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Abstract  The regulation of protein folding is an important aspect of systems biol-
ogy that is often overlooked in the modern age of post-genomics. Although the 
transcriptome and proteome can now be relatively easily quantified, the protein 
complement in a cell must also be properly folded and delivered to the cognate 
site of action in order to carry out its function. To understand how a eukaryotic 
cell can accomplish this task requires an understanding of how the cell’s chaper-
one complement acts to mediate the folding of its substrates. In this chapter, we 
examine and combine the data available from recent landmark studies to measure 
the chaperone interactome (the “chaperome”) in the model eukaryote Baker’s yeast 
with recent attempts to quantify the levels of yeast proteins. This computational 
analysis leads to an independent in silico assessment of the workload placed upon 
the chaperones in a cell, and shows there is a direct relationship between chaperone 
abundance and properties of their targets. By further considering protein turnover 
data, we are able to consider the folding flux passing through individual chaperones 
and chaperone groups, enabling a revaluation of the workload placed upon them, 
which we estimate exceeds 60 % of the cell’s protein complement. We also cluster 
chaperones into coherent groups based on a filtered set of targets. These clusters 
reproduce some well-known features of the chaperone classes, as well as showing 
biases in subcellular location of the chaperone targets by factoring in the flux. These 
integrated analyses show how systems approaches can shed light on proteostasis 
defined by throughput in the chaperone network.

1  Introduction

Quantitative proteomics is one of the most rapidly advancing fields in the post ge-
nomic era. Arguably, it has lagged behind the field of transcriptomics, via micro-
arrays or more recently next generation sequencing (ribonucleic acid, RNA-seq), 
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as it has struggled to describe the complement of proteins expressed in a cell in a 
“genome-wide” fashion. Also, and more importantly, mass spectrometry based pro-
teomics is not inherently quantitative, whereas transcriptomics is. This is a crucial 
issue for the biologist wishing to understand a process or pathway at the systems 
level, since this usually requires knowledge of the levels of some of the compo-
nents, either to parameterize models or to assess the merits of predictions which 
point to quantitative changes. Moreover, proteins are usually the primary molecules 
responsible for the delivery of biological function, and the existence of a transcript 
is not necessarily a guarantee of the presence of a folded, functional protein. Hence, 
there are many good reasons to want to study the proteome in a comprehensive and 
quantitative fashion, despite the challenges in doing so.

Most modern proteomics relies on mass spectrometry as the underpinning ana-
lytical technology. Advances in instrumentation, chromatography, and allied infor-
matics support the identification and measurement of abundance of an increasingly 
larger fraction of the protein complement derived from a tissue or cellular context. 
Quantitation is usually achieved as a relative measure by a variety of techniques 
that use labelled or label-free approaches to estimate changes in the analytical signal 
between two samples. These quantitative measurements can then aide our under-
standing of the mechanisms by which gene products are regulated and organized in 
order to elicit their cellular effects. Such data is important for generating systems-
level models of an organism or a functional pathway, which encompass the interac-
tions of the genome, transcriptome, proteome, and metabolome to describe cellular 
regulation and reactions to environmental stress. It is this interdisciplinary “systems 
biology” approach that has allowed the expansion of the relatively simple “central 
dogma” termed by Crick where “DNA makes RNA makes protein,” to complex 
systems level models that incorporate multiple isoforms and interactions.

Recent studies of the model organism Saccharomyces cerevisiae, Baker’s yeast, 
have exemplified this paradigm, providing data for the entire transcriptome [1], in-
teractome [2, 3], translational control rates [4], protein localisation [5], and protein 
turnover rates [6, 7]. In addition, yeast has also been chosen for several proteome-
wide quantitative studies [8–10]. Integration of such data has been used to build a 
metabolic model in yeast, using glycolysis as proof of principle [11, 12]. Advances 
have also been made for mammalian systems where transcription and translation 
data has been integrated with both RNA and protein turnover to develop whole 
genome models [13], which support global estimates of the relative importance of 
translational control in regulating gene expression.

Although excellent progress has been made, systems biology still faces many 
challenges when trying to integrate the vast information that is required to build 
suitable models to adequately define cellular regulation. Indeed, although we can 
now measure protein levels relatively routinely, the final and proper function of a 
protein (or protein complex) requires that it has the correct structure and is localized 
to the correct part of the cell. The subset of proteins assigned this responsibility are 
the chaperones, which facilitate correct protein folding, help recognize mis-folding, 
and prevent protein aggregation within the cell. In eukaryotes, chaperones act in a 
translation-coupled mechanism and recognize nascent polypeptide chains, thereby 
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ensuring correct de novo folding as translation progresses [14]. Once translated 
and correctly folded, these proteins are then passed through the general chaperone 
network and are transported to their correct subcellular localization [15]. Given 
their critical role in the general maintenance of proteostatsis, many chaperones are 
heavily involved in stress responses, such as the aptly named heat shock proteins 
(HSPs), due to their thermo-reactive response [16].

In yeast, there are 63 proteins commonly characterized as chaperones, which 
have been the subject of a variety of studies [14, 17, 18]. More recently, the focus 
has moved to a more global view of chaperone function. Houry and colleagues have 
undertaken a comprehensive affinity purification analysis coupled with mass spec-
trometry in an attempt to define protein-protein interactions (PPIs) between yeast 
chaperones and their protein targets [19]. This has expanded on previous network-
based analyses that have revealed two distinct networks; de novo protein folding 
and stress response [14]. Further work on the chaperone interaction network from 
Gong et al. [19] focused on clustering chaperones based on their target interactions, 
uncovering 10 chaperone modules that share common features among chaperone 
targets such as evolutionary rates and expression levels [20].

However, as already suggested, one dimension that must also be considered is 
quantitation; individual proteins are present in different concentrations in the cell, 
and therefore the workload placed on individual chaperones will vary depending on 
the abundance of the substrate/targets. Hence, one should also factor in the target 
workload (or flux) of each chaperone (or chaperone complex) in terms of protein 
abundance, or more formally, the total synthesis rate of each protein which can 
be estimated from protein turnover rates at steady state. To this end, we extend 
upon previous work that has attempted to characterize the yeast proteome using 
quantitative approaches, by characterizing the level of the chaperones using the 
QconCAT approach [21] and integrating other publicly available quantitative da-
tasets, including protein turnover [6]. The QconCAT approach uses stable isotopic 
heavy-labelled peptide surrogates which are used as an internal standard for specific 
yeast proteins to provide absolute quantitation via mass spectrometry (see next sec-
tion for more details). We show that there is a correlation between the abundance of 
chaperones and the target “folding” workload based on the number of targets and 
the target abundance. This is expanded further to estimate folding flux through each 
chaperone (and chaperone complex) using protein turnover rates. We describe these 
findings in the context of biological annotation which include subcellular localiza-
tion and protein essentiality.

2  Chaperone Quantification

As part of a larger project to quantify the proteome of S. cerevisiae using QconCAT 
technology [21, 22], three QconCATs were designed to quantify the 63 known chap-
erones in yeast. Each QconCAT was constructed as a concatamer of heavy-labelled 
surrogate peptides where by each chaperone protein is represented by two of these 
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target Q-peptides. These recombinant proteins were expressed in E. coli grown in 
media containing stable isotope-labelled arginine and lysine to produce a heavy-
labelled QconCAT. The “heavy” QconCAT was used as a reference and spiked-in in 
known amounts to the yeast protein sample to enable peptide quantification using a 
selective reaction monitoring (SRM) targeted approach. Each peptide was targeted 
by three transitions for both the light (target) peptide and the heavy (reference) 
peptide. Quantification values were calculated from the ratio between the heavy 
and light extracted ion chromatograms (XICs), averaged across four biological rep-
licates to obtain peptide copies per cell (cpc). Peptide ratios were acquired using 
the mProphet pipeline [23], which provides false discovery rate (FDR) estimates 
for the sets of transitions used for each peptide and therefore an estimate of reli-
ability. Final protein abundances were taken as either the average of the peptide 
quantification values if they were in agreement, the minimum of the two peptides if 
the higher abundant peptide contained tryptophan, or the maximum peptide value 
for the remaining cases. The protein quantification values were then assigned into 
one of three classes; type A proteins where acceptable data above noise for both the 
target and reference peptides is obtained, type B where only the reference peptide 
gave acceptable data, and type C where neither gave acceptable data. In the case of 
type B proteins, we are still able to provide an upper limit of quantification as we 
know the concentration of the heavy-labelled peptide surrogate and the minimum 
spike-in level where it is detected in the XIC.

Using our targeted quantification approach, we obtained abundance values for 
51 of the 63 chaperones in yeast [24], over a dynamic range covering three orders 
of magnitude, from 250 to 440,000 cpc as shown in Fig. 1.1. This list contains some 
chaperones that have eluded previous epitope-tagging approaches, including those 
that are part of the TRiC/CCT complex, and some proteins that have escaped both 
label-mediated and label-free MS-based studies. We ascribe our improved ability 
to quantify these particular proteins to the targeted nature of the QconCAT-SRM 
approach, which not only eliminates ambiguity by selecting unique peptides and 
associated productions but is credited with the greatest sensitivity in targeting low 
abundance proteins [25]. While many proteins are open to quantitation via label-
free means to a low level, we believe that targeted approaches are still the gold 
standard for accurate absolute quantitation of proteins, and in our hands are able to 
measure down to around 100 cpc with coefficient of variation values (CVs) across 
replicates routinely less than 20 %.

3  Chaperone Target Quantitation

At present, a complete set of absolute quantitation values for yeast proteins de-
rived via SRM- targeted mass spectrometry is not available. However there are a 
wide range of proteome-wide quantification data sets in yeast derived from other 
approaches, catalogued in the protein abundance database PaxDb [26]. We have 
used this useful data resource for our studies. PaxDb supplies all protein abundance 
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values in consistent units. Since protein quantitative values from different studies 
vary in nature, it is necessary to normalize relative or absolute values to parts per 
million (ppm), permitting comparisons between each of the methods. In order for 
our chaperone QconCAT abundance values to be compared to these other approach-
es they also need to be converted to ppm from cpc. To do this, we made the assump-
tion of 60 million protein molecules per yeast cell and used this value to convert to 
ppm. While different analytical methods demonstrate positive correlations one to 
another (c.f. Brownridge et al. [22]), a comparison of all the quantitative methods 
with each other including our QconCAT approach and label-free acquisitions for 
the same yeast samples (HDMSE, Q-Exactive, and SAX), shows considerable dis-
crepancy between the techniques; both in the case of just the chaperones (Fig. 1.2a) 
and the ~ 1000 proteins quantified by our project using QconCATs so far (Fig. 1.2b).

The HDMSE and Q-Exactive label-free data were obtained using a Top3 ap-
proach, which is described in more detail in [27]. Briefly, the HDMSE was acquired 
on a Waters SynaptTM G2, processed using Protein Lynx Global Server v2.5 using 

Fig. 1.2   a Dendrograms highlighting the differences between protein quantitation datasets for 
chaperones only and b for the 1000 proteins acquired via QconCAT-SRM on an internal project 
to date. External datasets were taken from the PaxDb database [26], where all protein values were 
normalized to parts per million ( ppm) values
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the Hi3 approach [28], and the Q-Exactive was acquired on a Thermo Scientific 
Q-ExactiveTM instrument, processed using Progenesis (Nonlinear Dynamics) and 
Progenesis PostProcessor [29]. The SAX method was obtained by fractionating the 
sample using Off-Gel fractionation followed by label-free data acquisition for each 
fraction on a Thermo Scientific Q-Exactive and processed using Progenesis (Non-
linear Dynamics) and Progenesis PostProcessor [29]. We are indebted to our col-
leagues Dean Hammond, Philip Brownridge, and Rob Beynon at the University of 
Liverpool, UK for these data sets.

The most striking outcome of the clustering is the separation between mass 
spectrometry-based approaches and epitope-tagging-based approaches (Ghaemag-
hammi and Newman datasets), which co-cluster in unique clades. This is perhaps 
not surprising given the common analytical technique employed in the mass spec-
trometry grouping, which operates in a fundamentally different way to quantitative 
tagging methods that exploit antibody technology. Both have their advantages and 
disadvantages, but it is worth noting that the mass spectrometry community have 
recently thrown down the gauntlet to the antibody-based methods [30]. Within the 
mass spectrometry-based clade, we note there is an apparent separation of the label-
free methods from the label-mediated approaches. These features are not perfectly 
conserved when considering the chaperone-only subset (Fig.  1.2a) compared to 
~ 1000 proteins (Fig. 1.2b), but overall, it is noticeable that the major difference be-
tween all of the result sets appears to be methodological and not biological. This is 
exemplified by the GFP-tagging (green fluorescent protein) approach by Newman 
and colleagues [10] where despite being grown in both yeast extract peptone dex-
trose (YEPD) and sucrose deficient media (YMD)u, the two datasets cluster very 
closely together, both for the chaperone and 1000 protein subsets. This is in contrast 
to our label-free data acquisition on biologically identical yeast samples, but un-
dertaken by three different label-free methods using different mass spectrometers 
(HDMSE, Q-Exactive, and SAX on Figs. 1.2a and 1.2b); these are not so highly 
correlated, particularly for the chaperone subset. These dendograms suggest that 
there is less inherent variance in biological samples than that currently obtained by 
comparison of two alternate quantitative methods. The absolute data derived from 
the QconCAT approach produces different abundance values to both the label-free 
approaches, adding further evidence to this, though interestingly, it clusters closely 
to another label-mediated data set using stable isotope labeling by amino acids in 
cell culture (SILAC) [8].

Our experience when comparing these datasets suggests that methodological vari-
ance contributes more strongly than biological variance to the protein abundance, and 
we urge caution in attempting to merge or analyze quantitative data derived from mul-
tiple techniques, or even on different instruments. Although this appears to be a some-
what disappointing outcome, it should be noted that the studies considered here have 
not used the same yeast strain cultured in identical conditions, and despite this, there is 
still a good correlation between even the most disparate of results. Nevertheless, these 
findings provide further evidence that there are still large variations between quantita-
tive methodologies despite recent advancements in the field.

To examine this further, we extracted all the unique protein quantitation yeast da-
tasets from PaxDb. These included both tagging based datasets from Ghaemmaghami 
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et al. [9] and Newman et al. [10], the MS-based datasets from de Godoy et al. [8], Lu 
et al. [31], global proteome machine (GPM) [32], Peptide Atlas [33], and the PaxDb 
yeast-integrated dataset [26]. All datasets were collated by common protein in order 
to estimate the variation by method. We plot this data in Fig. 1.3 which shows the 
estimated CV percentage (CV%) plotted against protein abundance in ppm taken 
from the integrated PaxDB dataset, which is the most comprehensive, as it is a 
weighted aggregate dataset of the other quantitative datasets [26]. This striking plot 
shows that generally the CV % exceeds 100 % of the protein ppm value; equivalent 
to a 2x fold change in the protein abundance estimate. This might seem like a large 
value, but this represents a slightly artificial calculation using protein quantitative 
data spanning almost 10 years of research, albeit on a well-characterized model 
eukaryote. It suggests that using such a range of methods one can expect to estimate 
protein abundance fold changes to within two-fold accuracy. This contrasts with the 
typical 10–25 % CV cited by targeted proteomics studies using SRM approaches 
[22, 24, 34, 35] which appear more robust. Regardless, we suggest that quantitative 
proteomics still has work to do to define a definitive absolute quantitative dataset 
for the complete yeast proteome.

A closer look at specific chaperones and chaperone complexes across the meth-
ods highlights some of their shortcomings. Taking the chaperonin-containing TCP1 
(CCT) complex as an example, we note that this set of chaperones is covered poor-

Fig. 1.3   Scatter plot of the coefficient of variances (% CV) of all yeast protein abundance mea-
surements, in parts per million, from QconCAT-SRM, HDMSE, Q-Exactive, SAX, and all PaxDb 
datasets plotted against a representative protein abundance. The average (mean) % CV across all 
datasets is 97 %. As can be seen, there is a modest, but significant, negative correlation (R2 = 0.11, 
P < 2.2e−16) between protein abundance and % CV across independent determinations of protein 
abundance. This suggests there is a weak negative relationship between protein abundance and the 
ability of independent methods to quantify its abundance as there appears to be greater variance 
for low abundance proteins, as would be expected
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ly by the epitope-tagging methods. In fact, CCT4 is the only protein of the eight 
members of this complex quantified in any of these tagging datasets. Conversely, 
the mass spectrometry based methods fared much better and consistently acquired 
abundances for seven or all eight of the CCT chaperones. This outcome is not sur-
prising when taken in context with the structure and function of the CCT chaper-
ones. The CCT proteins form an 8 protein heteromeric ring structure; all in a one-
to-one stoichiometry [36]. It seems reasonable to assume that this structure could 
be disturbed or disrupted by epitope-tagging methods, when an additional protein 
is tagged on to any one of the CCT chaperones. Indeed, given that the CCT chaper-
one complex mediates the folding of a large majority of essential proteins with the 
cell [37], one would expect that any perturbations of this folding mechanism could 
lead to incorrect folding of these essential proteins and as a result be lethal to the 
cell. Interestingly, the CV calculated across all the quantitative methods is lowest 
for the CCT chaperones (44% CV, compared to 84–177% for other classes) when 
compared to the chaperone groups defined in [19], which is unsurprising given the 
one-to-one structural stoichiometry.

4 � A Correlation Between Chaperone and Substrate 
Abundance

Chaperones operate by interacting with substrate proteins to ensure correct fold-
ing during protein synthesis, to stabilize protein structure during environmental 
stress, and to mediate their transport to their correct locations within the cell [38]. 
To identify chaperone substrate interactions, Gong and colleagues [19] undertook 
a proteome-wide affinity purification study in S. cerevisiae and produced a chaper-
one-interaction map containing 4340 candidate chaperone substrates. However, it 
is widely known that tandem affinity experiments have a tendency to contain false-
positives due to nonspecific binding or common contaminants. Indeed, a variety 
of sophisticated informatics approaches have been generated to help deal with this 
[39–41], as well as a dedicated database for biologists to filter their data [42]. Here, 
to circumvent this, we used a simple consistency based approach and constructed 
a “high-quality” interaction dataset using three public PPI repositories (STRING 
[43], BioGRID [44], and MIPS [45]). All chaperone interactor pairs were obtained 
from each repository (in yeast), retaining only those pairings where the reciprocal 
(substrate-chaperone) interaction was also observed. For this study, we also ex-
cluded chaperone-chaperone interactions, focusing solely on chaperone-target in-
teractions. Additionally, for STRING PPI pairs, a confidence score cutoff of 0.7 
was used, retaining only those with superior scores. The three PPI datasets were 
then combined into a “high-quality” dataset where each interaction had to be pres-
ent in at least two of the three datasets. This combined dataset contained 60 of the 
63 known chaperones, 1711 chaperone substrates, 3649 interactions, and contained 
all but one of the reciprocal interactions identified by Gong et al. [19]. This qualita-
tive interaction dataset, however, lacks protein abundances required to understand 
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the quantitative workload of each chaperone (and chaperone complex) and only 
provides an account of the different substrates that each chaperone interacts with.

In order to better characterize the workload placed on individual chaperones 
and chaperone classes, the abundances of their substrate protein targets in the cell 
needs to be taken into account. In the first instance, we examined chaperone work-
load with a simple measure, by considering the relationship between the abundance 
of the chaperone itself compared to the number of different substrate interactions 
it has, under the assumed logic that the more abundant chaperones would have 
a higher number of interactors. No prior correlation has been observed by Gong 
and colleagues [19]. As we reported previously [24], using our filtered interaction 
dataset we find a significant correlation using the QconCAT chaperone abundance 
data, as shown in Fig. 1.4, resulting in a Spearman Rank (Rsp) correlation of 0.49 
( P < 0.00002). This correlation is also apparent across other quantitative datasets 
available from PaxDB, with Rsp ranging 0.08–0.54 (data not shown), and a signifi-
cant and positive correlation is present regardless of whether we filter the interac-
tome set or the quantitation data set selected from PaxDB. This supports the general 
hypothesis that those chaperones responsible for mediating the most folding in the 
cell are themselves generally highly abundant.

Fig. 1.4   Scatter plot of the number of chaperone interactors against chaperone abundance as mea-
sured by QconCAT-SRM mass spectrometry in our (CoPY) lab. There is a good linear correlation 
between the number of interactors and chaperone abundance (R2 = 0.25, P < 0.0002), suggesting 
that chaperones with more clients are themselves more abundant in steady state conditions. The 
chaperones have been colored according to their chaperone class (as shown in the key) to visual-
ize the spread of chaperone classes across the chaperone-interaction landscape. (Adapted from 
Brownridge [24])
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Figure 1.4 also shows how breaking the chaperones into classes, as reported by 
Gong et  al. [19], reveals general trends within the classes. For example, HSP40 
chaperones are observed here to be low-abundance proteins with fewer interac-
tions than many others. This is interesting, as they are generally considered as co-
chaperones of the more abundant HSP70 chaperones, which bind to Hsp70 partners 
via the ribosome-associated complex (RAC), mediating the folding of the majority 
of nascent peptides, and thereby regulating the various roles of their Hsp70 partners 
[15, 38, 46]. Indeed, we observe that the HSP70 class (and similarly SMALL class) 
chaperones are more abundant and have more interactions, which ties in with their 
known promiscuity and substantive role [38].

Although looking at the number of different substrate interactions of each chap-
erone yields valuable information regarding their diversity and specificities, it does 
not provide a full picture of the true workload placed on any given chaperone. In 
order to better characterize chaperone workload, we need to have a measure of the 
total amount or “volume” of protein, in terms of total cpc, that is being mediated by 
a chaperone. The volume of protein ( Vc) of a chaperone ( c) can easily be estimated 
from the total abundance ( CPCn) of all n substrates for c, as shown below.

Applying this methodology to consider the total cellular workload fundamentally 
changes the proportion of proteins mediated by chaperones when taking substrate 
volume and not just the number of substrates into account (Fig. 1.5). When consid-
ering just the number of interactors (taken from the unfiltered list from Gong and 

V cpcc

n

n= ∑
1

Fig. 1.5   Stacked bar charts showing the proportion of proteome folding mediated by chaperones, 
as determined by three different measures; the total number of interactors, the aggregated target 
abundance, and the aggregated target flux (molecules per minute) over the whole proteome. The 
latter is more representative of the true workload placed on chaperones in the cell, and is the larg-
est relative fraction
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colleagues), this shows that only 36 % of all yeast proteins undergo folding regula-
tion mediated by chaperones. However, when rescaling this calculation by incorpo-
rating protein abundance, using measurements taken from de Godoy et al. [8], this 
fraction dramatically increases to 57 % of the total protein volume in the cell. This 
reinforces the important role that chaperones play in proteostasis, since they are 
clearly responsible for the majority of protein folding by absolute molecular count.

Although this provides a better representation of chaperone workload, it ignores 
one important additional criterion; the workload of a chaperone cannot be expressed 
by a protein volume alone, as this is solely a static measure that ignores protein 
dynamics. Proteins are naturally synthesized and degraded at different rates. In or-
der to calculate the folding workload, we also need to take into account the protein 
turnover rates of a chaperone’s substrates. Fortunately, the majority of these have 
been measured using epitope-tagging techniques [6], and we were able to use their 
protein degradation rates ( kdeg) to estimate protein synthesis rates ( ksyn) for the sub-
strates of each chaperone.

The details are described more fully elsewhere [24], but briefly, this calculation 
presumes the cell is at steady state where protein synthesis and degradation rates are 

equal dCPC

dt
n =





0 . From this, we can estimate the rate of synthesis of individual 

proteins and presume that this flux in molecules per unit time is the responsibility 
of individual chaperones. This allows us to estimate the total mediation flux on a 
per chaperone basis, which in turn can then be used to estimate the total workload, 
or folding flux ( Fc), of a chaperone ( c) in terms of molecules per minute per cell.

To circumvent the issue of substrates being mediated by multiple chaperones, the 
flux values were divided equally pro rata among each chaperone. Any missing val-
ues were replaced by the geometric mean across the entire turnover dataset; this was 
to ensure the mean kdeg of the dataset remained unchanged. To calculate the indi-
vidual flux values Fc, we used data from the de Godoy estimation of yeast protein 
abundance taken from PaxDb [26], as opposed to our own QconCAT-SRM quanti-
tation, since this currently does not fully cover the yeast proteome.

We recognize that cellular growth rates have not been formally taken into ac-
count in our model, primarily because the protein abundances and turnover rates 
used here have been obtained using different experimental yeast studies where 
strains and growth rates are not directly matched. However, to consider growth rate 
formally would simply add an error constant to the calculated kdeg values that is 
equivalent to the dilution rate of cells grown under controlled system (e.g., chemo-
stat culture). Therefore, we believe the current calculations are still representative 
of the relative split of flux across the chaperone complement in yeast and despite the 

k cpc ksyn n deg= ×

F kc

n

syn= ∑
1
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assumptions made, these flux values are the most accurate proteome-wide estimates 
currently available.

Before considering the results of these calculations, it is worth putting this into a 
simple theoretical context describing how proteostasis can be maintained in the cell. 
This is schematized in Fig. 1.6, which shows different scenarios for regulating protein 
levels in the cell for a single example chaperone, Jac1. This chaperone has seven 
interactors in our filtered dataset, shown in the yellow concentric circle. The grey 
spheres broadly correspond to the protein abundance of each substrate with Tim50 be-
ing the highest. As can be seen in the red concentric circle, this protein also apparently 
has one of the shorter half-lives (shown by the stopwatch graphic), and hence, there 
is a particularly high-folding flux required. Tim50 is essential for protein transloca-
tion across the mitochondrial inner membrane and its loss can lead to programmed 
cell death [47, 48]. In contrast, Isa1, involved in iron-sulphur assembly displays a 
low flux, being a low-abundance protein with a relatively longer half-life, and unlike 
Tim50 is not essential. The three “levels” of control (chaperone interactions, substrate 
abundance, and substrate turnover) all relate to the overall folding workload on the 
cell, and we argue that it is the integrated view on the outside of the circles in Fig. 1.6 
which best represents the potential impact on chaperone function and workload.

Fig. 1.6   Different levels of chaperone flux, using Jac1 as an example. The concentric circles show 
an increasingly representative view of the true workload placed on a chaperone, which takes into 
account the number of chaperone interactors, the abundance of each target, and the turnover of the 
targets. Only by taking all three into account can the workload of the chaperone be properly estimated
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When applying this theory to estimate substrate flux values ( Fc) for each chap-
erone, we observe that the correlation with chaperone protein abundance gener-
ally increases; with Rsp ranging from 0.26 to 0.69 across the quantitative datasets 
[24]. As indicated by the strong Spearman correlation values, the more abundant 
proteins typically have a larger mediation workload in the cell, i.e., they fold/
translocate more substrates per minute within the cell, as one might expect. Intro-
ducing the concept of chaperone “efficiency” for chaperone-substrate pairs and 
calculating a median efficiency for each chaperone class allows us to examine 
this data further. We estimate efficiency by dividing the substrate flux of a chap-
erone ( Fc) by the abundance of the chaperone itself, reasoning that this effectively 
describes the number of substrate molecules per minute mediated by a single 
chaperone molecule. The ranges of efficiencies within each chaperone class are 
shown as a boxplot in Fig. 1.7. We see a broad range of values, but this suggests 
that most individual chaperone protein molecules are able to mediate the folding 
of more than one substrate molecule per minute. The prefoldin class appears to be 
particularly effective, acting as a major player in transporting proteins to the CCT 
complex, whose primary substrates are tubulin and actin. Here, the efficiency 
exceeds 10 molecules per chaperone per minute. The Hsp60 chaperones, which 
facilitate the transport and import of mitochondrial proteins, appear the least ef-
ficient by these criteria, perhaps because they are limited by mitochondrial import 
processes that do not want to be overloaded. Despite this apparently slow rate, 
Hsp60 is an essential gene [49].

Fig. 1.7   Boxplot showing the range of mediation efficiencies of chaperones in each chaperone 
class. The efficiency of all chaperones was calculated and the grouped by chaperone class to show 
the distribution differences by class. The pre-foldin ( PFD) class is shown to be generally the most 
efficient with a compact distribution. (Adapted from Brownridge [24])
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5  Chaperone Clustering and Annotation

As calculated above, the substrate flux of the chaperones provides a good estimate 
of the workload diversity placed on them. To extend this analysis further, it is in-
teresting to see how this workload is dispersed within the cell, in terms of function 
and localization of chaperone targets. It is already well recognized that many chap-
erones operate on substrates in, or destined for, different subcellular locations and 
we wished to examine this trend using the flux data. To do this, we used the high-
quality interaction dataset to compare substrate specificities across the chaperones, 
by first grouping the chaperones in to common clusters based on their substrate 
profiles. The chaperones were assigned a vector specifying each substrate (of the 
total substrates within the interaction dataset) as either a target (1), or not a target 
(0), for that chaperone. The chaperone vectors were then submitted to a standard 
hierarchical clustering algorithm based on the binary distance between the vectors. 
We then manually assigned the chaperones to nine distinct clusters using a single 
threshold value, as shown in Fig. 1.8. This produces a set of clusters which closely 
resemble the chaperone family classifications as described in Gong et al. [19] al-
though it is worth noting that these were arrived at completely independently, based 
only on chaperone target presence/absence. The clustering procedure carried out 
here is considerably simpler than that undertaken by Bogumil and colleagues [20], 
though we filter the interactome data prior to clustering, which derived a similar 
set of chaperone modules containing both chaperones and their substrate targets for 
common properties. Their modules were found to be enriched for common gene 
expression levels and evolutionary rates. Our simple procedure also generally re-
capitulates these well-known chaperone families and known relationships. For ex-
ample, the CCT complex members (an octamer of subunits) cluster together and 
form a single clade, as do the prefoldins. We also observed clustering of coupled 
chaperone sets, such as the Hsp70 and Hsp40 groups which function as cognate 
partners. For example, the red clade in the bottom right of the wheel contains the 
Ssb1 and Ssz1 (two Hsp70s) and Zuo1 (a cognate Hsp40) that are tightly coupled to 
the ribosome. These clades form coherent groups of chaperones/co-chaperones that 
can be considered to be acting on common substrate groups.

Another noteworthy feature is the “cluster” of singletons. These are formed as 
a group that do not share particularly tight clustering with any other chaperones, 
mostly possessing relatively few targets. They are predominantly Hsp40s, which is 
not unexpected given their regulatory role in mediating Hsp70 function. Hence, one 
would expect them to have relatively few direct substrates and our filtering steps 
when applied to the entire Gong data set would be expected to remove many of 
the weaker, indirect interactions. Similarly, our procedures currently do not include 
chaperone-chaperone interactions. These findings are also supported by Fig. 1.4, 
which highlights the reduced numbers of chaperone clients for most Hsp40s.

We next considered the subcellular location of the chaperones targets, which 
were assigned to subcellular compartments using the Yeast Gene Ontology Slim 
from the Saccharomyces cerevisiae database (SGD) [50]. This allowed us to 
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estimate the spread of chaperone workload across subcellular locations based on 
the ksyn values for folding flux estimated previously. For any substrates that were 
assigned to more than one cellular localization, the ksyn values were split pro rata 
between the parent chaperones. Although previous analyses had not observed any 
strong trends in terms of subcellular bias for given chaperones or classes [19], we 
reasoned this might be different when considering the total folding flux rather than 
simply counting the number of different targets.

Figure 1.8 shows the target workload/flux for eight of the nine clusters and il-
lustrates not only the differing roles between the clusters but also how the work-
load is distributed within a cluster. Indeed, there are several notable features of 
Fig. 1.8. As expected, some of the clusters show strong biases towards substrates 
destined for that location, such as the top blue cluster containing Hsp60, as well 
as other well-known mitochondrially active chaperones. We also see other strong 
biases, including the CCT complex which folds cytosolic actins and tubulins, and 
the Sec63 cluster that are coupled to endoplasmic reticulum (ER)-associated folding 
and import.

Fig. 1.8   Dendrogram wheel showing chaperones clustered by common target interactors. The 
chaperones were clustered using hierarchical clustering of the binary distance between their 
targets. Without any a priori information the clades formed are similar to the chaperone classes 
defined by Gong et  al. [19], such as the eight CCT chaperones highlighted in grey. The heat 
shock protein ( HSP)40 and HSP70 proteins generally cluster together ( dark blue, light blue, and 
maroon) supporting the understanding that HSP40 are co-chaperones to HSP70 chaperones. In 
addition to the dendrogram wheel, each cluster is associated with a pie chart representing the 
subcellular localization of the cluster targets, weighted by the protein flux (as opposed to counts 
or protein abundance). These uncover diverse subcellular roles of chaperone mediation by cluster, 
such as the large ribosome compartment of the grey (CCT) and red (largely HSP70) clusters sug-
gesting that these chaperones are heavily involved in mediation of proteins required for translation
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6  Summary

The work showcased in this chapter highlights how systems biology approaches 
can shed light on the mechanisms by which the cell maintains proteostasis, and 
manages the complement of chaperones to ensure correct protein folding on a cel-
lular basis. This is only possible through a lot of hard work and diligence on the 
part of many groups, to determine the chaperone interactome network via a variety 
of techniques, coupled to the determination of extensive abundance and turnover 
data sets. The latter is particularly important, since it represents a tractable way to 
measure protein-folding rates under steady state conditions and allow us to infer 
rates of protein synthesis. In other words, we consider this to be the folding flux or 
workload placed on chaperones within the network, which provides a more holistic 
understanding of the demand placed on these components than simply counting the 
number of different protein clients each chaperone has.

The clustered groups of chaperones also show important features that tally with 
expectation in the literature. We have probably only scratched the surface of the 
computational analyses that can be performed. To extend this further requires the 
construction of integrated models of proteostasis that can predict how the cell deals 
with these processes under perturbation, such as a stress (e.g., heat shock or oxida-
tive stress). This is a current focus of research in our laboratory, coupled to quanti-
tation of the chaperome players via mass spectrometry. We believe that the recent 
advances made in characterizing the chaperome network structure, coupled to the 
increasing capacity and decreasing cost of quantitative proteomics, will make this 
tractable and lead to a much better understanding of how cells manage their protein 
complement in changing environments.
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