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    Chapter 17   

 Classifi cation of Human Leukocyte Antigen (HLA) 
Supertypes 

           Mingjun     Wang      and     Mogens     H.     Claesson   

    Abstract 

   Identifi cation of new antigenic peptides, derived from infectious agents or cancer cells, which bind to 
human leukocyte antigen (HLA) class I and II molecules, is of importance for the development of new 
effective vaccines capable of activating the cellular arm of the immune response. However, the barrier to 
the development of peptide-based vaccines with maximum population coverage is that the restricting HLA 
genes are extremely polymorphic resulting in a vast diversity of peptide-binding HLA specifi cities and a 
low population coverage for any given peptide–HLA specifi city. One way to reduce this complexity is to 
group thousands of different HLA molecules into several so-called HLA supertypes: a classifi cation that 
refers to a group of HLA alleles with largely overlapping peptide binding specifi cities. In this chapter, we 
focus on the state-of-the-art classifi cation of HLA supertypes including HLA-I supertypes and HLA-II 
supertypes and their application in development of peptide-based vaccines.  
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1      Introduction 

 The immune system, including the innate and adaptive as well as 
overlapping systems, plays a pivotal role in the defense against viral 
or bacterial infections, immune homeostasis, and cancer surveil-
lance. Within the immune system, T lymphocytes are crucial for 
adaptive immune responses, and are activated upon recognition of 
peptides displayed by human leukocyte antigen class I (HLA-I) or 
class-II (HLA-II) molecules at the surfaces of antigen-presenting 
cells (APCs). T lymphocytes express the T cell receptor (TCR) that 
recognizes specifi c peptides, which have been processed and pre-
sented in combination with an HLA molecule. There are two 
major subtypes of T lymphocytes: CD8 +  cytotoxic T cells (CTLs) 
and CD4 +  helper T cells. CTLs recognize peptides in the context 
of HLA-I molecules, while CD4 +  helper T cells recognize peptides 
associated with HLA-II molecules. The functional activity of these 



310

two subsets of T cells is said to be restricted by HLA-I and -II 
molecules, respectively. 

 It is known that CTLs play a major role in killing tumor cells 
[ 1 ,  2 ] and controlling viral or bacterial infections [ 3 – 7 ], while 
CD4 +  T cells are required for priming and expansion of naive CD8 +  
T cells as well as secondary expansion of CD8 +  memory T cells 
[ 8 – 12 ]. It might therefore be of critical importance to incorporate 
both HLA-I- and -II-restricted epitopes in peptide-based vaccines 
to obtain participation of both CD4 +  and CD8 +  T cells for genera-
tion of strong and long-lasting immunity. 

 Thus, identifi cation of new antigenic peptides, derived from 
infectious agents or tumor antigens, which may bind to HLA-I or 
HLA-II molecules in exchange with self-peptides normally occu-
pying the HLA-binding site ( see  below), is important for develop-
ing new effective vaccines capable of activating the cellular arm of 
the immune responses. However, the barrier to development of 
peptide-based vaccines with maximum population coverage is that 
the restricting HLA genes are extremely polymorphic resulting in 
a vast diversity of peptide-binding HLA specifi cities and a low pop-
ulation coverage for any given peptide–HLA specifi city. As of April 
2013, it has been reported that there are 7,089 HLA-I alleles and 
2,065 HLA-II alleles (  http://hla.alleles.org    ). Undoubtedly, these 
numbers will be further increased in the future. To reduce this 
complexity, one option is to group thousands of different HLA 
molecules into clusters of several so-called HLA supertypes: a clas-
sifi cation that refers to a group of HLA alleles with largely overlap-
ping peptide binding specifi cities. In this chapter, we discuss the 
state-of-the-art classifi cation of HLA-I and HLA-II supertypes and 
their application in development of peptide-based vaccines.  

2    HLA-I Molecule and Assembly of HLA-I Peptide Complex 

 The major histocompatibility complex class I (MHC-I) antigens 
are referred to as the human leukocyte antigens class I (HLA-A, 
-B, and -C) and as H-2 class I antigens (K, D, and L) in mice. 
HLA-I antigens consist of three non-covalently associated compo-
nents: a 45 kDa glycosylated amino acid (AA) heavy chain (HC), a 
12 kDa light chain (beta 2 microglobulin, β2m), and a short 8–10 
AA self-peptide. The heavy chain of HLA-I consists of about 340 
AA residues, including a cytoplasmic region (about 30 AA resi-
dues), a transmembrane region (about 40 AA residues), and an 
extracellular region composed of three immunoglobulin-like 
domains (α1, α2, and α3), each consisting of approximately 90 
AA. The α1 and α2 domains form a peptide-binding groove and 
contain the positions contributing to the binding pockets for the 
peptide and T cell receptors. The binding groove is divided into six 
distinct pockets (A–F) based on chemical and physical characteristics; 
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the most important pockets for peptide binding are the B and the 
F pockets. The membrane-proximal α3 domain of the HC con-
tains a binding site for the co-stimulatory molecule CD8 [ 13 ] 
expressed by CTLs, which play an important enhancing role in 
killing virus-infected cells and cancer cells. The α1 and α2 domains 
consist of two segmented alpha helices forming the walls and eight 
antiparallel β strands forming the fl oor—together forming a unique 
peptide-binding groove, which is the site where the self (or foreign 
antigen-derived) peptide (8–10 AA) binds to the polymorphic 
parts of the HC and is presented to peptide-specifi c CTL for scru-
tiny. β2m is non-covalently associated with the extracellular region 
of the HLA-I heavy chain by non-covalent interactions with α2 
and α3 domains [ 14 ]. β2m is essential for the correct conformation 
of the peptide-binding groove of the heavy chain and stabilizes the 
HLA-I antigen peptide complex on the cell surface. Thus, β2m 
indirectly participates in the antigen presentation to specifi c T-cell 
receptors of CTL [ 15 – 17 ]. 

 The assembly of HLA-I peptide complex occurs in the endo-
plasmic reticulum (ER). Initially, the HLA-I HC associates with 
the chaperone calnexin (CNX) initiating an early folding and a 
disulfi de bond formation within the HC. The newly synthesized 
HLA-I HC then associates with β2m to form heterodimer. This 
heterodimer is rapidly recruited into the peptide-loading complex 
(PLC) consisting of a transporter associated with antigen process-
ing (TAP), and the chaperones tapasin, calreticulin (CRT), and 
ERp57. The HLA-I HC/β2m heterodimer is now ready for pep-
tide loading. Peptides, both self- and pathogen-derived, are pre-
dominantly generated in the cytosol by the proteasome to degrade 
cytosolic proteins into short peptides, although a proteasome- 
independent peptide produced directly by insulin-degrading 
enzyme has been recently documented [ 18 ]. Thereafter, the pep-
tides are transported into the ER by the TAP1 and TAP2. These 
peptides are further trimmed by aminopeptidase ERAAP1 and 
ERAAP2 to 8–10 AA, a length appropriate for HLA-I binding. 
Once HLA-I/HC-β2m dimers, physically associated with PLC, 
bind a subset of high-affi nity peptides, the fully assembled MHC-I 
peptide complexes are released from PLC and transported via the 
Golgi apparatus to the cell surface, where the peptides are pre-
sented by HLA-I to CTL for scrutiny ( see  details in reviews 
[ 19 ,  20 ]).  

3    HLA-II Molecule and Antigen-Presenting Pathway 

 The HLA-II molecule consists of two chains: α and β chain (each 
one with two domains: α1 and α2, β1 and β2) and a self-peptide 
with 13–25 AA located in a cleft formed by the α1 and β1 domains. 
Classical HLA-II molecules include HLA-DR, HLA-DQ, and 
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HLA-DP and are expressed mostly in the membrane of the 
professional antigen-presenting cells, where they present processed 
extracellular antigenic peptides to CD4 +  T cells. In contrast to the 
antigen-binding groove of HLA-I molecule, which is closed at 
each end, the antigen-binding groove of HLA-II molecules is open 
at both ends and allows longer peptides (13–25 AA) to be loaded 
[ 21 ,  22 ]. During synthesis of HLA-II molecules in the ER, the α 
and β chains are produced and associate with an invariant chain, 
which stabilizes the HLA-II molecule and prevents it from binding 
of intracellular peptides or peptides from the endogenous pathway. 
The invariant chain directs transportation of HLA-II from the ER 
to the Golgi complex, followed by fusion with late endosomes 
which contain peptides derived from endocytosed, degraded pro-
teins (self or foreign). The invariant chain is then cleaved by cathep-
sins to form a small fragment known as CLIP, which occupies the 
peptide-binding groove of the HLA-II molecules. HLA-DM 
 facilitates CLIP removal and makes the peptide-binding groove of 
HLA-II ready for peptide loading before the HLA-II-peptide 
complex migrates to the cell surfaces to be scrutinized by CD4 +  T 
cells [ 23 ].  

4    Classifi cation of Supertypes 

  The concept of supertypes was fi rstly introduced by Alessandro 
Sette’s group in 1995 [ 24 ,  25 ]. The defi nition of an HLA super-
type is that HLA molecules with similar peptide binding features 
are grouped into one supertype; this means that if a peptide is able 
to bind to one allele within a supertype, it can also bind to all other 
alleles in this supertype. In practice, actually only a few peptides 
that are able to bind to one allele in a supertype can bind to all the 
other alleles within the supertype. To date, many methods have 
been used to defi ne HLA-I supertypes, including structural simi-
larities, shared peptide-binding motifs, and identifi cation of cross- 
reacting peptides [ 26 – 29 ]. Based on motifs derived from binding 
data or sequencing of endogenously bound peptides, along with 
simple structural analyses, Sette and Sidney [ 30 ] defi ned nine 
supertypes (HLA-A1, -A2, -A3, -A24, -B7, -B27, -B44, -B58, 
-B62), which were reported to cover most of the HLA-A and -B 
polymorphisms. Subsequently, Ole Lund’s group [ 26 ] constructed 
hidden Markov models (HMMs) [ 31 ] for HLA-I molecules using 
a Gibbs sampling procedure [ 32 ] and defi ned a similarity measure 
between these sequence motifs. By using this similarity to cluster 
alleles into supertypes, Ole Lund’s group [ 26 ] further defi ned 
three new HLA-I supertypes (HLA-A26, -B8, and -B39), in addi-
tion to the nine supertypes described previously by Alessandro 
Sette’s group [ 30 ], which was based on about 100 HLA-I peptide 
interactions. In the past few years, a lot of binding data have been 
generated; MHC-binding motif information is readily accessible 
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(  http://www.iedb.org    ), and MHC sequence data are also available 
in the IMGT (the international ImMunoGeneTics information 
system:   http://www.imgt.org    ) database. In 2008 Alessandro 
Sette’s group analyzed the updated list of alleles available through 
IMGT using a simple approach largely based on compilation of 
published motifs, binding data, and analyses of shared repertoires 
of binding peptides, in combination with clustering based on the 
primary sequence of the B and F peptide-binding pockets [ 29 ]. 
They provided updated supertype assignments, with new assign-
ments for about 1,000 different HLA-I alleles, which is about a 
tenfold increase in the number of alleles compared to their original 
classifi cation done in 1999 [ 30 ]. In the updated HLA-I classifi ca-
tion, Alessandro Sette’s group found that about 80 % of the 945 
alleles examined were classifi ed into one of the nine supertypes 
identifi ed previously [ 30 ], and they did not suggest the existence 
of any other novel supertypes. However, they found that some 
alleles have specifi cities spanning two different supertypes, nine 
alleles share features of both the A01 and A03 supertypes, and 
another ten alleles have a specifi city overlapping the A01 and A24 
supertypes [ 29 ]. In addition, some alleles could not be assigned to 
any supertypes known today on the basis of the criteria mentioned 
above; thus these unclassifi ed alleles remain to be addressed. 

 In summary, the updated HLA-I classifi cation described by 
Alessandro Sette’s group [ 29 ] is in agreement with those defi ned 
by other approaches from the other groups [ 26 ,  33 ,  34 ] including 
Ole Lund’s group, and is now widely accepted and has been used 
for development of peptide-based vaccines [ 29 ,  35 ,  36 ].  

  The structural composition between HLA-I and HLA-II mole-
cules is fundamentally different, thus leading to very different 
binding characteristics. The binding groove is closed at both ends 
in an HLA-I molecule, while the peptide-binding groove of 
HLA-II molecules is open at both ends, which allow the binding 
of longer peptides (13–25 AA residues) than that for HLA-I mol-
ecules. A deeper understanding of the polymorphism of HLA-II 
molecules will contribute signifi cantly to HLA-II-binding peptide 
prediction and classifi cation of supertypes. 

 In contrast to HLA-I supertypes, HLA-II supertypes have 
been less intensively studied, although a few studies about HLA-II 
supertypes [ 26 ,  37 – 41 ] have been reported. One important rea-
son is that peptide binding data for HLA-II molecules is less avail-
able than those for HLA-I molecules due to the complexity of 
HLA-II structure. Nevertheless, studies have suggested that many 
DR molecules [ 26 ,  37 ,  38 ] and many DP molecules [ 40 ,  42 ] can 
be grouped into supertypes. In 1998, Ou et al. [ 38 ] grouped 
HLA-DR molecules into seven different functional supertypes on 
the basis of their ability to bind and present antigenic peptides to 
T cells and their association with susceptibility or resistance to disease. 
In 2002, Castelli et al. [ 40 ] defi ned an HLA-DP4 supertype and 
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supported the existence of three main binding supertypes among 
HLA-DP molecules. In 2005, Doytchinova et al. [ 37 ] applied a 
combined bioinformatics approach using both protein sequence 
and structural data, to 2,225 HLA-II molecules, to detect simi-
larities in their peptide-binding sites for defi nition of HLA-II 
supertypes. They defi ned 12 HLA-II supertypes, including fi ve 
DRs (DR1, DR3, DR4, DR5, and DR9), three DQs (DQ1, DQ2, 
and DQ3), and four DPs (DPw1, DPw2, DPw4, and DPw6). In 
2011, Greenbaum et al. [ 41 ] determined the binding capacity of 
a large panel of non-redundant peptides for a set of 27 common 
HLA DR, DQ, and DP molecules. The measured binding data 
were then used to defi ne class II supertypes on the basis of shared 
 binding repertoires. Seven different supertypes (main DR, DR4, 
DRB3, main DQ, DQ7, main DP, and DP2) were defi ned. 
Subsequently, according to motif-based supertype classifi cation 
[ 27 ], seven different supertypes were defi ned after the analysis of 
27 HLA II proteins described in a previous report [ 41 ]. All the 
molecules belonging to the DP genetic locus (DPB1*0101, 
DPB1*0201, DPB1*0401, DPB1*0402, DPB1*0501, and 
DPB1*1401) were grouped into a single supertype; DQ proteins 
were grouped into two different supertypes, each containing 
three HLAs: (DQB1*0301, DQB1*0302, DQB1*0401) and 
(DQB1*0201, DQB1*0501, DQB1*0602). The motif-based 
classifi cation of the DR proteins is less defi ned compared with the 
other loci. The HLA-DR can be grouped into four supertypes: 
(DRB1*0401, DRB1*0405, DRB1*0802, DRB1*1101), 
(DRB3*0101, DRB3*0202), (DRB1*0301, DRB1*1302), and 
the fourth containing the remaining DR proteins. Functional and 
motif-based clustering of 27 defi ned HLA-II molecules revealed 
the presence of proteins sharing both functional and structural 
properties, thus supporting the concept of HLA-II supertypes.   

5    HLA Supertypes and Vaccines 

 To date, one of the major drawbacks of a peptide-based vaccine 
strategy is that the restricting HLA genes are extremely polymor-
phic resulting in a vast diversity of peptide-binding HLA specifi ci-
ties and a low population coverage for any given peptide–HLA 
specifi city. To increase population coverage, one might include 
defi ned epitopes for each HLA-I allele; however, this would lead to 
a vaccine comprising hundreds of peptides. As mentioned above, 
one way to reduce this complexity is to group HLA molecules into 
HLA supertypes; a classifi cation that as mentioned above refers to 
a group of HLA alleles with largely overlapping peptide binding 
specifi cities [ 24 ,  25 ,  30 ]. Ideally this means that a peptide, which 
binds to one allele within a supertype, has a high probability of 
binding to other allelic members of the same supertype. The concept 
of HLA supertypes has been successfully applied to characterize 
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and identify T cell epitopes from a variety of different pathogens, 
including measles-mumps-rubella, SARS, EBV, HIV, HCV, HBV, 
HPV, infl uenza, LCMV, Lassa virus,  F. tularensis , vaccinia, and 
cancer antigens as well [ 29 ]. 

 HLA supertypes have been utilized as a component in several 
approaches and algorithms designed for predicting peptide candi-
dates [ 43 – 48 ]. The technology behind “reverse immunology” is 
developing rapidly in order to identify T cell epitopes from tumor 
antigens and infectious microorganisms [ 44 – 51 ]. During the SARS 
epidemic back in 2003, the SARS genome was identifi ed in a mat-
ter of weeks, and a complete CTL epitope scanning—just barely 
possible at that time—was completed a few months later [ 43 ]. 
Therefore, “reverse immunology” as a powerful tool to identify 
T cell epitopes has now reached the stage where genome-, patho-
gen-, and HLA-wide scanning for HLA-binding antigenic epitopes 
become feasible at a scale and speed that makes it possible to exploit 
the genome information as fast as it can be generated. Importantly, 
a large-scale dataset of measured HLA-II-binding affi nities cover-
ing 26 allelic variants, including a total of 44541 affi nity measure-
ments for HLA-DR alleles as well as 11 HLA-DP and DQ 
molecules [ 52 ], are available to be used as training data for gener-
ating prediction tools utilizing several machine learning algo-
rithms. To date, the computer-based algorithms for predicting 
peptides binding to HLA-I molecules are being developed for 
HLA-II-restricted peptide epitopes, a development, which is of 
pivotal importance for understanding the immune response and its 
effect on host-pathogen interactions [ 32 ,  52 – 55 ]. Those tools will 
defi nitely lead to fast identifi cation of novel peptides restricted by 
HLA-I and HLA-II supertypes for use in vaccines against infec-
tious agents as well as tumors. In this respect, individual peptides 
harboring both HLA-I and HLA-II binding potentials [ 46 – 48 ,  56 ] 
might be of particular importance. 

 In conclusion, classifi cation of HLA supertypes reduces com-
plexity of HLA polymorphisms and has a signifi cant impact on the 
development of peptide-based vaccines with maximum population 
coverage. Since CD4 +  T cells are required for priming of naïve 
CD8 +  T cells as well as expansion of CD8 +  memory T cells [ 8 – 12 ], 
it is of critical importance to incorporate both HLA-I and -II super-
type-restricted epitopes in peptide-based vaccines with maximum 
population coverage to obtain participation of both CD4 +  and 
CD8 +  T cells for generation of strong and long-lasting immunity.     
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