ν(·)) ϕ̂ )̂(−k) = 0 (6.6.13)

for all ν ,k ∈ Z. It follows from Proposition 6.6.3 and (6.6.13) (with k = 0) that

∑
k∈Z

f̂ (2ν(ξ + k))ϕ̂(ξ + k) =
∫

R
f̂ (2νξ ) ϕ̂(ξ )dξ =

(
f̂ (2ν(·)) ϕ̂ ) (̂0) = 0

for all ν ∈ Z.
Next, we show that the identity

∑
k∈Z

f̂ (2ν(ξ + k))ϕ̂(ξ + k) = 0 (6.6.14)

for all ν ∈ Z implies that f̂ is identically equal to zero. Suppose that 1
3 ≤ ξ ≤ 2

3 . In
this case the support properties of ϕ̂ imply that the only terms in the sum in (6.6.14)
that do not vanish are k = 0 and k =−1. Thus for 1

3 ≤ ξ ≤ 2
3 the identity in (6.6.14)

reduces to

0 = f̂ (2ν(ξ −1))ϕ̂(ξ −1)+ f̂ (2νξ )ϕ̂(ξ )

= f̂ (2ν(ξ −1))eπi(ξ−1)β ((ξ −1)+ 1
2 )+ f̂ (2νξ )eπiξα(ξ − 1

2 ) ;
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hence

− f̂ (2ν(ξ −1))β (ξ − 1
2 )+ f̂ (2νξ )α(ξ − 1

2 ) = 0, 1
3 ≤ ξ ≤ 2

3 . (6.6.15)

Next we observe that when 2
3 ≤ ξ ≤ 4

3 , only the terms with k= 0 and k=−2 survive
in the identity in (6.6.14). This is because when k=−1, ξ+k= ξ−1∈ [− 1

3 ,
1
3

]
and

this interval has null intersection with the support of ϕ̂ . Therefore, (6.6.14) reduces
to

0 = f̂ (2ν(ξ −2))ϕ̂(ξ −2)+ f̂ (2νξ )ϕ̂(ξ )

= f̂ (2ν(ξ −2))eπi(ξ−2)α( ξ−2
2 + 1

2 )+ f̂ (2νξ )eπiξ β ( ξ2 − 1
2 ) ;

hence

f̂ (2ν(ξ −2))α( ξ2 − 1
2 )+ f̂ (2νξ )β ( ξ2 − 1

2 ) = 0, 2
3 ≤ ξ ≤ 4

3 . (6.6.16)

Replacing first ν by ν−1 and then ξ
2 by ξ in (6.6.16), we obtain

f̂ (2ν(ξ −1))α(ξ − 1
2 )+ f̂ (2νξ )β (ξ − 1

2 ) = 0, 1
3 ≤ ξ ≤ 2

3 . (6.6.17)

Now consider the 2× 2 system of equations given by (6.6.15) and (6.6.17) with
unknown f̂ (2ν(ξ −1)) and f̂ (2νξ ). The determinant of the system is

det
(−β (ξ −1/2) α(ξ −1/2)
α(ξ −1/2) β (ξ −1/2)

)

=−1 �= 0 .

Therefore, the system has the unique solution

f̂ (2ν(ξ −1)) = f̂ (2νξ ) = 0 ,

which is valid for all ν ∈Z and all ξ ∈ [ 13 ,
2
3 ]. We conclude that f̂ (ξ )= 0 for all ξ ∈R

and thus f = 0. This proves the completeness of the system {ϕν ,k}. We conclude that
the function ϕ is a wavelet. �

6.6.4 Sampling

Next we discuss how one can recover a band-limited function by its values at a
countable number of points.

Definition 6.6.8. An integrable function on Rn is called band limited if its Fourier
transform has compact support.

For every band-limited function there is a B > 0 such that its Fourier transform
is supported in the cube [−B,B]n. In such a case we say that the function is band
limited on the cube [−B,B]n.
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It is an interesting observation that such functions are completely determined by
their values at the points x= k/2B, where k ∈ Zn. We have the following result.

Theorem 6.6.9. (a) Let f in L1(Rn) be band limited on the cube [−B,B]n. Then f
can be sampled by its values at the points x= k/2B, where k ∈ Zn. In particular, we
have

f (x1, . . . ,xn) = ∑
k∈Zn

f
( k
2B

) n

∏
j=1

sin(2πBx j−πk j)
2πBx j−πk j (6.6.18)

for almost all x ∈ Rn.
(b) Suppose that f is band-limited on the cube [−B′,B′]n where 0< B′ < B. Then f
can be sampled by its values at the points x= k/2B, k ∈ Zn as follows

f (x1, . . . ,xn) = ∑
k∈Zn

f
( k
2B

)
Φ(x− k) , (6.6.19)

for some Schwartz function Φ that depends on B,B′.

Proof. Since the function f̂ is supported in [−B,B]n, we use Exercise 6.6.2 to obtain

f̂ (ξ ) =
1

(2B)n ∑k∈Zn

̂̂f
( k
2B

)
e2πi

k
2B ·ξ

=
1

(2B)n ∑k∈Zn
f
(
− k

2B

)
e2πi

k
2B ·ξ .

Inserting this identity in the inversion formula

f (x) =
∫

[−B,B]n
f̂ (ξ )e2πix·ξ dξ ,

which holds for almost all x∈Rn since f̂ is continuous and therefore integrable over
[−B,B]n, we obtain

f (x) =
∫

[−B,B]n

1
(2B)n ∑k∈Zn

f
(
− k

2B

)
e2πi

k
2B ·ξ e2πix·ξ dξ

= ∑
k∈Zn

f
(
− k

2B

) 1
(2B)n

∫

[−B,B]n
e2πi(

k
2B+x)·ξ dξ (6.6.20)

= ∑
k∈Zn

f
(
− k

2B

) n

∏
j=1

sin(2πBx j+πk j)
2πBx j+πk j

. (6.6.21)

This is exactly (6.6.18) when we change k to −k and thus part (a) is proved. For part
(b) we argue similarly, except that we replace χ[−B,B]n by Φ̂ , where Φ̂ is smooth,
equal to 1 on [−B′,B′]n and vanishes outside [−B,B]n. Then we can insert the func-
tion Φ̂(ξ ) in (6.6.20) and instead of (6.6.21) we obtain the expression on the right
in (6.6.19). �
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Remark 6.6.10. Identity (6.6.18) holds for any B′′ > B. In particular, we have

∑
k∈Zn

f
( k
2B

) n

∏
j=1

sin(2πBx j−πk j)
2πBx j−πk j = ∑

k∈Zn
f
( k
2B′′
) n

∏
j=1

sin(2πB′′x j−πk j)
2πB′′x j−πk j

for all x ∈ Rn whenever f is band-limited in [−B,B]n. In particular, band-limited
functions in [−B,B]n can be sampled by their values at the points k/2B′′ for any
B′′ ≥ B.

However, band-limited functions in [−B,B]n cannot be sampled by the points
k/2B′ for any B′ < B, as the following example indicates.

Example 6.6.11. For 0 < B′ < B, let f (x) = g(x)sin(2πB′x), where ĝ is supported
in the interval [−(B−B′),B−B′]. Then f is band limited in [−B,B], but it cannot
be sampled by its values at the points k/2B′, since it vanishes at these points and f
is not identically zero if g is not the zero function.

Next, we give a couple of results that relate the Lp norm of a given function with
the �p norm (or quasi-norm) of its sampled values.

Theorem 6.6.12. Let f be a tempered1 function whose Fourier transform is sup-
ported in the closed ball B(0, t) for some 0 < t < ∞. Assume that f lies in Lp(Rn)
for some 0< p≤ ∞. Then there is a constant C(n, p) such that

∥
∥{ f (k)}k∈Zn

∥
∥
�p(Zn)

≤C(n, p) t (1+ t
2n
p )
∥
∥ f
∥
∥
Lp(Rn)

.

Proof. The proof is based on the following fact, whose proof can be found in [131]
(Lemma 2.2.3). Let 0< r < ∞. Then there exists a constant C2 =C2(n,r) such that
for all t > 0 and for all C 1 functions u on Rn whose distributional Fourier transform
is supported in the ball |ξ | ≤ t we have

sup
z∈Rn

1
t
|∇u(x− z)|
(1+ t|z|) n

r
≤C2M(|u|r)(x) 1

r , (6.6.22)

where M denotes the Hardy–Littlewood maximal operator.
Notice that f is a C ∞ function since its Fourier transform is compactly supported.

Assuming (6.6.22), for each k ∈ Zn and x ∈ [0,1]n we use the mean value theorem
to obtain

| f (k)| ≤ | f (x+ k)|+√
n sup

z∈[0,1]n
|∇ f (z+ k)|

≤ | f (x+ k)|+√
n sup
z∈B(x+k,

√
n)
|∇ f (z)| .

We raise this inequality to the power p, we integrate over the cube [0,1]n, we sum
over k∈Zn, and then we take the 1/p power. Let cp =max(1,21/p−1) and c(n,r, t) =

1 A function is called tempered if there are constants C,M such that | f (x)| ≤ C (1+ |x|)M for all
x ∈ Rn. Tempered functions are tempered distributions.



6.6 Wavelets and Sampling 493

√
nt(1+ t

√
n)n/r. The sum over k and the integral over [0,1]n yield an integral over

Rn and thus we obtain

[
∑
k∈Zn

| f (k)|p
] 1

p ≤
[∫

Rn
| f (x)+√

n sup
z∈B(x,√n)

|∇ f (z)|p dx
] 1

p

≤ cp

[
∥
∥ f
∥
∥
Lp +

√
n
(∫

Rn
sup

z∈B(0,√n)
|∇ f (x− z)|p dx

) 1
p
]

≤ cp

[
∥
∥ f
∥
∥
Lp + c(n,r, t)

(∫

Rn

{

sup
z∈B(0,√n)

|∇ f (x− z)|
t(1+ t|z|) n

r

}p

dx
) 1

p
]

≤ cp

[
∥
∥ f
∥
∥
Lp + c(n,r, t)

(∫

Rn

{

sup
z∈Rn

|∇ f (x− z)|
t(1+ t|z|) n

r

}p

dx
) 1

p
]

≤ cp

[
∥
∥ f
∥
∥
Lp + c(n,r, t)C2

(∫

Rn
[M(| f |r)(x)] pr dx

) 1
p
]

,

where the last step uses (6.6.22). We now select r = p/2 if p < ∞ and r to be
any number if p = ∞. The required inequality follows from the boundedness of the
Hardy-Littlewood maximal operator on L2 if p< ∞ or on L∞ if p= ∞. �

The next theorem could be considered a partial converse of Theorem 6.6.13

Theorem 6.6.13. Suppose that an integrable function f has Fourier transform sup-
ported in the cube [−( 12 − ε), 12 − ε ]n for some 0 < ε < 1/2. Furthermore, suppose
that the sequence of coefficients { f (k)}k∈Zn lies in �p(Zn) for some 0< p≤∞. Then
f lies in Lp(Rn) and the following estimate is valid

∥
∥ f
∥
∥
Lp(Rn)

≤Cn,p,ε
∥
∥{ f (k)}k

∥
∥
�p(Zn)

. (6.6.23)

Proof. We fix a smooth function Φ̂ supported in [− 1
2 ,

1
2 ]

n and equal to 1 on the
smaller cube [−( 12 − ε), 12 − ε ]n. Then we may write f = f ∗Φ , since Φ̂ is equal to
one on the support of f̂ . Writing f̂ in terms of its Fourier series we have

f̂ (ξ ) = ∑
k∈Zn

̂̂f (k)e2πik·ξ χ[− 1
2 ,

1
2 ]

n = ∑
k∈Zn

f (−k)e2πik·ξ χ[− 1
2 ,

1
2 ]

n (6.6.24)

Since f is integrable, f̂ is continuous and thus integrable over [− 1
2 ,

1
2 ]

n. By Fourier
inversion we have

f (x) =
∫

[− 1
2 ,

1
2 ]

n
f̂ (ξ )e2πix·ξdξ =

∫

[− 1
2 ,

1
2 ]

n
f̂ (ξ )Φ̂(ξ )e2πix·ξdξ (6.6.25)

for almost all x ∈ Rn. Inserting (6.6.25) in (6.6.24) we obtain

f (x) =
∫

[− 1
2 ,

1
2 ]

n
∑
k∈Zn

f (−k)e2πik·ξ e2πix·ξ Φ̂(ξ )dξ
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= ∑
k∈Zn

f (k)
∫

[− 1
2 ,

1
2 ]

n
e−2πik·ξ e2πix·ξ Φ̂(ξ )dξ

= ∑
k∈Zn

f (k)Φ(x− k) .

This identity combined with the rapid decay of Φ yields (6.6.23) as follows. For
0< p≤ 1 we have

∥
∥ f
∥
∥p
Lp ≤

∫

Rn
∑
k∈Zn

| f (k)|p|Φ(x− k)|p = ∥∥{ f (k)}k‖p�p(Zn)
‖Φ‖pLp

while for 1< p≤ ∞, setting Q= [− 1
2 ,

1
2 ]

n we write:

∥
∥ f
∥
∥
Lp(Rn)

≤
[

∑
l∈Zn

∫

l+Q

(
∑
k∈Zn

| f (k)||Φ(x− k)|
)p

dx
] 1

p

≤ Cn,N

[

∑
l∈Zn

∫

l+Q

(
∑
k∈Zn

| f (k)| 1
(2
√
n+ |x− k|)N

)p
dx
] 1

p

≤ C′
n,N

[

∑
l∈Zn

∫

l+Q

(
∑
k∈Zn

| f (k)| 1
(
√
n+ |l− k|)N

)p
dx
] 1

p

≤ C′
n,N

[

∑
l∈Zn

(
∑
k∈Zn

| f (k)| 1
(
√
n+ |l− k|)N

)p]
1
p

.

The preceding expression can be viewed as the �p norm of the discrete convolution
of the sequences { f (k)}k and 1

(
√
n+|k|)N and thus it is bounded by a constant multiple

of
∥
∥{ f (k)}k

∥
∥
�p(Zn)

, since the sequence 1
(
√
n+|k|)N is in �1(Zn) if N is large enough.

This completes the proof. �

Exercise 6.6.6 gives examples of functions for which Theorem 6.6.13 fails
if ε = 0.

Exercises

6.6.1. (a) Let A = [−1,− 1
2 )
⋃
[ 12 ,1). Show that the family {e2πimx}m∈Z is an

orthonormal basis of L2(A).
(b) Obtain the same conclusion for the family {e2πim·x}m∈Zn in L2(An).[
Hint: To show completeness, given f ∈ L2(A), define h on [0,1] by setting h(x) =
f (x−1) for x ∈ [0, 12 ) and h(x) = f (x) for x ∈ [ 12 ,1). Observe that ĥ(m) = f̂ (m) for
all m ∈ Z and expand h in Fourier series.

]
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6.6.2. Let g be an integrable function on Rn.
(a) Suppose that g is supported in [−b,b]n for some b > 0 and that the sequence
{ĝ(k/2b)}k∈Zn lies in �2(Zn). Show that

g(x) = (2b)−n ∑
k∈Zn

ĝ( k
2b )e

2πi k
2b ·xχ[−b,b]n ,

where the series converges in L2(Rn) and deduce that g is in L2(Rn).
(b) Suppose that g is supported in [0,b]n for some b > 0 and that the sequence
{ĝ(k/b)}k∈Zn lies in �2(Zn). Show that

g(x) = b−n ∑
k∈Zn

ĝ( kb )e
2πi kb ·xχ[0,b]n ,

where the series converges in L2(Rn) and deduce that g is in L2(Rn).
(c) When n = 1, obtain the same as the conclusion in part (b) for x ∈ [−b,− b

2 )
⋃

[ b2 ,b), provided g is supported in this set.[
Hint: Part (c): Use the result in Exercise 6.6.1.

]

6.6.3. Show that the sequence of functions

Hk(x1, . . . ,xn) = (2B)
n
2

n

∏
j=1

sin
(
π(2Bx j− k j)

)

π(2Bx j− k j)
, k ∈ Zn ,

is orthonormal in L2(Rn).[
Hint: Interpret the functions Hk as the Fourier transforms of known functions.

]

6.6.4. Prove the following spherical multidimensional version of Theorem 6.6.9.
Suppose that f̂ is supported in the ball |ξ | ≤ R. Show that

f (x) = ∑
k∈Zn

f
(− k

2R

) 1
2n

Jn
2
(2π|Rx+ k

2 |)
|Rx+ k

2 |
n
2

,

where Ja is the Bessel function of order a.

6.6.5. Let {ak}k∈Zn be in �p for some 1< p< ∞. Show that the partial sums

∑
k∈Zn

|k|≤N

ak
n

∏
j=1

sin(2πBx j−πk j)
2πBx j−πk j

converge in S ′(Rn) as N → ∞ to an Lp function on Rn whose Fourier transform
is supported in [−B,B]n. Here k = (k1, . . . ,kn). Moreover, the Lp norm of A is con-
trolled by a constant multiple of the �p norm of {ak}k.
6.6.6. Consider the function ∏n

j=1 sin(πx j)/(πx j) on Rn to show that Theorem
6.6.13 fails when ε = 0 and p ≤ 1. When 1 < p ≤ ∞ consider the function x1 +
∏n

j=1 sin(πx j)/(πx j).
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6.6.7. (a) Let ψ(x) be a nonzero continuous integrable function on R that satisfies∫
Rψ(x)dx= 0 and

Cψ =
∫ +∞

−∞
|ψ̂(t)|2
|t| dt < ∞ .

Define the wavelet transform of f in L2(R) by setting

W ( f ;a,b) =
1
√|a|

∫ +∞

−∞
f (x)ψ

(x−b
a

)
dx

when a �= 0 andW ( f ;0,b) = 0. Show that for any f ∈ L2(R) the following inversion
formula holds:

f (x) =
1
Cψ

∫ +∞

−∞

∫ +∞

−∞
1

|a| 12
ψ
(x−b

a

)
W ( f ;a,b)db

da
a2

.

(b) State and prove an analogous wavelet transform inversion property on Rn.[
Hint: Apply Theorem 2.2.14 (5) in the b-integral and use Fourier inversion.

]

6.6.8. (P. Casazza) On Rn let e j be the vector whose coordinates are zero every-
where except for the jth entry, which is 1. Set q j = e j− 1

n ∑
n
k=1 ek for 1≤ j ≤ n and

also qn+1 =
1√
n ∑

n
k=1 ek. Prove that

n+1

∑
j=1

|q j · x|2 = |x|2

for all x ∈ Rn. This provides an example of a tight frame on Rn.

HISTORICAL NOTES

An early account of square functions in the context of Fourier series appears in the work of
Kolmogorov [196], who proved the almost everywhere convergence of lacunary partial sums of
Fourier series of periodic square-integrable functions. This result was systematically studied and
extended to Lp functions, 1< p< ∞, by Littlewood and Paley [227], [228], [229] using complex-
analysis techniques. The real-variable treatment of the Littlewood and Paley theorem was pioneered
by Stein [334] and allowed the higher-dimensional extension of the theory. The use of vector-valued
inequalities in the proof of Theorem 6.1.2 is contained in Benedek, Calderón, and Panzone [22]. A
Littlewood–Paley theorem for lacunary sectors in R2 was obtained by Nagel, Stein, and Wainger
[264].

An interesting Littlewood–Paley estimate holds for 2≤ p< ∞: There exists a constant Cp such
that for all families of disjoint open intervals I j in R the estimate ‖(∑ j |( f̂ χI j )∨|2)

1
2 ‖Lp ≤Cp‖ f‖Lp

holds for all functions f ∈ Lp(R). This was proved by Rubio de Francia [301], but the special case
in which I j = ( j, j+1) was previously obtained by Carleson [55]. An alternative proof of Rubio de
Francia’s theorem was obtained by Bourgain [34]. A higher-dimensional analogue of this estimate
for arbitrary disjoint open rectangles in Rn with sides parallel to the axes was obtained by Journé
[181]. Easier proofs of the higher-dimensional result were subsequently obtained by Sjölin [326],
Soria [329], and Sato [311].

Part (a) of Theorem 6.2.7 is due to Mihlin [254] and the generalization in part (b) to Hörmander
[159]. Theorem 6.2.2 can be found in Marcinkiewicz’s article [241] in the context of one-
dimensional Fourier series. Calderón and Torchinsky [45] have improved Theorem 6.2.7 in the
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following way: if for a suitable smooth bump η supported in an annulus the functions m(2kξ )η(ξ )
lie in the Sobolev space Lrγ uniformly in k ∈ Z, where γ > n( 1p − 1

2 ), 1< p< 2, 1
r =

1
p − 1

2 , then m
lies in Mp(Rn). The power 6 in estimate (6.2.3) that appears in the statement of Theorem 6.2.2 is
not optimal. Tao and Wright [357] proved that in dimension 1, the best power of (p−1)−1 in this
theorem is 3

2 as p→ 1. An improvement of the Marcinkiewicz multiplier theorem in one dimen-
sion was obtained by Coifman, Rubio de Francia, and Semmes [69]. Weighted norm estimates for
Hörmander–Mihlin multipliers were obtained by Kurtz and Wheeden [209] and for Marcinkiwiecz
multipliers by Kurtz [208]. Heo, Nazarov, and Seeger [150] have obtained a very elegant charac-
terization of radial Lp multipliers in large dimensions; precisely, they showed that for dimensions
n≥ 4 and 1< p< 2n−2

n+1 , a radial function m on Rn is an Lp Fourier multiplier if and only if there
exists a nonzero Schwartz function η such that supt>0 t

n/p‖(m( ·)η(t ·))∨‖Lp <∞. This characteri-
zation builds on and extends a previously obtained simple characterization by Garrigós and Seeger
[124] of radial multipliers on the invariant subspace of radial Lp functions when 1< p< 2n

n+1 .
The method of proof of Theorem 6.3.4 is adapted from Duoandikoetxea and Rubio de Francia

[102]. The method in this article is rather general and can be used to obtain Lp boundedness for a
variety of rough singular integrals. A version of Theorem 6.3.6 was used by Christ [59] to obtain
Lp smoothing estimates for Cantor–Lebesgue measures. When p = q �= 2, Theorem 6.3.6 is false
in general, but it is true for all r satisfying | 1r − 1

2 |< | 1p − 1
2 | under the additional assumption that

the mj’s are Lipschitz functions uniformly at all scales. This result was independently obtained
by Carbery [52] and Seeger [316]. Miyachi [255] has obtained a complete characterization of the
indices a,b> 0 such that the functions |x|−bei|x|aψ(x) are Lp Fourier multipliers; hereψ is a smooth
function that is equal to 1 near infinity and vanishes near zero.

The probabilistic notions of conditional expectations and martingales have a strong connection
with the Littlewood–Paley theory discussed in this chapter. For the purposes of this exposition we
considered only the case of the sequence of σ -algebras generated by the dyadic cubes of side length
2−k in Rn. The Lp boundedness of the maximal conditional expectation (Doob [97]) is analogous
to the Lp boundedness of the dyadic maximal function; likewise with the corresponding weak type
(1,1) estimate. The Lp boundedness of the dyadic martingale square function was obtained by
Burkholder [39] and is analogous to Theorem 6.1.2. Moreover, the estimate

∥
∥supk |Ek( f )|

∥
∥
Lp ≈∥

∥S( f )
∥
∥
Lp , 0< p<∞, obtained by Burkholder and Gundy [40] and also by Davis [90] is analogous

to the square-function characterization of the Hardy space Hp norm. For an exposition on the
different and unifying aspects of Littlewood–Paley theory we refer to Stein [337]. The proof of
Theorem 6.4.8, which quantitatively expresses the almost orthogonality of the Littlewood–Paley
and the dyadic martingale difference operators, is taken from Grafakos and Kalton [133].

The use of quadratic expressions in the study of certain maximal operators has a long history.
We refer to the article of Stein [340] for a historical survey. Theorem 6.5.1 was first proved by Stein
[339]. The proof in the text is taken from an article of Rubio de Francia [302]. Another proof when
n ≥ 3 is due to Cowling and Mauceri [76]. The more difficult case n = 2 was settled by Bour-
gain [36] about 10 years later. Alternative proofs when n= 2 were given by Mockenhaupt, Seeger,
and Sogge [256] as well as Schlag [313]. The boundedness of maximal operators associated to
more general smooth measures on compact surfaces of finite type were investigated by Iosevich
and Sawyer [173]. The powerful machinery of Fourier integral operators was used by Sogge [328]
to obtain the boundedness of spherical maximal operators on compact manifolds without bound-
ary and positive injectivity radius; a simple proof for the boundedness of the spherical maximal
function on the sphere was given by Nguyen [269]. Weighted norm inequalities for the spheri-
cal maximal operator were obtained by Duoandikoetxea and Vega [103]. The discrete spherical
maximal function was studied by Magyar, Stein, and Wainger [237].

Much of the theory of square functions and the ideas associated with them has analogues in the
dyadic setting. A dyadic analogue of the theory discussed here can be obtained. For an introduction
to the area of dyadic harmonic analysis, we refer to Pereyra [276].

The idea of expressing (or reproducing) a signal as a weighted average of translations and
dilations of a single function appeared in early work of Calderón [42]. This idea is in some sense a
forerunner of wavelets. An early example of a wavelet was constructed by Strömberg [352] in his
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search for unconditional bases for Hardy spaces. Another example of a wavelet basis was obtained
by Meyer [249]. The construction of an orthonormal wavelet presented in Theorem 6.6.7 is in
Lemarié and Meyer [216]. A compactly supported wavelet was constructed by Daubechies [88].
Mallat [238] introduced the notion of multiresolution analysis, which led to a systematic production
of wavelets. Theorem 6.6.9 is Shannon’s [319] version of Nyquist’s theorem [270] and is referred
to as the Nyquist-Shannon sampling theorem. It is a fundamental result in telecommunications and
signal processing, since it describes how to reconstruct a signal that contains no frequencies higher
than B Hertz in terms of its values at a sequence of points spaced 1/(2B) seconds apart.

The area of wavelets has taken off significantly since its inception, spurred by these early re-
sults. A general theory of wavelets and its use in Fourier analysis was carefully developed in the
two-volume monograph of Meyer [250], [251] and its successor Meyer and Coifman [253]. For
further study and a deeper account of developments on the subject the reader may consult the
books of Daubechies [89], Chui [64], Wickerhauser [374], Kaiser [184], Benedetto and Frazier
[23], Hérnandez and Weiss [151], Wojtaszczyk [379], Mallat [239], Meyer [252], Frazier [120],
Gröchenig [140], and the references therein. Theorems 6.6.12 and 6.6.13 first appeared in a com-
bined form in the work of Plancherel and Pólya [285] for restrictions of entire functions of expo-
nential type on the real line.
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