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    Chapter 15   
 Neuronal Nicotinic Acetylcholine Receptors 
in Reward and Addiction 

             Linzy     M.     Hendrickson       and     Andrew     R.     Tapper     

    Abstract     Drugs of abuse stimulate the pleasure centers of the brain to initiate 
addiction. During the beginning stages of addiction, the rewarding or reinforcing 
properties of abused drugs drive intake. However, as addiction develops drug intake 
is more likely to be dominated by negative reinforcement. The main reward center 
of the brain is the mesolimbic pathway which consists of dopaminergic neurons 
originating in the ventral tegmental area that project to the nucleus accumbens. 
Most, if not all, abused drugs stimulate this circuit resulting in increased release of 
the neurotransmitter, dopamine, in the nucleus accumbens, a phenomenon inti-
mately associated with reward and reinforcement. Neuronal nAChRs are robustly 
expressed within the microcircuitry of this reward pathway. Drugs of abuse such as 
nicotine and alcohol directly interact with nAChRs expressed within the mesolim-
bic circuit to affect drug reward sensitivity, whereas with other drugs of abuse such 
as the psychostimulants and opioids, nAChRs play a more indirect, modulatory 
role on drug reward. In this chapter, the expression and function of nAChRs in the 
reinforcing/rewarding properties of drugs of abuse are explored.  

  Keywords     Dopamine   •   Reinforcement   •   Alcohol   •   Nicotine   •   Psychostimulants   • 
  Opioids  

1         Introduction 

 Species that learned to respond to natural rewards (such as when and where they 
could obtain food, have the opportunity to mate) ensured their survival. Achieving 
these goals function as rewards [ 1 ]. Consequently, many neural substrates that 
modulate reward systems are conserved across species from  Drosophila , mice, 
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and rats to humans and include conserved circuitry, neurotransmitters, receptors, 
signaling molecules, and transcription factors [ 2 ]. Not surprisingly, this endogenous 
system can be exogenously altered via drugs that have potential to become abused. 
We now know that responses to natural rewards and addictive drugs have many 
similarities and shared pathways within the central nervous system (CNS). For 
example, studies in rats have shown a cross-sensitization between the natural reward 
sugar and the drug amphetamine [ 3 ]. In addition, a recent study found similar neu-
roadaptations in reward circuitry between chronic exposure of abused drugs and 
high-energy palatable food [ 4 ]. 

 A common effect of natural rewards and most drugs of abuse is an enhance-
ment of activity in the mesolimbic dopamine (DA) system (discussed in more 
detail below), leading to an increase of DA release in the nucleus accumbens 
(NAc) [ 5 – 7 ]. While it is widely accepted that the epicenter of reward stimuli pro-
cessing within the brain, whether natural or drug, is the mesolimbic DA circuitry, 
much controversy exists regarding the precise role of DA in modulating goal-
directed behavior. Mesolimbic DA is critical for a variety of physiological and 
affective behaviors such as movement, motivation, reward, learning, arousal, atten-
tion, and emotion [ 8 ]. Indeed, each of these individual behavioral components is 
necessary for the outward, measurable behavior of reward (i.e., an organism must 
locate a reward, pay attention, learn where to fi nd it, like it, and have a desire to 
return to it). 

 Most of what is known regarding the underlying circuitry and molecular under-
pinnings of reward in addiction stems from pharmacological and genetic manipula-
tions in rodent models. How does one measure the rewarding properties of drugs 
in animal models of dependence? The rewarding properties of drugs of abuse are 
typically measured via operant self-administration and/or conditioned place prefer-
ence assays (CPP). In the former assay, an animal learns to self-administer a drug 
by pressing an active lever or nose poke that delivers a fi xed dose to the animal by 
way of intravenous catheter, cannula to the brain, or, in the case of ethanol, a con-
sumable liquid [ 9 ]. If a drug is reinforcing, then the animal will press on the active 
lever to self-administer the drug while ignoring a second inactive lever which yields 
no drug. In the CPP assay, an animal prefers a chamber where it received drug over 
the chamber where it received vehicle (i.e., the drug conditions a place preference 
as a measure of reward [ 10 ]). 

 Current theories on drug addiction suggest that the acute, rewarding properties of 
abused drugs drive intake during the initial stages of dependence; whereas drug 
intake in later stages is motivated by negative reinforcement (i.e., drugs are taken to 
predominantly alleviate negative affective states precipitated by withdrawal) [ 11 ]. 
This chapter focuses on nAChRs in the acute rewarding properties of drugs of 
abuse, while chapter   18     will focus on nAChRs in negative reinforcement, aver-
sion, and withdrawal. It is important to point out that the circuitry underlying posi-
tive reinforcement (i.e., reward) and negative reinforcement (i.e., aversion) likely 
interact. However, the most well-studied circuit in the context of reward, addiction, 
and nAChRs is the mesolimbic pathway.  
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2     The Mesolimbic DA Pathway 

    It is widely accepted that the mesolimbic DA system plays a central role in modulat-
ing the rewarding effects of drugs of abuse [ 12 ,  13 ]. Olds and Milner fi rst identifi ed 
this pathway in 1954. Using brain stimulation reward (BSR) they discovered that 
rats returned to the same region of a testing apparatus where they had received elec-
trical stimulation to the septal area of the brain [ 14 ]. Upon further examination 
using mapping and lesion studies, it was determined that the most sensitive sites in 
the brain (i.e., lowest stimulation threshold) were along the medial forebrain bundle 
(MFB) which connects the ventral tegmental area (VTA) to the basal forebrain 
[ 14 – 16 ]. Next, using pharmacology, studies showed that DAergic receptor blockade 
attenuated brain stimulation reward [ 17 ,  18 ], suggesting that specifi c neurotransmit-
ter systems were involved in reward mechanisms [ 19 ]. 

 Flash-forward almost 60 years and what was once commonly referred to as the 
“reward circuit” is now known as the mesolimbic DA pathway. This pathway con-
sists of DAergic neurons whose cell bodies originate in the ventral tegmental area 
(VTA), a region of the midbrain, and project to regions of the limbic system includ-
ing the NAc, amygdala, and hippocampus among other regions. An additional 
DAergic pathway, the mesocortical pathway, also originates in the VTA and project 
to regions of the prefrontal cortex. These pathways are shown in a simplifi ed dia-
gram in Fig.  15.1 .

3        The Ventral Tegmental Area 

 The VTA is known to at least partially mediate the rewarding effects of nicotine, 
opiates, psychostimulants, ethanol, and cannabinoids [ 20 ]. For example, rats and 
mice will self-administer opiates [ 21 ], cannabinoids [ 22 ], cocaine [ 23 ], nicotine [ 24 ], 
or ethanol [ 25 ,  26 ] directly into the VTA. Additionally, intravenous nicotine self-
administration is attenuated by either selective lesions of VTA DAergic neurons in 
rats [ 27 ] or a local VTA infusion of a nicotinic receptor antagonist [ 28 ]. The VTA is 
located in the midbrain, medial to the substantia nigra and ventral to the red nucleus 
[ 29 ]. It is referred to as an “area” and not considered to be a “nucleus” because 
the cryoarchitecture of the region is not well defi ned such that the boundaries of the 
VTA are determined by its neighboring structures [ 20 ,  30 ]. Within the VTA are two 
main cell populations, the A10 DAergic projection neurons, which comprise ~60 % 
of cells in this region [ 31 ], as well as local GABAergic interneurons [ 32 ,  33 ]. 
Although data are emerging indicating that different subpopulations of neurons 
within the VTA exist including DAergic neurons that also co-release glutamate, 
GABAergic projection neurons, and a small number of purely glutamatergic 
neurons [ 34 ,  35 ], the expression and function of nAChRs in these neuronal sub-
populations as they relate to reward are unknown. The VTA receives inputs from 
regions throughout the CNS [ 36 ] including glutamatergic projections from the 
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prefrontal cortex [ 37 ], as well as glutamatergic, cholinergic, and GABAergic 
projections from two groups of mesopontine tegmental area neurons, the peduncu-
lopontine tegmental nucleus (PPTg) and the laterodorsal tegmental nucleus (LDT) 
[ 38 – 40 ]. Other regions that project to the VTA include the NAc, amygdala, ventral 
pallidum, superior colliculus, and lateral hypothalamus [ 30 ]. Additionally, the lateral 
habenula, a small nucleus that is a part of the epithalamus, has been shown to 
project to and stimulate midbrain areas that inhibit the release of DA from the VTA 
and substantia nigra pars compacta [ 41 – 43 ]. 

 Projections from the VTA are primarily to the ventromedial striatum including 
the NAc shell and core as well as smaller projections to the prefrontal cortex (PFC), 
hippocampus, entorhinal cortex, and lateral septal areas [ 30 ]. Furthermore, studies 
using retrograde markers have shown that distinct groups of neurons originating in 
the VTA project to specifi c forebrain regions [ 44 ,  45 ]. Projections to the NAc con-
tain the largest proportion of DA neurons, with 65–85 % being DAergic, while the 
PFC projections are only 30–40 % DAergic [ 31 ,  45 ]. The remaining component 
of VTA afferents to the NAc and PFC contain GABAergic neurons [ 32 ]. Although 
the VTA consists of two predominant neuronal subtypes, there is mounting evi-
dence that this brain structure is not homogenous but can be divided into discrete 
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  Fig. 15.1    Neuronal nAChR expression in the mesolimbic and mesocortical pathways. A sagittal 
rodent brain section depicting a simplifi ed circuit diagram of the mesolimbic and mesocortical 
pathways is shown. The VTA ( yellow box ) consists of DAergic neurons projecting to the NAc 
( purple box ) and prefrontal cortex ( orange box ). VTA GABAergic neurons provide local inhibition 
within the VTA and also project to the NAc. Glutamatergic neurons provide excitatory input into 
the VTA. Cholinergic, GABAergic, and glutamatergic VTA inputs also stem from laterodorsal 
tegmental (LTD) and pedunculopontine (PPTg) afferents. Drugs of abuse ultimately increase 
release of DA into the NAc to affect medium spiny projection neuron (MSN) activity. DA release 
at DAergic neuron presynaptic terminals is modulated by endogenous ACh provided by large 
aspiny cholinergic interneurons. Location of nAChR expression within the mesolimbic and meso-
cortical circuitry is indicated by the receptor icons       
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subregions including anterior (aVTA), posterior (pVTA), and tail (tVTA) [ 20 ,  46 – 48 ]. 
Recent data indicate that the aVTA and pVTA project to distinct regions of the ventral 
striatum and are differentially responsive to various drugs of abuse suggesting func-
tional heterogeneity [ 22 ,  49 – 52 ]. For example, rats will self-administer nicotine and 
ethanol directly in the pVTA but not the aVTA although the mechanistic basis of 
this regional selectivity is unknown [ 49 ].  

4     The Nucleus Accumbens 

 For decades, the NAc has been a main focus of mesolimbic DA in studies of natural 
and drug reward [ 8 ]. It is located in the ventromedial striatum and is primarily com-
posed of GABAergic medium spiny neurons (~95 %) and to a lesser extent a variety 
of interneurons (1–2 %) including cholinergic, fast-spiking GABAergic and low- 
threshold spiking. Two distinct regions of the NAc have been described, the core and 
shell, based on differences in functions and anatomical connectivity [ 53 ,  54 ]. 
Additionally, studies have shown that the response to extracellular DA release of 
these two regions differs. For example, it has been shown that the DA release induced 
by a food reward is rapidly habituated in the shell, but not the core [ 55 ]. Another 
study showed differential NAc shell and core Fos immunolabeling (a marker of neu-
ronal activation) of cholinergic interneurons after cocaine self- administration [ 56 ]. 
These and other data suggest the possibility that the shell may act to modulate the 
initiation of drug-seeking behavior by mediating the hedonic states associated with 
reward [ 57 ,  58 ] while the core may modulate acquisition and maintenance of drug 
seeking [ 59 ]. 

 The extracellular DA concentration in the NAc is regulated by two main factors: (1) 
the rate of release of DA from DAergic neurons that originate in the VTA and (2) dopa-
mine uptake through dopamine transporters located in perisynaptic areas [ 60 ]. DAergic 
neurons of the VTA are known to be the main input source of extracellular DA in the 
NAc. Under normal conditions, the action potential (AP) fi ring rate of DAergic neurons 
is tonic with spike activity at 1–5 Hz [ 61 ]. However, when an unexpected presentation 
of a primary reward or a reward-predicting stimulus occurs, the fi ring rate increases to 
2–10 APs at 10–30 Hz [ 62 ,  63 ]. 

4.1     Neuronal nAChR Expression in Reward Circuitry 

 Neuronal nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels 
that, under normal conditions, are activated by the endogenous neurotransmitter, 
acetylcholine (ACh) [ 64 ,  65 ]. Eleven mammalian genes encoding nAChR subunits 
have been identifi ed (α2–α7, α9–α10, β2–β4) and fi ve subunits coassemble to form 
a functional receptor [ 64 ,  66 ]. The majority of nAChRs with high affi nity for 
agonist are heteromeric consisting of two or three alpha subunits coassembled with 

15 Neuronal Nicotinic Acetylcholine Receptors in Reward and Addiction



312

two or three beta subunits while a subset of low-affi nity receptors are homomeric, 
consisting of predominantly α7 subunits [ 64 ]. The subunit composition of the receptor 
determines the biophysical and pharmacological properties of each receptor subtype. 
Given the large number of nAChR subunits, the potential for a vast array of nAChR 
subtypes exists. 

 Multiple studies have examined nAChR expression and function within the VTA 
[ 67 – 72 ]. Klink et al. compared nAChR expression and function in DAergic and 
GABAergic neurons between the VTA and substantia nigra pars compacta (SNc). 
Utilizing β2, α4, and α7 KO mice in combination with nAChR antagonists, they 
concluded that most DAergic neurons express nAChRs containing α4, α5, α6, β2, 
and β3 subunits while most GABAergic neurons express nAChRs containing α4 and 
β2 subunits [ 67 ]. Using a similar strategy, Wooltorton et al. determined that α7 
expression was more prevalent in VTA neurons than SNc neurons while nAChRs 
containing the β2 subunit (denoted β2*) are prevalent in DAergic and non-DAergic 
neurons throughout both brain regions [ 72 ]. The α6 nAChR subunit is predomi-
nantly expressed in DAergic neurons (although it may also be expressed in 
GABAergic terminal boutons) and can coassemble with β2, β3, and α4 subunits 
[ 70 ,  71 ,  73 – 76 ]. Using immunoprecipitation approaches in ventral midbrain, Gotti 
et al. deduced that at least fi ve distinct nAChR subtypes were expressed in DAergic 
neurons at the level of soma/dendrites including α4β2, α2α4β2, α4α5β2, α4β2β3, 
and α4α6β2β3 nAChRs [ 77 ]. Within the NAc, the majority of nAChRs are expressed 
in DAergic presynaptic terminals where they modulate the probability of DA release 
by endogenous ACh and DAergic neuron fi ring frequency [ 78 ,  79 ]. DAergic neuron 
terminal nAChRs consist of α4β2, α4α5β2, α4β2β3, α4α6β2β3, and α6β2β3 sub-
types [ 77 ]. Of these subtypes, α4α6β2β3 appears to dominate control of DA release 
at least in the NAc core [ 80 ].  

4.2     Nicotinic Receptor Subtypes Involved in Nicotine 
Reward/Reinforcement 

 Smoking is the primary cause of preventable mortality in the world [ 81 ]. When vola-
tized, nicotine, the addictive component of tobacco smoke, is absorbed into the 
bloodstream via the lungs and rapidly, on the order of seconds, crosses the blood- 
brain barrier [ 65 ]. Although nAChRs are expressed throughout the CNS, nicotine- 
induced activation of the mesocorticolimbic reward circuitry likely initiates addiction 
[ 66 ]. Indeed, pharmacological blockade of DA receptors or destruction of DA neu-
rons or lesioning of the NAC reduces nicotine self-administration [ 27 ,  82 ]. Within 
this pathway, nicotine ultimately drives activity of DAergic neurons originating in 
the VTA resulting in increased DA release in the NAc and prefrontal cortex (PFC) 
[ 83 ]. More recently, nicotine has been found to also increase DA release in the 
hippocampus where it facilitates memory formation of nicotine reward [ 84 ]. 

 With the great diversity of potential nAChR subunit combinations possible in 
nAChR subtypes within the VTA, a major goal of nicotine dependence research is 
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to identify nAChR subunit combinations that are critical for the rewarding properties 
of nicotine. The majority of insights into reward circuitry nAChRs in reward and 
reinforcement stems from pharmacological and genetic studies in rodent models. 
Infusion of the nonspecifi c nAChR antagonist, mecamylamine, into the VTA 
reduces self-administration of nicotine in rodents while also blocking nicotine- 
mediated increases in NAc DA [ 49 ,  85 ]. In addition, the β2*-selective antagonist 
dihydro-β-erythroidine (dhβe) also reduces nicotine self-administration in rats 
when infused into the VTA [ 28 ]. Finally, infusion of the α6β2-selective antago-
nist, α-conotoxin MII, into the VTA or NAc reduces nicotine self-administration 
[ 77 ,  86 ]. 

 Because of the limited nAChR subtype selectivity of most pharmacological 
agents, a more direct approach to address nAChR subunit composition in nicotine 
reward is through the use of genetically engineered mouse models. To date, several 
studies have utilized traditional knockout mice, which do not express a given 
nAChR subunit, or mice that express “gain-of-function” receptors that harbor a 
mutated subunit hypersensitive to nicotine, to examine the role of individual nAChR 
subunits in nicotine reward and reinforcement [ 87 ,  88 ]. Mice that do not express 
the β2 subunit fail to maintain nicotine self-administration indicating that nAChRs 
containing β2 are necessary for nicotine reinforcement [ 89 ]. These knockout mice 
also do not condition a place preference to nicotine consistent with a critical role for 
β2* nAChRs in nicotine reward [ 90 ]. In addition, mice that express a single-point 
mutation in the gene encoding the α4 subunit (a leucine residue mutated to an alanine 
residue in the pore forming transmembrane domain of the α4 subunit) that renders 
α4* nAChRs supersensitive to agonist condition a place preference to nicotine at 
sub-reward-threshold doses indicating that selective activation of α4* nAChRs is 
suffi cient for nicotine reward [ 91 ]. In addition, mice harboring a distinct mutation 
within the α4 subunit also resulting in nicotine-hypersensitive α4* nAChRs self- 
administer nicotine at lower doses [ 92 ] than mice with non-mutated receptors. 
Knockout mice that do not express β2, α4, or α6* nAChRs fail to self-administer 
nicotine but nicotine intake can be rescued via viral mediated expression of these 
subunits in the VTA, indicating that expression of nAChRs specifi cally in the VTA 
is suffi cient to support nicotine reinforcement [ 93 ,  94 ]. Thus, the emerging consensus 
across laboratories, based on a combination of pharmacology and mouse genetics, 
is that expression of α4β2* and α6* nAChRs in the VTA is necessary and suffi cient 
for nicotine reward and reinforcement. 

 The identifi cation of α4β2* nAChRs as critical for nicotine reward has led to 
rational design of small-molecule compounds to target these receptors in an effort 
to facilitate smoking cessation. The most successful smoking cessation aid to date 
is varenicline. Varenicline was designed as a high-affi nity partial agonist at α4β2* 
nAChRs [ 95 ]. Studies in rodent midbrain slices indicate that varenicline activates 
α4β2* nAChRs in the mesolimbic circuitry modestly increasing DA release in the 
NAc while blocking further stimulation by the full agonist, nicotine [ 96 ]. In doing 
so, it is hypothesized that, in smokers, varenicline will alleviate affective withdrawal 
symptoms through increasing mesolimbic DA stimulation but also block the plea-
surable effects of nicotine achieved through smoking.  
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4.3     Mechanisms of VTA DAergic Neuron Activation 
by Nicotine 

 VTA DAergic neurons fi re tonically and also fi re bursts [ 97 ,  98 ]. Recent studies 
using optogenetics to precisely depolarize DAergic neurons through light activa-
tion of the cationic ion channel, channelrhodopsin, indicate that bursting, but not 
tonic, DAergic neuron fi ring is suffi cient to condition a place preference [ 99 ]. 
Conversely optogenetic activation of VTA GABAergic neurons  alone  inhibits 
DAergic neurons and signal aversion [ 100 ]. Acutely, nicotine elicits both an 
increase in baseline DAergic neuron fi ring frequency and an increase in burst fi ring 
that can persist up to an hour after a single bolus of nicotine [ 101 ,  102 ]. Previous 
studies indicate that nicotine can directly activate DAergic neurons in rodent mid-
brain slices [ 103 ,  104 ] and neuronal α4β2* nAChR subunits are critical for this 
effect. Indeed, nicotine fails to condition a place preference in mice that do not 
express α4* nAChRs selectively in DAergic neurons [ 105 ]. However, how VTA 
GABAergic neurons, which make up as many as half the neurons in the VTA [ 106 ] 
and also robustly express α4β2* nAChRs [ 67 ,  68 ,  70 ,  89 ,  91 ], contribute to shaping 
nicotine responses in DAergic neurons is emerging. In rat midbrain slices, nicotine 
may desensitize α4β2* nAChRs on GABAergic neurons, thereby disinhibiting 
DAergic neurons, increasing their activation [ 107 ]. In addition, blood nicotine con-
centrations achieved by smoking rapidly and persistently desensitize a portion of 
nAChRs on both DAergic and GABAergic neurons [ 102 ,  107 ]. Low-affi nity α7 
nAChRs, which are expressed on glutamatergic terminals that innervate the VTA, 
may rapidly recover from desensitization and drive glutamate release, thereby 
allowing for persistent activation of DAergic neurons by nicotine [ 107 ]. This is 
consistent with previous data indicating that glutamate release into the VTA is 
critical for nicotine reinforcement [ 108 ]. More recently, Tolu et al. found that nico-
tine, at least acutely, activates both DAergic and GABAergic VTA neurons in vivo 
[ 109 ]. Using viral mediated gene delivery to selectively re-express β2 nAChR sub-
units in VTA DAergic neurons of β2 KO mice was insuffi cient to restore nicotine 
self-administration and nicotine- mediated DA release in NAc. Surprisingly, β2 
expression in both VTA DAergic  and  GABAergic neurons was required for rescue 
of nicotine self-administration. Remarkably, β2 expression in GABAergic neurons 
was critical for nicotine- mediated burst fi ring of DAergic neurons. These data indi-
cate that nicotine activation of GABAergic interneurons in concert with activation 
of DAergic neurons may shape the fi ring pattern of DAergic neurons and modu-
late nicotine reward and reinforcement. Finally, recent studies have identifi ed a 
unique nAChR subtype in VTA DAergic neurons consisting of both α4 and α6 
subunits. These α4α6* nAChRs remain active with prolonged exposure to nicotine, 
and cause persistent depolarization of DAergic neurons [ 110 ,  111 ]. This persistent 
activation leads to changes in NMDA/AMPA receptor expression which may 
underlie sensitization to repeated nicotine exposure and enhance nicotine reward 
over time [ 111 ].   
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5     Neuronal nAChRs in Alcohol Reward 

 Alcohol abuse is the third largest cause of preventable mortality in the world [ 112 ]. 
As with nicotine, the rewarding or reinforcing properties of alcohol are associated 
with an increase in DA release in the NAc [ 113 – 117 ]. Ethanol-induced release of 
DA is critical for the onset and maintenance of dependence [ 118 – 121 ]. 

 Multiple mechanisms underlying alcohol-mediated activation of VTA DAergic 
neurons have been proposed including modulation of intrinsic ion channels within 
these neurons, as well as alcohol-mediated alterations in synaptic input, both excit-
atory and inhibitory [ 122 – 128 ]. However, cholinergic signaling through nAChRs 
also contributes to NAc DA release and ethanol reinforcement [ 129 – 132 ]. For 
example, in rats, ethanol-mediated DA elevation in the NAc is inhibited by systemic 
or VTA but not NAc infusion of the noncompetitive, nonselective, nAChR antago-
nist, mecamylamine [ 130 ,  131 ,  133 – 136 ]. Blocking midbrain nAChRs via meca-
mylamine also decreases ethanol consumption and sensitization in rats. In addition, 
patients administered mecamylamine report reduced pleasurable effects of alco-
holic beverages [ 137 ]. 

 As discussed above, neuronal nAChR subtypes are expressed throughout the 
VTA in both DAergic neurons projecting to the NAc and in local GABAergic inter-
neurons [ 67 ,  72 ]. How does ethanol interact with these receptors? Systemic ethanol 
has been shown to increase ACh concentrations in the VTA, presumably activating 
nAChRs in this area [ 135 ]. In addition, ethanol can directly modulate nAChR activ-
ity depending on the subtype of nicotinic receptor expressed [ 138 – 140 ]. In ventral 
midbrain slices containing the VTA, acetylcholine-induced activation of DAergic 
neurons is potentiated by ethanol and blocked by mecamylamine. In addition, the 
effects of ethanol on VTA DAergic neuron activity is reduced in α4 KO mice and 
enhanced in gain-of-function α4 knock-in mice [ 141 ]. Finally, potentiation is also 
blocked by an α6* nAChR-selective antagonist and reduced in α6 KO mice [ 142 ]. 
Thus, α4, α6, and/or α4α6* nAChRs may contribute to activation of VTA DAergic 
neurons by ethanol. 

5.1     What Are the nAChR Subtypes Involved in Ethanol 
Reward and Reinforcement? 

 Identifying the nAChR subtype(s) that may underlie ethanol reward and consumption 
is necessary as they may represent therapeutic targets to reduce alcohol consump-
tion. This endeavor is complicated by the fact that ethanol physiological and behav-
ioral effects involve additional non-cholinergic mechanisms. In an effort to tease 
out individual nAChR subunits in  ethanol -related behaviors, several studies have 
utilized pharmacology. As mentioned above, the nonspecifi c nAChR antagonist, 
mecamylamine, when injected systemically or locally within the VTA blocks 
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ethanol consumption [ 132 ,  143 ,  144 ]. Alcohol consumption and alcohol-mediated DA 
release in the NAc are resistant to dhβe [ 133 – 135 ,  145 – 149 ]. In addition, the 
α7-selective antagonist, methyllycaconitine (MLA), does not affect alcohol- 
mediated behaviors precluding a role for homomeric α7 nAChRs [ 133 ,  144 ,  150 ]. 
On the other hand, the α3β2*, β3*, and α6* subtype-selective antagonist, α-conotoxin 
MII, does inhibit ethanol consumption and DA release in the NAc [ 151 ,  152 ]. 
Importantly, recent data indicate that approximately half of α-conotoxin MII- sensitive 
nAChRs in the striatum contain the α4 subunit [ 74 ,  153 ] and deletion of β2* nAChRs 
nearly abolishes α-conotoxin MII binding in the VTA [ 68 ]. Varenicline, an α4β2 
partial agonist clinically approved as a smoking cessation therapeutic [ 95 ,  154 – 156 ], 
can reduce both ethanol intake and seeking in rats [ 155 ] and acute alcohol consump-
tion in mice [ 157 ]. However, at high concentrations, varenicline is also a partial ago-
nist at α6β2* nAChRs, a full agonist at α3β4 and α7 nAChRs, as well as at 
5-hydroxytryptophan-3 receptors, which may also explain some of its effects on alco-
hol consumption [ 158 – 161 ]. Sazetidine-A, an α4β2* nAChR-selective “desensitizer,” 
can also reduce alcohol consumption in rats [ 162 ]. Cytisine, a partial agonist that 
preferentially activates high-affi nity β2* nAChRs at low doses but also is a full β4* 
nAChR agonist at high doses, also reduces alcohol consumption [ 163 – 165 ]. Novel 
partial agonists targeting α3β4* nAChRs reduce alcohol consumption and seeking in 
rats [ 166 ]. However, infusion of the α3β4* nAChR antagonist 18-methoxycoronari-
dine into the VTA fails to reduce alcohol consumption [ 167 ] consistent with data 
indicating low expression of β4* nAChRs in VTA DAergic neurons [ 76 ,  77 ]. 

 Behavioral studies in genetically engineered mice have also been used to glean 
information on nAChR subtypes that are involved in alcohol consumption. To date, 
mice that do not express α6, α4, α7, β2, or β3 subunits have been evaluated in a two- 
bottle alcohol consumption assay. α6, β2, and β3 nAChR subunit KO mice consume 
and prefer alcohol similarly to WT controls [ 157 ,  168 ,  169 ], whereas α7 KO mice 
consume less alcohol at high concentrations [ 157 ]. In addition, α4 KO mice consume 
acutely less alcohol in a binge-drinking assay compared to WT littermates and are less 
sensitive to ethanol reward as measured in the CPP assay. In contrast, ethanol condi-
tions a place preference at low doses in gain-of-function α4 knock-in mice (i.e., mice 
that are hypersensitive to acetylcholine) compared to WT mice [ 141 ]. Similarly, mice 
expressing gain-of-function α6* nAChRs consume more ethanol than WT mice and 
are sensitive to ethanol reward at sub-reward-threshold doses [ 170 ]. Thus, consistent 
with a potential role in activation of VTA DAergic neurons by ethanol, α4 and/or α6 
or α4α6* nAChRs within the VTA may be inherently critical for the rewarding proper-
ties of ethanol, although additional experiments are needed to identify the precise 
brain region and circuitry where these nAChRs are expressed.   

6     Neuronal nAChRs in Psychostimulant Reward 

 Whereas nicotine and ethanol interact with nAChRs directly to modulate function 
of the mesolimbic reward circuitry, the interaction between nAChRs and psycho-
stimulant is likely indirect occurring at the circuit level. Indeed, psychostimulants 
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such as cocaine and amphetamine bind to the dopamine transporter (DAT), which, 
under basal conditions, takes up DA at the synaptic cleft from the presynaptic side 
where it can be recycled to help terminate DA receptor signaling [ 171 ]. Cocaine 
blocks DAT while amphetamine reverses transport resulting in increased NAc DA 
and reward. Neuronal nAChRs modulate the rewarding and reinforcing properties of 
psychostimulants. Nicotine preexposure potentiates self-administration of low doses 
of cocaine in rats and augments conditioned place preference in mice [ 172 ,  173 ], 
whereas mecamylamine reduces cocaine self-administration in rats and reduces 
low-dose cocaine place preference in mice [ 173 – 175 ]. Neuronal nAChRs that infl u-
ence psychostimulant reward are likely expressed at DAergic presynaptic terminals 
where they modulate DA release through cholinergic input from large aspiny 
cholinergic interneurons within the NAc. Cholinergic neuron activity, and hence 
cholinergic signaling, is critical for cocaine reward as the drug fails to condition a 
place preference if these interneurons are silenced [ 176 ]. Supporting a role for NAc 
DAergic presynaptic terminal nAChRs on cocaine reinforcement, infusion of meca-
mylamine or dhβe and MLA into the NAc reduces DA release elicited by an i.p. 
injection of cocaine in rats [ 177 ]. While the precise nAChR subtype involved in 
cocaine reward has not been fully elucidated, they most likely contain the β2 sub-
unit, as β2 KO show reduced CPP in response to low doses of cocaine [ 173 ].  

7     Neuronal nAChRs in Opioid Reward 

 Morphine and commonly abused prescription opioids are opioid receptor agonists. 
Like the psychostimulants, opioids do not interact with nAChRs directly. However, 
they do indirectly stimulate VTA DAergic neurons in the mesolimbic pathway by 
binding to and activating mu opioid receptors on VTA GABAergic interneurons and 
reducing interneuron activity [ 178 ]. Infusion of nicotine in the VTA potentiates 
morphine-conditioned place preference, whereas infusion of mecamylamine into 
the VTA inhibits morphine CPP suggesting a role for VTA nAChRs in opioid reward 
[ 179 ]. In addition, dhβe or MLA blocks drug priming-induced reinstatement of 
morphine CPP [ 180 ]. However, few studies have directly examined the role of 
nAChRs in the mesolimbic pathway in opioid reward. Thus, further studies to identify 
the mechanism of action of nAChRs in opioid reward are needed.  

8     Conclusions 

 Although neuronal nAChRs are expressed throughout the CNS, most studies exam-
ining the role of nAChRs in drug reward have focused on the DAergic mesolimbic 
reward circuitry. Indeed, nAChRs are robustly expressed within the mesolimbic cir-
cuitry in multiple neuronal subpopulation including DAergic projection neurons 
and GABAergic interneuron among others. Direct stimulation of α4β2, α6, and/or 
α4α6* nAChRs within the VTA by nicotine underlies the acute rewarding properties 
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of the drug. Neuronal nAChRs containing the α4 and/or α6 subunit also contribute 
to alcohol reward. Ethanol potentiates the response to ACh at these receptors. 
In addition, ethanol may enhance release of ACh in the VTA to activate DAergic 
neurons in this pathway through indirect nAChR activation. Emerging evidence 
indicates that nAChRs within the mesolimbic pathway may also modestly affect 
psychostimulant and opioid reward through modulation of DA release in the NAc. 
Identifi cation of nAChR subtypes involved in drug reward may provide novel 
molecular targets for therapeutics designed to help treat drug addiction.     
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