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 Key Concepts 

     1.    Vitreous is not an inert substance but has a complex 
biochemistry and plays an important role in ocular 
physiology.   

   2.    To date, vitreous substitutes have only been devel-
oped for short-term use during or, typically, after 
vitreoretinal surgery, without consideration for the 
optical and physiologic properties necessary for 
long-term homeostasis. Cross-linked hyaluronic 
acid hydrogels possess many of the needed physio-
logic properties without the untoward effects of 
polyalkylimide and polyethylene glycol.   

   3.    Future development of artifi cial vitreous gels must 
confi rm biocompatibility as tested with electro-
physiology, morphology, and histology both  in vitro  
and  in vivo . Future objectives will be to determine 
whether a synthetic posterior vitreous cortex is 
needed and whether “smart hydrogels” and hydro-
gels containing hyaluronic acid and cross-linked, 
enzyme-stable gels will be the best future options 
for an artifi cial vitreous.     
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   I.     Introduction 

   A. Rationale: Why an Artifi cial Vitreous? 

 Aging of vitreous involves a degenerative process where 
glycosaminoglycans (GAGs) dissociate from collagen and 
the gel disintegrates into fl uid adjacent to which collagen 
fi brils adhere to each other and cross-link [ 1 – 4 ]. In most 
eyes this process is accompanied by dehiscence at the vit-
reoretinal interface progressing to posterior vitreous detach-
ment and nothing more happens [see chapter   II.C    . Vitreous 
aging and posterior vitreous detachment]. In several patho-
logic conditions, vitreous is hazy due to hemorrhage and/or 
cell proliferation forming membranes that contract, leading 
to traction retinal detachment [see chapters   III.J    . Cell prolif-
eration at the vitreo-retinal interface in proliferative vitreo-
retinopathy and related disorders;   III.L    . Proliferative 
diabetic vitreo- retinopathy]. Vitreoretinal surgery for these 
conditions includes complete removal of the vitreous gel 
(Figure  I.F-1 ), removal of pre- and subretinal membranes, 
and injection of a tamponade such as silicone oil or expand-
ing gases. All the presently used intravitreal tamponade sub-
stances carry different side effects making them unsuitable 
for permanent or long-standing use. Many authors [ 5 – 9 ] 
have suggested an ideal single artifi cial vitreous gel cover-
ing all needs, but no gel has yet been found to fi t these 
demands [ 10 ].

   This chapter reviews the biochemical composition and 
organization of vitreous, the currently used vitreous substi-
tutes, and the rationale as well as approaches to developing 
an artifi cial vitreous.  

   B.   Vitreous Biochemistry 

 More than 95 % of the vitreous gel weight is water. About 
15–20 % of this water is bound to glycosaminoglycans 
(GAGS) and proteins. The vitreous body of all species is 
composed of essentially the same extracellular matrix 
 elements organized to fi ll the center of the eye with a clear 
viscous substance surrounded by a dense cortex that is 
attached to the basal laminae of surrounding cells. There 
are, however, species variations in the relative concentra-
tions of the major structural components [ 2 ,  11 ] of vitreous, 
i.e., hyaluronan (HA) and collagen. These differences 
account for variations in the rheologic (gel-liquid) state of 
the vitreous body in different species. It should be empha-
sized that in more advanced species there are also age-
related differences. Consequently, the selection of an 
appropriate animal with which to model human diseases for 
scientifi c investigation must take into consideration these 
species variations and age-related differences. HA is present 
in the vitreous body of all species studied except for fi shes. 

   1. Glycosaminoglycans (GAGs) 
 GAGs are polysaccharides composed of repeating disaccha-
ride units, each consisting of hexosamine (usually  N -acetyl 
glucosamine or  N -acetyl galactosamine) glycosidically 
linked to either uronic (glucuronic or iduronic) acid or galac-
tose. The nature of the predominant repeating unit is charac-
teristic for each GAG and the relative amount, molecular 
size, and type of GAG are said to be tissue specifi c [ 12 ]. A 
sulfated group is attached to oxygen or nitrogen in all GAGs 
except HA. GAGs do not normally occur in vivo as free 
 polymers but are covalently linked to a protein core, the 
ensemble called a proteoglycan. There are three types of 
GAGs present in the vitreous body: hyaluronan (HA), chon-
droitin sulfate (CS) and heparan sulfate (HS). 

   a. Hyaluronan 
 Hyaluronan (HA; previously called hyaluronic acid) is the 
major GAG present in the human vitreous. Meyer and Palmer 
1934 [ 13 ] fi rst isolated this macromolecule from bovine vit-
reous. HA’s name is derived from the fact that it was fi rst 
discovered in the clear, colorless vitreous (“hyalos,” means 
glass in Greek) and that it contains uronic acid. Balazs et al. 
[ 14 ,  15 ] documented the presence of sulfated galactosamine- 
containing GAGS in bovine vitreous (less than 5 % heparin 
sulfate). Meyer [ 16 ] and Balazs [ 17 ] fi rst identifi ed HA as a 
long, unbranched polymer of repeating disaccharide (gluc-
uronic acid beta 1–3  N -acetylglucosamine) linked by beta 
l-4 bonds. HA fi rst appears after birth and is believed to be 
synthesized primarily by hyalocytes. Although the synthe-
sis of HA plateaus in the adult, there does not appear to be 
any extracellular degradation [ 18 – 21 ], so HA levels remain 
constant because there is escape of HA molecules from vit-
reous via the anterior segment of the eye [ 22 ] and there is 
 reuptake by hyalocytes. Laurent and Fraser [ 23 ] showed 

  Figure I.F-1    Pars plana vitrectomy with removal of the vitreous gel 
(Copyright Fredrik Ghosh)       
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that the escape of HA from the vitreous to the anterior seg-
ment is strongly molecular weight dependent, indicating a 
diffusion-controlled process. In contrast, disappearance of 
HA from the anterior chamber is independent of molecular 
weight, suggesting that this is controlled by bulk fl ow. Later 
studies noted a marked linear decrease of HA levels with age 
in human vitreous [ 24 ]. Laurent and Granath [ 25 ] used gel 
chromatography and found the average molecular weight of 
rabbit vitreous to be 2–3 × l0 6  and of bovine vitreous to be 
0.5–0.8 × l0 6 . These studies found age- related differences in 
the bovine vitreous since the HA molecular weight dropped 
from 3 × l0 6  in the newborn calf to 0.5 × l0 6  in old cattle. 

 The volume of the unhydrated HA molecule is about 
0.66 cm 3 /g, whereas the hydrated specifi c volume is 
2–3,000 cm 3 /g [ 15 ]. Thus, the degree of hydration (and any 
pathologic condition that alters hydration) can have a signifi -
cant infl uence on the size and confi guration of the molecular 
network in vitreous. Because the solution domains are so 
large, the long unbranched HA chains form widely open 
coils, which at concentrations greater than 1 mg/cm 3 , become 
highly entangled [ 26 ]. Due to its entanglement and immobi-
lization in tissue, HA acts much like an ion-exchange resin in 
that an electrostatic interaction can occur between the small 
charges of mobile ions in the tissue and the electrostatic 
envelope of the stationary polyelectrolyte. This electrostatic 
interaction forms the basis for various properties of HA 
including its infl uence upon osmotic pressure, ion transport 
and distribution, and electric potentials within vitreous [ 27 ]. 
A compressed HA chain has extensive “interdigitations” 
since it interacts with nearest antiparallel as well as parallel 
neighbors (totalling 8 molecules), whereas extended forms 
only interact with 3 antiparallel neighbors [ 28 ].  

   b. Chondroitin Sulfate (CS) 
 CS is a major component in the extracellular matrix through-
out the body, likewise in vitreous. In Wagner’s vitreoretinal 
degeneration a mutation in the gene for versican (one of the 
CS) was found to be the cause [ 29 ,  30 ]. This and other hered-
itary vitreo-retinopathies are discussed extensively in chapter 
  I.C    . Hereditary vitreo-retinopathies.  

   c. Heparan Sulfate (HS) 
 HS is a renewable proteoglycan present in vitreous in small 
amounts and presumed to maintain adequate distance 
between the collagen fi brils [ 31 ].   

   2. Proteins 
 The total protein content in vitreous is rather small in per-
centage, variable, and complex in nature. Among the soluble 
proteins, albumin and iron-binding proteins play the major 
role. Transferrin and other iron-binding proteins may have a 
protective capability by reducing iron toxicity in vitreous 
 hemorrhage [ 32 ]. Collagens are the most frequent insoluble 

proteins and it has been shown that the Muller cells can syn-
thesize vitreous collagens  in vitro  [ 33 ]. Vitreous proteins are 
extensively discussed in chapter   I.A    . Vitreous proteins. An 
important consideration is the interaction of collagen 
and HA.  

   3. HA-Collagen Interaction 
 Vitreous is composed of interpenetrating networks of HA 
molecules and collagen fi brils. The collagen fi brils provide a 
solid structure to the vitreous that is “infl ated” by the 
 hydrophilic HA. Comper and Laurent [ 27 ] found that if col-
lagen is removed, the remaining HA forms a viscous solution; 
if HA is removed, the gel shrinks. There exists interaction 
between HA and collagen, and the structure and function of 
these macromolecules is infl uenced by this interaction [ 34 ]. In 
all extracellular matrices collagen–proteoglycan interaction 
determines the morphology of the matrix. The nature of this 
interaction is a function of collagen type and proteoglycan 
concentration. Type I collagen is associated with small 
amounts of proteoglycan and has a weak interaction with this 
proteoglycan, thus appearing as compact fi brils. The 
 appearance is different in extracellular matrices with predomi-
nantly type II collagen, which is rich in proteoglycans and has 
strong collagen–proteoglycan interaction. Thus, in such extra-
cellular matrices, the type II collagen fi brils are widely sepa-
rated and the spaces between are fi lled with proteoglycan. 

 Physiologic observations also suggest the existence of an 
important interaction between HA and collagen. Jackson [ 35 ] 
was the fi rst to propose that proteoglycans had a “stabilizing 
effect” upon collagen. Gelman and Blackwell and Gelman 
et al. [ 36 ,  37 ] have shown that several glycosaminoglycans, 
including HA, stabilized the helical structure of collagen so 
that the melting temperature of collagen was increased from 
38 to 46 °C. Measurements of the dynamic viscoelasticity of 
bovine vitreous showed that the shapes of the master relax-
ation curves of vitreous are quite similar to those of lightly 
cross-linked polymer systems [ 38 ]. Notably, the behavior of 
these relaxation curves is different from that of solutions of 
HA and collagen. This suggests that the physicochemical 
properties of vitreous  in vivo  are not simply the result of 
a combination of these two molecular elements but that HA 
and collagen form a “lightly” cross-linked polymer system. 
Furthermore, these investigations suggest that the molecular 
weight at the cross-linking points is about 10 6 . This corre-
sponds closely to the molecular weight of HA and according 
to these investigators suggests that this molecule might serve 
as the cross-linking element in this polymer system. 

 HA-collagen interaction in the vitreous may be mediated 
by a third molecule. Swann et al. [ 39 ] have demonstrated 
large amount of noncollagenous protein associated with col-
lagen in the insoluble residue fraction of vitreous. There are 
fi laments connecting the collagen fi brils and these 
 amorphous masses. These fi laments may represent “link” 
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 structures of either a glycoprotein or proteoglycans nature. 
HA is known to interact with link proteins [ 40 ] as well as an 
HA-binding glycoprotein, hyaluronectin [ 41 ]. Thus, HA 
could bind to vitreous collagen fi brils via such linkage mol-
ecules, most probably in a repeating, ordered manner. This 
type of arrangement would not be consistent with the con-
cept of random distribution of HA molecules spreading 
apart the collagen fi brils. Rather, binding to collagen fi brils 
of the protein core of a proteoglycan such as chondroitin 
sulfate would “organize” the network in a manner to keep 
the vitreous collagen fi brils at a critical distance apart [ 41 ] 
to  minimize light scattering. Many investigators believe that 
HA-collagen interaction occurs on a physicochemical rather 
than chemical level. It may well be that there are several 
types of collagen-HA interactions that are at play in differ-
ent circumstances. Further investigation must be undertaken 
to identify the nature of HA-collagen interaction(s) in vitre-
ous. This question is important not only with respect to the 
normal physiology of vitreous and its structure but also to 
understand the aging phenomena of vitreous liquefaction 
and posterior vitreous detachment, as well as to aid in the 
development of an artifi cial vitreous.  

   4.  Miscellaneous Components 
   a. Metabolites and Enzymes 

 Glucose and lactic acid are found in vitreous mostly due to 
cellular metabolism in adjacent tissues. Glucose is supposed 
to support the enzymatic activity in vitreous in connection 
with HA turnover [ 42 ]. In diabetes, there are elevated levels 
of glucose in vitreous [ 43 ] leading to the formation of 
advanced glycation at end products in the gel [ 44 ] and pre-
sumably at the vitreoretinal interface as well. 

 Renin–angiotensin-converting enzyme has been isolated 
from the vitreous [ 45 ]. Vitreous lactate seems to be a major 
metabolite in the human vitreous [ 46 ].  

   b. Ascorbic Acid 
 Ascorbic acid is found in higher levels in the vitreous body 
compared to plasma. 

 It is postulated that ascorbic acid is associated with liquefac-
tion during aging and after cataract extraction [ 47 ], but it could 
also be an inhibitor for neovascularization [ 48 ] and increase 
proliferation of hyalocytes [ 49 ]. Recent studies also implicate 
that ascorbic acid may play an important role as antioxidant 
and thereby decreasing the amount of free oxygen near the lens 
and thus preventing cataract formation [ 50 ] [see chapter   IV.B    . 
Oxygen in vitreo-retinal physiology and pathology.]  

   c. Amino and Fatty Acids 
 Some amino acids have been detected in vitreous at the same 
concentration as in plasma. Unsaturated fatty acids (50 % of 
all fatty acids in vitreous) have been found to have a constant 
level throughout age [ 51 ].  

   d. Prostaglandins 
 Prostaglandins have been measured in concentration of about 
100 pg/ml in the human vitreous [ 52 ].     

   II. Roles of an Artifi cial Vitreous 

 With an ever-increasing appreciation of the role of vitreous 
in ocular health [see chapters   IV.A    . Vitreous in ocular 
 physiology;   IV.B    . Oxygen in vitreo-retinal physiology and 
pathology;   IV.D    . Physiology of accommodation and role of 
vitreous], there is growing interest in the development of an 
artifi cial vitreous. The diversity of demands on artifi cial vit-
reous candidates is notable (Figure  I.F-2 ):

    1.    Volume fi ller: In hypotonous and phthisical eyes where 
aqueous production is diminished or absent, there is 
a need for a  volume fi ller  to hold the form of the 
eye globe.   

  2.    Tamponade: In severe forms of retinal detachment, it is 
mandatory to seal the breaks by gel adhesion or “glue-
ing” with a  tamponade .   

  3.    Drug vehicle: In diseases such as age-related macular 
degeneration (AMD), a suitable  vehicle for drugs  such 
as synthetic gels capable of slow release of pharmaco-
logic substances is desired [ 53 – 55 ].   

  4.    Free radical scavenger: After vitrectomy, the oxygen 
balance is changed and the  P O 2  near the lens increases 
causing cataract progression. With a suitable gel, cata-
ract formation might be prevented [ 56 – 58 ].   

  5.    Refract incident light: Refractive error such as high 
myopia can be diffi cult to adjust with optical aid. 
A vitreous gel with  refractive properties  may be useful 
(compare to silicone oil).   

  Figure I.F-2    There is a diversity of demands on artifi cial vitreous can-
didates such as: (a) volume fi ller, (b) tamponade, (c) drug vehicle, (d) 
free radical scavenger, (e) refract incident light, (f) hemostasis, (g) 
maintain optical clarity (Copyright Fredrik Ghosh)       
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  6.    Hemostasis: In diabetic and other vascular retinal dis-
eases, patients may suffer recurrent intravitreal hemor-
rhage. A suitable synthetic vitreous tamponade (similar 
to silicone oil or a gel containing anti-VEGF) might 
 stop further bleeding .   

  7.    Maintain optical clarity: Cell migration and prolifera-
tion must be inhibited and protein exudation must be 
mitigated to maintain a clear medium through which 
photons can pass unhindered to undergo photorecep-
tion and begin vision.    

     III. Properties of an Artifi cial Vitreous 

 An artifi cial vitreous gel should possess certain physical 
properties such as being injectable through a small cannula 
without disintegration (shearing). To avoid thermal damage, 
the gelation process should not produce high temperature 
once inside the eye. The gel must be inert, have the ability to 
allow transfer of metabolites, be nonabsorbable or slow dis-
integrating, and carry high clarity and transparency. It seems 
that for different indications and purposes we might not be 
able to identify one single gel. Instead a variety of different 
gels with various properties (such as long or short lasting, 
drug delivery, glue, volume, or tamponade) for specifi ed 
indications may be interesting. 

   A.    Anatomic Considerations: Do 
We Need a Posterior Vitreous Cortex? 

 During removal of the natural vitreous in patients, we con-
sider it necessary to induce a posterior vitreous detachment 
sometimes in combination with peeling of the inner limiting 
membrane (ILM). This is to ensure that all vitreous remnants 
are removed together with fi brous membranes and other trac-
tion components. We leave the retina without cover and the 
protection of ILM or the posterior vitreous cortex. If we 
inject an artifi cial gel into the vitreous cavity in such an eye, 
it will come in close contact with the neural retina and have 
a higher potential of toxic infl uences on the retinal cells. 
Histological fi ndings [ 59 ] suggested a direct toxic effect at 
sites where a polyacrylamide hydrogel came in direct contact 
with the neural retina. In sections where a PVD was not com-
plete and the natural posterior vitreous cortex persisted, the 
neural retina appeared normal on histology. Could it be that 
constructing a thin, semipermeable membrane around the 
artifi cial vitreous gel is a solution to prevent destruction of 
the neural retina seen in experimental studies? Gao et al.  
[ 60 ] tested a capsular silicone elastomer 0.01 mm thick 
which inside the eye on rabbits was fi lled with physiological 
balanced salt solution and included a tube–valve system for 
pressure regulation. During the 8 weeks the experiment 

lasted, there were no negative effects or malfunction detected 
by ERG or histology.   

   IV.  Vitreous Substitutes in Vitreoretinal 
Surgery 

 Besides the currently used clinical vitreous substitutes (sili-
cone oil, expanding gases, perfl uorocarbon liquids, semi- 
fl uorinated alkanes, and mixtures such as heavy silicone oil; 
see chapter   IV.G    . Physiology of vitreous substitutes), many 
different gels with various chemical and physical properties 
have been tested  in vitro  and  in vivo  in animal and humans 
experiments. 

   A.  Natural and Semisynthetic Polymers 
and Hyaluronic Hydrogels 

 Cross-linked hyaluronic acid is in most perspectives identi-
cal to one component of the natural vitreous gel and has been 
found to be nontoxic to the retina [ 61 – 63 ]. The compound is 
used clinically for viscodissection of intraocular tissue or to 
maintain a fi ltering bleb in glaucoma surgery and has also 
been tested as temporary or partial retinal tamponade. This 
compound has a high degradation tendency and lasts for a 
short period of time, inducing elevated intraocular pressure 
while disintegrating [ 64 – 69 ]. By employing different cross- 
linking methods and techniques, the rapid disintegration and 
small molecule formation may be halted and tolerance 
enhanced [ 70 ] (Figure  I.F-3 ).

   Gels containing gelatin and collagen have been tested as 
vitreous substitutes but after a short duration, there was rapid 
disintegration. Polysaccharides, e.g., dextran, sodium algi-
nate, and chondroitin sulfate did not elicit infl ammation, but 
vitreous haze and high dissolving tendency were reported 
[ 71 ]. A natural crustacean product, chitosan, was tested with 
promising results regarding biocompatibility and gel stabil-
ity [ 72 ].  

   B.    Synthetic Hydrogels 
and “Smart Hydrogels” 

 Hydrogels are synthetic three-dimensional polymers that 
swell in aqueous solution and do not display any dissolu-
tion, resorption, or disintegration inside the eye. They are 
becoming popular due to their physical and chemical prop-
erties meaning that they stay stable, show biocompatibility, 
keep transparent, are highly hydrophilic, and do not shear 
when injected through small gauge cannulas [ 59 ,  73 – 76 ]. 
However, polyacrylamide and similar hydrogels are highly 
neurotoxic when in monomer form and only biocompatible 
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after complete polymerization. To minimize toxicity and 
increase injectability, many investigators have used differ-
ent methods such as cross-linking or chemical modifi cations 
making the ( smart -) gel liquid during injection but sponta-
neously gelating inside the eye. This can occur due to a 
temperature- sensitive gel [ 77 – 80 ], or a gel responsive to the 
oxygen rich environment inside the eye [ 81 ]. Tai [ 82 ] has 
reported a  polyethylene glycol gel, which is thermorespon-
sive and, after gelation, forms a covalently cross-linked 
hydrogel.   

   V.    Developing an Artifi cial Vitreous 

   A.    Experimental Models for Testing 
Artifi cial Vitreous  In Vivo  

 Several animal models have been used to explore physical 
and biochemical properties of novel vitreous substitute can-
didates. The rabbit eye is one of the most commonly used 

since it is well suited for the vitrectomy procedure and is 
well characterized regarding retinal structure and function. 
We recently developed an  in vivo  rabbit model using vitrec-
tomy and subsequent infusion of the candidate compound 
followed by morphological and electrophysiological retinal 
evaluation [ 72 ,  83 ]. 

   1. Polyalkylimide 
 Polyalkylimide is a gel polymer comprised exclusively of 
networks of alkylimide groups (approximately 4 %) and 
non-pyrogenic water (approximately 96 %). Alkylimide 
belongs to the family of acryl derivatives, and its poly-
meric structure does not contain free monomers. The gel 
is commercially available and is used clinically in plastic 
surgery as nondegradable fi ller in esthetic lipoatrophic 
conditions and after post-traumatic or therapeutic atrophy 
of subcutaneous tissue [ 75 ,  84 ,  85 ]. When placed in the 
subcutaneous space, the gel forms a thin collagen capsule, 
and it is extractable even after several years without signs 
of degrading. This gel has been found to be nontoxic when 

  Figure I.F-3    By employing different cross-linking methods and techniques, a more stable hydrogel was achieved such as sodium hyaluronic acid 
hydrogel (Healafl ow®)       
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applied on the human skin or on cultured fi broblast but 
did induce swelling and hyperemia after subcutaneous 
injection in the rat [ 86 ]. 

 In a fi rst experiment, we performed a regular 20G vit-
rectomy including posterior vitreous detachment, central 
vitrectomy, and infusion of approximately 1.0 ml of poly-
alkylimide (Bio-Alcamide®) hydrogel [ 59 ]. Hydrogel-
fi lled eyes were compared with eyes fi lled with balanced 
salt solution. We found that the viscoelastic polyalkyl-
imide hydrogel could be injected with ease into the vitre-
ous cavity. The gel remained clear with retained viscosity 
for at least 28 days. In contrast to previous reports in 
reconstructive surgery, a surrounding capsule was not 
found, but the gel displayed uninterrupted apposition with 
the retinal surface. Pathological reactions were present 
early in the postoperative period in the form of neuroreti-
nal swelling and posterior capsule opacifi cation. In addi-
tion, ERG recordings showed a radical decrease in rod- and 
cone-derived b-wave amplitudes performed [ 87 ,  88 ] 
(Figure  I.F-4 ). In histological sections, degenerative reti-
nal changes were seen almost exclusively in central parts 
of the retina and not in the periphery, where the natural 
vitreous remained, suggesting that direct gel-to-retina 
contact was responsible for the adverse morphological 
effects on the retina (Figure  I.F-5 ). In this setting, the rab-
bit retina may be especially vulnerable to biochemical 
changes due to its merangiotic (partly vascularized) 
nature, i.e., lack of retinal circulation, making it depen-
dent on support from the vitreous and choroid [ 89 ] 
(Figure  I.F-6 ). The conclusion of this experiment was that 
the intravitreal polyalkylimide gel displays excellent 
physical requirements of an ideal vitreous tamponade but 
that it induces severe retinal pathological reactions which 
limits its use as a potential artifi cial vitreous (Figure  I.F-7 ). 
The reasons for the adverse intraocular reactions are not 

readily known, but recent evidence points to an infl amma-
tion-inducing capacity when used subcutaneously [ 90 ], so 
perhaps also in the eye.

         2. Polyethylene Glycol 
 For the next experiment [ 91 ] we used polyethylene glycol 
(PEG) [ 92 ], a synthetic water-soluble polymer approved by 
the FDA for use in a wide range of biomedical applications, 
including injectable hydrogels [ 93 ]. PEG has also been 
tested in formulations for intravitreal drug delivery, repair of 
scleral incisions, and sealing retinal detachments [ 54 ,  94 , 
 95 ]. We used the same surgical protocol as in the polyalkyl-
imide experiment but instead injected viscoelastic PEG sols 
of high molecular weight (>200 kDa) in phosphate-buffered 
saline (PBS). Molecular weights and concentration of PEG 
were chosen to approximate the mechanical properties of the 
natural vitreous. Sols of 5 wt.% PEG with a molecular weight 
of 400 kDa in PBS were shown to have mechanical and opti-
cal properties similar to the natural vitreous and were well 
tolerated by the retina, with minimal histological or electro-
physiological changes, with the exception GFAP upregula-
tion over a period of 41 days. However, the sols were not 
retained in vitreous throughout the postoperative period and 
were found to be completely dissolved. These results indi-
cate that PEG displays excellent biocompatibility within the 
eye, but to extend its use to clinical application, further mod-
ifi cation of the gel is needed.   

   B.    Experimental Model for Testing 
Artifi cial Vitreous  In Vitro  

 To provide an alternative to relatively costly and cum-
bersome  in vivo  testing, we developed a new model for 
primary  in vitro  assessment of novel artifi cial vitreous 

Pre operative

Rod response

Darkadapted

Lightadapted

Comblined response

30 Hz flicker response

Blue light

Post operative

50µV

5µV

10ms

20ms

  Figure I.F-4    Full-fi eld ERG 
demonstrating reduction of 
a- and b-wave amplitudes in all 
stimulation protocols, indicating 
diminished cone and rod 
function 28 days after injection 
of Bio-Alcamid®       
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  Figure I.F-5    Histology of experimental rabbit operations with polyal-
kylimide. ( a – c ) Hematoxylin and eosin staining, cryosections. There is 
choroidal edema and total neuroretinal destruction centrally ( a, b ) 
6 days postoperatively. The peripheral neuroretina appears normal ( c ). 
( d)  In another rabbit the border between severe  neuroretinal degenera-

tion and less affected tissue is seen. ( e)  In yet a third rabbit, invasion of 
infl ammatory cells can be seen in the subretinal space. The RPE is dis-
rupted, and degeneration of photoreceptors as well as inner retinal cells 
is evident       
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 candidates [ 96 ]. For this experiment, the biological impact 
of three artifi cial vitreous candidates was explored in a reti-
nal explant culture model: polyalkylimide ( Bio-Alcamid®), 
a  two- component hydrogel of 20 wt.% poly-(ethylene 

glycol) in phosphate-buffered saline (PEG), and a cross-
linked sodium hyaluronic acid hydrogel (Healafl ow®) 
(Figure  I.F-3 ). The gels were applied to explanted adult 
rat retinas and then kept in culture for 5 days after which 
morphological evaluation using immunohistochemistry, 
TUNEL, and hematoxylin–eosin staining were performed. 
Explants kept under standard conditions as well as PEG-
exposed explants displayed disruption of retinal layers with 
moderate pyknosis of fi rst-, second-, and third-order neu-
rons. They also showed moderate fragmentation of DNA 
(TUNEL). Polyalkylimide-exposed explants displayed 
severe thinning and disruption of retinal layers with mas-
sive cell death. In contrast, cross-linked sodium hyaluronic 
acid hydrogel-treated explants showed normal retinal 
lamination with signifi cantly better preservation of retinal 
neurons compared with control specimens and almost no 
DNA fragmentation. We conclude that the explant cul-
ture system under standard conditions imposes reactions 
within the retina that can be used when evaluating artifi cial 
vitreous candidates. In our particular experiment, polyal-
kylimide adversely affected the  in vitro  retina, consistent 
with the results of prior  in vivo  trials. PEG gel imposed 
reactions similar to the control retinas, whereas Healafl ow® 
showed protection from culture-induced trauma, indicating 
a favorable biocompatibility. The  in vitro  retinal explant 
model provides a method of biocompatibility testing prior 
to more costly and cumbersome  in vivo  experiments.  

  Figure I.F-6    The rabbit retina may be especially vulnerable to bio-
chemical changes due to its merangiotic (partly vascularized) nature, 
i.e., lack of retinal circulation, making it dependent on support from the 
vitreous and choroid (Copyright Fredrik Ghosh)       

  Figure I.F-7    Dissection of rabbit eye displays clear Bio-Alcamid gel 
with no apparent fragmentation 28 days postoperatively. The gel is 
well-apposed to the retinal surface       

 Abbreviations 

  AMD    Age-related macular degeneration   
  CS    Chondroitin sulfate   
  DNA    Deoxyribonucleic acid   
  ERG    Electroretinography   
  G    Gauge   
  GAG    Glycosaminoglycans   
  GFAP    Glial fi brillar acid protein   
  HA    Hyaluronan   
  HS    Heparan sulfate   
  ILM    Inner limiting membrane   
  kDa    Kilodalton   
  PBS    Phosphate-buffered saline   
  PEG    Polyethylene glycol   
  pg.ml    Picograms/milliliter   
  pO 2     Partial pressure of oxygen   
  TUNEL     Terminal deoxynucleotidyl transferase 

dUTP nick end labeling   
  VEGF    Vascular endothelial growth factor   
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