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10.1             Fusarium  Species Classifi cation and Genetics 

 Species of the genus  Fusarium  are ascomycetes that are characterized by their typical 
conidia, which are often fusiform to sickle-shaped with an elongated apical cell and 
pedicellate basal (foot) cell. Several important  Fusarium  species, including  F. avena-
ceum ,  F. graminearum  and  F. pseudograminearum , are known to produce a teleo-
morph state that was formerly classifi ed in the genus  Gibberella . In other species, 
such as  F. culmorum ,  F. oxysporum  and  F. sporotrichioides , no teleomorph has been 
reported, so far. Geiser et al. ( 2013 ) proposed to recognize the genus  Fusarium  as the 
sole name for a group that includes virtually all important saprophytic, plant patho-
genic, and mycotoxigenic species.  Fusarium  spp. can be identifi ed by morphological 
features and also by genetic analysis. Morphological species identifi cation can be 
based on microscopic and/or macroscopic characters, such as conidia, phialides, 
chlamydospores, ascospores and colony characteristics of pure cultures (see 
Figs.  10.1  and  10.2 ). Macroconidia, a form of asexual spores most often aggregated 
to sporodochia, are usually ‘banana’-shaped in  Fusarium  species, which can also 
produce microconidia in the aerial mycelium and/or chlamydospores in hyphae. The 
size, shape and number of septa in the macroconidia are often used to differentiate 
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  Fig. 10.1     Fusarium 
graminearum : ( a ) Conidia 
of a culture grown on potato 
dextrose agar (PDA); ( b ) asci 
and ascospores of the 
teleomorph; ( c ) purplish- 
black perithecia (teleomorph) 
on barley seed; ( d ) close-up 
of typically red mycelia with 
a yellow tint; ( e ) colonies 
growing from wheat seed as 
seen from above ( left ) and 
below ( right )       

  Fig. 10.2     Fusarium 
culmorum : ( a ) short and 
broad conidia of a culture 
grown on PDA; ( b ) close-up 
of loose mycelium with 
abundant orange and red 
sporodochia; ( c ) fast growing 
colonies from wheat seed as 
seen from above ( left ) and 
below ( right ).  Fusarium 
avenaceum : ( d ) long and 
slender conidia of a culture 
grown on PDA; ( e ) close-up 
of dense white mycelium 
predominantly without 
sporodochia; ( f ) colonies 
often with white margin 
growing from durum seed as 
seen from above ( left ) and 
below ( right )       
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between species (Leslie and Summerell  2006 ). The teleomorph state is characterized 
by black, fl ask-shaped perithecia with a single ostiole (narrow opening) at the top, 
from which the asci (containing the ascospores) are released. The asci of  F. gra-
minearum  (formerly  Gibberella zeae ) have been shown to be forcibly ejected through 
the ostiole under conditions of high humidity (Trail et al.  2002 ).

    Genetic analysis is a more accurate approach for species identifi cation and is 
enhanced by an increase in available  Fusarium  genome sequences. The genomes of 
several important  Fusarium  species such as  F. graminearum ,  F. oxysporum ,  F. pseu-
dograminearum ,  F. solani  and  F. verticillioides  are publicly available through various 
data portals (e.g. Broad Institute of Harvard and MIT; DOE Joint Genome Institute; 
NCBI GenBank). The  F. graminearum  strain Ph1 was the fi rst complete  Fusarium  
genome to be published and annotated (Cuomo et al.  2007 ). The  F. graminearum  
genome is 36 megabases (Mb) with over 13,000 genes. A comparison of the Ph1 
strain with the partially completed genome of  F. graminearum  strain GZ3639 revealed 
over 10,000 single-nucleotide polymorphisms found along all four chromosomes 
(Cuomo et al.  2007 ). The complete genome sequence and assembly of  F. gra-
minearum  GZ3639 and seven other  F. graminearum  strains were recently prepared 
by R. Subramaniam and colleagues (personal communications).  F. graminearum  has 
a small number of chromosomes compared to other  Fusarium  spp., and this is 
believed to be a result of ancestral chromosome fusion (Cuomo et al.  2007 ).  F. verti-
cillioides  strain 7600 and  F. oxysporum  f. sp.  lycopersici  strain 4287 were sequenced 
and compared to  F. graminearum  Ph1 by Ma et al. ( 2010 ).  F. verticillioides  is 42 Mb 
with over 14,000 genes found on 11 chromosomes.  F. oxysporum  f. sp.  lycopersici  
genome is 60 Mb, the largest of the three genomes, with over 17,000 genes encoded 
on a total of 15 chromosomes. Four of the 15 chromosomes are lineage specifi c and 
are composed primarily of transposable elements. Ma et al. ( 2010 ) also observed that 
the lineage specifi c regions differ in sequence among different formae speciales of 
 F. oxysporum , and some of these regions encode virulence factors specifi c to the host 
range of a given strain. They were able to demonstrate that chromosome 14, which 
encodes host-specifi c virulence factors, is able to undergo horizontal transfer 
between different  F. oxysporum  f. sp., and that this transfer leads to a change in 
host-specifi city.  F. solani  ( N. haematococca  MPVI isolate 77-13-4) has also been 
sequenced and has 17 chromosomes with a genome size of 54.43 Mb. Of the 17 
chromosomes, three (14, 15 and 17) are non-essential, and at least one of these 
(chromosome 14) is involved in host-specifi city (Coleman et al.  2009 ). 

 A subset of  Fusarium  spp. produces a series of mycotoxins, including trichothe-
cenes and fumonisins. Both of these classes of toxins are secondary metabolites and 
their production is controlled by a specifi c set of genes found in clusters on the 
genome. Fumonisins are produced by a number of  Fusarium  spp., including  F. ver-
ticillioides , an important pathogen of maize. Over 28 fumonisins have been 
 identifi ed to date, and are divided into four groups (Rheeder et al.  2002 ): A-, B-, 
C- and P-series. Fumonisins are composed of a 19- to 20-carbon aminopolyhy-
droxyalkyl backbone, similar in structure to sphingosine (Shier  1992 ). The B-series 
is the most abundant of the four series (where fumonisin B 1  is the major fumonisin 
found in  Fusarium -infected grain) and forms the basic fumonisin structure. 
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The A-series is characterized by the acetylation of the amino group (Abbax et al. 
 1993 ); members of the C-series do not have a terminal methyl group (Branham and 
Plattner  1993 ); members of the P-series have a 3-hydroxypyridinium in place of the 
carbon-2 amine (Musser et al.  1996 ). Fumonisin toxicity is related to its ability to 
disrupt sphingolipid metabolism through inhibition of ceramide synthase activity 
(Voss et al.  2007 ). These toxins have been shown to affect mitochondrial respiration 
(Domijan and Abramov  2011 ) and have been associated with various cancers in 
humans and animals (Gelderblom et al.  1988 ; Müller et al.  2012 ). The fumonisin 
biosynthetic genes are referred to as FUM genes and are found in the FUM cluster 
(Proctor et al.  2003 ,  2006 ). 

 Trichothecenes are potent inhibitors of eukaryotic protein biosynthesis and are 
expressed by  Fusarium  pathogens that affect cereal crops, including  F. culmorum , 
 F. graminearum  and  F. sporotrichioides . Over 200 trichothecenes have been identi-
fi ed from a variety of fungal species (Cole and Cox  1981 ; Schollenberger et al. 
 2007 ). The trichothecenes are divided into four groups based on specifi c structural 
features (reviewed in Shank et al.  2011 ): Types A, B, C and D. Trichothecene-
producing  Fusarium  spp. produce either Type A trichothecenes (such as T-2 toxin 
and HT-2 toxin), or Type B trichothecene (such as nivalenol (NIV), 4-deoxynivale-
nol (DON; also known as vomitoxin) and acetylated derivatives). The genes encod-
ing trichothecene biosynthesis and metabolism ( TRI  genes) are mainly found in the 
TRI cluster (Hohn et al.  1993 ; Ward et al.  2002 ; Brown et al.  2004 ), and the specifi c 
trichothecenes produced by a given species are determined by the sequences of the 
TRI genes within this cluster. A summary of TRI genes and their functions are 
reviewed in Foroud and Eudes ( 2009 ). Sequence differences among specifi c TRI 
genes, which defi ne their trichothecene genotype (Desjardins  2008 ), have been used 
to predict the trichothecene chemotype of a given  Fusarium  strain (Lee et al.  2001 ; 
Ward et al.  2008 ; Alexander et al.  2011 ; Boutigny et al.  2011 ; Reynoso et al.  2011 ). 
For example, NIV chemotypes are determined by the presence of functional 
sequences of the Tri13 and Tri7 genes for NIV and 4-acetylnivalenol production, 
respectively (Lee et al.  2002 ; Kim et al.  2003 ). DON producers, which do not express 
functional Tri13/Tri7 genes, are divided into two chemotypes (3- acetyldeoxynivalenol 
(3-ADON) and 15-acetyldeoxynivalenol (15-ADON)) determined by the esterase 
specifi city encoded in the  TRI8  gene (Alexander et al.  2011 ). 

 From the  Fusarium  TRI cluster, DNA sequences of the TRI12 gene encoding a 
trichothecene effl ux pump have been used to develop real-time PCR assays for quan-
titative diagnostics of the 3ADON, 15ADON and NIV genotypes of  F. graminearum  
and  F. culmorum  (Kulik  2011 ; Nielsen et al.  2012 ). These assays utilize genetic 
markers directly involved in the production of trichothecenes and provide a power-
ful, cost effective tool to monitor the genotype composition and shifts in pathogen 
populations of mycotoxigenic  Fusarium  species. Over the past decade, a number of 
quantitative assays for the detection and quantifi cation of other toxin producing 
 Fusarium  species have been published (reviewed by Morcia et al.  2013 ). Applications 
of these quantitative diagnostic tools included traceability studies of different 
 Fusarium  species on small cereals (Waalwijk et al.  2004 ,  2008 ; Yli-Mattila et al. 
 2006 ; Fredlund et al.  2010 ,  2013 ; Lindblad et al.  2013 ), grain dust (Halstensen et al. 
 2006 ), and along wheat processing chains (Terzi et al.  2007 ; Tittlemier et al.  2014 ). 
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 For the development of species-specifi c detection assays, DNA sequences of bar-
code regions, including genes encoding the translation elongation factor 1α, β-tubulin, 
or mating type (MAT) were successfully used for the detection and quantifi cation of 
 Fusarium  species (Nicolaisen et al.  2009 ; Demeke et al.  2010 ). In  Fusarium , how-
ever, universal barcode markers, such as the internal transcribed spacer (ITS) regions 
of the ribosomal DNA and the cytochrome oxidase 1 (COX1) gene, commonly used 
for identifi cation of other groups of fungi have been reported to be non-orthologous 
and paralogous, respectively (O’Donnell and Cigelnik  1997 ; Gilmore et al.  2009 ). 
Multiple copies of these barcode regions are present in  Fusarium  genomes, showing 
a rather low degree of divergence among homologous sequences with a number of 
closely related species sharing identical sequences. In metagenomic profi ling of 
microbial communities employing next generation sequencing (NGS), universal bar-
code markers often provide insuffi cient resolution at or below species level when 
used for identifi cation and semi-quantifi cation of plant-associated  Fusarium  species. 
Other universal barcodes, such as the protein coding chaperonin-60 ( cpn 60) gene 
have been reported to be a robust target for species-level characterization in bacteria 
(Links et al.  2012 ). The potential of  cpn 60 to identify and differentiate species of 
 Fusarium  is currently being explored by the authors. 

 Studies on population dynamics based on single-nucleotide polymorphisms 
(SNP) have proven to provide suffi cient resolution for population- and individual- 
level analyses of  Fusarium  species. They are adaptable to high-throughput DNA 
chip-based methods, but fi nding markers to characterize and distinguish populations 
is often problematic. Multilocus genotyping (MLGT) assays are a powerful tool that 
can facilitate accurate identifi cation of species and trichothecene chemotype for 
large numbers of  Fusarium  isolates. Population dynamics behind adaptive shifts 
observed for mycotoxin chemotypes and newly emerging pathotypes in  Fusarium 
graminearum  were studied employing multiplex PCR assays to enable simultane-
ous determination of species identity and trichothecene chemotype (Ward et al. 
 2008 ; Gale et al.  2011 ). For other population studies (Suga et al.  2004 ), the genome 
of  Fusarium graminearum  was mined for repeat sequences to analyze genotypes 
based on variable number of tandem repeats (VNTR). A number of VNTR markers 
were selected based on length polymorphisms and used to analyze population genet-
ics in  F. graminearum  and closely related taxa (Ward et al.  2008 ; Gale et al.  2011 ; 
Zhang et al.  2012 ).  

10.2     Fusarium Diseases of Pulse Crops 

10.2.1     Pathogens 

 Canada is a major world exporter of pulse crops. In particular, lentil ( Lens culina-
ris ) and fi eld pea ( Pisum sativum ) production in Canada has been rising due to the 
benefi ts of crop diversifi cation, nitrogen inputs into the soil, and increased 
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worldwide demand for pulse crops (Graham and Vance  2003 ). In 2012, 2.5 million 
hectares of pulse crops were planted in Canada, with the majority planted to lentil 
(1.0 million hectares), and peas (1.35 million hectares) (   Statistics Canada). Dry 
beans ( Phaseolus vulgaris ) and chickpeas ( Cicer arietinum ) comprise the remain-
der of pulse crops with 120,000 and 80,000 hectares planted, respectively, in 2012. 
The goal of the Canadian pulse industry is to realize an increase of pulse acreage to 
15 % of total planted area. Currently, pulse acreage accounts for an average of 
5–10 % total crop area over the three main pulse-growing provinces of Manitoba, 
Saskatchewan and Alberta. 

 As pulse acreage increases, the prevalence and incidence of root rots, caused by 
 Fusarium  spp., have also been increasing. Most pulse crops are subject to root rot 
pathogens that build up in the soil over several years and reduce plant stands and 
yields (Persson et al.  1997 ; Bailey et al.  2003 ; Infantino et al.  2006 ; Naseri and 
Marefat  2011 ). Root rot is a general term that describes disease symptoms which 
include reddish-brown-black lesions on the hypocotyl and tap root, often accompa-
nied by vascular discolouration, foliar chlorosis and wilt (Agrios  1997 ; Bailey et al. 
 2003 ; Infantino et al.  2006 ). Yield losses of 10–30 % are commonly observed in 
pulse crops affected by moderate to severe root rot, but yield loss potential can be 
even higher under favourable environmental conditions (Oyarzun  1993 ; Schneider 
et al.  2001 ; Schwartz et al.  2005 ; Cichy et al.  2007 ). Root rots, causing wilt and 
death of mature plants, are reported throughout pulse-growing regions in Canada, 
and experienced growers are increasingly challenged with yield loss due to stand 
death. Annual disease surveys indicate that root rot incidence is now widespread in 
most pulse-growing regions of Canada. 

 Root rots can be caused by a number of fungi, including  Pythium ,  Rhizoctonia  
and/or  Fusarium  spp .  (Bailey et al.  2003 ). However, Fusarium root rot is considered 
the most prevalent root disease in fi eld peas, dry beans and lentils (Henriquez et al. 
 2012b ; McLaren et al.  2012 ; Miller et al.  2012 ). In recent years, 80–100 % of pea 
fi elds surveyed in Saskatchewan and Manitoba had plants with root rot symptoms, 
with severity usually occurring at a moderate level, or 30–40 % of roots and lower 
stem with symptoms (McLaren et al.  2010 ,  2011 ,  2012 ; Dokken-Bouchard et al. 
 2011 ).  Fusarium solani  f. sp.  pisi  and  F. avenaceum  (teleomorph formerly  Giberella 
avenacea ) are the most prevalent pathogens in fi eld pea crops, with  F. avenaceum  
becoming the predominant species isolated from rotted roots in recent years 
(McLaren et al.  2012 ).  Fusarium avenaceum  is a common soil saprophyte in tem-
perate regions, and has traditionally been associated with crown rot and Fusarium 
head blight (FHB) of cereals (Leslie and Summerell  2006 ; Fernandez  2009 ). 
However, it is also very aggressive on all pulse crops, including lentils, dry bean and 
fi eld peas, and is now the principal species associated with root rot of fi eld pea 
across the prairie region (Feng et al.  2010 ; Chittem et al.  2012 ). The ‘ F. solani  spe-
cies complex’ comprises over 50 phylogenetic species, of which many members are 
common soil-dwelling fungi, and act as saprophytes and/or plant pathogens 
(Coleman et al.  2009 ). Pathogenic isolates in this group are further characterized by 
formae speciales to indicate the specifi c host plants to which they are restricted, 
such that  F. solani  f. sp.  pisi  is only pathogenic to pea, and  F. solani  f. sp.  phaseoli  
is only pathogenic to beans (Oyarzun et al.  1993 ). 
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  F. solani  f. sp.  phaseoli  is generally considered to be the most common pathogen 
causing dry bean root rots, but recent surveys conducted in Manitoba indicate that 
there is a complex of  Fusarium  spp. associated with root rot symptoms (Henriquez 
et al.  2012a ). Lentil root rot can also be caused by a number of different pathogenic 
species including  F. avenaceum ,  F. acuminatum  and  F. redolens  (Hwang et al.  1994 ; 
Bailey et al.  2000 ; Esmaeili Taheri et al.  2011 ). The vascular wilt pathogens  F. oxy-
sporum  ff. spp.  pisi  and f. sp.  phaseoli  are frequently found in pea and dry bean 
fi elds, respectively, but are generally associated with low disease severity indexes 
(Henriquez et al.  2012b ; McLaren et al.  2012 ).  Fusarium graminearum , the primary 
causal agent of FHB in Canada, has also been associated with root rot of legumes 
(Chongo et al.  2001 ; Goswami et al.  2008 ; Bilgi et al.  2011 ; Esmaeili Taheri et al. 
 2011 ; Henriquez et al.  2012a ).  Fusarium redolens , a  Fusarium  species closely 
related to  F. oxysporum  (Bogale et al.  2007 ), is also frequently isolated from dis-
eased roots of pulse crops, including fi eld pea, lentil and chickpea (Esmaeili Taheri 
et al.  2011 ; Jiménez-Fernández et al.  2011 ).  Fusarium redolens  has a broad-host 
range, and has also been shown to induce root rot symptoms in durum wheat in 
Saskatchewan (Esmaeili Taheri et al.  2011 ).  

10.2.2     Infection Pathways and Symptoms 

 Most of the  Fusarium  spp. capable of causing root rots on pulse crops produce the 
same disease symptoms, making it diffi cult to distinguish between causal agents 
(Hwang et al.  1995 ,  2000 ; Bailey et al.  2000 ; Bilgi et al.  2008 ; Feng et al.  2010 ). 
Symptoms fi rst appear as small reddish-brown lesions at the base of the hypocotyl 
and taproot (Fig.  10.3a ) (Stahl et al.  1994 ; Schwartz et al.  2005 ). As the disease 
advances, lesions coalesce to form large necrotic areas which encircle the stem and 
expand vertically (Fig.  10.3c ) (Bailey et al.  2003 ). A reduction in root mass also 
becomes evident at this stage. In the fi nal stages of root rots, root mass will be reduced 
by 80–100 %, the hypocotyl becomes pithy and lesions can extend vertically upwards 
of 2 cm (Bilgi et al.  2008 ). At this point, the plant is functionally dead with obvious 
signs of yellowing, wilting and collapse. Infection with  F. solani  and  F. avenaceum  
also causes red or brown streaking of the vascular system, indicating that these patho-
gens can enter the xylem (Fig.  10.3b ) (Bailey et al.  2000 ,  2003 ; Feng et al.  2010 ). A 
major impact of root-rotting fungi on pulse crops is the reduction in the number of 
nodules on the roots, primarily because secondary root growth is severely impacted 
(Hwang et al.  1994 ,  1995 ). This then results in a reduction in nitrogen fi xation, thus 
reducing the benefi t of pulses to subsequent crops in a rotation.

   Infection pathways of  F. solani  f. sp.  pisi  on fi eld pea and  F. solani  f. sp.  phaseoli  
on dry bean have been well characterized.  Fusarium solani  survives in crop residues 
and in soil as chlamydospores, which serve as the primary inoculum source (Leslie 
and Summerell  2006 ). Chlamydospores are produced in infected tissues of host 
crops at the end of the growing season, and can survive in the soil for extended 
periods of time (Bailey et al.  2003 ; Schwartz et al.  2005 ). Germination of chla-
mydospores are stimulated by the presence of nutrients exuded from germinating 
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seeds of host crops, and thus use of rotations with non-host crops is essential to 
reduce survival of chlamydospores (Mondal et al.  1996 ; Oyarzun et al.  1998 ). 
Chlamydospores germinate to produce hyphae which can directly infect the devel-
oping hypocotyl and epicotyl of seedlings, or the hyphae produces macroconidia 
which then infect the seedling (Nelson  2004 ). In vitro studies have shown that mac-
roconidia of  F. solani  invade root tissues by primarily colonizing the zone of elonga-
tion. The remainder of the root zones appear to be resistant to primary infection, 
even in the presence of large numbers of macroconidia and fungal mycelia 
(Gunawardena et al.  2005 ). However, Stahl et al. ( 1994 ) describe direct penetration 
of the epidermis of the epicotyl. Production of cutinases by  F. solani  f. sp.  pisi  has 
also been implicated in initial infection and penetration of the cuticle barrier 
(Li et al.  2002 ; Hadwiger  2008 ). After penetrating the epidermis, mycelium then 
advances through the cortex both inter- and intra-cellularly until it reaches the 
Casparian strips present in the endodermis of epicotyl stems. At this point, degrada-
tion of the vascular parenchyma is visible in advance of the invading hyphae, sug-
gesting that cell wall degrading enzymes aid in breaking down the barrier to the 
vascular system, and resulting in colonization of the vascular bundles. Studies of 
 F. solani  on peas have shown that this pathogen will exclusively colonize the xylem 
stem tissues beyond the epicotyl, while external lesions on the stem abruptly stop on 
the epicotyl 1–2 cm above ground (Stahl et al.  1994 ). It is unknown whether the 
other root-rotting fungi, such as  F. avenaceum  and  F. graminearum , colonize and 
infect tissues of all host pulse crops in a similar manner. 

 Unlike the other Fusarium root rot pathogens of pulses,  F. avenaceum  is unable 
to produce chlamydospores, and thus survives in crop residues of susceptible host 
crops (Leslie and Summerell  2006 ). Modern agronomic practices, such as reduced 

  Fig. 10.3    Symptoms of root 
rot on fi eld pea: ( a ) early 
symptoms with small brown 
lesions at point of seed 
attachment; ( b ) red streaking 
of the vascular system 
characteristic of  Fusarium  
infection; ( c ) extended 
brown/black lesions on tap 
root, and loss of secondary 
root mass and root nodules       

 

N.A. Foroud et al.



275

tillage, increased glyphosate use and crop rotation with susceptible hosts, have 
likely allowed pathogenic  Fusarium  spp. to accumulate to damaging levels 
(Fernandez et al.  2008 ,  2009 ,  2011 ). The increasing prevalence of  F. avenaceum  
associated with both broad-leaf pulse and cereal crops in Saskatchewan suggests 
that  Fusarium  inoculum is being maintained or even increasing on residues of these 
host crops (Bailey et al.  2001 ; Fernandez  2007 ; Abdellatif et al.  2010 ; Feng et al. 
 2010 ).  Fusarium avenaceum  isolates display genetic and ecological plasticity, 
allowing this fungus to occupy several ecological niches, such as root tissues of 
pulses, head and root tissues of cereals and residues of host crops (Abdellatif et al. 
 2010 ).  Fusarium avenaceum  survived in colonized stem bases of winter wheat over 
a period of 10 months in the Netherlands (Köhl et al.  2007 ) with DNA levels 
decreasing by only 50 % over the winter months.  F. graminearum  survived in stand-
ing wheat stubble for up to 20 months, and provided suffi cient inoculum levels to 
serve as a primary inoculum for subsequent crops (Hogg et al.  2010 ).  

10.2.3     Resistance Mechanisms 

 No commercial cultivars of fi eld pea, lentil or dry beans are completely resistant to 
Fusarium root rot (Bailey et al.  2003 ; Grünwald et al.  2003 ; Xue  2003 ). Partial 
resistance to Fusarium root rot caused by both  F. solani  and  F. avenaceum  has been 
reported in one commercial cultivar, ‘Franklin’ (Chittem et al.  2012 ). The mecha-
nism of resistance is not known, although generally genotypes of dry beans and fi eld 
peas with large, robust root systems show better resistance than those with small 
root systems (Kraft and Boge  2001 ; Cichy et al.  2007 ). Partial resistance is present 
in several fi eld pea accessions, but these have not yet been transferred into lines with 
desirable commercial attributes (Grünwald et al.  2003 ). Quantitative trait locus/loci 
(QTL) that confer partial resistance to  F. solani  and  F. avenaceum  have been 
described in fi eld pea, however these QTL did not account for 60 % and 80 %, 
respectively, of the observed phenotypic variation in root rot resistance (Feng et al. 
 2011 ; Li et al.  2012 ). This suggests that additional resistance genes or QTL are 
associated with root rot resistance (Feng et al.  2011 ; Li et al.  2012 ). 

 In general, large-seeded Andean dry beans (e.g. kidney beans) tend to be more 
susceptible to Fusarium root rot than the small-seeded Mesoamerican type beans 
(e.g. black beans) (Bilgi et al.  2008 ). Cultivars with partial resistance to  F. solani  f. sp. 
 phaseoli  also appear to have resistance to other Fusarium root rot pathogens, such as 
 F. graminearum  (Bilgi et al.  2011 ). Similar to the situation in fi eld peas, QTL have 
been identifi ed in dry bean from bean lines with different root rot resistance 
sources, but these QTL generally account for a small proportion of root rot variation 
(Schneider et al.  2001 ; Román-Avilés and Kelly  2005 ; Ronquillo-López et al.  2010 ). 
Most of these QTL are present in regions of the bean genome where resistance genes, 
such as pathogenesis-related proteins ( PVPR-2 ), polygalacturonase- inhibiting pro-
tein ( Pgip ) and chalcone synthase ( ChS ) are located (Schneider et al.  2001 ). 
This would indicate that partial physiological resistance to Fusarium root rot is 
 associated with generalized host defense responses that are induced upon host attack 
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(Schneider et al.  2001 ; Román-Avilés and Kelly  2005 ). However, markers associated 
with fi eld root rot resistance often do not correlate with greenhouse root rot screening 
experiments (Román-Avilés and Kelly  2005 ). This lack of association suggests that 
environmental variation is the most important factor contributing to disease develop-
ment and resistance responses to Fusarium root rot. As a result, breeding for resis-
tance and elucidation of genetic resistance to Fusarium root rots has been challenging, 
and limited progress has been made in identifying sources of genetic resistance 
(Singh and Schwartz  2010 ). 

 The pea- F. solani  interaction has been studied as a model system to understand the 
biochemical and molecular components of non-host resistance by comparing the dif-
ference in responses of pea to infection with  F. solani  ff. spp.  pisi  and  phaseoli . This 
topic has been reviewed extensively in a recent article (Hadwiger  2008 ), and thus will 
not be reviewed again here.   

10.3      Fusarium  Diseases of Cereals 

10.3.1     Pathogens and Associated Mycotoxins 

 The two main  Fusarium  diseases of cereal crops are FHB and Fusarium crown rot 
(FCR), both of which have been observed in wheat, barley, rye, oats and triticale. 
FHB is reviewed here in greater detail since it is the main  Fusarium  disease of 
cereal crops in Canada and worldwide.  Fusarium culmorum ,  F. graminearum  and  F. 
pseudograminearum  (teleomorph aka  Gibberella coronicola ) are the major species 
responsible for FHB and/or FCR (O’Donnell et al.  2000 ; Liddell  2003 ; Backhouse 
et al.  2004 ; Smiley et al.  2005 ; Tóth et al.  2005 ); although,  F. pseudograminearum , 
primarily responsible for FCR, is only found occasionally in Canada, as this species 
prefers warmer and drier climates. The majority of  Fusarium  spp. involved in FHB 
and FCR produce mycotoxins belonging to the trichothecene class, although other 
 Fusarium  mycotoxins including fumonisins, moniliformin (MON) and zearalenone 
(ZEA), have also been found in FHB-infected cereals worldwide (Golrnski et al. 
 1996 ; Palacios et al.  2011 ). Trichothecenes contaminate the kernels of FHB-infected 
spikes, and can also accumulate in the kernels of FCR-infected cereals when the 
fungus moves up the stem and into the spike (Mudge et al.  2006 ). Trichothecenes 
are harmful for human and animal consumers (Eriksen and Pettersson  2004 ; 
Godfray et al.  2010 ), and also interfere with downstream processing including malt-
ing (Wolf-Hall  2007 ). Various cytotoxic effects of trichothecenes have been 
observed in mammalian and plant systems (Ueno  1983 ; Rocha et al.  2005 ; Pestka 
 2010 ; Arunachalam and Doohan  2013 ), although inhibition of eukaryotic protein 
synthesis machinery is the main mechanism of toxicity (Ueno et al.  1968 ; 
McLaughlin et al.  1977 ). Consumption of contaminated grain can lead to a condi-
tion known as alimentary toxic aleukia (ATA), where symptoms of ingestion include 
gastroenteritis, abdominal and oesophageal pain, ataxia, dyspenia, and subcutane-
ous haemorrhaging (Lutsky et al.  1978 ; Peraica et al.  1999 ). The main potential 
source of trichothecene contamination of food is from FHB-infected cereals, and 
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DON is the main trichothecene detected in grain. For this reason, limits are in place 
to manage DON in food and feed, as described in Sect.  10.6 . 

 The  Fusarium  spp. belonging to the  F. graminearum  ( Fg ) complex, responsible 
for FHB in North America, are Type B trichothecene producers (Ward et al.  2002 ; 
Starkey et al.  2007 ). Historically,  Fg  populations dominated by 15-ADON chemo-
types were responsible for FHB in North America. Some 3-ADON producers were 
identifi ed more frequently on the continent over 10 years ago, and have since been 
replacing the 15-ADON populations (Ward et al.  2008 ). The 3-ADON producers 
were shown to be the predominant genotype representing more than 90 % of the  Fg  
populations in the Canadian Maritimes (R. Clear, unpublished). Since the 1990s, the 
3-ADON populations have been moving from the Red River valley in Manitoba to 
eastern Saskatchewan, and currently represent up to 60 % of the  Fg  population in 
central Alberta. The 3-ADON producers tend to be more aggressive (Foroud et al. 
 2012a ) and produce higher levels of toxins both in culture and in planta (Ward et al. 
 2008 ; Puri and Zhong  2010 ; von der Ohe et al.  2010 ; Yli-Mattila and Gagkaeva 
 2010 ; Foroud et al.  2012a ; Clear et al.  2013 ). The other important Type B trichothe-
cene producing species,  F. culmorum  ( Fc ), can be associated with FHB and FCR of 
cereals. Its distribution in western Canada appears to depend partly on environmen-
tal factors. Especially in cooler and wet years,  F. culmorum  can be more frequently 
detected (Fig.  10.4 ) and contribute signifi cantly to DON contamination in cereal 
grains (Clear et al.  1993 ). Similarly to  F. graminearum , the 3-ADON chemotype of 
 F. culmorum  is reported to be the more aggressive and toxigenic genotype (Miedaner 
et al.  2004 ). In Canada, the 3-ADON genotype represents 100 % of the  Fc  popula-
tions found on cereals.

   While DON producers are the main species in North America, other chemotypes 
have also been identifi ed in cereal crops. NIV producers, for example, encompass 
79 % of the  F. graminearum  strains identifi ed in Louisiana (Gale et al.  2011 ), 
although, this is not representative of the entire population in the United States. In 
Canada, the NIV chemotypes represent less than 1 % of the  F. graminearum  popula-
tion (Gräfenhan, unpublished). NIV has been shown to be less phytotoxic than 
DON, and accumulates in lower quantities in the kernels of infected spikes in cereal 
crops (Muthomi et al.  2000 ; Miedaner et al.  2001 ; Foroud et al.  2012a ). However, 
to animal and human health NIV is more acutely toxic than DON, with one tenth the 
emetic potential compared to that of DON (Wu et al.  2013 ). In Canada, occasional 
contamination of barley with NIV is often caused by infections with  F. poae . The 
Type A trichothecenes, produced by species such as  F. sporotrichioides  and  F. poae , 
tend to be more toxic in mammalian systems than Type B trichothecenes and have 
also been identifi ed in FHB-infected crops. In western Canada, trichothecene Type 
A producing  Fusarium  species are more frequently recovered from FHB-diseased 
oat and barley seeds (Gilbert and Tekauz  2011 ). On durum wheat, the predominant 
 Fusarium  species found in Canada are  F. graminearum  and  F. avenaceum  (Clear 
et al.  2005 ; Gräfenhan et al.  2013 ; Tittlemier et al.  2013b ). Depending on the year, 
the latter species can cause signifi cant damage on heads and seed of durum, espe-
cially in the main growing areas of western Canada (Fig.  10.5 ). Tittlemier et al. 
( 2013b ) demonstrated that  F. avenaceum  is the main producer of emerging myco-
toxins, including MON and enniatins (ENNs), on durum wheat in Canada.
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10.3.2        Infection Pathways and Symptoms 

  Fusarium  infection of cereals is caused by inoculum build up in the soil on crop 
residues. Initial FCR infection, which can be caused by  Fusarium  mycelium or 
spores, occurs on emerging shoots, or at the crown or stem base of cereals (Burgess 
et al.  2001 ). It has been shown that the trichothecene biosynthesis is initiated during 
early stages of infection, and while trichothecene accumulation is not necessary for 
symptoms to develop, a higher infection rate is observed in the presence of the toxin 

  Fig. 10.4    Frequency of 
occurrence of  Fusarium 
culmorum  on Fusarium 
damaged kernels (FDK) of 
wheat from western Canada 
in the years 1995 ( a ), 2002 
( b ), and 2010 ( c )       
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(Mudge et al.  2006 ). The fungus can be isolated from the stem base, the fl ag leaf 
node, mature heads and kernels of FCR-infected plants (Mudge et al.  2006 ). FCR 
has been observed in cereal crops worldwide, including Canada and the United 
States (Smiley et al.  2005 ; Fernandez et al.  2011 ), and tends to be a major problem 
in Australia (Backhouse et al.  2004 ; Obanor et al.  2013 ). 

 While FHB can be caused by macroconidia or chlamydospores, ascospores 
released from the perithecium under humid conditions (reviewed in Bai and Shaner 
 1994 ; Parry et al.  1995 ; Gilbert and Haber  2013 ) provide the main source of inocu-
lum under fi eld conditions (Sutton  1982 ; Fernando et al.  2000 ; Markell and Francl 
 2003 ). Infection of cereal infl orescence occurs during anthesis and grain develop-
ment. Initial symptoms appear as brown water spots on individual spikelets, typi-
cally near the base of the glume. As infection progresses, the whole spikelet shows 
signs of necrosis or premature senescence (Fig.  10.6 ), and sometimes white or 

  Fig. 10.5    Frequency of 
occurrence of  Fusarium 
avenaceum  on Fusarium 
damaged kernels (FDK) of 
wheat from western Canada 
in the years 1995 ( a ), 2002 
( b ), and 2010 ( c )       
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 pinkish mycelium is visible on the surface of the spikelet (Parry et al.  1995 ). 
Detailed studies of  Fusarium  invasion of the wheat spike have been conducted using 
sophisticated microscopy techniques (Kang and Buchenauer  1999 ,  2000a ,  b ,  c , 
 2002a ,  b ,  2003 ; Siranidou et al.  2002 ; Wanjiru et al.  2002 ; Jansen et al.  2005 ; Kang 
et al.  2005 ).  Fusarium  can gain access to the host cell through the stomata; however, 
the primary mode of invasion is by direct penetration of the adaxial epidermal cell 
walls of the spikelet (Kang and Buchenauer  2000a ; Pritsch et al.  2000 ). Penetration 
could be facilitated by cutinases and lipases which may lead to cuticle degradation, 
and expression of a  Fusarium  gene encoding the latter has been implicated in FHB 
aggressiveness (Voigt et al.  2005 ). While cuticle degradation has not been experi-
mentally observed, degradation of cell wall components has been observed during 
 Fusarium  infection of wheat (Kang and Buchenauer  2000b ; Wanjiru et al.  2002 ; 
Kang et al.  2005 ). Furthermore, expression or accumulation of cell wall degrading 
enzymes, including cellulases and pectate esterases, has been observed in the  F. 
graminearum  secretome and upon exposure to plants or cell wall components 
(Phalip et al.  2005 ; Paper et al.  2007 ; Carapito et al.  2013 ; Rampitsch et al.  2013 ). 
Once established within the spikelet, hyphae can spread to other spikelets within the 
head through the rachis (Parry et al.  1995 ). Disease spread typically occurs below 
the infected spikelets, and premature senescence, or wilt, is sometimes observed 
above the infected spikelets. Trichothecene biosynthesis is induced upon coloniza-
tion of the developing kernel, and again at the rachis node (Ilgen et al.  2009 ). DON 
accumulates ahead of the growing hyphae, and by 4–6 days after inoculation the 
hyphae can be found at the rachis both inside and outside of the vascular bundles 
(Kang and Buchenauer  1999 ). The production of trichothecenes has been shown to 
be necessary for  Fusarium  disease spread in  Triticeae  (Proctor et al.  1995 ; Eudes 

  Fig. 10.6    Symptoms of 
FHB: ( a ) browning/
discoloration of infected 
spikelets in wheat; ( b ) 
premature senescence of 
FHB-infected wheat spike; 
( c ) browning/discoloration of 
infected spikelets in barley 
and ( d ) oat       
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et al.  2001 ; Bai et al.  2002 ; Langevin et al.  2004 ; Jansen et al.  2005 ; Maier et al. 
 2006 ). By contrast trichothecenes are not required for the establishment of initial 
infection (Bai et al.  2002 ; Jansen et al.  2005 ). FHB infection of the wheat spike 
leads to yield losses when infection occurs during anthesis and early stages of ker-
nel development, and the kernels that do develop are often contaminated with myco-
toxins (Bushnell et al.  2003 ; Steffenson  2003 ; Del Ponte et al.  2007 ).

10.3.3        Physiological Mechanisms of Resistance 

 The most effective means to prevent  Fusarium -related damage is to cultivate crops 
with high levels of resistance (Foroud and Eudes  2009 ). The mechanisms of FCR 
resistance are not well characterized. FHB resistance mechanisms are well described, 
with two major forms of resistance initially defi ned by Schroeder and Christensen 
( 1963 ): Type I, resistance to initial infection; and Type II, resistance to disease 
spread within an infected spike. Other forms of resistance, as summarized by 
Mesterházy ( 2003a ), include: Type III, resistance to kernel infection (Mesterházy 
 1995 ); Type IV, tolerance to FHB and trichothecenes (Mesterházy  1995 ); and Type 
V, resistance to trichothecene accumulation (Miller et al.  1985 ). Type V resistance 
can be further subdivided into two classes based on the method of resistance, as 
defi ned by Boutigny et al. ( 2008 ): Type V class 1 is defi ned as resistance to trichot-
hecene accumulation by chemical modifi cation, and Type V class 2 is defi ned as 
resistance to trichothecene accumulation by inhibition of its biosynthesis. 

 Cell wall lignifi cation or thickening of the rachis node, accompanied with 
delayed hyphal colonization of the rachis, has been implicated in Type II resistance 
in wheat (Kang and Buchenauer  2000c ). Jansen et al. ( 2005 ) also observed cell wall 
thickening at the rachis node of susceptible wheat inoculated with a trichothecene 
non-producing mutant (Proctor et al.  1995 ) of  F. graminearum  that is unable to 
spread in otherwise susceptible cultivars. As previously mentioned, trichothecene 
biosynthesis is induced when the hyphae reaches the rachis node (Ilgen et al.  2009 ), 
and trichothecene production is required for disease spread to occur (Proctor et al. 
 1995 ). Thus, it is likely that accumulation of trichothecenes is involved in weaken-
ing the barrier at the rachis node, and that Type II resistant genotypes are able to 
prevent and/or slow this process through enhanced cell wall thickening compared 
with susceptible genotypes. 

 Among the major cereal crops, wheat is the most susceptible and the most heav-
ily FHB-affected crop, where tetraploid (AABB) durum wheat is more susceptible 
than hexaploid (AABBDD) bread wheat (Langevin et al.  2004 ). Barley is the sec-
ond most affected cereal crop—although 6-row barley is nearly as susceptible as 
wheat, whereas 2-row barley is more resistant. Barley has inherent Type II resis-
tance, and while unconventional mycelial spread by external routes has been 
observed (Langevin et al.  2004 ), disease spread does not occur through the rachis 
(Langevin et al.  2004 ; Jansen et al.  2005 ). Rye and oats are the most FHB resistant 
among the major cereals (Langevin et al.  2004 ), although disease symptoms are not 
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as clearly discernible in standing oats as they are in other cereals (Fig.  10.6 ) (Tekauz 
et al.  2004 ,  2008 ). Furthermore, oats tend to accumulate more DON and T-2 toxin 
than wheat (Langseth and Rundberget  1999 ; Tekauz et al.  2004 ). Triticale, a hybrid 
of wheat and rye which has generally been shown to have higher disease resistances 
than wheat, is shown to have similar FHB-susceptibility as hexaploid wheat 
(Langevin et al.  2004 ).  

10.3.4     Genetics of Resistance 

 FHB resistance is polygenic and also tends to be associated with poor agronomics, 
making it challenging for breeders to incorporate high levels of resistance into 
favourable cultivars. Over 100 QTL have been identifi ed in FHB resistance of hexa-
ploid wheat, and 22 of these have been reported in multiple mapping populations 
(reviewed in Bürstmayr et al.  2009 ). One of the most widely used and best character-
ized sources of resistance is ‘Sumai3’, a Chinese cultivar with very strong Type II 
resistance. Three major QTL have been identifi ed in ‘Sumai3’: 3BS (also known as 
Fhb1), which is the best source of Type II resistance; 5A, which is associated with 
Type I resistance and is found in different germplasm from different regions world-
wide; and 6BS (Fhb2) (Bürstmayr et al.  2009 ). It has been proposed that the 3BS QTL 
encodes or regulates expression of a UDP-glycosyltransferase (Lemmens et al.  2005 ) 
or a pectin methyl esterase inhibitor (Zhuang et al.  2012 ). UDP- glycosyltransferases 
can detoxify DON through condensation of glucose with the C-3 hydroxyl group 
(Poppenberger et al.  2003 ). Glycosylated-DON and derivatives thereof have been 
observed in  Fusarium -infected cereals (Berthiller et al.  2005 ; Dall’Asta et al.  2005 ; 
Lemmens et al.  2005 ). Pectin methylesterase inhibitors interfere with the activity of 
pectin methylesterase, a key enzyme involved in pectin biosynthesis. Pectin is a major 
component of the plant cell wall, and its degradation has been observed during 
 Fusarium  infection of wheat (Kang and Buchenauer  2000b ). Transgenic expression 
of an  Actinidia chinensis  pectin methylesterase inhibitor has been shown to improve 
resistance to fungal diseases (including FHB) in durum wheat (Volpi et al.  2011 ). 

 Despite the higher susceptibility and lower genome complexity of durum wheat, 
only fi ve QTL mapping studies on FHB resistance have been reported in tetraploid 
wheat, and some of these were conducted in wild relatives of  Triticum turgidum  
subsp.  durum  (Ban and Watanabe  2001 ; Stack et al.  2002 ; Somers et al.  2006 ; 
Bürstmayr et al.  2012 ). Several FHB-resistance QTL identifi ed in tetraploid wheat 
correspond to genomic regions of resistance QTL from hexaploid wheat, including 
3B from  T. turgidum  subsp.  durum  and 6B from  T. turgidum  subsp.  dicoccum , cor-
responding to the hexaploid 3BS and 6BS QTL, respectively (Bürstmayr et al.  2012 ). 

 In barley, FHB-resistance QTL have been identifi ed on all seven chromosomes 
(de la Pena et al.  1999 ; Zhu et al.  1999 ; Ma et al.  2000 ; Yu et al.  2010 ). The Vrs1 
locus, which confers row-type, is associated with a QTL that confers the higher 
FHB resistance observed in 2-row barley compared with 6-row. It is not known 
whether this resistance is result of a pleiotropy or if it is directly linked to Vrs1 
(reviewed in Massman et al.  2011 ). 
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 In addition to QTL studies, a series of functional genomic experiments have been 
conducted in wheat and barley to identify genes and/or molecular pathways involved 
in mediating FHB resistance (Pritsch et al.  2000 ,  2001 ; Wang et al.  2005 ; Zhou et al. 
 2005 ,  2006 ; Boddu et al.  2006 ,  2007 ; Bernardo et al.  2007 ; Golkari et al.  2007 ,  2009 ; 
Geddes et al.  2008 ; Li and Yen  2008 ; Jia et al.  2009 ; Steiner et al.  2009 ; Cho et al. 
 2012 ; Foroud et al.  2012b ). In these studies,  Fusarium -induced up-regulation of 
pathogenesis-related (PR) proteins and antioxidants has been observed, and in some 
cases this up-regulation was higher and/or sooner in resistant lines compared with 
susceptible ones (Pritsch et al.  2000 ; Geddes et al.  2008 ; Golkari et al.  2009 ; Foroud 
et al.  2012b ). Changes in expression of genes involved in regulating plant hormone 
biosynthesis and responses have also been observed. In microarray studies, comple-
mented by hormone treatment experiments, Li and Yen ( 2008 ) reported that the hor-
mones jasmonic acid (JA) and ethylene (ET) are involved in mediating FHB 
resistance. Similarly, Desmond et al. ( 2005 ) reported a role for JA signalling in FCR 
resistance in wheat; although, it should be noted that, a different set of host genes is 
believed to be responsible for FHB and FCR resistances (Li et al.  2010 ). Virus-
induced gene silencing experiments in wheat, where suppression of the ET signalling 
pathway leads to increased FHB-susceptibility (Gillespie et al.  2012 ), support results 
presented by Li and Yen ( 2008 ). By contrast, genetic silencing of  ET-INSENSITIVE 
2  ( EIN2 ; involved in ET signalling) by RNA-interference led to reduced FHB-
susceptibility in wheat cv. ‘Bobwhite’ (Chen et al.  2009 ). Furthermore, exogenous 
applications of an ethylene precursor or inhibitor demonstrated that ET signalling 
can enhance FHB-susceptibility in wheat and barley (Chen et al.  2009 ). This discrep-
ancy in results was also observed in a separate hormone silencing experiment, where 
 EIN2  was silenced by RNA-interference in three wheat genotypes (Foroud  2011 ). In 
this study, ET silencing led to increased susceptibility in the susceptible genotype, 
had no impact on the Type I resistant genotype, and led to increased resistance in the 
Type II resistant genotype. Different outcomes were also observed in different 
genetic backgrounds silenced in the JA- and salicylic acid (SA)-signalling pathways 
(Foroud  2011 ). In the dicot plant  Arabidopsis , Makandar et al. ( 2010 ) observed 
crosstalk between SA and JA signalling pathways in  Fusarium  resistance, and pro-
posed that the timing of SA and JA signalling is critical in differentiating between 
resistant and susceptible outcomes. Together, these studies suggest that the role of 
plant hormones in mediating disease outcomes is genotype- dependent, and may be 
dependent on crosstalk among different signalling pathways.   

10.4     Fusarium Diseases of Maize 

10.4.1     Pathogens and Associated Mycotoxins 

 Several species of  Fusarium  infect maize with infection of the ear and the stalk 
being the most commonly found diseases. The predominant species causing ear 
and stalk rot in Canada is  F. graminearum  (Koehler  1957 ,  1959 ; Sutton  1982 ; 
Reid  1996 ). A less predominant species is  F. verticillioides  (previously referred to 
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as  F. moniliforme , Seifert et al.  2003 ). A comprehensive list of other  Fusarium  
 species responsible for ear and stalk rots is provided by Mesterházy et al. ( 2012 ). 
The optimum temperature for  F. graminearum  development is 26–28 °C, while  
F. verticillioides  tends to grow best at higher temperatures (Reid et al.  1999 ); there-
fore,  F. graminearum  is predominantly found in northern regions worldwide and  
F. verticillioides  in the southern regions or in dryer years in a northern area (Reid 
et al.  1999 ). A single ear or grain can occasionally be infected by different  Fusarium  
spp. (Logrieco et al.  2002 ). Pathogenicity between  Fusarium  spp. and aggressive-
ness within a species is quite variable and highly dependent on the environmental 
conditions in a given fi eld season (Reid et al.  2002 ; Garcia et al.  2009 ; Iglesias et al. 
 2010 ; Miedaner et al.  2010 ). 

  Fusarium  spp. produce a large number of chemically very different mycotoxins 
(Logrieco et al.  2002 ).  Fusarium graminearum  infected ears are usually contami-
nated with the trichothecene toxin DON before harvest and ZEA during storage. If 
contaminated grain is fed to livestock, especially swine, DON results in vomiting, 
feed refusal, decreased weight gain and reproductive problems (Vesonder et al. 
 1981 ; Prelusky et al.  1994 ). This toxin is also an immunosuppressant and thus pre-
disposes animals to other diseases and masks underlying toxicoses (Pestka and 
Bondy  1994 ). ZEA causes reproductive problems including reduced litter size, 
swine estrogenic syndrome and male infertility (Prelusky et al.  1994 ). Grain con-
taminated with the polyketide fumonisin mycotoxins produced by  F. verticillioides  
can result in equine leukoencephalomalacia (Kellerman et al.  1990 ), porcine pulmo-
nary edema (Harrison et al.  1990 ), liver cancer in rats (Gelderblom et al.  1988 ) and 
neural tube defects in mice (Voss et al.  2006 ). Fumonisins have also been associated 
with human esophageal cancer (International Agency for Research on Cancer 
(ICARC)  1993 ). These fungal contaminations cause both direct and indirect eco-
nomic losses to the maize and livestock industry but they also affect the health of 
grain handlers and processors.  

10.4.2     Infection Pathways and Symptoms 

 There are many infection pathways by which  Fusarium  spp. can enter maize plants. 
Stalk rot is often initiated from root infection, through stalk nodes or through holes in 
the stalk often created by insects and sometimes mechanical damage from cultural 
practices after planting. There are three potential fungal entry points for ear infection: 
(1) by fungal spores landing on the silks of the fl owering ears, germinating and then 
the fungal mycelia grow down the silks to infect the kernels and cob (rachis) (Koehler 
 1942 ); (2) through wounds created by insects, hail, or birds on the ear (Sutton  1982 ); 
and (3) from systemic stalk infections of  F. verticillioides  (Foley  1959 ; Munkvold 
et al.  1997b ). Which infection pathway is more important depends on the  Fusarium  
spp. that is predominant, the insect pressures in a given geographical location and the 
environmental conditions. For example, Munkvold et al. ( 1997a ) reported less ear rot 
on maize hybrids with the Bt trait which considerably lowers European corn borer 
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populations. Larger populations of thrips, especially on ears with looser husks, were 
correlated to ear rot (Farrar and Davis  1991 ; Parsons and Munkvold  2010a ,  b ). 

 The symptoms of ear rot are depicted in Fig.  10.7 . Ear rot caused by  F. gra-
minearum  is characterized by a pinkish coloured mold (White  1999 ). Infection from 
the silk commonly begins as white mycelium moving down from the ear tip. This 
mycelium later turns reddish-pink on infected kernels. In some cases, pinkish fun-
gal growth can be found on the exterior husk leaves and in severe infections it is 
impossible to separate the husks from the kernels as the entire ear becomes a tightly 
bound mass of fungal and plant tissue that appears ‘mummifi ed’. When infection 
occurs through kernel wounds, a similar fungal growth pattern is seen but it starts 
from the initial wound site and tends to spread to the tip of the ear faster than to the 
butt of the ear (Reid and Sinha  1998 ). Once the kernels reach 22–23 % moisture it 
is diffi cult for the fungus to further infect (Christensen and Kaufmann  1969 ; Xiang 
et al.  2010a ); however cob (rachis) moisture can be 15–25 % higher than kernel 
moisture, so the infection may spread in the cobs and can enter younger kernels via 
the pedicel (Reid and Sinha  1998 ). In some cases the ear may appear to be symp-
tomless but when squeezed by hand it will feel quite spongy and the cob will be wet 
and often pink/red in colour. Symptoms of  F. verticillioides  infection on maize ears 
are quite different from that of  F. graminearum . Depending on the mode of fungal 
entry, the symptoms often occur on individual kernels or on a limited area of the ear 
(White  1999 ). Infected kernels develop a cottony white growth or may develop 
white streaks on the pericarp and fungal growth on the cob. How fast symptoms 
develop in a given year is highly dependent on the environment which, not only 
infl uences ear development and subsequent kernel drydown, but also fungal growth. 
Infection through the silks cannot proceed once the silks have dried out (Reid et al. 
 1992a ; Reid and Sinha  1998 ) and there is a relationship between kernel drydown 
rates and ear rot severity symptoms (Xiang et al.  2010a ).

  Fig. 10.7    Symptoms of 
Fusarium ear blight in maize       

 

10 Fusarium Diseases of Canadian Grain Crops…



286

   Maize plants with  Fusarium  stalk infections often wilt and the leaves may change 
from a light to a dull green colour while the lower stalk becomes dry and the pith 
tissue disintegrates to a shredded appearance. For  F. graminearum , distinctive 
symptoms are a tan to dark brown discolouration of the lower internodes and pink 
to reddish discolouration of the pith tissue. Bluish-black coloured perithecia or 
reddish- white asexual spores may form on the stalk surface. For  F. verticillioides , 
brown streaks appear on the lower internodes and the rotted pith tissue may be 
whitish-pink to salmon in colour. For both pathogens, symptoms usually appear late 
in the season and plants may lodge if infection is severe. Plants that are stressed, 
such as from an early frost, are more susceptible to stalk rot. 

 For  F. graminearum  ear rot, visual symptoms are highly correlated to DON lev-
els (Reid et al.  1996 ; Perkowski et al.  1997 ; Reid and Sinha  1998 ; Bolduan et al. 
 2009 ). Correlations between symptoms and fumonisin levels are less reliable for 
 F. verticillioides  infections possibly in part due to systemic infections from the stalk 
leading to more asymptomatic infections (Pascale et al.  1997 ; Murillo-Williams and 
Munkvold  2008 ).  

10.4.3     Resistance Mechanisms 

 There is variability within the maize gene pool for levels of resistance to Fusarium 
ear and stalk rots and breeders have successfully developed genotypes with high 
levels of resistance to some of these diseases (Reid et al.  2001a ,  b ,  2003 ); however, 
it is not clear what the mechanism of this resistance is. Phenotypically, two forms of 
resistance have been described in maize that are somewhat similar to resistance to 
initial infection and disease spread, respectively, in cereals: (1) ‘silk resistance’, 
where the fungus does not penetrate the silk channel, and thus does not infect the 
kernels (Reid et al.  1992b ); and (2) ‘kernel resistance’, where the fungus does not 
penetrate the cob, and thus does not spread from kernel to kernel (Chungu et al. 
 1996 ). Studies have indicated that the resistance mechanisms may be associated 
with fl avone content in the silks, stalks and kernels (Reid et al.  1992a ; Sekhon et al. 
 2006 ; Santiago et al.  2007 ), (E)-ferulic acid content and dehydrodimers of ferulic 
acid in kernels (Assabgui et al.  1993 ; Bily et al.  2003 ), and 4-acetylbenzoxazolin- 2-
one (4-ABOA) in kernels (Miller et al.  1997 ). Recently, Cao et al. ( 2011 ) researched 
the role of hydroxycinnamic acids and reported that several changes in cell wall 
bound compounds of silk tissues were observed after inoculation with  F. gra-
minearum . It has been postulated that the  An2  gene which encodes an ent- copalyl 
synthase gene which has a role in gibberellin synthesis might play a role in silk 
resistance as this gene is strongly up-regulated after maize silk is inoculated with  
F. graminearum  (Harris et al.  2005 ). 

 Hoenisch and Davis ( 1994 ) observed a correlation between higher pericarp 
thickness and resistance to  F. verticillioides . The thicker pericarp may inhibit 
 fungal growth as well as act as a barrier to insect feeding. Sampietro et al. ( 2009 ) 
identifi ed various properties of the pericarp and its wax layer as resistance factors .  
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Sweet corn, which has been bred to have a thin pericarp, is extremely susceptible to 
both  F. graminearum  and  F. verticillioides  (Reid et al.  2000 ). Long chain alkanes on 
the surface of maize silks have also been implicated in resistance to  F. graminearum  
(Miller et al.  2003 ). 

 Genotypes developed with selection for  F. graminearum  ear rot resistance also 
exhibit high levels of resistance to  F. verticillioides  and common smut ( Ustilago 
zeae ) in inoculated trials (Reid et al.  2009 ) indicating that there may be an associ-
ated resistance mechanism to multiple ear diseases. Resistance to ear rot and stalk 
rot do not correlate (Mesterházy and Kovács  1988 ).  

10.4.4     Genetics of Resistance 

 The inheritance of resistance to  Fusarium  spp. in maize is complex and maize geno-
types possess different resistance levels as regards to kernel and silk channel resis-
tance (Lemmens et al.  2005 ). Resistance to  F. graminearum  ear rot through kernel 
infection is under both simple (additive and dominance) and digenic (dominance x 
dominance) effects (Chungu et al.  1996 ). Estimates of the number of factors affect-
ing kernel resistance ranged from 4.6 to 13.7. For  F. verticillioides , Boling and 
Grogan ( 1965 ) estimated several additive, dominant and additive x dominant digenic 
epistatic gene effects. They estimated an average dominance of approximately 0.5 
and the number of participating genes was estimated at 1.47. Eller et al. ( 2008 ) 
established that resistance to  F. verticillioides  ear rot is determined by polygenes. 
Maternal effects for both species have also been reported (Headrick and Pataky 
 1991 ; Kovács et al.  1994 ). 

 Several studies have found QTL associated with resistance to  Fusarium  in maize. 
Robertson-Hoyt et al. ( 2006 ) found 7 QTL that explained 47 % of the phenotypic 
variation for  F. verticillioides  ear rot and nine were found for fumonisin content 
explaining 67 % of the variation. Working with two maize populations, they found 
that three QTL for ear rot and two for fumonisin were mapped in similar positions. 
Two QTL, localized on chromosome 4 and 5, appeared to be consistent in both 
populations. Ding et al. ( 2008 ) reported two QTL on chromosome 3. Pérez- Brito 
et al. ( 2001 ) identifi ed nine and seven QTL in two populations, three of which were 
co-located. Recently, Martin et al. ( 2011 ) identifi ed co-localized QTL for both  F. 
graminearum  ear rot resistance and reduced levels of DON in different mapping 
populations. Reinprecht et al. ( 2008 ) identifi ed about 100 genes behind the QTL, 
among them chitinase and protein kinase. A meta-analysis of QTL associated with 
ear rot resistance (Xiang et al.  2010b ) from the data of 14 studies representing  
F. graminearum ,  F. verticillioides  and  Aspergillus fl avus  QTL studies found that 
resistance QTL against the three fungi were clustered on the same chromosomes. 
These data seem to support the idea of common resistance. Various other studies 
have reported the identifi cation of possible genes and genetic resistance mecha-
nisms related to ear rot resistance (Jenczmionka and Schäfer  2005 ; Igawa et al. 
 2007 ; Yuan et al.  2008 ; Lanubile et al.  2010 ; Zhang et al.  2011 ).   
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10.5     Management of Fusarium Head Blight Caused 
by  Fusarium graminearum  

 The occurrence of plant disease depends on the interaction of three factors that ‘have 
often been visualized as a triangle…’ (Agrios  1988 ); a virulent pathogen, a suscep-
tible host and a favourable environment are needed for disease to occur. Variation in 
any one factor will infl uence the ultimate level and severity of disease. For example, 
disease severity may be low if the host has some resistance even though the environ-
ment is conducive and a pathogen is present at suffi cient levels. Disease severity 
may also be low if weather conditions are too hot, too cold or too dry, even with a 
susceptible host and a source of disease inoculum. Where a virulent pathogen is not 
present or is at low levels, disease may either not occur or be at low levels even when 
the host is susceptible and there is a favourable environment. Disease management 
strategies employed by farmers rely on manipulation of one or more components of 
the disease triangle. The ultimate goal is to create cropping conditions that do not 
favour pathogen survival and/or disease development. Unfortunately, effective man-
agement of FHB, while limiting its impact, cannot be achieved by simply manipulat-
ing a single component of the disease triangle (e.g. host resistance). As McMullen 
et al. ( 2008 ,  2012 ) suggests, effective management of FHB and its impacts on crop 
production and quality require the use of a combination of strategies. 

10.5.1     Crop Rotation 

  Fusarium graminearum  overwinters mainly on infected crop residue, but can also 
be seed-borne (Wiese  1987 ; Mathre  1997 ; Gilbert and Tekauz  2000 ). Survival in 
crop residue is highest in plant tissues that are resistant to decay, especially the node 
tissues of small grain cereals (Burgess and Griffi n  1968 ; Sutton  1982 ). Gilbert and 
Tekauz ( 2000 ) suggested that  F. graminearum  was unlikely to survive in soil 
without crop residues. Sutton ( 1982 ) also indicated that soil is not likely a ‘major 
inoculum source’ and referred to work by Gordon ( 1954 ,  1956 ) in Canada where  
F. graminearum  was not isolated from soil samples collected from cereal fi elds. In 
Australia, Wearing and Burgess ( 1977 ) were able to isolate  F. graminearum  from 
soil, but it was mainly associated with small pieces of debris. 

 Given the key role of infested crop residues as a source of inoculum, crop rota-
tion to nongramineous hosts and avoiding corn in rotations, or in close proximity, 
have been suggested as methods of reducing the risk from FHB or ear/stalk rot in 
corn (Seaman  1982 ; Wiese  1987 ; Parry et al.  1995 ; Mathre  1997 ; White  1999 ; 
Gilbert and Tekauz  2000 ; Stack  2000 ). Corn is an important host of  F. gra-
minearum  (White  1999 ) and can support extensive colonization of not only infected 
ears, but also of stalks (Windels and Kommedahl  1984 ; Kommedahl and Windels 
 1985 ; Windels et al.  1988 ). Although Wiese ( 1987 ) and Mathre ( 1997 ) recom-
mended at least 1 year between grass or cereal production, rotations with at least 2 
years between susceptible crops are needed to reduce the risk of FHB (Burgess 
and Griffi n  1968 ; Warren and Kommedahl  1973 ; Khonga and Sutton  1988 ). 
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For example, Khonga and Sutton ( 1988 ) placed infested corn and wheat residue in 
the fi eld for up to 3 years and found production of perithecia and ascospores by 
 Gibberella zeae  (perfect state of  F. graminearum ) occurred primarily in the fi rst 
and second years. Inch and Gilbert ( 1999 ) also found that  F. graminearum  could 
survive in infected seed for up to 2 years regardless of whether it was on the soil 
surface or buried up to 10 cm deep in the soil. 

 Inclusion of highly susceptible crop types either directly in the rotation or in 
adjacent fi elds can exacerbate FHB issues. Mathre ( 1997 ) reported that barley pro-
duction in the fi rst half of the 1900s was more or less eliminated when corn was 
grown in rotation with barley in the eastern and central corn belt of the United 
States, because the level of FHB became so severe. Other research has highlighted 
the risk of FHB associated with corn in rotation with small grain cereals. The fi rst 
report of signifi cant levels of FHB and DON contamination in Manitoba wheat, 
caused by  F. graminearum , was associated with two fi elds that were previously 
cropped to corn (Clear and Abramson  1986 ). In Ontario, Teich and Nelson ( 1984 ) 
and Teich and Hamilton ( 1985 ) found that FHB levels were lower in wheat when it 
was not sown after corn. More recently, Schaafsma et al. ( 2001 ) conducted a survey 
of hand-harvested grain from commercial wheat fi elds in Ontario under a range of 
agronomic practices. They found that in 2 of 4 years (1996–1999), DON levels in 
wheat were signifi cantly higher when planted on corn residue compared with wheat 
or soybean residue. In 1996, Schaafsma et al. ( 2001 ) found that levels of DON were 
similar when corn or wheat had been planted 2 years previously and were signifi -
cantly higher than when soybean was the previous crop. In a Minnesota trial, Dill- 
Macky and Jones ( 2000 ) found that FHB and DON were higher when wheat 
followed corn, lowest when wheat followed soybean and intermediate with wheat 
on wheat. In contrast, Yi et al. ( 2001 ) found that FHB and DON levels were similar 
when winter wheat was grown after maize or spring wheat, whether it had been 
harvested for grain or silage. However, Yi et al. ( 2001 ) stated that inoculation of the 
pre-crop treatments with infested oat grain may have precluded treatment differ-
ences. A spore trapping study by Francl et al. ( 1999 ) found that inoculum of  G. zeae  
was signifi cantly higher on wheat spikes exposed in fi elds with corn residues than 
wheat residues. Wheat heads exposed in fi elds with corn residue had an average 
number of colony forming units (CFU) of  G. zeae  per wheat spike (head) per day of 
126 versus 13 CFU for wheat heads sampled next to wheat residue. Khonga and 
Sutton ( 1988 ) found that corn residue, including kernels and stalk pieces, tended to 
be more abundant producers of both conidiospores and ascospores than wheat 
stems, but not wheat kernels or spikelets.  

10.5.2     Tillage 

 Tillage is a traditional strategy that has been recommended for managing FHB, 
while conservation tillage has often been implicated as a risk factor for FHB caused 
by  F. graminearum , as crop residues are the most important source of inoculum 
(Parry et al.  1995 ; McMullen et al.  1997 ; Stack  2000 ). Teich and Hamilton ( 1985 ) 
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found that FHB was lower in ploughed fi elds than fi elds with ‘light tillage’, but in 
an earlier study, Teich and Nelson ( 1984 ) found that FHB levels were similar with 
or without ploughing. In a separate study, FHB levels were found to be lower in 
ploughed treatments versus treatments that had been ‘disc-cultivated’ (Teich unpub-
lished) (Teich  1989 ). Dill-Macky and Jones ( 2000 ) found that tillage regime did 
have a signifi cant effect on FHB and DON levels in wheat. When averaged over 
tillage systems, the incidence of FHB was 63.5 %, 71.8 % and 70.8 % for mold-
board ploughing, chisel plough, and no-till, respectively. Small, but signifi cant dif-
ferences in DON level were observed for the tillage treatments, with moldboard 
ploughing having 8.1 ppm, compared to chisel plough (10.6 ppm), and no-till 
(11.1 ppm) which were not signifi cantly different. However, other work indicates 
that FHB and DON may not always be reduced with tillage. Clear and Abramson 
( 1986 ) found that the initial appearance of signifi cant levels of Fusarium damaged 
kernel (FDK) and DON in Manitoba occurred in two wheat fi elds that had been 
disced in the previous fall and in the following spring, a tillage regime that would be 
considered to be conventional and fairly aggressive in western Canada. In a subse-
quent survey, Gilbert and Tekauz ( 1993 ) found no difference between tillage prac-
tices during the 1993 FHB epidemic in Manitoba. In Ontario, Miller et al. ( 1998 ) 
found that tillage system (moldboard ploughing versus no-till) did not have a sig-
nifi cant infl uence on the level of FHB or kernel infection. The authors suggested 
that under weather conditions favourable for disease, other factors such as variety 
resistance, rotation and previous history of disease would likely be more critical for 
FHB than the tillage system used. Schaafsma et al. ( 2001 ) found similar results 
from a survey of hand-harvested grain from commercial fi elds in Ontario from 1996 
to 1999. DON levels tended to be slightly higher under minimum tillage versus no-
till or conventional, which had similar levels. Overall, Schaafsma et al. ( 2001 ) found 
that tillage system accounted for very little of the variation in DON levels from 1996 
to 1999. Other factors such as year, cultivar, and rotation accounted for more varia-
tion in DON compared with tillage system. Fernandez et al. ( 2001 ) found zero till-
age did not result in more FHB compared with conventional tillage in eastern 
Saskatchewan. FHB severity tended to be highest under minimum tillage, but was 
lower under both zero and conventional tillage. Khonga and Sutton ( 1988 ) sug-
gested that complete burial of infested residue by moldboard ploughing may help to 
prevent spore production, if residues are not brought back to the soil surface by 
subsequent tillage. Earthworm activity, which is enhanced under conservation till-
age practices (House and Parmelee  1985 ; Wardle  1995 ; Kladivko et al.  1997 ; Chan 
 2001 ; Chan and Heenan  2006 ; Eriksen- Hamel et al.  2009 ), may help to reduce the 
amount of  F. graminearum -infested crop residue under direct seeding (Oldenburg 
et al.  2008 ; Schrader et al.  2009 ; Wolfarth et al.  2011 ) and perhaps this has contrib-
uted to the variable effect of conservation tillage in relation to FHB. In areas where 
 F. graminearum  is commonly found on crop residues, a general background level of 
inoculum may preclude any differences in disease risk among tillage systems. 
Ascospore dispersal from one fi eld to another would introduce the pathogen into 
fi elds where infested residues were not present either as a result of burial by tillage 
or extended crop rotation to non-host crops.  
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10.5.3     Field Location 

 Head infections in wheat typically arise from wind-borne ascospores released from 
fruiting bodies (perithecia) produced by the sexual stage of  F. graminearum , 
 G. zeae , and are formed on old crop residue and infected seed left on the soil sur-
face. Although production of perithecia typically occurs in the spring, these fruiting 
structures can also be found on harvested grain, especially barley, and can be pro-
duced in the fall depending on the location (Paulitz  1996 ; Mathre  1997 ). Old crop 
residues including vegetative and reproductive plant tissues and infected seed are 
the main sources of inoculum (Sutton  1982 ). 

 Dispersal of ascospores appears to occur over relatively short distances. Gilbert 
and Tekauz ( 2000 ) have suggested that the appearance of FHB in eastern 
Saskatchewan is not likely the result of long-distance (300 km) transport of asco-
spores, based on results from Fernando et al. ( 1997 ). Fernando et al. ( 1997 ) demon-
strated gradients of head and seed infection resulting from ascospores of  G. zeae , 
over distances of at least 22 m. Gilbert and Tekauz ( 2000 ) cited reports by Stack 
( 1997 ) who suggested, based on analysis of spore dispersal gradients, that asco-
spores could be dispersed and result in head blight symptoms in fi elds up to 1 mile 
away from the source of inoculum. Francl et al. ( 1999 ) suggested that dispersal of 
ascospores produced by  G. zeae , may occur over ‘kilometers to tens of kilometers 
or more….’ Based on current research, immediately adjacent fi elds or areas would 
be most at risk from air-borne ascospores. Maldonado-Ramirez et al. ( 2005 ) and 
Schmale III and Bergstrom ( 2007 ) demonstrated the presence of viable ascospores 
in the planetary boundary layer suggesting the occurrence of long-distance transport 
of  G. zeae  ascospores. Recent work using clonal sources of  G. zeae  inoculum iden-
tifi ed using microsatellite markers demonstrated dispersal of a released clone up to 
750 m, with the majority being collected within 100–250 m of the source (Prussin 
 2013 ). Keller et al. ( 2010 ) also used clones to study inoculum dispersal of  G. zeae  
and found that head infections resulting from a local source of inoculum decreased 
by 90 % within 6 m of the source. Overall, research suggests that an FHB epidemic 
within an individual fi eld would largely originate from inoculum produced within 
the fi eld itself or in adjacent fi elds. However, as Schmale III and Bergstrom ( 2007 ) 
suggest, long-distant transport of viable ascospores of  G. zeae  may result in the 
introduction of novel strains into regions where they were not previously present. 

 Long-distance transport of ascospores into Alberta from eastern Saskatchewan 
and Manitoba is unlikely. Moreover, there would be a greater potential for a signifi -
cant reduction in ascospore viability during long-distance dispersal as the asco-
spores would be exposed to greater periods of ultraviolet (UV) radiation (Waggoner 
et al.  1983 ; Rotem and Aust  1991 ). Radiation has been shown to infl uence spore 
survival for many fungi (Leach and Anderson  1982 ; Caesar and Pearson  1983 ; 
Boland  1984 ; Rotem et al.  1985 ). Caesar and Pearson ( 1983 ) found that average 
ascospore survival for  Sclerotinia sclerotiorum  was 51 and 22 % after 2 and 4 days 
fi eld exposure on the upper leaves of a bean canopy. Survival rates of <10 % were 
observed after 6 days exposure. Ascospore survival also decreased rapidly at  relative 
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humidities of >35 % and temperatures of ≥25 °C. Boland ( 1984 ) also demonstrated 
decreased  S. sclerotiorum  ascospore viability, with average survival rates of <50 % 
after 2 days and <1 % after 3 days fi eld exposure of ascospores on Millipore fi lter 
paper. Higher ascospore survival was observed by Boland ( 1984 ) and Caesar and 
Pearson ( 1983 ) when ascospores were shielded from UV radiation. Caesar and 
Pearson ( 1983 ) also found that survival was increased on shaded leaves in the lower 
part of a bean canopy. Rotem and Aust ( 1991 ) found that exposure to UV radiation 
reduced spore viability from up to several days to less than 50 min for various 
pathogens including  Aspergillus macrospora ,  A. niger  and  Mycosphaerella pinodes . 

10.5.3.1     Integration of Strategies to Limit Inoculum Availability 
and Host Infection 

 Development of less susceptible, and eventually more FHB-resistant cultivars, has 
been a key focus of Canadian cereal breeding programmes. However, unlike resis-
tance to many of the cereal rusts, high levels of resistance to FHB have been elusive, 
although substantial improvements in reducing the level of susceptibility and mov-
ing towards FHB resistance have been made since the early 1990s in western 
Canada. Extensive reviews of the topic of host resistance have been published by 
numerous authors (Parry et al.  1995 ; Gilbert and Tekauz  2000 ; Tekauz et al.  2000 ; 
Mesterházy  2003a ; Steffenson  2003 ; McMullen et al.  2012 ). 

 Like host resistance, fungicides have not provided high levels of FHB control 
and DON suppression, but depending on the level of host resistance can provide 
moderate reductions in FHB severity, Fusarium damaged kernel levels, and DON 
contamination (Mesterházy  2003b ; Paul et al.  2008 ; McMullen et al.  2012 ). The 
other major approach to limiting inoculum availability is crop rotation, which if suf-
fi cient time is given between host crops, substantial reductions in pathogen viability 
and inoculum availability can be achieved. However, given the ability of the patho-
gen to produce wind-borne ascospores, which readily move to adjacent fi elds and 
the potential for regional epidemics of FHB to occur as consequence of inoculum 
dispersal over tens of kilometres, crop rotation in itself may not provide a high level 
of FHB management where the pathogen is well established on crop residues. 
McMullen et al. ( 2008 ,  2012 ) emphasized that effective FHB management cannot 
rely on individual strategies, but rather an integration of multiple disease manage-
ment strategies that limit inoculum availability and host infection. The combination 
of growing small grain cereals on residue of non-host crops, use of a moderately 
resistance host genotype, and application of effective fungicides has been found to 
greatly reduce the level of disease and DON contamination, while signifi cantly 
increasing crop yield (McMullen et al.  2008 ). The combination of host resistance, 
rotation and fungicide represents a foundation on which other strategies can be 
added to further reduce inoculum availability and disease development. For exam-
ple, producers growing small grain cereals under irrigation may be able to reduce 
the risk of head and seed infection by careful water management (McLaren et al. 
 2003 ) In Washington State, FHB or scab, caused by various  Fusarium  spp.  including 
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 F. graminearum , was found in irrigated fi elds, but not in dryland wheat fi elds 
(Strausbaugh and Maloy  1986 ). More recently in Idaho (Marshall et al.  2012 ) and 
southern Alberta (Turkington et al.  2005 ,  2006 ) irrigation was an important contrib-
uting factor to FHB outbreaks in these areas. However, the most diffi cult aspect of 
irrigation management for FHB control in the irrigated dry regions such as southern 
Alberta will be trying to balance the water requirements of the crop during fl ower-
ing versus the need to reduce the risk of FHB. Efetha ( 2008 ) has produced a set of 
recommendations to help producers meet the water needs of their cereal crops, but 
at the same time reduce the risk of FHB and potential DON contamination of har-
vested grain. 

 Harvest management can be an important consideration when dealing with an 
infected crop. In areas where the disease is severe, producers are advised to adjust 
their combines to blow out scabby wheat kernels, FDK, (which are lighter than the 
other seeds) and infected chaff as a way of improving the grade and reducing toxin 
levels in harvested grain (Tkachuk et al.  1991 ; Anonymous  1996 ; Gilbert and 
Tekauz  2000 ; Salgado et al.  2011 ; McMullen et al.  2012 ). However, this will not 
completely eliminate problems in wheat, especially when wet harvest conditions 
allow for continued fungal growth on the maturing crop and potential DON con-
tamination issues even though FHB and FDK levels appear to be low. Removing 
severely infected kernels during harvesting is not very effective with barley and oat, 
although removing the hull in hulless barley is an effective way of reducing DON 
levels (Clear et al.  1997 ). The downside to harvest management is that it will typi-
cally return highly infected wheat kernels and chaff back into the fi eld where this 
material can act as a source of inoculum in future growing seasons. 

 McMullen et al. ( 2012 ) also suggest that effective chopping and distribution of 
straw may help to encourage decomposition of infested residue, thereby reducing 
the availability of inoculum for subsequent epidemics. Chopping of crop residues 
into smaller pieces, which exposes a greater surface area to microbial activity 
increases the rate of decomposition of crop residues (Sims and Frederick  1970 ; 
Bremer et al.  1991 ; Angers and Recous  1997 ; Jensen and Ambus  1998 ; Gunnar 
 2001 ), thereby removing a potential source of FHB inoculum. Moreover, retention 
of crop residues under conservation tillage can enhance soil fl ora and fauna activity 
(House and Parmelee  1985 ; Chan  2001 ; Chan and Heenan  2006 ), which can result 
in enhanced residue decomposition, especially where residues are chopped into 
smaller pieces (Boström and Lofs-Holmin  1986 ; Lowe and Butt  2003 ). Ultimately, 
enhanced activity of soil fauna such as earthworms may help to reduce FHB inocu-
lum availability (Schrader et al.  2009 ; Wolfarth et al.  2011 ). 

 Integration of irrigation and residue management with the combination of rota-
tion, host resistance and fungicide may help to further reduce the impact of 
FHB. Moreover, strategies such as irrigation management may also help to reduce 
the amount of infested residue, thereby reducing inoculum availability. The use 
of more resistance crop varieties has been shown to reduce the amount of infested 
residue thereby reducing the amount of inoculum available to initiate subsequent 
epidemics (Salas and Dill-Macky  2003 ,  2004 ,  2005 ). Fungicide application may 
also help to reduce the amount of infested residue and thus the level of inoculum. 
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There may be a synergistic effect of using crop rotation, host resistance, residue and 
irrigation management, and fungicides in relation to the availability of inoculum to 
initiate FHB. Further research is needed to study these interactive effects and 
whether they have the potential to further reduce the impact of FHB. Ultimately, for 
FHB management strategies employed by farmers to be more effective, they must 
incorporate practices that infl uence all components of the disease triangle, with the 
goal to create cropping conditions that do not favour pathogen survival, inoculum 
production and/or disease development.    

10.6      Modern Detection Methods for  Fusarium -Related 
Mycotoxins 

 Many jurisdictions, including Canada, have established regulations and guidelines 
for the presence of  Fusarium  mycotoxins in grains that are used in the production 
of food and feed in order to protect consumers. Health Canada has set maximum 
limits of 1.0 and 2.0 mg/kg for DON in soft wheat used in baby foods and non- 
staple foods, respectively. These limits are currently under review by Health Canada 
( 2011 ). The Canadian Food Inspection Agency (CFIA) has guidelines and recom-
mended tolerances for a wider range of  Fusarium  mycotoxins in feed, including 
diacetoxyscirpenol, T-2 and HT-2 toxins, ZEA, and DON. These values range from 
0.025 mg/kg for T-2 toxin in diets for dairy animals up to 5 mg/kg in diets for cattle 
and poultry (CFIA  2012b ). The Canadian regulatory limits for food and guidance 
and recommended levels for feed are consistent with those in other countries. 

 In Canada, the analysis of grain and grain products is performed along the grain 
handling and processing chains in order to demonstrate compliance with established 
regulatory and guidance levels. Domestic and export shipments of bulk grain are 
monitored by the Canadian Grain Commission (Tittlemier et al.  2014 ), feed compo-
nents are monitored by the Canadian Food Inspection Agency, and grain- based 
foods are monitored by the Canadian Food Inspection Agency (CFIA  2012a ) and 
Health Canada (Scott  1997 ). 

10.6.1     Sampling and Sample Preparation 

 The determination of any analyte in a given material involves the following general 
steps: sampling of the material, processing of the sample and a chemical test to 
detect and quantify the analyte. The initial sampling step is the basis of the entire 
analysis—without proper sampling, the fi nal analytical result will be meaningless if 
it does not relate back to the original material of interest. 

 Proper sampling is especially important for the analysis of mycotoxins in 
 particulate material such as grains because mycotoxins are heterogeneously 
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 distributed in this type of material. Consequently, small portions of the larger 
 sample can contain very different concentrations of mycotoxins such as DON 
(Biselli et al.  2008 ) because kernel to kernel concentrations can vary over two 
orders of magnitude (Sinha and Savard  1997 ). This effect of sampling is magnifi ed 
for samples composed of larger particles such as maize kernels. Concentrations of 
mycotoxins in cereal kernels can also signifi cantly differ from concentrations in 
chaff and other non-kernel segments. DON concentrations were approximately 
2–10 times higher in chaff, peduncle and rachis tissues from wheat heads (Sinha 
and Savard  1997 ); ZEA was similarly elevated in chaff versus  Fusarium  damaged 
kernels (Golinski et al.  2010 ). 

 Sample preparation can help to minimize the heterogeneous distribution of 
mycotoxins in materials and reduce the variability in analytical results. For exam-
ple, grinding of whole grain samples reduces the variability of DON and NIV mea-
surements (Champeil et al.  2004 ). Increasing the size of the sample analyzed also 
reduces the variance of the entire analysis (Whitaker et al.  2002 ).  

10.6.2     Screening Methods for the Detection and Quantifi cation 
of Mycotoxins 

 There are a number of methods in use to detect and quantify  Fusarium -related 
mycotoxins based on a variety of technologies; Shephard et al. ( 2012 ) provide an 
overview of recent advances. Methods can be classifi ed and organized based on the 
different technologies they are based upon, however a more user- friendly way to 
classify methods is to place them along a continuum from screening to confi rmatory 
methods. 

 Screening methods generally emphasize ease of use, speed and an overall reduced 
cost of analysis. Development of many screening methods is aimed towards use in 
settings outside of the traditional laboratory, such as in-fi eld assessment or monitor-
ing of incoming deliveries at processing facilities. However, screening methods can 
still be useful in laboratory settings where large numbers of samples need analysis. 
Screening methods often incorporate quick sample clean-up and rapid detection, but 
depending on their scope, they may still require access to fume hoods and other 
laboratory safety equipment due to the use of solvents for extraction. 

 The most basic screening method is visual inspection. Due to the physical 
damage that can be produced by  Fusarium  infection, visual inspection of wheat 
may be used as a screening method in order to estimate  Fusarium  mycotoxin 
concentrations. Such visual inspection is feasible for wheat, since FDK can be 
distinguished from healthy kernels due their shriveled and discoloured appear-
ance. However, visual inspection is not feasible for other grains because the phys-
ical damage is not as easily discerned. It has been shown that FDK can serve as an 
estimate of DON (Miedaner et al.  2001 ; Mesterházy  2002 ) in wheat, and that 
FDK are associated with MON in durum wheat (Tittlemier et al.  2014 ). In order 
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to manage DON concentrations in wheat, FDK is used as a grading factor in 
Canada where tolerances for FDK in various wheat classes have been established 
by the Canadian Grain Commission. 

 In addition to a restriction to wheat, visual inspection of  Fusarium  damage 
has other limitations that confi ne its use to a screening tool. Asymptomatic wheat 
kernels can still contain mycotoxins (Sinha and Savard  1997 ). As well, later stage 
infection can also affect the presence of visual  Fusarium  damage. Reduced damage 
can be observed from spikes infected past the soft dough stages of kernel develop-
ment (Del Ponte et al.  2007 ). 

 Commercially available chemistry-based screening methods are available for a 
limited number of  Fusarium -related mycotoxins in grain. The majority of kits are 
for the analysis of DON, but some are available for ZEA and T-2/HT-2 (Meneely 
et al.  2011 ). Technologies currently available are predominantly immuno-based and 
include lateral fl ow devices, enzyme linked immunosorbent assays (ELISA) 
(Meneely et al.  2011 ), and planar waveguide-based methods (Tittlemier et al.  2013a ). 

 The performance of commercially available screening methods has been recently 
reviewed by different groups. The Grain Inspection, Packers & Stockyards 
Administration (GIPSA) of the United States Department of Agriculture evaluates 
submitted screening methods against criteria for the quantitative determination of 
mycotoxins in grains, oilseeds and processed-grain products. GIPSA has evaluated 
a number of quantitative and qualitative screening methods for the analysis of DON 
or ZEA, and has posted the results on their website (  http://www.gipsa.usda.gov/
fgis/insp_weigh/raptestkit.html    ). Aamot et al. ( 2012 ) and Tangni et al. ( 2011 ) also 
report on the performance of commercially available ELISA and lateral fl ow devices 
for the analysis of DON in oats and wheat. 

 Screening methods are useful tools to gauge mycotoxin concentrations in grain 
outside of a laboratory, or to process a large number of grain samples without requir-
ing complex laboratory equipment. However, there are limitations to screening 
methods. One very important limitation is the potential for cross reactivity in 
immuno-based methods. Methods that are based upon the recognition of the myco-
toxin analyte by an antibody or other receptor can return inaccurate results when 
another molecule interacts with the antibody (Tangni et al.  2010 ). For example, 
mean results from ELISA tests for DON submitted to an interlaboratory study were 
approximately 2–3 times higher than those obtained from confi rmatory methods 
that had analyzed the same test material. The difference was attributed to the cross 
reactivity of the ELISA tests towards 15-ADON, a metabolite of DON (Josephs 
et al.  2001 ). There is no confi rmation of analyte identity in these screening methods 
that would avoid issues caused by cross reactivity. 

 Until recently, screening methods have also focused on single analytes, thus 
additional tests would need to be run to obtain data on additional analytes. However, 
multi-mycotoxin screening methods are being developed and commercialized for 
use in laboratory (Dorokhin et al.  2011 ; Meneely et al.  2012 ; Tittlemier et al.  2013a ) 
and non-laboratory settings (He et al.  2012 ; Lattanzio et al.  2012 ).  
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10.6.3     Confi rmatory Methods for the Detection 
and Quantifi cation of Mycotoxins 

 Confi rmatory methods are more complex than screening methods, and require 
expensive instrumentation and associated technical expertise to operate and main-
tain the instrumentation. These methods mainly employ chromatography with mass 
spectrometry, and with advances in fast chromatography, can generate results as 
quickly as screening methods. 

 The strength of modern confi rmatory methods lies with their ability to confi rm 
analyte identity as well as perform a simultaneous sensitive analysis of many myco-
toxins. For example, methods that use liquid chromatography with tandem mass 
spectrometry have been developed to analyze over 150 various fungal and bacterial 
metabolites, including many  Fusarium -related compounds (Vishwanath et al. 
 2009 ). The co-occurrence of multiple mycotoxins drives the need for multi- 
mycotoxin methods, and almost all new methods incorporate multiple mycotoxin 
analytes (Shephard et al.  2012 ). 

 Advances in confi rmatory methods include a move towards ‘dilute and shoot’ 
methods that minimize sample clean-up in order to decrease analysis time and 
increase sample throughput (van der Fels-Klerx et al.  2012 ; Warth et al.  2012 ). 
Simple clean-up of sample extracts may also be used to minimize matrix effects and 
increase sensitivity further. Methods incorporating simple clean-up predominantly 
use solid phase extraction in cartridge (Schenzel et al.  2012 ) or dispersive format 
(Rubert et al.  2012 ). Sorbents used for the clean-up of sample extracts containing 
 Fusarium -related mycotoxins include immunoaffi nity materials (Tang et al.  2012 ) 
as well as conventional abiotic materials such as silica or C 18  (Rubert et al.  2012 ; 
Schenzel et al.  2012 ).  

10.6.4     General Considerations for the Detection 
of Fusarium- Related Mycotoxins 

 Many chemical test methods are available for mycotoxin analysis, and as with any 
tool, users need to ensure they are properly used in order to generate accurate and 
precise data. As described above, proper sampling and sample preparation must be 
performed for the results of the chemical test method to meaningfully relate back to 
the original sample of interest. 

 Consumers of chemical test method data must also ensure the methods used fol-
low general proper analytical chemistry practices. All methods used to generate 
data must be validated so that accurate and precise data are obtained. Validation 
should be performed for different matrices of interest, because a method that works 
for one matrix may not work for another (Malachova et al.  2012 ). There must be 
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routine monitoring of method performance as well. There are many commercially 
available certifi ed reference materials containing characterized amounts of the more 
commonly analyzed  Fusarium -related mycotoxins (DON, HT-2, T-2), as well as 
many profi ciency tests that have been established for laboratories to verify and 
 monitor their performance.      
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