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    Abstract     Astrocytes, the most abundant cell in the central nervous system, are 
essential for brain function and homeostasis. This chapter focuses on the immuno-
logical role of astrocytes in the pathology of major neurodegenerative diseases. 
Astrocyte activation, or astrogliosis, has been observed in many neurodegenera-
tive diseases. Factors associated with neurodegeneration including extracellular 
oligomerized proteins such as amyloid β and α-synuclein as well as infl ammatory 
cytokines and chemokines can infl uence the functionality of astrocytes. In response 
to such stimuli, astrocytes produce a multitude of soluble factors including cyto-
kines, chemokines, reactive oxygen/nitrogen species, and growth factors. This 
astrocytic response is initially protective, limiting damage and promoting func-
tional recovery. However, the prolonged and progressive nature of neurodegenera-
tive diseases establishes an environment in which astrogliosis may be aberrantly 
sustained, and the ongoing production of astrocyte-derived molecules contributes 
to the non-resolving infl ammatory and neurotoxic landscape associated with 
neurodegeneration.  
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  Abbreviations 

   6-OHDA    6-hydroxydopamine   
  AD    Alzheimer’s disease   
  ALS    Amyotrophic lateral sclerosis   
  Aβ    Amyloid β   
  BBB    Blood–brain barrier   
  BDNF    Brain-derived neurotrophic factor   
  CNS    Central nervous system   
  DAMP    Damage-associated molecular pattern   
  GDNF    Glial-derived neurotrophic factor   
  GFAP    Glial fi brillary acidic protein   
  HD    Huntington’s disease   
  IFN    Interferon   
  ISG    Interferon-stimulated genes   
  MHC    Major histocompatibility complex   
  MMP    Matrix metalloproteinase   
  MPTP    1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine   
  MS    Multiple sclerosis   
  NFT    Neurofi brillary tangles   
  NF-κB    Nuclear factor-kappa B   
  NOD    Nucleotide-binding oligomerization domain   
  PGD2    Prostaglandin D2   
  PRR    Pattern recognition receptor   
  STAT    Signal transducer and activator of transcription   
  SN    Substantia nigra   
  SOD1    Superoxide dismutase 1   
  TBI    Traumatic brain injury   
  Th    T helper   
  TLR    Toll-like receptor   

1           Introduction 

 Astrocytes are intriguing and remarkable cells controlling virtually every facet of 
central nervous system (CNS) functions. Astrocytes work together with neurons, 
microglia, oligodendrocytes, endothelial cells, and other cells to ensure harmonious 
function within the unique environment of the CNS. For example, astrocytes form the 
tripartite synapse where they take up glutamate as well as synthesize and release glu-
tamine for use by neurons for conversion to glutamate, together ensuring proper neu-
rotransmission. Additionally, astrocytes release trophic factors including brain- derived 
neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF), and others. 
Astrocyte end-feet interact with the neurovasculature and infl uence blood–brain 
barrier (BBB) function. The many diverse functions of astrocytes are too complex and 
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numerous to describe in detail here; however, there are a number of excellent reviews 
describing the phenotypic and functional characteristics of astrocytes [ 1 – 5 ]. 

 The focus of this chapter is to describe the role of astrocytes in neuroinfl amma-
tion in the context of neurodegenerative diseases. Microglia are typically thought 
of as the main innate immunity effector cell in the CNS because of their 
macrophage- like phenotype, robust infl ammatory responses, and ability to present 
antigen via major histocompatibility complex (MHC) class II. It is now appreci-
ated that astrocytes have important innate immune functions as well [ 6 ]. In 
response to injury, infection, disease, or any disturbance, astrocytes undergo a phe-
notypic change known as astrogliosis. Widely characterized as the increased 
expression of the intermediate fi lament protein glial fi brillary acidic protein 
(GFAP), astrogliosis involves a host of transcriptional, translational, and pheno-
typic changes aimed at resolving and limiting damage to the CNS [ 2 ]. GFAP is 
expressed at variable levels in unstimulated astrocytes and forms a fi brous network 
typical of cytoskeletal proteins (Fig.  1 ). Additionally, astrocytes express pattern 
recognition receptors (PRR), although their repertoire is more restricted than that 
of microglia. Toll-like receptors (TLRs) recognize pathogen-associated molecular 
patterns and astrocytes express TLR2, TLR3, TLR4, TLR5, and TLR9. TLR3, 
which recognizes double-stranded RNA, appears to be the most abundant TLR 
expressed by astrocytes [ 6 ]. In addition, astrocytes express nucleotide-binding 
oligomerization domain (NOD) proteins that recognize bacterial components [ 7 ]. 
Astrocytes can also sense and respond to damage- associated molecular patterns 
(DAMPs) such as ATP through purinergic receptors and the multi-protein NLRP2 

  Fig. 1    GFAP expression in murine astrocytes. Astrocytes were isolated from the telencephalon of 
P1 pups and expanded in culture for 14 days. Cells were then stained for GFAP ( red ) and nuclei 
(DAPI,  blue ) and imaged by confocal microscopy. Notice the mesh-like network of GFAP       
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infl ammasome [ 8 ,  9 ]. Astrocytes respond to interferons (IFN) and a wide array of 
cytokines and chemokines. When stimulated, astrocytes in turn produce many 
cytokines and chemokines including IL-1, IL-6, LIF, CNTF, IL-8, IL-10, IFN-α, 
IFN-β, M-CSF, GM-CSF, TNF-α, TGF-β, CCL2, CCL3, CCL4, CCL5, CCL20, 
CXCL10, and CXCL12 [ 10 – 12 ]. In addition, infl ammatory stimulation of astro-
cytes can lead to the production of the free radical nitric oxide (NO) which is toxic 
to neurons and oligodendrocytes and may promote neurodegeneration [ 13 ]. While 
astrocytes contribute to the local infl ammatory response, they are also essential to 
limit and resolve CNS infl ammation. Following traumatic brain injury (TBI), as 
well as other insults, astrocytes proliferate and form a glial scar around the injury 
[ 2 ]. The selective ablation of proliferating astrocytes following TBI in mice results 
in a prolonged infl ammatory response and increased neuronal degeneration [ 14 ]. 
In acute conditions such as injury or infection, the astrocytic response is para-
mount to reestablish homeostasis in the CNS. However, in chronic conditions such 
as neurodegenerative diseases, astrocytes may eventually contribute to pathology.

2        Astrocytes in Multiple Sclerosis 

 Multiple sclerosis (MS) is a debilitating T cell-mediated autoimmune disease in 
which leukocytes (T cells, macrophages, neutrophils, and others) invade the CNS, 
leading to demyelination and axonal degeneration, eventually resulting in perma-
nent disability. The etiology of MS is complex, involving genetic, environmental, 
and geographic factors, and usually develops in young adults (20–40 years of age) 
with a bias toward females [ 15 ]. MS initially manifests as highly variable transient 
episodes disrupting sensory and/or motor function, followed by full or partial recov-
ery and disease remission (relapsing-remitting MS). In conjunction with symptoms, 
infl ammatory lesions are also observed in the brain and spinal cord. MS lesions are 
areas of demyelination and infl ammation involving invading peripheral leukocytes 
as well as resident glial cells. Cytokines and chemokines are key players in this 
infl ammatory attack. Cytokines including IFN-γ, IL-17, and IL-6 are elevated in 
MS lesions as are the C-C chemokines CCL2, CCL3, CCL4, CCL5, CCL7, and 
CXCL12 [ 16 – 18 ]. MS patients have multiple attacks causing incremental damage 
to the CNS, and many patients progress to secondary progressive MS, where remis-
sion and recovery are reduced [ 19 ,  20 ]. Additionally, cognitive impairment is 
observed in at least 50 % of MS patients, contributing to disability and reduced 
quality of life [ 21 ]. Treatments for MS including IFN-β, glatiramer acetate, fi ngoli-
mod, and others have greatly improved the quality of life for many MS patients; 
however, not all patients respond to or can tolerate these treatments [ 22 ,  23 ]. As 
such, new therapeutic targets for the treatment of MS are greatly needed. 

 The animal model of MS, experimental autoimmune encephalomyelitis (EAE), 
has greatly facilitated understanding the immunological interactions with the 
CNS. Although EAE is by no means a perfect replica of human MS, it shares many 
similar pathological features. EAE can be induced in a number of animals including 
nonhuman primates, rabbits, guinea pigs, hamsters, rats, and mice with an array of 
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protocols and CNS antigens [ 24 ,  25 ]. Most current research utilizes the murine 
model. EAE, like MS, is a demyelinating disease involving perivascular infi ltration 
of peripheral immune cells and axonal degeneration, manifesting with physical 
symptoms in a relapsing-remitting and/or progressive fashion. T helper (Th) cells, 
specifi cally IFN-γ-producing Th1 cells and IL-17-producing Th17 cells, are the 
main effector cells in the initiation of EAE [ 26 ]. 

 In postmortem studies of MS lesions, markers of Th1 and Th17 cells have been 
described, among other cell types [ 27 ]. Coincident with infi ltration of leukocytes, 
astrocyte damage and hypertrophy have been observed in MS lesions [ 28 ]. Moreover, 
astrogliosis is present in the CNS of MS patients [ 1 ]. These examples highlight an 
abundance of data that suggest astrocytes are important players in the pathogenesis 
of MS. This has been supported by studies in EAE. Astrocyte activation, as measured 
by GFAP expression, correlates with or precedes the onset of clinical symptoms 
[ 29 – 31 ]. Additionally, there is astrocyte proliferation within the white matter of the 
spinal cord [ 32 ]. Astrocytes in MS and EAE produce the potent leukocyte- attracting 
chemokines CCL2 [ 33 ,  34 ] and CCL20 [ 12 ,  35 ] among others, and  disruption of either 
of the receptors for these chemokines, CCR2 and CCR6, respectively, results in ame-
lioration of EAE [ 36 ,  37 ]. While astrocytes produce chemoattractants, they also form a 
barrier around perivascular lesions in EAE to block further leukocyte infi ltration into 
the healthy parenchyma [ 38 ]. IL-6 is a multifaceted proinfl ammatory cytokine that is 
elevated in the CNS following injury or in diseases including MS [ 39 ]. Astrocytes 
are a major source of endogenous IL-6 in the CNS, and IL-6 drives its own expression 
through autocrine signaling in conjunction with the soluble IL-6 receptor (trans-
signaling) [ 40 ,  41 ]. Transgenic mice expressing IL-6 under the control of the GFAP 
promoter alters EAE disease such that infl ammatory leukocytes invade mainly the 
cerebellum rather than the spinal cord [ 42 ]. Disruption of gp130, the common signal-
transducing receptor for the IL-6 family of cytokines, in astrocytes leads to exacerbated 
EAE, indicating that astrocytes also have a key role in limiting disease [ 43 ]. Additionally, 
the importance of astrocytes in EAE was further established in a recent study which 
demonstrated that intact IL-17 signaling in astrocytes is required for induction of 
disease [ 44 ]. Moreover, IL-17 enhances IL-6-induced IL-6 and CCL20 expression in 
astrocytes [ 45 ,  46 ]. This likely refl ects the cooperative actions of the IL-6-induced 
transcription factor STAT3 and the IL-17-induced transcription factor NF-κB [ 47 ,  48 ]. 
Disruption of NF-κB activity in astrocytes ameliorates CNS infl ammation and EAE 
disease severity [ 49 ,  50 ]. In MS and EAE, Th1 cells and Th17 cells contribute to the 
pathogenesis of disease. However, IL-4-producing Th2 cells and T regulatory cells 
(Tregs) are protective in EAE models [ 51 ,  52 ]. Thus, the repertoire of T cells interacting 
with the CNS is critical to the outcome of disease, and astrocytes infl uence this through 
production of chemoattractant molecules. For example, during EAE, astrocytes pro-
duce CXCL10 which recruits T cells, the monocyte chemoattractant CCL2, as well as 
CCL20 that can recruit both Th17 cells and Tregs [ 34 ,  35 ,  53 ,  54 ]. Additionally, as 
nonprofessional antigen-presenting cells, astrocytes, in an IFN-γ- inducible fashion, can 
express major histocompatibility complex (MHC class II) and present myelin-derived 
autoantigens to encephalitogenic T cells [ 55 – 57 ], potentially providing a stimulus for 
reactivation of T cells in the CNS. Collectively, these studies indicate that astrocytes 
are active participants in MS and EAE pathology and are potential therapeutic targets.  
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3     Astrocytes in Alzheimer’s Disease 

 Alzheimer’s disease (AD) is a progressive neurodegenerative disease that robs indi-
viduals of their memory and reduces cognitive function. Extracellular amyloid β 
(Aβ) deposition and tau-containing neurofi brillary tangles (NFTs) are hallmarks of 
AD pathology [ 58 ]. However, beginning with Alois Alzheimer’s initial description 
of AD more than 100 years ago, alterations in glial cells have also been appreciated 
[ 59 ]. Upon postmortem analysis, brains from patients with AD display clear astro-
gliosis, and the levels of GFAP inversely correlate with cognitive function [ 60 ,  61 ]. 
Astrocytes infl uence several features of AD. Astrocytes are thought to phagocytosis 
Aβ [ 62 ], and blockade of astrocyte activation in a transgenic AD mouse model 
increases Aβ plaque burden [ 63 ]. The exact mechanisms leading to gliosis in AD is 
not well understood. Fibrillar Aβ1-42 can stimulate pattern recognition receptors, 
including the lipopolysaccharide (LPS) coreceptor CD14 and the NOD-like receptor 
NALP3, leading to microglial activation and production of IL-1β [ 64 ,  65 ]. Similarly, 
astrocytes express TLRs and NLRs which may engage Aβ1-42 and promote astro-
gliosis, but this has not yet been formally demonstrated. However, several molecules 
have been implicated in mediating various astrocytic responses to Aβ including low-
density lipoprotein receptors, aquaporin-4, adenosine A2A receptor, as well as the 
scavenger receptors CD36 and CD47 [ 66 – 69 ]. More recently, Aβ was shown to 
interact with the α7 nicotinic acetylcholine receptor and promote astrocytic gluta-
mate release [ 70 ,  71 ]. While astrogliosis is initially benefi cial, the long-term produc-
tion of cytokines and chemokines may be deleterious and promote AD pathology. 

 Glial-derived IL-1 and IL-6 are important proinfl ammatory cytokines elevated in 
the brain of patients with AD [ 72 ,  73 ]. From animal studies, we have learned that 
these cytokines may be active participants in AD pathology. Transgenic AD mice 
(Tg2576) that express an APP mutant associated with early onset familial AD have 
increased IL-6 in the brain that precedes detectable Aβ plaques [ 74 ]. Moreover, IL-6 
expression, in the same transgenic mouse model, persists into the established disease 
state with IL-6-producing astrocytes observed near Aβ deposits [ 75 ]. Mice overex-
pressing IL-6 in astrocytes have learning defects, suggesting that IL-6 may exacer-
bate cognitive decline [ 76 ]. Moreover, IL-1β directs astrocytes to produce IL-6 [ 77 ]. 
As mentioned previously, astrocytes are a potent source of chemokines that likely 
help to recruit and direct the peripheral monocytes observed in the AD brain [ 78 ]. 
Direct injection of IL-1β into the rat forebrain leads to prolonged astrocyte activation 
with concomitant increases in GABA and glutamate [ 79 ]. Elevated glutamate may be 
associated with the ability of Aβ1-42 to reduce astrocyte- dependent glutamate clear-
ance [ 80 ]. Astrocytes stimulated with IL-1β also secrete S100B [ 81 ]. Secreted S100B 
has cytokine-like functions and at low concentrations is neurotrophic. However, 
extracellular S100B is elevated in neurological disorders including AD, and at higher 
concentrations S100B can promote neuronal cell death [ 82 ]. Further, antibody-medi-
ated blockade of IL-1β in 3 × Tg-AD mice, which express mutants of APP, presenilin, 
and tau, reduces S100B expression, tau pathology, and disease pathology [ 83 ,  84 ]. 
Nitric oxide may also play an important role in AD. Mixed glial cultures respond to 
Aβ peptides with increased production of IL-1β and TNF-α that leads to increased 
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expression of iNOS and synthesis of nitric oxide [ 85 ]. In AD astrocytes appear to be 
the main source of nitric oxide [ 86 ]. Nitric oxide is neurotoxic and may facilitate 
neurodegeneration in AD [ 87 ,  88 ]. Moreover, stimulation with the microglial- and 
astrocyte-derived cytokines IL-β, TNF-α, and IFN-γ can also stimulate nitric oxide 
production with subsequent neurotoxicity from astrocytes [ 89 ]. Astrocytes can also 
modulate microglial function through the production of soluble cytokines and che-
mokines. Astrocyte-produced S100B can stimulate activation of microglia that 
includes the production of IL-1β [ 90 ], potentially reinforcing or promoting astroglio-
sis. Additionally, infl ammatory cytokines, as well as Aβ fi brils, can also stimulate 
astrocyte- and neuron-dependent APP expression and Aβ production [ 91 – 93 ]. 
Ultimately, the interactions between cytokines (particularly IL-1) with neurons, 
microglia, and astrocytes drive a cycle of infl ammation and Aβ production that cul-
minates in neurological dysfunction and cognitive decline [ 94 ].  

4     Astrocytes in Parkinson’s Disease 

 Parkinson’s disease (PD) is characterized by the selective loss of dopaminergic neu-
rons in the substantia nigra (SN) and the associated physical manifestations. In 
addition to dopaminergic neurodegeneration, neuropathology includes the accumu-
lation of α-synuclein-containing Lewy bodies, activated microglia, infi ltrating CD4 +  
and CD8 +  T cells, and increased numbers of astrocytes surrounding dopaminergic 
neurons [ 95 – 97 ]. Elevated levels of cytokines including TNF-α, TGF-β1, IL-1β, 
IL-6, IL-2, IFN-γ, and reactive oxygen/nitrogen species are also observed in brains 
from PD patients [ 98 ]. These fi ndings (and many others) indicate an ongoing, non- 
resolving infl ammatory reaction in the brain of PD patients. 

 Several animal models suggest that infl ammation is important in the pathogene-
sis of PD. Mice expressing human α-synuclein driven by the thy1 promoter display 
activated microglia and elevated TNF-α as early as 1 month of age in the striatum 
[ 99 ]. Importantly, the striatum contains axon terminals emanating from the SN as 
part of the nigrostriatal pathway. These fi ndings support the idea that infl ammation 
maybe a key participant in neurodegeneration and not just a consequence of tissue 
damage [ 99 ]. In toxin-induced models, including MPTP and 6-OHDA, infl amma-
tory cytokines and activated microglia are present [ 100 ]. MPTP intoxication leads 
to prolonged (years) glial activation, suggesting glial cells are involved in the patho-
logical outcome. Direct injection of LPS is toxic to dopaminergic neurons [ 101 ], 
indicating that infl ammation, even in the absence of disease, can recapitulate the cell 
death seen in PD. Additionally, LPS can synergize with MPTP to induce dopaminer-
gic neuronal cell death in neuron-glia cocultures [ 102 ]. LPS-induced neuronal death 
is likely indirect. In support of this are in vitro studies demonstrating that microglia 
and astrocytes work in concert to drive neurotoxicity in response to LPS [ 103 ]. 

 Astrocyte accumulation of α-synuclein is observed in the PD brain [ 104 ], and 
recent fi ndings suggest that α-synuclein can be transmitted from neurons to sur-
rounding cells [ 105 ]. Indeed, astrocytes can take up α-synuclein via endocytosis. 
Not only do astrocytes take up α-synuclein, but an infl ammatory reaction is stimu-
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lated that includes production of IL-6 and TNF-α as well as chemokines and matrix 
metalloproteinases (MMPs) [ 105 ]. Moreover, transgenic mice expressing a mutant 
α-synuclein associated with familial PD, A53T α-synuclein, in astrocytes display 
paralysis and mortality. This is associated with widespread gliosis and increased 
expression of TNF-α, IL-1β, and IL-6 in the brainstem. Conditioned media from the 
A53T α-synuclein-expressing astrocytes stimulated IL-1β and Cox1 expression in 
microglia [ 106 ]. These fi ndings suggest that the effects of α-synuclein on astrocytes 
may contribute to the pathology of PD. 

 Astrocytes can have both protective and neurotoxic effects. Alpha-synuclein can 
enhance IL-1β-induced CXCL10 expression in astroglial cultures through mRNA 
stabilization [ 107 ]. CXCL10 is toxic to neurons; this has been demonstrated in the 
cholinergic LAN-2 cell line and in mixed human fetal neurons [ 108 ,  109 ]. While the 
dark pigment found in the SN, neuromelanin, attenuates astrocyte-derived CXCL10 
[ 107 ], the direct infl uence of CXCL10 on dopaminergic neurons has not been 
examined. Astrocyte expression of the antioxidant transcription factor nuclear 
 factor erythroid 2-related factor 2    (Nrf2) in the Thy1-hSYN A53T  mice protects motor 
 neurons, reduces synuclein aggregates in the brain and spinal cord, and enhances 
overall survival. Additionally, Nrf2 expression reduces gliosis [ 110 ]. 

 The exact mechanisms responsible for activation of the glial reaction in PD are 
unknown. Gliosis is observed in PD patients and most animal models and once 
active a self-perpetuating infl ammatory reaction may result. In adult macaques 
injected with MPTP, persistent astrogliosis is observed as well as elevated IFN-γ 
and TNF-α in the SN. Mice lacking either IFN-γ or TNF-α have attenuated gliosis 
following MPTP treatment [ 111 ]. 

 Some mutations associated with familial forms of PD have been shown to alter 
infl ammatory responses. Cortical slices from PINK1 −/−  mice have increased produc-
tion of TNF-α, IL-1β, and IL-6 [ 112 ]. The cytokines produced suggest activation of 
microglia and astrocytes, although it should be noted that PINK −/−  astrocytes are 
dysfunctional in their proliferative capacity and do not have elevated GFAP expres-
sion [ 113 ]. Astrocytes defi cient for DJ-1 are more sensitive to LPS-induced infl am-
matory gene expression [ 114 ]. Mutations in Nurr1 are associated with a rare form 
of PD. Nurr1 suppresses infl ammation in microglia and astrocytes through repres-
sion of NF-κB, and loss of Nurr1 enhances astrocyte-derived neurotoxic molecules 
[ 103 ]. This indicates that astrocytes are involved in both sporadic and familial PD.  

5     Astrocytes in Huntington’s Disease 

 In contrast to most neurodegenerative diseases in which the etiology is unknown, we 
know that Huntington’s disease (HD) is caused by a CAG expansion (poly Q) in 
the huntingtin gene, leading to neuronal loss in the striatum and cortex [ 115 ,  116 ]. 
As with other neurodegenerative diseases, infl ammation is likely a key player in 
HD. Immune activation is detectable in the periphery and CNS of HD patients. Elevated 
plasma levels of IL-6, IL-8, IL-4, IL-10, TNF-α, and IL-5 have been shown in HD 
patients compared to healthy controls. Similarly, IL-6 and IL-8 levels are elevated 
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in the CSF and in striatal tissue [ 117 ]. In addition to elevated cytokines, cellular 
alterations including microglial activation and astrogliosis are present in HD [ 118 ]. 

 The role of astrocytes in HD is multifaceted, involving the production of infl am-
matory mediators as well as the potential loss of neuronal support. The expression 
of mutant huntingtin is not restricted to neurons; it is also expressed in astrocytes 
and peripherally. The targeted expression of mutant htt (160Q) in astrocytes leads 
to neurological and motor dysfunction [ 119 ], suggesting that astrocytes can directly 
infl uence HD pathology. A key function of astrocytes is to support neurons 
through the secretion of neurotrophins and buffering of extracellular glutamate. 
Evidence from HD mouse models suggests that astrocyte dysfunction may be an 
important aspect of the disease. Astrocytes produce BDNF, and this was found to be 
impaired in astrocytes expressing a mutant huntingtin fragment (htt552-100Q) [ 120 ]. 
Others have shown that astrocyte-produced BDNF provides therapeutic benefi t. 
Astrocyte- targeted overexpression of BDNF attenuated quinolinate-induced lesions 
[ 121 ]. Additionally, viral delivery of BDNF driven by the GFAP promoter delayed 
disease progression in the R6/2 HD mouse model which expresses the 5′end of 
human huntingtin with 115-150 CAG repeats [ 122 ,  123 ]. Similarly, delivery of 
GDNF protects neurons and reduces disease severity [ 124 ,  125 ]. In vitro, astrocyte-
conditioned media protect a striatal neuronal cell line expressing huntingtin Q111 
from oxidative and excitotoxic cell death [ 126 ]. 

 Evidence suggests that excitotoxic injury is an underlying mechanism of striatal 
neuronal loss in HD [ 127 ]. The uptake of glutamate, the main excitatory neurotrans-
mitter, is impaired in the prefrontal cortex of HD patients [ 128 ]. Expression of mutant 
huntingtin in astrocytes reduces glutamate transporter expression and impairs the 
ability of astrocytes to take up glutamate. Moreover, in a coculture system, mutant 
htt-expressing astrocytes were less effi cient at protecting neurons from glutamate-
induced excitotoxicity [ 129 ]. In an in vivo model in which striatal astrocytes express 
mutant htt, reduced expression of glutamate transporters GLAST and GLT-1 as well 
as impaired glutamate uptake was observed. In addition, these mice displayed astro-
gliosis and neuronal dysfunction [ 130 ]. The ability of mutant htt to impair astrocyte-
dependent glutamate handling may potentiate neuronal death in HD. 

 Despite evidence of microglial, astrocytic, and complement activation in the 
brains of HD patients, few studies have examined the contribution of glial cells to 
infl ammation in HD [ 131 ]. In line with previous studies that mutant htt impairs 
astrocyte function, astrocytes from R6/2 mice express and secrete less CCL5 
(RANTES). Impaired secretion results in aberrant accumulation of CCL5 in astro-
cytes and is observed in HD mouse models and in HD patients [ 132 ]. CCL5 has 
neurotrophic effects and its reduction may contribute to HD pathogenesis [ 132 ]. 
A recent study has examined the infl ammatory responses in HD mice and astro-
cytes. In Hdh150Q mice, acute LPS treatment leads to enhanced TNF-α and IL-1β 
production in the cortex, striatum, and periphery [ 133 ]. Not only is the initial infl am-
matory reaction greater in the mutant htt mice, it is also prolonged. The enhanced 
infl ammation was associated with excessive NF-κB activation in astrocytes. A single 
injection of LPS resulted in chronic infl ammation and accelerated disease in the 
R6/2 mice. In addition, isolated R6/2 astrocytes stimulated with LPS produced 
higher levels of nitric oxide and were more toxic to isolated neurons [ 133 ].  
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6     Astrocytes in ALS 

 Amyotrophic lateral sclerosis (ALS) is caused by the selective degeneration 
of motor neurons resulting in progressive paralysis and premature death. In most 
cases, ALS is sporadic with unknown etiology. In a small number of cases, ALS 
is caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). 
Through the use of SOD1 mutant mice, the mechanisms and cells involved in patho-
genesis have been examined, and the non-cell autonomous processes involved in 
ALS have gained attention. Collectively, it appears that disease onset is determined 
by motor neurons, most likely through mutant SOD1-dependent damage; however, 
other cells including microglia and astrocytes are important in overall disease pro-
gression [ 134 ]. Consistently, ALS patients display activated microglia and astro-
cytes and increased expression of proinfl ammatory cytokines [ 135 ]. 

 Glial activation is observed in the postmortem analysis of patients with ALS and 
in ALS animal models. It is likely that astrocytes and microglia work together, 
along with other cells types such as peripheral leukocytes, to modulate disease 
pathology. Using a SOD1 G37R  mouse model in which mutant SOD1 could be deleted 
from astrocytes, Yamanaka and colleagues demonstrated that disease onset was 
unaffected, but disease progression was greatly attenuated [ 136 ]. Although astro-
gliosis, based on GFAP expression, was not reduced by astrocyte-selective ablation 
of SOD1 G37R , microgliosis was diminished. Concomitant with reduced microglial 
activation was a reduction in the expression of iNOS. These studies indicate that 
mutant SOD1-expressing astrocytes can infl uence disease progression in part 
through modulation of microglia [ 136 ]. Expression of SOD1 G37R  in astrocytes elicits 
an infl ammatory response and toxicity toward motor neurons in coculture. This 
includes elevated expression of iNOS and NOX2 with increased production of nitric 
oxide and reactive oxygen, respectively. The antioxidant apocynin attenuated 
astrocyte- produced ROS and motor neuron toxicity [ 137 ]. Accordingly, motor neu-
rons are sensitive to NO-induced cell death, most likely through reaction with 
superoxide to form highly reactive peroxynitrite [ 138 ]. Additionally, astrocytes 
derived from both familial and sporadic ALS patients are toxic to motor neurons. 
This toxicity was associated with upregulation of a number of astrocyte-produced 
infl ammatory molecules including several C-C and C-X-C chemokines, TNF and 
IL-8 [ 139 ]. Similarly, mutant SOD1-expressing mouse astrocytes are toxic to pri-
mary motor neurons in coculture [ 140 ]. Expression of SOD1 G93A  alters infl amma-
tory gene expression in astrocytes leading to upregulation of CCL8, CXCL7, and 
CCL5 [ 141 ]. In addition the prostaglandin D2 (PGD2) receptor was markedly 
increased. While these chemokines do not mediate the astrocyte-dependent toxicity 
toward motor neurons, blockade of the PGD2 receptor attenuated cell death, sug-
gesting that prostaglandins may have role in motor neuron death [ 141 ]. 

 IFN-γ has also been implicated in the demise of motor neurons. SOD1 G93A - 
expressing astrocytes produce IFN-γ, and antibody-mediated neutralization of IFN-γ 
blocks astrocyte-dependent toxicity toward motor neurons in this model [ 142 ]. The 
toxic effects of IFN-γ are mediated in part through stimulation of the TNF family 
member, LIGHT (TNFSF14), from motor neurons which binds the lymphotoxin-β 
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receptor (LT-βR) in an autocrine fashion, activating a pro-death signaling cascade. 
Consistent with a role for astrocytes in driving disease progression, deletion of LIGHT 
delays disease progress but not onset [ 142 ]. Type I IFNs may also have a role through 
stimulation of interferon-stimulated genes (ISGs) in astrocytes. ISG15 was reported to 
be elevated in human ALS and mouse spinal cords. Deletion of IFNAR1 delayed dis-
ease progress but not onset in SOD1G93A mice [ 143 ]. Thus, astrocyte-dependent 
production and responses to IFNs may have important roles in the progression of ALS.  

7     Conclusions 

 Astrocytes have a key role in controlling infl ammatory responses in the CNS 
(Fig.  2 ). Here, we have focused on astrocytes in only the most prevalent neurode-
generative diseases. It is worth noting that activated astrocytes and increased infl am-
matory cytokines are observed in many other neurodegenerative diseases including 

  Fig. 2    Astrocytes orchestrate CNS infl ammation. In neurodegenerative diseases, astrocytes 
respond to soluble factors including protein/peptide oligomers produced by neurons and infl am-
matory cytokines and chemokines produced by endogenous microglia and invading peripheral 
leukocytes. In response, astrocytes activate transcription factors such as NF-κB and STATs that 
leads to the production of a plethora of molecules which dictate the behavior and/or recruitment of 
the surrounding cells. The astrocyte-directed response may be benefi cial through release of anti- 
infl ammatory mediators and growth factors, or it may promote neurodegeneration through produc-
tion of ROS and proinfl ammatory mediators       
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prion diseases [ 144 ] and lysosomal storage diseases [ 145 ]. While astrocytes have 
numerous benefi cial functions [ 1 – 4 ,  6 ,  146 – 148 ], it seems that long-term perpetual 
stimulation, as likely occurs in neurodegenerative diseases, may exacerbate disease. 
Thus, we must continue to defi ne the physiological and pathological functions of 
astrocytes as they may hold the key to new therapies.
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