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 Key Concepts 

     1.    Myopia is increasing rapidly in recent decades, 
associated with increasing education and urbaniza-
tion of many populations. Elements of the modern 
environment such as prolonged reading and time 
spent indoors are disturbing the normal homeosta-
sis of eye growth known as emmetropization.   

   2.    Mutations of extracellular matrix proteins can result 
in both myopia and myopic vitreopathy, supporting 
the concept that vitreous is part of the  myopic phe-
notype. Myopia is associated with increased lique-
faction of vitreous, which resembles  premature 
synchysis. This happens in younger myopes when 
vitreoretinal adhesion remains strong, thus creating 
anomalous posterior vitreous detachments with a 
full range of vitreoretinal complications.   

   3.    All degrees of myopia have associated risks of blind-
ing complications, including retinal detachment, 
maculopathy of various types, cataract, and glau-
coma. Maculopathy and retinal detachment have 
direct connection to myopic vitreopathy. Prophylaxis 
for myopia and the various complications of myopic 
vitreopathy requires continued research.     
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   I. Introduction 

 Myopia is gaining public health importance because it is a 
major cause of correctable blindness and visual impair-
ment globally [ 1 ]. In some populations the complications 
of  myopia are now the major cause of uncorrectable blind-
ness [ 2 ,  3 ]. Historically, the mild phenotype of low myopia 
has been separated from the potentially blinding associa-
tions of pathological myopia with an arbitrary refractive 
error of −6.0D [ 4 ]. However it is becoming clear that there 
is no threshold effect and that common myopia of all levels 
contributes to risks of uncorrectable visual loss such 
as cataract, glaucoma, retinal detachment, and maculopa-
thy [ 5 ,  6 ]. 

   A. Defi nition of Myopia 

 Myopia, defi ned by refractive error, is the product of multi-
ple optical variables in the eye. Parallel light from infi nity is 
brought to focus anterior to the retina, and divergent light 
from near targets may focus at the retina, hence “nearsight-
edness” (Figure  II.B-1 ). The anatomic substrate of this 
abnormality can be summarized as either an excessively 
powerful converging optical apparatus of the cornea and lens 
or an excessively long distance to the retina (axial length). 
There are many ways to classify or defi ne myopia. At a popu-
lation level, the main causes of myopia can be grouped 

as: (1) myopia with systemic associations or syndromes, (2) 
isolated ocular hereditary myopia, or (3) acquired myopia 
without associations (Table  II.B-1 ). The fi rst two groups 
have a clear genetic component. The fi rst group demonstrates 
connections between the genetic causes of myopia, vitreous, 
and extracellular matrix in general. It is the third group, how-
ever, often known as school myopia or common myopia, 
which has more environmental causes and is becoming a 
major cause of correctable and uncorrectable vision loss 
worldwide.

       B. Emmetropization and Axial Length 

 The process by which the normal eye maintains emmetropia 
during growth and development is termed emmetropization. 
Myopia represents a failure of this process. Thus, common 
myopia may best be characterized as dysregulated eye growth 
[ 7 ]. A rich and expanding scientifi c literature has illuminated 
numerous elements of this emmetropization process, particu-
larly through animal studies [ 8 ]. A positive lens over a devel-
oping chick eye will induce myopic defocus and corresponding 
shortening of the eye through reduced scleral growth and 
thickening of the choroid, while hyperopic focus or form 
deprivation will accelerate scleral growth and thin the choroid 
(Figure  II.B-2 ). These changes are  direction- specifi c, revers-
ible, and can occur locally within the eye [ 8 ,  9 ]. There are 
important parallels between these animal fi ndings and 
humans, as discussed below.

   An implication of this understanding is that the failure of 
emmetropization that results in common myopia does so 
through an increased axial length. This can be observed in 
children developing myopia, with an increasing vitreous 
chamber [ 10 ]. Thus, axial length can be considered an 
important endophenotype of myopia, with greater sensitiv-
ity and specifi city for the deranged emmetropization pro-
cess than refractive error in general [ 11 ]. That is, the specifi c 
anatomic changes of myopia are most apparent in the mea-
surement of the vitreous chamber. Whether cause or effect, 

    Table II.B-1    Simple classifi cation of myopia   

 1.  Syndromic myopia  with systemic associations; for example: 
    Stickler syndrome type 1  with clefting, arthropathy, vitreoretinal 

abnormalities, hearing loss, collagen 2A1 mutation 
    Marfan syndrome  with long limbs, ectopia lentis, cardiac 

abnormalities, fi brillin mutation 
 2.  Nonsyndromic autosomal dominant myopia  
  Isolated ocular hereditary myopia 
   E.g., early-onset high myopia with dominant inheritance and 

associated loci on genome-wide analysis 
 3.  Nonsyndromic myopia acquired in childhood  
  Common myopia, school myopia 

  Figure II.B-1    ( a ) Schematic representation of emmetropia. Parallel 
light from the distance is brought to focus onto the fovea. ( b ) Schematic 
representation of myopia. Parallel light from the distance is brought to 
focus anterior to the retina in this elongated globe. This creates a blur 
circle on the retina. ( c ) Schematic representation of myopia. Divergent 
light from a near target is brought to focus on the fovea       
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the associated changes within the vitreous constitute myo-
pic vitreopathy. This chapter will discuss the various etio-
logic (both genetic and environmental) aspects of myopia, 
the effects on the vitreous that result in myopic vitreopathy, 
how this causes anomalous PVD, and its various clinical 
consequences.   

   II. Myopia 

   A. Epidemiology 

 Refractive error is the leading cause of correctable visual 
impairment worldwide and therefore a major international 
public health issue [ 1 ,  12 ]. Myopia is common, and preva-
lence varies between populations [ 13 ]. The complications of 
myopia are the major causes of uncorrectable blindness at a 
population level in European and Asian populations [ 2 ,  3 ]. 

 Many large cross-sectional studies have found the 
 prevalence of myopia > −0.5D in adults, to range from 15 % 
in older Australians [ 14 ] to 49 % in 44-year-old Britons [ 15 ]. 
In the United States, the overall prevalence has been mea-
sured around 25–35 % in adults [ 16 – 19 ] with lower preva-
lence in Black and Latino people [ 17 ,  18 ,  20 ,  21 ]. Asian 
populations, particularly those of Chinese ethnicity, appear 
to be mildly more susceptible to myopia [ 13 ,  22 ,  23 ]. 

 In cross-sectional studies of adults, the prevalence of 
myopia is found to decline with age, which is due to two fac-
tors: the gradual hypermetropization during adulthood [ 24 –
 26 ] and an increasing prevalence of myopia in recent 
generations [ 27 ,  28 ]. Initially noted in Inuit populations in 
the 1960s [ 29 ,  30 ] and then strikingly documented in Taiwan 

and Singapore [ 27 ,  31 ], the increasing prevalence of myopia 
in recent birth cohorts is now clear [ 28 ,  32 – 34 ]. In Taiwan, 
for example, the prevalence of myopia in 7-year-old children 
has increased from 6 % in 1983 to 21 % in 2000, and in those 
aged 16–18 years, the prevalence of myopia has increased 
from 74 to 84 % with doubled prevalence of high myopia > 
−6.0D from 11 % in 1983 to 21 % in 2000. Thus, myopia is 
beginning earlier and also increasing in severity, especially 
in young urban educated Asian people. This increase has 
occurred within three generations, highlighting aspects of 
the modern environment that are associated with this epi-
demic of myopia [ 34 ,  35 ].  

   B. Etiology 

 It is likely that myopia, like cardiovascular disease, for 
example, represents a complex interaction of genetic and 
environmental factors. The increasing prevalence of myopia 
associated with ethnicity, urbanization, and education high-
lights the multifactorial etiology, rather than simply nature 
versus nurture [ 36 ]. 

   1. Genetic Factors 
 Human myopia is etiologically heterogenous at a genetic 
level, with more than 300 associations identifi ed. As briefl y 
summarized in Table  II.B-1 , several syndromes of ocular and 
systemic abnormality can include high myopia, such as 
Marfan, Weill-Marchesani (both fi brillin mutations), Stickler 
types 1 and 2 (collagen II and XI mutations), Ehlers-Danlos 
(type 4, collagen III mutation), Knobloch (collagen XVIII 
mutation), and congenital stationary night blindness syn-
dromes [ 37 ]. These syndromes often include abnormalities 

  Figure II.B-2    Emmetropization 
in developing animals. 
( a ) A positive lens will induce 
myopic defocus. ( b ) Axial growth 
will slow and the choroid will 
thicken, to bring the image into 
focus. ( c ) A negative lens will 
induce hyperopic defocus. 
( d ) Axial growth accelerates and 
the choroid thins, to bring the 
image into focus       
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of the vitreous and relate to mutations of the extracellular 
matrix [see chapter   I.C    . Hereditary vitreo-retinopathies]. 

 There are also isolated ocular forms of familial high 
myopia, which is often early-onset and severe [ 37 ]. In gen-
eral, high myopia may have a stronger genetic component 
[ 38 ]. These familial forms of myopia (e.g., associated with 
chromosomes 18p or 12q) do not seem to relate to the com-
mon school myopia, which has a greater environmental 
component [ 39 ,  40 ]. 

 The heritability of myopia appears to diminish between 
generations. Children of myopic parents have a higher preva-
lence of myopia, but in China this relationship has changed 
dramatically in two generations [ 35 ]. For the parents’ gen-
eration, being born to myopic parents resulted in an odds 
ratio (OR) of 6.71 for developing myopia, but for their chil-
dren’s generation, myopic parents only conveyed an OR of 
1.85 [ 35 ]. This indicates the genetic risk has been diluted by 
the environmental risks. In general, the heritability estimates 
that are derived from correlations of refractive error are 
greater from sibling to sibling correlations than parent–child 
correlations (particularly in times of intergenerational 
change), indicating shared environments are a large part of 
these correlations [ 37 ,  38 ]. 

 Eye size is heritable, but this does not seem relevant to 
myopia. Children of myopic parents were found to have 
larger eyes before they developed myopia and after control-
ling for near work and education [ 41 ]. However, eye size and 
axial length are poor predictors of myopia because the pro-
cess of emmetropization adjusts ocular growth to match 
focal length [ 42 ]. There is scant evidence to suggest that 
larger eyes are more vulnerable to derangement of emme-
tropization [ 37 ,  40 ]. The implication of this is that the larger 
eyes in children of myopes may simply refl ect shared envi-
ronmental factors or irrelevant covariates such as height, 
rather than a genetic determinant of myopia. On the other 
hand, some carefully controlled observational studies fi nd 
parental myopia far more strongly associated with myopia 
than environmental factors in multivariate models that adjust 
for both [ 40 ]. 

 Twin studies are a powerful method for testing heritability, 
and several early results showed extremely high estimates of 
heritability (summarized and tabulated in Guggenheim et al. 
[ 38 ]). The assumptions concerning twins sharing environ-
ments have been challenged, and these studies will consis-
tently overestimate heritability at a population level [ 37 ]. 

 Genome-wide association studies provide a powerful 
method to establish genetic causes of the disease and under-
stand pathophysiology. Hammond et al. [ 43 ] performed a 
linkage analysis in 280 dizygotic twins (with any type of 
myopia), revealing the 11p13 locus overlying PAX6 as a 
possible association, as well as other loci of interest at 3q26, 
8p23, and 4q12. Genetic investigation of dizygotic twins 
shares the power of twin studies by controlling environments 

to a large degree. Stambolian et al. [ 44 ] were the fi rst to per-
form genome-wide analysis exclusively for the common 
school myopia, with methods designed to increase the likeli-
hood of linkage, and identifi ed one locus at 22q12 for further 
study. In recent years, a rapidly growing number of genome- 
wide association studies have established a growing number 
of loci of interest, though differences in populations and dif-
ferences in the types of myopia that are included can make 
interpretation diffi cult. Now, very large consortia have exam-
ined the entire genome of many thousands of participants for 
associations with myopia [ 45 – 49 ]. Fan et al. [ 45 ] identifi ed a 
locus of interest in 1q41 among three large Singapore 
genome-wide studies. Verhoeven et al. [ 46 ] validated an 
association of myopia with 15q14 (GDJ2) among many 
cohorts across Europe and Asia and also commented on a 
gene for Connexin36 and actin proteins that could have rel-
evance to retinal signaling or scleral remodeling. Cheng 
et al. [ 49 ] limited their analysis to loci associated with axial 
length, as this is a suitable endophenotype for myopia, and 
tested over 12,000 Europeans and 8,000 Asians, then vali-
dated the fi ndings in another independent group of over 
23,000. They found nine loci common to both European and 
Asian cohorts to be associated with myopia, including 1q41 
(ZC3H11B) and 15q14 (GJD2), as well as laminin alpha-2 
subunit (LAMA2) on chromosome 6. Two other loci were 
associated with Wnt signaling pathways. Verhoeven et al. 
[ 47 ] performed a similar large consortium-derived genome- 
wide analysis of refractive error in many thousands of par-
ticipants in multiple continents. They identifi ed 24 loci, 
including GDJ2 and LAMA2 again but also candidate genes 
with functions in neurotransmission (GRIA4), ion transport 
(KCNQ5), retinoic acid metabolism (RDH5), and eye devel-
opment (SIX6 and PRSS56). Kiefer et al. [ 48 ] found 22 loci 
associated with myopia in another large genome-wide study 
of Europeans, including LAMA2 and candidate genes 
involved in photopigment regeneration and retinal develop-
ment and signaling. These powerful studies and enticing 
fi ndings require considerable follow-up investigation to 
understand the relevant genetic and molecular pathways in 
common myopia. 

 The genetic associations of myopia can be summarized 
by stating that mutations of extracellular matrix proteins 
commonly result in both myopia and vitreopathy, supporting 
the concept that vitreopathy is part of the myopic phenotype. 
Common myopia represents failure of the emmetropization 
process, and the genetic associations include signaling path-
ways and the LAMA2 subunit of laminin, an important 
extracellular protein in the vitreoretinal interface.  

   2. Environmental Factors 
 Animal studies, particularly with chicks, rodents, and nonhu-
man primates, have clearly shown that the homeostasis of 
ocular growth is guided by vision [ 5 ,  8 ]. Form deprivation 
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results in myopia in monkeys [ 50 ] and children [ 51 ] as well 
as other animals. In chicks as in other animals, a positive lens 
providing myopic defocus results in thickening of the cho-
roid and slowing of scleral growth, while hyperopic defocus 
from a negative lens results in ocular elongation and choroi-
dal thinning [ 52 ] (Figure  II.B-2 ). These responses are par-
tially preserved with optic nerve transection and can be 
generated locally in only half of one eye using partial lenses 
[ 9 ,  53 – 55 ], indicating that an important signal for eye growth 
is generated locally in the retina. Thus it appears that the 
developing retina can detect blur but can also detect the sign 
of the defocus, in order to slow or accelerate growth in the 
correct direction, which may be mediated by combining cues 
from chromatic and non-chromatic aberrations and from 
accommodation [ 8 ,  56 ]. These fi ndings implicate a signaling 
pathway from the retina, through the choroid to the sclera. 
Although the pathways involved have not been clearly dem-
onstrated, retinoic acid production in the choroid is likely to 
be involved because it is upregulated by myopic defocus and 
inhibits scleral proteoglycan synthesis and downregulated in 
hyperopic defocus when the sclera elongates and causes 
increased scleral proteoglycan synthesis [ 57 ]. The effector 
mechanism of emmetropization involves changes in fl uid 
lacunae in the choroid [ 58 ] and changes in the scleral growth, 
with scleral thinning, remodeling, and increased viscoelas-
ticity (“creep”). The abnormalities of myopic sclera are 
described below. Together these fi ndings elucidate mecha-
nisms by which environmental factors can affect the normal 
process of emmetropization. 

 Education and urbanization are the two environmental 
factors that are closely associated with myopia at a popula-
tion level. Common myopia correlates strongly with educa-
tion across all major population groups of the world [ 37 ]. 
This association exists with the duration of education, inten-
sity of study and fi nal academic achievement, and 
 professional training in law, medicine, or engineering. The 
progression of myopia may even occur in parallel with the 
school terms in some populations [ 59 ]. Similarly, in regions 
with very similar genetic background, people in urban cen-
ters have consistently higher prevalence of myopia than in 
rural areas, even after adjusting for education, affl uence, and 
activities [ 37 ]. 

 Near work is the environmental factor that is used to 
explain these associations mechanistically at an individual 
level. The mechanism here is not excessive accommodative 
effort, but accommodative lag or defi ciency. Accommodation 
is driven by a blur-feedback loop, so there is a tendency to 
accommodate only to the point of acceptable blur, resulting in 
mild hyperopic defocus for near targets (accommodative lag). 
Myopes have more accommodative lag than emmetropes, but 
it is unclear whether this accommodative lag precedes myo-
pia development and whether this lag is a specifi c defect in 
pre-myopes [ 60 – 63 ]. Thus, the association between near 

work and myopia is sometimes weak and diffi cult to quantify. 
Other factors such as the relative potency of different types of 
defocus for eye growth, peripheral refraction patterns, and the 
variations in defocus due to physical environments are 
all explanations for why these associations can be hard to 
measure [ 5 ]. 

 A more recently revealed association between time spent 
outdoors and a reduced risk of myopia may also explain 
much of the associations of myopia with urbanization, popu-
lation, and education [ 64 – 66 ]. This was hypothesized to be 
related to UV light stimulation of dopamine release from 
amacrine cells, a pathway that is shown to reduce eye growth 
and myopia in animal studies [ 33 ,  64 ]. 

 In summary, the normal processes of emmetropization 
may be deranged or confused by aspects of the environment 
to create myopia. The retina has the central role in detecting 
not only the blur but also the direction of defocus and chang-
ing ocular growth to compensate. Near work could result in 
persistent low-grade hyperopic defocus to drive excessive 
ocular growth, although multiple optical considerations can 
make this association tenuous at a population level. Certainly, 
education and urbanization are strongly associated with 
myopia, and both near work and time spent outdoors might 
partially explain these associations. Clinical trials of outdoor 
education and optical interventions continue [ 33 ,  67 ].  

   3. Vitreous Factors 
 Curtin [ 68 ] and Seltner [ 69 ] proposed a role for the vitreous 
in the development of myopia, suggesting excessive vitreous 
formation was a cause for ocular enlargement. As mentioned, 
hereditary abnormalities of collagen can result in syndromic 
vitreopathy and myopia, linking the two with common cau-
sation [ 70 ]. In line with this concept, Wilkinson [ 71 ] corre-
lated intraocular pressure with ocular growth in experimental 
chick models, and Quinn [ 72 ] showed a slightly increased 
IOP among myopic children. On the other hand, the rate of 
passive scleral creep in experimental situations is two orders 
of magnitude greater than the maximal rate of ocular elonga-
tion [ 73 ], and scleral remodeling appears to be an active cel-
lular process rather than a passive stretching process [ 8 ]. 
Also in opposition to this theory of “overinfl ation,” tree 
shrews showed scleral contraction in response to experimen-
tally increased IOP [ 74 ]. It is hard to propose a complete 
model by which vitreous expansion could lead to axial 
growth, when the formation of the vitreous in the mature eye 
is not well understood.   

   C. Ocular Features of Myopia 

   1. Scleral Changes and Axial Length 
 The characteristic changes of myopia are seen in the size and 
shape of the globe. Axial length accounts for more than 40 % 
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of refractive error and is considered an important endophe-
notype of myopia [ 10 ,  49 ,  75 ,  76 ]. Axial length also corre-
lates more closely with complications of myopia than does 
refractive state [ 77 ]. 

 Myopic sclera is thin and distensible, particularly in the 
posterior globe, with good agreement between mammalian 
models and the limited human data reported [ 7 ,  78 – 81 ]. At 
a histological level, myopic sclera has thin collagen fi brils 
 distributed uniformly through the scleral wall in a lamellar 
pattern, compared to normal sclera with thicker fi brils in 
the outer layers and greater interweaving [ 80 ,  82 ,  83 ]. In 
experimental myopia induced with hyperopic defocus or 
deprivation, the posterior scleral collagen fi bers are lost 
fi rst, and overall scleral dry weight decreases, implicating a 
remodeling process rather than stretching and redistribu-
tion of fi bers [ 83 ,  84 ]. The viscoelastic stretching known as 
scleral creep is increased, particularly in the posterior 
sclera [ 73 ,  85 ,  86 ]. The posterior sclera matures later than 
the anterior sclera, and these changes of experimental myo-
pia have been described as delayed maturation of the poste-
rior sclera [ 8 ]. Corresponding to this, the sensitive period 
through which deprivation can induce myopia corresponds 
to the maturation of the sclera [ 87 ]. 

 At a biochemical level, several changes can be detected 
in the elongating myopic sclera. Collagen content and col-
lagen synthesis in the sclera are reduced in experimental 
myopia, and prevention of collagen cross-linking also 
worsened deprivation-induced myopia but did not affect the 
open contralateral eyes [ 88 ]. Specifi cally, collagen I syn-
thesis is reduced, with increased proportions of collagen III 
and collagen V, which may explain the reduced collagen 
fi bril diameters [ 89 ]. In mammalian models of deprivation 
myopia, in contrast to avian models, which have different 
scleral structure, glycosaminoglycans (GAG) synthesis is 
reduced [ 88 ,  90 ]. Scleral metalloproteinases are upregu-
lated in experimental myopia, further reducing collagen 
content [ 91 ,  92 ], and there is differential expression of reg-
ulating proteins (TIMPs) which can further activate metal-
loproteinases [ 88 ,  93 ]. At a cellular level too, differentiation 
of dormant scleral fi broblasts into contractile myofi bro-
blasts appears to have an important role in scleral biome-
chanics, but the exact relevance to myopic sclera has not 
been established [ 7 ]. 

 In summary, signals from the retina lead to elongation of 
the globe and scleral thinning through changes in the sclera 
which include reduced collagen production, increased visco-
elasticity, remodeling and thinning, and potentially changes 
in cellular activity.  

   2. Myopic Vitreopathy 
 The vitreous is particularly liquefi ed in myopic eyes [ 94 , 
 95 ]. Nonspecifi c vitreous degeneration is observed in myo-

pic eyes, but histology cannot differentiate specifi c myopic 
changes from age-related synchysis [ 96 ]. This myopic liq-
uefaction could be because the vitreous chamber is of 
increased volume and production of gel components does 
not keep pace with the expanding chamber. In measuring 
the molecular components of myopic vitreous with early 
techniques, Berman and Michaelson [ 97 ] found reduced 
protein concentration, collagen content, and estimated 
hyaluronate concentrations in myopic vitreous compared 
to controls. Total protein of the vitreous was not directly 
measured. 

 In experimental deprivation myopia in chicks, it is rel-
evant to understand the normal development: vitreous 
protein concentration declines during embryonic develop-
ment, as a blood ocular barrier and vitreous macromole-
cules form, both of which exclude plasma proteins. By 
hatching, there is a formed gel vitreous anterior to a 
20–30 % chamber of liquid vitreous posteriorly, which is 
surrounded by a thin cortical layer [ 98 ,  99 ]. This liquid 
component increases to 60 % volume by adulthood. When 
a diffuser is used to create deprivation myopia in one eye 
in the fi rst days after hatching, the vitreous chamber 
expands and total volume increases, with the increase 
entirely due to liquid vitreous [ 69 ,  100 ]. The gel vitreous 
did not change in size or protein composition, but the 
myopic liquid vitreous had mildly reduced protein con-
centration (although not signifi cantly) [ 100 ]. This implies 
that in aging of the chicken vitreous, or in experimental 
deprivation myopia, the liquid vitreous gains in size and 
reduces in protein concentration. 

 Together these fi ndings imply that the production of vitre-
ous gel occurs in the vascular and cellular embryonic vitre-
ous and that myopic ocular growth during postnatal 
development is not matched by production of additional vit-
reous gel. Thus, the elongation of the globe is accompanied 
by increased liquid, low-protein vitreous. 

 As a result, myopic vitreous has a phenotype resembling 
premature synchysis, and posterior vitreous detachment 
(PVD) occurs earlier in highly myopic eyes [ 101 ,  102 ]. 
Akiba [ 101 ] found PVD occurred around 10 years earlier in 
myopia > −6.0D (compared to emmetropes). Indeed, 23 % of 
these myopes had PVD between age 30 and 40 years, with 
100 % over 70 years, compared to no PVD among emme-
tropes under 40 years, with PVD in 74 % of those 70–80 
years old. Morita [ 102 ] found PVD to occur closer to 20 
years earlier in those with axial length >26.0 mm (myo-
pia > −8.25D), compared to age-matched controls who were 
low myopes, emmetropes, or hypermetropes. 

 Premature vitreous liquefaction occurring in younger 
people who have strong vitreoretinal adhesion [ 103 ] creates 
the conditions for an anomalous PVD and pathological vit-
reoretinal interactions [ 104 ]. Stirpe and Heimann [ 105 ] 
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found that among 496 highly myopic eyes undergoing retinal 
detachment surgery, there were 17.5 % with prominent 
 posterior vitreous lacunae overlying posterior staphyloma 
with a thin but strongly adherent vitreous cortex, and among 
these posterior retinal breaks such as macular holes were 
common. Forty-six of the 496 eyes had incomplete PVD 
inferiorly, with partial PVD and retinal breaks in the superior 
globe, and a tendency for delayed postoperative retinal tears 
inferiorly. Similarly, Sakaguchi and colleagues [ 106 ] found 
vitreoschisis, preretinal proliferation, and a fi rmly adherent 
ILM during vitrectomy in a 73-year-old highly myopic 
woman with macular hole, requiring three layers of mem-
brane peeling [see chapter   III.B    . Anomalous PVD and 
 vitreoschisis]. Thus, PVD and peripheral retinal breaks have 
an ominous prognosis in myopia, due to persistence of the 
normal vitreoretinal adhesion of youth. These changes are 
summarized in Figure  II.B-3 .

      3. Retina and Choroid 
 Changes in the myopic retina have long been observed by 
clinicians. In humans and experimental models, the cho-
roid is thinner, and may sometimes lack the choriocapil-
laris, with overlying retinal thinning that is presumed to 
be secondary [ 33 ,  80 ]. The clinical relevance of these 
changes in the retinal periphery has been hard to defi ne 
precisely [ 107 ]. The vision-threatening manifestations of 
this chorioretinal thinning at the macula are discussed 
below. 

   a. Retinal Lattice 
 Retinal lattice (also called “lattice degeneration”) is associ-
ated with myopia, particularly over −6.0D, and is of interest 
in this review of myopic vitreopathy because abnormal vit-
reoretinal adhesions are a key part of this pathology. As 
summarized by Saw [ 108 ], the evidence for an association 
between myopia and lattice is not strong because there are 
few prospective studies. In the United States, Karlin and 
Curtin [ 109 ] examined over 1,400 asymptomatic myopic 
eyes, and Pierro [ 110 ] examined 513 asymptomatic myopic 
patients and found an association between retinal lattice and 
axial length. On the other hand, Yura [ 111 ] examined 542 
high myopes in Japan and did not fi nd an association with 
axial length, while Celorio [ 112 ] even found the prevalence 
of lattice to be decreased in extreme myopia. In preoperative 
evaluations of 165 eyes in patients with pathological myo-
pia (> − 8.0D or 26.0 mm axial length) undergoing clear lens 
extraction, retinal lattice was detected in 10 % of patients 
[ 113 ]. Histological evaluation of 308 eyes with pathological 
myopia revealed peripheral retinal degeneration in 31 %, 
cobblestone degeneration in 14 %, and retinal lattice in 5 % 
[ 114 ]. A variant of retinal lattice was present in an addi-
tional 11 %. A total of around 16 % was in agreement with 
another study of 436 eyes with myopia of > −6.0D, among 
patients with retinal detachments [ 115 ]. It is tempting to 
speculate that retinal lattice, as a feature most prominent in 
those with moderate and high myopia, represents a feature 
of common myopia (rather than the more severe isolated 

  Figure II.B-3    Features of myopic 
vitreopathy. Increased liquefaction 
and early synchysis result in 
lacunae, vitreous collapse, and 
premature posterior vitreous 
detachment (PVD) when 
vitreoretinal adhesion persists. 
This may lead to an anomalous 
PVD, with risk of retinal tears or 
maculopathy such as foveoschisis       

Retinal tear Early PVD, incomplete inferiorly

Lacunae

Foveoschisis

Vitreoschisis
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heritable myopia). Another intriguing connection is with 
Stickler syndrome [see chapter   I.C    . Hereditary vitreo-reti-
nopathies], where a mutation of collagen II results in vitre-
opathy, myopia, and widespread lattice. Because collagen II 
is predominant in the vitreous, this could suggest that lattice 
is a manifestation of a myopic vitreopathy. Prospective 
observation of lattice in child populations at high risk of 
myopia (e.g., urban Taiwan, Singapore) could establish the 
temporal connection between these peripheral retinal 
changes and the development of axial elongation.    

   D.  The Pathologies of Myopic Vitreopathy 

   1. Retinal Detachment 
 As discussed above, myopia results in premature vitreous 
synchysis combined with vitreoschisis and fi rm vitreoretinal 
adhesion, creating the conditions for anomalous PVD and 
retinal tears with persistent vitreous traction. Retinal tears 
are common in myopia. Hyams and Neumann [ 116 ] found 
peripheral retinal breaks in 10.5 % of low myopes and 13 % 
of high myopes from a total of 332 asymptomatic myopes in 
the clinic. Consequently, there is a clear association between 
rhegmatogenous retinal detachment (RRD) and myopia. 
Two case–control studies found elevated odds ratio for myo-
pia among those with RRD compared to controls [ 115 ,  117 ], 
and this was confi rmed in a large multicenter case–control 
study [ 118 ]. Excluding pathological myopia, there was an 
odds ratio of 7.8 for myopia overall, increasing from 4.4 for 
myopia between −1.0D and −3.0D to almost ten-fold 
increased risk for those over −3.0D [ 118 ]. 

 Prophylaxis for retinal detachment in myopia remains 
controversial [ 119 ]. While laser retinopexy is recommended 
for retinal tears under traction before cataract surgery, pro-
spective evidence should be collected, and trials of pharmaco-
logic vitreolysis or primary vitrectomy could be considered. 

   a.  Retinal Detachment After Anterior 
Segment Surgery 

 Retinal detachment is an uncommon complication after cata-
ract surgery, with incidence rates between 0.3 and 1.2 % in 
the general cataract population [ 120 – 124 ]. This incidence of 
RRD after cataract surgery presumably relates to surgical 
forces on the anterior vitreous cortex and postoperative 
infl ammation, resulting in anomalous PVD and vitreoretinal 
traction [ 125 ]. The rate of RRD after cataract surgery in 
myopes is of particular interest to ophthalmologists, particu-
larly as clear lens extraction gains popularity for refractive 
correction. Initial studies from the 1980s using predomi-
nantly extracapsular cataract extraction (ECCE) showed 
pseudophakic RRD incidence of 1.6 % in myopes > −6.0D 
(or 4.1 % in those with axial length >26.5 mm) [ 77 ]. With 
retrospective comparison Badr [ 126 ] found that intraocular 
lenses resulted in fewer RD among myopes, compared with 

aphakia. A population-based case–control study [ 127 ] com-
paring 291 cases of RD after cataract surgery to 870 matched 
uncomplicated cataract operations found that the odds ratio 
of RD increased by 0.92 for each diopter of myopia and by 
1.21 for each millimeter of axial elongation, potentially sup-
porting the concept that axial length predicts RRD risk better 
than refraction [ 77 ]. 

 However, as phacoemulsifi cation technology improves, 
cataract surgery appears to be getting safer for myopes. In a 
large retrospective cohort of 2,356 eyes (1,519 patients) all 
with >27.0 mm axial length, the incidence of pseudophakic 
RRD after phacoemulsifi cation was 1.5–2.2 % (the mini-
mum value excluding RRD that could be attributed to other 
causes) [ 128 ]. Across a range of similar retrospective cohorts, 
the incidence of RRD among high myopes after phacoemul-
sifi cation ranges from 0 to 8.1 % depending on the age, indi-
cation, and severity of myopia [ 129 – 134 ]. 

 Clear lens extraction for myopia may have an even greater 
risk of RRD, simply because it is offered to younger patients 
with stronger vitreoretinal adhesion. In young patients 
receiving clear lens extraction for high myopia, some of the 
greatest rates of pseudophakic RD have been reported, for 
example, 8.1 % [ 129 ], 7.3 % with ECCE [ 113 ], and 8.0 % 
with very high myopia >−15.0D. However, some argue that 
these rates are not greatly higher than the incidence of spon-
taneous RRD among cohorts of similar severe myopia [ 128 ]. 

 Refractive corneal surgery such as laser-assisted in-situ ker-
atomileusis (LASIK) induces PVD in some high myopes due 
to physical forces from the suction ring [ 135 ]. However, 
LASIK appears to have a lower incidence of RRD than lens 
extraction, estimated 0.19 % at 10 years postoperatively among 
11,594 myopes <−10.0D [ 136 ]. Other posterior segment com-
plications of LASIK for myopia also appear to be rare [ 137 ].   

   2. Myopic Maculopathy 
 Myopic maculopathy encompasses a range of vision- threatening 
pathologies [ 4 ,  138 ], many of which bear direct connection to 
myopic vitreopathy. The regular presence of vitreoschisis, large 
lacunae, and anomalous PVD results in specifi c myopic macu-
lopathies such as foveoschisis and macular hole with extensive 
retinal detachment. There are also some indications that CNV 
can relate to the vitreoretinal interface [see chapter   III.G    . 
Vitreous in age-related macular degeneration], although this has 
not been shown in myopia [ 139 ]. Anomalous PVD with vitreo-
macular traction can be different in myopia than emmetropia 
(Video  II.B-1 ). Pharmacologic vitreolysis [see chapter   VI.A    . 
Pharmacologic vitreolysis] and dye-assisted chromodissection 
[see chapter   V.A.3    . Chromodissection in vitreoretinal surgery] 
to remove vitreoschisis layers during surgery will likely assist 
greatly in management [ 140 ]. 

   a. Myopic Macular Degeneration 
 There are two types of atrophic degenerations in high  myopia: 
patchy atrophy is seen as a whitish lesion and well demarcated 
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(Figure  II.B-4 ), and diffuse atrophy is yellowish- white and 
harder to demarcate or identify (Figure  II.B-5 ). Lacquer cracks 
are whitish linear or crisscrossing lesions that sometimes are 
accompanied by a myopic subretinal hemorrhage. These atro-
phic changes appear to relate to loss of underlying choriocap-
illaris and splits in Bruch’s membrane (lacquer cracks). The 
presence of lacquer cracks implies that stretching and redistri-
bution of the scleral collagen and the underlying mechanical 
stretching and thinning of the choroid are part of the patho-
logical process in myopic development. No treatment cur-
rently exists for these changes, and there are no prospective 
data to quantify the risk of vision loss, which can be severe.

      i. Choroidal Neovascularization 
 Choroidal neovascularization (CNV) is the main complica-
tion of degenerative myopic maculopathy and lacquer 
cracks [ 138 ]. Myopia is the second leading cause of CNV 
after age- related macular degeneration and the most com-
mon predisposing factor in younger patients [ 4 ]. The CNV 
in myopia is also referred to as a Forster-Fuchs’ spot and 
commonly presents as a mound-shaped, grayish, small, and 
round lesion (Figure  II.B-6 ). The incidence is unknown; 
however, Curtin and Karlin [ 141 ] reported it in 5.2 % of 
postmortem eyes with axial lengths exceeding 26.5 mm. 
Unfortunately, prospective clinical data are lacking [ 108 ]. 
The etiology is not fully understood, but lacquer crack for-
mation and consequent upregulation of vascular  endothelial 
growth factor (VEGF) may play critical roles. As in the 
case in AMD [see chapter   III.G    . Vitreous in age-related 
macular degeneration], the vitreous may play a role in the 
pathophysiology of myopic CNV, but this has yet to be 
investigated. While a range of treatments have been 
 successfully offered for myopic CNV, anti-VEGF therapy 
currently appears to have the best risk- benefi t profi le with 
excellent visual outcomes [ 138 ].

       b. Myopic Foveoschisis 
 Prior to the widespread use of optical coherence tomogra-
phy (OCT), myopic foveoschisis was potentially mislabeled 
as a retinal detachment of the macula overlying a posterior 
staphyloma, without a macular hole [ 142 ,  143 ]. The term 
foveoschisis includes a variety of pathologies: a foveal cyst 
in 47 %, a lamellar hole in 29 %, and a foveal detachment in 
29 % [ 144 ]. The inner retina is often split from the outer 
retina by traction that includes residual adherent vitreous 
cortex, with or without vitreoschisis [see chapter   III.B    . 

  Figure II.B-4    Patchy chorioretinal atrophy. Several whitish lesions 
with well-identifi able margins are typically seen at the posterior pole       

  Figure II.B-5    Diffuse atrophy. The area inside the posterior staphy-
loma is yellowish-white, and the margin is ill-defi ned       

  Figure II.B-6    Representative case of choroidal neovascularization 
(CNV) from pathological myopia. A small, grayish round lesion can be 
seen ( arrow )       
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Anomalous PVD and vitreoschisis], and a rigid inner limit-
ing membrane (ILM). The foveoschisis sometimes leads to 
macular hole formation and consequent retinal detachment 
[ 145 ]. The so- called ILM detachment is observed and is an 
indicator of the tractional force upon the ILM (Figure  II.B-7 ) 
[ 146 ]. A tentlike peak of the inner retina is seen on OCT 
images coincident with retinal vessels and the so-called reti-
nal microfolds (Figure  II.B-8 ) [ 147 ]. The inner segment/
outer segment (IS/OS) junction of the photoreceptors some-
times disappears in the area of the retinal detachment [ 148 ]; 
however, the IS/OS line is typically well preserved in the 
area of the retinoschisis, suggesting that the photoreceptor 

function is not affected in this subtype. Retinoschisis has 
two stages before macular hole formation [ 149 ]. The fi rst is 
the retinoschisis type, in which only retinoschisis and not 
a retinal detachment is present (Figure  II.B-9 ). A retinal 
detachment later begins from the fovea. The next stage is the 
foveal detachment type (Figure  II.B-10 ). After a while, the 
inner retina above the detachment is stretched and torn 
(Figure  II.B-11 ). This is the appearance of a macular hole as 
a result of retinoschisis with a retinal detachment. The OCT 
images from these myopic eyes led to the hypothesis that 
the inner retina is less fl exible than the outer retina because 
the vitreous cortex adheres to the retina [ 149 ]. The pattern 

  Figure II.B-7    Optical coherence tomography (OCT) appearance of an inner limiting membrane (ILM) detachment in myopic foveoschisis 
( arrows ). A thin sheet is separated from the other retinal layers. Columns bridge the split between the layers       

  Figure II.B-8    Typical optical coherence tomography (OCT) image of retinal microfolds from retinal vascular traction ( arrows ). A tentlike lesion 
can be seen with retinal arterioles on the top       
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  Figure II.B-9    Optical coherence tomography (OCT) image of retinoschisis type of myopic foveoschisis. The inner and outer retina is split and 
connected by columns. The photoreceptors are still attached to the retinal pigment epithelium (RPE)       

of ILM detachments illustrates the underlying traction from 
the ILM, which is anchored at blood vessels on the retinal 
surface (Figure  II.B-7 ) [ 146 ,  147 ]. An OCT study of over 
200 highly myopic eyes reported ILM detachments in 6 %, 
 retinoschisis in 13.5 %, and retinal vascular microfolds in 
20 % [ 150 ].

           c. Premacular Membranes 
 Premacular membrane (PMM) formation and retinal thick-
ening are common in highly myopic eyes. The membrane is 
often diffi cult to fi nd without OCT. A PMM sometimes 
causes retinoschisis with retinal wrinkling or macular lamel-
lar holes (i.e., distorted foveal contour without full thickness 
macular hole) [ 144 ]. Histological membrane specimens 
from macular holes and myopic foveoschisis revealed a thin 
collagenous vitreoschisis and a fi broblast PMM in many 
myopic eyes [ 106 ,  151 ].  

   d. Macular Hole 
 Macular holes may develop more frequently in highly myo-
pic eyes, and while vitrectomy appears to be successful, it 

can be diffi cult to judge closure clinically on an atrophic 
myopic macula [ 152 ]. OCT has indicated that the presence 
of schisis in the retina surrounding the macular hole is of 
poor prognosis [ 153 ]. 

   i.  Macular Hole with Retinal 
Detachment 

 Retinal detachments from the macular hole are a typical 
fi nding in high myopia and uncommon in other settings 
besides trauma (see Figure  II.B-12 ). Residual adherent vit-
reous cortex (vitreoschisis) on the retinal surface around the 
hole causes tangential traction that generates an anterior 
vector in a deep staphyloma [ 154 ]. Releasing the retinal 
traction is critical to anatomic success, and vitrectomy with 
vitreous cortex and membrane removal is the most common 
treatment.   

   e. Paravascular Retinal Microholes 
 A paravascular microhole and consequent retinal detach-
ment are specifi c to high myopia. They are typically small, 
round, or oval, and sometimes there are multiple retinal 
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holes adjacent to posterior major vessels [ 155 ]. An OCT 
study of highly myopic eyes reported that the incidence 
rates of retinal cysts and paravascular holes were 50 % and 
27 %, respectively. The vitreoretinal adhesion is normally 
strong at the paravascular site, and traction from the vitre-
ous is believed to be the main cause [ 156 ]. Paravascular 
microholes often co-localize with vascular microfolds and 
retinoschisis, indicating a common pathology.   

   3. Cataract 
 The effect of myopia on cataract is relevant to this discus-
sion of vitreopathy because some cataracts may be acceler-
ated by vitreous liquefaction and because the increased 
risks of cataract are not confi ned to pathological or high 
myopia. 

 Some of the major population-based cross-sectional and 
cohort studies of eye disease have addressed the connection 
between myopia and cataract [ 6 ]. Early case–control studies 
showed no meaningful association [ 157 ]. In the Blue 
Mountains Eye Study of Australia, a cross-sectional study 
of 3,654 people found that increasing severity of early-onset 
myopia was associated with increasing odds ratio of poste-

rior subcapsular (PSC) cataracts [ 158 ]. This same study 
found an increased risk of incident cataract over 5 years, 
particularly PSC, associated with myopia [ 159 ]. Another 
Australian cross-sectional study found increased risk of 
both nuclear and PSC cataracts among myopes [ 160 ]. In the 
prospective Barbados Eye Study, myopia was associated 
with an odds ratio of 2.8 for developing a nuclear opacity 
over 4 years [ 161 ] but not PSC or cortical cataract [ 162 ]. In 
the United States, the Beaver Dam Eye Study reported that 
myopia was associated with prevalent nuclear cataract, but 
not the 5-year incidence of cataract [ 163 ], although the inci-
dence of cataract surgery was higher in myopes [ 164 ] by an 
OR of 1.89. 

 To summarize, cataracts and myopia may be associated 
because nuclear sclerosis causes myopia; however, the pro-
spective cohort studies also indicate that cataract  development 
is accelerated in those with longstanding myopia. It is pos-
sible that an increasingly liquefi ed vitreous in myopic vitre-
opathy is a mechanism by which retinal oxygenation can 
affect the lens more in myopia, accelerating cataract 
 development [see chapter   IV.B    . Oxygen in vitreoretinal 
physiology and pathology]. 

  Figure II.B-10    Typical appearance of the foveal detachment type of myopic foveoschisis. The photoreceptors detach from the retinal pigment 
epithelium (RPE) ( asterisk )       
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  Figure II.B-11    A macular hole surrounded by retinoschisis. This type often occurs after myopic foveoschisis and with underlying traction. This 
type is at high risk for retinal detachment       

  Figure II.B-12    Optical coherence tomograph (OCT) of a myopic staphyloma with full thickness macular hole and central retinal detachment       
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